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In the vicinity of spacelike singularities, general relativity predicts that the metric behaves, at each point,
as a Kasner space which undergoes a series of “Kasner epochs” and “eras” characterized by certain
transition rules. The period during which this process takes place defines a “Kasner eon,” which comes to
an end when higher-curvature or quantum effects become relevant. When higher-curvature densities are
included in the action, spacetime can undergo transitions into additional Kasner eons. During each eon, the
metric behaves locally as a Kasner solution to the higher-curvature density controlling the dynamics. In this
paper we identify the presence of Kasner eons in the interior of static and spherically symmetric Lovelock
gravity black holes. We determine the conditions under which eons occur and study the Kasner metrics
which characterize them, as well as the transitions between them. We show that the null energy condition
implies a monotonicity property for the effective Kasner exponent at the end of the Einsteinian eon. We also
characterize the Kasner solutions of more general higher-curvature theories of gravity. In particular, we
observe that the Einstein gravity condition that the sum of the Kasner exponents adds up to 1,P

D−1
i¼1 pi ¼ 1, admits a universal generalization in the form of a family of Kasner metrics satisfyingP
D−1
i¼1 pi ¼ 2n − 1 which exists for any order-n higher-curvature density and in general dimensions.
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I. INTRODUCTION

Curvature singularities occur ubiquitously in general
relativity, both in cosmology and in black holes [1]. They
represent a complete breakdown of the classical theory and
mark the limits of its predictive power. It is commonly
thought that quantum gravity will resolve singularities, but
very little is known about this in practice. What is certain is
that quantum effects will play an essential role near
singularities, and understanding these effects along with
how, if, or what kinds of singularities can be resolved are
fundamentally important questions.
A remarkable fact is that the “death throes” of general

relativity contain a very universal structure. As shown by
Belinski, Khalatnikov, and Lifshitz (BKL), general rela-
tivity admits generic spacelike singularities that are ultra-
local and oscillatory, characterized by an infinite sequence
of Kasner epochs and eras [2]. Importantly, the onset of

BKL dynamics can occur already at curvature scales where
the classical theory should remain reliable. These universal
features may provide a path to understand quantum effects
on singularities.
In the approach to a spacelike singularity, there is a

decoupling of spatial points, leading to an emergent ultra-
locality where each spatial point evolves independently
from the others. In this regime, the universe is described by
a generalized Kasner metric, which is similar to the familiar
Kasner solution,

ds2¼−dt2þ
XðD−1Þ

i¼1

t2pidx2i ;
XðD−1Þ

i¼1

pi¼
XðD−1Þ

i¼1

p2
i ¼1; ð1:1Þ

with the difference being that the exponents pi are
permitted to depend on space. The corresponding period
of time where the generalized Kasner metric remains a
good approximation is known as a Kasner epoch. The
ultralocal regime is punctuated by brief transitions driven
by spatial curvature wherein the universe transitions from
one Kasner epoch to another. Kasner eras comprise larger
time intervals and are made up of several epochs. The
defining feature of an era is that the transitions between
epochs involve the repeated swapping of the smallest two
Kasner exponents while the remaining exponents mono-
tonically decrease. The sequence of transitions, and the
corresponding changes in expansion and contraction of the
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universe, leads to the oscillatory dynamics in the approach
to the singularity.
One manifestation of quantum gravitational effects,

common to many approaches, is the appearance of higher-
derivative corrections to the Einstein-Hilbert action [3–9]. In
the approach to a singularity, these terms will ultimately
become important and will lead to drastic modifications of
the BKL analysis. While there has been growing interesting
in understanding aspects of the black hole interior and
singularity, e.g., Refs. [10–19], there have been very few
studies concerning the implications of higher-curvature
corrections for ultralocality and the chaotic, oscillatory
dynamics predicted by BKL.1 It was recently argued by
three of us that the consideration of higher-derivative
corrections naturally introduces the concept of an eon:
periods which are dominated by emergent physics at each
energy scale [23]. From this perspective, the period in which
the entire BKL dynamics of general relativity occurs con-
stitutes the Einsteinian eon. Different ways by which the
Einsteinian eon may come to an end were explored in [23],
including the possibility of finite volume singularities, inner
horizons, or additional eons.
It was proposed in [23] that under certain circumstances,

such as a hierarchy of energy scales, additional eons could
appear. During the additional eons, one could imagine
modified BKL-like dynamics, consisting of epochs and
eras, but with the Kasner exponents obeying modified
constraints and transition rules dictated by the modified
gravitational equations. Exploring this idea concretely is a
rather difficult but interesting problem requiring the exten-
sion of the BKL analysis to higher-curvature theories of
gravity. As evidence for this idea, a toy model was explored,
consisting of the interior of a spherically symmetric black
hole in Gauss-Bonnet gravity. The Gauss-Bonnet theory
introduces a new energy scale by its coupling constant λ.
For scales M ≫ r ≫

ffiffiffi
λ

p
, it was observed that the interior

geometry is given, to a good approximation, by a Kasner
solution of Einstein gravity. However, for r ≪

ffiffiffi
λ

p
,

a transition occurs, and the geometry is then given by a
Kasner solution of the Gauss-Bonnet theory—this is a
Gauss-Bonnet eon consisting of a single Kasner epoch.
The interior solution provides a smooth connection between
the Einsteinian and Gauss-Bonnet eons.

The purpose of this paper is to further explore the ideas
of [23] as a step toward a more complete understanding of
how higher-curvature corrections alter and supplement the
results of the BKL analysis. We begin in Sec. II by
performing a classification of Kasner solutions of various
higher-curvature theories. We point out an apparently
universal feature, namely, that for every density involving
n powers of the Riemann tensor, there exists a family of
Kasner solutions for which the sum of the Kasner expo-
nents equals 2n − 1, generalizing the Einstein gravity
result. Then, in Sec. III, we focus on Lovelock theory
where analytical black hole solutions are available, and we
study the Kasner geometries that emerge in the black hole
interior. Introducing an effective Kasner exponent which is
constant during periods where the metric is approximately
Kasner, we study the existence of eons in these black holes,
illustrating how the Einsteinian eon can be followed either
by additional Lovelock eons or terminate in a finite volume
singularity.2 Finally, in Sec. IV, we make some more
general remarks concerning the end of an eon. We derive
perturbative formulas governing the behavior of the effec-
tive Kasner exponent at the end of an eon, which connects
our results with the more traditional effective field theory
program. Finally, we show that if the effective stress tensor
generated by the higher-curvature terms respects the null
energy condition, then the effective Kasner exponent exhib-
its a monotonic behavior at the end of the Einsteinian eon. In
Appendix, we perform a detailed analysis of the different
types of interiors which arise as a function of the sign and
magnitude of the gravitational couplings for Gauss-Bonnet
gravity in general dimensions as well as for cubic Lovelock
gravity in D ¼ 7.

II. KASNER SOLUTIONS IN
HIGHER-CURVATURE GRAVITY

We are interested in Kasner solutions to higher-curvature
theories of gravity.3 The Kasner metric is given by (1.1),
and the equations of motion of a given theory constrain
the “Kasner exponents” pi in different ways. In order to
characterize such constraints, it is convenient to introduce
the parameters μ, ν, as

μ≡ XðD−1Þ

i¼1

pi; ν≡ XðD−1Þ

i¼1

p2
i : ð2:1Þ

These are invariant under arbitrary permutations of pairs of
Kasner exponents. In the case of Einstein gravity,

1Much of this work has focused on developing singularity
probes, i.e., identifying holographic observables that are sensitive
to the behavior of the black hole interior. Among such ap-
proaches, one (which we shall return to in the conclusions of our
work) is holographic complexity [20–22], which posits a con-
nection between the time-dependent dynamics of the black hole
interior and the growth of circuit complexity for the dual CFT
state in the case of asymptotically anti–de Sitter black holes.
Here, our focus will be primarily on asymptotically flat black
holes, but in the conclusions, we shall make some comments on
the anti–de Sitter case.

2Therefore, in this paper, we do not focus on the cases in which
the higher-curvature terms give rise to additional inner horizons.
In that context, it has recently been shown that adding infinite
towers of higher-curvature corrections can lead to a full resolution
of the Schwarzschild black hole singularity in D ≥ 5 [24–28].

3For other examples of investigations of Kasner solutions for
specific higher-curvature theories, see, e.g., Refs. [29–32].
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I ¼
Z

dDx
ffiffiffiffiffi
jgj

p
R; ð2:2Þ

there exists a (D − 3)-parametric family of solutions
determined by the conditions

μ ¼ 1; ν ¼ 1: ð2:3Þ

Additionally, there exists an isolated solution correspond-
ing to p1 ¼ p2 ¼ … ¼ pðD−1Þ ¼ 0, which is nothing but
D-dimensional Minkowski spacetime.
We are interested in Kasner solutions of the form (1.1).

In order to find solutions of this type, one can insert an
ansatz of the above form in the corresponding equations of
motion and find the conditions for the Kasner exponents.
Alternatively, we can consider an ansatz with D arbitrary
functions of the form

ds2 ¼ −NðtÞdt2 þ
XðD−1Þ

i¼1

aiðtÞdx2i ; ð2:4Þ

find the on-shell action

S½N; ai�≡
Z

dtL½N; ai�;

where L½N; ai�≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðtÞa1ðtÞ � � � aD−1ðtÞ

p
Ljð2.4Þ; ð2:5Þ

and vary it with respect to those functions. The result reads

N2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Na1 � � � aD−1

p δS½N; ai�
δN

¼ Ett½N; ai�;

−
a2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Na1 � � � aD−1
p δS½N; ai�

δai
¼ Eii½N; ai�; ð2:6Þ

where Eab½N; ai�≡ 1ffiffiffiffi
jgj

p δS
δgab

���
ð2.4Þ

are the field equations of

the theory evaluated on the ansatz (2.4). Hence, solving the
Euler-Lagrange equations of the effective Lagrangian
associated with NðtÞ and aiðtÞ is equivalent to solving
the full nonlinear equations of motion—see, e.g.,
Refs. [33–37] for previous instances in which similar
methods were used for finding solutions with different
isometries. Once we have the equations, we can set
NðtÞ ¼ 1, aiðtÞ ¼ t2pi , and solve them for pi.

A. A universal feature

In the following subsections, we use the above method to
characterize the Kasner metrics of various higher-curvature
theories in the absence of matter. Our list if not fully
exhaustive as, in certain cases, there exist isolated sets of
solutions which cannot be easily characterized in general
dimensions and for arbitrary curvature orders. Additionally,
for a given curvature order, one can either study the Kasner

solutions for general values of the coupling constants or,
alternatively, study the solutions of isolated densities. The
first approach gives rise to very messy expressions as soon
as we move beyond quadratic curvature order. Just like for
Einstein gravity, in each case, we find the existence of
broad families of solutions, corresponding to hypersurfaces
in the fpigi¼1;…;D−1 hyperplane characterized by certain
constraints on the values of μ and ν, as well as sets of
isolated solutions which correspond to points in such a
hyperplane.
Our analysis reveals an interesting general feature.

Namely, we observe that the family of metrics character-
ized by the Einsteinian conditions (2.3) gets generalized,
for general order-n densities,

I ¼
Z

dDx
ffiffiffiffiffi
jgj

p
Riemn; ð2:7Þ

to a family of solutions characterized by a condition of the
form

μ ¼ 2n − 1; ð2:8Þ

plus an additional, more complicated constraint which can
be written in the form

ν ¼ νðfαig; p3; p4;…; pðD−1ÞÞ; ð2:9Þ

where ν is, in general, a complicated function of the relative
gravitational couplings αi and (D − 3) of the Kasner
exponents. Therefore, we find that μ does not depend on
the spacetime dimension, and its dependence on the order
of the density is a remarkably simple generalization of the
Einstein gravity case, corresponding to μ ¼ 1. We have
verified this feature for fðRÞ, quadratic, cubic, and
Lovelock gravities in various dimensions, which makes
us confident that this is indeed a universal property of
higher-curvature densities. It is then more than tempting to
conjecture that by assuming some generalized BKL-type
behavior persists in the interior of generic black holes
dominated by higher-curvature interactions, the corre-
sponding Kasner exponents characterizing the spacetime
metric at each point will satisfy (2.8) and (2.9) instead of
the usual conditions (2.3).

B. Explicit examples

1. f ðRÞ gravity
Consider a density consisting of an arbitrary power of the

Ricci scalar, namely,

I ¼
Z

dDx
ffiffiffiffiffi
jgj

p
Rn: ð2:10Þ

Interestingly, whenever n ≥ 2, this theory admits Kasner
solutions whose exponents satisfy a single relation
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(instead of two), namely,

ν ¼ μð2 − μÞ; ð2:11Þ

where μ can, in principle, take any real value, but it is
constrained to the range 0 ≤ μ ≤ 2 in order for the metric to
remain real valued. In D dimensions, this represents a
(D − 2)-parametric family of solutions. This obviously
includes the Einstein gravity set (2.3) as well as
Minkowski as particular cases. In addition to this family,
there exist “isolated” solutions corresponding to

p1 ¼p2¼ ��� ¼pðD−1Þ ¼−
ð2n−1Þðn−1Þ�

n−D
2

� ; ð2:12Þ

for every D and n ≠ D=2.

2. Quadratic gravities

The next natural case corresponds to general quadratic
gravity of the form

I ¼
Z

dDx
ffiffiffiffiffi
jgj

p
½α1R2 þ α2RabRab þ α3RabcdRabcd�:

ð2:13Þ

This theory admits a new (D − 3)-parametric family of
solutions satisfying μ ¼ 3 in general dimensions. InD ¼ 4,
this satisfies

μ¼3;

ν¼−3α1þα2þ7α3�2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðα2þ4α3Þð3α1þα2þα3Þ

p
α1þα2þ3α3

:

ð2:14Þ

In order for the solutions to exist, ν must be real and
positive, which imposes the conditions�
α2<−4α3;−

1

3
ðα2þα3Þ≤ α1<−ðα2þ3α3Þ

�
ð2:15Þ

or, alternatively,�
α2>−4α3;−ðα2þ3α3Þ< α1 ≤−

1

3
ðα2þα3Þ

�
: ð2:16Þ

As a consequence, setting any pair of couplings to zero
gives rise to invalid solutions. For instance, if we choose
α2 ¼ −4α3, which would put the action in the form of a
linear combination of R2 with the Gauss-Bonnet density,
one would get ν ¼ −3, which is not allowed. In addition,
setting α1 ¼ α3 ¼ 0, which would be a pure RabRab theory,
would yield ν ¼ 1þ 2i

ffiffiffi
2

p
, and α1 ¼ α2 ¼ 0 would give

ν ¼ 1
3
½7þ 4i

ffiffiffi
2

p �, which is not valid either. On the other

hand, the combination α2 ¼ −3α1 − α3, which corresponds
to a linear combination of a Weyl tensor-squared term plus
a RabcdRabcd − RabRab one, produces a valid result,
namely, ν ¼ 3. In the D ¼ 4 case, the general quadratic
theory also admits a family of solutions of the same type as
Einstein gravity, namely, satisfying (2.3). In addition, there
is an isolated solution corresponding to

p1 ¼ p2 ¼ p3 ¼
1

2
: ð2:17Þ

In higher dimensions, the expression for ν gets increas-
ingly complicated. For instance, theD ¼ 5 version of (2.14)
reads

μ¼3;

ν¼−3α1þα2þ7α3−2α3p3p4� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðα1;α2;α3;p3;p4Þ

p
α1þα2þ3α3

;

ð2:18Þ

where

Aðα1; α2; α3; p3; p4Þ
≡ �

6α1 − 2
�
α2 þ α3ð7 − 2p3p4Þ

�	
2 − 4ðα1 þ α2 þ 3α3Þ

×
�
9α1 þ 9α2 þ α3

�
27 − 4p3p4ð2ðp3p4

þ ðp3 − 3Þp3 þ p2
4Þ − 6p4 þ 9Þ�	; ð2:19Þ

and where we chose to write p1 and p2 in terms of μ, ν. For
D ≥ 5, the Einstein gravity family (2.3) is no longer a
solution. On the other hand, there exist additional isolated
solutions satisfying p1 ¼ p2 ¼ � � � ¼ pðD−1Þ for certain
dimension-dependent combinations of α1, α2, α3.

3. Cubic gravities

The most general cubic Lagrangian contains eight
independent densities built from contractions of the
Riemann tensor and the metric—see, e.g., Ref. [38]. In
this case, the expressions are rather messy already inD ¼ 4
and not particularly illuminating. However, we find that in
all cases there exists a family of solutions characterized by
the conditions

μ¼ 5; ν¼ νðfαig;p3;p4;…;pðD−1ÞÞ; ð2:20Þ

again in agreement with our general observation.

4. Lovelock gravities

Consider now the case of Lagrangians consisting of
a Lovelock density of curvature order n. The action is
given by
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I ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p
X2n; ð2:21Þ

where the dimensionally extended Euler densities X 2n are
given by4

X2n ¼
1

2n
δμ1…μ2n
ν1…ν2n R

ν1ν2
μ1μ2…Rν2n−1ν2n

μ2n−1μ2n : ð2:22Þ

The simplest instance beyond the Einstein-Hilbert term
corresponds to the Gauss-Bonnet density, which reads

X2 ¼ R2 − 4RabRab þ RabcdRabcd: ð2:23Þ

This term contributes nontrivially to the equations of
motion for D ≥ 5. In particular, for D ¼ 5, we find a
family of Kasner solutions characterized by the conditions

μ ¼ 3; p1 ¼ 0; ð2:24Þ

where one of the Kasner exponents vanishes and the others

are free provided the first condition holds. Moving on to
D ¼ 6, we find the families

μ ¼ 3; p1 ¼ p2 ¼ 0; ð2:25Þ

μ ¼ 3;
X5
i¼1

1

pi
¼ 0: ð2:26Þ

All of these families were previously identified in [39],
where an exhaustive classification of the Kasner solutions
of Lovelock densities in the particular cases of curvature
orders satisfying D ¼ 2nþ 1 and D ¼ 2nþ 2 was per-
formed. Moving on to D ¼ 7, we find a family of solutions
characterized by

μ ¼ 3; ν ¼ νðp3; p4; p5Þ; ð2:27Þ

where

νðp3; p4; p5Þ≡
�
2p3

3ðp4 þ p5 þ p6Þ þ 2p2
3ðp4 þ p5 þ p6 − 3Þðp4 þ p5 þ p6Þ þ p3ðp4 þ p5 þ p6Þ

×
�
2ðp2

4 þ p4ðp5 þ p6 − 3Þ þ p2
5 þ p5p6 þ p2

6Þ − 6p5 − 6p6 þ 9
�

þ 2p3
4ðp5 þ p6Þ þ 2p2

4ðp5 þ p6 − 3Þðp5 þ p6Þ þ p4ðp5 þ p6Þ
×
�
2ðp5p6 þ ðp5 − 3Þp5 þ p2

6Þ − 6p6 þ 9
�þ p5p6

�
2ðp5p6 þ ðp5 − 3Þp5 þ p2

6Þ − 6p6 þ 9
�	

×
�
p3ðp4 þ p5 þ p6Þ þ p4ðp5 þ p6Þ þ p5p6

	−1:
Interestingly, all the above solutions reduce to the class

μ ¼ 3; ν ¼ 1þ 8

ðD − 1Þ ; ð2:28Þ

when p2 ¼ � � � ¼ pD−1 ¼ 4=ðD − 1Þ, a case which will be
relevant in the analysis of spherically symmetric black hole
interiors.
Moving to the case of the cubic Lovelock density, we

find for D ¼ 7 the family of solutions

μ ¼ 5; p1 ¼ 0; ð2:29Þ

whereas for D ¼ 8,

μ ¼ 5; p1 ¼ p2 ¼ 0; ð2:30Þ

μ ¼ 5;
X7
i¼1

1

pi
¼ 0: ð2:31Þ

In both cases, these were previously identified in [39]. In
D ¼ 9, one finds a family of solutions analogous to (2.27)
but with

μ¼ 5; ν¼ νðp3;p4;p5;p6;p7Þ ð2:32Þ

and where νðp3; p4; p5; p6; p7Þ is not a very illuminating
function. Again, in all cases, the solutions reduce to a class
characterized by

μ¼ 5; ν¼ 1þ 24

ðD−1Þ ; ð2:33Þ

when p2 ¼ � � � ¼ pD−1 ¼ 6=ðD − 1Þ.
Both (2.28) and (2.33) are particular instances of a more

general class of solutions to a general Lovelock densityX2n
and in general dimensions, in the particular case in which
all exponents but one are equal. This corresponds to

μ¼ 2n−1; ν¼ 1þ4nðn−1Þ
ðD−1Þ ; ð2:34Þ

where

4The generalized Kronecker symbol is defined as δμ1μ2…μr
ν1ν2…νr ≡

r!δ½μ1ν1 δ
μ2
ν2…δμr�νr .
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p1¼−
ðD−2n−1Þ
ðD−1Þ ; p2¼���¼pD−1¼

2n
ðD−1Þ : ð2:35Þ

We will see in the following section that this family of
solutions arises approximately during certain periods as the
singularity of static and spherically symmetric Lovelock
black holes is approached.

III. KASNER EONS FROM
BLACK HOLE INTERIORS

In this section, we consider static and spherically
symmetric black hole solutions of Lovelock gravity. As
the singularity is approached, those spacetimes undergo
one or several Kasner eons through which they locally
behave like Kasner solutions of the corresponding higher-
curvature density. In the first subsection, we define an
effective Kasner exponent which becomes constant during
an eon for a general static and spherically symmetric
spacetime. Then, we use this notion to characterize the
presence of Kasner eons in the interior of Lovelock gravity
black holes. We determine the conditions under which,
depending on the sign and magnitude of the gravitational
couplings, the Einsteinian eon is followed by additional
higher-curvature eons or terminates in a finite-volume
singularity.

A. Effective Kasner exponents

In this section, we focus on the case in which all but one
of the exponents coincide with each other, namely, when

p1 ≠ p2 ¼ p3 ¼ � � � ¼ pD−1: ð3:1Þ

Very often, the metric which describes the near-singularity
region of static black hole solutions of higher-curvature
theories takes the form (1.1), with Kasner exponents
satisfying this condition. Indeed, consider a general static
and spherically symmetric black hole with a single horizon,
a spacelike curvature singularity at r ¼ 0, and an interior
metric described in Schwarzschild coordinates as

ds2 ¼ dr2

fðrÞ − NðrÞfðrÞdz2 þ r2dΩ2
ðD−2Þ; ð3:2Þ

where dΩ2
ðD−2Þ is the metric of the (D − 2)-dimensional

sphere, andwhere the two functionsfðrÞ andNðrÞbehave as

fðrÞ ∼r→0 − r−s; NðrÞ ∼r→0 r−w ð3:3Þ

near the singularity, which lies in the future of any infalling
observer. Changing coordinates

dτ≡ drffiffiffiffiffiffi
−f

p ⇒ τ ∼ rðsþ2Þ=2; ð3:4Þ

the metric becomes

ds2 ¼ −dτ2 þ τ2p1dz2 þ τ2p2dΩ2
ðD−2Þ; ð3:5Þ

where the two independent exponents read

p1¼−
ðsþwÞ
ðsþ2Þ ; p2¼

2

ðsþ2Þ : ð3:6Þ

Hence, in the vicinity of any point of the (D − 2)-sphere, the
metric takes the usual Kasner form5

ds2 ¼ −dτ2 þ τ2p1dz2 þ
XðD−1Þ

i¼2

τ2pidx2i ; ð3:7Þ

where (3.6) holds and

p2 ¼ p3 ¼ � � � ¼ pD−1: ð3:8Þ

In such a general situation, the sums of theKasner exponents
and their squares, as defined in (2.1), become

μ¼2ðD−2Þ−ðsþwÞ
ðsþ2Þ ; ν¼4ðD−2ÞþðsþwÞ2

ðsþ2Þ2 : ð3:9Þ

Wecan introduce an “effective”Kasner exponentpeff for the
dz2 component of the metric,

peffðrÞ≡ r½fðrÞNðrÞ�0
½2fðrÞ − rf0ðrÞ�NðrÞ ; ð3:10Þ

so that any time that fðrÞ ∼ r−s; NðrÞ ∼ r−w, peffðrÞ
becomes constant, the metric is locally Kasner, and

p1 ¼peff ; p2¼ �� �¼pD−1¼peff þ1þ w
ðsþ2Þ : ð3:11Þ

In the present context, Kasner eons correspond to
periods during which the interiors of black holes in the
vicinity of spacelike singularities behave as locally Kasner
metrics with approximately constant Kasner exponents
satisfying (3.11). As we will see below, for solutions
involving several parametrically distinct length scales, as
the singularity is approached, the solutions will transit
through various eons characterized by different exponents.
The above expressions get considerably simplified for

black holes characterized by a single metric function,
namely, those for which NðrÞ ¼ 1. In that case, whenever
fðrÞ ∼ r−s, eons are characterized by Kasner exponents
satisfying the conditions

5Strictly speaking, the interior belongs to the class of Kant-
owski-Sachs cosmological models, which have R × S2 spatial
sections. However, locally, in the vicinity of any point on the two-
sphere, the metric can be brought into the usual Kasner form.
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p1¼peff ¼−
s

ðsþ2Þ ;

p2¼ �� � ¼pD−1¼peff þ1¼ 2

ðsþ2Þ : ð3:12Þ

Consider, for instance, the case of the D-dimensional
Schwarzschild black hole, whose metric function reads

fðrÞ ¼ 1 −
rD−3
0

rD−3 ; ð3:13Þ

where r0 is an integration constant related to the mass of the
solution M via

rD−3
0 ¼ 16πGM

ðD − 2ÞΩD−2
; ð3:14Þ

whereΩD−2 is the (dimensionless) volume of the transverse
(D − 2)-sphere. In this case, the effective Kasner exponent
reads

peffðrÞ¼−
D−3

ðD−1Þ−2uD−3 ; u≡ r=r0: ð3:15Þ

For u ≪ 1—namely, near the singularity—this approaches
a constant,

peff ¼ −
ðD − 3Þ
ðD − 1Þ ; ð3:16Þ

and the metric locally behaves like a Kasner spacetime with
exponents

p1¼−
ðD−3Þ
ðD−1Þ ; p2 ¼ ��� ¼pD−1 ¼

2

ðD−1Þ ; ð3:17Þ

which satisfy μ ¼ ν ¼ 1, as expected for Einstein gravity.

B. Lovelock gravity black holes

Now, let us consider the case of a general Lovelock
gravity in D dimensions. The action is given by

I ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p
LLovelock; ð3:18Þ

where

LLovelock≡ 1

16πG

"
Rþ

XbðD−1Þ=2c

n¼2

λn
ðD−2n−1Þ!
ðD−3Þ! X2n

#

ð3:19Þ

is the Lovelock Lagrangian [40,41] and where we set the
cosmological constant to zero. The dimensionally extended

Euler densities X2n are defined in (2.22), and the λn are
arbitrary coupling constants with dimensions of length2ðn−1Þ.
Static, spherically symmetric black holes in Lovelock

theory take the form (3.2) with NðrÞ ¼ 1, where the
function fðrÞ satisfies the algebraic equation

hðψÞ ¼ rD−3
0

rD−1 ; where ψ ≡ 1 − fðrÞ
r2

; ð3:20Þ

and where the “characteristic polynomial” hðxÞ is given
by [42–46]

hðxÞ≡ xþ
XbðD−1Þ=2c

n¼2

λnxn: ð3:21Þ

Equation (3.20) has n solutions for fðrÞ. Of those, only
one reduces, in each case, to the Schwarzschild one in the
limit in which λn → 0 ∀ n, and we will exclusively
consider that case from now on. Then, the interior of a
Lovelock black hole can be more complicated than in
Einstein gravity. For example, even in the absence of
charge or rotation, it is possible to have an inner Cauchy
horizon. Moreover, Lovelock black holes can have what are
known as “branch singularities,” which occur when a root
of the polynomial hðxÞ has a branch point [47,48]. While
the metric remains finite, the radial derivatives of the metric
function blow up at a branch singularity, meaning this is
also a curvature singularity with a divergent Kretschmann
scalar. The volume of spatial slices does not become
arbitrarily small at a branch singularity—rather, it remains
finite. A thorough analysis of the different types of interiors
which arise as a function of the sign and magnitude of the
gravitational couplings is presented in Appendix for Gauss-
Bonnet gravity in general dimensions as well as for cubic
Lovelock gravity in D ¼ 7—namely, in the cases in which
the Lovelock series is truncated at quadratic and cubic
orders, respectively.
Let us consider first the case in which the black holes

contain a singularity at r ¼ 0. This is generically the case if
signðλnÞ ¼ þ∀ n. In the deep interior of such a black hole,
it is only the highest-order density that contributes to the
field equation. A simple computation shows that these
Lovelock black holes have Kasner regimes in the deep
interior which precisely correspond to the class of pure
Kasner solutions of Lovelock gravity identified in (2.34)
and (2.35). In particular, note that those relations, combined
with the fact that for Lovelock theory we must have
n ≤ ðD − 1Þ=2, imply the following bounds on the
Kasner exponents, in general:

−1≤p1 ≤ 0; 0≤pi≥2 ≤ 1: ð3:22Þ

For D ¼ 5 and D ¼ 6, the Einsteinian eon—characterized
by approximately constant effective Kasner exponents
with values given by (3.17)—is terminated when the
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Gauss-Bonnet term becomes dominant, and the effective
Kasner exponents transition to approximately constant
values given by (2.35) with n ¼ 2. If λ2 is large enough,
we can completely skip the Einsteinian eon, with peff
transitioning directly to the Gauss-Bonnet phase. More
precisely, if λ2 is such that there exists a regime for which

jλ2j=r20 ≪ uD−1 ≪ 1; ð3:23Þ

then there will be an Einsteinian eon corresponding to
values of r for which the above condition holds. On the
other hand, if uD−1 becomes of the same order as jλ2j=r20

before uD−1 ≪ 1 holds, the Einsteinian eon will be skipped,
and the transition will be directly to the Gauss-Bonnet one.
These different cases are shown in particular examples for
D ¼ 5 and D ¼ 6 in Fig. 1.
For D ≥ 7, the last eon corresponds to (2.35) with

n ¼ bðD − 1Þ=2c, and additional intermediate eons may
arise (or be absent altogether) depending on the relative
strength of the couplings. In case they arise, during each of
those intermediate eons, Eq. (2.35) holds, with n corre-
sponding to the order of the density which dominates the
dynamics throughout that phase. The situation in which all
possible intermediate eons arise requires that (3.23) holds

FIG. 1. Effective Kasner exponent for Lovelock gravity black holes in D ¼ 5 (upper row) and D ¼ 6 (lower row) for various values
of the Gauss-Bonnet coupling. For sufficiently small values of λ2=r20, the metric undergoes a Kasner eon characterized by the
Einstein gravity exponent peff ¼ −ðD − 3Þ=ðD − 1Þ and then transits to a new eon controlled by the Gauss-Bonnet density
with peff ¼ −ðD − 5Þ=ðD − 1Þ which characterizes the near-singularity metric. The dashed red curve corresponds to the usual
D-dimensional Schwarzschild black hole.
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for certain u and that there exists a hierarchy of couplings of
the form

jλnj1=ð2ðn−1ÞÞ ≪ � � � ≪ jλ3j1=4 ≪ jλ2j1=2: ð3:24Þ

The various situations arising in the D ¼ 7 case are shown
in Fig. 2.
The cases considered so far are such that the effective

Kasner exponent increases monotonically until it reaches a
plateau corresponding to the final eon. However, forD ≥ 7,
it is possible to have transitions between eons which involve
a nonmonotonic behavior of peff and still conclude with a
final eon which extends all the way to a singularity at

r ¼ 0. For instance, this occurs in D ¼ 7 for λ2 < 0,
1 > λ3=r40 > λ22=ð3r40Þ, as shown in some examples in Fig. 3.
We mentioned earlier that finite-volume singularities

generically occur for Lovelock black holes for certain
combinations of the couplings. In that case, an Einsteinian
eon can still be present in the interior for sufficiently small
values of the higher-curvature couplings. The radial deriva-
tive of the metric function fðrÞ diverges at the finite-volume
singularity, which we take to be at r ¼ r⋆. Comparing
with (3.10), it follows that

lim
r→r⋆

f0ðrÞ ¼ ∞ ⇒ peffðr⋆Þ ¼ −1: ð3:25Þ

FIG. 2. Effective Kasner exponent for Lovelock gravity black holes in D ¼ 7. Depending on the values of jλ3j=r40 and jλ2j=r20, it is
possible to have three eons (upper left), an Einsteinian eon followed by a cubic Lovelock eon (upper right), a Gauss-Bonnet eon
followed by a cubic Lovelock eon (lower left), or a single cubic Lovelock eon (lower right). The dashed red curve corresponds to the
seven-dimensional Schwarzschild black hole.
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Hence, in this case, the Einsteinian eon is followed by a
decrease in peff which terminates at the singularity, where it
takes the value −1 for general theories and dimensions.
Examples of this behavior are shown in Fig. 4.

IV. END OF AN EON

In this section, we take a closer look at how a Kasner eon
comes to an end. We provide a perturbative formula for
the effective Kasner exponent at the end of a Lovelock
gravity eon and make some general comments about the

termination of the Einsteinian one. In addition, we show
that if the effective stress tensor generated by higher-
curvature terms satisfies the null energy condition, then
the effective Kasner exponent exhibits a monotonic behav-
ior at the end of the Einsteinian eon.

A. End of an eon in Lovelock theory

As we have seen, during an eon, the effective Kasner
exponent is approximately constant. However, if higher-
curvature terms are present, then eventually these will

FIG. 3. Effective Kasner exponent for Lovelock gravity black holes in D ¼ 7 for certain combinations of λ2, λ3 which give rise to a
nonmonotonic behavior of peff .

FIG. 4. Effective Kasner exponent for Lovelock gravity black holes inD ¼ 5 (left) andD ¼ 6 (right) for various negative values of the
Gauss-Bonnet coupling. For sufficiently small values of jλ2j=r20, an Einsteinian eon is present. Eventually, the effective Kasner exponent
starts decreasing and takes the value peff ¼ −1 at the branch singularity r ¼ r⋆ ≡ ð4jλ2j=r20Þ1=ðD−1Þ.
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become important and drive the universe to a new eon, as
shown in the figures above. In Lovelock theory, we can
analytically derive the leading corrections to peff in that
regime.
Since it is easy to do so, let us consider the following

situation. The universe is in an eon where the Lovelock
term of order n dominates. We consider a transition
between the order n eon and an order m eon. The coupling
λn is treated nonperturbatively, while we compute only the
leading correction for λm. The result of this computation is

peff ¼−
D−2n−1

D−1
þ2ðm−nÞ

D−1

jλmjuðD−1Þð1−m=nÞ

jλnjm=nr2ðm=n−1Þ
0

þ��� :

ð4:1Þ

An eon can be considered to have ended when the second
term in the above equation becomes Oð1Þ, which happens
at the point where

jλmjuðD−1Þð1−m=nÞ

jλnjm=nr2ðm=n−1Þ
0

∼ 1: ð4:2Þ

Naturally, the most interesting case is the end of the
Einstein gravity eon (this is also the case that is within
reach of conventional effective field theory). Thus, we
consider the case where n ¼ 1 and allow m to remain
arbitrary. It is convenient to introduce a scale l for the
coupling λm so that λm ∼ μml2m−2 where μm is dimension-
less and order one and l is a length scale. The result is that
the Einstein eon ends at

rend ∼ r0



l
r0

�
2=ðD−1Þ

; ð4:3Þ

which is independent of m. In other words, the result is the
same whether it is Gauss-Bonnet gravity or the 12th-order
Lovelock gravity that takes over. Notably, because of the
fractional exponent 2=ðD − 1Þ, this point can be orders of
magnitude larger than the length scale l that characterizes
the new physics.6 The result is more intuitive when
expressed in terms of the proper time. Since the proper
time during the Einstein gravity eon is

τ ∼ r0uðD−1Þ=2; ð4:4Þ

we have τend ∼ l.

B. Monotonicity of the effective Kasner exponent

In the examples we have studied, we have seen that the
effective Kasner exponent often—but not always—
increases as one moves toward the singularity. Moreover,

we saw that the finite volume singularities were always
associated with an effective Kasner exponent that decreases
at the end of an eon. Here, we place these observations on a
somewhat more rigorous footing, making a connection
between the monotonicity of the effective Kasner exponent
and the null energy condition.
The null energy condition requires that Tμνkμkν ≥ 0 for

all null vectors k. Here, we are considering vacuum
spacetimes of higher-curvature theories. While, strictly
speaking, there is no matter in the setup, we can consider
the higher-curvature terms to generate an effective stress-
energy tensor Tμν ¼ Gμν. For a static and spherically
symmetric spacetime characterized by a single metric
function fðrÞ, the null energy condition implies the
following constraint:

Gμνkμkν≥0

∀kμ⇒ r2f00 þðD−4Þrf0 þ2ðD−3Þð1−fÞ≥0: ð4:5Þ

Let us now study the end of the Einsteinian eon.
Consider a correction of the form

fðrÞ ¼ 1 −


r0
r

�
D−3

þ λ



r0
r

�
s
; ð4:6Þ

where λ is a coupling parameter and s > D − 3 so that the
correction is subleading to the Einstein terms. We are
considering this not as an exact solution but instead as a
model of the leading (in λ) correction to the Schwarzschild
solution. Plugging this into the constraint above, we find

r2f00 þ ðD − 4Þrf0 þ 2ðD − 3Þð1 − fÞ

¼ λðs − 2Þðs −Dþ 3Þ


r0
r

�
s
; ð4:7Þ

indicating that the null energy condition is satisfied
provided that λ > 0.
Next, consider the derivative of the effective Kasner

exponent at the end of the Einsteinian eon. Expanding to
leading order in λ and working in the r ≪ r0 limit, we find

p0
effðrÞ ¼ −

2λðs −Dþ 3Þ2
r0ðD − 1Þ2



r0
r

�
D−4−s

: ð4:8Þ

To make the result more transparent and consistent with the
plots, let us introduce the coordinate y≡ logðr0=rÞ which
increases toward the singularity. In terms of this coordinate,
we obtain

dpeff

dy
¼ 2λðsþD − 3Þ2

ðD − 1Þ2 eðs−Dþ3Þy: ð4:9Þ

This means that if the null energy condition is satisfied,
then the effective Kasner exponent must increase at the end6This feature has been emphasized in [49,50].
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of the Einsteinian eon. On the other hand, if the effective
Kasner exponent is seen to decrease toward the singularity,
then this indicates a violation of the null energy condition.
This latter result was seen to be universally associated with
the finite volume singularities of Gauss-Bonnet gravity
studied in the earlier sections—see Fig. 4.
The effective Kasner exponent is negative in Einstein

gravity and governs the expansion of spacetime along the z
direction in the black hole interior. The above result tells us
that if the corrections to general relativity respect the null
energy condition, then this expansion slows down as a
result of the corrections. Of course, it is worth pointing out
that quantum effects can lead to violations of the null
energy condition. A proper analysis should invoke instead
the achronal averaged null energy condition [51]. However,
this analysis is beyond the scope of the present work, and
the null energy condition itself can still serve as a useful
heuristic.
A natural question is whether the null energy condition

can tell us anything about the monotonicity of the peff at the
end of other Lovelock eons beyond the Einsteinian one.
Unfortunately, the answer appears to be no. It would be
interesting to assess whether other constraints can yield
useful insights in this case.

V. DISCUSSION

Motivated by the key role they play in the approach to a
spacelike singularity, we began our work by classifying the
types of Kasner solutions that can arise in higher-curvature
theories of gravity. In general, the conditions on the Kasner
exponents differ significantly from Einstein gravity. We
noted a universal feature of Kasner metrics in higher-
curvature gravity: For a theory incorporating n powers of
curvature, there always exists a Kasner solution for which
the exponents satisfy

XD−1

i¼1

pi ¼ 2n − 1: ð5:1Þ

In the case of Einstein gravity, n ¼ 1 and the well-known
condition on the sum of the Kasner exponents is recovered.
For general relativity, the above is the unique condition on
the sum of the Kasner exponents dictated by the field
equations. However, in higher-curvature theories, there can
be additional families of solutions beyond this universal
one. It is nonetheless natural to speculate that the Einstein
gravity condition

P
D−1
i¼1 piðxÞ ¼ 1, satisfied at each spatial

point in the approach to a generic singularity, would be
replaced by (5.1) with spatially dependent exponents in the
case of Kasner eons dominated by order-n densities. This
would rely on the persistence of ultralocality in those cases,
a feature which remains to be explored.
We have further explored the concept of a Kasner eon

first introduced in [23], focusing on the example of

Lovelock gravity. We have provided a detailed analysis
of the interior structure of Lovelock black holes and
analyzed examples where additional eons or finite volume
singularities occur in the interior. A key result of our
analysis concerns the monotonicity of the effective Kasner
exponent at the end of the Einsteinian eon. We demon-
strated that if the effective stress tensor generated by the
higher-curvature corrections obeys the null energy con-
dition, then the effective Kasner exponent must increase at
the end of the Einsteinian eon. Since this exponent (when
negative) controls the expanding direction of the universe,
the physical implication is that the null energy condition
demands that the expansion in this direction slows as the
singularity is approached. The net result is that, very close
to the singularity, the spatial volume of the universe
collapses more slowly, scaling like

V∼ τ1þδðD−1Þ; peff ¼−
ðD−3Þ
ðD−1Þþδ: ð5:2Þ

Going forward, it will be important to understand the
holographic implications of Kasner eons. Here, we have
focused on the asymptotically flat setting, but our results will
carry over to the asymptotically AdS case as well. This is
because, in the deep black hole interior, the negative
cosmological constant becomes irrelevant. As one example,
the existence of eons can explain the confusion that originally
arose concerning applications of the “Complexity = Action”
proposal [22] to higher-curvature black holes. It was
observed that, even when the higher-curvature couplings
are turned off, the late-time growth rate of complexity does
not reduce to its Einstein gravity value [52–54]. Ultimately,
this is because the late-time growth rate of complexity is
sensitive to the final eon in the black hole interior. In fact, the
late-time complexity growth rate in Lovelock theory (in
D > 2nþ 1) can be expressed in terms of the effective
Kasner exponent [55],

lim
t→∞

dC
dt

¼ ðD − 1Þð1þ peffÞM
πðD − 2þ ðD − 1ÞpeffÞ

: ð5:3Þ

Therefore, because the exponents governing the final eon in
Lovelock theory are different from Einstein gravity, the
growth rate is different. In addition, because the Kasner
exponents are always constants independent of the cou-
plings, the limit of the growth rate does not recover
the Einstein gravity result. Substituting peff ¼ −ðD − 3Þ=
ðD − 1Þ into the above, one recovers the well-known 2M=π
predicted by general relativity. Further noting that the null
energy condition requires that peff should increase at the end
of the Einsteinian eon, one concludes that the complex-
ification rate should decrease as additional eons are probed. It
would be particularly interesting to revisit this analysis,
considering, for example, the time dependence of complexity
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which may exhibit distinct features as the Wheeler-DeWitt
patch picks up contributions from different eons.
The interiors of spherically symmetric black holes

provide a simple consistency check of the concept of eons.
This is because one often has access to the exact solution.
However, it will be important to test the concept of an eon
under less symmetric conditions. Ultimately, the idea is that
one may have additional BKL-like phases of evolution
driven by higher-curvature or quantum corrections to the
Einstein equations. It is therefore essential to explore these
ideas as generically as possible without becoming too
reliant on highly symmetric examples. We hope to return
to this problem in the near future.

Note added. Recently, Ref. [56] appeared on the arXiv.
That paper develops the ideas of Kasner eons in a manner
complementary to our own, by exploring the role of matter
and focusing on the case of quasitopological gravities. The
authors also perform a preliminary investigation of the
holographic interpretation of Kasner eons.
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APPENDIX: INTERIOR OF
LOVELOCK BLACK HOLES

1. Gauss-Bonnet in general D

Truncating the Lovelock action at quadratic order yields
the Einstein-Gauss-Bonnet action

I ¼ 1

16πG

Z
M

dDx
ffiffiffiffiffi
jgj

p �
Rþ λ2

ðD − 3ÞðD − 4Þ

× ðR2 − 4RabRab þ RabcdRabcdÞ


; ðA1Þ

where again we set the cosmological constant to zero and λ2
has dimensions of length2. The Gauss-Bonnet term is

dynamical for D ≥ 5, topological in D ¼ 4, and trivially
zero for D ≤ 3.
In D ≥ 5, the theory admits static and spherically

symmetric black hole solutions characterized by a single
metric function which satisfies

hðψÞ ¼ rD−3
0

rD−1 ; where ψ ≡ 1 − fðrÞ
r2

: ðA2Þ

We always assume r0 > 0, and the characteristic poly-
nomial hðxÞ is given by

hðxÞ≡ xþ λ2x2: ðA3Þ

This equation has two solutions. We consider the one which
has a well-defined Einstein-gravity limit when λ2=r20 → 0.
This reads

fðrÞ¼ 1þ r2

2λ2

2
641−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4λ2rD−3

0

rD−1

s 3
75 ¼ðλ2=r20→0Þ

1−


r0
r

�
D−3

þ


r0
r

�
2ðD−2Þ
λ2

r20

�
þ…: ðA4Þ

Whenever

0≤


λ2
r20

�
< 1; ðD¼ 5Þ; ðA5Þ

0≤


λ2
r20

�
; ðD≥ 6Þ; ðA6Þ

this function has a single real zero, fðrhÞ ¼ 0, rh > 0. In all
such cases, the solution describes a black hole with a
curvature singularity at r ¼ 0 hidden behind an event
horizon at r ¼ rh. The explicit form of rh for the first
few dimensions reads

rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −



λ2
r20

�s
ðD ¼ 5Þ; ðA7Þ

rh¼

"
9þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27þ4
�
λ2
r2
0

�
3

r #
1=3

21=332=3

−
21=3

�
λ2
r2
0

�

31=3

"
9þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27þ4
�
λ2
r2
0

�
3

r #
1=3 ðD¼ 6Þ; ðA8Þ

rh¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−


λ2
r20

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ



λ2
r20

�
2

svuut ðD¼ 7Þ: ðA9Þ
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On the other hand, in general D ≥ 5, whenever

−
1

2
D−5
D−3

<



λ2
r20

�
< 0; ðA10Þ

the solution describes a black hole hidden behind an event
horizon at r ¼ rh, which has a finite-volume singularity at

r⋆ ≡


4jλ2j
r20

� 1
D−1

: ðA11Þ

Finally, whenever 

λ2
r20

�
≤ −

1

2
D−5
D−3

; ðA12Þ

the solution describes a naked singularity at r⋆.
Additionally, in the special case of D ¼ 5, a naked
singularity at r ¼ 0 also arises for

1 ≤


λ2
r20

�
: ðA13Þ

2. Cubic Lovelock in D= 7

Consider now the case of a cubic Lovelock theory in
D ¼ 7. The Lagrangian reads

I ¼ 1

16πG

Z
M

d7x
ffiffiffiffiffi
jgj

p �
Rþ λ2

12
X4 þ

λ3
24

X6



; ðA14Þ

where λ2 and λ3 have dimensions of length2 and length4,
respectively. The theory admits static and spherically
symmetric black hole solutions characterized by a single
metric function which now satisfies

hðψÞ ¼ r40
r6

; where ψ ≡ 1 − fðrÞ
r2

; ðA15Þ

and where the characteristic polynomial hðxÞ is now
given by

hðxÞ≡ xþ λ2x2 þ λ3x3: ðA16Þ
This equation has three solutions, which can be written as

fA ≡ 1

3λ3

�
ð3λ3 þ λ2r2Þ þ

21=3r4ð3λ3 − λ22Þ
ðΣþ 3

ffiffiffi
3

p ffiffiffiffi
ϒ

p Þ1=3

−
ðΣþ 3

ffiffiffi
3

p ffiffiffiffi
ϒ

p Þ1=3
21=3



; ðA17Þ

fB ≡ 1

3λ3

�
ð3λ3 þ λ2r2Þ −

ð1þ i
ffiffiffi
3

p Þr4ð3λ3 − λ22Þ
22=3ðΣþ 3

ffiffiffi
3

p ffiffiffiffi
ϒ

p Þ1=3

þ ð1 − i
ffiffiffi
3

p ÞðΣþ 3
ffiffiffi
3

p ffiffiffiffi
ϒ

p Þ1=3
24=3



; ðA18Þ

fC ≡ 1

3λ3

�
ð3λ3 þ λ2r2Þ −

ð1 − i
ffiffiffi
3

p Þr4ð3λ3 − λ22Þ
22=3ðΣþ 3

ffiffiffi
3

p ffiffiffiffi
ϒ

p Þ1=3

þ ð1þ i
ffiffiffi
3

p ÞðΣþ 3
ffiffiffi
3

p ffiffiffiffi
ϒ

p Þ1=3
24=3



; ðA19Þ

where

ϒðrÞ≡ 27λ43 − 4λ32λ
2
3r

6 þ 18λ2λ
3
3r

6 − λ22λ
2
3r

12 þ 4λ33r
12;

ΣðrÞ≡ 27λ23 − 2λ32r
6 þ 9λ2λ3r6; ðA20Þ

and where we set r0 ¼ 1 in all expressions.7 The region in
parameter space for which asymptotically flat black holes
exist is displayed in Fig. 5. Whenever

−
1þ 2λ3ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ λ3

p < λ2 and λ3 ≤ 1; ðA21Þ

FIG. 5. Space of black hole solutions of the cubic Lovelock
gravity with Lagrangian (A14) parametrized by the values of
λ2=r20 and λ3=r

4
0 (we omit r0 everywhere to avoid the clutter). The

blue region corresponds to black holes described by fCðrÞ and
corresponds to black holes with a single horizon and with a finite-
volume singularity at r⋆. The green region corresponds to black
holes whose metric function is fBðrÞ and which possess a single
horizon and a finite-volume singularity at r⋆. The lighter red
region corresponds to black holes with a metric function given by
fAðrÞ which possess a single horizon and a singularity at r ¼ 0.
Finally, the darker red region also contains black holes described
by fAðrÞ with a singularity at r ¼ 0 but with two horizons.

7This can be easily reintroduced by replacing λ2 → λ2=r20 and
λ3 → λ3=r40.
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there exists a black hole with a single horizon at

rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ λ22 − 4λ3

p
2

s
: ðA22Þ

In particular, when

−
1þ 2λ3ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ λ3

p < λ2 and λ3 < 0; ðA23Þ

the solution is described by fCðrÞ above and there is a
finite-volume singularity at

r⋆ ≡


−2λ32 þ 2ðλ22 − 3λ3Þ3=2 þ 9λ2λ3

λ22 − 4λ3

�
1=6

: ðA24Þ

In addition, when

−
1þ 2λ3ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ λ3

p < λ2 < −
ffiffiffiffiffiffiffi
3λ3

p
and 0 < λ3; ðA25Þ

the solution is described by fBðrÞ and there is a finite-
volume singularity at r⋆. Finally, when

0≤ λ3< 1 and −
ffiffiffiffiffiffiffi
3λ3

p
< λ2; ðA26Þ

the solution is described by fAðrÞ and it contains a
singularity at r ¼ 0.
When

1< λ3< 4 and −
ffiffiffiffiffiffiffi
3λ3

p
< λ2<−2

ffiffiffiffiffiffiffiffiffiffiffi
λ3−1

p
; ðA27Þ

the solution is described by fAðrÞ, and it contains a Cauchy
horizon and an event horizon, respectively, at

rhC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ λ22 − 4λ3

p
2

s
;

rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ λ22 − 4λ3

p
2

s
; ðA28Þ

and a singularity at r ¼ 0.
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