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ABSTRACT

In this paper we investigate the impact of lensing magnification on the analysis of Euclid’s spectroscopic survey using the multipoles of the
two-point correlation function for galaxy clustering. We determine the impact of lensing magnification on cosmological constraints as well as the
expected shift in the best-fit parameters if magnification is ignored. We considered two cosmological analyses: (i) a full-shape analysis based on
the Λ cold dark matter (CDM) model and its extension w0waCDM and (ii) a model-independent analysis that measures the growth rate of structure
in each redshift bin. We adopted two complementary approaches in our forecast: the Fisher matrix formalism and the Markov chain Monte Carlo
method. The fiducial values of the local count slope (or magnification bias), which regulates the amplitude of the lensing magnification, have been
estimated from the Euclid Flagship simulations. We used linear perturbation theory and modelled the two-point correlation function with the public
code coffe. For a ΛCDM model, we find that the estimation of cosmological parameters is biased at the level of 0.4–0.7 standard deviations, while
for a w0waCDM dynamical dark energy model, lensing magnification has a somewhat smaller impact, with shifts below 0.5 standard deviations.
For a model-independent analysis aimed at measuring the growth rate of structure, we find that the estimation of the growth rate is biased by up
to 1.2 standard deviations in the highest redshift bin. As a result, lensing magnification cannot be neglected in the spectroscopic survey, especially
if we want to determine the growth factor, one of the most promising ways to test general relativity with Euclid. We also find that, by including
lensing magnification with a simple template, this shift can be almost entirely eliminated with minimal computational overhead.
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1. Introduction

The European Space Agency’s Euclid satellite mission
(Laureijs et al. 2011; Amendola et al. 2018) aims at shedding
light on the so-called dark components of the Universe, namely
dark matter and dark energy. Dark matter, a mysterious form of
matter that does not seem to emit light, yet accounts for more
than 80% of the total matter content of the Universe, forms the
bulk of the large-scale cosmic structure, upon which galaxies
form and evolve. Dark energy is even more elusive, and it is
what drives the current accelerated expansion of the Universe,
contributing to about 70% of the total cosmic energy budget (see
e.g. Bull et al. 2016, for a review of the current concordance cos-
mological model and the main theoretical challenges it faces).
In fact, there is another possible explanation for the effects we
ascribe to dark matter and/or dark energy: that the theory we use
to analyse the data is incorrect. This approach is called “modi-
fied gravity” (e.g. Clifton et al. 2012). Thanks to the extent and
exquisite precision of Euclid’s data, we shall soon be able to fur-
ther test general relativity on scales far from the strong-gravity
regime, where it has been tested to supreme precision (see e.g.
Cardoso & Pani 2019, for a review of the current status).

Euclid will consist of two primary probes: a catalogue of
about 30 million galaxies with spectroscopic redshift informa-
tion, spanning a redshift range between z = 0.8 and z = 1.8, and
a catalogue of 1.5 billion galaxy images with photometric red-
shifts down to z = 2 (see Laureijs et al. 2011; Amendola et al.
2018, for further details on the specifics of the Euclid surveys).
One of the main goals of the Euclid spectroscopic survey is to
measure the so-called growth rate, which is very sensitive to the
theory of gravity (see for example Alam et al. 2017). However,
in order to robustly test alternatives to general relativity, it is cru-
cial to take all of the relevant effects into account in the analysis.
One effect that has been overlooked in previous forecasts regard-
ing the performance of the Euclid spectroscopic survey is lensing
magnification (Matsubara 2004).

The aim of this paper is to investigate whether lensing mag-
nification has to be included in this analysis. It is well known
that lensing magnification has to be included in a photomet-
ric survey for the correct estimation of cosmological parame-
ters (Duncan et al. 2014; Cardona et al. 2016; Villa et al. 2018;
Lorenz et al. 2018; Unruh et al. 2020; Euclid Collaboration
2022; Mahony et al. 2022; Elvin-Poole et al. 2023). However, as
the density and redshift space distortion (RSD) contributions are
significantly larger in a spectroscopic survey, one might hope
that lensing magnification can be neglected in this case. In this
paper we show that this is not the case, and that neglecting lens-
ing can shift the inferred cosmological parameters by up to 0.7σ
and can affect the measured growth rate by up to 1σ. We then
propose a method for reducing the shifts to an acceptable level.
This method consists of adding the lensing magnification signal
to the modelling, using fixed cosmological parameters within the
Λ cold dark matter (CDM). Of course, in this way the lensing
magnification is not exactly correct (since we do not know the
theory of gravity nor the cosmological parameters), but we show
that this is enough to de-bias the analysis, reducing the shifts to
less than 0.1σ.

The paper is structured as follows. In the next section, we
present the fluctuations of galaxy number counts within linear
perturbation theory, concentrating on the redshift-space two-
point correlation function (2PCF). In Sect. 3 we present the rel-
evant quantities from the Euclid Flagship simulations used in
this work. In Sect. 4 we explain the methods used in our analy-
sis, Fisher matrix and Markov chain Monte Carlo (MCMC). In

Sect. 5 we discuss our results and present the method for de-
biasing the analysis, and in Sect. 6 we conclude. Some details
and complementary results are presented in the appendices.

In this paper, scalar metric perturbations are described via
the gauge-invariant dimensionless Bardeen potentials, Φ and Ψ .
In longitudinal gauge the perturbed metric is

ds2 = a2(η)
[
−(1 + 2Ψ ) c2dη2 + (1 − 2Φ) δi j dxidx j

]
, (1)

where we use the Einstein summation convention over repeated
indices. Here a(η) is the cosmic scale factor evaluated at con-
formal time η, and c is the speed of light. In the above, as well
as in subsequent equations, a prime denotes the derivative with
respect to conformal time, andH = a′/a = Ha denotes the con-
formal Hubble parameter. We normalised the scale factor to 1
(i.e. a0 = 1) such thatH0 = H0.

2. Fluctuations of spectroscopic galaxy number
counts

2.1. Galaxy number counts

An important observable of the Euclid satellite will be the
galaxy number counts, that is, the number of galaxies dN(n, z)
detected in a given small redshift bin dz around a redshift z
and a small solid angle dΩ around a direction n. Expressing
dN(n, z) = n(n, z) dz dΩ in terms of the angular-redshift galaxy
density n(n, z) and subtracting the mean,

n̄(z) =
1

4π

∫
Ω

n(n, z) dΩ, (2)

we define the galaxy number count fluctuation as

∆(n, z) =
n(n, z) − n̄(z)

n̄(z)
· (3)

This quantity and its power spectra have been calcu-
lated at first order in cosmological perturbation theory
in Yoo et al. (2009), Yoo (2010), Bonvin & Durrer (2011),
Challinor & Lewis (2011), and Jeong et al. (2012). As it is an
observable, the result is gauge invariant. It is not simply given by
the density fluctuation on the constant redshift hypersurface, but
also contains volume distortions. Most notable of those are the
radial volume distortion from peculiar velocities, the so-called
RSDs (Kaiser 1987), but also the transversal volume distortion
due to weak lensing magnification (Matsubara 2004) and the
large-scale relativistic effects identified for the first time in the
above references. The final formula, including the effect of evo-
lution bias (Challinor & Lewis 2011; Jeong et al. 2012), is given
by (Di Dio et al. 2013)

∆(n, z,m∗) = b δ +
1
H
∂r (V · n)

∣∣∣
rs

−
2 − 5s

2rs

∫ rs

0
dr

rs − r
r

∆Ω(Φ + Ψ ) + . . . (4)

Here r = r(z) is the comoving distance evaluated at redshift z, rs
is the comoving distance between the observer and the source,
b = b(z,m∗) is the linear bias of galaxies with magnitude below
m∗, the magnitude limit of the survey, δ is the gauge-invariant
density fluctuation representing the density in comoving gauge,
∂r is the derivative w.r.t. the comoving distance r, V is the veloc-
ity of sources in the longitudinal gauge, and ∆Ω denotes the angu-
lar part of the Laplacian.
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The function s = s(z,m∗) is the local count slope needed to
determine the magnification bias. The local count slope depends
on the magnitude limit m∗ of the survey and is given by (see e.g.
Challinor & Lewis 2011)

s(z,m∗) =
∂ log10 N̄(z,m < m∗)

∂m∗
· (5)

Here N̄ is the cumulative number of objects brighter than
the magnitude cut m∗ (for a magnitude-limited sample). The
first line of Eq. (4) corresponds to the standard terms of
density fluctuations and RSDs, and the second line is the
lensing magnification, which is the subject of the present
paper (see Bonvin & Durrer 2011; Challinor & Lewis 2011;
Jeong et al. 2012; Di Dio et al. 2013 for details)1. The mod-
elling of magnification in Eqs. (4) and (5) assumes an ide-
alised magnitude-limited sample. On the other hand, realisti-
cally the sample selection may also depend on galaxy size,
which is also impacted by magnification, or it may be based on
a complex colour-magnitude selection. While these additional
effects complicate the estimation of an effective local count slope
from real data (see e.g. von Wietersheim-Kramsta et al. 2021),
our treatment is adequate enough for our forecast. The dots at
the end of Eq. (4) stand for the “large-scale relativistic terms”
that we omitted in our analysis. These terms are suppressed
by factors λH c−1, where λ is the comoving wavelength of
the perturbations (see e.g. Di Dio et al. 2013; Jelic-Cizmek et al.
2021; Euclid Collaboration 2022). It is well known that the
large-scale relativistic terms are relevant only at very large
scales and do not significantly impact the even multipoles of
the correlation function on sub-Hubble scales (Lorenz et al.
2018; Yoo et al. 2009; Bonvin & Durrer 2011). Some of these
relativistic terms will, however, be detectable by measuring
odd multipoles in the correlation of two different tracers (see
Bonvin et al. 2014, 2023; Gaztanaga et al. 2017; Lepori et al.
2020; Beutler & Di Dio 2020; Saga et al. 2022). A detailed
study of the signal-to-noise ratio of all relativistic effects in simu-
lated mock catalogues adapted to Euclid’s spectroscopic survey
will be presented in Euclid Collaboration: Elkhashab et al. (in
prep.).

The goal of this paper is to study the impact of lensing
magnification on the 2PCF. We note that the impact of lens-
ing magnification on the angular power spectrum, C`(z1, z2), has
already been computed and found to be relevant for Euclid’s
photometric sample (Euclid Collaboration 2022). However, the
angular power spectrum, C`(z1, z2) is not well suited to a sur-
vey with spectroscopic resolution of δz . 10−3 since we would
have to split the redshift interval into more than 1000 bins in
order to fully profit from the redshift resolution of a spectro-
scopic survey. This would not only significantly increase the
computational effort, but also lead to large shot noise in the auto-
correlation spectra2. These are the main reasons that, for spec-
troscopic surveys, the correlation function is a more promising
summary statistic than the angular power spectrum; we therefore
need to determine the impact of lensing magnification on this
statistic.

1 Note that to obtain Eq. (4) we assume that galaxies obey the Euler
equation, i.e. that dark matter does not interact and exchange energy
or momentum with other constituents (Bonvin & Fleury 2018), but we
have not used Einstein’s equations.
2 While there are methods that address this issue (see for instance
Camera et al. 2018), we do not make use of them in this paper.

2.2. The two-point correlation function

In spectroscopic surveys, there are two standard estimators used
to extract information from galaxy number counts: the 2PCF, and
its Fourier transform, the power spectrum. In this paper, we con-
centrate on the correlation function, since lensing magnification
can be included in this estimator in a straightforward way. This is
not the case for the power spectrum, which requires non-trivial
extensions to account for magnification (see e.g. Grimm et al.
2020; Castorina & di Dio 2022).

The 2PCF can be calculated in the curved-sky, that
is, without assuming that the two directions n and n′ are
parallel:

ξ(n, z, n′, z′) = 〈∆(n, z)∆(n′, z′)〉. (6)

The curved-sky density and RSD contributions were first derived
in Szalay et al. (1998) and Szapudi (2004). This method, which
can be straightforwardly applied to any local contribution of
∆(n, z), cannot be used to calculate contributions from inte-
grated effects like lensing magnification, which is the main sub-
ject of this work. The magnification contribution was calculated
in Tansella et al. (2018a) using an alternative method proposed
in Campagne et al. (2017). The detailed expressions for all con-
tributions can be found in Tansella et al. (2018a); for complete-
ness, we repeat them in Appendix E.1. The expressions for the
2PCF significantly simplify in the flat-sky approximation: in this
approximation, one assumes that the two directions n and n′ are
parallel, and one neglects the redshift evolution of ∆. In this
case, the density and RSD contributions (hereafter called stan-
dard terms) in a “thick” redshift bin with mean redshift z̄ take
the following simple form:

ξstd(d, z̄, µ) = ξstd
0 (d, z̄) + ξstd

2 (d, z̄)L2(µ) + ξstd
4 (d, z̄)L4(µ), (7)

where d denotes the comoving separation between the correlated
volume elements or “voxels”, z̄ is the centre of the bin interval
in which the correlation function is measured, µ is the cosine of
the angle between the direction of observation n and the vec-
tor connecting the voxels, and L` denotes the Legendre polyno-
mial of order `. The standard multipoles, ξstd

` , are given by the
well-known expressions

ξstd
0 (d, z̄) =

[
b2(z̄) +

2
3

b(z̄) f (z̄) +
1
5

f 2(z̄)
]
µ0(d, z̄),

ξstd
2 (d, z̄) = −

[
4
3

f (z̄)b(z̄) +
4
7

f 2(z̄)
]
µ2(d, z̄), (8)

ξstd
4 (d, z̄) =

8
35

f 2(z̄) µ4(d, z̄),

where

f (z̄) :=
d ln δ
d ln a

, (9)

is the growth rate of structure. The functions µ`(d, z̄) are given by

µ`(d, z̄) =
1

2π2

∫ ∞

0
dk k2Pδδ(k, z̄) j`(kd), (10)

where j` denotes the spherical Bessel function of order `, and
Pδδ(k, z̄) is the linear matter power spectrum in the comov-
ing gauge. We see that, in the flat-sky approximation, density
and RSD are fully encoded in the first three even multipoles.
The expressions for computing higher-order multipoles without
using the flat-sky approximation can be found in Appendix E.1.
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The magnification contribution can also be simplified using
the flat-sky approximation and the Limber approximation. This
has been derived in detail in Tansella et al. (2018a). It contains
an infinite series of multipoles,

ξmagn(d, z̄, µ) =
∑
`

ξ
magn
`

(d, z̄)L`(µ), (11)

with

ξ
magn
`

(d, z̄) =
2` + 1

2

{
3Ωm,0

2π
(1 + z̄)b(z̄)(5s − 2)d

∫ 1

0
dµ µ L`(µ)

×

∫ ∞

0
dk⊥ k⊥

H2
0

c2 Pδδ(k⊥, z̄)J0

(
k⊥d

√
1 − µ2

)
(12)

+
9Ωm,0

2

4π
(5s − 2)2

∫ r̄

0
dr′

(r̄ − r′)2r′2

r̄2a2(r′)

∫ 1

0
dµ L`(µ)

×

∫ ∞

0
dk⊥ k⊥

H4
0

c4 Pδδ
(
k⊥, z(r′)

)
J0

(
k⊥

r′

r̄
d
√

1 − µ2

) }
.

Here H0 = 100 h km s−1 Mpc−1, k⊥ = k−kµn is the projection of
the Fourier space wavevector k to the direction normal to n, and
J0 denotes the Bessel function of zeroth order. The first two lines
of Eq. (12) contain the density–magnification correlation: when
computing the multipoles, one averages over all orientations of
the pair of voxels. For each orientation, the galaxy that is farther
away is lensed by the one in the foreground. This effect clearly
has a non-trivial dependence on the orientation angle, µ, which
enters in the argument of the Bessel function J0. The last two
lines contain the magnification–magnification correlation, due
to the fact that both galaxies are lensed by the same foreground
inhomogeneities. In all the terms, the functions are evaluated at
the mean redshift of the bin z̄, r̄ denotes the comoving distance
at that redshift, and a(r) denotes the scale factor evaluated at
comoving distance r. For completeness, in Appendix E.2 we list
the semi-analytic expressions that allowed us to efficiently eval-
uate the flat-sky magnification terms.

In Fig. 1 we show a comparison between the curved-sky
expression and the flat-sky approximation for the standard multi-
poles (left panel) and the magnification multipoles (right panel),
in one of the redshift bins of Euclid, z̄ = 1.4. We checked that
most of the constraining power comes from standard terms of
the monopole and quadrupole below d = 150 Mpc, where the
difference between the curved-sky and the flat-sky expressions
is less than 0.2% (it reaches 0.7% for the hexadecapole). Simi-
lar results are obtained for the other redshift bins; hence, using
the flat-sky approximation is very well justified. For the mag-
nification contribution to the monopole, we see that the flat-
sky approximation differs from the curved-sky result already at
small separation by roughly 5%. However, since the magnifi-
cation is a sub-dominant contamination to the total signal, a 5%
error is perfectly acceptable. We note that the difference between
curved-sky and flat-sky actually increases for small separations;
as shown in Jelic-Cizmek (2021), this can occur when the dom-
inant contribution to the multipoles is the density-lensing term,
for which the accuracy of the flat-sky approximation becomes
progressively worse at smaller scales.

In Fig. 2 we compare the 2PCF with and without lensing
magnification. On small scales, lensing magnification is not very
important. However, for scales of more than 300 Mpc it can con-
tribute up to 20% to the monopole and the quadrupole and up
to 50% or more to the hexadecapole. We see that the further
apart the galaxies are, the more significant is the contribution
from lensing magnification to their correlation. This is due to
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Fig. 1. Impact of the flat-sky approximation on the multipoles of the
2PCF. Top: Curved-sky (solid) vs. flat-sky (dashed) multipoles, with
contributions from standard terms (left) and from just lensing magni-
fication (right). Lensing magnification is computed using the values of
the local count slope given in Table 2, which are the fiducial values
assumed in our analysis. Bottom: Their relative difference in percent,
taking the curved-sky case as the reference value.

100

50

0

50

100

ξ `
(d

)
×
d

2
 [M

p
c2

]

z̄= 1.4

50 100 150 200 250 300 350 400
d [Mpc]

40

20

0

20

40

re
l. 

di
ff.

 (%
)

`= 0 `= 2 `= 4

Fig. 2. Impact of magnificatiom on the multipoles of the 2PCF. Top:
Comparison of multipoles without (solid) and with (dashed) lensing
magnification. Bottom: Their relative difference in percent, taking the
case with magnification as the reference value.

the fact that the density correlations quickly decrease with sepa-
ration, while the lensing magnification correlations do not. The
magnification–magnification correlations are indeed integrated
all the way from the sources to the observer, and therefore con-
tain contributions from small scales, when the two lines of sight
are close to the observer.

We next assessed the impact of these multipoles on the anal-
ysis of data from Euclid. In particular, we determined the follow-
ing: first, if the contribution from magnification can improve our
measurement of cosmological parameters; and second, to what
extent neglecting magnification in the analysis will shift the best-
fit value of the parameters, consequently biasing the analysis.
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We considered two cases. In the first case, we fixed the cos-
mological model, and we studied how magnification impacts the
parameters of this model. For this case, we studied two models:
a minimal ΛCDM model and a dynamical dark energy model.
In the second case, we performed a model-independent analy-
sis, that is, we rewrote the standard multipoles in terms of the
power spectrum at z∗, using that Pδδ(z̄) = Pδδ(z∗)σ2

8(z̄)/σ2
8(z∗).

We chose z∗ to be well within in the matter-dominated era before
acceleration started. We assumed that, at z∗, general relativity is
valid, and that the power spectrum is therefore fully determined
by the early Universe parameters that have been measured by the
cosmic microwave background (CMB). With this, the functions
µ` depend only on the power spectrum at z∗, while the evolution
from z∗ to z̄ is fully encoded in two functions:

f̃ (z̄) = f (z̄)σ8(z̄) and b̃(z̄) = b(z̄)σ8(z̄). (13)

We obtained the multipoles of the standard terms:

ξstd
0 (d, z̄) =

[
b̃2(z̄) +

2
3

b̃(z̄) f̃ (z̄) +
1
5

f̃ 2(z̄)
]
µ0(d, z∗)
σ2

8(z∗)
,

ξstd
2 (d, z̄) = −

[
4
3

f̃ (z̄)b̃(z̄) +
4
7

f̃ 2(z̄)
]
µ2(d, z∗)
σ2

8(z∗)
, (14)

ξstd
4 (d, z̄) =

8
35

f̃ 2(z̄)
µ4(d, z∗)
σ2

8(z∗)
·

In this case, the functions µ`(d, z∗) are considered fixed since
they are very well determined by CMB measurements, and the
functions f̃ and b̃ are two free functions that depend on the
mean redshift z̄ of the bins (see also Jelic-Cizmek et al. 2021
for an introduction of this method). These two free functions
fully encode any deviations from general relativity at late time.
The only approximation that enters here is that we neglected the
k dependence of the growth of density, meaning that σ8 and f
depend only on redshift. This assumption can easily be relaxed:
it slightly complicates the analysis, since f̃ and b̃ would have to
be taken inside the integrals in Eq. (10), but it does not change
the procedure.

This model-independent analysis is one of the key goals of
the Euclid spectroscopic survey. It is very powerful, since it
allows us to measure the growth rate of structure without assum-
ing a particular model of gravity or dark energy. This growth
rate can then be compared with the predictions of any model
beyond ΛCDM. In the following, we determined how neglect-
ing magnification in the analysis could shift the best-fit values of
b̃ and f̃ in each redshift bin. We note that here for simplicity we
fixed the cosmological parameters that determine the functions
µ` at early time, z∗, to their fiducial value extracted from Planck
data (Planck Collaboration XIV 2016). In practice, one can also
let these parameters vary and perform a combined analysis with
CMB data.

It is worth mentioning that, by construction, the analysis
using multipoles of the correlation function does not account
for correlations between different redshift bins: the correlation
function is averaged over directions within a given bin, and each
redshift bin is considered to be independent. However, the main
motivation of measuring the multipoles of the correlation func-
tion is to extract the growth rate f , which is encoded in the
peculiar velocities of galaxies within linear perturbation theory.
Moreover, since the correlations of peculiar velocities quickly
decrease with separation, one does not lose a significant amount
of information by neglecting cross-correlation between bins.
The situation is of course different for magnification, which, as
it is an integral along the line of sight, is strongly correlated
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Fig. 3. Galaxy bias (top panel) and the local count slope (lower panel)
with linear interpolation (dashed), as used in our analysis, along with
their associated error bars, as well as a polynomial fit (solid). For the
exact numerical values of the coefficients, refer to Eq. (B.3).

between different bins. Therefore, we expect that neglecting
cross-correlations of different bins will strongly reduce the mag-
nification signal, compared to the angular power spectra used in
the analysis of the photometric sample, which is able to account
for correlations between the bins (Euclid Collaboration 2022).
As such, the shift induced by neglecting lensing magnification is
expected to be smaller in the spectroscopic analysis than in the
photometric one.

3. Euclid specifics from the Flagship simulation

In order to calculate the linear galaxy bias and local count
slope observables for this analysis, which we employed as our
fiducial values for the Fisher and MCMC analyses, we used
Flagship v1.8.4 galaxy mock samples, whose redshift distribu-
tion of the number density, N(z), is split into 13 equally spaced
bins (in redshift), between z = 0.9 and z = 1.8, in real space. As we
see from Fig. 3, this allowed us to accurately capture the redshift
evolution of the bias and the local count slope, while still hav-
ing enough galaxies in each bin to obtain a precise measurement.
We imposed a cut in the Hα flux FHα (in units of erg s−1 cm−2),
log10 [FHα/(1 erg s−1 cm−2)] > −15.7, that can be transformed to
the corresponding AB magnitude limit, m∗ = mAB < −15.753.
The linear galaxy bias and local count slope, estimated from the
Flagship simulation as described in this section, are assumed in
our analysis to be the “true” values for the Euclid spectroscopic
sample, and we used them throughout the paper as fiducial values.

3.1. Linear galaxy bias

The linear galaxy bias is obtained by fitting the curved-sky
angular power spectrum of the data to the corresponding fidu-
cial prediction for N(z) in each redshift bin. The angular
power spectrum is extracted using Polspice4 with a mask to

3 We note that the N(z) include survey specific effects, such as purity
and completeness, following the pipeline of the Flagship Image Simula-
tions. We have observed that not considering these two systematics can
affect the linear galaxy bias value up to a 5% depending on the redshift,
while the magnification bias is not significantly affected by this.
4 http://www2.iap.fr/users/hivon/software/PolSpice/
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Table 1. Fiducial values of the cosmological parameters.

Ωm,0 Ωb,0 σ8 ns h w0 wa

0.319 0.049 0.83 0.96 0.67 –1 0

generate 100 jackknife regions that we used to calculate
the covariance matrix. This masked region corresponds to
the area of the sky that the Cosmohub’s Flagship v1.8.4
release (Tallada et al. 2020; Carretero et al. 2017) does not
cover, which corresponds to seven-eighths of the total sky. The
mask is also generated with Polspice by masking the pixels
outside the region 0◦ < RA < 90◦ and 0◦ < Dec < 90◦. Then
when considering the jackknife regions, we used a k-means clus-
tering algorithm to select 100 regions with roughly the same
number of pixels (since each HEALPix5 pixel covers the same
sky area) inside the unmasked region. For each jackknife resam-
pling, we included in the mask the pixels of a different region in
order to exclude it from that jackknife iteration C` calculation.
The prediction is determined using CCL6 (Chisari et al. 2019)
with the fiducial cosmological parameter values being those used
in the Flagship v1.8.4 simulation (see Table 1). The linear
scales considered range from ` = 50 to an `max that increases
as we go to higher redshifts (as the effective non-linear galaxy
bias scale shifts to higher multipoles, i.e. smaller angular scales),
starting at `max ∼ 300 for z = 0.9 to `max ∼ 500 for z = 1.8. Since
CCL does not yet allow us to perform calculations without the
Limber approximation, we employed it for all of the scales used
to estimate the linear galaxy bias. We set the minimum multipole
to ` = 50, which is a rather conservative limit in order to avoid
large Limber approximation deviations from the theory at any
redshift considered for this analysis. On top of that, scales with
` < 50 usually have very high error bars due to sample variance
so they can be ignored since their statistical weight to estimate
the galaxy bias is very low. The maximum scale for each red-
shift is estimated by comparing the relative ratio between the
linear and non-linear matter power spectrum prediction and set-
ting a maximum relative difference of 3%. This maximum differ-
ence should be good enough since galaxy clustering is known to
follow linear predictions down to smaller scales than dark mat-
ter. At the scales used, the Limber approximation adds up to a
4% variation of the predicted angular power spectrum, which
translates into an error below 2% on the galaxy bias estimation.
The χ2 distribution is then calculated for different values of the
galaxy bias in relation to the square ratio of the data C`’s to the
prediction C`’s using only the diagonal values of the jackknife
covariance matrix. We estimated the linear galaxy bias as the
minimum value of the χ2 distribution, and we set the error to the
1σ variance.

3.2. Local count slope

To measure the local count slope from the Flagship catalogues,
we computed, in each of the 13 redshift bins, the cumulative
number of galaxies N̄(z,m < m∗) at the magnitude limits m∗ and
m∗ ± 0.04, and we computed the logarithmic derivative to obtain
s(z,m∗) through Eq. (5). We also generated 100 jackknife regions
in order to calculate the variance of the results. In Fig. 3, we see
that s increases with redshift; this is due to the fact that a fixed
apparent magnitude threshold, m∗, corresponds to a larger intrin-

5 https://healpix.sourceforge.io/
6 https://github.com/LSSTDESC/CCL

sic luminosity threshold L∗ at high redshift than at low redshift.
This is due to the fact that the slope in m of the Schechter lumi-
nosity function, which is assumed here, increases with redshift.

4. Method

This study employed two complementary approaches for fore-
casting the constraining capabilities of future Euclid data: the
Fisher matrix formalism and the MCMC method. The details of
each approach are outlined in Sects. 4.1, 4.2, and 4.3, respec-
tively. We used the code coffe7, which has been validated
against the code CosmoBolognaLib8 (for details of the valida-
tion, see Appendix A), to compute the multipoles of the 2PCF.

4.1. The Fisher matrix formalism: Cosmological constraints

The Fisher matrix can be defined as the expectation value of the
second derivatives of the logarithm of the likelihood under study
with respect to the parameters of the model (see e.g. Tegmark
1997):

Fαβ =

〈
−
∂2 lnL
∂θα∂θβ

〉
, (15)

where α and β label two model parameters θα and θβ.
In the particular case of Gaussian-distributed data, the Fisher

matrix is given by

Fαβ =
1
2

Tr
[
∂C
∂θα

C−1 ∂C
∂θβ

C−1
]

+
∑
pq

∂Dp

∂θα

(
C−1

)
pq

∂Dq

∂θβ
, (16)

where D represents the mean of the data vector and C is the
covariance matrix of the data. The trace, Tr, and the sum over
the indexes, p and q, stand for the summation over the different
elements of the data vector.

In the present analysis we considered the 2PCF as our main
observable. Given the set of model parameters {θα}, the Fisher
matrix for the multipoles of the 2PCF measured in a bin centred
in z̄i is

Fbin
αβ (z̄i) =

∑
jk

∑
`m

∂ξ`(d j, z̄i)
∂θα

C−1
[
ξ

j
`
, ξk

m

]
(z̄i)

∂ξm(dk, z̄i)
∂θβ

, (17)

where the sum runs over the voxel separations {d j, dk} as well as
the even multipoles `,m = 0, 2, 4 and ξ j

`
≡ ξ`(d j). We note that

(angular) power spectra observables follow a Wishart distribu-
tion if fluctuations are Gaussian. In this case, the Fisher analy-
sis gives a better approximation if we consider only the second
term in Eq. (16) (see e.g. Carron 2013; Bellomo et al. 2020). In
the following we assume that the same is true for the multipoles
of the correlation function. The binned covariance of the 2PCF
multipoles at mean redshift z̄i, denoted with C, is computed fol-
lowing the Gaussian theoretical model described in Grieb et al.
(2016) and Hall & Bonvin (2017). The cosmic variance contri-
bution includes only the density and RSDs, while magnification
is neglected. This is a good approximation, since the covari-
ance is a four-point function, which contains a sum over all
possible separations between pairs of pixels. Hence, even at a
large separation, the covariance is dominated by correlations at

7 Available at https://github.com/JCGoran/coffe
8 Available at https://github.com/federicomarulli/Cosmo
BolognaLib. In this work, we use git revision 7f08f470e0 of the
code.

A167, page 6 of 23

https://healpix.sourceforge.io/
https://github.com/LSSTDESC/CCL
https://github.com/JCGoran/coffe
https://github.com/federicomarulli/CosmoBolognaLib
https://github.com/federicomarulli/CosmoBolognaLib


Euclid Collaboration: A&A, 685, A167 (2024)

small scales, where the density and RSD strongly dominate over
magnification. The shot noise contribution is estimated from the
number densities reported in Euclid Collaboration (2020; hence-
forth referred to as EP:VII), Table 3. The full expression for the
covariance can be found in Appendix C.

Following EP:VII, we neglected the cross-correlations
between redshift bins. Thus, the full Fisher matrix is

Fαβ =
∑

z̄i

Fbin
αβ (z̄i). (18)

This approximation is justified by the high precision of spec-
troscopic redshift estimates, which leads to essentially no over-
lap between redshift bins. In the case of a photometric analysis,
cross-correlations between different bins can provide significant
information (see e.g. Tutusaus et al. 2020; Euclid Collaboration
2022). The marginalised 1σ errors on the cosmological parame-
ters can then be estimated from the Cramér–Rao bound:

σα =
√

(F−1)αα. (19)

It is important to mention that, although the Fisher matrix
formalism is a powerful forecasting tool, some limitations do
exist. A Fisher forecast uses a Gaussian approximation by con-
struction, which can differ from the true posterior if the data
are not constraining enough. Furthermore, the signal and covari-
ance may have a strong non-linear dependence on the parame-
ters {θα}, in which case the Fisher matrix does not capture all
of the information about the likelihood. In order to validate the
results of our Fisher formalism, we also performed, for one of
the cases, a MCMC analysis to properly sample the posterior of
the parameters (see Sect. 4.3). As we will see, we find that the
relevance of lensing magnification is well captured by a Fisher
forecast. Another drawback of the Fisher formalism worth men-
tioning is that it only provides forecast uncertainties around a
fiducial model. In this analysis we are also interested in the bias
on the posteriors because of wrong model assumptions (neglect-
ing magnification). The standard Fisher formalism prevents us
from doing this study, but extensions to the formalism can be
considered, as described in Sect. 4.2. All Fisher forecasts were
computed with the Python package FITK9.

4.2. The Fisher matrix formalism: Bias on parameter
estimation

The Fisher matrix formalism described above allows us to quan-
tify the gain or loss in constraining power, when magnification
is included in the theoretical model for the observed multipoles
of the 2PCF. This study can be carried out by simply comparing
the Fisher matrix in Eq. (18) and the corresponding marginalised
constraints when magnification is neglected or included in the
analysis.

Another, actually more important question to address is
whether neglecting magnification leads to significant biases
(shifts) in the inferred cosmological parameters. In order to
answer this question, we followed the approach described in, for
example, Taylor et al. (2007) and widely adopted in the literature
(see Kitching et al. 2009; Camera et al. 2015; Di Dio et al. 2016;
Cardona et al. 2016; Lepori et al. 2020; Jelic-Cizmek et al.
2021; Euclid Collaboration 2022). We extended the parameter
space to include the amplitude of magnification, εL. We can
explicitly write the dependence of our model on εL as follows:

ξ`(d j, z̄i) = ξstd
` (d j, z̄i) + εLξ

magn
`

(d j, z̄i), (20)

9 Available at https://github.com/JCGoran/fitk

where ξstd
` represents the standard contributions of density

and RSDs, and ξ
magn
`

is the magnification contribution, which
includes the terms magnification × magnification and the cross-
correlation of magnification with density and the RSD. The
amplitude εL is not a free parameter but rather a fixed one that is
set to either 0 (in a “wrong” model that neglects magnification)
or 1 (in a “correct” model that consistently includes magnifica-
tion). The “wrong” and “correct” models share a common set of
parameters, {θα}, and their estimation will be biased in the wrong
model as a result of the shift in the fixed parameter εL. Using a
Taylor expansion of the likelihood around the wrong model, and
truncating the series at the linear order, we obtain the following
formula for the biases:

∆(θα) =
∑
β

(
F−1

)
αβ

Bβ, (21)

where F is the Fisher matrix of the common set of parameters
evaluated for the wrong model, and

Bβ =
∑

i

∑
jk

∑
`m

ξ
magn
`

(d j, z̄i) C−1
[
ξ

j
`
, ξk

m

]
(z̄i)

∂ξstd
` (dk, z̄i)
∂θβ

· (22)

Equation (22) implicitly assumes that magnification constitutes a
small contribution to the observable; therefore, the outcome can
be quantitatively trusted only when small values of the biases are
found. Nevertheless, large biases are a clear indication that the
lensing magnification significantly contributes to the observable
and that the starting hypothesis should be rejected. Therefore,
it is a good diagnostic to assess whether magnification can be
neglected or should be modelled in the analysis.

4.3. Markov chain Monte Carlo

The MCMC method is a standard statistical technique with
which we numerically sample the posterior probability start-
ing from a prior probability and assuming a likelihood function
(the probability of the data given the hypothesis). An excellent
description of the method can be found in Verde (2007).

In our analysis, under the assumption that our data are
Gaussian, we sampled the posterior of the following likelihood:

ln (L) = −
1
2
∆ξT C−1∆ξ, (23)

where C is the covariance matrix, and ∆ξ is a vector whose ele-
ments are given by

∆ξ[`,i, j] = ξ`(d j, z̄i)ref − ξ`(d j, z̄i), (24)

where the first term is part of a synthetic dataset computed previ-
ously used as our “reference” or “fiducial model”, while the sec-
ond term is computed at each steps of the MCMC, varying the
value of free parameters inside the parameters space described
by the prior function. To simplify the analysis, we neglected the
dependence of the covariance matrix on cosmological parame-
ters, which we fixed to their reference values.

We assumed a flat prior density for each parameter. In order
to speed up the convergence of our chains, we assumed as free
parameters (with flat priors) ωm,0 and ωb,0 instead of Ωm,0 and
Ωb,0, and subsequently re-parametrised the chain using the rela-
tion ωi,0 = Ωi,0h2.

We used the Python package emcee10 (Foreman-Mackey
et al. 2013) to implement the MCMC. Our sampler was com-
posed of 32 walkers, and we used the “stretch move” ensemble

10 Available at https://github.com/dfm/emcee
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method described in Goodman & Weare (2010). Each walker
generates a chain with a number of steps of the order 105 before
converging. Our MCMC code is run in parallel using the Python
package schwimmbad (Price-Whelan & Foreman-Mackey
2017).

In our analysis we also discarded a number of points as burn-
in, given by twice the maximal integrated auto-correlation time,
τ, of all the parameters (Goodman & Weare 2010)11. The results
of the sampling were then analysed with the Python package
GetDist (Lewis 2019).

5. Results

We assessed the impact of neglecting magnification for three dif-
ferent cases: a minimal ΛCDM model, a dynamical dark energy
model, and a model-independent analysis measuring the bias and
growth rate. For each case, we computed the change in the con-
straints due to including magnification and the shift in the param-
eters due to neglecting magnification.

To be consistent with the Flagship simulation, the fiducial
cosmology adopted in our analysis is a flat ΛCDM model with
no massive neutrino species. The set of parameters varied in
the analysis comprises: the present matter and baryon density
parameters, respectively Ωm,0 and Ωb,0; the dimensionless Hub-
ble parameter h; the amplitude of the linear density fluctuations
within a sphere of radius 8 h−1 Mpc at present time, σ8; the spec-
tral index of the primordial matter power spectrum ns; and the
equation of state for the dark energy component {w0,wa}, which
parametrise the time evolution of the dark energy equation of
state parameter as

w(z) = w0 + wa
z

1 + z
· (25)

This model is also known as Chevallier–Polarski–Linder
parametrisation (Chevallier & Polarski 2001; Linder 2003). The
fiducial values of the cosmological parameters used in the anal-
ysis are reported in Table 1. They correspond to the w0waCDM
parameters used in the Euclid Flagship simulation (see Sect. 3).

In addition to these cosmological parameters, we introduced
nuisance parameters and marginalised over them; in particular,
the linear galaxy bias in each redshift bin, {bi}, i = 1, . . . ,Nbins,
are included as nuisance parameters. We modelled them as con-
stant within each redshift bin, and we estimated their fiducial
values using the Flagship simulation, v1.8.4, as described in
Sect. 3. We list the values of the nuisance parameters used in
each redshift bin as well as the expected density of emitters
in Table 2. The impact of magnification on the cosmological
parameters may depend on the model chosen to describe our
Universe. We therefore run our analysis for two different cos-
mological models and comment on the difference between the
results when relevant. We considered (i) a minimal flat ΛCDM
model with five free parameters, {Ωm,0, Ωb,0, h, ns, σ8} plus nui-
sance parameters., and (ii) a flat dynamical dark energy model
with seven free parameters, {Ωm,0, Ωb,0,w0,wa, h, ns, σ8} plus
nuisance parameters.

We also included a cosmology-independent analysis, where
as free parameters we considered the modified galaxy bias and
the modified growth rate in each redshift bin, f̃ (z) and b̃(z),
defined in Eq. (13). To be conservative, as well as to reduce
the impact of non-linearities, we only considered separations
between dmin = 40 Mpc and dmax = 385 Mpc in each redshift

11 The time τ can be considered to be the number of steps that are
needed before the chain “forgets” where it started.

Table 2. Expected number density of observed Hα emitters for the
Euclid spectroscopic survey, extracted from the Flagship simulation in
each redshift bin.

zmin zmax N(z̄) [h3 Mpc−3] Vs(z̄) [h−3 Gpc3] b(z̄) s(z̄)

0.90 1.10 4.71 × 10−4 7.94 1.441 0.79
1.10 1.30 3.75 × 10−4 9.15 1.643 0.87
1.30 1.50 2.90 × 10−4 10.05 1.862 0.96
1.50 1.80 2.01 × 10−4 16.22 2.078 0.98

Notes. The first two columns show the minimum, zmin, and maximum,
zmax, redshift of each bin. The third column shows the comoving num-
ber density of sources,N(z); the fourth column lists the total comoving
volume of the redshift bin. The last two columns respectively denote
the linear galaxy bias and the local count slope of the sources, evalu-
ated at the mean redshift. The values of the biases have been obtained
by performing a cubic interpolation (using the SciPy Python package,
described in Virtanen et al. 2020) on the data described in Sect. 3.

1.0 1.2 1.4 1.6 1.8
z̄

0.5

1.0

1.5

2.0

2.5

S
/N

(z̄
)

`m = 4 `m = 6

Fig. 4. S/N of the lensing magnification for two different scenarios, with
dmin = 40 Mpc. The horizontal bars denote the widths of the redshift
bins.

bin, and, unless specified otherwise, multipoles ` ∈ {0, 2, 4}. We
used voxels of size Lp = 5 Mpc. We checked that reducing them
further to 2.5 Mpc does not improve the constraints anymore,
due to shot noise, which saturates the signal-to-noise ratio for
too small voxel sizes.

5.1. Lensing magnification signal-to-noise

As an estimate of the impact of lensing magnification, we first
computed the signal-to-noise ratio (S/N) of the lensing contri-
bution to the multipoles of the 2PCF, which we define as

S/N(z̄i) :=
√ ∑

j,k,`,m

ξ
magn
`

(d j, z̄i)C−1
[
ξ

j
`
, ξk

m

]
(z̄i)ξ

magn
m (dk, z̄i), (26)

where the sum goes over all pairs of voxels and all even multi-
poles taken into consideration. The results are shown in Fig. 4
and Table 3. Since lensing magnification also contributes to
multipoles larger than the hexadecapole, we show the S/N for
two cases: `m = 4 and `m = 6, where `m denotes the highest
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Table 3. S/N per redshift bin of lensing magnification for the configu-
rations with `m = 4 and `m = 6.

z̄ S/N(`m = 4) S/N(`m = 6)

1.00 0.50 0.62
1.20 0.92 1.11
1.40 1.52 1.78
1.65 2.50 2.87

multipole used in the analysis. As we can see, the S/N is small-
est in the lowest redshift bin, and increases as we go to higher
redshifts. This is a consequence of two effects: first, the local
count slope for Euclid, s(z), increases with increasing redshift
(see Table 2 and Fig. 3)12. Second, the lensing magnification
term is an integrated effect and, as such, has the largest impact at
high redshifts.

5.2. Full-shape cosmological analysis

In this section, we focus on the impact of magnification on the
full-shape cosmological analysis of the 2PCF, for the Euclid
spectroscopic sample. Magnification in principle affects both the
best-fit estimation of cosmological parameters and their con-
straints. In order to quantify the relevance of the effect, we
adopted the Fisher formalism described in Sect. 4.1, and we val-
idated the results by comparing them to the outcome of a full
MCMC analysis. In order to estimate the impact of magnifi-
cation on constraints on cosmological parameters, we run two
Fisher analyses, one with and one without lensing magnifica-
tion, from which we estimate the marginalised 1σ errors, and
we compared the values in the two cases.

As lensing magnification contains additional independent
information, we expect the constraints to improve slightly when
including it. In Table 4 we report the improvement in constraints
on cosmological parameters when magnification is included in
the analysis. For a ΛCDM model, the impact of magnification
on the reduction of the error bars is .5% for all cosmologi-
cal parameters. In the dynamical dark energy model w0waCDM,
the impact of magnification is slightly larger, as the 1σ error
bars in w0 and wa are reduced by about 10%. Nevertheless,
the improvement due to magnification in the constraining power
decreases for other parameters. It is important to note that in
this test we are assuming the values of the local count slope
to be exactly known. While it is in principle possible to esti-
mate s(z) independently of the cosmological analysis, from the
slope of the luminosity distribution of the galaxy sample, this
measurement will be affected by several systematics (see for
example Hildebrandt 2016). Therefore, we also considered a
more pessimistic scenario where we assumed no prior knowl-
edge on the local count slopes and thus we marginalise over
the values of s in each redshift bins. In Table 4 we also com-
pared the constraints on cosmological parameters for a model
that neglects magnification, and a model that includes the effect,
assuming no information on the local counts slope. In this pes-
simistic setting, the constraints obtained when magnification is
included are worse than the ones obtained when magnification
is neglected. This reduction in constraining power as compared

12 It is important to note that s(z) > 2/5 for the redshift range consid-
ered in this work, since for s(z) = 2/5 the effect of lensing magnification
vanishes.

to a model without magnification is up to 6% for ΛCDM and
becomes up to 10% for the w0waCDM parametrisation. This is
due to the fact that magnification does not contribute very sig-
nificantly to the cosmological information that can be extracted
from the 2PCF, while the extra nuisance parameters introduced
in this model slightly increase the degeneracy between the other
parameters included in the analysis. We also note that, in the
dynamical dark energy model, magnification mostly affects the
cosmological constraints of σ8, w0 and wa, while the remain-
ing model parameters are substantially unaffected. Neverthe-
less, the impact of magnification on the constraints of cosmo-
logical parameters is small; including it leads to changes of at
most ±10% in the error bars of parameters within the full-shape
analysis.

In Fig. 5 we show a visual comparison of the constraints
for the three cases discussed above. We validated these results
by running an MCMC analysis for the ΛCDM model, including
lensing magnification in the analysis. A direct comparison of the
contour plots for the Fisher and MCMC methods can be found
in Fig. 6 and Table 4. The Fisher results are accurate at the 20%
level (see Tables F.1 and F.2 for the actual values). By compar-
ing the results from the Fisher matrix and MCMC analyses in
Fig. 6, it is easy to grasp the impact of the non-Gaussianity of
the posterior. Such a non-Gaussianity, especially in the form of
a skewness of the distribution, leads to a slight variation of the
constraining power w/ and w/o magnification. In particular, this
can be appreciated by comparing the last row of Table F.2 to the
third one (ΛCDM only), which also causes some changes in sign
in some of the constraining power variation (e.g. first and second
to last lines of Table 4): the change in the 68% C.L.’s on those
parameters switches sign. We note that all of these variations are
very small – at the percentage level – and do not affect our main
conclusions.

We also investigated the effect of magnification on the
accuracy of best-fit estimation of cosmological parameters. To
accomplish this, we employed two distinct techniques, namely,
Fisher analysis and MCMC analysis. In the Fisher analysis,
we computed the biases in the best-fit estimates by employing
Eq. (21). In the MCMC analysis, we generated synthetic data
based on a model that takes magnification into account and fit-
ted the data using two theoretical predictions: one that includes
magnification, and the other that neglects it. The differences
in the best-fit parameters in these two cases provide the shifts
induced by ignoring magnification in our modelling. In Table 4
(bottom block), we report the values of the shifts obtained with
the Fisher analysis, for the ΛCDM and w0waCDM parametrisa-
tions. In both cases, we find shifts below 1σ. For the ΛCDM
analysis, the best-fit estimate is biased at the level of ∼0.5–0.7σ
for all cosmological parameters. The impact is less relevant in
the w0waCDM model, mainly due to the worse constraints on
cosmological parameters. The largest shifts in this case are found
for ns (∼0.5σ) andσ8 (∼0.2σ). In Table 4 (bottom block) we also
report the MCMC result, generated only for ΛCDM, where the
shifts are larger. We find that while the shift found in the MCMC
analysis is in most cases slightly larger, Fisher and MCMC fore-
cast give consistent values of the shifts, both in terms of ampli-
tude and direction. This provides an important check of the
validity of the Fisher analysis.

One may wonder if shifts of less than 1σ are something we
should worry about. This means after all that the shifts are hidden
in the uncertainty of the measurements. The goal of Euclid is how-
ever to achieve an analysis where the sum of all systematic effects
is below 0.3σ. In this context, our analysis shows that including
magnification in the modelling is necessary (see Fig. 7).
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Table 4. Impact of magnification on the full-shape analysis.

θ

Quantity Ωm,0 h ns Ωb,0 σ8 w0 wa

Fisher

1 − σmagn/σnomagn (ΛCDM) (%) 4.16 4.21 0.92 5.26 5.05 – –
1 − σmagn/σnomagn (w0waCDM) (%) 0.26 1.64 –0.26 0.34 6.30 10.20 9.90

1 − σsmarg/σnomagn (ΛCDM) (%) –6.29 –6.28 –1.80 –6.22 –6.35 – –
1 − σsmarg/σnomagn (w0waCDM) (%) –0.02 –0.01 –1.87 –0.01 –9.58 –10.41 –10.75

∆(θ)/σ(θ) (ΛCDM) 0.53 –0.55 –0.41 0.56 –0.74 – –
∆(θ)/σ(θ) (w0waCDM) –0.03 0.03 –0.44 –0.01 –0.19 0.03 –0.12

MCMC 1 − σmagn/σnomagn (ΛCDM) (%) 7.61 –3.53 0.0 7.75 –3.23 – –
∆(θ)/σ(θ) (ΛCDM) 0.71 –0.66 –0.36 0.72 –0.81 – –

Notes. The two blocks show our results for the Fisher analysis (top block) and the MCMC analysis (bottom block). Fisher analysis: the first two
rows show the difference in constraints for a ΛCDM cosmology (top) and a w0waCDM cosmology (bottom) between the model without lensing
magnification, and one with lensing magnification, obtained using the Fisher formalism. First row: in the model with magnification, the local
count slope parameters are fixed, that is, the values of s(z) are assumed to be exactly known. Second row: we assume no prior knowledge on the
local counts slope, we marginalise over its values in each redshift bin. The third row show the shifts in the best-fit estimates due to neglecting
magnification in the theory model in ΛCDM cosmology and a w0waCDM cosmology (bottom). MCMC analysis: we show the improvement in
cosmological constraints (assuming exact knowledge of the local count slope parameters), and the shifts in the best-fit estimates when magnification
is neglected, for a ΛCDM cosmology.

Fig. 5. Comparison of 68% C.L.’s obtained from the Fisher analysis for ΛCDM (left) and w0waCDM (right) with no lensing magnification (blue),
with lensing magnification and the local count slope fixed (orange) in each redshift bin, and with magnification and local count slope marginalised
(green). We note that for wa, we do not divide by the fiducial as it is zero, and instead we show the absolute error. For the corresponding data, see
Table 4.

5.3. Estimation of the growth rate

As is clear from Eq. (14), the quadrupole and hexadecapole of
the correlation function are most sensitive to the growth fac-
tor f (z). Assuming that µ4(d, z∗) is given by early Universe
parameters determined by CMB observations, one might even
use the hexadecapole alone to determine f̃ (z). In practice, how-
ever, since the quadrupole and the monopole are much larger
and correspondingly measured with much better precision, we

use the combined multipoles of the correlations function to esti-
mate both the bias and the growth factor together. In this estima-
tion we assume that the standard cosmological parameters are
determined, for example via CMB observations, and we only
estimate the unknown functions, b̃(z) = σ8(z) b(z) and f̃ (z) =
σ8(z) f (z). Within general relativity we expect f (z) ≈ Ωm(z)0.56

(see Appendix D for the exact expression).
We investigated the effect of lensing magnification on the

estimation of the growth rate by fitting the full correlation
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Fig. 6. 68% (inner) and 95% (outer) 2D confidence regions and 1D posteriors for ΛCDM with marginalisation over galaxy biases, using MCMC
(blue) and the Fisher analysis (orange), with only contributions from just standard terms (dashed) and with standard terms plus lensing magnifica-
tion (solid). The dashed black lines denote fiducial values of the cosmological parameters. The label “no magn” refers to an analysis that does not
include magnification in the model despite the effect being present in the data. The label “w/magn” incorporates magnification both in the model
and in the data.

function including lensing magnification with a model that does
not include it. We followed a similar approach as described
in Jelic-Cizmek et al. (2021), Breton et al. (2022). In each of the
four redshift bins, we varied both the growth rate f̃ (zi) = f̃i and
the bias b̃(zi) = b̃i. The statistical error in the bias estimated via
the Fisher analysis and via an MCMC study is typically of the
order of σ(b̃i) ∼ 0.7% while the error in the growth factor is
of the order of σ( f̃i) ∼ 1.2−1.4% (see Table 5). We note that
in this case, adding the magnification in the model would not
improve the measurement of f̃i, since the magnification does not
depend on these parameters. From Table 5, we see that neglect-
ing lensing magnification in the modelling shifts the best fit val-
ues of b̃i and f̃i by up to one standard deviation in the highest
redshift bin, which is most strongly affected by magnification.
But already in bins two and three, neglecting lensing magnifica-
tion leads to a systematic shift of more than 0.3σ (i.e. above the
Euclid target). Comparing the results from the Fisher analysis
with those of the MCMC analysis (see Table 5 and Fig. 8), we
find excellent agreement, both for the predicted constraints and
for the shifts, even in the case where the shifts are larger than
1σ. This is on one hand due to the fact that the posteriors are

very close to Gaussian, as can be seen from Fig. 8, and on the
other hand, the derivatives of the signal with respect to b̃i and
f̃i (which are used in the Fisher analysis) are trivial, since these
parameters are constant coefficients (in each bin) in front of the
scale-dependent functions µ`(d, z̄) (see Eq. (14)).

From Fig. 2, we see that the contribution from lensing mag-
nification to all multipoles is positive. This is true at all red-
shifts, since 5si − 2 is positive in all bins (see Table 2). As a
consequence, lensing magnification increases the amplitude of
the monopole and of the hexadecapole (that is positive) but it
reduces the amplitude of the quadrupole (which is negative).
Since the constraints come mainly from the monopole and the
quadrupole, neglecting lensing magnification in the modelling
means therefore that b̃i and f̃i are shifted in such a way that
b̃2

i + 2/3b̃i f̃i + f̃ 2
i /5 increases, while 4/3b̃i f̃i + 4/7 f̃ 2

i decreases.
This is best achieved by having a negative shift in f̃i and a pos-
itive shift in b̃i. We note that with these shifted values the hex-
adecapole will not be well fitted, because it would require an
increase in f̃i. But since its signal-to-noise ratio is significantly
smaller than that of the monopole and the quadrupole, it does not
have a significant impact on the analysis.
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Fig. 7. 68% (inner) and 95% (outer) 2D confidence regions and 1D posteriors for w0waCDM with marginalisation over galaxy biases for the
Fisher analysis, with contributions from standard terms (dashed) or standard terms plus lensing magnification (solid). Dashed lack lines denote
the fiducial values. For corresponding values of the constraints and shift, refer to Table 4. The label “no magn” refers to an analysis that does not
include magnification in the model despite the effect being present in the data. The label “w/magn” incorporates magnification both in the model
and in the data.

Such a systematic error in the analysis can certainly not be
tolerated. Since the aim of the growth rate analysis is to test the
theory of gravity, shifts of more than 1σ in the growth rate would
be wrongly interpreted as a detection of modified gravity. How-
ever, including lensing magnification in the analysis requires a
model, which is exactly what we want to avoid in the growth
rate analysis. In the case of the ΛCDM and w0waCDM analy-
ses, the problem is less severe since magnification can be mod-
elled together with density and RSDs. However, including it
would significantly enhance the complexity of the computation

and slow down the data analysis, especially for parameter esti-
mation using MCMC methods. Below we propose a method for
resolving these problems.

5.4. A model for magnification as a cosmology-independent
systematic effect

Since lensing magnification is a sub-dominant effect, we can
include it in the modelling as a contamination, which does not
encode any cosmological information, but that we can model
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Fig. 8. 68% (inner) and 95% (outer) 2D confidence regions and 1D posteriors for the { f̃ , b̃} parametrisation, using MCMC (blue) and the Fisher
analysis (orange), with only contributions from just standard terms (dashed) and standard terms plus lensing magnification (solid). Dashed black
lines denote the fiducial values. For corresponding values of the constraints and shift, refer to Table 5. The label “no magn” refers to an analysis
that does not include magnification in the model despite the effect being present in the data. The label “w/magn” incorporates magnification in
both the model and the data.

sufficiently well. More precisely, we pre-computed the lensing
magnification with fixed cosmological parameters, which were
determined, for example, via CMB experiments, and only var-
ied the contributions from density and RSDs in our analysis. We
did this in order to remove the bias of cosmological parame-
ters that neglecting magnification can induce. On the other hand,
this means that we lose the additional constraining power from
lensing; this, however, is not very significant. This “template
method”, which uses a fiducial template for the lensing magni-
fication, has also been proposed in Martinelli et al. (2022). Here
we tested it both on the ΛCDM and w0waCDM analyses (where

it is useful to reduce the computational costs) and on the growth
rate analysis. On the growth rate analysis, the template method
allows us to preserve the model-independence of the method. As
explained before, in the growth rate analysis, the early time cos-
mology enters at the redshift z∗, before acceleration has started,
and it is determined by CMB measurements. The late time evo-
lution is then fully encoded in the parameters f̃i and b̃i. Any
deviations in the laws of gravity would appear as a change in
these parameters. Adding the lensing magnification to the sig-
nal would spoil the model-independence of the method, since
this contribution cannot be easily written in a model-independent
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Table 5. Constraints and shift for the f̃ , b̃ parametrisation (top: Fisher analysis; bottom: MCMC analysis).

θ

Quantity b̃1 b̃2 b̃3 b̃4 f̃1 f̃2 f̃3 f̃4

Fisher
σ(θ) 0.0052 0.0052 0.0055 0.0049 0.0053 0.0053 0.0056 0.0050

σ(θ)/θ(%) 0.71 0.69 0.69 0.61 1.20 1.27 1.41 1.37
∆(θ)/σ(θ) 0.21 0.40 0.68 1.13 –0.21 –0.39 –0.66 –1.07

MCMC
σ(θ) 0.0052 0.0053 0.0055 0.0050 0.0053 0.0054 0.0056 0.0051

σ(θ)/θ(%) 0.72 0.70 0.70 0.62 1.20 1.29 1.42 1.39
∆(θ)/σ(θ) 0.21 0.40 0.67 1.16 –0.23 –0.39 –0.66 –1.08

Notes. We model the magnification as being parametrisation independent (i.e. a constant); hence, the constraints obtained with magnification
would be identical.

Table 6. Values of the cosmological parameters used for the template method.

Case Ωm,0 Ωb,0 σ8 ns h b1 b2 b3 b4

+1σ 0.354 0.054 0.856 0.971 0.706 1.488 1.683 1.899 2.122
−1σ 0.284 0.044 0.804 0.949 0.634 1.395 1.590 1.806 2.028

Notes. We considered two cosmologies, one +1σ away from the fiducial (top) and one −1σ away from the fiducial (bottom). Any other cosmo-
logical parameter not mentioned below is assumed to take its fiducial value (given in Table 1).

way13. This would mean that part of the signal is modelled with
f̃i and b̃i, while the other part is modelled in a specific model, for
example in ΛCDM. We would then have a mix of parameters,
some independent of the theory of gravity, and others specific
to ΛCDM. The template method circumvents this problem, by
assuming that the lensing magnification is a fixed contribution,
independent of cosmological parameters. Of course this is not
correct, but we show that the mistake that we make by using
this assumption does not introduce any significant shifts in the
measurements of the variables f̃i and b̃i, which we want to con-
strain with this method. To test this, we included the lensing
magnification in the model using wrong cosmological param-
eters (since in practice we do not know the theory of gravity,
nor the value of the true cosmological parameters). More pre-
cisely, we used cosmological parameters that are one standard
deviation below or above our fiducial values. The ±1σ values
are reported in Table 6. We then computed the shifts in the cos-
mological parameters induced by the fact that the template for
the lensing magnification is wrong by ±1σ.

The shifts in the cosmological parameters for both ΛCDM
and w0waCDM are given in Table 7. Comparing with Table 4 we
see that the shifts are very significantly reduced with the tem-
plate method. In w0waCDM, the cosmological parameters never
change by more than 0.04σ. In ΛCDM, σ8 and the galaxy bias
are shifted by 0.08σ to 0.13σ when using the template method.
We note, however, that we did not vary w0 and wa for the tem-
plate lensing magnification since these parameters are not well
determined by CMB data used to obtain the template. The results
for the growth rate analysis are presented in Table 8. Again, we
see that the template method strongly reduces the shift, which,
in the highest redshift bin goes down from 1σ (when magnifi-
cation is fully neglected) to 0.1σ with the template method. In
the other three bins, the shifts are even smaller. We note that
lensing magnification, similarly to the lensing effect measured

13 As shown in Tutusaus et al. (2023), the density–magnification term
can be written in a way that does not depend on the late-time model, but
the magnification–magnification is more involved due to the integral
over the line of sight.

in cosmic shear analysis, is most sensitive to the combination
S 8 = σ8

(
Ωm,0/0.3

)0.5. Since in our test we considered cosmolo-
gies ±1σ away from the fiducial, for both σ8 and Ωm,0 at the
same time, we show that this method is able to drastically reduce
the shift induced by neglecting magnification, even when the
model for this effect is significantly inconsistent with the truth.

This template method, where magnification has to be com-
puted only once, is therefore a very promising, inexpensive
method for including lensing magnification in the analysis. While
in the model-independent analysis of the growth factor magnifi-
cation has to be modelled as a template, for the full-shape anal-
ysis, once the best fit parameters are determined, one will want
to include the magnification term with these parameters and run
the analysis a second time in order to improve the fit. This iter-
ative method ensures that the result is not sensitive to the ini-
tial best fit used to compute the magnification. This is particu-
larly important in light of the current tensions between CMB and
large-scale structure constraints. Even though this method has the
slight disadvantage that it does not use the information in the lens-
ing magnification to constrain the cosmology, we believe that for
a spectroscopic survey, for which magnification is weak, it is the
simplest way to avoid the very significant biasing of the results
that an analysis that neglects lensing magnification does gener-
ate, without significant numerical cost and with a very minor loss
of parameter precision (a few percent increase in the error bars).

6. Conclusions

In this paper we have studied the impact of lensing magni-
fication on the spectroscopic survey of Euclid. Lensing mag-
nification is commonly assumed to have a significantly lower
impact on the spectroscopic analysis than the photometric
one (Euclid Collaboration 2022) due to the fact that: (i) den-
sity fluctuations and RSDs have higher amplitudes in a survey
with spectroscopic resolution; (ii) the correlation between the
different redshift bins are not taken into account in the spec-
troscopic analysis; and (iii) the multipole expansion used in the
spectroscopic analysis removes part of the lensing signal (which
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Table 7. Shift in the ΛCDM (top) and w0waCDM (bottom) parameters obtained from a Fisher analysis using the template method, with parameters
+1σ (upper) and −1σ (lower) away from the fiducial cosmology.

Ωm,0 h ns Ωb,0 σ8 w0 wa

ΛCDM

∆(θ) –0.0018 0.0018 –0.0004 –0.0003 0.002 – –
∆(θ)/σ(θ) –0.05 0.05 –0.03 –0.05 0.07 – –
∆(θ) 0.0020 –0.0020 0.0004 0.0003 –0.0021 – –

∆(θ)/σ(θ) 0.05 –0.05 0.03 0.05 –0.08 – –

w0waCDM

∆(θ) –0.0002 0.0002 –0.0003 0.0000 0.0019 0.0002 0.0363
∆(θ)/σ(θ) –0.0038 0.0027 –0.0313 –0.0008 0.0161 0.0002 0.0064
∆(θ) 0.0002 –0.0002 0.0004 0.0000 –0.0022 0.0007 –0.0448

∆(θ)/σ(θ) 0.0035 –0.0025 0.0342 0.0006 –0.0182 0.0006 –0.0079

Notes. To be conservative, we offset all of the galaxy biases according to max{σ(bi)}, i ∈ {1, . . . ,N}, where N is the number of redshift bins in the
survey (Fisher analysis).

Table 8. Shift in f̃ , b̃ parameters using the template method, +1σ (upper) and −1σ (lower) away from the fiducial cosmology (top: Fisher analysis;
bottom: MCMC analysis).

b̃1 b̃2 b̃3 b̃4 f̃1 f̃2 f̃3 f̃4

Fisher

∆(θ) –0.0001 –0.0001 –0.0002 –0.0003 0.0001 0.0002 0.0004 0.0005
∆(θ)/σ(θ) –0.0140 –0.0267 –0.0419 –0.0581 0.0214 0.0407 0.0654 0.0965
∆(θ) 0.0001 0.0002 0.0003 0.0004 –0.0001 –0.0002 –0.0004 –0.0005

∆(θ)/σ(θ) 0.0166 0.0317 0.0505 0.0725 –0.0227 –0.0433 –0.0700 –0.1051

MCMC

∆(θ) –0.0001 –0.0001 –0.0001 –0.0001 0.0001 0.0002 0.0003 0.0004
∆(θ)/σ(θ) –0.0192 –0.0189 –0.0182 –0.02 0.0189 0.0370 0.0536 0.08
∆(θ) 0.0001 0.0003 0.0003 0.0005 0.0000 –0.0003 –0.0004 –0.0006

∆(θ)/σ(θ) 0.0192 0.0566 0.0545 0.1000 0.0000 –0.0556 –0.0714 –0.1176

is not fully captured by the first three multipoles). Despite this,
we find that neglecting magnification leads to significant shifts in
the cosmological parameters, by 0.2–0.7 standard deviations. In
particular, σ8, but alsoΩm,0 andΩb,0, is shifted by more than half
a standard deviation.

These shifts become even more significant when we consider
the growth rates, which we fitted in an analysis that is indepen-
dent of the late-time cosmological model. If lensing magnifica-
tion is neglected, the growth rate is shifted by more than one
standard deviation in the highest redshift bin.

From these findings we conclude that it is imperative to
include lensing magnification in the data analysis of the Euclid
spectroscopic survey. In Appendix E.2 we provide simplified
expressions, based on the flat-sky approximation, for the con-
tribution of magnification to the multipoles of the 2PCF (see
Jelic-Cizmek 2021, for their derivation). While the cross-
correlation of density and magnification can be computed very
efficiently, the estimation of the magnification–magnification
term is slowed by an integral over the line of sight, which com-
plicates the analysis of the ΛCDM and the w0waCDM mod-
els. Even more importantly, the lensing magnification contri-
bution cannot easily be written in a model-independent way.
Consequently, including this contribution in the growth rate
analysis would spoil the model independence of the method.
Since testing the laws of gravity using growth rate analysis
is one of the key goals of the spectroscopic analysis, this sit-
uation is problematic. Fortunately, we propose a method for
solving the problem and reducing the shifts in the parame-
ters to less than 0.1σ while keeping the analysis independent
of late-time cosmology. In this so-called “template method”,
lensing magnification is calculated in a model with fixed cos-

mological parameters and simply added to the standard terms.
We have shown that if these fixed cosmological parameters
deviate by 1σ from the true underlying model, including this
slightly wrong contribution from magnification leads to shifts
in the inferred cosmological parameters of at most 0.1σ. Of
course, one can then improve the analysis by iterating the
process.

In our work we have compared our Fisher forecasts with a
full MCMC analysis at several stages. We have found that both
methods provide consistent results for the parameter shifts, even
when they are up to 1σ.

We note that, unlike the previous Euclid forecasts (EP:VII),
which are based on the power spectrum in Fourier space, our
study presents a configuration-space analysis based on the mul-
tipoles of the correlation function. Nevertheless, we expect that
our conclusions similarly apply to a Fourier-space analysis.
However, modelling the effects of magnification on the mul-
tipoles of the power spectrum is less straightforward. First,
the contribution of magnification depends on the power spec-
trum estimator and the survey window function. Second, as
demonstrated in Castorina & di Dio (2022), considering the con-
tribution of magnification to the power spectrum multipoles
necessitates a prior estimation of the multipoles of the corre-
lation function. Hence, our analysis was conducted directly in
configuration space. Even if the covariance matrix has more sig-
nificant off-diagonal contributions in configuration space, this
method has the advantage of being more direct and less survey
dependent.

To conclude, we find that including magnification in the anal-
ysis does not significantly reduce the error bars on the inferred
cosmological parameters. However, we will have to include this
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in our analysis of the data since otherwise we would fit the data
to the wrong physical model, which would bias the inferred cos-
mological parameters.
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Appendix A: Code validation

The analysis presented in this work is performed using the lat-
est version of the code coffe. In order to make sure that the
results of the analysis can be trusted, we first performed a code
validation. As a reference, we chose to use the well-established
CosmoBolognaLib code from Marulli et al. (2016), which can,
among other outputs, compute the redshift-space multipoles of
the 2PCF.

Fig. A.1. Percentage difference between coffe and CosmoBolognaLib
in terms of the 1σ uncertainties (top panel) and un-marginalised con-
straints (bottom panel) for the spectroscopic sample of galaxy cluster-
ing. This analysis includes four nuisance parameters for the galaxy bias
that are marginalised over in the 1σ constraints.

150 150 300450300 450

Fig. A.2. Percentage difference between coffe and CosmoBolognaLib
in the first three even multipoles of the 2PCF, for various redshifts. The
large ‘jump’ in the monopole around r ∼ 180 Mpc is caused by its
passage through zero. The black dashed lines denote a 1% threshold.

The baseline settings used for this code comparison are the
same as the ones adopted in EP:VII for the spectroscopic galaxy
clustering (GCsp) analysis. In summary:

– The cosmological parameter space is θ =
{Ωm,0, Ωb,0, w0, wa, h, ns, σ8}, that is, a flat cosmology
with dynamical dark energy.

Fig. A.3. Comparison between the monopole from coffe and
CosmoBolognaLib at z̄ = 1. The dashed line denotes the zero cross-
ing.

– The galaxy sample is split into four redshift bins, with a
galaxy number density as specified in Table 2.

– We included the 4 galaxy bias parameters, one in each red-
shift bin, as nuisance parameters.

– As we are primarily interested in the validation using linear
theory only, we set rmin = 22 Mpc as the smallest separation
in each redshift bin.

In Fig. A.1, we present the code comparison. We show the per-
centage difference between the constraints obtained with the two
codes and the mean values of the two results. The top panel
refers to 1σ marginalised constraints, while the bottom panel
shows the comparison for the un-marginalised constraints. The
largest discrepancies between the two codes are ∼ 2% for the 1σ
errors and ∼ 1% for the un-marginalised constraints. We note
that the outcome of the two codes has been compared for several
intermediate steps, different settings, and different probe com-
binations, always leading to an excellent agreement. In partic-
ular, we verified that using the covariance from either coffe
or CosmoBolognaLib when computing the constraints has no
impact on the result; we show a comparison of the two signals
for the various redshifts in Fig. A.2. Even though the hexade-
capoles show differences up to 10% and larger in the vicin-
ity of the baryon acoustic oscillation peak, due to the small
amplitude of this contribution, this is not relevant for param-
eter estimation. In Fig. A.3 we show the monopole from both
coffe and CosmoBolognaLib at z = 1, with a close-up of some
points of interest, notably, the baryon acoustic oscillation peak
at ∼ 150 Mpc and the zero crossing at ∼ 180 Mpc.

In order to obtain the Fisher matrix, we need to compute
derivatives of the multipoles of the 2PCF with respect to cosmo-
logical parameters. As it is not possible to compute them ana-
lytically, we resorted to the method of finite differences. Since
this method suffers from numerical instabilities, it is necessary
to first find the optimal step size that is neither too large (causing
the derivative to be too ‘coarse’) nor too small (resulting in errors
due to numerical underflow). The final step size used (10−3 for
all parameters) has proven to be sufficiently accurate at the level
of the obtained marginalised constraints for parameters of the
w0waCDM model. As shown in Fig. A.4, the difference of the
inferred parameters for step sizes 10−3 and 10−4 is always below
2% of the standard deviation.
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Fig. A.4. Percentage difference between step sizes 10−3 and 10−4 in the
1σ uncertainties (top panel) and un-marginalised constraints (bottom
panel) for the spectroscopic sample of galaxy clustering.

Appendix B: Fitting functions for b(z) and s(z)
For convenience, we provide a polynomial fit (obtained using the
Levenberg-Marquardt algorithm) for both the galaxy bias and
the local count slope as given below. We set

b(z) = b̃0 + b̃1z + b̃2z2 + b̃3z3 , (B.1)

s(z) = s̃0 + s̃1z + s̃2z2 + s̃3z3 , (B.2)

with parameters

b̃0 = 0.853, b̃1 = 0.040, b̃2 = 0.713, b̃3 = −0.164,
s̃0 = 1.231, s̃1 = −1.746, s̃2 = 1.810, s̃3 = −0.505.

(B.3)

In Fig. 3 we compare our best fit with the measurements of the
Flagship simulation. In our calculations we do not use these
fits, but we present them here for convenience. The Flagship
specifics have been estimated for the survey binning as described
in Sect. 3, and therefore the fitting functions are adapted to this
specific configuration.

Appendix C: Binned covariance of 2PCF multipoles

In this section we report the exact expression for the covariance
adopted in this work. We modified the implementation of the
flat-sky, Gaussian covariance reported in Tansella et al. (2018b)
in order to include a binning of the Bessel functions. The full
expression of the covariance can be written in the same form as
in Tansella et al. (2018b):

C
[
ξ

j
`
, ξk
`′

]
=

i`−`
′

V

 1
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(
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(
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+
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2πN̄2d2
j Lp

δ jkδ``′

 ,
where the

(
` `′ σ
0 0 0

)
denote Wigner 3j symbols; hence, the sum

over σ goes from |` − `′| to ` + `′. The three terms in the sum

30 60 90 120 150

Fig. C.1. Diagonal entries of the ratio of the unbinned and the binned
covariance, for various multipoles, as a function of comoving separa-
tion, d, at the lowest redshift bin of Euclid.

respectively denote the cross-correlation between cosmic vari-
ance and Poisson noise, the cosmic variance autocorrelation, and
the Poisson noise autocorrelation. Here V denotes the comoving
volume of the observed sample, N denotes the average comov-
ing number density of sources, and Lp denotes the pixel size,
that is, the minimum comoving distance we can resolve. We note
that the coefficients {cσ, c̃σ} depend only on redshift. Their exact
expressions are reported in Tansella et al. (2018b), and we repeat
them here for the sake of completeness:
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The main difference between the original implementation in
coffe and the covariance used in this analysis lies in the com-
putation of Ḡ``′ and D̄``′ . Here these are estimated as integrals
of the binned spherical Bessel functions:

j̄`(kdi) :=
4π
Vdi

∫ di+Lp/2

di−Lp/2
ds s2 j`(ks), (C.10)

where Vdi = 4π
3

(
d3

i,max − d3
i,min

)
is the volume of the distance bin

around di. Thus, we have
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In fact, it is shown in the literature that the covariance matrix
is overestimated when this volume average over the spherical
Bessel functions is not applied (see Grieb et al. 2016).

In Fig. C.1 we show the ratio of the diagonal entries of the
unbinned and the binned covariance; as we can see, for low sep-
arations and large multipoles, the unbinned covariance can be
larger than its binned counterpart by more than 20%.

Appendix D: An analytic expression for the growth
rate

In Sect. 2.2 we introduced the growth rate f (z) := d ln δ
d ln a . Here

we derive an analytical expression for f (z) in linear perturbation
theory and compare it to the commonly used expression f (z) ≈
Ωm(z)0.56. The linear density fluctuation in comoving gauge is
δ(z) ≈ D1(z) δ(0). Following Durrer (2020), we obtain

Fig. D.1. An analytic expression for the growth rate. Top: Exact expres-
sion for the growth rate, given by Eq. (D.5) (solid blue curve), and the
approximate expression, given by Eq. (D.6) (dashed orange curve). Bot-
tom: Relative difference between them, in percentage points. In both
cases we assume Ωm,0 = 0.32.

f (z) =
d ln D1

d ln a
= −(1 + z)

d ln D1

dz
, (D.1)

where D1 is the linear growth factor. In a ΛCDM universe, D1 is
the growing mode solution of the following equation:

D̈1 +H Ḋ1 =
3
2
H2Ωm(a)D1, (D.2)

with

Ωm(a) =
Ωm,0 a−3

Ωm,0 a−3 + (1 − Ωm,0)
. (D.3)

We rewrite Eq. (D.2) using a prime to indicate the derivative with
respect to ln a:

D′′1 +

(
2 −

3
2
Ωm(a)

)
D′1 =

3
2
Ωm(a)D1. (D.4)

The analytical solution of Eq. (D.4) in terms of hypergeo-
metric functions (see Abramowitz & Stegun 1972), leads to the
following expression for the growth rate:

f (z) =
1
2
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3 , 1; 11
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) − 3

 . (D.5)

In the literature (see e.g. Durrer 2020; Linder & Cahn 2007), one
often finds the following approximation for the growth rate:

f (z) ≈ Ω0.56
m (z) . (D.6)

A comparison between eqs. Eq. (D.5) and Eq. (D.6) is shown
in Fig. D.1. The approximation is clearly excellent, leading to
differences below 1% at all redshifts.

Appendix E: Expressions for the multipoles of the
2PCF

E.1. Curved-sky expressions

For completeness, below we provide the relevant curved-
sky contributions for the 2PCF, which were first derived
in Tansella et al. (2018a). We note that, for the sake of brevity,
in the following equations we use the coordinates r1 := r(z1),
r2 := r(z2), and θ, which denote the comoving distances at red-
shifts z1 and z2 and the angle at the observer, respectively. Fur-
thermore, we use xi := x(zi).

We used the following notation for local terms A and B,

ξAB(d, z̄, µ) = D1(z1) D1(z2)

×
∑
`,n
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`
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`

∣∣∣
B

)
In
` (d), (E.1)

and the following for the integrated terms,

ξAB(d, z̄, µ) = Z
∣∣∣
A + Z

∣∣∣
AB + Z
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BA + Z

∣∣∣
B. (E.2)
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X0
2

∣∣∣
den−RSD = −b1 f2

[
2
3
− (1 − cos2 θ)
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2
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]
, (E.8)

where above and below the indices 1 and 2 indicate that the cor-
responding quantities are evaluated at redshifts z1 and z2, respec-
tively, corresponding to the pair of voxels.
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We note that inside the integral, d2 = r2
2 + λ2 − 2r2λ cos θ in the case of density-magnification, and d2 = λ2

1 + λ2
2 − 2λ1λ2 cos θ in

the case of magnification-magnification, while θ is the angle at the observer between the two lines of sight. The result for the other
cross-correlations can be obtained by performing the substitution 2↔ 1.

E.2. Flat-sky expressions

The flat-sky expressions for the multipoles of the density-magnification and magnification-magnification terms implemented in
coffe are given by (see Jelic-Cizmek 2021)
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where z̄ = (z1 + z2)/2 is the mean redshift, r̄ = r(z̄) is the comoving distance evaluated at z̄, b·c denotes the floor function, and we
defined

C(`) =
2` + 1

2
`!

2`−1[(`/2)!]2 , (E.14)

K`(d) = 2π2d I1
` (d). (E.15)

Appendix F: Additional material

In this appendix, we include two additional tables that complement the content presented in Sect. 5. Specifically, in Table F.1, we
provide supplementary information regarding the Fisher full-shape analysis for both the ΛCDM and w0waCDM models. Further-
more, in Table F.2, we present similar results for the MCMC analysis, focusing on the two parametrisations of the ΛCDM model:
{Ωm,0, Ωb,0} (baseline analysis) and {ωm,0, ωb,0}. The {ωm,0, ωb,0} parametrisation offers the advantage of faster convergence in the
MCMC analysis, as the posterior distribution of the cosmological parameters becomes more Gaussian.
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Table F.1. Constraints for a ΛCDM (top) and a w0waCDM (bottom) cosmology obtained from the Fisher forecast, without lensing magnification
(upper) and with lensing magnification (middle), as well as the shift (lower). Note that the last row in the table uses the constraints from the case
with lensing magnification. Also note that the percentage constraints for wa are undefined since the fiducial value is 0, and hence here we just show
the result as if it had a fiducial value of 1 instead.

PPPPPPPquantity
θ

Ωm,0 h ns Ωb,0 σ8 w0 wa

σ(θ) 0.0361 0.0380 0.0109 0.0057 0.0277 — —
σ(θ)/θ(%) 11.32 5.67 1.13 11.56 3.33 — —
σ(θ) (L) 0.0346 0.0364 0.0108 0.0054 0.0263 — —

σ(θ)/θ(%) (L) 10.85 5.43 1.12 11.06 3.17 — —
∆(θ) 0.0185 -0.0199 -0.0044 0.0031 -0.0195 — —

∆(θ)/σ(θ) 0.53 -0.54 -0.41 0.56 -0.73 — —
σ(θ) 0.057 0.061 0.011 0.009 0.127 1.294 6.302

σ(θ)/θ(%) 18.06 9.03 1.13 18.30 15.3 129.4 630.2
σ(θ) (L) 0.057 0.060 0.011 0.009 0.119 1.162 5.678

σ(θ)/θ(%) (L) 18.01 9.01 1.13 18.24 14.29 116.2 567.7
∆(θ) -0.0019 0.0015 -0.0048 -0.0001 -0.023 0.040 -0.682

∆(θ)/σ(θ) -0.033 0.024 -0.437 -0.011 -0.191 0.034 -0.120

Table F.2. Constraints for a ΛCDM cosmology obtained from the MCMC analysis, without lensing magnification (upper), with lensing magnifi-
cation (middle), and with the shift (lower). Note that the last row in the table uses the constraints from the case with lensing magnification. In the
top block, the analysis is run using the parametrisation {Ωm,0, Ωb,0}, while the bottom block refer to the result with the parametrisation {ωm,0, ωb,0}

PPPPPPPquantity
θ

Ωm,0 ωm,0 h ns Ωb,0 ωb,0 σ8

σ(θ) 0.046 — 0.0425 0.011 0.0071 — 0.031
σ(θ)/θ(%) 13.031 — 6.630 1.152 13.076 — 3.856
σ(θ) (L) 0.0425 — 0.044 0.011 0.0065 — 0.032

σ(θ)/θ(%) (L) 13.158 — 6.567 1.147 13.206 — 3.855
∆(θ) 0.03 — -0.029 -0.004 0.0047 — -0.026

∆(θ)/σ(θ) 0.71 — -0.66 -0.36 0.72 — -0.81
σ(θ) — 0.0012 0.043 0.011 — 0.00028 0.0315

σ(θ)/θ(%) — 0.839 6.630 1.152 — 1.271 3.856
σ(θ) (L) — 0.0425 0.044 0.011 — 0.0065 0.032

σ(θ)/θ(%) (L) — 0.837 6.567 1.147 — 1.274 3.855
∆(θ) — 0.0003 -0.029 -0.004 — 0.00005 -0.026

∆(θ)/σ(θ) — 0.71 -0.66 -0.36 — 0.18 -0.81
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