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A B S T R A C T

This study proposes a novel authentication method for pine nut geographical and botanical origin, using mono- 
and sesquiterpene fingerprints (extracted ion chromatograms from specific ions) analysed via solid-phase 
microextraction coupled with gas chromatography–mass spectrometry, combined with chemometrics (partial 
least squares – discriminant analysis). It was tested on 253 samples from China, Russia (major producers of Pinus 
koraiensis and Pinus sibirica), Spain and Turkey (supplying Pinus pinea), across harvest years. The method ach-
ieved 100 % accuracy in external validation when distinguishing Spanish from non-Spanish pine nuts, and 99 % 
accuracy in differentiating Pinus pinea samples from two distinct Spanish regions. This simple, affordable, and 
automatable approach proves to be an effective screening tool. It could support official controls in preventing 
pine nut counterfeiting, as these highly valued nuts have sensory and nutritional characteristics influenced by 
their species and origin, which, in turn, affect their price.

1. Introduction

Pine nuts, popularly known as the “white gold”, are the most 
expensive nuts on the market. They account for only 1 % of global tree 
nut production but have a supply value of more than 1.3 billion USD 
(International Nut and Dried Fruits (INC), 2023). Asia stands as the 
primary global producer of pine nuts, with China, Russia, and North 
Korea leading the output, followed by the Mediterranean basin, with 
Turkey and the Iberian Peninsula as the main producers (International 
Nut and Dried Fruits (INC), 2023).

While many agri-food products have cultivars farmed worldwide, the 
species of pine nuts are strictly tied to their geographical origins. The 
most common species of pine nuts among the 20 commercially available 
are Pinus pinea L. (P. pinea), predominantly growing in the Mediterra-
nean region, and Pinus koraiensis Siebold & Zucc. (P. koraiensis) and 
Pinus sibirica (P. sibirica), primarily sourced from China and Russia, 
respectively (Awan & Pettenella, 2017; Moscetti et al., 2021). The sen-
sory attributes, nutritional values and market price of pine nuts are 

highly dependent on the species and region of origin (Awan & Pette-
nella, 2017; Evaristo et al., 2013; Mutke, 2022). Mediterranean pine 
nuts are highly valued and appreciated by consumers, reaching prices 
higher than 100 EUR/kg (Mutke, 2022); however, they account for only 
5 % of the world average pine nut production (INC, 2023). In contrast, 
Chinese or Russian pine nuts are usually sold at much lower prices, often 
less than a third of the value of Mediterranean ones (Evaristo et al., 
2013; Moscetti et al., 2021; Mutke, 2022).

Despite the differences among pine nuts from various origins and 
species, non-expert consumers often find them difficult to distinguish. 
Consequently, EU regulations and the International Organization for 
Standardization (International Organization for Standardization (ISO), 
1991) mandate or acknowledge the declaration of the country of origin 
on pine nut packaging (Regulation (EU) No 2023/2429, 2025). Addi-
tionally, international commercial labelling standards recommend 
including the botanical species (UNECE, 2013). These label claims need 
to be verified by regulatory bodies to prevent fraud and protect con-
sumers. Indeed, due to the significant price difference between pine nuts 
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of different origins, they are highly vulnerable to economically moti-
vated fraudulent practices such as counterfeiting or adulteration. These 
practices can have serious consequences not only for the economy, 
impacting both the market and producers, but also for consumers’ 
health, as they compromise the traceability chain of food products 
(Moscetti et al., 2021). In the particular case of pine nuts, mis-
representing their origin carries an added risk because Chinese 
P. koraiensis is sometimes marketed mixed with other pine seed species 
like Pinus armandii Franch., which has been linked to the dysgeusia 
called ‘Pine Mouth Syndrome’ (Mutke et al., 2013; (Destaillats, Cruz- 
Hernandez, Giuffrida, Dionisi and Mostin, 2011).

For all these reasons, disposing of reliable methods for pine nut 
authentication is crucial to safeguard the interests of both producers and 
consumers. Traditional methods to authenticate pine nuts have been 
based on phenotypic observations of physical traits such as pine nut 
kernel morphology (Fardin-Kia et al., 2012; Loewe-Muñoz et al., 2018; 
Mikkelsen et al., 2014) but their susceptibility to external agents, and 
the fact that the evaluation is limited to whole kernels, hinder their 
effectiveness. Consequently, some studies have focused on genetic 
analysis to distinguish pine nuts species (Handy et al., 2011). Despite 
their reliability and accuracy, these methods are laborious, complex, 
destructive, and expensive (Fardin-Kia et al., 2012; Ríos-Reina et al., 
2021), and thus, hardly applicable for routine analysis of large sample 
sets.

Alternatively, pine nut composition has been investigated using 
different analytical approaches, including targeted fatty acids analysis 
(Destaillats et al., 2010, 2011; Evaristo et al., 2013; Fardin-Kia et al., 
2012) and comprehensive spectroscopic techniques such as near 
infrared spectroscopy (Loewe et al., 2017; Moscetti et al., 2021). Image 
analysis was also proposed for pine nut authentication (Ríos-Reina et al., 
2021), although its application is restricted to entire kernels. While 
these methods showed promising results, there is still a need to fully 
evaluate their efficiency on sample sets that sufficiently represent the 
natural diversity of pine nut production, covering a wider range of ori-
gins, producers, harvest years, and species. Moreover, although pine nut 
species are strongly associated with specific geographical macro-areas, 
no study has yet focused on authenticating the origin of pine nuts 
from the same species within these regions. Therefore, it is essential to 
develop a fit-for-purpose analytical method to verify pine nut 
authenticity.

In this context, previous research has demonstrated that mono- and 
sesquiterpenes could be reliable markers of varietal and geographical 
origin of different plant species and vegetable-derived products such as 
spices, alcoholic beverages and oils (Avula et al., 2015; Marti et al., 
2014; Matsushita et al., 2018; Quintanilla-Casas, Torres-Cobos, Guar-
diola, Romero, et al., 2022; Torres-Cobos et al., 2021; Ugolini et al., 
2024; Vichi et al., 2005), but their potential has not yet been explored 
for the authentication of pine nuts. These terpenes are secondary plant 
metabolites whose presence and composition are highly dependent on 
the plant botanical and geographical origin. In fact, they are shaped by 
environmental and genetic factors, with minimal impact from other 
factors such as processing or storage conditions (Quintanilla-Casas et al., 
2020; Vichi et al., 2010, 2018). When applied to virgin olive oils, 
sesquiterpene chromatographic fingerprint coupled with pattern 
recognition techniques, such as Partial Least Squares-Discriminant 
Analysis (PLS-DA), has been shown to be fast, robust and efficient for 
varietal and geographical authentication (Quintanilla-Casas, Torres- 
Cobos, Guardiola, Romero, et al., 2022; Torres-Cobos et al., 2021). 
While other nut species typically lack appreciable amounts of terpenoids 
in their kernels, conifers produce an abundant amount of volatile and 
semi-volatile terpene metabolites and some of them have also been 
identified in pine nut kernels (Adelina et al., 2021; Rogachev & Sala-
khutdinov, 2015). Recent reports documenting variations in the mono- 
and sesquiterpene composition among different pine species and origins 
(Arrabal et al., 2012; Faria & Rodrigues, 2021; Kim et al., 2024) position 
the volatile terpene fingerprint as a promising marker for pine nut 

authentication. Moreover, monoterpenoids were reported as the main 
compounds in the essential oils of the pine bark, wood, needles, and 
cones, as well as in the volatile fraction of raw pine nut kernels (Adelina 
et al., 2021; Nikolic et al., 2022; Rogachev & Salakhutdinov, 2015). The 
hypothesis of our study is that the mono- and sesquiterpene fingerprint 
of pine nuts can serve as a reliable and efficient marker to discriminate 
among pine nut kernel species and provenances.

The objective of the present research is to develop a fast, efficient, 
and reliable method to enhance the discrimination of pine nuts based on 
the volatile and semi-volatile terpene fingerprint obtained by Headspace 
Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry 
(HS-SPME-GC–MS) from a wide sample set reflecting their natural 
variability. This involved the development and external validation of 
two PLS-DA classification models: (i) a multispecies geographical model 
to distinguish between Spanish P. pinea kernels vs. Asian kernels of other 
species, and (ii) a P. pinea geographical model to differentiate pine nuts 
of the same species from two distinct Spanish regions. This approach 
represents a novel application of the terpene fingerprinting method to 
pine nuts, addressing a critical gap in the authentication of this com-
modity and proposing a highly effective and scalable solution for food 
control.

2. Material and methods

2.1. Sampling

A set of 253 pine nut samples from different geographical regions 
and species was obtained from 2020 to 2023 in the frame of the 
TRACENUTS project (PID2020-117701RB-I00) (Table S1 of Supple-
mentary Information). Among these samples, 83 were commercial 
samples from: China (CHN, n = 53), Russia (RUS, n = 22) and Turkey 
(TUR, n = 8). According to the natural distribution of pine nut species, it 
was assumed that CHN and RUS samples did not originate from P. pinea 
but primarily belonged to P. koraiensis and P. sibirica, the most 
commercially significant species from these countries (Awan & Pette-
nella, 2017). Commercial TUR samples may have belonged to both 
P. pinea and other local species (Bonari et al., 2020). All commercial 
samples were within their appropriate consumption date at the time of 
analysis. The remaining 170 samples were P. pinea kernels from Spain 
(ESP), sourced from two regions: Central Spain (Madrid and Castile and 
Leon), (CS, n = 96) and Catalonia (CAT, n = 74). All the Spanish samples 
were traceable and were supplied by the Institute of Forest Science 
(ICIFOR-INIA, Madrid, Spain), the “Centro de Servicios y Promocion 
Forestal y de su Industria de Castilla y León” (CESEFOR foundation, Soria, 
Spain), and the Institute of Agrifood Research and Technology (IRTA- 
Torre Marimon, Caldes de Montbui, Spain). Samples were directly har-
vested from forests and dried according to UNECE STANDARD DDP-12 
(UNECE, 2013), similarly to commercial samples. Both commercial and 
non-commercial samples were stored at 4 ◦C until analysis.

2.2. Headspace-solid phase microextraction (HS-SPME)

Pine nut samples were analysed under conditions adapted from Vichi 
et al. (2006) using a Combi-PAL autosampler (CTC Analytics, Zwingen, 
Switzerland). An aliquot of approximately 1 g of whole pine nuts was 
weighed into a 10 mL vial fitted with a PTFE/silicone septum. The 
sample was conditioned at 70 ◦C for 10 min, followed by exposing a 
divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 
fiber (2 cm length, 50/30 μm film thickness) from Supelco (Bellefonte, 
Pennsylvania, USA) to the sample headspace for 60 min, at the same 
temperature. Then, the fiber was desorbed at 260 ◦C for 10 min in the 
gas chromatograph injection port, the injector was maintained in split- 
less mode for the first 5 min. To monitor carryover, blank samples 
were alternated between injections.
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2.3. Gas chromatography-mass spectrometry (GC–MS)

The mono- and sesquiterpene fingerprint was acquired by an Agilent 
6890 N Network GC system coupled to a quadrupolar mass selective 
analyser Agilent 5975C Inert MSD (Agilent Technologies, Santa Clara, 
California, USA). Helium was the carrier gas, at a flow of 1.5 mL/min. 
Analytes were separated on a Supelcowax-10 capillary column (60 m ×
0.25 mm i.d., 0.25 μm film thickness) (Supelco, Bellefonte, Pennsylva-
nia, USA). Column temperature was held at 40 ◦C for 3 min, increased to 
100 ◦C at 4 ◦C/min, then, to 200 ◦C at 5 ◦C/min and to 260 ◦C at 15 ◦C/ 
min, holding the last temperature for 5 min. The temperatures of the ion 
source and the transfer line were 230 and 280 ◦C, respectively. Mass 
spectra were recorded at 2.338 scan/s and the electron energy was 70 
eV. Data acquisition was performed in the selected ion monitoring (SIM) 
mode between 0 and 42.7 min, by registering the Extracted Ion Chro-
matogram (EIC) of 7 ions which have been reported to be characteristic 
of the mono and sesquiterpene compounds and their oxygenated deri-
vates: m/z 93, 95, 119, 159, 161, 189 and 204 (Maleknia et al., 2007; 
Reed, 1963; Tani et al., 2003; Torres-Cobos et al., 2021; Vichi et al., 
2010). Therefore, for each ion, the intensities of a total of 6621 scans 
were acquired and used as fingerprinting data (section 2.4) to build the 
authentication models (section 2.5).

After fingerprinting models were developed, we tentatively identi-
fied the compounds corresponding to the scans leading to the most 
relevant regression coefficients (section 2.5.3). To do so, acquisition was 
carried out in the full scan mode in the range m/z 35–350 and the MS 
spectra at the retention times corresponding to the relevant scans were 
obtained. This tentative molecular structure identification was a level 3 
identification (tentative candidate, evidence exists for possible struc-
ture, but insufficient information for one exact structure only) according 
to Schymanski et al. (2014).

2.4. Fingerprinting approach

A fingerprinting approach was followed using the EICs of the 7 
selected ions. Scan intensities were considered from 0 to 47.2 min for 
each ion (6621 scans × 7 ions = 46,347 variables per sample). The 
acquisition interval has been extended from previous studies (Torres- 
Cobos et al., 2021) to include the monoterpenoids that appear at the 
initial times of the chromatogram (from 0 to 30 min) due to their rele-
vance and abundance in pine nuts. A data matrix was built for each ion, 
with the scan intensities of each EIC (columns) for all the samples (rows) 
(7 matrices of 6621 columns × 253 rows). Differences between in-
jections were corrected by normalizing each EIC, which consisted in 
dividing each scan intensity by the total sum of intensities (Nam et al., 
2020). Then, the EICs in each matrix were aligned by Correlation 
Optimized Warping (COW) algorithm in Matlab® (Nielsen et al., 1998). 
Finally, the 7 aligned EIC matrices were concatenated conforming a two- 
way unfolded matrix (253 samples × 46,347 variables).

2.5. Chemometrics

2.5.1. Data exploration and preliminary multi-class geographical model
The data treatment and model building were performed with SIMCA 

software v13.0© (Sartorius, Göttingen, Germany). A Principal Compo-
nent Analysis (PCA) was performed for the exploration of data and to 
identify potential outliers, according to Hotelling’s T2 range and Q-re-
siduals model parameters. The exploratory analysis of the dataset 
showed no outliers.

A preliminary multi-class PLS-DA classification model was built to 
discriminate among the four countries of origin (CHN, TUR, RUS, ESP), 
to assess the potential of the terpene fingerprinting to distinguish pine 
nuts from different origins. Multi-class PLS-DA models operate as mul-
tiple binary models; each class being compared to the rest of the sam-
ples. A dummy Y matrix is used, containing as many classification 
vectors as classes. Each vector has values of 1 for a specific class and 

0 for all other classes. The multi-class PLS-DA model was internally 
validated through leave 10 %-out cross validation. The model’s optimal 
pre-processing and number of latent variables (LV) were selected ac-
cording to the lowest Root Mean Squared Error of Cross Validation 
(RMSEcv) criteria. The pre-processing was mean centring and scaling to 
the unit of variance. To evaluate model overfitting, permutation test (n 
= 20 permutations) and ANOVA on the cross-validated predictive re-
siduals (p-value) were carried out (Eriksson et al., 2008; Quintanilla- 
Casas et al., 2020). The suitability PLS-DA model was evaluated by the 
Q2 values and the percentage of correct classification of each class, and 
the resulting score plot was examined to identify any clustering among 
samples.

2.5.2. Partial least squares discriminant analysis (PLS-DA) binary 
classification models

After the initial data exploration and the exclusion of origins repre-
sented by fewer than 20 samples (TUR), two PLS-DA binary classifica-
tion models were built: (i) a multi-species geographical model to 
discriminate between pine nuts from ESP (P. pinea) and non-ESP (other 
species from: CHN, and RUS,), and (ii) a P. pinea geographical model to 
classify the ESP P. pinea samples by their region of production: CAT and 
CS.

For each authentication model, the sample set was split following a 
stratified random sampling strategy into training (80 % of the samples of 
each class: ESP/non-ESP model, n = 196; CAT/CS model, n = 136) and 
validation set (20 % of the samples of each class: ESP/non-ESP model, n 
= 49; CAT/CS model, n = 34). This splitting was run seven times (7 it-
erations) to evaluate the effect of the sample set composition and to 
increase the robustness of the external validation. The sample set split-
ting information, including validation and training sets, is summarized 
in Table S1 of Supplementary Information.

In each iteration, a PLS-DA binary model (training model) was fitted 
and internally validated through leave 10 %-out cross validation, using 
the samples in the corresponding training set. The model’s optimal pre- 
processing and LV were selected according to the RMSEcv criteria. For 
all training models, the optimal pre-processing was mean centring and 
scaling to the unit of variance. To evaluate model overfitting, permu-
tation test (n = 20 permutations) and ANOVA on the cross-validated 
predictive residuals (p-value) were carried out (Eriksson et al., 2008; 
Quintanilla-Casas et al., 2020). None of the training models was over-
fitted according to the permutation test and ANOVA p-value results. 
Subsequently, each training model was externally validated by pre-
dicting the class of the samples in the corresponding validation set, 
which had not been used to build the model. Therefore, for each type of 
model, seven training PLS-DA models and the corresponding seven 
external validations were obtained, to verify that results were not driven 
by specific influential samples and thus, to increase the robustness of the 
external validation.

In PLS-DA binary models, classes are expressed as PLS dummy var-
iables (here, 1 for non-ESP, and CS classes, and 0 for ESP and CAT 
classes). The PLS predicted value (PV) of each sample was used for its 
classification into one class or the other according to a classification 
threshold (here, PV = 0.5). The performance of each PLS-DA model was 
evaluated by the Q2 values and efficiency, which was expressed as the 
percentage of correct classification of each class, the sensitivity (the 
number of true positive results/ [the number of true positive results +
the number of false negative results]) and specificity (the number of true 
negative results/ [the number of true negative results + the number of 
false positive results]) values. Wilson score intervals were calculated to 
establish confidence intervals for models’ sensitivity and specificity 
(Wilson, 1927). Non-ESP and CS samples were arbitrarily defined as the 
positive samples for the corresponding models.

2.5.3. Evaluation of PLS-DA regression coefficients
The regression coefficients of the PLS-DA models were studied to 

tentatively identify the key variables that mainly contributed to the 
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discrimination between classes. The jack-knife standard error of cross- 
validation (SEcv) was used to evaluate the significance of the regres-
sion coefficients, considering as significant those with values higher 
than their corresponding SEcv (Torres-Cobos et al., 2024). Among the 
significant variables, only the ones with the highest absolute values (the 
3 % higher regression coefficients) were considered. The corresponding 
compounds were tentatively identified based on their mass spectra and 
elution order from full scan injections as explained in section 2.4.

3. Results and discussion

3.1. Exploratory analysis and preliminary multi-class geographical model

The preliminary multi-class PLS-DA model to classify the samples 
according to their country of origin showed promising results. The in-
spection of the score plot (Fig. 1) evidenced a clear clustering of samples 
by country of origin. LV1 was useful in discriminating TUR and ESP 
samples from CHN and RUS ones, whereas LV3 distinguished TUR from 
ESP and RUS from CHN pine nuts, achieving four groups quite differ-
entiated from one another.

The leave 10 %-out cross validation (Table 1) yielded a 100 % correct 
classification for the pine nuts from ESP and TUR, and high correct 
classification rates for the CHN (92 %) and RUS (95 %) classes, with only 
2 CHN samples misclassified as RUS, and one RUS misclassified as CHN. 
The misclassification may be attributed to the greater similarity between 
these two classes, as both CHN and RUS samples belong to species other 
than P. pinea and originate from regions geographically distant from the 
Mediterranean. Additionally, this similarity is evident in the scores plot 
(Fig. 1), where the clusters for RUS and CHN samples show significant 
dispersion and partial overlap. This overlap suggests that the chemical 
fingerprinting approach may have difficulty distinguishing between 
these two classes due to their more closely related terpene composition. 
Permutation test and ANOVA p-value allowed excluding model over-
fitting (Table S2 of Supplementary Information).

Categories with n < 20, such as TUR, are not suitable for proper 
external validation. Therefore, constructing further binary models for 
broader and better-represented categories was the chosen option to yield 
reliable results. However, these preliminary findings indicate the po-
tential for developing future models to authenticate pine nuts by country 
of origin based on mono- and sesquiterpene fingerprint, with the 
appropriate sampling.

Finally, although the sample set included various crop years, they did 
not significantly affect the PLS-DA models built with geographical origin 

as the classification variable (Supplementary Fig. S1), highlighting the 
robustness of PLS-DA classification models in accounting for factors 
other than the variable of interest.

3.2. PLS-DA binary classification models

3.2.1. Multi-species geographical PLS-DA model
Leave 10 %-out cross-validation of the 7 binary ESP/non-ESP PLS-DA 

training models (80 % of the samples) provided a 100 % of correct 
classification of both classes. To verify the reliability of these promising 
outcomes, models’ performances were assessed through external vali-
dation. This involved predicting the class of samples from the respective 
validation sets. The external validation results were expressed as mean 
values ± standard deviation obtained from the 7 iterations (Table 2).

The external validation outcomes corroborated the leave 10-out 
cross validation, correctly classifying all samples of the validation sets 
into either ESP or non-ESP categories, with maximum sensitivity and 
specificity, and without deviation. These results evidenced the excep-
tional effectiveness of terpene fingerprinting in distinguishing ESP 
P. pinea kernels from those of other geographical and botanical origins 
potentially used for counterfeiting, regardless of the specific region, 
harvest year or commercial brands and producers.

3.2.2. P. pinea geographical PLS-DA model
To assess the capability and potential limitations of using volatile 

terpene fingerprint for authenticating the origin of pine nuts, a classi-
fication model was built in a more challenging scenario. The goal was to 

Fig. 1. Score scatter plot (LV1 vs LV3) of the PLS-DA classification model developed by country of origin (n = 253, 9 LVs, Q2 = 0.659, RMSEcv = 0.216, ANOVA p- 
value <0.05), based on pine nut volatile and semi-volatile terpene fingerprinting data. CHN: China, TUR: Turkey, RUS: Russia, ESP: Spain.

Table 1 
Leave 10 %-out cross validation of the four-class PLS-DA model developed by 
country of origin, based on pine nut mono- and sesquiterpene fingerprinting 
data.

Multi species geographical model: CHN/TUR/RUS/ESP

n CHN 
(n)

TUR 
(n)

RUS 
(n)

ESP 
(n)

Not 
assigned 
(n)

Correct 
classification 
(%)

CHN 53 49 0 2 0 2 92.5
TUR 8 0 8 0 0 0 100.0
RUS 22 1 0 21 0 0 95.5
ESP 170 0 0 0 170 0 100.0
Total 253 98.0

Model parameters (n = 253): 9 LVs, Q2 = 0.659, RMSEcv = 0.216, ANOVA p- 
value <0.05. CHN: China; TUR: Turkey; RUS: Russia; ESP: Spain.
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discriminate between samples from the same species, P. pinea, produced 
in the same country, ESP, but in distinct regions, CAT and CS.

In this case as well, internal validation of the 7 binary PLS-DA models 
built using the training sets obtained from the 7 iterations of the sample- 
set splitting achieved 100 % accuracy, correctly classifying all the 
training samples into their respective region of origin. These results 
were further corroborated by the external validation (Table 3), where all 
CAT pine nuts were correctly classified, providing a specificity of 1. Only 
one CS sample was misclassified as CAT, resulting in a sensitivity of 0.98 
and an overall correct classification rate of 99 %.

These findings confirm the ability of the volatile terpene fingerprint 
to distinguish pine nuts from different regions, even when they originate 
from the same species and relatively close geographical areas. These 
results align with previous studies demonstrating the influence of 
pedoclimatic factors on the sesquiterpene composition of olive oil, 
enabling the differentiation of olive oils from various Catalan Protected 
Designation of Origin (PDO) regions, even when derived from the same 
cultivar and nearby geographical areas (Quintanilla-Casas, Torres- 
Cobos, Guardiola, Servili, et al., 2022).

The developed model can be applied to verify the identity of pine 
nuts from these regions/species, but this opens future research for 
further expanding the model for other regions and species, by devel-
oping and validating the models with new samples from these regions 
and species. Similarly, further research might address open questions, as 
for instance, which would be the ability of the model in revealing mixed 
samples from various origins or species, or if the model would work for 
identifying pine nut identity in complex foods.

3.3. Exploration of PLS-DA regression coefficients

Unlike other food matrices where sesquiterpene fingerprinting has 
been previously explored for authentication such as virgin olive oil, pine 
nut terpene fingerprint contains a notable fraction composed of mono-
terpenoids (Adelina et al., 2021; Rogachev & Salakhutdinov, 2015). 
Given the interconnected biosynthetic pathways of mono- and sesqui-
terpenoids, they are likely equally influenced by genetic and environ-
mental factors. Consequently, both could potentially contribute to the 
geographical and botanical differentiation of pine nuts, and for this 
reason the entire fraction was included for evaluation in this study. To 
confirm that class discrimination was consistently based on specific 
terpene patterns, and to ascertain whether both mono- and 

sesquiterpenoids contributed to the discrimination, we examined the 
highest significant regression coefficients from both PLS-DA models and 
tentatively identified the terpenoid structure of the corresponding 
chromatographic peaks. It is important to emphasize that the aim was 
not to conduct a comprehensive study of all discriminant variables or to 
move towards a targeted analysis. Instead, we focused on the most 
relevant variables to confirm their terpene nature and to gain insight 
into their general molecular structure, such as whether they were 
monoterpene or sesquiterpene hydrocarbons, or oxygenated derivatives.

To explore the variables that had the greatest impact on discrimi-
nating between pine nut classes, we examined the highest significant 
regression coefficients of both of ESP/non-ESP, and CAT/CS PLS-DA 
models as explained in section 2.5.3. For both models, plotting the 
regression coefficients against the variables of the unfolded matrix 
(Fig. 2) revealed that the relevant coefficients were distributed along the 
entire EICs of ions with m/z 93, 95, and 119, while being concentrated 
towards the end of EICs of ions with m/z 159, 161, 189, and 204. This is 
because the former fragment ions are common in both mono- and ses-
quiterpenoids eluting across the entire chromatogram (Maleknia et al., 
2007; Tani et al., 2003;Vichi et al., 2006 ; Vichi et al., 2010), whereas 
the latter are specific of semi-volatile sesquiterpenes with higher 
retention times (Vichi et al., 2006; Vichi et al., 2010). At first glance, 
these outcomes suggest that both mono- and sesquiterpene families 
could be regarded as valuable markers for authenticating the botanical 
and geographical origins of pine nuts, endorsing the hypothesis that 
both mono- and sesquiterpenes would contribute to discrimination. 
Specifically, the ESP samples’ highest regression coefficients were 
mostly found in the middle-final section of EICs, being slightly more 
abundant in EICs m/z 119 and 204 (Fig. 2), and thus, probably attrib-
utable to sesquiterpenes. Conversely, non-ESP class was mainly distin-
guished by compounds detectable in across the entire EICs m/z 93, 95, 
119 (Fig. 2), likely including several monoterpenoids. Likewise, both 
mono- and sesquiterpene compounds appeared to drive the discrimi-
nation between CAT and CS classes. As the most relevant CAT co-
efficients were in the middle-final section of most of EICs, particularly in 
EICs m/z 95, 159, 204, they were probably attributable to sesquiter-
penes. The predominant coefficients distinguishing CS pine nuts, simi-
larly to non-ESP samples, were distributed along the whole EICs at EICs 
m/z 93, 95, 119, several of them probably corresponding to 
monoterpenoids.

To gain more insight and further support these findings, we 

Table 2 
External validation of the binary PLS-DA model to discriminate samples into ESP and non-ESP based on pine nut mono- and sesquiterpene fingerprinting data. Results 
are mean values (± standard deviation) obtained from seven iterations.

Multi species geographical model: ESP/non-ESP

n ESP (n) non-ESP (n) Correct classification (%) Sensitivity Specificity

ESP 34 34.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0
non-ESP 15 0.0 ± 0.0 15.0 ± 0.0 100.0 ± 0.0
Total 49 100.0 ± 0.0 1.0 ± 0.0 (0.80—1.0)* 1.0 ± 0.0 (0.90—1.0)*

Model parameters: mean values obtained with the training sets (n = 196) from 7 iterations: 5 LVs, Q2 = 0.969, RMSEcv = 0.086, ANOVA p-value <0.05.
* Mean of the Wilson score intervals calculated for the sensitivity and specificity of each model.

Table 3 
External validation of the Spanish PLS-DA model to discriminate samples into Catalonia and Central Spain based on pine nut mono- and sesquiterpene fingerprinting 
data. Results are mean values (± standard deviation) obtained from seven iterations.

P. pinea geographical model: CAT/CS

n CS (n) CAT (n) Correct classification (%) Sensitivity Specificity

CS 19 18.7 ± 0.5 0.3 ± 0.5 98.0 ± 3.0
CAT 15 0.0 ± 0.0 15.0 ± 0.0 100.0 ± 0.0
Total 34 99.0 ± 1.0 0.98 ± 0.03 (0.81—1.0)* 1.00 ± 0.00 (0.80—1.0)*

Model parameters: mean values obtained with the training sets (n = 136) from 7 iterations: 5 LVs, Q2 = 0.907, RMSEcv = 0.158, ANOVA p-value <0.05. CAT: 
Catalonia; CS: Central Spain.

* Mean of the Wilson score intervals calculated for the sensitivity and specificity of each model.

B. Torres-Cobos et al.                                                                                                                                                                                                                          Food Chemistry 474 (2025) 143153 

5 



examined the compounds related to the most relevant variables in each 
model. To exemplify some of the tentatively identified compounds that 
mainly contribute to class distinction, Fig. 3 compares the EICs at m/z 93 
and 204 corresponding to a non-ESP vs an ESP sample, and to a CS vs a 
CAT sample. Firstly, it is remarkable that several of these significant 
variables corresponded to minor compounds or not well-resolved 
chromatographic peaks, which might hinder their identification and 
quantification using traditional target approaches. This underscores the 
fingerprinting approach as a more suitable option for their analysis, 
confirming previous findings (Quintanilla-Casas et al., 2020). Next, 
concerning the nature of compounds driving the discrimination between 
ESP and non-ESP samples, the tentative identification of relevant com-
pounds suggested that the relevant compounds detected in EIC at m/z 93 
included both monoterpene hydrocarbons, eluting in the initial part of 
the chromatogram (e.g. compounds with mass spectra attributable to 
compounds such as pinene, camphene, sabinene, carene, myrcene, and 

cymene, relevant for the non-ESP class; limonene and mentha triene, for 
the ESP class; myrcene and cymene, for the CS class, and pinene and 
carene, for the CAT class), and their oxygenated derivatives, with higher 
retention times (e.g. compounds with mass spectra attributable to 
limonene oxide, relevant for non-ESP and CAT classes; camphor, for 
non-ESP and CS classes; dihydrocarvone for CS; borneol for non-ESP). 
On the other hand, the tentative identification of relevant compounds 
in EIC at m/z 204 permitted to assume that several relevant compounds 
had a sesquiterpene structure (e.g. in the ESP/non-ESP model, com-
pounds with mass spectra matching with that of copaene, junipene, 
cubebene, cadinene, muurolene and amorphene were relevant for the 
ESP class, and two not identified compounds whose spectra matched 
with those of various possible sesquiterpenes distinguished the non-ESP 
class. In the CAT/ CS model, compounds possibly corresponding to 
copaene, murolene and an unidentified sesquiterpene distinguished CS 
samples, while others, likely junipene and cubebene were relevant for 

Fig. 2. Regression coefficients of the PLS-DA ESP vs non-ESP and CAT vs CS models, plotted against the variables (acquisition points) of the unfolded matrix. For 
each model, the most relevant coefficients for the prediction of the ESP and CAT classes are highlighted in blue (negative coefficients) and those relevant for non-ESP 
and CS in red (positive coefficients). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Extracted chromatograms of two representative ions (m/z 93, 204) and tentative identification of compounds corresponding to some of the most relevant 
variables. 1) α-pinene, 2) camphene, 3) β-pinene, 4) sabinene, 5) δ-carene, 6) myrcene, 7) limonene, 8) mentha triene isomer, 9) p-cymene, 10) limonene oxide 
isomer, 11) copaene isomer, 12) camphor, 13) non-identified sesquiterpene, 14) junipene, 15) cubebene isomer, 16) dihydrocarvone, 17) cadinene isomer, 18) 
murolene isomer, 19) amorphene, 20) borneol, 21) non-identified sesquiterpene. Blue: relevant for ESP, CAT; red: relevant for non-ESP, CS. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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CAT ones). The EIC at m/z 204 was selected as an example because it 
corresponds to the molecular ion of sesquiterpene hydrocarbons (Vichi 
et al., 2006). In summary, the examination of regression coefficients 
evidenced that numerous variables across all the acquired ions, corre-
sponding to minor and major species, contributed significantly to class 
discrimination. Both monoterpene and sesquiterpene compounds, 
including hydrocarbons and their oxygenated derivatives, played a 
crucial role in the classification. Specifically, monoterpenes seemed to 
be more characteristic of the non-ESP and CS classes, whereas several 
compounds with sesquiterpene structure contributed equally to distin-
guish the origin of samples in both ESP/non-ESP and CAT/ CS models.

4. Conclusions

The volatile and semi-volatile terpene fingerprinting has proven to 
be a powerful method for authenticating pine nuts, with PLS-DA effec-
tively identifying patterns related to their origin and species, while 
minimizing variables linked to factors such as harvest year or com-
mercial producer, and therefore, our hypothesis was confirmed. This 
method provided a high efficiency (> 99 %) in the discrimination of pine 
nuts of different species into ESP and non-ESP classes, and between pine 
nuts of the same species but from two nearby geographical regions, CAT 
and CS. Additionally, the preliminary multi-class PLS-DA origin model 
showed the potential of this method to authenticate multiple 
geographical origins, provided a sufficiently comprehensive and diverse 
sample set is used.

Finally, the exploration of PLS-DA regression coefficients confirmed 
that the compounds related to the variables primarily contributing to the 
discrimination have a mono- and sesquiterpene structure, including 
both terpene hydrocarbons and some oxygenated derivatives.

In conclusion, volatile terpene fingerprinting proved to be fast, 
efficient and straightforward, making it easily to apply to large number 
of samples in routine laboratories. It could serve as a valuable sup-
porting screening tool for official controls, enhancing their effectiveness 
and ensuring consumer protection.
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