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Abstract: Edible legume sprouts have been proposed as a promising plant-based source of the enzyme
diamine oxidase (DAO), which plays a key role in degrading histamine at an intestinal level and
preventing the development of histamine intolerance symptoms. However, the temperature and
humidity conditions required for seed germination can also favor the rapid growth of yeast and
mold, potentially compromising sprout yield and quality. The aim of this study was to evaluate the
influence of different seed disinfection treatments on both the germination rate and DAO enzymatic
activity in sprouts of four Leguminosae species. Seed disinfection with 70% ethanol for either 5 or
15 min slightly increased the germination rates of chickpea and soybean sprouts without affecting
DAO activity, regardless of treatment duration. However, in lentil and green pea sprouts, ethanol
disinfection caused a statistically significant reduction in histamine-degrading capacity. In contrast,
treating seeds with sodium hypochlorite for 15 min increased germination rates by up to 14% and
preserved DAO activity in all legume sprouts tested. These results indicate that incorporating a
seed disinfection step during legume sprouting may affect both the DAO enzymatic activity and
germination rate.

Keywords: diamine oxidase (DAO) enzyme; histamine; histamine intolerance; legume sprouts; seed
disinfection; germination rate; catalase enzyme

1. Introduction

Diamine oxidase (DAO, EC 1.4.3.22), also referred to as histaminase, is a copper-
containing enzyme that catalyzes the oxidative deamination of the primary amino group
of histamine (2-(1H-imidazol-4-yl)ethanamine) and other diamines, converting them into
their corresponding aldehydes and generating stoichiometric amounts of ammonia and
hydrogen peroxide [1]. DAO is widely distributed across microorganisms, plants, and
mammals [2] and it plays a crucial role in the degradation of diamines from food in human
intestines [3].

Histamine intolerance, a food-related disorder, occurs when the degradation of his-
tamine in the intestine is impaired by reduced DAO activity, resulting in an increase in its
accumulation in plasma, and the subsequent onset of adverse health effects [4]. Clinical
manifestations of histamine intolerance include a wide range of non-specific gastrointesti-
nal and extraintestinal symptoms and usually appear in susceptible individuals after the
consumption of foods containing moderate or even small amounts of histamine and/or
other biogenic amines [5,6].
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In addition to following a low-histamine diet, current strategies to prevent histamine-
related symptoms include enhancing intestinal histamine degradation through dietary
supplementation with gastrointestinal tablets containing exogenous DAO [7]. These com-
mercial DAO supplements are mainly formulated using porcine kidney protein extract, a
DAO-containing active ingredient approved both as a food supplement and as food for
special medical purposes by the European Commission in 2017 [8,9].

Recently, plant-based DAO has emerged as a promising alternative to animal DAO for
treating histamine-related disorders [10,11]. Sprouted seeds from certain Leguminosae
species have been identified as significant sources of DAO, showing similar or even
higher in vitro histamine-degrading activity compared to animal-derived DAO [10,12,13].
Seed germination notably enhances DAO activity, likely due to the role of the enzyme in
modulating the cell wall architecture during plant development and in defense against
pathogens [14,15].

Reports in the literature indicate that various germination conditions, such as temper-
ature, duration, and light exposure, can significantly influence the DAO activity of legume
sprouts [10,12,15]. For example, Comas-Basté et al. [10] demonstrated that etiolated legume
sprouts (germinated in darkness) exhibited higher histamine catalytic activity compared to
those grown under light conditions.

However, the temperature and humidity required for optimal seed germination can
also create favorable conditions for the rapid growth of yeast and mold, potentially com-
promising sprout yield and quality. To address this, pre-germination seed disinfection
treatments are commonly used in the sprouting agrifood industry. However, there are cur-
rently no available data on the impact of these sanitation treatments on the DAO enzymatic
activity of the sprouts.

As mentioned, the histamine-degrading activity of DAO generates hydrogen peroxide
as a by-product, which in excess can lead to oxidative damage to cell structures [1,16,17].
Catalase breaks down hydrogen peroxide into water and oxygen, potentially reducing
oxidative stress. In this context, some researchers have proposed that the concomitant
presence of catalase and DAO activity in plant-based active ingredients may help to mitigate
the progressive accumulation of hydrogen peroxide at the intestinal level [1].

The primary aim of this study was to evaluate the effects of different disinfection
treatments on both DAO enzymatic activity and germination rates in sprouts of four
Leguminosae species. Additionally, the catalase activity of the lyophilized legume sprouts
was assessed.

2. Materials and Methods
2.1. Chemicals

Hydrochloride acid 0.1 M, brij® L23 solution and phthaldialdehyde (OPA) were ac-
quired from Merck (Darmstadt, Germany). Sodium di-hydrogen phosphate anhydrous, di-
sodium hydrogen phosphate anhydrous, sodium hypochlorite, ethanol, hydrogen peroxide
30%, sodium acetate anhydrous and perchloric acid were obtained from PanReac Química
(Castellar del Vallès, Spain). Potassium hydroxide, 2-mercaptoethanol, 1-octanesulfonic
acid sodium salt, acetic acid, boric acid, histamine dihydrochloride, methanol and ace-
tonitrile were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ultrapure water
(18.2 MΩcm) was generated using a LaboStar System from Evoqua Water Technologies
(Warrendale, PA, USA).

2.2. Legume Species

Four edible species of the Leguminosae plant family were included: chickpea (Cicer
arietinum L.), lentil (Lens culinaris Medik.), soybean (Glycine max (L.) Merr.) and green pea
(Pisum sativum L.). These legume seeds were acquired from local suppliers and stored in a
cool and dry refrigerated chamber at 5 ± 2 ◦C and a relative humidity of 55 ± 2% (Coref,
Montgat, Barcelona), avoiding sudden temperature changes. The seeds were kept inside
their original opaque container, which was properly sealed to protect them from moisture
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and light. The maximum storage time between purchasing the seeds and their germination
was one month.

2.3. Seed Disinfection Treatment

A total of 250 g of seeds from each legume species was disinfected in 500 mL of an
aqueous solution containing (a) 70% ethanol or (b) sodium hypochlorite at two different
concentrations (70 and 100 mg/L). A control batch was treated with distilled water fol-
lowing the same procedure. Each disinfection treatment was applied for two durations
(5 and 15 min). The seeds were placed in a beaker and agitated continuously in the disin-
fectant solution, and then were strained and rinsed five times with distilled water prior
to germination.

2.4. Germination of Seeds

After undergoing the different disinfection treatments (Section 2.2), the seeds were
soaked overnight in distilled water at room temperature in darkness. After soaking,
the seeds were rinsed, strained, and placed in an inert cotton substrate for germination
in a climate-controlled chamber (Memmert®, Memmert GmbH + Co. KG, Schwabach,
Germany). The germination conditions were as follows: 5 days at 30 ◦C, 70% relative
humidity, and darkness [10]. During the germination process, the seeds were sprayed
with distilled water twice a day. After five days, the sprouts were harvested and then
frozen at −80 ◦C in an ultra-low temperature freezer (NU-99728J, NuAire, Plymouth, MN,
USA). Next, the sprouts were freeze-dried at a chamber pressure of 0.22 mbar, with a
temperature increase from −85 ◦C to 22 ◦C over 48 h (Cryodos-50, Telstar, Terrassa, Spain).
The freeze-dried sprouts were then ground in a mortar to obtain a homogeneous product.

To determine the germination rate for each experimental condition, a ratio (in percent-
age) was calculated between the weight of fresh sprouts obtained after germination and
the weight of dry seeds used as raw material.

2.5. Determination of DAO Activity

The in vitro enzymatic DAO activity was measured following the protocol outlined
by Comas-Basté et al. [18]. This procedure assesses histamine degradation during the ox-
idative deamination process mediated by the DAO enzyme, employing an enzymatic assay
coupled with ultra-high-performance liquid chromatography and fluorescence detection
(UHPLC-FL).

For the assay, 10 mg of lyophilized legume sprout was mixed with 20 mL of 50 mM
phosphate-buffer solution (pH 7.2) and incubated in a shaker (NB-T205, N-BIOTEK, Inc.,
Bucheon-si, Republic of Korea) at 37 ◦C and 200 rpm for 30 min. The reaction was initiated
by adding 45 µM of a histamine standard solution, and the mixture was continuously
incubated (37 ◦C, 200 rpm). Aliquots of 500 µL were extracted each 60 min for the first
four hours to monitor the degradation of histamine throughout the reaction. At each
point of analysis, 15 µL of 2 N perchloric acid solution was added to cease the enzymatic
reaction, and the sample was homogenized and centrifuged for 5 min (15,000 rpm, 4 ◦C).
The supernatant was passed through a 0.22 µm GHP filter and kept at 4 ◦C until UHPLC-
FL analysis.

UHPLC-FL Analysis

Histamine determination was performed using ion-pair reverse-phase UHPLC-FL,
incorporating online post-column derivatization with OPA following the method described
by Latorre-Moratalla et al. [19]. UHPLC-FL was carried out using a Waters AcquityTM Ultra
Performance Liquid Chromatography apparatus equipped with a quaternary pump, an
auto-sampler and a fluorescence detector. For the post-column derivatization of histamine,
an additional pump was connected to a zero-dead-volume mixing T positioned between
the column outlet and the fluorescence detector. Chromatographic separation was achieved
on an Acquity UPLC BEH C18 column (1.7 µm, 2.1 mm × 50 mm) (Waters Corp., Milford,
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MA, USA), which was kept in an oven to maintain a consistent temperature (42 ◦C). Data
acquisition and processing were performed with EmpowerTM 3 software (Waters Corp.,
Milford, MA, USA).

The chromatographic conditions were as follows: the mobile phase was delivered at a
flow rate of 0.8 mL/min, while the derivatization reagent was pumped at 0.4 mL/min. The
specific composition of the mobile phase and of the OPA derivatization reagent was found
by Latorre-Moratalla et al. [19]. An automatic injection of 1 µL of both the standard solution
and samples was performed. Fluorimetric detection was conducted with an excitation
wavelength of 340 nm and an emission wavelength of 445 nm. An example of an UHPLC-FL
chromatogram is provided in the Supplementary Materials (Supplementary Figure S1).

The DAO enzymatic activity corresponds to the slope of the line obtained by plotting
the evolution of the remaining histamine amount (in nmol) along the different sampling
times (in minutes). This DAO activity is divided by the amount of the lyophilized legume
sprout sample to obtain the specific enzymatic activity, which is expressed in mU/mg,
corresponding to the amount of histamine degraded by one milligram of lyophilized
legume sprout per minute (nmol of degraded histamine per minute/mg of sample).

2.6. Determination of Catalase Activity

The analysis of catalase activity was performed by monitoring the rate of disappear-
ance of a known amount of hydrogen peroxide following the methodology developed by
Leonida et al. [17]. Briefly, 10 mg of the sample was homogenized with 500 µL of 0.05 M
phosphate buffer (pH 7.2) using a vortex shaker for 30 min at room temperature. The sam-
ples were then centrifuged for 20 min at 14,000 rpm and 20 ◦C. The catalase activity assay
was performed by mixing 10 µL of this sample mixture with 2.99 mL of a catalase reaction
solution consisting of 15 mM hydrogen peroxide (30%) in 50 mM phosphate potassium
buffer (pH 7.2). The disappearance of hydrogen peroxide was monitored by measuring
absorbance at 240 nm for 10 min, using 0.05 M phosphate buffer as a blank. Catalase activity
was expressed in nmol/min/mg.

2.7. Statistical Analysis

Data analysis was carried out using IBM SPSS Statistics 27.0 software (IBM Corpo-
ration, Armonk, NY, USA). The results are shown as mean values ± standard deviation
(mean ± SD) from two independent experiments performed in duplicate. To evaluate
the statistical significance of changes in enzymatic activity across different conditions, the
nonparametric Mann–Whitney U test was used. Differences were deemed statistically
significant at p < 0.05.

3. Results and Discussion
3.1. Influence of Different Seed Disinfection Treatments

Disinfection of seeds with 70% ethanol resulted in a slight increase in germination
rates. Figure 1 shows the changes in seed germination after applying this treatment for
either 5 or 15 min compared to untreated seeds. The effect on the germination rate varied
depending on the cultivated species, with the most significant improvement observed in
ethanol-treated soybean seeds, which showed a 6% increase in fresh sprout weight. In
contrast, lentil and green pea sprouts showed only a 2–3% increase in the germination
rate compared with the non-treated seeds, which was even lower in the case of chickpeas
(approximately 0.5%).

The duration of the sanitizing treatment is another important variable. In all cases, the
longer application time was associated with a smaller increase in germination, which is a
pattern observed in other studies. For example, S. Santos et al. [20] obtained satisfactory
germination rates in different lentil varieties when using 70% ethanol for 5 min. In contrast,
Afzal et al. [21] reported potential toxic effects of prolonged ethanol exposure in tomato
seeds, where sprout length decreased after 24 h of treatment, even at lower concentrations.



Foods 2024, 13, 4105 5 of 10

Foods 2025, 14, x FOR PEER REVIEW  5  of  11 
 

 

3. Results and Discussion 

3.1. Influence of Different Seed Disinfection Treatments 

Disinfection of seeds with 70% ethanol resulted in a slight increase  in germination 

rates. Figure 1 shows the changes in seed germination after applying this treatment for 

either 5 or 15 min compared to untreated seeds. The effect on the germination rate varied 

depending on the cultivated species, with the most significant improvement observed in 

ethanol-treated soybean seeds, which showed a 6%  increase  in  fresh sprout weight.  In 

contrast, lentil and green pea sprouts showed only a 2–3% increase in the germination rate 

compared with the non-treated seeds, which was even lower in the case of chickpeas (ap-

proximately 0.5%). 

The duration of the sanitizing treatment is another important variable. In all cases, 

the longer application time was associated with a smaller increase in germination, which 

is a pattern observed in other studies. For example, S. Santos et al. [20] obtained satisfac-

tory germination rates in different lentil varieties when using 70% ethanol for 5 min. In 

contrast, Afzal et al. [21] reported potential toxic effects of prolonged ethanol exposure in 

tomato seeds, where sprout length decreased after 24 h of treatment, even at lower con-

centrations. 

 

Figure 1. Effect of seed disinfection with 70% ethanol on  the germination  rate of  four species of 

lyophilized legume sprouts. The horizontal axis shows the change in germination rates following 

seed disinfection compared to sprouts obtained from untreated seeds. 

Regarding in vitro histamine-degrading activity, ethanol treatment had no observa-

ble effect, either positive or negative, on chickpea and soybean sprouts regardless of the 

application time (Figure 2). However, ethanol seed disinfection led to a statistically signif-

icant reduction (p < 0.05) in DAO activity in lentil and green pea sprouts when applied for 

5 or 15 min, with no statistically significant differences between the two durations. The 

negative effect of ethanol was especially pronounced in lentil sprouts, where DAO activity 

decreased by approximately 80% compared to the control batch. The differing responses 

of plant species to ethanol disinfection are likely due to variations in seed size and surface 

contact area, with smaller seeds like lentils being most affected due to their higher surface-

area-to-volume ratio. To date, little research has explored the effect of ethanol seed disin-

fection on enzymatic activities in sprouts, and no research has focused on DAO. In 2013, 

Figure 1. Effect of seed disinfection with 70% ethanol on the germination rate of four species of
lyophilized legume sprouts. The horizontal axis shows the change in germination rates following
seed disinfection compared to sprouts obtained from untreated seeds.

Regarding in vitro histamine-degrading activity, ethanol treatment had no observable
effect, either positive or negative, on chickpea and soybean sprouts regardless of the appli-
cation time (Figure 2). However, ethanol seed disinfection led to a statistically significant
reduction (p < 0.05) in DAO activity in lentil and green pea sprouts when applied for 5 or
15 min, with no statistically significant differences between the two durations. The negative
effect of ethanol was especially pronounced in lentil sprouts, where DAO activity decreased
by approximately 80% compared to the control batch. The differing responses of plant
species to ethanol disinfection are likely due to variations in seed size and surface contact
area, with smaller seeds like lentils being most affected due to their higher surface-area-to-
volume ratio. To date, little research has explored the effect of ethanol seed disinfection
on enzymatic activities in sprouts, and no research has focused on DAO. In 2013, Afzal
et al. [21] reported that applying 6% ethanol for 24 h reduced both catalase and peroxide
dismutase activities in tomato seeds.

The prior disinfection of seeds with sodium hypochlorite increased germination rates
in all the legume species studied (Figure 3). Similarly to the ethanol treatment, the effects
varied depending on the seed species and disinfection time; however, in this case, the
concentration of the disinfectant was also an influential factor. In all species, sodium
hypochlorite had a more pronounced effect on germination rates than 70% ethanol. As
in the ethanol treatment, the smallest increases in the germination rate were observed in
chickpeas and green peas with gains of up to 5% and 8%, respectively, compared to 11%
and 14% in soybean and lentil seeds, respectively.

When comparing the two concentrations of sodium hypochlorite, 70 mg/L generally
resulted in a better germination performance compared to the control. At this concentration,
the longer treatment time led to a greater increase in germination rates, especially in
chickpeas and green peas (p < 0.05). At the higher concentration of 100 mg/L, extending
the treatment time did not significantly affect the germination rate except in green peas,
where a marked reduction was observed (up to 32%). As is in the case of ethanol, there
are few studies in the scientific literature that have investigated the influence of sodium
hypochlorite on the germination rate of legume sprouts. Tornuk et al. [22] reported an
improvement in the germination rate of wheat seeds (Triticum aestivum) after 30 min of



Foods 2024, 13, 4105 6 of 10

disinfection with sodium hypochlorite at 100 mg/L and 200 mg/L. However, this positive
effect was lost when the concentration was increased to 400 mg/L.
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100 mg/L, on the germination rate of four species of lyophilized legume sprouts. The horizontal axis
shows the change in germination rates following disinfection compared to untreated seeds.
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Regarding DAO activity, treating seeds with sodium hypochlorite at 70 mg/L for 5 or
15 min had no effect on the in vitro histamine-degrading capacity of any legume sprouts
studied (Figure 4). Similarly, applying 100 mg/L of sodium hypochlorite for 5 min did
not influence DAO activity. However, when the disinfection time was extended to 15 min
at this higher concentration, DAO activity not only failed to increase, but even decreased
in three of the four legume species (p < 0.05). It is possible that sodium hypochlorite, at
certain concentrations and exposure times, alters the properties of cell membranes, which
may adversely affect cellular metabolic activities [23]. However, little is known about the
biochemical impact of sodium hypochlorite on enzymatic activity. A different scenario was
observed by Kaneko and Morohashi, who reported an induction of α-amylase activity in
the cotyledons of mung beans (Vigna radiata (L.) Wilczek) and green peas after an 8 min
seed disinfection with sodium hypochlorite at concentrations up to 25-fold higher than
those in the present study [23]. Notably, these concentrations far exceed the maximum
levels authorized for sodium hypochlorite use as a disinfectant in vegetal foods [24].
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Figure 4. Effect of sodium hypochlorite seed disinfection on DAO enzymatic activity in four species
of lyophilized legume sprouts. Different letters denote statistically significant differences (p < 0.05)
between control and disinfection treatments.

In the production of edible sprouts, selecting an effective disinfection agent, along
with the appropriate treatment parameters (time and concentration), is essential for
ensuring optimal plant growth and high germination rates and controlling the microbial
load. No single disinfection method is universally suitable for all plants [25]. Some
studies have employed aqueous solutions of 70% ethanol and various concentrations
of sodium hypochlorite as surface disinfectants for seed germination [21,22,26]. Both
ethanol and sodium hypochlorite not only inhibit mold growth during germination
but are also reported to stimulate germination or break seed dormancy. For example,
Kaneko and Morohashi [23] found that sodium hypochlorite can partially erode the seed
coat, thereby enhancing its permeability to oxygen. The results obtained in the current
study corroborate the potential of ethanol and sodium hypochlorite to stimulate the
germination of the four tested legume seeds.

Overall, the disinfection process can be expected to have significant effects on germi-
nation performance and even seed metabolism. Therefore, selecting the most suitable seed
hygienic treatment is essential to maximize germination rates while preserving the enzy-
matic functionality of the resulting sprouts. According to the results from this study, seed
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disinfection with 70 mg/L of sodium hypochlorite for 15 min enhanced the germination
rate of legume sprouts without negatively affecting DAO enzymatic activity.

3.2. Catalase Activity

In this study, catalase activity was measured in the lyophilized sprouts of four legume
species obtained after germination, following prior disinfection with 70 mg/L of sodium
hypochlorite for 15 min. This treatment was chosen as it resulted in a higher germination
rate without adversely affecting the DAO activity of the sprouts.

All tested lyophilized legume sprouts exhibited catalase activity, with variations
observed among the four species. Green pea sprouts showed the highest catalase activity,
with values up to 4-fold higher than those of the other species. This finding is consistent
with previous research by Luhová et al. [27], who observed similar levels of catalase activity
in sprouts from 13 different green pea cultivars germinated in darkness. Furthermore,
Luhová et al. noted that this enzymatic activity increased 1–3-fold when the seeds were
germinated under a 12 h photoperiod [27]. This pattern contrasts with the behavior of
the DAO enzyme, which has been shown to become significantly more active in sprouts
germinated in darkness [10]. Regarding the impact of seed disinfection, treatment with an
aqueous solution of 70 mg/L sodium hypochlorite for 15 min did not affect the catalase
activity of the lyophilized sprouts (Table 1) (p > 0.05).

Table 1. Catalase activity (mean ± standard deviation) of lyophilized legume sprouts obtained with
and without (control) a prior seed disinfection treatment using sodium hypochlorite at 70 mg/L for
15 min.

Catalase Activity (nmol/min/mg)

Control 70 mg/L Sodium Hypochlorite for 15 min p-Value

Chickpea 15.14 ± 6.30 15.37 ± 2.61 p = 0.928
Lentil 37.84 ± 0.97 35.09 ± 3.83 p = 0.106

Soybean 30.98 ± 2.43 31.19 ± 4.88 p = 0.805
Green pea 65.02 ± 2.10 56.65 ± 11.43 p = 0.153

4. Conclusions

Overall, these results demonstrate that incorporating a seed disinfection treatment
step during the germination process of edible legume sprouts can significantly influence
both the germination rate and the activity of the DAO enzyme. Specifically, while prior
seed disinfection with 70% ethanol for either 5 or 15 min negatively impacted the histamine-
degrading activity of certain sprouts, treatment with an aqueous solution of 70 mg/L
sodium hypochlorite for 15 min increased the germination yield without impairing DAO
activity. Additionally, this sanitizing method preserved catalase activity in all tested
lyophilized legume sprouts, with notably high activity observed in green pea sprouts.
These novel findings regarding the effects of seed disinfection on DAO activity in edible
legumes are particularly valuable for the production of plant-based DAO. This enzyme
is a promising active ingredient for formulating food supplements aimed at the dietary
management of histamine intolerance. Furthermore, the preservation of catalase activity
suggests potential additional benefits, as catalase is known for its role in protecting cells
from oxidative damage. Therefore, the implementation of an effective seed disinfection
protocol using sodium hypochlorite (70 mg/L) not only enhances germination rates but
also maintains the histamine-degrading activity of legume sprouts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13244105/s1, Figure S1: Overlapping chromatograms of
histamine (initial concentration of 45 µM) at the starting point (black) and after 1 h (dark blue), 2 h
(green), 3 h (light blue) and 4 h (pink) of the reaction for a sample of lyophilized green pea sprouts.

https://www.mdpi.com/article/10.3390/foods13244105/s1
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