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“Here’s a pool of water
Let’s jump in!

Ooh- there’s a whale.
Yeah, let’s grab it by the tail.

Wow, it’s pulling us to the moon!”

Uri Alon.
Performing Science (2013).
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General introduction

Cell migration is a fundamental biological process that plays a crucial role in
various physiological and pathological phenomena. In unicellular systems, the
ability of a cell to migrate is essential, for instance, for finding the nutrients
they need for survival. In many instances, however, cells tend to cluster and
form crowded environments, coordinating their movement at a supra-cellular
scale. Such collective cell migration is crucial in the embryonic development
of multicellular organisms, generating the different functional organs and tissue
shapes in processes such as morphogenesis and organogenesis. Collective cell
migration also allows for tissue regeneration in wound healing and is crucial
for homeostasis and immune response, whereas abnormal motility might lead to
different pathologies. For instance, in cancer, the migration of tumor cells to
healthy tissues triggers the metastasis.

Given its relevance and complexity, collective cell migration is usually tightly
regulated at the transcriptional, protein localization, and functional levels, and
the underlying mechanisms and signaling pathways are extremely intricate and
difficult to decipher. However, the result is groups of cells translocating from
one place to another, and so it is inherently a mechanical phenomenon, which
must be governed by the general and most basic laws of physics. Consequently,
in recent years, the emergence of the field of mechanobiology and the paradigm
of active matter has shed light on its study in terms of physical forces and
material parameters, shifting the focus away from the myriad of protein-ligand
interactions or the triggered signaling cascades accompanying cell migration.

1



1
Chapter 1. General introduction

Then, within the hydrodynamic point of view developed in this thesis, tissues
are modeled as active fluids. The complexity of biological regulation is thus
phenomenologically encoded in a small number of material parameters, possibly
space and time-dependent, but the equations of motion rely on the firm grounds
of symmetries, conservation laws, and thermodynamics.

This thesis aims to tackle collective cell migration from this perspective,
within the framework of continuum active matter physics. This approach has
been proven very powerful for describing and understanding a broad range of
different phenomena in nature, including living systems, and in particular, at
the scale of cell tissues. Throughout the thesis, we focus on modeling various
scenarios relevant to directed cell migration in tissues, which occurs when the
collective migration of cells within the tissue is guided by external or internal
cues. We bridge the gap between theory and experiments by comparing our
models with experiments conducted by other research groups and also perform-
ing experiments ourselves. Though not delving deeply into the molecular and
biological mechanisms, this introduction provides a fundamental overview of cell
biology necessary for understanding migration at all levels: subcellular, cellular,
and supra-cellular. We begin by discussing key cellular components involved in
single-cell migration, namely the cytoskeleton and adhesion molecules. Then,
we explore how cells establish directionality and velocity, which are crucial for
coordinating movement with neighboring cells in a collective, and review how
cell-cell adhesions regulate contractility and cell-substrate forces, facilitating this
collective motion.

Finally, we examine active matter models, specifically focusing on active gels
theory, as a framework for studying collective cell migration. We highlight the
effectiveness of these simple yet powerful phenomenological models in offering
valuable insights into the complexities of collective dynamics.

1.1 Single-cell migration

The cell cytoskeleton is a complex dynamic 3D network of protein filaments
present in the nucleus and the cytoplasm of every cell. It is the structural back-
bone that supports the mechanical properties of the cell, regulates adhesion,
drives cell shape changes, and generates the necessary forces for cell migra-
tion [Murrell2015, Blanchoin2014]. In eukaryotic cells, it is composed of actin
filaments, microtubules, and intermediate filaments.

Actin filaments, with typical diameters of 5-9 nm, are polar filaments that
constantly undergo polymerization and depolymerization through ATP hydrol-
ysis [Dominguez2011]. The majority of actin is localized at the cell periphery,
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right beneath the plasma membrane (Fig. 1.1), constituting the cell cortex to-
gether with actin-binding proteins and molecular motors such as myosin [Blan-
choin2014,Chugh2018]. At the front of the cell, called the leading edge, actin fil-
aments are essential for the formation of protrusions like lamellipodia (branched
and crosslinked networks in a quasi-2D sheet) [Krause2014] and filopodia (aligned
bundles underlying a fingerlike structure) [Khurana2011], which drive the move-
ment forward. The rest of the cell contains a network of crosslinked filaments,
including stress fibers, that mechanically couple the cytoskeleton of one cell
to neighboring cells through cell-cell junctions, and to the extracellular matrix
(ECM)—a polymer network of macromolecules such as collagen, laminin, en-
zymes, and glycoproteins that provide structural and biochemical support to
cells—via protein complexes known as focal adhesions [Seetharaman2020]. This
coupling is essential for transmitting the self-propelling forces exerted by cells to
the ECM, enabling movement [Garcia2019].

Microtubules are cylindrical structures, essential for establishing and main-
taining cell polarity [Garcin2019]. They serve as tracks for the intracellular cargo

Figure 1.1: Actin structures in a migrating cell. Interaction between actin,
myosin, and other actin-binding proteins allows the formation of specialized struc-
tures for cell migration. From [Blanchoin2014].
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transport to the leading edge of the cell, such as membrane components, adhe-
sion proteins, or other signaling molecules. Although the microtubule network
is less directly involved in generating force, it is important in regulating cell
polarity and directionality by facilitating the delivery of key molecules and orga-
nizing the spatial distribution of the cytoskeleton. Consequently, microtubules
significantly influence the cell’s migratory behavior.

The third component of the cell cytoskeleton, intermediate filaments, pro-
vides mechanical resilience, enabling the cell to maintain its integrity bearing
up the high strains experienced during migration [Alberts2002]. These filaments
are highly interconnected with other cytoskeletal components and play a reg-
ulatory role in processes such as the formation of stress fibers and membrane
protrusions [Tang2017], as well as influencing the velocity of actin retrograde
flow [Costigliola2017]. The coordinated interaction among the three cytoskeletal
components, along with cell-substrate adhesions and dynamic remodeling of the
actin cytoskeleton, generates the forces required for an effective cell migration.

1.1.1 Actin-based motility

Cellular crawling on a substrate is driven by the interplay between actin polymer-
ization, cell-ECM adhesion dynamics, and actomyosin contractility [Gardel2010,
Parsons2010]. Various modes of cell motility are based on the different cellular
protrusions (either lamellipodia, filopodia, or blebs), leading to significant vari-
ability in migration velocities across cell types and conditions, ranging from 1 to
600 µm/h and length scales of 10 to 100 µm.

The so-called mesenchymal motility is characterized by cells moving in an
elongated, slow, and highly adhesive manner, commonly observed in cancer cells,
fibroblasts, and mesenchymal stem cells. Establishing directionality and polar-
ity within a cell is essential for sustaining movement, and the spatial asymmetry
between the proteins Rac1 and RhoA is crucial for this to happen [Mayor2010].
Rac1 localizes at the leading edge, promoting actin polymerization, while RhoA
is predominantly found at the trailing edge, regulating myosin contractility. Once
this polarity is established, mesenchymal motility occurs, which can be summa-
rized in three cyclic steps (Fig. 1.2).

Initially, regulatory proteins such as Wasp and the Arp2/3 complex [Svitk-
ina1999] facilitate the treadmilling of actin filaments at the leading edge of the
cell. This polymerization pushes the membrane forward, generating protrusion
forces at the front and forming the lamellipodium. It results in a net retrograde
flow of actin monomers toward the rear part of the cell, where actin depolymer-
ization takes place (Fig. 1.3).

Next, cell-substrate adhesion proteins, such as integrins, are recruited to form
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new focal adhesions, establishing mechanical connections between the lamel-
lipodium and the underlying substrate. These focal adhesions are linked to the
cell’s trailing edge via stress fibers, which sustain the tension generated by ac-
tomyosin contractility [Jacobs2013]. This tension arises from the interaction
between myosin molecular motors and the actin network, resulting in the sliding
of actin filaments and generating contractile forces in the cell body, besides the
tension at the focal adhesion sites [Sonal2018] (Fig. 1.3, zoom-in). The trans-
mission of these forces to the ECM through focal adhesions produces traction
forces, essential for cell movement. Subsequently, at the rear edge of the cell,
older cell-substrate adhesions are disassembled through myosin motors and de-
polymerization of actin filaments.

Figure 1.2: Scheme of the actin-based cell motility. Schematic of the three
stages of cell movement, based on [Alberts2002, Lodish2000]. After determining
its direction of motion, the cell extends a protrusion in this direction by actin
polymerization at the leading edge. It then adheres its leading edge to the surface
and de-adheres at the cell body and rear part. Finally, the generated contractile
forces pull the whole cell body forward. Adapted from [Ananthakrishnan2007].

Ultimately, the retraction of the trailing edge, driven by the force imbalance
created by disassembled adhesions and the collective contractile forces of myosin
motors, induces a flow of depolymerized actin monomers toward the leading edge.
Traction forces at both the front and rear of the cell point inwards (Fig. 1.3),
establishing a force dipole in the direction of migration [Fournier2010, Tani-
moto2014]. When there is enough friction between the cell and the substrate,
movement can be generated.

In contrast to mesenchymal motility, amoeboid motility is characterized by
rapid movement in a more rounded shape and reduced reliance on strong ad-
hesions to the ECM [Paluch2013]. In this mode, the cell uses membrane blebs,
which are ballon-like protrusions of the membrane formed from the underlying
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actin cortex. Typical cell types exhibiting amoeboid motility include amoebae
and embryonic cells. However, the migratory mode may depend not only on
the cell type but also on external environmental conditions, with both modes
potentially cooperating to enhance the cell’s migratory abilities.

Figure 1.3: Single-cell migration. Sketch of the migration mechanism for a
single cell, representing the basic structures (actin, myosin, and focal adhesions)
that allow this motion. From [Ladoux2017].

1.1.2 Directed single-cell migration

The asymmetry in cytoskeletal architecture between the leading and the trail-
ing edge of a polarized cell facilitates migration by transporting the required
molecules to each side of the cell via microtubules. Consequently, this cell po-
larity is crucial in determining the direction of movement [Petrie2009]. Cells can
establish this front-rear polarity either randomly or in response to external cues.
In the case of random polarization, cells re-polarize and change their direction of
movement in a stochastic manner [Wong2021], resembling a persistent random
walk with typical persistence times of 10 to 100 min. Although this varies signif-
icantly among different cell types, the persistence time features an exponential
function with the instantaneous cell speed [Maiuri2015].

In other cases, cells might establish their polarity by following gradients of
external physiochemical properties in their microenvironment. Various guid-
ance mechanisms have been reported in recent years. Among the most common
ones (Fig. 1.4), cells track gradients of chemical factors dissolved in the medium
(chemotaxis) [Jin2008,Poukkula2011], of the density of proteins immobilized on
the substrate (haptotaxis) [Nguyen2000,Palsson2000,Ricoult2015], of substrate
topology (contact guidance or curvotaxis) [Baptista2019,Vassaux2020], of elec-
tric fields (electrotaxis) [Cortese2014, Liu2014,Prescott2021], or of the stiffness
of the ECM (durotaxis) [Lo2000,Vincent2013,DuChez2019,Sunyer2020].

This latter process is the guiding mechanism that will be studied most ex-
tensively during the thesis (in Chapters 2–3). The first evidence of single-cell
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Figure 1.4: Common types of directed single-cell migration. Cells might
follow gradients of chemical factors dissolved in the medium (a), gradients of stiff-
ness in the ECM (b), gradients of chemical factors immobilized in the ECM, of
proteins such as fibronectin or collagen (c), geometrical patterns such as grooves
on the substrates (d) or might even avoid convex regions and position themselves
in concave valleys (e). From [Fortunato2022].

durotaxis was observed in isolated fibroblasts [Lo2000]; since then, durotaxis has
also been found in many different cell types, including mouse embryonic fibrob-
lasts [Plotnikov2012], vascular smooth muscle cells [Isenberg2009], mesenchymal
stem cells [Tse2011] and various human cancer cell lines [DuChez2019]. Most
of our knowledge of the driving mechanisms behind single-cell durotaxis stems
from in vitro studies, where coated hydrogels are used to mimic the ECM. Re-
cent technological advances have enabled the fabrication of these gels with stiff-
ness gradients [Sunyer2012,Vincent2013], which is very convenient for assessing
durotaxis. While the precise mechanisms by which cells integrate mechanical
stimuli to trigger migration remain to be fully elucidated, it is known that
stiffness, among other biomechanical cues, influences the rheology of the cell
cytoskeleton (Fig. 1.5), transitioning from fluid-like to solid-like behavior with
increasing stiffness [Gupta2015] and promoting emerging actin orientational or-
der [Ladoux2016]. Additionally, focal adhesions in stiffer regions are more stable
due to increased force loading rates, resulting in slower actin retrograde flow and
enabling the formation of lamellipodia [Gardel2010].

Although understanding the cellular mechanisms of migration is valuable for
a global understanding, typically cells migrate as collectives. This comprises
more complexity, as it involves coordination and force transmission throughout
the group, but in most cases turns out to be more efficient than single-cell migra-
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tion. This migratory behavior, commonly referred to as collective cell migration,
is the main focus of this thesis.

a dcb

e

Figure 1.5: Single-cell polarization by biomechanical cues. a-d, Color-
coded actin orientation in rat embryonic fibroblasts on micropillar substrates with
stiffness of 9, 43, 64, 85 nN/µm, increasing to the right. Scale bar, 20 µm. Adapted
from [Gupta2015]. e, Schematic representation of actin polarization (red) under
various conditions, showing also microtubules (orange), focal adhesions (purple),
and the direction of the actin retrograde flow (black arrows). From [Ladoux2016].

1.2 Collective cell migration

Collective cell migration plays a key role in many instances of morphogene-
sis, tissue regeneration, and cancer invasion [Friedl2009,Vedula2013,Mayor2016,
Ladoux2017,Hakim2017,Alert2020]. The mechanisms by which cells coordinate
their movement are diverse and often not fully understood, in part because each
cell’s behavior influences, and is influenced by its neighbors [Mayor2016]. Tis-
sue migration thus emerges from intercellular communication, with local cell-cell
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contact being the most effective form of interaction.

Epithelial tissues, which constitute protective barriers over most vital organs,
are useful model systems for studying collective cell migration and cell-cell in-
teractions. This is both because of their migration properties and their tissue
confluence, since in mature states of an epithelial monolayer cells occupy all the
available area and leave almost no gaps between them. This results in cohesive
layers that, when exposed to a free edge, migrate into the empty space by form-
ing a protruding, finger-like structure composed of tens of cells [Poujade2007].
Epithelial cells exhibit apical-basal polarity, being the basal membrane the one
in contact with the ECM, and the apical membrane the one facing the interior
of the organ [Weiss1988,Cote2022]. This polarity leads to a non-uniform distri-
bution of organelles and proteins along the cell’s vertical axis. Various types of
cell-cell junctions—such as tight junctions, adherens junctions, desmosomes, and
gap junctions—are crucial for the assembly of monolayers and the stabilization
of apical-basal polarity [Dufort2011].

The main adhesive complexes in adherens junctions are the cadherin-catenin
complexes, which couple the actomyosin cytoskeleton of neighboring cells, en-
abling the transmission of forces that drive motion deep into the monolayer
(Fig. 1.6a, zoom-in). Cell-cell junctions are thus mechanically connected to
the cell-ECM adhesions, which transmit the myosin-generated forces to the sub-
strate, thereby producing the traction forces needed for movement. Additionally,
it has been demonstrated that E-cadherin specifically regulates cell contractil-
ity. Higher levels of this protein are associated with increased dephosphorylation
of the myosin light chain, leading to greater contractility [Pérez-González2019].
This highlights the importance of cell-cell junctions, not only in providing and
maintaining tissue integrity but also in modulating the mechanical properties,
influencing how cells respond to their environment and migrate collectively.

Cells coordinate their behaviors and migrate collectively exhibiting a wide
range of dynamical modes (Fig. 1.6b), which are also influenced by the spatial
distribution of proteins like growth factors that promote cell division. Leader
cells, positioned at the edges of the migrating group, exert the highest traction
forces and are followed by the so-called follower cells, which organize finger-like
structures and extend cryptic lamellipodia beneath the front cells, strengthening
cell-cell adhesion [Ozawa2020]. By defining cell orientation based on the location
of protrusions relative to the cell’s center of mass, various flow patterns have been
observed, such as parallel, swirling, and turbulent motion. Intrinsic events like
cell division and extrusion can also affect significantly the tissue dynamics, by
altering the tensional state and organization of the monolayer. For example, after
a cell division event, tissue flow is directed outward along the axis connecting
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the two daughter cells [Rossen2014]. Similarly, a cell extrusion event is often
preceded by a coordinated, long-range flow of cells moving toward the extrusion
site. These events, while intrinsic, influence the overall behavior and structure
of the migrating cell group.

Figure 1.6: Collective cell motion. a, Transmission of traction forces through
intercellular complexes. b, As in single cells, cells in monolayers extend lamellipo-
dia at their contact with the substrate at the edge, leading to large-scale polariza-
tion [Poujade2007], and forming finger-like structures (right). Different modes of
collective dynamics are possible. Typically, in a free-edge monolayer, strain and
velocity waves are propagated from the edge toward the bulk, suggesting that the
migrating monolayer is in a tensile state. From [Ladoux2017].

1.2.1 Mechanics of collective cell migration

Tissue motion is essentially a mechanistic problem, so understanding the me-
chanical basis is relevant to gaining insights into the overall process. Collective
cell migration emerges from the interplay of cell-cell adhesion, cell-substrate
adhesion, and cell contractility [Ng2012]. Similar to single cells, tissues must
establish a front-rear polarity to be able to migrate collectively [Mayor2016].
This polarity is achieved through the mechanical contributions of both leader
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and follower cells [Farooqui2005,Trepat2009], gradients of Rho-GTPase activity,
and force transmission via cell-cell junctions.

As a result of this supra-cellular organization, traction forces are not evenly
balanced within each cell. Developments in experimental techniques have en-
abled the measurement of traction and intercellular forces in cultured cell mono-
layers. Intercellular tensions can be inferred using methods such as laser ab-
lation [Mayer2010], optical tweezers [Bambardekar2015], deformable artificial
particles like oil microdroplets in living embryonic tissues [Campas2014], or by
embedding beads within the bulk of a 3D tissue [deMercado2024]. Traction
forces can be assessed by measuring the deflection of micron-sized flexible pil-
lars caused by motile cells [Tan2003,Eckert2021], or through traditional Traction
Force Microscopy techniques (TFM). In TFM, traction forces exerted by cells on
the substrate are experimentally quantified by analyzing the deformation they
cause. In an epithelial monolayer, this method reveals an asymmetrical force
distribution (Fig. 1.7), with traction forces perpendicular to the leading edge
decreasing systematically from the edge to the center of the monolayer, while
intercellular tension showing the opposite trend [Trepat2009].

a b c

ed f

Figure 1.7: Traction forces generated by a migrating monolayer. a,
Phase contrast image of a migrating monolayer of MDCK cells. b,c Traction forces
components, perpendicular (b) and parallel (c) to the monolayer edge. The field of
view is 750µm×750µm. d, Traction profile (parallel in black and normal in white)
as a function of distance from the leading edge. e, Intercellular stress profile as a
function of distance from the leading edge, calculated by integrating tractions Tx
along hx. f, Sketch depicting the different quantities in a cell monolayer. Adapted
from [Trepat2009].
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1.2.2 Directed cell migration in tissues

Like in single cells, cell clusters also feature directed migration due to the estab-
lishment of their polarity. For instance, through optogenetic activation, highly
protrusive leader cells at the edge of 1D cell lines are generated [Rossetti2024],
directing the migration. The induced leader, however, can robustly drag one
follower cell but not larger groups. Instead, in 2D collectives, gradient sensing is
typically significantly enhanced, making directed migration more efficient com-
pared to single cells, and driving numerous biological processes in both health
and disease [Majumdar2014, Haeger2015]. Like single cells, directed migration
of collectives can occur in response to various external stimuli, including gradi-
ents in chemical concentrations [Camley2016], in ligand density [Nguyen2012],
in electric signals [Lyon2019], or in the stiffness of the environment [Sunyer2016].
This latter phenomenon, known as collective durotaxis, will be the primary focus
of Chapters 2–3 of this thesis, and a more detailed introduction of the topic can
be found in those chapters.

Remarkably, large cell monolayers can exhibit durotaxis collectively even
if the individual cells do not display this behavior [Sunyer2016], and in some
cases, an optimal intermediate stiffness enhances tissue spreading [Ng2012,Bal-
cioglu2020]. Durotaxis has significant implications in processes such as morpho-
genesis [Zhu2020, Shellard2021a], wound healing [Evans2013], and cancer inva-
sion [DuChez2019].

1.3 Tissues as soft active matter

From a physical perspective, living tissues consist of deformable cells that display
large-scale spontaneous coordination, local alignment, and macroscopic flows.
These properties are similar to those of soft materials like foams, liquid crystals,
gels, and colloidal suspensions. However, living tissues are active systems be-
cause cells have an internal energy source that drives them out of equilibrium.
The chemical energy released from ATP hydrolysis is transduced into mechanical
work, both through actin polymerization and myosin molecular motor activity,
generating pulling forces that facilitate the relative sliding between the filaments.
Ultimately, this results in cellular motion. Thus, living tissues can be categorized
as soft active materials.

In recent years, active matter has emerged as a new paradigm in nonequi-
librium physics [Marchetti2013], describing condensed systems composed of self-
driven units, capable of converting stored or ambient free energy into motion
[Schweitzer2003]. Living matter provides the most obvious examples of active
systems, ranging from molecular motors in the cytoskeleton of living cells, bacte-
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rial suspensions, and cellular tissues, to larger scales systems like fish schools or
bird flocks (Fig. 1.8). Active particles are often elongated, exhibiting a privileged
direction, and the interaction among each other gives rise to collective motion
and emergent phenomena, such as pattern formation, order-disorder transitions,
and turbulence, which are absent at the level of the constituents. The complex-
ity of active materials arises from their multiscale organization. For example, as
discussed earlier, the development of contractile forces driving collective tissue
motion results from the intricate actomyosin machinery within the cell cytoskele-
ton, which is coordinated and transmitted through cell-cell junctions and focal
adhesions.

a b

ed f

c

Figure 1.8: Active matter through scales. a, Bird flocks undergoing collective
motion. Image courtesy of A. Cavagna, Institute for Complex Systems of the
National Research Council, Rome, from [Obyrne2022]. b, Polar order in a sardine
school. Image from Jon Bertsch, from underwater images from the Sea of Cortez,
from [Marchetti2013]. c, Interrupted motility-induced phase separation in self-
propelled colloids. Adapted from [vanderLinden2019]. d, Bacterial turbulence in
a sessile drop of Bacillus subtilis. The horizontal white line is the air-water-plastic
contact line, and gravity is perpendicular to the plane of the picture. Scale bar:
35 µm. Adapted from [Dombrowski2004]. e, Dense colony of Myxococcus xanthus
forming an active nematic layer. Adapted from [Copenhagen2020]. f, Pattern of
asters formed through the self-organization of microtubules and kinesins. Adapted
from [Nédélec1997].

Active gel theories were originally devised to describe active matter at the
cellular scale, particularly the actin cytoskeleton [Kruse2005,Jülicher2007,Mar-
chetti2013, Prost2015], but since then, they have been extended to multicellu-
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lar systems [Jülicher2018,Brückner2024]. This approach has provided valuable
insights into the physical mechanisms underlying various biological processes,
especially when cellular-scale details are less relevant [Arciero2011, Lee2011a,
Lee2011b,Marel2014,Recho2016]. This is often the case in the collective migra-
tion of epithelial cells, which is organized at supra-cellular scales. In such in-
stances, epithelia are described using a phenomenological continuum approach,
where the system’s large-scale and long-time behavior is captured by a few con-
tinuum fields, such as velocity, cell density, and polarization, which are coarse-
grained into smooth fields varying over scales larger than individual cells. This
framework is a natural generalization of the hydrodynamics of liquid crystals.

The predictive success of this approach, which anticipated phenomena later
observed in experiments [Pérez-González2019,Beaune2018,Copenhagen2020], has
fostered confidence in its ability to capture the mechanics of epithelia. The re-
search presented in this thesis builds on the framework of active polar gel theory,
focusing on epithelial tissue dynamics and using simple models to predict and
explain experimental results, thereby providing deeper insights into the funda-
mental processes governing epithelial dynamics.

1.3.1 Active gels

The theory of active gels relies on a hydrodynamic approach based on irre-
versible thermodynamics and fundamental symmetries, such as microscopic time-
reversibility and rotational invariance [Kruse2004,Kruse2005,Jülicher2007,Mar-
chetti2013, Jülicher2011]. This approach provides a comprehensive description
of the long-time and large-scale behavior of systems that share the same symme-
tries of active polar gels. The microscopic details of the system are encoded in a
set of phenomenological transport coefficients; thus, this approach is generic for
many situations.

The units of active gels, active particles, can be either polar or nematic
(Fig. 1.9). Polar active particles, such as birds and bacteria, are those with
an asymmetry between their front and rear. Cells in a tissue are often an
example of polar particles too, when there is an internal front-rear asymme-
try on the cytoskeleton structure. This may take the form of lamellipodia
(or cryptic lamellipodia in tissue inner cells) pulling on the cell leading edge
and contractility detaching focal adhesions on the trailing edge (Fig. 1.2), thus
mimicking single-cell motility. In other cases, the cell’s orientation is defined
by elongated shapes, displaying front-rear symmetry, thus defining a nematic
order [Duclos2014,Saw2017,Duclos2017,Kawaguchi2017,Duclos2018,Maroudas-
Sacks2021,Hadjifrangiskou2023]. In general, both nematic and polar order pa-
rameters may coexist, as discussed in [Doostmohammadi2018,Amiri2022]. Re-
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cently, not only polar or nematic order, but also hexatic order has been iden-
tified in small length scales of epithelial monolayers [Armengol2023, Armen-
gol2024,Chiang2024]. Throughout this thesis, however, we will only deal with
cases where cells display polar order.

Figure 1.9: Types of active par-
ticles and orientationally ordered
states. Polar active particles have a
head and a tail and are generally self-
propelled along their long axis. They
order in polar or nematic states. Apo-
lar active particles are head-tail sym-
metric and order in nematic states.
Self-propelled rods, while also head-
tail symmetric, self-propel along their
long axis, which renders the particles
polar, but for exclusively apolar inter-
actions. They order only in nematic
states. From [Marchetti2013].

To derive the hydrodynamic equations, one begins by identifying the slow
or hydrodynamic variables, which may consist of densities of conserved quan-
tities or order-parameter fields arising from broken continuous symmetries. In
a simple fluid, conserved quantities encompass mass, energy, and momentum.
In a polar medium, additional slow variables include the rotational degrees of
freedom and the modulus of the polarization field, as orientational order arises
from the rotational invariance symmetry. With the introduction of activity, the
density of reactant molecules responsible for continuous energy transduction also
becomes a slow variable.

Next, a coarse-grained free energy of the system is constructed in terms
of these slow variables, allowing for the identification of generalized fluxes and
forces. These generalized fluxes are then expressed as linear combinations of the
generalized forces, leading to constitutive equations valid in the linear response
regime. The coefficients of these combinations form the Onsager matrix. Con-
stitutive equations must respect the symmetries of the problem as dictated by
the Curie principle, which prevents coupling between different tensorial char-
acters, due to rotational invariance. This implies, for instance, the need for
an orientational order parameter to couple the force associated with the (scalar)
chemical reaction, to a (tensorial) momentum flux. Similarly, due to microscopic
reversibility, the Onsager reciprocity relations for crossed couplings limit the
number of independent transport coefficients. Finally, by combining the consti-
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tutive equations with continuity equations that express the balance of conserved
quantities, and with an equation of state for the material, one obtains the closed
hydrodynamic equations.

Depending on the nature of the active particles, either extensile or contractile
stresses can arise. In extensile stresses, active particles induce expansion along
the long axis while contracting in the orthogonal direction, whereas contrac-
tile stresses result from expansion in the orthogonal direction and contraction
along the long axis (Fig. 1.10a). If individual elements tend to pull together
in all directions, an isotropic contractile deformation results; conversely, if they
push apart in all directions, an isotropic expansion occurs. In systems with
extensile particles, dipolar extensile deformations arise, whereas contractile par-
ticles produce dipolar contractile deformations [Needleman2017]. Both types of
stress are observed in various biological active gels. In particular, actin fila-
ments behave as contractile units [Thoresen2011] while microtubules are largely
extensile [Sanchez2012].

Figure 1.10: Active nematics. a, The force dipole directions for extensile and
contractile active nematic particles that are opposite to each other. b, Direction
of activity driven movement of +1/2 defects in the two different active systems. c,
Tail-to-head movement of a +1/2 defect (red arrow) in a reconstituted microtubule
system (time increasing from left to right), showing that it is an extensile system.
The −1/2 defect (blue arrow) is stationary. Scale bar: 20 µm. From [Saw2018].
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One way to discern whether a system is contractile or extensile is by mea-
suring the dynamics of +1/2 defects (Fig. 1.10b,c). Topological defects are sin-
gularities in the orientation field of the active particles, classified based on the
degree and direction of rotation of director vectors around the defect cores [De-
Gennes1993]. The tail-to-head movement of these +1/2 defects is a signa-
ture of an extensile system, as observed in a reconstituted microtubule system
(Fig. 1.10c). Interestingly, despite the contractile nature of single cells, neural
progenitor and epithelial cell colonies have predominantly been found to be ex-
tensile [Saw2017,Kawaguchi2017]. In contrast, in fibroblast or myoblast colonies,
+1/2 defects move in the head-to-tail direction, indicating that they are contrac-
tile [Kawaguchi2017,Duclos2017].

In summary, despite the dramatic simplification of this phenomenological
approach, compared to the full biological complexity, these general theories have
made a significant contribution to our understanding of living systems and our
quest for universal organizing principles and generic mechanisms [Kruse2004,Voi-
turiez2005,Kruse2006,Voituriez2006,Joanny2007,Basu2008,Salbreux2009]. Nev-
ertheless, this general theory may be limited if systems exhibit strong spa-
tiotemporal variations, nonlinear effects, or interactions with biochemical reg-
ulators [Jülicher2007,Prost2015], which should be modeled specifically.

1.3.2 Tissue spreading

Continuum models based on active gel theory have focused on the spreading
of epithelial monolayers, addressing, for instance, the formation of multicellular
fingers [Lee2011a,Köpf2013,BenAmar2016,Alert2019a]. A long-standing debate
is whether elastic or fluid models are better suited to describe tissue spread-
ing [Banerjee2019]. In reality, tissues exhibit a viscoelastic behavior: At short
timescales, they act as elastic solids, with tension mostly dependent on strain
and with a relaxation time of 1 to 10 min due to the turnover of cytoskeletal and
cell-cell junction components [Harris2012]; at longer timescales, tension depends
on strain rate, and the tissue behaves as a viscous fluid [Alert2020]. Yet, even
at long timescales, tissues might display elastic responses, such as elastic me-
chanical waves during spreading [Serra-Picamal2012,Vincent2015]. To capture
these behaviors, some models directly assume an elastic rheology, while others
use viscous models with time-dependent parameters [Blanch-Mercader2017b].
Both approaches have effectively reproduced experimental data, and the choice
depends on the specific biological process of interest.

In in vitro assays, cells or cellular aggregates are placed on flat surfaces,
like polyacrylamide (PAA) gels, to study their collective migration over long
timescales. The spreading of a cellular aggregate on a substrate has been stud-

17



1
Chapter 1. General introduction

ied in analogy with the classical wetting problem of a passive fluid droplet on
a surface [Douezan2011,González-Rodríguez2012]. The outcome—whether the
aggregate spreads, forming a precursor film of cells or remains spheroid, par-
tially wetting the substrate—depends on the balance between cell-cell and cell-
substrate adhesion energies. These energies can be modified by altering the
expression of cell-cell junction proteins, by surface treatments, or by modifying
the substrate rigidity [Ryan2001, Douezan2011, Douezan2012a]. When the ag-
gregate spreads cohesively as a monolayer, it resembles a water droplet wetting
a hydrophilic surface (Fig. 1.11b), whereas if cell-cell adhesion is too weak, the
spreading occurs via scattered cells rather than a cohesive monolayer (Fig. 1.11c).

Figure 1.11: Wetting of a cell aggregate. a, Precursor film of cells leaving the
aggregate when spreading on an adhesive substrate. b, Liquid-like state: spreading
of a cohesive monolayer onto the substrate. c, Gas-like state: spreading of scattered
cells when cell-cell adhesion is too weak. From [Douezan2011].

This picture, however, overlooks the specific forces within the monolayer that
govern wetting or dewetting. A continuum active model was proposed in [Pérez-
González2019] for a 2D circular monolayer of radius R, comparing the wetting-
dewetting transition of a cellular aggregate to the spreading-retraction of the
monolayer. While wetting and dewetting were often used interchangeably with
spreading-retraction, wetting specifically involves a 3D shape and the formation
of a precursor film. The transition depends on the monolayer’s radius and the
substrate’s ligand density (Fig. 1.12), which influence migration under different
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conditions. The critical radius is given by

R∗ ≈ 1

2

(
3Lc +

|ζ|
ζi

)
, (1.1)

above which the monolayer spreads (for R > R∗) and below which it retracts
(for R < R∗), assuming Lc ≪ R. Lc is the nematic length, which defines the
spatial persistence of the polarity field, ζ encodes the cells’ contractility and ζi
the active traction parameter, which models the active cell-substrate interaction.

Figure 1.12: Active wetting of tissue spreading. a, Time evolution of MDA-
MB-231 epithelial monolayers of different initial radii. Larger monolayers dewet
later. b, Time evolution of monolayers on substrates with different ligand den-
sities, of 100 µm in radius. Monolayers on substrates with higher ligand density
dewet later. Scale bars, 40 µm. c, Wetting transition time as a function of the
monolayer radius and substrate ligand density. d, Critical traction as a function
of the monolayer radius and substrate ligand density. From [Pérez-González2019].
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Throughout this thesis, we model epithelial monolayers using this same
continuum active model. Therefore, these model parameters, together with
other basic ideas of the model, are better described in Section 2.2. In [Pérez-
González2019] there was no distinction between “wetting”, referring to the rela-
tive advance of the fluid with respect to the substrate, and “spreading”, which
refers to the increase of contact area, because the cluster did not have a global
displacement. In this thesis, however, we will encounter that the area growth and
the global displacement due to some external guidances, such as in durotaxis,
coexist and are independent. Therefore, we will refer to the transition described
in [Pérez-González2019] as the “spreading transition”, which is more appropriate
in this more general case.

1.4 Outline of the thesis

The goal of this thesis is to understand and characterize diverse behaviors of col-
lective cell migration in epithelial tissues across different scenarios, particularly
focusing on directed migration, where tissues are guided by external or internal
cues instead of following a random walk. Using the theoretical framework of
active gel theory, we model these tissues as active polar fluids (as discussed in
Section 1.3) and explore their migration under various conditions. The thesis is
structured as follows:

• In Chapter 2, we build upon an existing model for collective durotaxis in
cell monolayers, providing a more detailed classification of the dynamical
regimes in terms of the physical parameters. The model is based on active
gel theory and describes, with a few mechanical parameters, both the pas-
sive and active forces in tissue migration. The phenomenological coupling
between these parameters and the stiffness of the substrate allows us to
study the durotactic behavior. We solve the model analytically in some
simple yet relevant situations, that allow a better grasp of the underlying
physical mechanisms.

• In Chapter 3, we develop a 3D active wetting model for cell clusters to
study collective durotaxis. Based on the model for a tissue monolayer
from the previous chapter, we extend it to account for the 3D structure of
a cellular aggregate, adding the contribution of surface tension. The main
goal of this chapter is to compare the findings with some experimental re-
sults, thereby providing insights into the physical mechanisms of collective
durotaxis.

• In Chapter 4, we examine the influence of cellular traction forces on the
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stiffness of substrates, which are typically biopolymer networks that display
strain-stiffening responses. It is known that traction forces increase with
the stiffness of the substrate, but the feedback to what extent this increase
in the forces also influences the stiffness remains to be elucidated.

• In Chapter 5, we conduct experiments tracking the migration of epithelial
monolayers, to understand under which conditions a morphological sym-
metry breaking can generate spontaneous collective migration in cell clus-
ters. The goal is to study whether an asymmetry in the shape can induce
movement in cell clusters that are not globally polarized, and to see which
conditions enhance this movement. The theoretical results motivated the
search for these migratory modes in the experiments.

• In Chapter 6, we extend the continuum model for a cell monolayer into
a continuum stochastic model, to account for the inherent stochasticity
of biological systems. The goal is to study the different consequences of
different sources of noise in the model. We can either introduce an internal
noise in the dynamics of the polarity or an external noise in a cell-substrate
coupling parameter, called the active traction, which is related to the at-
tachment and detachment kinetics of the substrate adhesions with the cells
in the monolayer. We predict the effects of these different noise types and
compare them with experimental data on traction force fluctuations in ep-
ithelial monolayers, to validate the approach as a characterization of the
fluctuations in tissues.

Each chapter includes conclusions and appendices with technical details or ad-
ditional information. In Chapter 7, we present a comprehensive summary of the
thesis conclusions and the most relevant results, along with future perspectives
for each topic. A brief motivation in Catalan for the research in this thesis,
together with the most relevant results, are briefly summarized in Resum en
català.
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Collective durotaxis of 2D cell
monolayers

2.1 Introduction

As explained in the general introduction, the phenomenon of durotaxis is a type
of directed migration due to a response of cells to stiffness gradients in their
environment, which, in vivo, is the extracellular matrix. For single cells, it was
discovered at the beginning of the 21st century by [Lo2000]. More recently, it
was observed for collective cell migration in epithelial monolayers [Sunyer2016]
(Fig. 2.1), with long-range intercellular force transmission (Fig. 2.2). This col-
lective durotaxis turned out to be much more efficient than single-cell durotaxis,
with the large cell monolayers performing durotaxis collectively even when their
constituent cells do not.

Collective durotaxis has been modeled via hybrid computational models
[Escribano2018,González-Valverde2018,Garcia-Gonzalez2020,Deng2021], which,
although being very accurate in describing the behavior, have the disadvan-
tage that too many model parameters and interactions need to be considered.
Otherwise, a continuum active polar fluid model of a tissue, as described in
[Alert2019b], is a quite powerful phenomenological model with much fewer in-
gredients. This continuum model revealed two modes of possible collective duro-
taxis: either asymmetric spreading or motion of both edges of the monolayer
towards the same direction. Building on this framework, this chapter aims to
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provide a more comprehensive classification of the dynamical regimes in terms of
physical parameters, solving the model analytically in some simple but relevant
situations that allow a better grasp of the physical mechanisms at play.

To this end, the active polar fluid model of the monolayer, which is the base
of our study, is introduced in Section 2.2, and simplified and solved in Section 2.3
for uniform conditions. In Section 2.4, it is solved for stiffness gradients, both
for unrealistic but simple profiles of the model variables that give us insights into
the mechanism (Section 2.4.1), and for more realistic situations (Section 2.4.2).
Finally, the observed dynamical regimes are commented in Section 2.5.

Figure 2.1: Asymmetric spreading of an epithelial monolayer. a, Symmet-
ric spreading of an MCF-10A monolayer on a uniform stiffness gel. b, Asymmetric
spreading of a monolayer on a gradient of stiffness. c,d, Angular distributions
of cell trajectories for experiments shown in a and b, respectively, showing that
monolayers durotaxis on gradients of stiffness. Adapted from [Sunyer2016].

2.2 Active polar model for an epithelial monolayer

In this section, we present the physical model proposed to describe an epithelial
cell monolayer. The model was initially introduced in [Blanch-Mercader2017b]
for studying epithelial tissue spreading and has proven to be useful in many other
situations. For instance, in [Pérez-González2019] for describing the dewetting
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Figure 2.2: Long-range intercellular force transmission in collective
durotaxis. a-d, x component of the traction forces Tx (a, b) and intercellular
tension σxx (c, d) in a MCF-10A monolayer. e-h, Kymographfs of the tractions
and tensions. Adapted from [Sunyer2016].

of a 2D monolayer onto a spherical aggregate, in [Alert2019a] for predicting
a fingering instability of the leading edge of the tissue, or in [Alert2019b] for
describing two possible mechanisms of collective durotaxis.

The idea behind it is that, in many instances, tissues can be modeled, to
some extent, as continuous active materials, in such a way that the biological
properties are encoded in a series of physical parameters, including passive ones
such as viscosity or friction, and active ones such as contractility or traction.
Therefore, we will treat the tissue as a thin layer of an active polar viscous fluid
placed on top of a substrate, as depicted in the side view of Fig. 2.3. Considering
that the height of the monolayers (h ∼ 5− 10 µm) is smaller than spatial vari-
ations of the physical observables on the plane of the substrate (∼ 50 µm), we
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can describe the monolayer as an effective 2D system, in which the physical ob-
servables are averaged along the third dimension. Then, taking a coarse-grained
approach, we describe the long-time and large-scale dynamics of the tissue, and
so we consider only two main physical observables: the velocity field vα and
the polarization field pα. It is worth noting that they do not correspond to the
velocity and polarization of single cells. The velocity can be accessed experi-
mentally via Particle Image Velocimetry (PIV) methods, but the polarization
cannot be measured directly from cells, beyond estimates based on cell shapes
or the orientation of stress fibers. With the help of our model, we will infer the
polarization from measurements of traction forces on the substrate.

Below we explain the ingredients of the model before studying in depth the
implications in collective durotaxis, which is the focus of our study.
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Figure 2.3: Sketch of the active polar fluid model for monolayer spread-
ing. The red color gradient indicates the cell polarization field (strongly polarized
at the edge and unpolarized at the center). Adapted from [Pérez-González2019].

2.2.1 Polarity dynamics

Cells in epithelial tissues exhibit in-plane polarity, which reflects the internal
polarization of the cytoskeleton. Thus, the polarization field pα is defined as the
orientational degree of freedom of the cells which arises from the polarization of
its internal cytoskeletal structure. In epithelial tissues, cells at the leading edge
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are strongly polarized as they develop lamellipodia. Cells that are hundreds
of microns away from the edge may also be polarized, extending basal cryptic
lamellipodia underneath their neighbors [Farooqui2005], but cells further away
are either unpolarized or exhibit a residual polarization that is randomly oriented
and thus averages to zero. From a coarse-grained point of view, thus polarization
decays from maximal at the edges to zero far from them. Similarly, it is also
observed that traction forces are maximal at the leading edge and vanish towards
the center of the monolayer [Sunyer2016,Pérez-González2019] (Fig. 1.7, Fig. 2.2).
Thus, the capacity of cells to exert traction forces on substrates, and the direction
along which they are exerted, is a direct signature of polarization.

The way cells polarize in an epithelial sheet is usually described as a con-
sequence of contact inhibition of locomotion (CIL), an interaction that causes
cells repolarize and generate traction forces in the opposite direction to the
contact with other cells [Mayor2010, Theveneau2013, Vedula2013, Ladoux2016,
Mayor2016,Zimmermann2016,Coburn2016,Smeets2016,Hakim2017]. This leads
to polarization of cells towards free space in the boundary layer, and to unpolar-
ized cells in the center of the monolayer. Also, cells tend to align with their neigh-
bors [Trepat2009,Angelini2011], so by analogy with nematic particles, we can use
a phenomenological description. The general constitutive equation for the po-
larity of a d−dimensional active polar fluid reads [Kruse2005,Jülicher2011,Mar-
chetti2013,Prost2015]

Dpα
Dt

=
1

γ1
hα − ν̄1

d
vγγpα − ν1ṽαβpβ + ϵpα, (2.1)

where Dpα
Dt = (∂t + vβ∂β)pα + ωαβpβ is the co-rotational convected derivative,

being ṽαβ = 1
2(∂αvβ + ∂βvα)− 1

dvγγδαβ and ωαβ = 1
2(∂αvβ − ∂βvα) the traceless

symmetric and antisymmetric parts of the strain rate tensor, with vγγ = ∂γvγ .
hα = −δF/δpα is the so-called molecular field, being F [p] the coarse-grained free
energy of the orientational degrees of freedom and γ1 the rotational viscosity.
ν̄1, ν1, and ϵ are the bulk, the shear, and the active flow alignment coefficients,
respectively. Assuming that the CIL mechanism is the main responsible for
repolarization events, we neglect the advection, corotation, flow alignment, and
active spontaneous polarization effects, and so the full constitutive equation for
the polarity gets greatly simplified. It is given by a purely relaxational dynamics,

∂tpα =
1

γ1
hα = − 1

γ1

δF

δpα
, (2.2)

and so the molecular field gives the generalized restoring force of the polarity.
The tendency of cells to align with their neighbors is thus accounted for by
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an effective free energy that takes the form of the Frank elastic free energy
[DeGennes1993], which for a planar polarization field reads

F =

ˆ
V

[
a

2
p2 +

b

4
p4 +

K1

2

(
∇⃗ · p⃗

)2
+
K2

2

(
∇⃗ × p⃗

)2]
d3r, (2.3)

where a and b are coefficients of the Landau expansion of the local free energy
density. The restoring coefficient a is taken positive such that the unpolarized
state (p = 0) is energetically favored in the bulk. K1 and K2 are the Frank
constants associated with splay and bend distortions, respectively. Keeping only
the quadratic term in the Landau expansion and assuming K1 = K2 ≡ K, which
is the usual one-constant approximation, we get the simplified free energy,

F =

ˆ
V

[
a

2
p2 +

K

2
(∂αpβ)(∂αpβ)

]
d3r. (2.4)

Note that α and β run over the cartesian coordinates, and from now on we use
the Einstein summation convention over repeated Greek indices. Then, from
Eq. 2.2, the dynamics of the polarity is given by

∂tpα =
1

γ1

(
−apα +K∇2pα

)
. (2.5)

The time scales associated with the spreading of a monolayer are of the order of
hours [Blanch-Mercader2017b], much slower than cell polarization events associ-
ated with CIL, which usually occur within a time scale of ∼ 10 min [Smeets2016].
Thus, we assume a quasistatic evolution of the polarization field ∂tpα = 0 (and
thus hα = 0). Then, from Eq. 2.5,

L2
c∇2pα = pα, (2.6)

where Lc ≡
√
K/a is the nematic length that defines the spatial persistence of

the polarization field [Pérez-González2019,Alert2019a,Alert2019b]. Since epithe-
lial cells are maximally polarized at the edge, we enforce a boundary condition
of maximum polarization |p| = 1 directed normally and outwards at the tis-
sue edge. Then, Lc defines the thickness of a polarization boundary layer near
the edge, such that the polarization field decays from one at the edge to zero
deep into the tissue (red shade in Fig. 2.3). All in all, this energetic approach
provides a simple phenomenological model that effectively captures the essential
alignment interactions of cells at a coarse-grained level, without getting hindered
into intricate details.
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2.2.2 Force balance

The momentum conservation equation for an active polar fluid, up to first order
in gradients of the polarization field, reads [DeGennes1993]

ρ(∂t + vβ∂β)vα = −∂αP + ∂β(σ
s
αβ + σaαβ) + fα, (2.7)

where ρ is the density, P the pressure, σsαβ and σaαβ the symmetric and antisym-
metric parts of the deviatoric stress tensor, and fα the external force density.
For our epithelial monolayer, here we can make further simplifications. First,
we can neglect inertia, since flows in cell monolayers occur at low Reynolds
numbers (Re = ρvR/η ∼ 10−13 estimating ρ ∼ 103 kg/m3, v ∼ 10 µm/min,
R ∼ 200 µm and η ∼ 105 Pa·s [Forgacs1998]). Moreover, in our 2D descrip-
tion, the cell monolayer is compressible, with ∂αvα ̸= 0, because the in-plane
compression and expansion of the cell monolayer can be accommodated by
changes in the monolayer height h. We assume that in-plane deformations do
not amount to significant changes in pressure as the layer can deform in 3d and,
hence, pressure gradients are neglected in front of the rest of the contributions
of Eq. 2.7. This approximation has been used and discussed in many previ-
ous studies, for instance in [Lee2011a,Lee2011b,Blanch-Mercader2017a,Blanch-
Mercader2017b, Alert2019a, Alert2019b, Pérez-González2019]. With these two
assumptions, force balance reduces to

∂β(σ
s
αβ + σaαβ) + fα = 0. (2.8)

Finally, recalling the quasistatic approximation for the polarization ∂tpα = 0,
which implies hα = 0, the antisymmetric part of the stress tensor vanishes, since
σaαβ = 1

2(pαhβ − hαpβ). Therefore, force balance is just

∂βσ
s
αβ + fα = 0. (2.9)

These quantities are directly related to the experimentally measured monolayer
tension, σαβ ≡ σsαβh, and traction stress, Tα ≡ −fαh, being h the height of the
monolayer [Pérez-González2019]. Thus, the traction forces exerted by the cells
onto the substrate are balanced by the averaged internal stresses, and so with
the effective two-dimension approximation, in cartesian components, this reads

∂xσxx + ∂yσxy = Tx, (2.10)
∂xσyx + ∂yσyy = Ty. (2.11)

2.2.3 Constitutive equations

To close the system of equations, we need the constitutive equations for a
compressible active polar fluid. Because spreading occurs at time scales much
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longer than the turnover time scales of proteins in the cytoskeleton or in cell-
cell junctions [Wyatt2016, Khalilgharibi2016], which are associated with elas-
tic responses of the tissue, we consider only a fluid behavior of the mono-
layer. In the viscous limit, the internal stress of an active polar medium reads
[Kruse2005,Jülicher2011,Marchetti2013,Prost2015]

σsαβ = 2ηṽαβ +
ν1
2

(
pαhβ + hαpβ − 2

d
pγhγδαβ

)
− ζqαβ

+
(
η̄ d vγγ + ν̄1 d pγhγ − ζ̄ − ζ ′pγpγ

)
δαβ, (2.12)

where qαβ = pαpβ− 1
dpγpγδαβ is the traceless symmetric nematic order parameter

tensor, η and η̄ are the shear and bulk viscosities, ζ is the anisotropic active
stress coefficient, and ζ̄ and ζ ′ are two isotropic active stress coefficients. The
interfacial force reads [Oriola2017]

fα = −ξvα + νiṗα + ζipα, (2.13)

where ξ, νi and ζi are the cell-substrate friction, the polar friction, and the con-
tact active force, which actually correspond to the interfacial counterparts of the
viscosity, the flow alignment and the active stress coefficients respectively. The
friction drag force is assumed to depend only on the local velocity of the cell
sheet because the turnover time associated with cell-substrate adhesions (typi-
cally through integrins) is ∼ 1 min [Thomas2013], much smaller than spreading
times. The contact active force (hereinafter referred to as the active traction
parameter), accounts for the maximal traction stress T0 ≡ hζi exerted by polar-
ized cells on the substrate, and so their capability of grabbing and pulling the
substrate.

Following [Pérez-González2019], and to reduce the number of parameters and
define the simplest possible equations, we assume that the bulk viscosity is η̄ = η
and that the isotropic contractility is given by ζ ′ = ζ/2. Similarly, active stresses
not associated with polarization are also neglected, that is, ζ̄ ≪ ζ, and due to
the quasistatic approximation for the polarization all the terms with hα = 0
vanish. Hence, the equations that define our active polar fluid model for the
spreading of an epithelial monolayer reduce to the simple form [Oriola2017,Pérez-
González2019]

σsαβ = η(∂αvβ + ∂βvα)− ζpαpβ, (2.14)

fα = −ξvα + ζipα, (2.15)

where the polar friction νi has also been neglected. A summary of the symbols
for the variables and parameters, together with their units and estimates for
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some of them, can be found in List of symbols. If the contrary is not specified
in the figures’ captions, the values taken by the parameters are those appearing
there.

2.3 Semi-infinite rectangular geometry

In this section, we focus on describing the motion of circular monolayers of radius
R on a gradient of stiffness by tracking the position of the center of mass and
the monolayer size. In general, the boundary of the cell monolayer is free to
deform and move, as its normal velocity coincides with that of the adjacent
fluid, and so the evolution of the shape and position of the boundary is part of
the solution to the problem. However, here we are interested in studying the
effect of durotaxis, so we will ignore boundary deformations. Chapter 5 will
explicitly address the opposite case, when deformations are allowed and are the
leading cause of motion. We may also assume that the effective surface tension
of the tissue is strong enough, and the monolayers small enough, to suppress the
active fingering instability that is inherent to this model, as reported in [Pérez-
González2019,Alert2019a] and discussed also in Chapter 5.

To simplify even further, we can map the 2D circular monolayer to an effective
1D setup corresponding to strips of half-width L = R, finite in the spreading
direction (x) and infinite in the transverse direction (y), and hence presenting
translational invariance in the y coordinate (Fig. 2.3). This setup corresponds
to the experiments on collective durotaxis of [Sunyer2016], and was also used in
the numerical study of the present model [Alert2019b].

The basic physics of this 1D formulation is the same as in circular monolay-
ers, and the results are equivalent up to geometric factors, being the analysis
much simpler in the rectangular geometry, as already illustrated in preceding
studies in both geometries [Pérez-González2019, Alert2019a, Alert2019b]. Fur-
thermore, having a solvable model with simple enough analytical predictions
is very valuable for gaining insights into the underlying physical mechanisms,
especially when there are a lot of factors involved. We will also demonstrate
how some of the limitations of the 1D formulation, including the absence of
the Young-Laplace pressure drop due to tissue surface tension, can be easily
incorporated.

2.3.1 Reduction to a 1D solvable model

In the 1D setup, Eq. 2.9 and Eqs. 2.14–2.15 reduce to

2η∂2xv = 2ζp∂xp+ ξv − ζip. (2.16)
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The polarization profile is given by the solution of Eq. 2.6 satisfying p = ±1 at
the respective edges x = x+ and x = x− < x+. In terms of the center-of-mass
position X ≡ (x+ + x−)/2 and the monolayer half-width L ≡ (x+ − x−)/2, it
reads

p(x) =
sinh ((x−X)/Lc)

sinh (L/Lc)
. (2.17)

There are several length scales whose ratios determine different physical
scenarios in the model. The scale Lc is typically the smallest one, as the
polarized boundary layer of the tissue is often thin compared to the system
size 2L and the other length scales [Sunyer2016, Pérez-González2019, Blanch-
Mercader2017b]. The so-called screening or hydrodynamic length λ ≡

√
2η/ξ,

is a measure of the range of hydrodynamic interactions [Marchetti2013,Blanch-
Mercader2017a,Alert2019a,Alert2019b], and it defines two important limits:

• Wet limit (λ ≫ L): long-ranged hydrodynamic interactions produce non-
local effects and the system behaves globally as a whole.

• Dry limit (λ ≪ L): the spreading dynamics are governed by local forces,
i.e. the two edges behave independently from each other.

Another relevant length scale is the so-called active polar length Lp ≡ |ζ|/(2ζi)
[Pérez-González2019], which arises as a ratio of contractility and traction forces.
In the wet case, this length defines the critical tissue size for the wetting-
dewetting transition, as reported in [Pérez-González2019].

To obtain the spatial velocity profile v(x), Eq. 2.16 is solved with initial
conditions L0 ≡ L(0) and X0 ≡ X(0), and typically with stress-free boundary
conditions, σ|x± ≡ σ± = 0. If a normal stress component is required to mimic
the effect of an effective surface tension, as if L would be the monolayer radius,
we impose σ± = −γ/L, which implies ∂xv|± = (ζ − γ/L)/(2η) (form Eq. 2.14
and p2± = 1). Then, with the edges’ velocities v± ≡ v(x±), we can finally obtain
the center-of-mass velocity U ≡ Ẋ and the spreading velocity V ≡ L̇.

2.3.2 Solutions for a uniform substrate

As a reference, we first consider the case of a spreading monolayer on top of
a uniform stiffness substrate. The model parameters that account for the cell-
substrate interactions, which are the passive friction ξ and the active traction
ζi, are thus constant. Consequently, v+ = −v−, and there is no net monolayer
displacement: U = 0. This case was studied in the wet limit (ξ → 0) in [Pérez-
González2019] with a circular geometry, and in the wet-dry crossover with a
rectangular geometry in [Alert2019a]. The exact solution for the spreading ve-
locity (solid lines in Fig. 2.4) is given in Eq. 2.A.3 of Appendix 2.A. Taking γ = 0
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and assuming Lc ≪ L, in the wet limit λ≫ L it is simply

V wet = ±vwet
± ≈ Lc

2η

[
Lζi −

|ζ|
2

]
=
Lcζi
2η

(L− Lp) , (2.18)

and so we recover Eqs. (5) and (7) from [Alert2019a] (dashed line in Fig. 2.4,
converging to the full expression, and so to the solid lines, for very small tissue
sizes L). Instead in the dry limit Lc ≪ λ≪ L, we obtain

V dry = ±vdry± ≈ Lc

2η

[
λζi −

|ζ|
2

]
=
Lcζi
2η

(λ− Lp) , (2.19)

which is independent of the monolayer size L (dotted lines in Fig. 2.4, converging
to the full expression, and so to the solid lines, for very large tissue sizes L).
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Figure 2.4: Spreading velocity on a uniform substrate. Solid lines are
full expressions (Eq. 2.A.3), and the dashed and dotted lines correspond to the wet
(Eq. 2.18) and dry (Eq. 2.19) limits respectively. Lp = 200 µm and λ = 100, 200 and
300 µm. Only for the largest value, the critical size L∗ ≈ 200 µm = Lp approaches
the wet limit prediction; for the other two values of λ, the dry approximation is
better. Lc = 5 µm to see the convergence better.

In the wet limit, we can observe from Eq. 2.18 that there is a critical tissue
size L∗ ≈ Lp, that defines the so-called active wetting transition in [Pérez-
González2019]. Since V wet(L∗) = 0, this transition distinguishes whether the
cluster is expanding (positive spreading velocity V > 0 for L > L∗) or contracting
(negative spreading velocity V < 0 for L < L∗). Here we refer to it as “spreading
transition” and avoid the term “wetting”, which refers to the relative motion
motion of a fluid front with respect to the substrate. This is meant to avoid
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confusion in cases where the center of mass of the tissue is moving, since one edge
may recede with respect to the substrate while the tissue is globally expanding.
We discuss such examples in Section 2.4.1.

In the dry limit, the spreading transition is controlled by the screening length
λ. From Eq. 2.19, there is a critical λ∗ ≈ Lp (V dry(λ∗) = 0) such that for λ < λ∗

the cluster contracts (V < 0), regardless of its size L, and for λ > λ∗ the cluster
expands (V > 0).

The full velocity and stress profiles are plotted in Fig. 2.5. The velocity is
odd and the stress is even with respect to the center of the monolayer, and they
allow the model predictions to be tested against experimental data, providing a
simple visualization of where the system stands in the wet-dry axis. For example,
the stress plateau in the bulk of the monolayer (darkest curves in Fig. 2.5b) is a
signature of the wet limit (large λ), whereas two peaks of width Lc near the edges
(lighter curves in Fig. 2.5b) are indicative of the dry limit (small λ). In this case,
the velocity profile features a plateau of null velocity in the bulk (lightest curve
in Fig. 2.5a). The comparison of these theoretical profiles with experimental
data was already done for different cell types in [Blanch-Mercader2017b], and so
it is not the focus of our study.
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Figure 2.5: Velocity and stress profiles on a uniform substrate. The
hydrodynamic length is λ = 40, 100, 200, 300, 450 µm, from light to dark green.

2.4 Solutions for a stiffness-gradient substrate: duro-
taxis

We now consider a spreading monolayer on top of a substrate presenting a stiff-
ness gradient. The difference in the stiffness at different points of the substrate
affects the interactions between the cells and the substrate, thus altering both
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traction and friction forces, and so we take space-dependent ξ(x) and ζi(x). The
relationship between these spatial variations and that of the substrate stiffness
must be determined independently of the hydrodynamic model, either empir-
ically or from a microscopic model of cell-substrate interactions. An explicit
derivation requires a detailed knowledge of the molecular mechanisms at play.
It has been shown that an increasing and saturating function, arising from the
in-series connection of two linear elastic media (the substrate and the cellular
structures bound to the substrate, with Young’s modulus E and E∗ respec-
tively), fits well the experimental data [Walcott2010, Saez2010,Marcq2011,Tri-
chet2012,Sens2013,Gupta2015], and so we take,

ζi(E) = ζ∞i
E

E + E∗ , ξ(E) = ξ∞
E

E + E∗ + ξ0, (2.20)

as in [Alert2019b], where ζ∞i and ξ∞ are saturation values, E∗ is a characteristic
stiffness of force saturation, and ξ0 is the friction coefficient at vanishing substrate
stiffness. This ξ0 is added to avoid the strict “wet” limit λ→ ∞ (ξ → 0), which
is ill-defined in the presence of a traction gradient: In the absence of friction, the
total force density is given by fα = ζipα, whose integral over the tissue does not
vanish if the traction is different on the stiff and the soft edges, and so global
force balance cannot be satisfied.

However, to avoid introducing additional parameters and to make the inter-
pretation of the results more transparent, we mostly consider cases where those
parameters are either space-independent or have a uniform gradient, hence in-
troducing only two new parameters associated to the stiffness variation, namely
ξ′ ≡ ∂xξ(x) and ζ ′i ≡ ∂xζi(x) (Section 2.4.1). This restriction is relaxed in
Section 2.4.2.

2.4.1 Constant active traction gradient

To obtain analytical solutions, we take the simplest possible spatial dependence
of these parameters: a linear active traction profile ζi(x) = ζ0i +ζ

′
i(x−X) (where

ζ0i ≡ ζi(X0) is the initial traction offset), and a uniform friction coefficient, with
ξ′ = 0. The results, given in Appendix 2.B, are locally valid for more general
traction profiles as long as ζ ′′i L/ζ

′
i ≪ 1.

Importantly, we obtain that the spreading velocity V is the same as the one on
a uniform substrate V u with the traction evaluated at the monolayer center, that
is V (ζ0i , ζ

′
i) = V u(ζ0i ). Therefore, the spreading behavior is independent of the

existence of an active traction gradient, and everything that has been discussed
in the previous section applies here. More generally, in cases where the traction
gradient is not quite uniform, the spreading velocity will be relatively insensitive

35



2

Chapter 2. Collective durotaxis of 2D cell monolayers

to that gradient. The velocity of the center of mass U , however, depends on the
active traction gradient, which gives rise to the phenomenon of durotaxis. The
full expression for this velocity is given in Eq. 2.B.3 (solid lines in Fig. 2.6). For
γ = 0, the expression of the edge velocities in the dry limit Lc ≪ λ≪ L reads

vdry± ≈ ±Lc

2η

[
λζ±i − |ζ|

2
± 2ζ ′iL

2
c

]
= vu,dry± (ζ±i ) +

ζ ′iL
3
c

η
, (2.21)

where ζ±i are the local values of the active traction at the edges. The correspond-
ing center-of-mass or durotactic velocity (dotted lines in Fig. 2.6, converging to
the full expression, and so to the solid lines, for very large tissue sizes L), ne-
glecting 2L2

c in front of Lλ, is

Udry ≈ Lcλ

2η
Lζ ′i =

Lcλ

4η
(ζ+i − ζ−i ). (2.22)

The spreading velocity is V dry = V u,dry(ζ0i ), with ζ0i = (ζ+i +ζ−i )/2. Although L
appears in the first equality of Eq. 2.22, U can be rewritten in terms of the active
traction difference, emphasizing that the spreading dynamics is local in the sense
that the two edges behave independently from each other. Tissue durotaxis is
thus directly driven by the active traction difference at the edges.

In the wet limit Lc ≪ L ≪ λ, the two edges are coupled through hydrody-
namic interactions, and we get

vwet
± ≈ ±Lc

2η

[
Lζ±i − |ζ|

2
± ζ ′i

(
λ2 − 2

3
L2
)]

= vu,wet
± (ζ±i ) +

Lcζ
′
i

2η

(
λ2 − 2

3
L2
)
, (2.23)

which yields a center-of-mass velocity (dashed lines in Fig. 2.6, converging to the
full expression, and so to the solid lines, for small tissue sizes L),

Uwet ≈ ζ ′iLc

2η

(
λ2 +

L2

3

)
≈ Lcλ

2η
λζ ′i , (2.24)

and a spreading velocity V wet = V u,wet(ζ0i ). Both v± and U depend on the
system size L and the active traction gradient ζ ′i , which illustrates that the two
edges are hydrodynamically coupled.

Two main conclusions emerge, which are general in the whole wet/dry range
for this case of uniform active traction gradient ζ ′i and uniform friction (ξ′ = 0).
On the one hand, the center-of-mass velocity U is proportional to the traction
gradient ζ ′i and independent of the traction offset ζ0i . U has the same sign as ζ ′i ,
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Figure 2.6: Center-of-mass velocity for a constant active traction gradi-
ent. As in Fig. 2.4, the solid lines represent the full expression (Eq. 2.B.3), and
the dashed and dotted lines represent the wet (Eq. 2.24) and the dry (Eq. 2.22)
limits, respectively. Lp = 200 µm, Lc = 5 µm and λ = 100, 200, 300 µm.

and there is durotaxis towards stiffer regions as long as the traction is a mono-
tonically increasing function of the stiffness. On the other hand, the spreading
velocity depends on the traction offset and not on the traction gradient. Accord-
ingly, Fig. 2.4 still applies in the present case, and durotaxis is independent of
whether the monolayer is spreading or contracting (Fig. 2.6).

In fact, the following situations are possible: First, the monolayer can con-
tract either with the two edges moving in opposite directions (v− > 0 and v+ < 0)
or in the same direction (0 < v+ < v−). In the former case, both edges are re-
tracting, or dewetting. In the latter case, the + edge is wetting and the − edge
is dewetting. Second, the monolayer can expand, or spread, if both edges move
away from each other (v− < 0 and v+ > 0), both wetting the substrate, but
also if both edges move in the same direction (0 < v− < v+), with the + edge
wetting and the − one dewetting. It is thus clear that the condition of spreading
or contraction, which is a property of the cell monolayer as a whole, and the
condition of wetting or dewetting, which refers to the direction of motion of each
tissue edge, are two distinct conditions that only coincide when the center of
mass does not move (U = 0), as in [Pérez-González2019].

We show examples of these distinct situations in Fig. 2.7, corresponding to
the same values as those in Fig. 2.4 and Fig. 2.6. The monolayer contracts with
both edges dewetting for all L in Fig. 2.7a, for L ⪅ 127 µm in Fig. 2.7b and
for L ⪅ 54 µm in Fig. 2.7c (solutions of v+ = 0 in the wet predictions). It
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contracts with the + edge wetting but the − edge dewetting faster for L ⪆ 127
µm in Fig. 2.7b, and for 54 µm ⪅ L ⪅ 200 µm in Fig. 2.7c (solutions of v+ = v−
in the wet predictions). And finally, it expands with the − edge dewetting
but slower than the + one wetting for L ⪆ 200 µm in Fig. 2.7c. To have an
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Figure 2.7: Velocities for a constant active traction gradient. Spreading
velocity V (blue) and center-of-mass velocity U (red) (a, c and e), or edge velocities
v− (blue) and v+ (red) (b, d and f), in their full expressions (solid), wet (dashed)
and dry (dotted) limits, for three different values of λ (vertical dashed lines), with
Lp = 200 µm and Lc = 5 µm.
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expanding monolayer with both edges wetting the substrate, we should set lower
contractilities or larger reactions.

The repertoire of dynamical behaviors contained in the model as a function of
parameters is quite rich. Spreading V (blue lines) and center-of-mass velocities
U (red lines), are plotted against monolayer size (Fig. 2.8) and active traction
offset (Fig. 2.9), which are two quantities that can be easily varied and controlled
in experiments [Sunyer2016]. Importantly, in addition to being independent of
active traction offset, the durotactic velocity does not depend on the contractility
either, which is a parameter that is more difficult to infer from experiments,
and is assumed to be uniform throughout the system. An increase in either
monolayer size or active traction gradient implies an increase of the difference
of local tractions at the edges, ζ+i − ζ−i , and thus an increase in the durotactic
velocity. The spreading velocity, which is independent of the traction gradient,
increases with the monolayer size L, the screening length λ, and the traction
offset ζ0i , and it decreases with the contractility |ζ|.

0 200 400 600
-0.1

0

0.1

0.2

0.3
a)

0 200 400 600
-0.3

-0.2

-0.1

0

0.1

0.2
b)

Figure 2.8: Effect of the traction offset and the contractility in the
velocities. Plots of the full expressions for V (blue curves) and U (red curves) as
a function of tissue size L, changing the traction offset ζ0i = 0.01, 0.05, 0.10, 0.15
kPa/µm (a), and the contractility −ζ = 0, 20, 40, 60 kPa (b).

The velocity and stress profiles, plotted in Fig. 2.10 for a range of λ, are
qualitatively similar to those of the uniform stiffness substrate from Fig. 2.5,
except that they become asymmetric due to the stiffness gradient.
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Figure 2.9: Effect of the size, the hydrodynamic length, the contrac-
tility and the active traction gradient in the velocities. Plots of the full
expressions for V (blue curves) and U (red curves) as a function of the traction
offset ζ0i , changing L = 40, 100, 200, 350 µm (a), λ = 100, 200, 300, 450 µm (b),
−ζ = 0, 20, 40, 60 kPa (c), and ζ ′i = 10−5, 8 · 10−5, 1.5 · 10−4, 2 · 10−4 kPa/µm2 (d).
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Figure 2.10: Velocity and stress profiles for a constant active traction
gradient. The screening length is λ = 40, 100, 200, 300, 450 µm. With vx at the
edges we would obtain U and V in Fig. 2.9b, for ζ0i = 0.05 kPa/µm.
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2.4.2 Constant friction gradient and active traction saturation

In this section, we relax the restriction of a uniform friction coefficient. This is
a more realistic situation since both active traction and passive friction rely on
the dynamics of cell-substrate adhesion molecules [Oriola2017], and hence they
both depend on substrate stiffness. To illustrate the role of this effect on tissue
durotaxis, and for the sake of simplicity, we consider a linear friction increase
ξ(x) = ξ0 + ξ′x, now with ξ′ ̸= 0. The problem with space-dependent ξ can
no longer be solved analytically. Solving Eq. 2.16 numerically with a finite-
difference method, we find that the center-of-mass velocity now decreases with
the traction offset, as shown in Fig. 2.11. This is because larger active traction
correlates with larger friction, which yields smaller velocities. Accordingly, the
spreading velocity grows more slowly with the active traction offset than in the
uniform friction case.

The use of linear profiles is particularly convenient from a theoretical point
of view since it avoids introducing too many parameters. However, to obtain a
more realistic description and to compare with experimental data, the increasing
and saturating profiles from Eq. 2.20 may be taken, where E corresponds to the
space-dependent Young modulus of the substrate. For in vitro experiments, such
as those in [Sunyer2016], a simple choice is to prepare the substrate with a linear
stiffness profile E(x) = E0 +E′(x−X). Numerical results for this more general
case are qualitatively very similar to those in Fig. 2.11, but, at high stiffness, the
saturation of traction and friction brings the dynamics to those of the uniform
stiffness case, with vanishing durotactic velocity U . The parameters controlling
this approach are ζ∞i , ξ∞, E∗ and E′.
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Figure 2.11: Velocities for a positive friction gradient. Center-of-mass or
durotactic velocity U (a) and spreading velocity V (b), varying the friction gradient
ξ′ = 0, 10−4, 5 · 10−4, 10−3, 3 · 10−3 kPa·s/µm3, and taking a stiffness offset ξ0 = 2
kPa·s/µm2.
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2.5 Dynamical regimes

For a given set of parameters, η, ζ, Lc, ζi(x) and ξ(x), initial conditions X0 and
L0, our model supplies a velocity profile v(x) as the solution of the equation

(
2η∂2x − ξ(x)

)
v(x) = (2ζp(x)∂x − ζi(x)) p(x), (2.25)

where p(x) is given by Eq. 2.17. For the plots in Section 2.5.1, stress-free bound-
ary conditions are considered, but then they are generalized in Section 2.5.1 to
account for a surface tension and an elastic force.

The position of the center of mass X(t) and the cluster size L(t) satisfy the
differential equations

Ẋ =
v(X + L) + v(X − L)

2
, (2.26)

L̇ =
v(X + L)− v(X − L)

2
. (2.27)

As X and L evolve, however, the cell cluster is visiting different regions of the
substrate, so the profiles ζi(x) and ξ(x) used to solve Eq. 2.25 are changing with
time. For instance, in the case of a linear active traction profile, the traction
offset changes with time according to ζ0i (t) = ζ0i (0) + ζ ′i(X(t)−X0). In the rest
of this section, we focus on this case with no friction gradient (ξ′ = 0).

2.5.1 Constant active traction gradient

Since the durotactic motion is towards larger stiffness and hence larger active
traction (U > 0 for ζ ′i > 0), the local active traction offset ζ0i increases with time.
In a uniform traction gradient, however, the durotactic velocity is insensitive to
this local ζ0i (Section 2.4.1), and so increasing it does not lead to an increase
in the durotactic speed. Nonetheless, U depends also on the monolayer size L,
which may grow or decay according to the sign of the spreading velocity V . But
in general, U increases monotonically with L. Being L∗ and L∗c two critical
tissue sizes, we distinguish three different regimes in the spreading dynamics:

• For large enough sizes (L ≥ L∗): The monolayer expands for all times
(V (t) > 0), and due to this increase in L, then the center-of-mass velocity
U also increases. Thus, monolayer spreading produces increasingly faster
durotaxis.

• For intermediate sizes (L∗c < L < L∗): The monolayer initially contracts
(V < 0). However, as the tissue moves towards stiffer regions, it may reach
values of traction that are large enough to change the sign of V and produce
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a transition to spreading. In this case, the evolution of L is non-monotonic
in time, corresponding to initial contraction followed by spreading.

• For small sizes (L ≤ L∗c): The durotactic velocity U may not be enough
big to reach sufficiently large values of traction and reverse the sign of V to
produce spreading. In this case, the monolayer contracts completely into
a 3D spheroid (V (t) < 0 for all times).

Actually, L∗ is the critical size for spreading on uniform substrates (V (L∗) = 0),
and an explicit and exact expression for L∗ is given by equating Eq. 2.A.3 and
Eq. 2.B.4 to zero. The three dynamical regimes are illustrated in Fig. 2.12 and
Fig. 2.13, increasing the size from lighter to darker curves (and so going from
the full contraction, to the initial contraction and later expansion, and finally
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Figure 2.12: Dynamical regimes for a constant active traction gradient.
a, Position of the monolayer edges x±(t), filling the area between them to represent
the tissue width. b, Monolayer width divided by its initial value. c, Spreading
velocity. d, Center-of-mass velocity. The curves, from lighter to darker lines,
show an increasing L0 = 200, 215 and 300 µm, characteristic of the three different
dynamical regimes. The initial center-of-mass position is X0 = 0 µm in all three
cases, ζ ′i is constant and ξ is uniform. L∗ = 276.35 µm and L∗c ≈ 213 µm.
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to the full expansion). The tissue expands when L and U increase and V > 0,
whereas it contracts when the normalized L and U decrease and V < 0. The
regime with initial contraction and later expansion presents an almost constant
durotactic velocity U and tissue width L. Given the initial monolayer size L0,
it is possible to predict the critical lengths as a function of the active traction
offset, as shown in Fig. 2.14.

The asymptotic behavior of the system at long times is thus either an indefi-
nite expansion or a collapse. In both situations, the model is no longer adequate
as additional physics will take over at long times. For the asymptotic spreading,
even if the traction forces do not saturate, other forces such as elastic forces may
eventually slow down and even suppress the spreading, as discussed below. In the
case of monolayer retraction and collapse with L→ 0, the quasi-2D description
breaks down and treatment of the 3D structure of the tissue is necessary.
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Figure 2.13: Temporal evolution of velocities for a constant active trac-
tion gradient. Evolution of the v− (blue dotted), v+ (red dotted), V (blue) and
U (red) velocities, for clusters starting in three different values of L0, characteristic
of the three regimes: full contraction (a), initial contraction and later expansion
(b) and full expansion (c). Same evolutions as in Fig. 2.12.
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Figure 2.14: Critical lengths for the dynamical regimes. The solid curve
corresponds to L∗, which is the solution of V (L∗) = 0 obtained from Eq. 2.B.4.
The dashed curve corresponds to L∗c, which defines the length below which the
monolayer contracts for all times, and is obtained numerically. The region between
both curves defines the intermediate contraction-expansion regime.

2.5.2 Adding surface tension and an elastic force

More general profiles of the active traction and the friction parameters can also
be used for studying the time evolution, but as long as the profiles are both
monotonically increasing, the qualitative behavior is similar. The three spread-
ing regimes discussed above, separated by the critical lengths L∗ and L∗c, still
exist, but their expressions and values change.

As mentioned above, the two possible asymptotic behaviors of the monolayer
dynamics are not particularly interesting. This is because the traction profile
cannot grow indefinitely, and other physical effects will either stop the extreme
stretching of the cells in the case of spreading, or enable the formation of a 3D
cell aggregate in the case of contraction. The latter will be tackled in Chapter 3.
Regarding the former, different effects may be easily introduced in our current
model, either to slow down the indefinite spreading of the cluster size or even to
stop it.

The first possibility is to introduce an effective surface tension γ at the tissue
edge, as already mentioned at the end of Section 2.3.1. The introduction of this
surface tension can be understood if we interpret our 1D model as an approx-
imation for a circular monolayer of radius L. This surface tension slows down
the spreading process, less effectively for larger monolayers. For contracting
monolayers, surface tension accelerates the contraction.
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A less trivial but more determinant modification is to introduce an effective
elastic force that prevents excessive cell stretching. This type of force has been
introduced at a phenomenological level for single cells to favor a characteristic
cell size. It was used for instance in [Recho2013, Hennig2018], in effective 1D
models for single-cell motility. Both effects are implemented as a boundary
condition for the stress:

σ± = − γ

L
− k

(L− Lr)

Lr
, (2.28)

where k is an elastic constant and Lr is a characteristic size of the cell monolayer,
proportional to the number of cells if the cell size is somehow regulated. For a
constant active traction gradient ζ ′i and no friction gradient (ξ′ = 0), the center-
of-mass velocity U turns out to be independent of both surface tension and
elasticity (see Eq. 2.B.3 in Appendix 2.B). The spreading velocity V , however,
is affected, respectively giving

V (γ) = V (γ = 0)− γ

L

λ

2η
tanh

(
L

λ

)
, (2.29)

V (k) = V (k = 0)− k
L− Lr

Lr

λ

2η
tanh

(
L

λ

)
, (2.30)

when either surface tension or elasticity is added.
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Figure 2.15: Effect of the surface tension and the elastic force in the
spreading velocity. a, k = 0 and surface tension changes with values γ =
0, 20, 40, 80 kPa·µm. b, γ = 0 and the elastic constant changes with values k =
0, 0.05, 0.1, 0.2 kPa (Lr = 150 µm). To showcase its effects, γ is taken larger
than what is measured experimentally for cell aggregates, and k is comparable to
ζiLc ≈ σ.
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The surface tension γ always decreases the spreading velocity, while the elas-
tic term contributes with a different sign depending on whether the monolayer
size is larger or smaller than Lr, always in the direction of approaching the
reference value Lr (Fig. 2.15). Both effects influence the spreading dynamics,
changing for instance the critical lengths, but the phenomenology and qualitative
evolution of the monolayer typically remain unchanged.

For large k and L > Lr (Fig. 2.16a), a monolayer that starts spreading can
eventually change its behavior and become contracting. In this case, similar
to surface tension (Fig. 2.16c), elasticity slows down expansion and accelerates
contraction. Instead, if L < Lr (Fig. 2.16b), elasticity accelerates expansion and
slows down contraction, although only very large k (k ≫ ζiLc ∼ σ), presumably
not biologically possible, enable this contraction-to-expansion transition.
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Figure 2.16: Effect of the surface tension and the elastic force in the
dynamical regimes. Curves of the same color show the evolution of the position
of the edges x±(t), filling the area between them to represent the tissue width. a,b
γ = 0 and Lr = 150 µm. The initial size is L0 = 215 µm and k = 0, 0.03, 0.05, 0.5
kPa in a, whereas L0 = 100 µm and k = 0, 2, 3, 5 kPa in b. c, k = 0 and only
the L0 = 215 µm case is shown with γ = 0, 1, 3, 10 mN/m. In both cases, the
parameters increase from lighter to darker green curves.
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2.6 Discussion and conclusions

In this chapter, we studied generic scenarios of collective durotaxis based on
a continuum model of epithelial monolayers as 2D active fluids. Effectively,
we mapped the system to a 1D setup and related the stiffness gradient of the
substrate to space-dependent cell-substrate parameters, namely the friction ξ(x)
and the active traction ζi(x). For the simplest case of a linear active traction
profile and a uniform friction (constant ζ ′i and ξ′ = 0), the spreading velocity
is exactly the same as that for the uniform substrate case, so the spreading
behavior is independent of the existence of a traction gradient. The velocity
of the center of mass, instead, is proportional to ζ ′i , and so the cell monolayer
performs durotaxis as long as the traction is a monotonically increasing function
of the substrate stiffness. These conclusions are locally valid for more general
traction profiles provided that the gradient does not change significantly over
the monolayer size.

The physical parameters of the model play a key role in characterizing the
durotactic dynamics. The durotactic velocity increases with both the traction
gradient ζ ′i and the monolayer size L, as also seen in [Escribano2018], but is
independent of the contractility ζ and the traction offset ζ0i . Therefore, the same
monolayer placed at different positions along the stiffness gradient would have the
same durotactic velocity. However, the spreading dynamics would be different,
since although the spreading velocity is independent of the traction gradient ζ ′i ,
it increases with the offset ζ0i , the monolayer size L and the hydrodynamic length
λ, and decreases with contractility ζ.

For non-uniform friction (ξ′ ̸= 0), or for traction and friction profiles saturat-
ing with stiffness, the model predicts lower velocities for larger stiffness offsets,
recovering the results from [Sunyer2016,Escribano2018,González-Valverde2018].
At high stiffness, parameter saturation makes the system asymptotically ap-
proach the dynamics on uniform substrates, and therefore vanishing durotaxis.

In addition to the predictions for local durotaxis and spreading, we have
discussed the temporal evolution of a monolayer along the stiffness gradient as it
changes its position and size. Combining states of spreading and contraction of
the monolayer, with states of interface wetting and dewetting, we identify three
different regimes of durotactic motion: Large monolayers spread indefinitely,
small monolayers contract indefinitely, and monolayers in an intermediate size
range display a non-monotonic evolution whereby they switch from contraction
to spreading at a specific time. These three regimes are separated by two critical
lengths, which can be determined analytically in simple cases (like constant ζ ′i
and ξ′ = 0), or illustrated numerically for more general situations. If additional
physical ingredients are added to the model, such as surface tension and elastic
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forces that oppose large deformations of the tissue, the expansion is typically
slowed down and the contraction accelerated.

In the context of soft active matter models of living systems, our study con-
tributes to the view of epithelial tissues as active viscous polar systems and
provides simple predictions that could be tested in experiments and used to in-
fer model parameters. It could also guide the design of experiments on collective
durotaxis, for instance, to tune the dynamical regimes depending on the tissue
size. However, in the majority of the experiments done up to now, the tissues
expand indefinitely [Sunyer2016]. Either contractilities are not large enough or
active tractions are too large, and thus the sweet spot to observe other dynami-
cal regimes is not easy to find. Nevertheless, it is always interesting to elucidate
to what extent a purely mechanical, phenomenological description, with no need
to invoke complex biochemical regulation, can account for the observed phe-
nomenology in different forms of collective cell migration.

The model discussed here has some limitations, such as the absence of cell
proliferation or the unrealistic long-time behavior. To address these problems,
we should include additional forces to prevent indefinite spreading (as explained
with the surface tension or the elastic restoring force), and include effects from
the 3D structure of the tissue or multiple-layer structure resulting from the mono-
layer contraction. Cell proliferation is not expected to significantly modify the
physical picture of the problems addressed in this thesis, and will therefore not
be considered. The effects of a 3D structure of durotactic clusters are examined
in the next chapter.
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Appendices

2.A Complete solution for a uniform substrate

Here we assume a constant active traction ζi and friction ξ. In the boundaries,
the normal component of the stress is due to two different effects: an effective
surface tension γ (interpreting our 1D model as an approximation for a circular
cluster of radius L), and an effective elastic stiffness k, accounting for a mean-
field-type linear elastic interaction as in [Recho2013] that prevents the tissue from
excessive stretching, being Lr the reference length (an extended explanation can
be found in Section 2.5.2). Thus, with the constitutive equation for the stress in
Eq. 2.14 and p2± = 1,

σ|x± ≡ σ± = − γ

L
− k

L− Lr

Lr
−→ ∂xv|± =

1

2η

(
ζ − γ

L
− k

L− Lr

Lr

)
. (2.A.1)

Taking the solution for the polarization from Eq. 2.17, the solution for the ve-
locity profile from Eq. 2.16 reads

v(x) =
λ

2η

[(
ζ − γ

L
− k

L− Lr

Lr
+

λ2Lcζi
λ2 − L2

c

coth (L/Lc)

− 2ζλ2

4λ2 − L2
c

(2 + csch2 (L/Lc))

)
sinh (x/λ)

cosh (L/λ)

+
λLc

sinh (L/Lc)

(
ζ

4λ2 − L2
c

sinh (2x/Lc)

sinh (L/Lc)
− ζiLc

λ2 − L2
c

sinh (x/Lc)

)]
. (2.A.2)

Because v(x) is an odd function, there is no motion of the center of mass U = 0,
and so without loss of generalization we can take X = 0. Then, we can easily

51



2

Chapter 2. Collective durotaxis of 2D cell monolayers

write v+ = v(L) and v− = v(−L), giving

v± = ± λ

2η

[(
ζ − γ

L
− k

L− Lr

Lr
+

λ2Lcζi
λ2 − L2

c

coth (L/Lc)

− 2ζλ2

4λ2 − L2
c

(2 + csch2 (L/Lc))

)
tanh (L/λ)

+ λLc

(
2ζ

4λ2 − L2
c

coth (L/Lc)−
ζiLc

λ2 − L2
c

)]
, (2.A.3)

and thus the spreading velocity is V = v+ = −v−. The exact critical L∗ is such
that Eq. 2.A.3 = 0. In the relevant limit Lc ≪ L and Lc ≪ λ,

v± ≈ ± 1

2η

[
λ tanh (L/λ)

(
Lcζi −

γ

L
− k

L− Lr

Lr

)
+ Lc

(
ζ

2
− ζiLc

)]
, (2.A.4)

and further, in the wet (L≪ λ) and dry (L≫ λ) cases,

vwet
± ≈ ±Lc

2η

[
ζi(L− Lc) +

ζ

2

]
∓ L

2η

(
γ

L
+ k

L− Lr

Lr

)
, (2.A.5)

vdry± ≈ ±Lc

2η

[
ζi(λ− Lc) +

ζ

2

]
∓ λ

2η

(
γ

L
+ k

L− Lr

Lr

)
. (2.A.6)

Setting γ = k = 0, neglecting Lc in front of λ or L, and writing the contractility
as ζ = −|ζ| < 0, we respectively obtain Eq. 2.18 and Eq. 2.19.
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2.B Complete solution for a constant active traction
gradient

For a linear active traction profile ζi(x) (constant gradient ζ ′i), constant friction
ξ (ξ′ = 0), and same boundary conditions as in Appendix 2.A, the solution to
Eq. 2.16 with the polarization field from Eq. 2.17, yields

v(x) =
λ2Lc

2η sinh (L/Lc)

[
ζ

4λ2 − L2
c

sinh (2(x−X)/Lc)

sinh (L/Lc)
− Lcζi(x)

λ2 − L2
c

sinh
(x−X

Lc

)

+
2ζ ′iλ

2L2
c

(λ2 − L2
c)

2
cosh

(x−X

Lc

)]
+ C1e

x/λ + C2e
−x/λ, where

C1 =
−λe−X

λ

4η cosh (L/λ)

[
−
(
ζ − γ

L
− k

L− Lr

Lr

)
+ λ2Lc

(
2ζ(1 + coth2 (L/Lc))

Lc(4λ2 − L2
c)

− ζi(x)

λ2 − L2
c

coth (L/Lc) +
ζ ′i coth (L/λ)

λ2 − L2
c

(
2λ2Lc

λ2 − L2
c

− Lc − L coth (L/Lc)

))]
,

C2 =
λe

X
λ

4η cosh (L/λ)

[
−
(
ζ − γ

L
− k

L− Lr

Lr

)
+ λ2Lc

(
2ζ(1 + coth2 (L/Lc))

Lc(4λ2 − L2
c)

− ζi(x)

λ2 − L2
c

coth (L/Lc) +
ζ ′i coth (L/λ)

λ2 − L2
c

(
2λ2Lc

λ2 − L2
c

− Lc − L coth (L/Lc)

))]

− ζ ′iλ
3Lce

X
λ

2η sinh (L/λ)(λ2 − L2
c)

(
2λ2Lc

λ2 − L2
c

− Lc − L coth (L/Lc)

)]
. (2.B.1)

Now, the center-of-mass velocity U ̸= 0, and so its position X ̸= 0. The ex-
pressions for v+ and v− are directly obtained by substituting x+ = X + L and
x− = X − L, giving

v± = ±λ
2Lc

2η

[
2ζ coth (L/Lc)

4λ2 − L2
c

− Lcζ
±
i

λ2 − L2
c

± 2ζ ′iλ
2L2

c coth (L/Lc)

(λ2 − L2
c)

2

]

+ C1e
X±L

λ + C2e
−X±L

λ . (2.B.2)
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Then, U = (v+ + v−)/2 and V = (v+ − v−)/2, giving

U =
ζ ′i
2η

Lcλ
2

λ2 − L2
c

[
λ coth

(
L

Lc

)(
2L2

cλ

λ2 − L2
c

+ L coth

(
L

λ

))

− Lcλ(L
2
c + λ2)

λ2 − L2
c

coth

(
L

λ

)
− LLc

]
, (2.B.3)

V =
λ

2η

[(
ζ − γ

L
− k

L− Lr

Lr
+
λ2Lcζi(X)

λ2 − L2
c

coth (L/Lc)

− 2ζλ2

4λ2 − L2
c

(
2 + csch2 (L/Lc)

))
tanh (L/λ)

+ λLc

(
2ζ

4λ2 − L2
c

coth (L/Lc)−
ζi(X)Lc

λ2 − L2
c

)]
. (2.B.4)

V is equal to the spreading velocity from the uniform case (Eq. 2.A.3), with
ζi = ζi(X), and U does not depend on the traction offset ζ0i = ζi(X), contractility
ζ, surface tension γ or elastic constant k. In the relevant limit Lc ≪ λ and
Lc ≪ L,

v± ≈ ±Lc

2η

[
ζ

2
− Lcζ

±
i ± 2ζ ′iL

2
c

]
∓ λ

2η

[( γ
L

+ k
L− Lr

Lr
− Lcζi(X)

)
tanh

(
L

λ

)

∓ LcLζ
′
i coth

(
L

λ

)]
, (2.B.5)

and further, in the wet (L≪ λ) and dry (L≫ λ) cases,

vwet
± ≈ ±Lc

2η

[
Lζ±i +

ζ

2
± ζ ′i

(
λ2 − 2

3
L2

)]
∓ L

2η

( γ
L

+ k
L− Lr

Lr

)
(2.B.6)

vdry± ≈ ±Lc

2η

[
λζ±i +

ζ

2
± 2ζ ′iL

2
c

]
∓ λ

2η

( γ
L

+ k
L− Lr

Lr

)
. (2.B.7)

Setting γ = k = 0, and writing the contractility as ζ = −|ζ| < 0, we respectively
obtain Eq. 2.21 and Eq. 2.23.
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Collective durotaxis and 3D
wetting of spheroidal clusters

3.1 Introduction

In Chapter 2 we discussed the underlying mechanisms of collective durotaxis of
2D epithelial monolayers. However, in many experiments, cells form spheroidal
aggregates sitting on a substrate, and a fully 3D theory must be addressed,
particularly in the context of collective durotaxis. Three-dimensional collective
migration is obviously of great relevance since nature operates mostly in three
dimensions and so in vivo, cells tend to migrate cohesively as 3D clusters more
often than as quasi-2D monolayers. Remarkably, collective durotaxis has recently
been reported as the key mechanism driving the cohesive migration of neural
crest clusters during the development of Xenopus laevis [Shellard2021a]. These
results are summarized in Fig. 3.1, where it is shown that neural crest cells in
abrogated stiffness gradients undergo random movement rather than directional
migration, indicating that the stiffness gradient strongly impacts directionality
(Fig. 3.1g) rather than motility in general (Fig. 3.1h).

In vivo experiments present significant challenges, and controlling environ-
mental conditions is often very difficult, which obscures the ability to isolate the
fundamental mechanisms driving the behavior. In contrast, in vitro experiments
offer more controlled and tunable conditions. With this perspective in mind,
this chapter aims to elucidate the minimal physical principles of the underlying
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mechanism of collective durotaxis of 3D cell clusters and its interplay with the
wetting properties, showing how it arises from the competition of forces in the
tissue and the substrate. We will also compare our findings with experiments.

Figure 3.1: Neural crest durotaxis in vivo. a, Model of the neural crest cells
(in red) self-generated stiffness gradient in the adjacent placodal tissue (purple stiff,
yellow soft). b, Schematic of the dorsal view of a Xenopus laevis embryo. c,d,
Stiffness measurements by nanoindentation on the placodes (c), showing that the
gradient of stiffness is abrogated when ablation of the ectodermal tissue is done, and
neural crest migration is impaired (d). e–h, Graft of fluorescently labeled neural
crest into control (cyan) or ablated (magenta) embryos (e), time-coded projected
cell tracks (f), tactic index, defined as the ratio between the distance traveled by a
cell in the direction of the gradient and the total distance (g) and quantification of
speed (h). Scale bars, 150 µm (e) and 50 µm (f). Adapted from [Shellard2021a].

To this end, a systematic mechanical analysis of collective durotaxis in 3D ep-
ithelial clusters was performed by Macià-Esteve Pallarès in Xavier Trepat’s group
(IBEC, Barcelona). So far, durotaxis of single cells and clusters has been stud-
ied in vitro in the presence of gradients in the stiffness of the extracellular ma-
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trix (ECM) [Lo2000,Isenberg2009,Vincent2013,Sunyer2016,Hartman2016,Shel-
lard2021b]). However, important migratory processes during early develop-
ment and cancer progression take place in contexts lacking ECM [Richard-
son2010,Cai2014], for instance:

• In Drosophila oogenesis, border cell clusters migrate anteroposteriorly in
the egg chamber by establishing dynamic protrusions with neighboring
nurse cells through E-cadherin receptors [Cai2014,Dai2020].

• In zebrafish primordial germ cells’ migration [Grimaldi2020], as well as that
of progenitor cells and cell sheets during epiboly [Babb2004,Shimizu2005].

• In mouse retinal endothelial cells [Dorrell2002] and neuronal precursors’
migration [Luccardini2013].

• In collective invasion and remodeling of epithelial tumors, where E-cadherin
is the dominant adhesion molecule between cancer cells [Shamir2014,Pad-
manaban2019].

• In interneuron precursors and neurite outgrowth, N-cadherin mediates the
long-distance migration [Giannone2009,Luccardini2013,Nguyen2019].

Although collective migration through cadherin receptors is well established,
whether these cell-cell adhesion proteins can mediate durotaxis is unknown. This
is the reason why all the performed experiments (explained in Section 3.2), were
done in E-cadherin-coated gels. However, this is not relevant to the theoreti-
cal model, which does not distinguish between different protein coating and so
predicts that all the phenomenology should be independent of it. We will thus
not deep into this during the chapter, but the generic behavior was indeed val-
idated also in experiments with gels functionalized with fibronectin, an ECM
protein, provided that the clusters were brought close to the neutral wetting
regime [Pallarès2023].

In Section 3.2 we briefly explain and comment on the experiments and the
results, and in Section 3.3 a 3D active wetting model for spheroidal cell clusters
is developed. The results regarding the non-monotonic durotactic behavior and
the interpretation of the mechanism are described in Section 3.4 and Section 3.5,
and examples of the dynamical evolutions are commented in Section 3.6 for a
better understanding of the mechanisms at play. Finally, in Section 3.7, we give
a brief note on the limitations of the theory.

Like in Chapter 2, all the values of model parameters that are not specified
in the figures’ captions are taken from the List of symbols.
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3.2 Durotaxis of epithelial cell clusters

The goal of the experiment is to study the dynamics of the migration and the
morphology of 3D clusters of cells in response to different stiffness of the sub-
strates. To this end, A431 cells are used, which are a human cell line established
from an epidermoid carcinoma.

Polyacrylamide (PAA) gels are prepared following conventional protocols,
well-established in the laboratory, and their stiffness is tuned by changing the
concentration of the different components, mainly acrylamide and bisacrylamide
[Serra-Picamal2012, Uroz2018, Pérez-González2019]. A gradient is achieved by
sliding an opaque mask during the UV-triggered polymerization, and the rates
at which the mask is moved define the steepness of the stiffness gradients [Su-
nyer2012]. Gel stiffness is measured with Atomic Force Microscopy (AFM) after
every experiment, and fluorescent beads are embedded in the gels to infer the
traction forces. With the beads, gel displacements are measured, comparing two
images: one with the cells, and the other without, giving the relaxed state of
the gel. From these, traction forces are inferred using a custom Particle Imaging
Velocimetry (PIV) software [Trepat2009]. Finally, the gels must be coated with
proteins to allow cell attachment. In the majority of the performed experiments,
they are coated with oriented E-cadherin proteins instead of ECM proteins (like
fibronectin or collagen which tend to be more common), to study the migration
through these intracellular proteins. However, the generality of the phenomena
is also demonstrated in fibronectin-coated gels.

Clusters of A431 cells are formed by seeding 5 · 103 cells in low attachment
wells with starvation media for 24 h, and they are mechanically disaggregated
into smaller clusters exhibiting heterogeneous sizes. Then, they are seeded on top
of the coated PAA gels, and imaging starts approximately after 4 h. Experiments
run typically for more than 10 h, with image acquisitions every 10 min.

3.2.1 Experiments on uniform gels

When clusters are seeded on uniform-stiffness gels (Fig. 3.2), their speed is non-
monotonic with the stiffness of the gel: minimal at low stiffness (0.2 kPa), peak-
ing at intermediate stiffness (24 kPa) and then decreasing again at high stiffness
(200 kPa) (Fig. 3.3a). This non-monotonic behavior coincides with different
regimes of cluster spreading, which we interpret within the conceptual framework
of active tissue wetting [Douezan2011,Douezan2012b,González-Rodríguez2012,
Beaune2014, Wallmeyer2018, Beaune2018, Alert2019b, Pérez-González2019]. At
low stiffness, clusters are nearly spherical and the contact angle between the
cluster and the substrate is close to 180◦, indicating full dewetting (or complete
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retraction of the basal monolayer in contact with the substrate). By contrast, at
high stiffness clusters spread to form a monolayered epithelium with a low con-
tact angle, indicating full wetting (complete spreading) (Fig. 3.2 and Fig. 3.3b).
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Figure 3.2: Cluster wetting on uniform-stiffness gels. a, Phase contrast
images of A431 cell clusters seeded on E-cadherin-coated gels of uniform stiffness,
of 0.2, 6, 24, and 200 kPa from left to right. Scale bar, 100 µm. b, 3D renderings
of some representative clusters in the different stiffness.
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Figure 3.3: Cell clusters show optimal motility in the neutral wetting
regime. a, Cluster speed at different substrate stiffness. The central dot is the
median and small ones represent individual clusters (n = 296 clusters for 0.2 kPa,
n = 646 clusters for 6 kPa, n = 561 clusters for 24 kPa and n = 266 clusters for 200
kPa). b, Angle θ between the cell cluster and the substrate, for uniform-stiffness
gels, of 0.2, 1, 6, 11, 24 and 200 kPa. Each dot is the average contact angle for one
cluster, and the circle size is proportional to the cluster’s average diameter (n = 43
clusters).
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Chapter 3. Collective durotaxis and 3D wetting of spheroidal clusters

At intermediate stiffness, for contact angles of around 90◦, clusters display
highly dynamic protrusions (Fig. 3.2b). These data suggest that at the crossover
between low and high wettability (θ ≈ 90◦), which we call the neutral wetting
regime, clusters become maximally motile by rapidly engaging and disengaging
actin-rich protrusions with the substrate.

Traction force microscopy (TFM) can only be performed on clusters seeded
on gels of 1 and 6 kPa, because at higher stiffness there is insufficient resolution
to measure the three components of the traction robustly. Radial tractions Tr
(in-plane tractions with the substrate) point towards the center of the cluster,
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Figure 3.4: Traction forces increase with stiffness. a,b, Traction forces
exerted by representative clusters on 1 kPa (a) and 6 kPa (b) gels. Yellow vectors
represent traction forces in the x–y plane while red vectors represent traction forces
projected on the corresponding lateral planes (x–z and y–z) along the grey lines
shown in the central panels (reference vectors are 50 Pa), and the color bar indicates
Tz. Scale bar, 25 µm. c, Mean of the radial component of the traction force in the
x–y plane Tr as a function of distance from the cluster edge, for 1 kPa (n = 35
clusters) and 6 kPa gels (n = 19 clusters). d, Mean of the vertical component Tz
as a function of distance from the cluster edge, for 1 kPa (n = 13 clusters) and 6
kPa gels (n = 7 clusters). In both, shaded envelopes represent 95% CIs.
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3.2 Durotaxis of epithelial cell clusters

and normal tractions Tz (vertical plane) are positive near the cluster edges and
become negative towards the cluster center (Fig. 3.4). Based on this, a cluster
surface tension γ pulls the cluster edge upwards at the contact line with the sub-
strate, with the cell protrusions forming acute angles with the substrate instead
of being parallel to it. This vertical traction pointing upwards at the cluster
edge is balanced by a pressure that pushes the cluster core into the substrate.
Although the spatial profiles of Tz and Tr display qualitative similarities on both
1 kPa and 6 kPa substrates, the magnitude of both components increases with
stiffness, indicating that both in-plane tractions and also surface tension are
mechanosensitive [Riveline2001,Ghibaudo2008,Barry2014,Elosegui-Artola2016].

3.2.2 Experiments on gels with a stiffness-gradient

When clusters are seeded on substrates exhibiting stiffness gradients (Fig. 3.5),
they show a significantly positive velocity vX along the direction of the gradient,
indicating motion towards increasing stiffness (Fig. 3.6). This vX is also called
durotactic velocity. A large dataset is built matching the local mechanical prop-
erties of the substrate with the instantaneous velocity of each cluster, showing
a non-monotonic profile of the durotactic velocity (Fig. 3.7): Like in uniform-
stiffness gels, clusters dewet regions of low stiffness and wet those of high stiffness,
giving low velocities in both extreme cases. However, in intermediate stiffness,
they are near the neutral wetting regime and durotaxis peaks.
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Figure 3.5: Cluster migration on stiffness-gradient gels. Representative
phase-contrast image of A431 cell clusters migrating on a gel with a stiffness gra-
dient (values shown in the bottom scale) coated with E-cadherin. The image was
taken at time t = 10 h and the trajectories were obtained by time-lapse microscopy.
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Figure 3.6: Clusters on stiffness-gradient gels perform durotaxis. a,
Cluster velocity along the direction of the gradient on uniform (6 kPa) and stiffness-
gradient gels, where small dots represent individual clusters and the central dot the
median (n = 527 clusters for the uniform case, and n = 366 for the gradient case),
with ****p-value<0.0001. b,c, Distribution of the angle between the instantaneous
velocity vector and the x axis, on uniform (b) and gradient (c) gels.Uniform stiffness Gradient
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Figure 3.7: Durotactic velocity is non-monotonic with stiffness. a, Duro-
tactic velocity as a function of stiffness for small (diameter < 60 µm) and large
(diameter > 60 µm) clusters. b, Durotactic velocity in control clusters and in clus-
ters treated with Y27632 (0.5 µM). Data include only clusters > 60 µm. In both,
data are median ± 95% CI.

62



3

3.2 Durotaxis of epithelial cell clusters

To characterize durotaxis, the role of cluster size, cell contractility, and stiff-
ness gradient is studied. Large clusters (diameter > 60 µm) are more durotactic
than smaller ones (Fig. 3.7a), and their velocity peaks at higher stiffness. Cell
contractility is decreased by treating cells with a low dose (0.5 µM) of Y-27632,
which is a ROCK (Rho-associated protein kinase) inhibitor substance. ROCK
is an enzyme that plays a key role in regulating the cytoskeleton, cell shape,
motility, and contraction. It is crucial for the formation of focal adherens junc-
tions [Huveneers2012] and for the recruitment of myosin at the cell-cell junc-
tions [Smutny2010]. Its inhibition decreases thus cell contractility and traction
forces [Oakes2012, Sunyer2016,Al-Rekabi2019,Gavara2006, Stricker2013], which
decreases durotaxis, with a shifted peak towards lower stiffness (Fig. 3.7b). Fi-
nally, different stiffness profiles can be fabricated in the gels (Fig. 3.8a), and
durotaxis is significantly enhanced in steeper stiffness gradients (Fig. 3.8b).
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Figure 3.8: Durotactic velocity is larger for steeper stiffness gradients.
a, Stiffness profiles as a function of distance from the soft edge of the gel, for
shallow (n = 12) and steep (n = 12) profiles, where points are the mean and
error bars the standard deviation. The stiffness was determined using AFM. b,
Durotactic velocity for different stiffness gradients for a fixed starting stiffness
E = 18 ± 5 kPa. Clusters on steeper gradients show significantly more durotaxis
than those on shallower ones (permutation t-test (two-tailed), **p-value<0.0026,
*p-value<0.0463). Each data point represents a displacement and the central dot
is the median. Clusters above the 99.5th percentile are not shown.

These results establish two important points. First, durotaxis is not re-
stricted to integrin-mediated migration on ECM substrates, but it can also be
driven through cadherin receptors. Second, durotaxis is optimal in the neutral
wetting regime and depends on cluster size, contractility, and stiffness gradient.
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Chapter 3. Collective durotaxis and 3D wetting of spheroidal clusters

However, the mechanisms by which this is done are not clearly understood, and
a quantitative model is required to unveil the physics behind this behavior.

3.3 Physical model: 3D active wetting theory

The observation of collective durotaxis described above inspired the development
of a physical model to quantitatively understand this phenomenon. The model
is actually an extension of that in [Pérez-González2019], where the wetting of
cell clusters was already explained in terms of a competition of forces in the cell
monolayer, more specifically, between cellular contractility and active traction.
Here, despite the migration towards the stiffer regions of the substrate, we also
observe different wetting states of the clusters (different contact angles with the
substrate), and so we hypothesize that we should be able to explain the present
observations with a similar model. A comprehensive study of the phenomenology
of a similar model was already done in Chapter 2, but now we want to account
as well for the third dimension since the morphology of the clusters might be
crucial for studying its dynamics.

To this end, we describe a cell cluster on a substrate as an active fluid droplet
that partially wets a solid surface with a contact angle θ (see the sketch in
Fig. 3.9). The interface between the cell cluster and the surrounding passive
fluid has a surface tension γ, which results from a combination of passive cell-cell
adhesion and active cortical tension [Lecuit2007,Manning2010,Guevorkian2010,
Maître2011,Ehrig2019]. Averaging out tissue shape fluctuations, we describe the
cell cluster as a spherical cap of radius Rsphere. We assume that the bulk of the
cell cluster is passive and that the dynamics of the droplet are determined by the
interplay of its surface tension and the in-plane forces at the basal cell monolayer.
As in Chapter 2, we model the basal cell monolayer, of contact radius R, as a
2D active polar fluid, so the main ingredients and equations of the model can be
recalled from Section 2.2.

3.3.1 Generalized Young-Dupré equilibrium

To extend the theory to 3D clusters, we propose what we call a generalized
Young-Dupré force balance that includes the out-of-plane contribution of the
surface tension γ of the cell cluster, coupled to the 2D model of the monolayer
that we studied in Chapter 2. This new ingredient modifies the contact line dy-
namics and defines the droplet’s dynamic contact angle, thus making the model
more realistic by accounting for the aggregate 3D structure. As discussed in Sec-
tion 2.5, for stress-free boundary conditions, a cell monolayer either spreads or
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Figure 3.9: Sketch of the model for 3D cell clusters on different stiffness
substrates. From experimental observations, the contact angle decreases with
the stiffness, and so for a cluster of the same spherical radius Rsphere the contact
radius R increases with it. Rproj is the projected radius of the cell cluster measured
in phase-contrast images, which is equal to Rsphere when θ > 90◦ (low wettabil-
ity), and to R when θ < 90◦ (high wettability). The Young-Laplace pressure in
the cluster and the surface tension are mechanosensitive, increasing their magni-
tude with the stiffness. The inset (same sketch as in the side view of Fig. 2.3),
shows a zoom-in of the basal cell monolayer (represented with darker cells) with
the cell-substrate forces, transmitted through the cell-substrate adhesions, and the
monolayer tension, transmitted throughout the tissue through cell-cell junctions.

retracts indefinitely due to the competition between active traction and contrac-
tility. However, for 3D droplets, the surface tension γ introduces an additional
force that can either favor spreading or retraction depending on the contact
angle θ. For low wettability clusters (θ > 90◦), surface tension favors spread-
ing (Fig. 3.9 left), whereas for high wettability (θ < 90◦), it favors retraction
(Fig. 3.9 right).

In classical wetting theory, the equilibrium contact angle is determined by
the Young-Dupré condition, which establishes the balance of the three sur-
face tensions at the contact line. For cell aggregates, a similar energetic ap-
proach was proposed to define the wetting conditions in terms of the cell-cell
and cell-substrate adhesion energies [Ryan2001,Douezan2011,Douezan2012b,Be-
aune2014]. This approach, however, did not explicitly account for active cellu-
lar forces, which play a key role in tissue wetting [Pérez-González2019]. More
recently, in [Zhao2024], they developed a microscopic, mechanical definition of
surface tension to build an active Young-Dupré equation, which stabilizes partial
wetting. However, we take a different approach. Following [Pérez-González2019],
we assume that the surface tension of the interface between the surrounding pas-
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sive fluid and the substrate is negligible in front of the active forces. Consistently,
our generalized Young-Dupré condition captures a balance of three active forces:
active traction and contractility, which are distributed in the polarized layer of
the basal cell monolayer, and the cluster’s surface tension, which enters as a lo-
cal force at the contact line. Hence, we include the horizontal component of the
surface tension into the monolayer force balance, Eq. 2.25, as a stress boundary
condition,

nα(hσ
s
αβ)nβ = −γ cos θ, (3.1)

where nβ is the unit normal vector at the monolayer edge and σsαβ the monolayer
tension, with h (monolayer height) being there for dimensional reasons. As we
argued in Section 2.3, we can reduce the model to an effective 1D system, and
so the boundary condition is simply

σ|sx± = −γ
h
cos θ. (3.2)

In turn, the vertical component of the surface tension is balanced by the Young-
Laplace pressure that the cell cluster exerts on the substrate,

P =
2γ

Rsphere
. (3.3)

This relationship allows us to infer γ from experimental measurements of vertical
traction forces on the substrate (Fig. 3.4), which provide a direct measurement
of the pressure P (see better in Section 3.3.3). If the surface tension is not large
enough, the clusters will tend to either completely wet (θ −→ 0◦) or completely
dewet the substrate (θ −→ 180◦), depending on whether the active traction or
the cellular contractility prevail [Pérez-González2019]. However, for sufficiently
large surface tension, all three active forces may balance, and the droplet can
reach a partial wetting state, namely a stable equilibrium with a finite contact
angle θeq.

These states are determined by the roots of the expression of the spreading
velocity in Fig. 3.10, and can be observed in the examples of temporal evolutions
in Figs. 3.11–3.12.
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Figure 3.11: Equilibrium partial wetting for sufficiently large surface
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Figure 3.12: Equilibrium partial wetting for sufficiently large surface
tension. Same as Fig. 3.11 but with larger active tractions ζi = 0.03 kPa/µm
(b-d) and ζi = 0.05 kPa/µm (e-h). Hence, wetting is reached for lower values
of γ. The partial wetting state and the time it takes to reach it depend on the
parameters. Again, the larger γ, the closer is θeq to 90◦.
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3.3.2 Stiffness-dependent forces

As explained in Section 2.4, the model parameters that encode tissue-substrate
interactions, namely, the passive friction ξ and the active traction ζi, depend on
the local substrate stiffness and must be determined independently. Consistently
with the expressions in Eq. 2.20, we take

ζi(E) = ζ∞i
E

E + E∗ , ξ(E) = ξ∞
E

E + E∗ + ξ0. (3.4)

Moreover, in the experimental measurements, not only radial in-plane tractions
but also out-of-plane tractions increase with substrate stiffness (Fig. 3.4). We
model this mechanosensitive tissue surface tension response by allowing the pres-
sure P (E) to increase with substrate stiffness. For simplicity, and because there
is no experimental evidence of saturation of out-of-plane tractions with stiffness,
we assume a linear dependence

P (E) = P0 + sPE, (3.5)

where sP is called the pressure sensitivity to stiffness. Via the Young-Laplace
equation, the pressure dependence with the stiffness gives a stiffness-dependent
surface tension

γ(E) =
Rsphere

2
P (E) = γ0 + ℓγE, (3.6)

where γ0 = P0Rsphere/2 is the bare surface tension, and ℓγ = sPRsphere/2 is
called the stiffness response length. Note that when the radius of the spherical
cap Rsphere varies, as in dynamical evolutions with constant droplet volume V ,
γ0 and ℓγ also vary accordingly.

We now need to determine the stiffness profile with the position on the gel.
For simplicity, and since the data in Fig. 3.8a is approximately linear, we can
consider a linear profile, that is,

E(x) = E0 + E′x, (3.7)

where E0 and E′ are the stiffness offset and gradient, respectively. The pressure
and surface tension profiles with distance, from Eq. 3.5 and Eq. 3.6, are

P (x) = P0x + P ′x = (P0 + sPE0) + sPE
′x, (3.8)

γ(x) = γ0x + γ′x = (γ0 + ℓγE0) + ℓγE
′x. (3.9)

As we did in Section 2.4.1, to reduce the number of parameters and gain
physical insight, we momentarily replace the saturating traction and friction co-
efficients given in Eq. 3.4 by non-saturating linear functions of substrate stiffness
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E, or equivalently, of the position x along the stiffness gradient,

ζi(x) = ζ0i + ζ ′ix, ξ(x) = ξ0 + ξ′x, (3.10)

where ζ ′i and ξ′ are the traction and friction gradients, respectively. We can
further simplify the problem by taking a uniform friction (ξ′ = 0), so that the
system of equations can be solved analytically to obtain the velocity field. The
full solution can be found in Appendix 2.B. Recall the expressions for the dry and
wet limits for the center-of-mass or durotactic velocity vX1, assuming Lc ≪ R, λ
(Eq. 2.22 and Eq. 2.24),

vdry
X ≈ Lcλ

2η
Rζ ′i =

Lcλ

4η
(ζ+i − ζ−i ), (3.11)

vwet
X ≈ Lcλ

2

2η
ζ ′i =

Lcλ
2

4η

ζ+i − ζ−i
R

, (3.12)

where ζ±i are the local values of the active traction at the respective edges. In
both cases, the spreading velocity vS has the same expression as in uniform-
stiffness situations (Eqs. 2.18–2.19), replacing ζi by the active traction at the
center-of-mass ζi(X). In the dry limit, the spreading dynamics are local, with
the two edges moving independently, driven only by local forces at the edges.
The durotactic velocity is directly proportional to the traction difference across
the tissue, and hence to the monolayer size (Eq. 3.11). In contrast, in the wet
limit, the two edges are hydrodynamically coupled, and the durotactic veloc-
ity depends on the traction difference and inversely on the monolayer size R
(Eq. 3.12). Since ζi is linear, these two dependencies cancel and the durotactic
velocity is independent of the monolayer size. In both cases, the durotactic ve-
locity is independent of the traction offset ζ0i , and hence of the local substrate
stiffness. With this simplified version of the 2D model, we cannot explain the
non-monotonicity of the durotactic velocity with the substrate stiffness observed
in the experiments (Fig. 3.7), hence the need for adding the generalized Young-
Dupré contribution and accounting for the third dimension.

3.3.3 Parameter estimates

Values for some parameter estimates are argued in Chapter 2 and also summa-
rized in List of symbols. However, we are missing the surface tension and we
need the estimates in the conditions of the present experimental conditions. In
Table 3.1, we give estimates of surface tension with stiffness. We can take the

1Throughout this chapter the center-of-mass and the spreading velocities are given by vX
and vS respectively, which were denoted as U and V in Chapter 2.
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Stiffness Traction Tr Traction Tz Surface tension γ
(kPa) (Pa) (Pa) (mN/m)

1 10 10 0.15
6 40 50 0.75

Table 3.1: Surface tension estimates. Approximate experimental measure-
ments of the radial Tr and vertical Tz components of the traction forces in clusters
on top of uniform-stiffness substrates of 1 and 6 kPa (from Fig. 3.4c,d), and surface
tension estimates for clusters of an apparent sizeRsphere ≈ 30 µm (from Fig. 3.4a,b).

pressure P ∼ Tz, and then γ ∼ TzRsphere/2. Also ζi ∼ Tr/h, where h is the height
of the basal monolayer, typically h ∼ 5 µm [Trepat2009, Pérez-González2019].
Although we give specific values in this table, the slopes of these profiles are
typically slightly varied to explore a wider range of the phenomenology from
the model. Generally, we take ζ∞i = 0.3 kPa/µm [Pérez-González2019,Blanch-
Mercader2017b], a range of E∗ = (50− 450) kPa, and a range of pressure sensi-
tivity to stiffness of sP = (1.0− 9.1) · 10−2.

3.4 Non-monotonic durotactic velocity

In this section, we now solve the model and show that the non-monotonicity
of the durotactic velocity with substrate stiffness observed in the experiments
(Fig. 3.7) arises from a combination of two different effects:

• Both the increase of friction and the saturation of traction with stiffness
produce a decrease of durotactic velocity at high stiffness (Section 3.4.1).

• The variation of the dynamic contact angle, which is controlled by the
out-of-plane surface tension, produces an increase of durotactic velocity at
low stiffness (Section 3.4.2).

The competition of these opposite trends yields a maximal durotactic velocity
at an intermediate stiffness, for which durotaxis is optimal. Interestingly, this
maximum occurs near the point where the contact angle crosses over 90◦ (the
so-called neutral wetting regime), which separates the conditions of low and high
wettability.

To show this, we predict the evolution of the velocity and the shape of a
cluster as it migrates towards stiffer regions, numerically integrating the dynam-
ics of a cluster with constant volume. The stiffness is always taken linear with
the position on the gel, and the traction, friction, and surface tension are cho-
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sen either linear (for simplicity, following Eqs. 3.8–3.10) or saturated (Eq. 3.4),
to have more realistic profiles. At each step, the velocity profile is computed
solving Eq. 2.25, with the polarization profile from Eq. 2.17 and the boundary
conditions from Eq. 3.2. By a simple Euler integration algorithm with a time
step ∆t, the center-of-mass X and the contact radius R are evolved following

X(t+∆t) =
1

2

(
x+(t+∆t) + x−(t+∆t)

)
=

1

2

(
x+(t) + v(x+(t))∆t

+
(
x−(t) + v(x−(t))∆t

))
= X(t) + vX(t)∆t, (3.13)

R(t+∆t) =
1

2

(
x+(t+∆t)− x−(t+∆t)

)
=

1

2

(
x+(t) + v(x+(t))∆t

−
(
x−(t) + v(x−(t))∆t

))
= R(t) + vS(t)∆t. (3.14)

Imposing volume conservation Vconst =
π
6H(H2 +3R2), the new cluster’s height

H(t+∆t) is fixed, and thus, the contact angle is either



θ = 180− asin

(
R

Rsphere

)
≥ 90◦, if H ≥ R,

θ = asin
(

R
Rsphere

)
≤ 90◦, if H ≤ R.

(3.15)

In general, the clusters do not strictly follow a quasistatic evolution, defined as a
sequence of stages with vanishing spreading velocity. In our present model, the
wetting properties are defined globally for the cluster as a whole, so we cannot
contemplate contact angle differences at both edges due to different stiffness. In
any case, the dominant asymmetry that drives durotaxis is the active traction
difference between both edges of the basal monolayer, as seen in Chapter 2 and
briefly recalled in Section 3.3.2, so a contact angle asymmetry would enter only
as a higher order correction.

3.4.1 Slowdown at high stiffness

The decrease of durotactic velocity at high stiffness is based on the 2D basal cell
monolayer dynamics. Obviously, when the friction coefficient ξ increases with
substrate stiffness, the durotactic velocity decreases. As shown in Fig. 3.13, the
stronger the friction gradient ξ′, the stronger the decay of durotactic velocity.
Additionally, although an increasing pressure gradient P ′ yields smaller contact
angles and hence faster durotaxis at low stiffness (see more in Section 3.4.2),
pressure effects do not produce a velocity decrease at high stiffness; the decrease
is only observed when a friction gradient is present.

Regarding the force saturation, active traction forces tend to saturate when
stiffness increases, (Fig. 3.14a), and hence the traction difference across the tis-
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Figure 3.13: Slowdown of the durotactic velocity due to an increase
in friction. Cluster’s velocity as it moves along a stiffness gradient. Initially,
R0 = 3.0 µm, H0 = 56.8 µm and θ0 = 174.0◦ (consistent with Fig. 3.3b), giving a
constant volume V = 92500π/3 µm3. The initial position is x0 = 100 µm (E0 = 3.8
kPa), and active traction, friction and pressure profiles are linear (Eqs. 3.8–3.10)
to show that force saturation is not required for the slowdown of durotaxis at high
stiffness. a. An increasing friction gradient ξ′ = (0, 0.05, 0.1, 0.3, 0.5, 1.0) Pa·s/µm2

lowers the durotactic velocity at high stiffness. b, Increasing pressure gradient
P ′ = (0.2, 0.4, 0.6, 1.0, 3.0, 4.0) Pa/µm, for situations with (continuous lines) and
without (dashed lines) friction gradients. ζ0i = 0.68 Pa/µm and ζ ′i = 0.05 Pa/µm2,
and the simulation time-step is ∆t = 6 min.
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Figure 3.14: Slowdown of the durotactic velocity due to active traction
saturation. a, Active traction profiles against stiffness values (Eq. 3.4), whose
saturation shifts to higher stiffness when the crossover stiffness E∗ increases (with
E∗ = 50, 80, 140, 260, 450 kPa). b-c, Evolution of the durotactic velocity (b) and
shape (c) as it moves along a stiffness gradient. As E∗ increases, the durotactic
velocity and contact angle decrease are less pronounced. Initially, R0 = 3.0 µm,
H0 = 56.8 µm and θ0 = 174.0◦ (consistent with Fig. 3.3b), giving a constant
volume V = 92500π/3 µm3. The initial position is x0 = 100 µm (E0 = 3.8 kPa),
and the simulation time-step is ∆t = 6 min.

sue ∆ζi ≡ ζ+i − ζ−i , decreases (Fig. 3.15a, for a fixed contact radius R). The
durotactic velocity increases with the traction difference ∆ζi (Fig. 3.15b), and
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so traction saturation leads to a decrease of durotactic velocity with stiffness
(Fig. 3.15c). As force saturation is pushed towards higher stiffness, by increasing
the crossover value E∗ the slowdown of durotaxis is less pronounced (Fig. 3.14b).
In Fig. 3.14c, the slight increase of the contact angle for large stiffness values
(and contact radius decrease), comes from the linear increase of the pressure with
stiffness (Eq. 3.5), whereas traction and friction saturate. Thus, the surface ten-
sion (which is pointing inwards) is capable of causing monolayer retraction. The
effect would be further corrected if the pressure also saturated (as in Fig. 3.19)
or decreased its value.

Altogether, both the increase in friction and the saturation of active traction
lead to slower durotaxis at high stiffness. They are both independent of the
3D shape of the cluster, arising even in the absence of tissue surface tension, as
shown in Fig. 3.15.
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Figure 3.15: Effect of the active traction saturation without surface
tension. The figure corresponds to 2D monolayers, in the absence of tissue surface
tension γ = 0. a, Because of saturation (Fig. 3.14a), the difference across the
monolayer ∆ζi decreases with stiffness, but it increases with size R. In a-c, each
curve is for a fixed contact radius R, with values R = 20, 50, 100, 200 µm. b-
d, The durotactic velocity increases with traction difference (b), and hence it
decreases with stiffness (for a fixed R) (c,d). Because the active traction difference
is larger for larger R, the durotactic velocity increases with contact radius R (for
a fixed stiffness E) (c,d). In d, each curve is for a fixed stiffness, with values
EX = 25, 50, 75, 100 kPa.
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3.4 Non-monotonic durotactic velocity

3.4.2 Speed-up at low stiffness

The increase of durotactic velocity at low stiffness can be explained based on
how the 3D shape of the cluster changes with substrate stiffness. From the
experimental results (Fig. 3.3b), low stiffness promotes cluster dewetting and
hence leads to a high contact angle and low contact radius. This small R yields a
small active traction difference across the tissue, which implies a small durotactic
velocity (Fig. 3.15c,d). Increasing the stiffness, the contact angle decreases and
so R increases (Fig. 3.14c and Fig. 3.16c), producing faster durotaxis. As it
affects the contact angle, surface tension γ (and thus pressure P ) controls the
velocity increase, as shown in Fig. 3.13b and Fig. 3.16a,b.
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Figure 3.16: Speedup of the durotactic velocity due to an increase in
pressure. a, Pressure profiles against stiffness values, changing the pressure gra-
dient (P ′ = (0.1, 0.2, 0.4, 0.6, 1.5, 3.0) Pa/µm). b-c, Evolution of the durotactic
velocity (b) and shape (c) as it moves along a stiffness gradient. As P ′ increases,
the durotactic velocity and contact radius increase happens for lower stiffness val-
ues. At high stiffness, the R saturates and the vX decreases due to the friction
increase and the active traction saturation (discussed in (Fig. 3.13) and Fig. 3.14
respectively). Initially, R0 = 3.0 µm, H0 = 56.8 µm and θ0 = 174.0◦ (consistent
with Fig. 3.3b), giving a constant volume V = 92500π/3 µm3. The initial position
is x0 = 100 µm (E0 = 3.8 kPa) and the simulation time-step is ∆t = 6 min.

3.4.3 Dynamic contact angle and optimal durotaxis

The contact angle of the clusters evolving along the stiffness gradient (Fig. 3.14c,
Fig. 3.16c, and all those in Section 3.6) does not coincide with the equilibrium
solution θeq at the corresponding stiffness (roots in Fig. 3.10), since the spread-
ing velocity vS ̸= 0 in the dynamic evolutions. The relaxation towards the
equilibrium solution is slow compared to the time scale at which the cluster
moves along the stiffness gradient. Accordingly, the observed contact angle is a
dynamic one, and the evolution, except for extremely small stiffness gradients,
is not quasistatic. Instead, as it performs durotaxis, the cluster has a positive
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spreading velocity (vS > 0), which increases the contact area of the cluster, and
consequently the durotactic velocity as well.

The localized peak of vS(E) in most dynamical evolutions (Fig. 3.19 and
Figs. 3.A.1–3.A.3), is related to the non-monotonic behaviour of vS(R) in a
uniform-stiffness substrate (Fig. 3.10). This peak leads to a strong speed-up of
the durotactic velocity. When vS decreases, the velocity increases more slowly,
exhibiting an inflection near the vS peak. Since this region of fast variations is
correlated with fast variations of the cosine of θ, which happen precisely at θ =
90◦, the maximum durotactic velocity is typically close to θ ∼ 90◦ (vertical lines
in Fig. 3.19). Its exact location along the stiffness axis will depend on the details
of the profiles of active traction and friction with stiffness, which control the
decrease of the durotactic velocity. For the profiles discussed here, the maximum
of the durotactic velocity is indeed close to the peak of spreading velocity and
the crossing over 90◦ of the contact angle. For extreme (and unrealistic) profiles
(for instance very small friction gradients), the location of this maximum may
in principle depart significantly. Even in such cases, though, the values for this
maximum do not differ significantly from those reached past the peak of vS , as
the velocity’s dependence on stiffness becomes very flat.

3.5 Effect of cluster size, cellular contractility and stiff-
ness profile

The experimental results in Fig. 3.7 and Fig. 3.8b reveal that the durotactic
velocity depends on cluster size, cell contractility, and stiffness gradient. By
modifying the corresponding parameters of our model we should capture these
results and gain insights into the mechanism at play.

3.5.1 Cluster size

Larger clusters exhibit a higher durotactic velocity, reaching its maximum at
higher substrate stiffness (Fig. 3.7a). The model recapitulates these two trends
(Fig. 3.17a,d), and can be explained as follows: First, larger clusters have a
greater active traction difference across them, which drives faster durotaxis
(Fig. 3.15c,d). Second, increasing cluster size favors monolayer wetting [Pérez-
González2019], and therefore larger clusters have lower contact angles. At low
stiffness, the contact angle is always larger than 90◦ (Fig. 3.3b), and so decreasing
it implies that the horizontal component of the surface tension becomes smaller.
As the horizontal component of surface tension is responsible for the durotactic
velocity increase at low stiffness (Fig. 3.16), larger clusters have a longer in-

76



3

3.5 Effect of cluster size, cellular contractility and stiffness profile

crease of the durotactic velocity with substrate stiffness, and hence they reach
their maximum velocity at higher values of the stiffness.
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Figure 3.17: Effect of cluster size, cellular contractility, and stiffness
gradient. Evolution of the durotactic velocity (a-c) and contact radius (d-f) as
a cluster moves along a stiffness gradient. a,d, Increasing the cluster’s volume
V = 9250π/3, 92500π/3, 925000π/3 µm3 leads to larger contact radius (d) and
hence faster durotaxis (a). b,e, Decreasing all the active forces through factors
αζ = αζi < αγ leads to slower durotaxis and a shift of the velocity maximum to
smaller stiffness. Here αγ = 0.7, 1, 1.2, 1.5 and αζ = αζi = 0.4, 1, 1.4, 2, where a
stronger decrease in cellular contractility corresponds to smaller α. c,f, Increas-
ing the stiffness gradient E′ = 10, 20, 30, 50, 70 kPa/mm, produces an increase of
durotactic velocity and a displacement of its peak towards stiffer regions. In the
light and dark curves from a and d, initially R0 = 3.0 µm and H0 = 26.1, 122.7
µm, giving θ0 = 166.9◦, 177.2◦ respectively. In all the others, R0 = 3.0 µm,
H0 = 56.8 µm and θ0 = 174.0◦ (consistent with Fig. 3.3b), giving a constant
volume V = 92500π/3 µm3. The initial position is x0 = 100 µm (E0 = 3.8 kPa)
and the simulation time-step is ∆t = 6 min.

3.5.2 Cellular contractility

Decreasing myosin-generated cellular contractility through the ROCK inhibitor
Y-27632 produces slower durotaxis and shifts the maximum of the durotactic
velocity towards lower stiffness (Fig. 3.7b). This is recovered in the model by
decreasing the magnitude of all the active forces: active traction ζi, monolayer
contractility |ζ|, and tissue surface tension γ (Fig. 3.17b,e). Specifically, we re-
duce active forces by multiplying their coefficients by factors α < 1: ζred = αζζ,
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ζred
i = αζiζi, γ

red = αγγ. Both monolayer contractility ζ and active traction ζi
are active forces that would vanish completely with no myosin activity. In con-
trast, tissue surface tension γ has both active and passive contributions [Man-
ning2010]. The passive contribution is due to cell-cell adhesion, which would keep
cells adhered and thus produce a tissue surface tension even without myosin ac-
tivity. Therefore, a reduction of myosin activity, as induced by the Y-27632 treat-
ment, affects ζ and ζi to a larger extent than γ, and so we take αζ = αζi < αγ .
Reducing active forces through these factors, we recover the decrease of duro-
tactic velocity and the shift of its maximum towards lower stiffness.

Decreasing only the monolayer contractility |ζ| is not enough to explain the
experimental results of the Y-27632 treatment. Decreasing the contractility pro-
motes wetting [Pérez-González2019], and therefore it yields a higher contact
radius (Fig. 3.18b), shifting the maximum durotactic velocity towards lower stiff-
ness and increasing its magnitude (Fig. 3.18a). Since this increase is opposed
to the experimental results (Fig. 3.7b), we corroborate that the decrease of all
three active forces (active traction, contractility, and surface tension) is crucial.
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Figure 3.18: Decreasing only monolayer contractility is not enough.
Evolution of the durotactic velocity (a) and the contact radius (b) as a cluster
moves along a stiffness gradient. Increasing the contractility −ζ = 2, 5, 7 kPa pro-
duces slower durotaxis, and shifts the maximum velocity to higher stiffness (a) as
it promotes dewetting, i.e., smaller contact radius (b). Initially, R0 = 3.0 µm,
H0 = 56.8 µm and θ0 = 174.0◦ (consistent with Fig. 3.3b), giving a constant vol-
ume V = 92500π/3 µm3. The initial position is x0 = 100 µm (E0 = 3.8 kPa), and
the simulation time-step is ∆t = 6 min.

3.5.3 Stiffness profile

A higher stiffness gradient produces faster durotaxis (Fig. 3.8b). The model
explains these results (Fig. 3.17c,f) since a higher stiffness gradient implies a
larger traction difference across the basal monolayer, which drives faster duro-
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taxis (Fig. 3.15b). In addition, our predictions reveal that the maximum of
the durotactic velocity is shifted towards higher stiffness (Fig. 3.17c) because
a higher stiffness gradient yields a lower contact radius R for a fixed stiffness
E (Fig. 3.17f), which we have previously shown to shift the optimal durotactic
conditions to stiffer substrates (Fig. 3.16b,c).

3.6 Dynamical evolutions in a stiffness gradient

To complete our understanding of the problem, in Fig. 3.19 we finally simulate
and track a cluster’s migration and morphology change through its evolution up a
stiffness gradient. As the cluster moves to stiffer regions, it wets the substrate by
decreasing its contact angle, but its durotactic velocity varies non-monotonically,

x

z

R  < Rproj

Ò

Rsphere   =          R               =      Rproj

Í(E)

R            =     Rproj

Rs
phere>
   Rp

roj

Stiffness E

a

-°i(E)p Ø(E)v

h

Cell-substrate adhesion
Cell–cell junction

Active traction
Monolayer tension

Surface tension
Friction

Young-Laplace pressure

R      sphere =   Rproj

P(E)

10 20 30 40 50 60 70 80 90 100

H

c e

Stiffness  E  (kPa)

s

d

Stiffness  E  (kPa)

f g

Increasing pressure
sensitivity to stiffness

Stiffness  E  (kPa)

P

Stiffness  E  (kPa)Stiffness  E  (kPa)

h
Increasing cluster size

Decreasing active components
(contractility, traction and 

surface tension)

°, °          , Í i

Ve
lo

ci
ty

 
(µ

m
/h

)

Ve
lo

ci
ty

 
(µ

m
/h

)

Ve
lo

ci
ty

 
(µ

m
/h

)

Ve
lo

ci
ty

 
(µ

m
/h

)
Ve

lo
ci

ty
 

(µ
m

/h
)

Increasing saturation
crossover stiffness

E *

Stiffness  E  (kPa)

Co
nt

ac
t a

ng
le

  Ò
  (

º)

Time  t  (h)

Ve
lo

ci
ty

 
(µ

m
/h

)

Increasing stiffness
gradient

E ’

40 80 1200 40 80 1200

40 80 120040 80 1200
0

2

4

6

8

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

_

Spreading

Durotactic

Rsphere   

Low wettability

Neutral wettability

High wettability

Stiffness  E  (kPa)

t = 0 h 130 h
850 h600 h250 h180 hb

20 40 60 80 100

0

2

4

6

0 400 800

0

45

90

135

180

400 h

40 800

0

2

4

6

8
600200

x

z

R  < Rproj

Ò

Rsphere   =          R               =      Rproj

Í(E)

R            =     Rproj

Rs
phere>
   Rp

roj

Stiffness E

a

-°i(E)p Ø(E)v

h

Cell-substrate adhesion
Cell–cell junction

Active traction
Monolayer tension

Surface tension
Friction

Young-Laplace pressure

R      sphere =   Rproj

P(E)

10 20 30 40 50 60 70 80 90 100

H

c e

Stiffness  E  (kPa)

s

d

Stiffness  E  (kPa)

f g

Increasing pressure
sensitivity to stiffness

Stiffness  E  (kPa)

P

Stiffness  E  (kPa)Stiffness  E  (kPa)

h
Increasing cluster size

Decreasing active components
(contractility, traction and 

surface tension)

°, °          , Í i

Ve
lo

ci
ty

 
(µ

m
/h

)

Ve
lo

ci
ty

 
(µ

m
/h

)

Ve
lo

ci
ty

 
(µ

m
/h

)

Ve
lo

ci
ty

 
(µ

m
/h

)
Ve

lo
ci

ty
 

(µ
m

/h
)

Increasing saturation
crossover stiffness

E *

Stiffness  E  (kPa)

Co
nt

ac
t a

ng
le

  Ò
  (

º)

Time  t  (h)

Ve
lo

ci
ty

 
(µ

m
/h

)

Increasing stiffness
gradient

E ’

40 80 1200 40 80 1200

40 80 120040 80 1200
0

2

4

6

8

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

_

Spreading

Durotactic

Rsphere   

Low wettability

Neutral wettability

High wettability

Stiffness  E  (kPa)

t = 0 h 130 h
850 h600 h250 h180 hb

20 40 60 80 100

0

2

4

6

0 400 800

0

45

90

135

180

400 h

40 800

0

2

4

6

8
600200

Figure 3.19: Velocity and shape dynamics of a migrating cluster. Non-
monotonic dependence of the durotactic velocity vX with stiffness (in red), the
spreading velocity vS (in blue), and the decrease in the contact angle θ (in brown).
Initially, R0 = 3.0 µm, H0 = 56.8 µm and θ = 174◦, giving a constant volume
V = 92500π/3 µm3. The initial substrate stiffness is E0 = 3.8 kPa, and pressure
increases and saturates with stiffness, with P∞ = 0.6 kPa and E∗

p = 10 kPa (with a
similar dependence with stiffness than that for the active traction and the friction
in Eq. 3.4). The simulation time step is ∆t = 6 min.
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as we have explained above. At low stiffness, the tissue has high contact angles
θ (and so low contact radius R). This leads to a small active traction difference
across the tissue, and hence a small durotactic velocity. However, the contact
angle is large (Fig. 3.3b), and therefore surface tension pulls the cluster edges
out (Fig. 3.9 left) and gives rise to a positive spreading velocity. As a result,
the contact angle decreases, and the durotactic velocity increases. The speedup
of durotaxis at low stiffness is thus favored by surface tension. The positive
feedback between spreading and durotaxis produces a fast growth of the duro-
tactic velocity, up to the regions where the surface tension contribution changes
sign, at a contact angle of 90◦ (Fig. 3.9 center). After this point, surface tension
points inwards and no longer promotes spreading (Fig. 3.9 right). The spreading
velocity therefore decreases, and durotaxis slows down.

All in all, the combined effects of 3D active wetting and the saturation of cel-
lular forces at high stiffness explain why the durotactic velocity first increases and
then decreases with substrate stiffness, as observed in the experiments (Fig. 3.7),
with a maximum around a contact angle of 90◦ (Fig. 3.19).

3.7 Limitations of the model and perspectives

We have introduced strong simplifications in the model to reduce the number
of parameters and have an effective theory that is amenable to analysis, and
that captures the basic physical mechanisms underlying collective durotaxis.
Importantly, since we are considering cell clusters as spherical caps, the strong
shape fluctuations that are observed in the experiments are not accounted for by
the model. Second, the model assumes that surface tension is uniform across the
cluster, yielding also a uniform Laplace pressure across the cluster. Therefore,
our model does not account for flows driven by Laplace pressure gradients.

Beyond their shape, we describe cell clusters as fluid droplets that are passive
in the bulk but active in the basal cell monolayer. We include three active forces:
traction, tissue contractility, and surface tension. Traction and contractility are
distributed in a boundary layer of finite thickness Lc at the edge of the basal cell
monolayer. In contrast, we assume that surface tension is localized strictly at
the tissue edge, entering as a boundary condition at the contact line. Therefore,
the model does not account for the radial profile of the vertical component of
traction forces measured in the experiments (Fig. 3.4d).

For the same reason, we cannot capture the profile of the in-plane traction
Tr near the monolayer edge, as can be observed in the fit of the experimental
data in Fig. 3.20. To obtain the best possible fit of the model parameters we
choose the range of experimental data (dots in Fig. 3.20) that decreases with
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the distance from the edge, a bit further away from this edge. Then, the fit is
performed with the analytical expression for the traction, Tx = −fxh = h∂xσ

s
xx

(Eq. 2.10), and the boundary condition for the stress with the surface tension
σsxx(±R) = −γ/h cos θ (Eq. 3.2).

Figure 3.20: Comparison of radial traction forces in experiments and
theory. Fits of the theoretically-predicted radial traction profiles (dashed lines) to
the experimental data (dots) from Fig. 3.4c. A least-squares minimization method
is used, obtaining Lc = 13.86 µm, ζi1 = 3.75 Pa/µm and ζi6 = 12.6 Pa/µm, and the
sum of the squared residuals being 14.0 Pa2 and 7.1 Pa2 for 1 and 6 kPa substrates,
respectively. Contact angles of the clusters are chosen to be θ1 = 134◦ for the 1
kPa gel and θ6 = 112◦ for the 6 kPa (Fig. 3.3b). Since in both cases θ > 90◦, the
apparent cluster’s size observed in the experiments corresponds to Rsphere, which
we estimate to be Rsphere = 30 µm (Fig. 3.4a,b). The cluster’s contact radius is
then R = Rsphere sin(π − θ), which gives R1 = 21.6 µm and R6 = 27.8 µm. From
the vertical traction measurements (Fig. 3.4d), we take P1 = 10 Pa and P6 = 50
Pa. The friction at 1 kPa and 6 kPa is taken from the function ξ(E) (Eq. 3.10),
yielding screening lengths of λ1 = 134 µm and λ6 = 130 µm. Results from the fits
are not very sensitive to the choice of all these parameter values.

3.8 Discussion and conclusions

In this chapter, we have studied collective durotaxis of cell clusters with a con-
tinuum model, generalizing the theory of active wetting [Pérez-González2019]
to 3D clusters, describing them as spherical caps of an active polar fluid. The
dynamics are dominated by the active forces at the contact monolayer with the
substrate, together with in-plane and out-of-plane components of the surface
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tension force exerted by the spherical surface at the contact line. Combining
the dependence on the contact angle and the sensitivity of traction forces to
the substrate stiffness is essential to explain the interplay between durotaxis
and wetting, and consequently to account for the non-monotonic behavior of the
durotactic velocity with substrate stiffness.

As predicted in previous theoretical work from [Alert2019b], and further stud-
ied in Chapter 2, the experimental results from this chapter demonstrate a mode
of durotaxis in which cell clusters move as a whole, with the front and rear edges
displacing in the same direction. This behavior is different from that observed in
earlier studies of collective durotaxis using flat monolayers, which showed asym-
metric spreading, rather than directed migration [Sunyer2016, Martinez2016].
Here, clusters perform cohesive durotactic migration as their interface advances
on the stiff side and retracts from the soft side. The durotactic velocity is a
non-monotonic function of local substrate stiffness, peaking at an intermediate
stiffness, that can be shifted to higher or lower stiffness by tuning cluster size and
active forces. As such, clusters display low motility on the soft and stiff regions
of the substrate, where they fully dewet and wet the surface, respectively. At
intermediate stiffness, close to the crossover between low and high wettability,
cell clusters are maximally motile on uniform-stiffness substrates and exhibit
optimal durotaxis on gradient-stiffness ones. Therefore, the existence of an op-
timal stiffness for collective durotaxis is connected to the wetting properties of
the droplet, which ultimately depend on the stiffness.

Moreover, we recover all the behaviors with the model about how collective
durotaxis depends on the physical properties of the cluster (size, 3D shape, and
contractility) and of the substrate (local stiffness and stiffness gradient). The
interplay between cell contractility, cluster size, stiffness, and cell traction forces
can position clusters near contact angles of θ = 90◦, and thus provide them with
a sweet spot where cluster durotaxis is maximal.

The finding of an optimal regime for collective durotaxis provides a new ap-
proach for controlling directed cell migration in vivo. By tuning the local stiffness
of a substrate or the active properties of a cluster, organisms could trigger and
regulate this directed migration [Barriga2018]. On the other hand, abnormal tis-
sue stiffening or softening, or changes in the active or mechanical properties of
cell clusters, may hinder physiological migration or trigger undesired durotaxis,
like the movement of clusters during cancer invasion and metastasis. Although
measuring mechanical gradients in vivo is technically very challenging [Shel-
lard2021b], collective durotaxis is becoming more widely acknowledged as a ma-
jor mechanism guiding directed cell migration in development [Zhu2020, Shel-
lard2021a] and disease [Haeger2015,DuChez2019]. Our study provides a general
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physical framework to address and interpret the mechanisms underlying collec-
tive durotaxis.
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Appendices

3.A Effects of other parameters in the dynamics

We analyze the effects of various model parameters in the dynamical evolutions,
such as the initial stiffness E0 (Fig. 3.A.1), the contractility |ζ| (Fig. 3.A.2a,b),
the pressure offset P0 (Fig. 3.A.2c,d), and the pressure gradient P ′ (Fig. 3.A.3).
In all the situations, the cell cluster starts with a high contact angle θ on the
soft region of the substrate. As it advances towards stiffer regions, the cluster
increases its wettability, lowering its contact angle θ and so expanding its contact
radius R. As a result, the cluster increases its durotactic velocity, speeding up.
Eventually, when it reaches sufficiently stiff substrates, the friction increases,
and the active traction saturation slows down the cluster’s motion.

In many cases, however, there is an initial decrease of the durotactic veloc-
ity, corresponding to a decrease in the contact radius R. This initial slowdown
happens when the cluster starts under conditions of dewetting, i.e., with a neg-
ative spreading velocity vS < 0. In these situations, the contact radius initially
decreases and the contact angle increases, as illustrated in Figs. 3.A.1–3.A.3, in
which the initial contact angle is θ0 = 136.4◦ > 90◦. In a softer initial position
(Fig. 3.A.1), with higher contractility (Fig. 3.A.2a-c), or with smaller values of
the pressure and thus the surface tension (Fig. 3.A.3), this early-stage effect is
accentuated, since all these parameters favor cluster dewetting. Instead, a larger
pressure diminishes this effect because it favors the expansion of R at the initial
stages and when θ > 90◦.

Finally, if the pressure does not increase with stiffness (Fig. 3.A.2d,e), surface
tension offers a lower opposition to cluster spreading in low contact angle con-
ditions (θ < 90◦). As a result, the contact radius keeps increasing significantly
even at high stiffness. Nevertheless, the durotactic velocity still decreases due to
the increase in friction.
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Figure 3.A.1: Effect of the initial substrate stiffness in the dynamics.
Evolution of cluster motion and shape as it moves along a stiffness gradient, with
saturated traction and friction and linear pressure profiles. In the velocity plots,
we show both the durotactic velocity (in red) and the spreading velocity (in blue).
Initially, R0 = 20.0 µm, H0 = 50.0 µm and θ0 = 136.4◦, giving a constant V =
92500π/3 µm3. We change the initial position to x0 = 50, 100, 200, 300, 400 µm,
corresponding to E0 = 2.2, 3.8, 7.1, 10.5, 13.8 kPa. The simulation time-step is
∆t = 6 min.
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Figure 3.A.2: Effect of the contractility and the pressure offset in the
dynamics. Same as Fig. 3.A.1, with initial position x0 = 100 µm (E0 = 3.8 kPa).
In a-c, we change the contractility to −ζ = 1, 2, 3 kPa, with a linear pressure profile
P0x = 4.2 Pa and P ′ = 0.6 Pa/µm. In d and e, we take a uniform pressure of
P = 0.5 and 1.0 kPa respectively, with a fixed contractility ζ = −2 kPa.
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Figure 3.A.3: Effect of the pressure gradient in the dynamics. Same as
Fig. 3.A.1, with initial position x0 = 100 µm (E0 = 3.8 kPa), and changing the
pressure gradient to P ′ = (0.2, 0.4, 0.6, 1.5, 3.0) Pa/µm.
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Stiffening of
substrates

Increasing of
tractions

Traction bistability on
strain-stiffening substrates

4.1 Introduction

Studying the myriad interactions between cells and the extracellular matrix
(ECM) is crucial for many processes in tissue development, repair, and dis-
ease progression. For instance, the relationship between traction forces and the
orientational order of the matrix could affect the tissue architecture, or the nu-
merous biochemical processes, such as matrix degradation by metalloproteases,
may further modulate the physical and mechanical environment of cells. This, in
turn, may impact on their migration behavior. In this chapter, we focus specif-
ically on the feedback between traction forces exerted by cells and the stiffness
of the ECM. As we have argued in Chapter 2 and Chapter 3, this interaction
is particularly relevant in durotaxis, where cells sense and respond to substrate
stiffness, guiding their migration towards stiffer regions.

Traction forces are influenced by the properties of the cell’s environment,
particularly by mechanical properties. For in vitro tissues in the laboratory,
these forces are inferred from displacements of fluorescent beads embedded in
the substrate through a technique called Traction Force Microscopy (TFM,
Fig. 4.1). Force-induced deformations of the substrate are measured, which
allows to reconstruct cellular forces based on continuum mechanical principles.
They are usually found to be larger on stiffer substrates [Discher2005,Saez2005,
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Ghibaudo2008, Saez2010, Ladoux2012,Trichet2012, Elosegui-Artola2014, Li2015,
Gupta2015,Gupta2016,Pallarès2023]. Therefore, it is well established that the
stiffness of a tissue’s surroundings influences the active traction forces it exerts,
affecting its collective migration. However, whether changes in traction forces
can, in turn, alter the stiffness of the environment, remains unexplored.

Figure 4.1: Traction measure-
ments in TFM experiments. Cell
traction forces, tx and ty, are inferred
from the beads displacements. Using
force balance, the intercellular stresses
are computed. They can be tensile or
compressive, σxx and σyy, in the nor-
mal direction of the intercellular junc-
tions or correspond to shear forces,
σxy and σyx, in the tangential direc-
tion. Adapted from [Ladoux2017].

Polyacrylamide (PAA) gels are frequently used as substrates in the labora-
tory since they are linear elastic materials, displaying a constant elastic modulus
for a large range of applied strains [Kandow2007, Storm2005] (see the fabrica-
tion protocol in Section 5.3.2). This linearity facilitates robust and computa-
tionally inexpensive methods for force inference [Butler2002, Sabass2008, Berg-
ert2016, Bauer2021]. However, biopolymer networks, such as crosslinked actin
filaments, collagen, fibrin, or vimentin, are nonlinear elastic materials, displaying
strain-stiffening responses: their shear modulus increases abruptly after a cer-
tain critical strain [Gardel2004,Storm2005,Pollard2009,Münster2013] (Fig. 4.2).
This may have a physiological relevance as a means to prevent damage from
exposure to large deformations [Storm2005]. The force reconstruction problem
becomes much more difficult in 3D and in these nonlinear materials, but sev-
eral successful methods have been developed [Steinwachs2016, Toyjanova2014,
Dong2017,Song2020,Böhringer2024].

In vivo, changes in stiffness may play a crucial role in modulating traction
forces, thereby influencing the collective migration of cells in tissues. The goal of
this chapter is to explore the feedback loop between cellular traction forces and
substrate stiffness. To this end, we model the substrates used in TFM as 2D elas-
tic materials and examine their interaction with active tractions. While previous
models have treated the substrates as linearly elastic materials [Trepat2009], we
introduce a nonlinear component to capture the strain-stiffening response present
in biopolymer networks. The details of this model are explained in Section 4.2,
and its solutions and implications are discussed in Sections 4.3–4.5.
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a) b)

Figure 4.2: Strain-stiffening of biopolymer networks. a, Dynamic shear
storage moduli measured at different strain amplitudes γ for a series of crosslinked
biopolymer networks. The real part G′, reduces to the shear modulus G at zero
frequency. The shown data is G for fibrin and neurofilaments, and G′ (at 10
rad·s−1) for the others. b, Scaled shear modulus by the value at zero strain versus
normalized strain, with G(γ4) = 4G(0). The black line is the universal theoretical
curve, obtained assuming a uniform distribution of filament lengths averaged for
all the orientations. Adapted from [Storm2005].

4.2 Nonlinear elastic model for the substrate in TFM

Consider the soft gel depicted in Fig. 4.1 as the substrate for a tissue. Given
the symmetry in the x and y directions, we simplify the system by reducing its
dimensionality to a 2D substrate, infinite in the x coordinate and with a fixed
height z = h. Therefore, instead of modeling a monolayer, we are modeling a
substrate with 1D multicellular trains on top, where traction forces are exerted
solely along the x-axis, denoted by Tx. We will consider the feedback loop
between the stiffness of the substrate and the magnitude of the traction forces,
which has been mentioned in the introduction and is depicted in Fig. 4.3.

Stiffening of
substrates

Increasing of
tractions

Figure 4.3: Sketch of the model for strain-stiffening substrates. The
stiffness of the substrate influences traction forces (blue arrows) that cells exert
on it (right), but these tractions produce different deformations on the substrate,
influencing the crosslinking of the biopolymer network and thus its stiffness (left).
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We adopt a model for the substrate similar to that in [Trepat2009], but
adding a nonlinear response. Let ui be the displacements of the deformations,
γ the strain, and σ the stress tensors. For a linear elastic material with shear
modulus G and bulk modulus K, we have [Landau1959],

γij =
1

2
(∂iuj + ∂jui) , (4.1)

σij = 2G

(
γij −

1

3
γkkδij

)
+Kγkkδij , (4.2)

where δij is the Kronecker delta. Written in component form,

σxx =

(
K +

4G

3

)
γxx +

(
K − 2G

3

)
γzz, (4.3)

σxz = 2Gγxz = 2Gγzx = σzx, (4.4)

σzz =

(
K − 2G

3

)
γxx +

(
K +

4G

3

)
γzz, (4.5)

where γxx = ∂xux, γxz = 1
2 (∂xuz + ∂zuu) = γzx, and γzz = ∂zuz. The equations

of equilibrium in the absence of external forces in the bulk of the system, which
is the case, are simply ∇ · σ = 0, so1

∂xσxx + ∂zσxz = 0, (4.6)
∂xσzx + ∂zσzz = 0. (4.7)

At the bottom plane (z = 0), we assume a no-slip condition since the gel is
attached to the bottom glass dish. Instead, at the cell/gel interface (z = h),
we consider zero (or negligible) normal stress and shear stress given by T = Tx,
which is indeed the traction that the tissue is exerting on the gel. Thus,

ux
∣∣
z=0

= 0, ux
∣∣
z=0

= 0 (4.8)

σzz
∣∣
z=h

= 0, σxz
∣∣
z=h

= T = 2Gγxz
∣∣
z=h

. (4.9)

To account for the nonlinearity of the substrate due to the strain-stiffening
response in a simple way, we consider the shear modulus to be a piecewise func-
tion of the shear strain, G(γxz). For strains lower than a critical one, we con-
sider that the shear modulus is a constant value G0 (linear response), while

1Do not confuse these equations with Eq. 2.10 and Eq. 2.11, since before the stress was
the one of the monolayer, whereas now we are modeling the substrate.
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for larger strains we assume a power law function with coefficient α (nonlinear
response) [Gardel2004,Storm2005],

G(γxz) =

{
G0, γxz ≤ γxz,crit,

G1γ
α
xz, γxz > γxz,crit.

(4.10)

We call the coefficient G1 the nonlinear shear modulus, with G0 = G1γ
α
xz,crit for

continuity (Fig. 4.4).

0 0.25 0.5 0.75 1
0

2

4

6

8

10

α

Figure 4.4: Shear modulus as a function of the shear strain. The shear
modulus is a piecewise function of the shear strain (Eq. 4.10). Here γxz,crit = 0.2,
G0 = 1 kPa and α = 1, 1.5, 2, 2.5. Therefore, G1 = G0γ

−α
xz,crit changes for every

curve. Note that since typically the strains are γxz < 1, then values for G1 ≫ G,
and a greater α implies a lower shear modulus G, if G1 is kept constant. The units
of both are the same since the strain is dimensionless.

Furthermore, we assume that for each value of the shear modulus, cells aim to
exert a corresponding desired traction value, which we refer to as the target trac-
tion. This concept was previously discussed in Section 2.4 or Section 3.3.2, where
parameters encoding cell-substrate interactions were modeled as increasing and
saturating functions of the substrate’s Young’s modulus E. Now we consider
the shear modulus G, but since both E and G are related (see Section 4.2.1),
the underlying reasoning remains consistent. Consequently, we define the tar-
get traction as a function of the shear modulus evaluated at z = h, denoted as
Ttarget(G

∣∣
z=h

), since traction occurs solely at this upper surface of the substrate.
While we could use the same functional forms as outlined in Eq. 2.20, which
are Hill functions of coefficient one, we consider two alternatives for greater in-
sight into the model’s predictions: a simple power law with respect to G, or, for
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generality, a Hill function of coefficient β,

Ttarget-PL(G) = T0G
β, (4.11)

Ttarget-Hill(G) = T∞ Gβ

Gβ + (G∗)β
, (4.12)

where G∗ is the characteristic shear modulus of the traction saturation, and T∞

is the value of the traction at this saturation (for large G).
The actual traction field T , however, does not instantaneously reach this

target traction; rather, it approaches it over a certain time scale τ . This timescale
is associated with the time that cells need to adapt their linkers to the substrate
to be able to exert different tractions on it. Writing the explicit dependencies,
we formulate the simple dynamical equation as follows,

∂tT = −1

τ

(
T − Ttarget(G(γxz

∣∣
z=h

))
)
. (4.13)

Experimentally, the variables most likely to be manipulated are the shear
modulus G (changing the substrate’s material or polymer concentration, for
instance) and T∞ (changing the cell line or using drug treatments to modify
their contractility and traction). Consequently, most of the plots presented in
the following sections are functions of one or the other.

4.2.1 Parameter estimates

The relations between the shear modulus G, the bulk modulus K, the Young’s
modulus E and the Poisson’s ratio ν are [Landau1959],

G =
E

2(1 + ν)
, K =

E

3(1− 2ν)
, E =

9KG

3K +G
, ν =

3K − 2G

2(3K +G)
. (4.14)

Since the Poisson’s ratio must be 0 < ν < 0.5, then G < 3K/2. In fact, ν ≈ 0.48
in PAA gels [Boudou2009], which implies

3K(1− 2ν) = 2G(1 + ν) −→ K =
2(1 + ν)

3(1− 2ν)
G ≈ 2.96

0.12
G ≈ 24.7G. (4.15)

Although TFM experiments are typically conducted with PAA gels, a biopoly-
mer network is used to coat the gel, facilitating cell adhesion, which might exhibit
strain-stiffening. While the Poisson’s ratio in biopolymer networks is generally
smaller than that of PAA gels, its value provides a useful reference for estimating
reasonable ranges, for instance, for Young’s modulus E, which is the commonly
reported measure in experiments. In Table 4.1 we summarize values for some
parameters, which would be useful for the numerical simulations. However, the
simulations are not included in this thesis, and for the analytical results, only G
needs to be estimated.
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G (kPa) K (kPa) E (kPa) ν

1 25 3.0 0.48
2 20 5.8 0.45
10 100 29.0 0.45
20 90 55.9 0.40

Table 4.1: Parameter values. Combinations of shear modulus G and bulk mod-
ulus K, that give reasonable Young’s modulus E and Poisson’s ratio for modeled
substrates.

4.3 Stationary states

Let T 0 and γ0xz be the stationary states of the model, fulfilling ∂tT = 0. From
Eq. 4.13, T 0 = Ttarget(G(γ

0
xz

∣∣
z=h

)), where Ttarget can be either a power law
(Eq. 4.11) or a Hill function (Eq. 4.12) of the shear modulus G. This G, in turn,
is a piecewise function of the shear strain γxz (Eq. 4.10), displaying a linear and
a nonlinear regime. In this section, we give the expressions for these stationary
states in both of them.

4.3.1 Linear regime

In the linear regime, G = G0 is constant and so T 0 is also constant. Thus, the
solution of the system of equations Eqs. 4.6–4.9 is simply a linear x-displacement
with z (u0x(z) = cz, c constant) and no z-displacement (u0z(z) = 0), giving a
constant shear strain γ0xz = 1

2(∂xu
0
z + ∂zu

0
x) = c/2 [Trepat2009]. Hence, γ0xz =

γ0xz
∣∣
z=h

and γ0xx = γ0zz = 0. From the boundary condition for the shear stress
and the traction at the top surface of the gel (Eq. 4.9), the solution is

γ0xz =
Ttarget(G0)

2G0
=





T0
2 G

β−1
0 , power law,

T∞

2
Gβ−1

0

Gβ
0+(G∗)β

, Hill function.
(4.16)

We can see that for the power law target traction, if β > 1 the deformation
γ0xz increases monotonously with the shear modulus G0, whereas it decreases
(also monotonously) for β < 1 (Fig. 4.5). Thus, even though a stiffer substrate
(greater G0) should be more difficult to deform (and so γ0xz should decrease),
greater tractions also imply greater deformations, and so if the target traction
increases sufficiently fast with G0 (which happens for β > 1), this yields an
increasing γ0xz.
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Figure 4.5: Stationary states in the linear regime for a power law target
traction. Stationary shear strain γ0xz (a) and traction T 0 (b) as a function of the
linear shear modulus G0 in the linear regime and for a power law target traction
(Eq. 4.16), with T0 = 1 kPa, and β = 0.5, 1, 1.5, 2, 2.5.
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Figure 4.6: Stationary states in the linear regime for a Hill function
target traction. Same as Fig. 4.5 but for a Hill function target traction, with
T∞ = 1 kPa, G∗ = 1 kPa, and β = 1, 2, 3, 5, 15. In c, G0 that gives the peak of
the stationary shear strain γ0xz in Fig. 4.6a, as a function of β (Eq. 4.17).
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In contrast, for the Hill function target traction, γ0xz is non-monotonic with
G0 for β > 1 (Fig. 4.6a,b), with its peak at (Fig. 4.6c)

G0 = G∗(β − 1)1/β. (4.17)

This non-monotonicity is due to a competition of two effects, actually related to
the argument for the power law from before:

• The stiffer the substrate (greater G0), the larger the traction, and since
larger force generates greater deformation, γ0xz increases. This occurs in a
regime where traction can increase sufficiently (small G0’s in Fig. 4.5b and
for β > 1).

• But also, the greater G0, the stiffer the substrate and the harder to deform
it, causing γ0xz to decrease. This occurs in a regime where traction is
already saturating or does not increase sufficiently (high G0’s in Fig. 4.5b
or β < 1).

4.3.2 Nonlinear regime

In the nonlinear regime, G = G1γ
α
xz is not constant anymore, but for continuity

the solution of the system of Eqs. 4.6–4.9, has again the same dependency as in
the linear regime, that is, a uniform traction in x and a constant shear strain
for all the z coordinate, γ0xz = γ0xz

∣∣
z=h

(and γ0xx = γ0zz = 0). From the boundary
condition on the cell/gel interface (Eq. 4.9), now

(γ0xz)
α+1 =

Ttarget(G1(γ
0
xz)

α)

2G1
=





T0
2 G

β−1
1 (γ0xz)

αβ, power law,

T∞

2
Gβ−1

1 (γ0
xz)

αβ

(Gβ
1 (γ

0
xz)

αβ+(G∗)β
, Hill function.

(4.18)

In both, we recover Eq. 4.16 for the linear case α = 0 (and replacing G1 →
G0). We can explicitly write the solution for the power law γ0xz-PL and the
corresponding stationary traction, T 0

PL = T0(G1(γ
0
xz-PL)

α)β , yielding

γ0xz-PL =

(
T0
2
Gβ−1

1

) 1
α+1−αβ

, (4.19)

T 0
PL = T0G

β
1

(T0
2
Gβ−1

1

) αβ
α+1−αβ

=
(Tα+1

0 Gβ
1

2αβ

) 1
α+1−αβ

. (4.20)

In this case, if 1 < β < (α + 1)/α, the shear strain γ0xz-PL increases monoto-
nously with the nonlinear shear modulus G1, whereas if it is lower or higher, it
decreases with G1 (Fig. 4.7a). The stationary traction T 0

PL decreases with G1
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for β > (α + 1)/α (Fig. 4.7b). One should not be confused by the fact that G1

is related to the modulus of the substrate but is not the modulus itself. In fact,
if β > (α + 1)/α, then G = G1(γ

0
xz-PL)

α decreases as well even though G1 in-
creases, because γ0xz-PL(G1) decreases faster. Consequently, both γ0xz-PL(G) and
T 0

PL(G) increase, giving a behavior similar to that of the linear regime (Fig. 4.5).
Changing α, which controls the strain-stiffening, we would get the same behav-
ior, since even though γ0xz-PL(G1) decreases for α > 1/(β−1), it always increases
when plotted as a function of the shear modulus G. All in all, if the traction
increases sufficiently fast with the shear modulus G (for β > 1), it is capable of
deforming further the substrate even though the latter is getting stiffer, and so
γ0xz-PL increases. Otherwise, if traction does not increase sufficiently (β < 1),
then stiffening overcomes traction deformation, and γ0xz-PL decreases because the
substrate is more difficult to deform.
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Figure 4.7: Stationary states in the nonlinear regime for a power law tar-
get traction. Stationary shear strain γ0xz (a) and traction T 0 (b) as a function of
the nonlinear shear modulus G1 in the nonlinear regime and for a power law target
traction (Eq. 4.19 and Eq. 4.20). T0 = 1 kPa, α = 1 and β = 0.5, 1, 1.3, 1.5, 1.8, 2.5.
Thus, for 1 < β < 1.5, γ0xz(G1) increases.

For the Hill function target traction, γ0xz-Hill cannot be found analytically, as
it is defined implicitly as the solution of f(γ0xz-Hill) = 0, where

f(γxz) ≡ Gβ
1γ

αβ
xz − T∞

2
Gβ−1

1 γαβ−α−1
xz + (G∗)β

= Gβ−1
1 γαβ−α−1

xz

(
G1γ

α+1
xz − T∞

2

)
+ (G∗)β. (4.21)

The stationary solutions for γ0xz-Hill and T 0
Hill are marked as circles in Fig. 4.8.

There are typically two solutions, and both are uniform in space. We will see in
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Section 4.4.2 that perturbations of the traction around one of them are unstable
(empty circles), and around the other (filled circles) are stable. In this figure,
we can observe a non-monotonous behavior of the stable solution γ0xz-Hill(G1),
although recall that it does not correspond to the shear modulus of the substrate
G. In Fig. 4.9, instead of varying G1 we change the coefficients controlling the
target traction growth (β) or the strain-stiffening (α), and we see that in some
cases there is only one solution.

0 0.2 0.4 0.6 0.8

0

0.4

0.8

1.2

Figure 4.8: Target traction and stationary states in the nonlinear regime.
Continuous lines are Ttarget-Hill(G1γ

α
xz), and dashed lines 2G1γ

α+1
xz , and so the

intersection gives the stationary shear strain γ0xz (Eq. 4.18), which is also solution
of f(γ0xz) = 0, being f in Eq. 4.21. Parameters are α = 1, β = 3, G∗ = 1 kPa
and T∞ = 1 kPa, and we change G1 = 4, 5, 7, 10, 20 kPa, which corresponds to
G0 = 0.8, 1, 1.4, 2, 4 kPa, with γxz,crit = 0.2.

From Eq. 4.21, for small G∗, implying an abrupt increase of the target trac-
tion with G, there are two solutions. The first one is γ0xz-Hill,Lim1 ≈ 0, which
cannot be reached since these very small strains belong to the linear regime
(γxz < γxz,crit), so the solution will be that of Eq. 4.16. The second is

γ0xz-Hill,Lim2 ≈
(
T∞

2G1

) 1
α+1

. (4.22)

This last one corresponds simply to the solution when the target traction has
already saturated to T∞, and so we recover the same expression by just putting
Ttarget = T∞ in the first equality of Eq. 4.18.
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Figure 4.9: Target traction and stationary states in the nonlinear regime.
Same as Fig. 4.8 with G1 = 5 kPa. In a, α = 1 and β = 0.5, 1, 2, 3, 4. In b, β = 1
and α = 0.5, 1, 1.5, 2, 2.5.

4.4 Linear stability analysis of stationary solutions

The stationary states in the nonlinear regime were found assuming that the solu-
tion has the same dependency as in the linear regime, that is, uniform traction,
a linear x−displacement with z and no z−displacement (and hence a constant
shear strain γxz). We now discuss the linear stability of the solutions of the
nonlinear problem. For a small traction perturbation δT , we linearize the equa-
tions around the stationary state γ0xz to find the growth rate of the perturbation.
From Eq. 4.13,

∂tδT = −1

τ

[
δT −

(
∂Ttarget

∂γxz

)∣∣∣∣
γ0
xz

δγxz
∣∣
z=h

]
, (4.23)

and the growth rate of a perturbation of wavenumber q reads,

ω(q) =
1

τ

[(
∂Ttarget

∂γxz

)∣∣∣∣
γ0
xz

δˆ̃γxz
∣∣
z=h

δ ˆ̃T
− 1

]
. (4.24)

If ω(q) > 0, the perturbation grows exponentially, and the state is unstable,
whereas if the growth rate is negative, it decays, and the state is stable under
that perturbation. An imaginary part would imply an oscillatory dynamics of the
perturbation. The linearized system of equations and its resolution is explained
in detail in Appendix 4.A. Importantly, it directly follows from the boundary
condition for the shear stress on the cell/gel interface (Eq. 4.9 right), that the
perturbation in the strain only depends on q through the traction perturbation
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(Eq. 4.A.22),

δˆ̃γxz
∣∣
z=h

≡ 1

2

[
iqδ ˆ̃uz + ∂z(δ ˆ̃ux)

] ∣∣
z=h

=
δ ˆ̃T

2G1(γ0xz)
α(α+ 1)

=
δ ˆ̃T

2C2
, (4.25)

and so, even though δˆ̃γxz may depend explicitly on q, when evaluated at z = h it
does not (Fig. 4.10). The expression of the growth rate (also Eq. 4.A.30), reads

ω =
1

τ

[(
∂Ttarget

∂γxz

) ∣∣∣∣
γ0
xz

1

2G1(γ0xz)
α(α+ 1)

− 1

]
. (4.26)
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Figure 4.10: Strain perturbation as a function of the wavenumber. Plot
of δˆ̃γxz/

ˆ̃
δT as a function of q, for different values of z = 0, 1, 2, 3, 4, 5. For z = h it

is independent of q. Parameters are α = 2, h = 5 µm, δ ˆ̃T = 1 kPa·µm·h, K = 20
kPa and G1γ

0
xz = 2 kPa.

This ω does not depend on q, because we are assuming that the top plane
is not deforming in z. The full expression for ω has to be determined with a
specific profile for the target traction. In the linear regime, this perturbation
is always stable since Ttarget does not depend on γxz (G = G0 is constant) and
so ω = −1/τ < 0. In the nonlinear regime, however, the stability depends on
parameter values. We compute it in the following subsections.

4.4.1 Power law target traction

The derivative of the target traction with respect to the shear strain reads
∂Ttarget-PL

∂γxz
=
∂Ttarget-PL

∂G

∂G

∂γxz
= T0βG

β−1G1αγ
α−1
xz = T0αβG

β
1γ

αβ−1
xz , (4.27)
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so plugging it into Eq. 4.26, and evaluating γ0xz = γ0xz-PL (Eq. 4.19), the expres-
sion for the growth rate is greatly simplified, obtaining

ω =
1

τ

(
αβ

α+ 1
− 1

)
. (4.28)

Therefore, the exponents α and β are the parameters that control the stability,
with ω > 0 occurring for β > α+1

α (Fig. 4.11). To have positive feedback, we
need a sufficiently strong increase of the target traction with the shear modulus
(controlled by β) to compensate for the substrate stiffening encoded in α. By
contrast, if the traction does not increase sufficiently (following the target trac-
tion), the enhanced resistance to deformation due to the stiffening overcomes the
enhanced deformation due to the traction increase and the perturbation decays.
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5

Figure 4.11: Phase diagram for the stability of the perturbation. β(α)
giving unstable perturbation for a power law target traction.

4.4.2 Hill function target traction

Now, the derivative of the target traction with respect to the shear strain reads

∂Ttarget-Hill

∂γxz
=
∂Ttarget-Hill

∂G

∂G

∂γxz
= T∞ (G∗)ββGβ−1

(Gβ + (G∗)β)2
G1αγ

α−1
xz

=
T∞αβGβ

1 (G
∗)βγαβ−1

xz

(Gβ
1γ

αβ
xz + (G∗)β)2

. (4.29)

Plugging it into Eq. 4.26 and evaluating at γ0xz, we obtain

ω =
1

τ

[
T∞αβGβ−1

1 (G∗)β(γ0xz)
αβ−α−1

2(α+ 1)[Gβ
1 (γ

0
xz)

αβ + (G∗)β]2
− 1

]
. (4.30)
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Since we do not have analytical solutions for γ0xz = γ0xz-Hill for all the parameters
(see Section 4.3.2), we cannot have a general explicit expression for this growth
rate ω. For small values of the exponents we obtain that the state is stable:

• α = 1, β = 1: The stationary shear strain is solution of G1γ
2
xz + (G∗)γxz −

T∞/2 = 0 (Eq. 4.21), and so (taking the positive solution from the second
order equation to have γ0xz > 0),

γ0xz =
1

2G1
(−G∗ +

√
(G∗)2 + 2G1T∞), (4.31)

which is positive since 2G1T
∞ > 0. The growth rate gets simplified to

ω = −1

τ

1(
1 + G∗√

(G∗)2+2G1T∞

) < 0. (4.32)

• α = 1, β = 2: The stationary shear strain is solution of G2
1γ

2
xz − G1T

∞/2 +
(G∗)2 = 0, and so

γ0xz =

√
G1T∞ − 2(G∗)2√

2G1

. (4.33)

To have a real solution, the parameters should fulfil G1T
∞ > 2(G∗)2, which

yields a negative growth rate,

ω =
1

τ

2(G∗)2 −G1T
∞

G1T∞ < 0. (4.34)

For larger or other combinations of the coefficients, the solution for γ0xz and
ω must be found numerically, solving f(γ0xz) = 0, where f is in Eq. 4.21, and
choosing the real and positive roots of the function, since only those have physical
meaning. We see that when β is large, so the target traction grows fast with the
shear modulus G, it is possible to find a parameter region where the stationary
state is unstable (ω > 0). This happens when we have more than one real and
positive solution for γ0xz. In this case, the instability of the perturbation around
each of the stationary solutions changes, being the smaller solution unstable,
and the larger one stable.

In Fig. 4.8 we saw an example for α = 1 and β = 3. The stationary solutions
for γ0xz are plotted as circles in the Ttarget(γxz) curve. For each curve, the smaller
solution (empty circle) gives unstable states, that is, with ω > 0, because it is in
a region where Ttarget increases more rapidly, with a similar tendency than the
power law (and indeed, in Eq. 4.28 we saw that the power law target traction
yields a positive growth rate for α = 1 and β = 3). On the contrary, the larger
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solution (filled circle), gives stable states, that is, with ω < 0, because the target
traction is closer to the saturation, and so it does not increase sufficiently fast
with the shear modulus G. We also observe this behavior for other combinations
of α and β (like in Fig. 4.9), including also non-integer values.

4.4.3 Adding a diffusive spatial coupling

We now extend the traction dynamics Eq. 4.13 to spatially non-uniform states,
introducing a simple diffusive coupling, to account, for instance, for the coupling
between the polarity and the traction of cells with their neighbors,

∂tT = −1

τ

(
T − Ttarget(G(γxz

∣∣
z=h

))−D∇2T
)
, (4.35)

where [D] = L2. Now the growth rate is a decreasing function of q, and using
that ω(D = 0) is the growth rate from Eq. 4.26, then

ω(q) = ω(D = 0)− D

τ
q2, (4.36)

being q∗ ≡
√

ω(D=0)τ
D (such that ω(q∗) = 0), the cut-off between a regime of

unstable perturbations (for q < q∗) and stable ones (for q > q∗), as can be
seen in Fig. 4.12. Taking realistic values for the parameters, as in the figure,
unstable perturbations may take place for wavelengths of a few micrometers
(2.8 µm < λ∗ < 9.7 µm), and so visible in the tissue length scales, and may last
a few hours (up to ω−1 ∼ 2 h).

4.5 Non-monotonicity and bistability of the solutions

In Section 4.3.1, we observed a non-monotonic behavior of the strain as a func-
tion of the substrate’s shear modulus in the linear regime and with a Hill function
target traction (Fig. 4.6). We explained it as a competition between two effects:
on the one hand, an increase in traction with shear modulus leads to a greater
deformation, while on the other hand, the stiffening of the substrate makes it
more resistant to deformation. In Fig. 4.13 we see that this non-monotonicity
is also recovered in the nonlinear regime, both when γ0xz is plotted as a function
of the nonlinear shear modulus G1 (Fig. 4.13a,b) or the actual shear modulus
G (Fig. 4.13c,d, computing G with Eq. 4.10), for different constant T∞ val-
ues. Conversely, in Fig. 4.16, the solutions are plotted versus T∞, for different
constant G1 values (Fig. 4.16). Here this non-monotonicity is not expected, be-
cause by increasing T∞ we are only increasing the traction but not stiffening the

104



4

4.5 Non-monotonicity and bistability of the solutions

0 1 2 3

-1.5

-0.5

0.5

0.5

0 1 2 3

-1.5

-0.5

0.5

0.1

a) b)

Figure 4.12: Dispersion relation of the perturbation. ω(q) for D = 0.1 µm2

(a) and D = 0.5 µm2 (b), where continuous lines correspond to stable points from
Fig. 4.8 (same parameters), and dashed ones to unstable points. For G1 = 4 kPa
(light curves), γ0xz = 0.25 → ω(D = 0) = −0.25 (stable) and γ0xz = 0.15 → ω(D =
0) = 0.21 (unstable). In this last case, q∗ = 1.46 µm−1 (a) and q∗ = 0.65 µm−1

(b). For G1 = 20 kPa (dark curves), γ0xz = 0.16 → ω(D = 0) = −0.95 (stable) and
and γ0xz = 0.005 → ω(D = 0) = 0.50 (unstable). In this last case, q∗ = 2.24 µm−1

(a) and q∗ = 1.00 µm−1 (b).

substrate, and so the stable solutions are monotonously increasing. However,
the non-monotonicity with G1 can also be observed by looking at the different
curves, mainly in the linear regime.

In some regimes, we observe bistability of the solutions and the presence of
hysteresis. When G1 is considered (Fig. 4.13a,b), for small values of G1, the
linear solution (below the black horizontal dashed line that represents γxz,crit),
which is stable, and the stable one in the nonlinear regime (continuous line
above γxz,crit), may coexist. In a typical hysteresis loop, the system starts with
the solution in the linear regime and jumps to the stable one in the nonlinear
regime as the nonlinear shear modulus is increased. If it is decreased again, it
will fall back to the linear solution at a point past the first jump. An equivalent
plot of Fig. 4.13a is shown in Fig. 4.14, for only one value of T∞, to distinguish
the solutions in the different regimes and better observe the bistability. The
effect of γxz,crit is illustrated in Fig. 4.15. If larger strains are needed to enter
the nonlinear regime (increasing the critical strain), the linear regime is enlarged,
and if big enough, the unstable solution will cease to exist. Instead, we will only
have the linear regime solution, which is stable, and the discontinuous behavior
(and the bistability) of the stationary solutions is lost.

Although G is not a parameter of the model, it is the experimentally mea-
sured shear modulus of the substrate, whereas the coefficient G1 is more difficult
to obtain. Thus, if we plot the stationary states as a function of G instead of
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G1 (Fig. 4.13c,d), we see that this bistability is not manifest and the same so-
lutions as in the linear regime are obtained, but with G0 → G, from Eq. 4.16.
This happens because the unstable solutions in the nonlinear regime when G1 is
considered (dotted lines in Fig. 4.13a,b), decrease for an increasing G1 (which is
also observed in the empty circles in Fig. 4.8). This decrease implies a decrease
in G = G1(γ

0
xz)

α, even though G1 is increasing, which yields the increasing so-
lutions for an increasing G. In this case, it is not possible to have two stable
solutions for the same value of shear modulus G, regardless of the saturating
traction value, but the non-monotonicity is still recovered.
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Figure 4.13: Stationary states in the nonlinear regime for a Hill function
target traction. a,b, Stationary solutions for γ0xz (a) and T 0 (b) as a function
of G1, changing T∞ = 1, 1.5, 2, 2.5, 5 kPa. c,d, γ0xz and T 0 as a function of G. In
all, α = 1, β = 3, G∗ = 1 kPa and γxz,crit = 0.2 (horizontal dashed line in a and
c). Continuous lines show stable solutions (both in the linear and the nonlinear
regimes) and dotted lines show unstable solutions in the nonlinear regime.
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Figure 4.14: Regimes of the stationary shear strain. In a, only the solution
for the corresponding regime is chosen, whereas in b all are plotted. Continuous
lines show stable solutions (both in the linear and the nonlinear regimes) and dotted
lines the unstable ones in the nonlinear regime. Parameters are γxz,crit = 0.15
(horizontal dashed line), and α = 1, β = 3, T∞ = 1 kPa, G∗ = 1 kPa.
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Figure 4.15: Effect of the critical shear strain. Same as Fig. 4.14a, increasing
γxz,crit = 0.02, 0.1, 0.15, 0.2, 0.23 from a to e. If it is large enough, the unstable
solution in the nonlinear regime does not exist anymore.

Finally, when plotting the stationary solutions versus the traction saturation
value T∞ (Fig. 4.16), the bistability of the solutions is still present. This tells
us that in some regimes of T∞, two stable solutions may coexist, jumping from
the linear to the nonlinear one when T∞ is increased, and going back, following
a hysteresis cycle, when it is decreased. These predictions could be potentially
tested in the experiments, which is discussed in the conclusions section.
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Figure 4.16: Stationary states in the nonlinear regime for a Hill function
target traction. a,b, Stationary solutions for γ0xz (a) and T 0 (b and c, being c a
zoom-in of b) as a function of T∞, changing G1 = 0.7, 1, 2, 6, 15 kPa. Continuous
lines show stable solutions (both in the linear and the nonlinear regimes) and dotted
lines show unstable solutions in the nonlinear regime.

4.6 Discussion and conclusions

In this chapter, we have investigated the feedback mechanisms between cellular
traction forces and the stiffness of the extracellular matrix. Our study highlights
the role of strain-stiffening of the extracellular environment in regulating tissue
dynamics, particularly the traction forces and their impact on spreading and
migration.

One key finding is the bistable nature of the solutions, both for the substrate’s
strain and the cellular tractions, in certain regimes of the model parameters, es-
pecially regarding the nonlinear shear modulus and the traction saturation value.
Near these regimes, a slight increase of either parameter would trigger a discon-
tinuous transition to much higher traction values—from the linear stable solution

108



4

4.6 Discussion and conclusions

to the nonlinear stable solution—enabling tissues to overcome intercellular con-
tractility and facilitating the spreading transition. Although both active forces—
traction and contractility—are driven by myosin activity, they evolve distinctly
due to the feedback loop between substrate stiffness and traction forces, leaving
contractility unaffected. Thus, this transition could be a triggering mechanism
for the spreading of a tissue, because leaving contractility unaffected, the higher
traction values (and higher stiffness of the substrate) induce the spreading of the
tissue [Alert2019b]. The accompanying hysteresis cycle ensures stability.

These predictions could be potentially tested in epithelial migration assays,
by either modifying the substrate’s stiffness (and so impacting the coefficient
G1) or the traction saturation values (changing T∞). In in vitro experiments,
typically, PAA gels coated with a biopolymer network are used as substrates,
and once they are prepared, it is difficult to tune their stiffness in situ during the
experiment. Adjusting polymer concentration once the cells are migrating may
be an option to test, but we suspect it would not be a very clean experiment.
However, the traction saturation value is easier to modify. By treatments impact-
ing on the myosin phosphorylation, like human epidermal growth factor (hEGF),
which increases contractility [Chan2021,Iwabu2004], or Y-27632 ROCK inhibitor
or blebbistatin that completely or partially inhibit it [Pérez-González2019], the
traction saturation value would be increased or decreased, respectively. By mea-
suring substrate deformation and inferring the traction forces from it, it should
be possible to test whether these discontinuous transitions to higher or lower
traction states take place.

These findings have potential implications for processes requiring tissue spread-
ing, such as wound healing and epithelial migration. By increasing myosin phos-
phorylation levels, cells can enhance their traction forces. Because of the ECM
stiffening, cells may then get to a higher-traction state, aiding the spreading pro-
cess. These insights could also have implications for tumor progression. During
tumor development, increased intracellular contractility, often due to elevated
myosin levels, directly affects the parameter of traction saturation (T∞) in our
model. Consequently, the surrounding ECM (stroma) gets rigidified. By mod-
eling this stiffening through the substrate’s nonlinear behavior, we predict that
once contractility surpasses a certain threshold, cells can transition from a low-
traction to a high-traction state. This shift may correspond to the initiation of
tumor spreading.

In addition to increasing contractility, another pathway to achieving a higher-
traction state involves stiffening the ECM itself. By secreting and accumu-
lating matrix components, tissues may enhance the stiffness of their environ-
ment, promoting a similar transition. This mechanism is observed in several
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biological processes, including embryonic development (such as Xenopus laevis
mesoderm stiffening, essential for triggering migration and coordinating mor-
phogenesis [Barriga2018]), wound healing (through cortical and matrix depo-
sition [Enoch2008, Vasudevan2023]), or tumor progression (via matrix deposi-
tion by fibroblasts around the tumor [Ronnov-Jessen1996,Shekhar2003,vanKem-
pen2003,Schedin2004]).

In summary, our findings underscore the intricate interplay between tissue
mechanics and the nonlinear properties of the surrounding substrate or ECM, re-
vealing how strain-stiffening can drive transitions that promote tissue spreading
and migration. This study enhances our understanding of how tissues inter-
act with and modify their environment, suggesting new avenues to explore—
such as the potential explanation of traction bursts in dense ECM regions ob-
served by [Böhringer2024]—through this feedback mechanism between stiffness
and traction.
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Appendices

4.A Linearization and solution of the system

The system of equations Eqs. 4.6–4.9 cannot be solved analytically in the nonlin-
ear regime (G = G1γ

α
xz) for an arbitrary traction T . If we assume T = T 0 + δT ,

being T 0 uniform, then we can take the linearized quantities γ = γ0 + δγ and
σ = σ0+δσ, where γ0 and σ0 are the stationary solutions in the nonlinear regime
for a uniform traction T 0 (Section 4.3.2). Eqs. 4.3–4.5 translate to

σ0xx + δσxx =

(
K +

4G1(γ
0
xz + δγxz)

α

3

)
(γ0xx + δγxx)

+

(
K − 2G1(γ

0
xz + δγxz)

α

3

)
(γ0zz + δγzz), (4.A.1)

σ0xz + δσxz = 2G1(γ
0
xz + δγxz)

α+1 (4.A.2)

σ0zz + δσzz =

(
K − 2G1(γ

0
xz + δγxz)

α

3

)
(γ0xx + δγxx)

+

(
K +

4G1(γ
0
xz + δγxz)

α

3

)
(γ0zz + δγzz). (4.A.3)

To linear order, (γ0xz+δγxz)α ≈ (γ0xz)
α+α(γ0xz)

α−1δγxz, and since γ0xx = γ0zz = 0
(Section 4.3.2), this gives

δσxx ≈ C1δγxx + (C3 − C2)δγzz, (4.A.4)
δσxz ≈ 2C2δγxz, (4.A.5)
δσzz ≈ (C3 − C2)δγxx + C1δγzz, (4.A.6)

where we have defined the constants C1 = K+ 4
3G1(γ

0
xz)

α, C2 = G1(γ
0
xz)

α(α+1)
and C3 = K + G1(γ

0
xz)

α(α + 1/3), so that C3 − C2 = K − 2
3G1(γ

0
xz)

α. The
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linearized system of equations for the perturbations of the stress then, ∂x(δσxx)+
∂z(δσxz) = 0 and ∂x(δσxz) + ∂z(δσzz) = 0 (Eqs. 4.6–4.9), read

C1∂x(δγxx) + (C3 − C2)∂x(δγzz) + 2C2∂z(δγxz) = 0, (4.A.7)
2C2∂x(δγxz) + (C3 − C2)∂z(δγxx) + C1∂z(δγzz) = 0, (4.A.8)
ux
∣∣
z=0

= 0, ux
∣∣
z=0

= 0, (4.A.9)

[(C3 − C2)δγxx + C1δγzz]
∣∣
z=h

= 0, (4.A.10)

2C2δγxz
∣∣
z=h

= δT, (4.A.11)

which, substituting for the perturbations of the displacements, δγxx = ∂x(δux),
δγxz =

1
2(∂x(δuz) + ∂z(δux)) and δγzz = ∂z(δuz),

C1∂
2
x(δux) + (C3 − C2)∂x∂z(δuz) + C2(∂z∂x(δuz) + ∂2z (δux)) = 0, (4.A.12)

C2(∂
2
x(δuz) + ∂x∂z(δux)) + (C3 − C2)∂z∂x(δux) + C1∂

2
z (δuz) = 0, (4.A.13)

ux
∣∣
z=0

= 0, ux
∣∣
z=0

= 0, (4.A.14)

[(C3 − C2)∂x(δux) + C1∂z(δuz)]
∣∣
z=h

= 0, (4.A.15)

C2 [∂x(δuz) + ∂z(δux)]
∣∣
z=h

= δT. (4.A.16)

In Fourier space for x→ q and Laplace for times t→ ω,

−C1q
2δ ˆ̃ux + C2∂

2
z (δ ˆ̃ux) + iqC3∂z(δ ˆ̃uz) = 0, (4.A.17)

C1∂
2
z (δ ˆ̃uz)− C2q

2δ ˆ̃uz + iqC3∂z(δ ˆ̃ux) = 0, (4.A.18)

δ ˆ̃ux
∣∣
z=0

= 0, δ ˆ̃uz
∣∣
z=0

= 0, (4.A.19)
[
(C3 − C2)iqδ ˆ̃ux + C1∂z(δ ˆ̃uz)

] ∣∣
z=h

= 0, (4.A.20)

C2

[
iqδ ˆ̃uz + ∂z(δ ˆ̃ux)

] ∣∣
z=h

= δ ˆ̃T. (4.A.21)

Note that from this last equation, which comes from the boundary condition for
the shear stress in the cell/gel interface, we have that δˆ̃γxz does not depend on
q when evaluated at z = h (same result as we briefly stated in Eq. 4.25),

δˆ̃γxz
∣∣
z=h

≡ 1

2

[
iqδ ˆ̃uz + ∂z(δ ˆ̃ux)

] ∣∣
z=h

=
δ ˆ̃T

2C2
. (4.A.22)

The solution for this system, Eq. 4.A.21, will be a combination of exponen-
tials, δ ˆ̃ux =

∑4
i=1Aie

λiz and δ ˆ̃uz =
∑4

i=1 µiAie
λiz, with λi and µi functions of
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C1, C2, C3 and q1. We get

λ1 = −λ2 = −f1(C1, C2, C3)q (4.A.23)
λ3 = −λ4 = −f2(C1, C2, C3)q (4.A.24)
µ1 = −µ2 = if1(C1, C2, C3)g1(C1, C2, C3) ≡ ih1(C1, C2, C3) (4.A.25)
µ3 = −µ4 = if2(C1, C2, C3)g2(C1, C2, C3) ≡ ih2(C1, C2, C3) (4.A.26)

being hi ≡ figi (with i = 1, 2) and

f 1
2
=

√
C2
1 + C2

2 − C2
3 ∓

√
k

2C1C2
, g 1

2
=
C2
1 − C2

2 − C2
3 ±

√
k

2C2C3
(4.A.27)

where k = (C1−C2−C3)(C1+C2−C3)(C1−C2+C3)(C1+C2+C3). Substituting
Ci with the according expressions with the bulk and the shear modulus K and
G, this gives k = −16

9 G
2
1(γ

0
xz)

2α(G1(γ
0
xz)

α + 3K)α[3K +G1(γ
0
xz)

α(4 + 3α)], and
so it is negative since G1,K, α, γ

0
xz > 0. Therefore, the functions f1 and f2,

related to the length scale in the exponentials, are imaginary. Writing explicitly
δ ˆ̃ux and δ ˆ̃ux,

δ ˆ̃ux = A1e
−f1qz +A2e

f1qz +A3e
−f2qz +A4e

f2qz

= (−A1 +A2) sinh (f1qz) + (A1 +A2) cosh (f1qz)

+ (−A3 +A4) sinh (f2qz) + (A3 +A4) cosh (f2qz)

≡ B1 sinh (f1qz) +B2 cosh (f1qz)

+B3 sinh (f2qz) +B4 cosh (f2qz), (4.A.28)

δ ˆ̃uz = ih1(A1e
−f1qz −A2e

f1qz) + ih2(A3e
−f2qz −A4e

f2qz)

= ih1(−A1 −A2) sinh (f1qz) + ih1(A1 −A2) cosh (f1qz)

+ ih2(−A3 −A4) sinh (f2qz) + ih2(A3 −A4) cosh (f2qz)

≡ −i
[
h1
(
B2 sinh (f1qz) +B1 cosh (f1qz)

)
+

h2
(
B4 sinh (f2qz) +B3 cosh (f2qz)

)]
, (4.A.29)

where Bi(C1, C2, C3, q, δ
ˆ̃T, h) are determined with the boundary conditions of

Eq. 4.A.21. We see that δ ˆ̃ux is real and δ ˆ̃uz imaginary. Hence, δˆ̃γxz = 1
2 [∂z(δ

ˆ̃ux)+

1The linear case (α = 0) would need of another term in the ansatz, zeλz because the
system in this case is degenerate, since C1 − C2 − C3 = 0, with C1 = K + 4

3
G0, C2 = G0 and

C3 = K + G0
3

). Therefore, we only have two solutions for λi, µi (that is, λ = ±q and µ = ±i),
but since it is a second-order system of two equations, we need four solutions.
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iqδ ˆ̃uz], is real, and so is the growth rate of the perturbation ω (Eq. 4.24). Finally,
substituting Eq. 4.A.22 there, we get the result in Eq. 4.26,

ω =
1

τ

[(
∂Ttarget

∂γxz

) ∣∣∣∣
γ0
xz

1

2C2
− 1

]

=
1

τ

[(
∂Ttarget

∂γxz

) ∣∣∣∣
γ0
xz

1

2G1(γ0xz)
α(α+ 1)

− 1

]
, (4.A.30)

and so ω does not depend on the traction perturbation.
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Experiments on shape-sensing
motility of monolayer clusters

5.1 Introduction

The relationship between movement and morphology across biological systems
has been extensively studied. For instance, keratocyte lamellar fragments, lack-
ing nuclei and most organelles, exhibit directional motility by retracting the rear
edge, which has actin and myosin accumulation [Verkhovsky1998, Pollard2003]
(Fig. 5.1a,b,d), despite the absence of a larger-scale machinery regulating the
global polarization of the full keratocyte. Phenomenological models show that
these lamellar fragments may become motile through a morphological instability
that couples shape to movement via polymerization forces at the boundary and
the actin hydrodynamics, even without molecular motors [Blanch-Mercader2013].

The question that now arises is whether, at larger scales, cell monolayers can
also exhibit spontaneous motility driven by morphological symmetry breaking.
An indication of this has been observed in [Beaune2018] with the so-called giant
keratocytes (Fig. 5.1c). In those experiments, a monolayer becomes morpholog-
ically unstable. Still, the motility is achieved through the formation of a large
3D structure that implies a global polarization of the system, akin to unicellular
keratocytes. Whether an arbitrarily shaped monolayer can be spontaneously
motile without a global polarization, such as in the case of the previously men-
tioned lamellar fragments, is a nontrivial question. The physics of monolayers
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is fundamentally different from that of lamellar fragments, which is driven by
actin polymerization. Unlike actin gels, monolayers involve supra-cellular or-
ganization and coordination among cells within the tissue. Without the global
head-tail polarization of giant keratocytes, it remains unclear whether cells in
a monolayer, following only the endogenous cues that impose outward orienta-
tion at the periphery, can sense the overall shape of the monolayer cluster and
coordinate their motion to generate sustained motion.

Push

Protrusion

Retraction

Steady
state

d

cba

Figure 5.1: Examples of spontaneous motility. a Fluorescence image of the
cytoskeletal organization of a moving (top) and a stationary (bottom) fish erpi-
dermal keratocyte fragment, where myosin II distribution is labeled in red and
actin in cyan. Scale bar, 2 µm. From [Verkhovsky1998]. b, Overlays of phase
contrast images taken every 15 s showing the motility of a keratocyte and a cy-
toplast (keratocyte fragment lacking the nucleus). Time from turquoise to violet.
From [Pollard2003]. c, Trajectory of an aggregate of murine sarcoma cells express-
ing E-cadherins at their surface, from [Beaune2018]. d, Model for the polarization
and propagation of directional locomotion. A discoid, non-polarized cytoplast is
pushed at one side, which results in the accumulation of actin filaments and clus-
ters of myosin filaments into a bundle along the deformed edge. This favors its
retraction, but protrusion continues at the opposite edge, reinforcing functional
asymmetry. Protrusion and retraction occur simultaneously at opposite edges in
the steady state. From [Verkhovsky1998].
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Directed collective migration may naturally emerge if some external symmetry-
breaking process generates a preferential direction, and if the dynamics tend to
at least maintain or reinforce it. As explained in the general introduction (Sec-
tion 1.1.2 and Section 1.2.2), this symmetry breaking can happen through the
interaction with an external field, like the morphogen concentration in chemo-
taxis, or the substrate rigidity in durotaxis. Otherwise, it can be generated in-
trinsically, through concentration gradients inside the tissue, or via shape asym-
metries. Given that monolayer edges are morphologically unstable, spontaneous
morphological symmetry breaking might be expected in the presence of noise.
However, under what circumstances the cell interactions alone may themselves
transmit information on the cluster shape so that an organized global motion is
sustained remains unclear. We note that in contrast to the guidance of an exter-
nal field, which typically acts individually on each cell, shape-sensing motility,
in this case, would be an inherently collective phenomenon.

All in all, this chapter aims to explore how morphological symmetry break-
ing can drive collective migration in cell monolayers, identifying the shapes and
conditions that optimize this behavior. To this end, we perform experiments
tracking the migration of monolayers, patterned with different initial configura-
tions. Monolayers are modeled as active polar fluids under the same framework of
previous chapters, and predictions from the theory, developed by Joan Térmens
in our group (UB, Barcelona), are explained in Section 5.2. They motivated
the search for this phenomenon in the experiments. In Section 5.3 we outline
the experimental protocol, to then focus on the results and comparison between
both in Section 5.4.

5.2 Spontaneous motility of monolayer clusters

Building on the same active matter framework as in Chapters 2–3, cell mono-
layers are modeled as continuous active polar fluids, coarse-grained at scales
larger than the cell size. The ingredients of the model can be recalled in Sec-
tion 2.2, but now, instead of the symmetric monolayers, like the circles or stripes
in previous chapters, we want to consider the shape perturbations of a circle.
Any small linear perturbation can be classified according to its Fourier mode
(Fig. 5.2). In our active drop model, the zeroth mode captures the spreading-
retraction dynamics, the first mode describes a displacement of the circle and is
thus marginal—consistently with translational invariance—, and the second and
higher-order modes may be unstable, as shown in [Pérez-González2019]. How-
ever, only the first mode (displacement) has a single symmetry axis, as required
to define a preferred direction. Since this mode is marginal, the only way to gen-
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erate motion must involve the coupling of different modes, which can only occur
at the nonlinear level. Accordingly, the possible instability of circles into motile
shapes is necessarily nonlinear, as in the case of lamellar fragments [Blanch-
Mercader2013]. We will not pursue here an extension of the weakly nonlinear
analysis of [Blanch-Mercader2013]. Instead, we will consider large perturbations
deeply in the nonlinear regime. Specifically, on circles cut out on one side with
chords of different lengths and rounded edges (Fig. 5.3).

Figure 5.2: Linear perturbations of a circle. Second, third, and tenth modes
of linear perturbations of the circle, with δR = λ/2, λ/3, λ/10 respectively. The
zeroth mode corresponds to modifying the area of the circle, the first to translations
of the circle’s center, and the following ones to periodic deformations: the second
mode gives ellipses, the third one shapes with 3-fold symmetry, etc.

In Chapter 2 (Section 2.3.1), we reduced the system to an effective 1D setup
because the goal was to study the effect of a stiffness gradient in one direction.
Now, however, we want to elucidate the relationship between the shape of the
monolayer cluster and its spontaneous migration, so we must keep the two di-
mensions. The model equations have been presented in Eq. 2.6, Eq. 2.9, Eq. 2.14
and Eq. 2.15, but we recall them again here. For a simply connected domain,
Ω(t), the evolving polarization pα and velocity vα fields must fulfil for all times,

• Polarization: L2
c∇2pα = pα. (5.1)

• Force balance: ∂βσsαβ + fα = 0. (5.2)

• Stress tensor: σsαβ = η(∂αvβ + ∂βvα)− ζpαpβ. (5.3)

• External force density: fα = −ξvα + ζipα. (5.4)

Because the edges are free to deform and move, the problem at hand is a free
boundary problem. Being n̂α the unit (outward) normal vector along the bound-
ary of the domain, ∂Ω(t), the boundary conditions for all times read,

• Normal polarization: pα = n̂α. (5.5)
• Stress-free: n̂ασsαβ = 0. (5.6)

• Kinetic condition: vα,n = vαn̂α. (5.7)
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Figure 5.3: Sketch of the model for uniaxial monolayers. Active polar fluid
model for the considered uniaxial monolayer clusters, with the same ingredients as
in Fig. 2.3. Adapted from [Pérez-González2019]. On the right, the angle defining
the cut on one side of the circle is α = 150, 120, 90, 60◦ (from top to bottom).

For simplicity, we are neglecting a possible contribution due to surface tension.
This could be easily incorporated in Eq. 5.6. The kinetic or continuity condi-
tion (Eq. 5.7) allows us to relate the boundary velocity of the monolayer with
the normal component of the velocity profile at that boundary, and thus defines
the motion of the edge. This same model was well studied in a 2D circular
monolayer of radius R in [Pérez-González2019]. There, assuming radial symme-
try, the model was analytically treatable, and a transition between monolayer
spreading and retraction—or wetting and dewetting—was defined, as explained
in Section 1.3.2 from the general introduction. However, in the current asym-
metrical shapes, both the polarization pα and the velocity vα fields cannot be
solved analytically.

A numerical approach based on finite-element techniques is used for the sim-
ulations. The cluster domain is represented by an unstructured triangular mesh
that is denser at the boundary layer (width of approximately Lc from the bound-
ary) and more sparse at the center, in order to handle the curved and sharp
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boundaries better. The iteration consists on:

1. Solve a weak form for the polarization (Eq. 5.1 and Eq. 5.5, with a fine
implementation of the Dirichlet condition).

2. Solve a weak form for the velocity (Eqs. 5.2–5.4 and Eq. 5.6, substituting
the polarization field from step 1).

3. Compute the next boundary configuration, by applying the kinetic con-
dition (Eq. 5.7) to the vertices of the actual one and interpolating with
splines. Then, generate a new adaptive mesh and go back to step 1.

By selecting the initial monolayer shape and a range of model parameters, we can
obtain their time evolutions, which enables us to classify the modes of migration
based on the different conditions. While some aspects of these dynamics are
shown and discussed in Section 5.2.2, the key to understanding the mechanism
of the spontaneous migration lies in analyzing the center-of-mass velocity, which
is addressed in the following section.

5.2.1 Center-of-mass velocity

We describe monolayer clusters as 2D shapes and represent vectors using bold
symbols to simplify the notation. To describe the spontaneous migration we
are primarily interested in the center-of-mass velocity, VCM ≡ ṘCM, where
RCM ≡ 1

A

´
Ω r dS. Since the total area A ≡

´
Ω dS changes, at any time instant

the center-of-mass velocity is given by the exact expression1

VCM =
1

A

[ˆ
Ω
v dS +

ˆ
Ω
(r−RCM) (∇ · v) dS

]
. (5.8)

The first term of the rhs is actually the integral of the polarization field, since
using the divergence theorem when integrating Eq. 5.2 over the domain, and
with the stress-free boundary conditions (Eq. 5.6), we get

ˆ
Ω
(∇ · σs) dS =

ˆ
∂Ω

(σs · n̂) dS = 0 →
ˆ
Ω
f dS = 0. (5.9)

With Eq. 5.4 we have,
ˆ
Ω
v dS =

ζi
ξ

ˆ
Ω
p dS. (5.10)

1The derivation of this formula is obtained by using the divergence theorem
´
Ω
∇ ·F dS =´

∂Ω
F · n̂ dS (being F a continuous differentiable vector field), and also that d

dt

´
Ω
F dS =´

∂Ω
F(v · n̂) dS. Therefore, the change of the area is given by dA

dt
= d

dt

´
Ω

dS =
´
Ω
(∇ · v) dS.
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Plugging it in Eq. 5.8, we obtain

VCM =
1

A

[
ζi
ξ

ˆ
Ω
p dS +

ˆ
Ω
(r−RCM) (∇ · v) dS

]
. (5.11)

Recalling that the polarization field is given by Eq. 5.1 (with the boundary
condition from Eq. 5.5), Eq. 5.11 immediately provides some insights in simple
cases. For instance, for an incompressible flow (∇·v = 0) or for a spreading flow
at a uniform rate (∇·v = α(t)1), the second term of the rhs of Eq. 5.11 vanishes.
In general, the second term is also relatively small in situations where the area
is not changing significantly, such as close to the active spreading transition.
Since the correction due to the second term is more difficult to interpret, for the
purpose of discussion and analysis, it is useful to consider the first term as a
good estimate of the center-of-mass velocity. In this approximation, the center-
of-mass velocity is basically proportional to the integral of the polarization, and
so the whole domain moves as if the total traction was pulling against a global
friction coefficient A(t)ξ.

However, whether or not the integral of Eq. 5.10 is finite is not trivial,
since it depends on the domain shape. Because

´
∂Ω n̂ ds = 0, if Lc is very

small—representing a thin peripheral boundary layer where polarization, and
thus traction, is localized—, there is no significant movement of the center of
mass (limLc→0VCM = 0, including also the second term, since in this limit
∇ · v = α). To have a finite velocity, we need both a finite Lc, smaller but com-
parable to the characteristic size of the shape, and an asymmetry in the shape
that can establish a head-tail polarity. If both conditions are achieved, contour
lines along the polarized boundary layer with constant |p| will have a non-normal
component of p, and contour lines that are normal to p will have non-constant
|p|. Therefore, one may expect a non-zero value of the total traction force, and
thus a positive center-of-mass velocity, VCM ̸= 0. The mechanism for the motil-
ity is better explained in the next section, with the classification of the migratory
modes.

We note that VCM ̸= 0 for a given shape does not imply that the motion
will be sustained since the shape will also evolve, and it can do so in the direc-
tion to either increase or decrease the speed. This will depend on the dynamical
equations and on the model parameters. In Fig. 5.4, we show two examples of dy-
namical evolutions where the shape feedback is positive, yielding an accelerating
motion.

1Which would correspond to a uniform thinning of the monolayer ḣ/h = −α(t)/2.
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Figure 5.4: Temporal evolution and spontaneous motility of monolayers.
Evolution of the center-of-mass velocity and shape of the monolayer in two initial
configurations, with angles α = 120◦ and 165◦, and effective radii (radius that
a circle of the same area would have) of R0 = 166.6 µm and 145 µ respectively.
These were finely tuned to ensure that the simulations stayed close to the spreading-
retraction transition during the initial stages. The color map and the black arrows
represent the velocity field. Parameters lie within the ranges estimated in [Pérez-
González2019], with h = 5 µm, η = 25 MPa·s, ξ = 0.1 kPa·s/µm2, ζi = 0.1
kPa/µm, ζ = −20 kPa. Lc = R0/4 to simplify the simulations, and simulation
time is ∆t = 200 s.

5.2.2 Collective migration modes

In addition to the prediction of a finite VCM, we are interested in knowing the
evolution of the shape to elucidate whether this provides a positive feedback
that sustains or even accelerates the motion. To do so we will characterize the
different propagation modes that are compatible with a given center-of-mass
velocity. By performing multiple simulations, we see that spontaneous motility
is indeed generic. The symmetry-breaking shapes that have a larger effect in
terms of the motion of the center of mass are the ones with α ≥ 90◦ (as in
Fig. 5.4), since those with α < 90◦ are closer to ellipses and end up triggering
the second mode of the linear perturbations, with clusters elongating more than
collectively migrating. A fine-tuning of the parameters of the model is needed to
get simulations in which the area of the clusters does not change much because if
it does, the other effects get hindered (Lc is every time smaller compared to the
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size and the center-of-mass velocity decreases). Four modes of collective motility
are identified and depicted in Fig. 5.5.

In the absence of contractility ζ = 0 and with a very small Lc, the clusters
either display a constant front velocity (in the dry regime1, Fig. 5.5a) or an
isotropic spreading (in the wet regime, Fig. 5.5b), but their center of mass re-
mains stationary (VCM = 0). Both situations are quite trivial: In the dry limit,
cells at the edge are insensitive to the cluster’s shape and v ≈ 0 in the bulk,
and so despite the change in shape and size, the center of mass is not displaced
because the total traction force vanishes. In the wet limit, the cells’ behavior
depends solely on their relative position to the center of mass, and since the
shape is preserved, with ∇ · v = α(t), the center of mass does not move.

a b

c d

Figure 5.5: Classification of migration modes. Four types of collective mi-
gration are identified depending on the model parameters. If Lc is very small,
VCM = 0 both in the dry (a) and wet regimes (b). In the dry regime, the front ve-
locity is constant, whereas in the wet regime, the expansion preserves the cluster’s
shape. In the wet regime and for larger Lc, then VCM > 0, yielding to anisotropic
spreading when the contractility is not sufficient (c), or to coherent migration when
this contractility is larger (d).

1Recall the definitions of dry and wet regimes in Section 2.3.1.
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As Lc increases within the wet regime, but still in the absence of contractility,
the center-of-mass velocity becomes positive (VCM ̸= 0), with ∇ · v not uni-
form (Fig. 5.5c). The cells now respond to non-local hydrodynamic interactions
and non-local alignment interactions, and the velocity profile along the edge is
sensitive to the overall shape. Vortices of opposite directions appear at the bot-
tom corners (Fig. 5.6(1)), which generically generate a net displacement if there
is a global head-tail asymmetry. In the polarized boundary layer, velocity and
polarization are aligned (v · p > 0), and the front and rear spread at different
velocities, which gives place to anisotropic spreading.

Lastly, coherent migration of the entire cluster (Fig. 5.5d) only occurs when
contractility is large enough to be close to the spreading transition (defined in
Section 1.3.2) so that the area is not changing significantly. The combination
of both active forces—active traction and contractility—in the boundary layer,
produces an overall displacement of the cluster, with the rear edge retracting
because the velocity and the polarization are antiparallel (v ·p < 0), in contrast
to the previous mode of anisotropic spreading. This reversal of the rear velocity
comes from a reversal of the sense of rotation of the vortex couple at the bottom
corners (Fig. 5.6(2)), which happens near the spreading transition. This coherent
migration is not a flocking transition because the system remains unpolarized
in the bulk, and although the velocity field is globally oriented, the polarization
field is not, remaining oriented towards the exterior of the boundary everywhere.
This is a remarkable new form of self-organization in which there is some long-
range orientational order for the velocity field but not for the polarization.

Finally, although different migration modes were found for semicircles, simu-
lations were conducted using initial shapes other than the uniaxial cut circles to
explore the full range of dynamic behaviors. An example is presented in Fig. 5.7,
where the clusters exhibit rotation rather than spontaneous motility. These re-
sults motivated to include rotation patterns in the experiments, although they
were finally not analyzed.

In summary, the theoretical predictions reveal a strong link between morphol-
ogy and collective migration in cell monolayers that are not globally polarized.
This connection arises from the interaction between cluster morphology (both
shape and size), active forces, and an anisotropic velocity field. We emphasize
that, besides the morphological asymmetry, a finite range of the aligning inter-
actions (finite Lc) is necessary to generate global motion. These results provide
a clear motivation for experiments, aimed at validating the presence of this
rich migratory phenomenology. The distinction between the isotropic and the
anisotropic spreading will be the focus of attention in the experimental sections,
as discussed below.
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Figure 5.6: Effect of contractility in the migration modes. Front, rear, and
spreading velocity as a function of contractility. The yellow line shows the evolution
of the area, since

√
A⟨∇ · v⟩ ≡

√
A
´
Ω
(∇ · v)dS =

√
AȦ. When contractility

is increased, the sense of direction of the bottom vortices is reversed (vorticity ω
shown in the top snapshots of panels (1) and (2)), bringing the anisotropic spreading
mode (1) to a coherent migration mode (2), in which the rear edge retracts instead
of spreading (velocity corrected with the CM velocity in the bottom snapshots).
For even larger contractilities, the spreading transition is achieved and the area
starts decreasing, shown when the yellow line in the plot becomes negative.
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Figure 5.7: Design of migrating and rotating clusters. Different shapes that
give either migrating or rotating dynamics. The color code shows the magnitude
of the velocity field, and the black lines represent the velocity vectors.

5.3 Materials and methods

The goal is to pattern cell monolayers with shapes similar to those used in the
simulations, exhibiting asymmetry along the front-rear axis while maintaining
left-right symmetry. A widely used method for cell patterning involves poly-
dimethylsiloxane (PDMS) membranes or stencils, as employed in several previous
studies [Wang2002,Poujade2007] and extensively used within our group [Serra-
Picamal2012, Sunyer2016, Uroz2018]. These membranes feature some designed
empty regions where cells adhere, confining the initial monolayer shapes to the
desired geometry. Once the membranes are removed, cells are free to migrate
(Fig. 5.9). In this section, we outline the experimental protocol used to conduct
these experiments and detail the methods for analyzing the resulting data.

5.3.1 Fabrication of PDMS membranes

To fabricate the PDMS membranes, a master mold with the desired raised struc-
tures is created using soft photolithography. First, a thin layer of SU-8 negative
photoresist is spun onto a glass wafer. The desired features are designed and
printed onto an acetate mask (ordered from JD-Photodata, layout in Fig. 5.8).
This mask is aligned with the SU-8-coated wafer and exposed to UV light. The
regions exposed to UV undergo cross-linking and remain attached to the glass
slide, while the unexposed areas remain soluble and are washed away during the
development process. The resulting master wafer contains raised cross-linked
photoresist structures, which can be reused multiple times with proper cleaning
and storage. This process is performed by the MicroFabSpace service at IBEC’s
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Core Facilities.
Next, uncured PDMS, mixed in a 10:1 ratio of base to cross-linker, is poured

onto the master and spin-coated to a thickness below the height of the SU-8
features (∼100 µm), in order to produce the stencils. We use a single step of
1 minute at 600 rpm for spinning. The coated masters are left overnight and
then cured for one hour at 95◦C. For thinner membranes (∼45 µm), a thicker
PDMS border is sometimes applied along the edges for easier handling. Once
cured, the membranes are peeled off using tweezers and stored in ethanol until
use. There were no significant differences in the experimental outcome between
using different thickness stencils.

E1D1

D2

D3

E2

E3

F1

F2

F3

B1A1

A2

A3

B2

B3

C1

C2

C3

Figure 5.8: Patterns’ layout in the PDMS fabricated membranes. Prop-
erties of the A-D shapes are summarized in Table 5.1. Although we ended up not
analyzing neither F or E shapes, F are circles and E rotating patterns as in Fig. 5.7.

5.3.2 Preparation of PAA gels

Polyacrylamide (PAA) gels are commonly used for collective cell migration ex-
periments due to their suitability for traction force microscopy measurements
(TFM) [Kandow2007], and because they offer a more physiological environment
than glass substrates. Their main advantage is that they are linear elastic mate-
rials [Storm2005], with easily tunable stiffness, which can be adjusted by varying
the concentration of acrylamide and bis-acrylamide monomers [Yeung2005]. Al-
though TFM was not performed in this study, we initially considered it, and
together with the physiological relevance we opted to conduct the experiments
on PAA substrates.

The preparation of PAA gels was adapted from previous protocols [Ye-
ung2005,Kandow2007]. First, glass-bottom dishes are activated with a solution
of acetic acid, bind-silane (M6514, Sigma), and ethanol, in a 1:1:14 ratio, for one
hour. The dishes are washed twice with ethanol and dried via aspiration. Glass
coverslips of 18 mm in diameter are treated with Repel Silane (General Electric,
USA) for one hour, and then washed thoroughly in ethanol and Milli-Q water
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before being air-dried. This process ensures that the gels adhere firmly to the
glass-bottom dishes but not to the coverslips, making them easier to remove.

A stock solution containing a concentration of 5.5% acrylamide, 0.09% bisacry-
lamide, 0.5% ammonium persulphate (APS) and 0.05% tetramethylethylenedi-
amine (TEMED) is prepared to produce 5 kPa gels. TEMED must be added last
since it triggers polymerization. While different Young’s moduli can be achieved
by adjusting the concentrations, as detailed in [Tse2010], all the present experi-
ments are conducted at 5 kPa because varying the stiffness is not the focus of this
study. A 22.5 µl drop of the solution, to have gels approximately 100 µm thick,
is placed on the center of the glass-bottom dishes. The solution is then covered
with glass coverslips to evenly distribute the gel and create a flat surface. After
polymerization (about one hour), the gels are immersed in phosphate-buffered
saline (PBS) for several minutes, and the coverslips are carefully removed with
tweezers. The gels are washed again in PBS and stored at 4◦C until use.

Since PAA gels are inert materials, before using a gel for an experiment it has
to be functionalized with ECM proteins to allow cell attachment and migration
across it. Thus, before placing the PDMS membranes, they are incubated with
a 2 mg·ml−1 solution of Sulfo-SANPAH in Milli-Q water under UV light (365
nm wavelength, at a distance of ∼ 5 cm) for 7.5 min. Excess Sulfo-SANPAH is
removed with three consecutive washes of 2.5 min each: two with HEPES and
one with PBS. After drying for 5 min, the gels are incubated overnight at 4◦C
with 100 µl of rat tail type I collagen solution (0.1 mg·ml−1, Millipore). They
are then UV-sterilized before cell seeding.

5.3.3 Cell culture techniques

Both MDCK (epithelial cells from the kidney tubule of an adult Cocker Spaniel
dog) and MCF-10A cells (human epithelial cells from the fibrocystic breast of an
adult female) are used for the study. They are cultured in Dulbecco’s Modified
Eagle’s Medium containing high glucose and pyruvate (11995, Thermofisher)
supplemented with 10% fetal bovine serum (FBS, Gibco), 1% penicillin and
1% streptomycin. Cells are maintained at 37◦C in a humidified atmosphere
containing 5% CO2.

5.3.4 Cell patterning on the gels

Before performing the experiment, the PDMS stencils are passivated to prevent
disruption of the protein coating on the gel during stencil removal. They are
air-dried and then incubated in a 2% Pluronic acid F-127 solution in PBS for
one hour. After incubation, they are washed twice in PBS and dried thoroughly
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for 20 min. Meanwhile, the collagen-coated PAA gels are washed twice with PBS
and completely dried by aspiration for no more than 8 min. Passivated PDMS
stencils are carefully placed on the center of the gels, as seen in the first step
of the schematics of the procedure in Fig. 5.9. Then, little drops with densities
around 750 · 103 cells/ml are placed on top of the stencils, trying to remove the
air bubbles from the openings. After 30 min, the unattached cells are washed
away and fresh medium is added. Cells settle into the patterns and attach to the
gel only at the openings of the stencils. Once they reach confluence (typically
between 10 and 20 h), the stencil is peeled off, allowing the cells to migrate freely
over the surrounding space.

Cell seeding

Cell patterns

PDMS membrane

PAA gel Collagen coating

PDMS peeling

Figure 5.9: Steps of the PDMS membrane patterning assay. Inspired by
the schematic figures in [Serra-Picamal2012,Pérez-González2019].

5.3.5 Time-lapse microscopy

As soon as the confinement is released, the samples are transferred to the micro-
scope, and time-lapse imaging typically begins about an hour after the release.
Multidimensional acquisition routines are carried out on an automated inverted
microscope (Nikon Eclipse Ti) equipped with thermal, CO2, and humidity con-
trol, operating with the MetaMorph software. The image acquisition interval is
set to 15 min, with each experiment typically running for at least 14 h. Images
are captured using a 10X 0.3 NA objective, and an automated stage is employed
to capture multiple positions, selecting only the good monolayer patterns. Phase
contrast images of the migration of the monolayers are then saved for subsequent
analysis.

5.3.6 Analysis techniques

Custom-made MATLAB scripts, integrated with Fiji software plug-ins, are used
to process phase contrast images. The analysis pipeline proceeds as follows:
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1. Selection of the good samples: Several samples, despite being imaged,
are not suitable for analysis due to various experimental issues. One of
the main encountered problems is significant peeling of the collagen layer
after the PDMS stencil is removed, even with the passivation treatment.
This peeling directs the migration of the monolayers toward regions with
collagen, making it difficult to associate the migration patterns with the
intended shape asymmetry.

Another issue arises from the varying sizes of the shapes in the stencils.
Typically, the smaller shapes become too crowded when the larger ones
reach confluence and are ready for imaging. As a result, many of these
shapes form 3D clusters rather than 2D monolayers, adding complexities
that cannot be compared to the 2D continuous model described in Sec-
tion 5.2. Additionally, some shapes remain non-confluent, with gaps or
denser cell concentrations at the pattern boundaries, which act as bar-
riers to migration. Rotation patterns are also excluded, as rotation is
not observed in the experiments, and these patterns are not consistent
with the front-rear displacement differences seen in the simulations for the
anisotropic spreading mode.

Finally, in some cases, the initial shape of the monolayer is lost quickly
after the confinement is released, which contrasts with the behavior ob-
served in the model. This is primarily due to cell lamellipodia guiding
migration in small regions, resulting in excessive fingering and significant
shape deformation.

Examples of such discarded patterns can be found in Appendix 5.A, and
the statistics for the selected samples corresponding to each pattern are
presented in Table 5.1.

2. Registration, rotation, and translation of images: To correct for
camera movement, most image stacks are registered using the “StackReg”
plug-in from Fiji, with the translation mode. For samples where this yields
unsatisfactory results, the “Correct3Ddrift” plug-in in the xy plane and the
“DescriptorBased” plug-in with the Rigid 2D mode are applied.

Rotation and translation of the images are performed using a custom-made
MATLAB code, which identifies the center and the straight line of each
shape, and then rotates them so that this line is horizontal. This ensures
that the patterns are centered in the images, with their axis of mirror
symmetry aligned along the vertical y-axis. An example can be found in
Fig. 5.10.

130



5

5.3 Materials and methods

3. Segmentation: At each time point, cell islands are semi-automatically
segmented using the “EGT_Segmentation” function, developed at the Na-
tional Institute of Standards and Technology. Any errors in the automatic
segmentation are manually corrected by creating a mask in Fiji.

4. Displacement computation: As illustrated in Fig. 5.11, to average out
details in both front and rear regions, we compute the area enclosed by
the boundary at time t and the initial boundary at t = 0 h. This area is
then divided by the width of the considered region (x in Fig. 5.11b), and
the averaged y displacement at time t (y in Fig. Fig. 5.11b) is obtained.

Pattern type Lx (µm) # MDCK # MCF-10A

A3 202.95 3 6

B1 96.55 3 3

B2 241.38 8 7

B3 386.21 13 9

C1 141.42 3 3

C2 353.55 5 2

C3 565.66 7 4

D1 183.31 2 2

D2 458.28 7 2

D3 733.26 6 2

Table 5.1: Statistics of the selected and analyzed patterns. Number of
different patterns analyzed for each cell line (total: N = 57 MDCK and N = 40
MCF-10A). The effective radii are Reff = 50, 125, 200 µm for sizes 1, 2, and 3
respectively. Lx refers to the length of the straight bottom line in the x direction
(from the lowest left to the lowest right points). No samples were selected for the
A1 and A2 patterns.
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Figure 5.10: Example of the registration, rotation, and translation of
samples. a, First time point of the original phase-contrast image taken of a C3
MDCK sample. b, Registered, rotated, and translated monolayer.

c

ba

𝑥
𝑦

Figure 5.11: Computation of the front and rear averaged displacements.
a, Phase-contrast image of an MDCK monolayer (C3 pattern), showing the evolu-
tion of the segmented mask boundaries with a color code for time (lines are every
hour). b, Boundaries of the monolayer at t = 0 h and t = 10 h, and shaded area
that is used for computing the averaged y displacement of the front and the rear.
c, Front (red) and rear (blue) averaged y displacements over time.
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After these steps, we obtain plots of the averaged y displacements in the front
and rear regions for all the selected samples. These are then averaged within
each pattern and cell type to calculate the displacements ∆y shown in Fig. 5.12
and Fig. 5.13, as well as in all the corresponding data from Appendix 5.B.

5.4 Results: anisotropic spreading in experiments

Coherent migration of the entire tissues, with the retracting rear edge (Fig. 5.5d,
with two dynamical examples in Fig. 5.4), is not observed in our experiments
with prescribed shapes. A possible explanation is that the monolayers in our
experiments are too far from the spreading transition, exhibiting low contractility
or being too large, such that spreading always dominates over the retraction of
the rear edge. To address this problem, we attempted to use other cell lines,
hoping for higher contractility, and tested to enhance it with hEGF (human
epidermal growth factor). However, we could not bring the monolayers closer
to the spreading transition, and due to time constraints, further optimization
or investigation was not possible. As a result, this mode of collective tissue
migration was not observed in our controlled experiments. However, examples
of this mode have been observed revisiting other experiments on durotaxis, shown
in Fig. 5.14 in the discussion section.

However, we systematically observed the anisotropic spreading mode from
Fig. 5.5c. Even though the isotropic spreading mode also exhibits a differential
front-rear velocity, we have used our theoretical model to fit the parameter Lc,
which provides the unequivocal distinction between isotropic and anisotropic
spreading as defined. Indeed, our data in Fig. 5.12 shows finite values of Lc =
(35 ± 10) µm, which are only consistent with anisotropic spreading, that is,
with a finite center-of-mass velocity. This analysis is shown for the C3 patterns
(larger semicircles) of MDCK cells, as they provide the best comparison with the
simulations, both in terms of statistical consistency and the well-defined initial
shapes of the 2D monolayers. Plus, among the experimental possible patterns,
the semicircles were the more motile ones, according to model predictions.

In Fig. 5.13, we show the temporal evolution of the front and rear displace-
ments when all patterns and sizes are combined, for both MDCK and MCF-10A
cell lines. This approach provides improved statistics, and although the ef-
fect is reduced, a significant positive spreading displacement is still observed in
both cases during the first few hours of evolution, demonstrating the anisotropic
spreading mode. Note that the averaging of different shapes and sizes precludes
the fitting of Lc. However, given the systematic difference between the front and
rear velocity, and assuming that Lc is itself insensitive to size and shape, once

133



5

Chapter 5. Experiments on shape-sensing motility of monolayer clusters

this has been unequivocally determined, we conclude that all cases correspond to
anisotropic spreading. The effect is somewhat smaller in the MCF-10A samples,
which we attribute to their higher surface tension, causing the monolayers to
quickly lose their original shape as they attempt to revert to a circular form.

Figure 5.12: Theoretical fits for the C3 MDCK samples. Theoretical
results (dashed lines) of the temporal evolution of the front (red), rear (blue),
and spreading (yellow, front−rear) averaged displacements, which best fit the C3
MDCK data. Continuous lines are the experimental mean (N = 7), with the shaded
area indicating the Standard Error of the Mean (SEM). The model parameters,
Lc = 35 µm and η = 10 MPa·s, are selected from the theoretical curves that fit
better the experimental data. Dotted lines indicate the lower and upper bounds of
the theoretical fits, plotted with Lc = 25, 45 µm, respectively. Individual patterns
and temporal evolutions for each sample are in Figs. 5.B.1–5.B.3.
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a b

Figure 5.13: Temporal evolutions of the averaged displacements for the
combined patterns. Front (red), rear (blue), and spreading (yellow, front-rear)
averaged displacements when all the patterns and sizes are combined, for MDCK
(a) and MCF-10A cell lines (b).

Videos 5.1: Migration of the selected samples displaying anisotropic
migration. Migration of the monolayers with the segmented masks, for the MDCK
and the MCF10A cell lines. To watch the videos, click here or scan the QR-code
in List of videos.

5.5 Discussion and conclusions

In this chapter, we have explored the relationship between morphology and motil-
ity in cell monolayers using a model of active polar media to describe cell clusters
that lack global polarization. The theory predicts several modes of spontaneous
migration driven by shape-induced symmetry breaking, including steady front
movement, isotropic spreading that preserves the shape, anisotropic spreading
with a positive center-of-mass velocity, and coherent migration with rear-edge
retraction. However, our experiments basically revealed anisotropic spreading
in the monolayers. We have shown a positive spreading velocity (or displace-
ment) and a good fit with the theory for a finite Lc, both when analyzing the
semicircle patterns for MDCK cells (which closely compare with the theoretical
predictions), and when combining all the pattern types and sizes.

While not aiming for a quantitative comparison with the theory, but rather
as a proof of concept, in A431 clusters (human epidermoid carcinoma cells)
we identified instances of spontaneous migration associated with the rear-edge
retraction. In these experiments, the clusters were formed by seeding 5 · 103
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cells in low attachment wells with starvation media for 24 h and treated with 1
ng/ml of hEGF to increase their cellular contractility. Then, they were seeded
as clusters without any shape patterning. The examples shown in Fig. 5.14
correspond to clusters with initial shapes similar to those in our controlled ex-
periments, although smaller in size. They likely exhibit increased contractility
due to the preparation protocol, which may explain the observed coherent migra-
tion, potentially linked to the shape asymmetry. However, additional controlled
experiments would be necessary to verify this rear retraction mode and to fully
characterize other potential migratory behaviors linked to shape asymmetry in
cohesive tissues.

a b

c d

Figure 5.14: Coherent migration of A431 clusters. Phase-contrast images of
A431 clusters seeded on PAA gels, showing the evolution of the manually segmented
mask boundaries with a color code for time (lines are every hour). a,b PAA gels
have a stiffness gradient increasing towards the left, but since the clusters move
towards the right (a) or upwards (b), the stiffness is not directing the motion. c,d
PAA gels have a uniform stiffness of 30 kPa. Images courtesy of Isabela Corina
Fortunato, from experiments conducted in [Pallarès2023].

Videos 5.2: Migration of the A431 clusters displaying coherent migra-
tion. Migration of the A431 clusters from Fig. 5.14. To watch the videos, click
here or scan the QR-code in List of videos.
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Our results suggest that spontaneous migration in cell monolayers can in-
deed be driven by shape asymmetry, supporting the idea that cells can sense
shape through the transmission of both alignment and hydrodynamic forces,
without requiring any external guidance or a global polarization of the tissue.
This insight has broader implications for understanding collective cell migration
beyond specific cases, like the keratocytes discussed in the introduction. By
elucidating when and how monolayers exhibit spontaneous motility, we better
understand the underlying biophysical principles governing collective migration
in epithelial tissues, which may play a fundamental role in various biological
processes. In particular, in cases with external symmetry breaking, such as in
durotaxis, the endogenous cues defined by the outward polarization of peripheral
cells will compete with the exogenous ones defined by the external guidance due
to the stiffness gradient. It is thus expected that the shape-induced motility of
deformable clusters will modify or even overcome durotaxis and other guided
migration modes. An example of asymmetric clusters moving against a durotac-
tic signal is actually shown in Fig. 5.14a. This work paves the way for future
studies to explore the conditions under which spontaneous migration emerges
and how it interferes with external cues, contributing to the understanding of
the physical mechanisms driving tissue organization and dynamics.
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Appendices

5.A Examples of discarded samples

As explained in Section 5.3.6, we discarded samples for the analysis due to various
experimental issues. In Fig. 5.A.1 we show one example of each.

Fibrinogena

b d

c

Figure 5.A.1: Examples of discarded samples. a, Phase contrast image of
an MCF-10A sample (left) and fibrinogen fluorescence (right), which is a signature
of the collagen distribution on the PAA gel. We can observe the peeling of collagen
after the removal of the PDMS stencil, on the right side of the tissue. b, Bad initial
shapes (3D and too crowded), for two MDCK samples. c, Bad shape evolution (fast
fingering appearing, observed on the top right of the tissue), for a MDCK sample.
The snapshot is at t = 2 h after imaging starts. d, Rotating pattern of a MCF-10A
sample. The scale bar applies to all the images.

139



5

Chapter 5. Experiments on shape-sensing motility of monolayer clusters

5.B Extended selected data

Here we show all the selected samples for the analysis. The C3 MDCK selected
ones are shown in Fig. 5.B.1 and Fig. 5.B.2, and the temporal evolutions of the
averaged displacements together in the same plot can be found in Fig. 5.B.3.
These are the ones used in Fig. 5.12 for the fitting of the theoretical predictions.

In Fig. 5.B.4 and Fig. 5.B.5, we show the temporal evolutions of the averaged
displacements for the MDCK and MCF-10A cell lines, respectively, with each
panel corresponding to a different initial configuration (of shape and size). To
recall the description of each pattern see the designs in Table 5.1. Averaging the
data in all the panels, we obtain the evolutions displayed in Fig. 5.13.

a b c d

Figure 5.B.1: Selected C3 MDCK samples. Phase contrast images (first
row), segmented masks at t = 6 h (second row), and temporal evolutions of the
front (red) and rear (blue) averaged y displacements (third row). The color code
in the phase contrast images represents time (lines are every hour). The three
remaining selected samples are in Fig. 5.B.2.
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5.B Extended selected data

e f g

Figure 5.B.2: Selected C3 MDCK samples. Same as Fig. 5.B.1, for the three
remaining selected samples.

a b c

Figure 5.B.3: Detailed temporal evolutions for the C3 MDCK samples.
Temporal evolution of the front (a), rear (b) and spreading (c) averaged displace-
ments for the N = 7 selected C3 MDCK samples, which correspond to those in
Fig. 5.B.1 and Fig. 5.B.2. Thicker lines represent the experimental mean, and the
shaded area corresponds to the Standard Error of the Mean (SEM). It is the same
data as in Fig. 5.12, but displayed in three different plots to highlight the individual
evolutions of the different samples.
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Figure 5.B.4: Temporal evolutions of the averaged displacements for
MDCK patterns. Averaged front (red), rear (blue), and spreading (yellow) dis-
placements over time, showing the mean (thick lines) and SEM (shaded area). Each
plot represents a different pattern type (as indicated in the titles). The C3 patterns
are omitted here, as they have already been presented separately in Fig. 5.B.3.
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5.B Extended selected data

Figure 5.B.5: Temporal evolutions of the averaged displacements for
MCF-10A patterns. Averaged front (red), rear (blue), and spreading (yellow)
displacements over time, showing the mean (thick lines) and SEM (shaded area).
Each plot represents a different pattern type (as indicated in the titles).
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Continuum stochastic model for
cell monolayers

6.1 Introduction

Throughout the previous chapters, we have exploited the hydrodynamic ap-
proach to model living tissues as active polar fluids. However, we have not
accounted for the inherent randomness of biological systems, which is very ap-
parent in the monolayer experiments here considered, both in the behavior of
bulk fields and in the dynamics of tissue edges, as clearly manifest in the fingering
instabilities encountered in the preceding chapter. Several authors have already
developed more or less general formulations of continuum models with explicit
fluctuations in the context of confluent tissues, such as in [Killeen2022,Armen-
gol2024]. This chapter addresses the formulation of different phenomenological
Langevin-like stochastic models as a first step towards a fluctuating hydrody-
namic theory of tissues. At this stage, our approach is adapted to the type of
in vitro experiments that we have already modeled throughout this thesis and
their precedents, for which we have the raw data from traction measurements,
so that we can directly test the different stochastic models and try to infer the
noise parameters from specific experiments.

We note that in the absence of shape fluctuations, such as in the 1D case
or for non-deformable circular shapes, the active polar model for an epithelial
cell monolayer explained in Section 2.2 of Chapter 2, and also applied to cellular
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clusters in Chapter 3, gives no mean velocity of the clusters for homogeneous
external conditions. This results from symmetry considerations, but we can
also see it explicitly for a 1D system, integrating the main equation throughout
the system in x ∈ [x−, x+] (which comes from force balance and constitutive
equations Eq. 2.9, Eq. 2.14 and Eq. 2.15), with stress-free boundary conditions,
σs(x±) = 0.

∂xσ
s = ξv − ζip, (6.1)ˆ x+

x−

∂xσ
s = σs(x+)− σs(x−) = 0 =

ˆ x+

x−

(ξ(x)v(x)− ζi(x)p(x))dx. (6.2)

Then, assuming a constant friction ξ(x) = ξ, the mean velocity is

v̄ ≡ 1

2L

ˆ x+

x−

v(x)dx =
1

2Lξ

ˆ x+

x−

ζi(x)p(x)dx. (6.3)

Note that this velocity is the center-of-mass velocity vCM only when the sys-
tem’s size is not changing, L̇ = 0. Otherwise, we would have a second term,
analogous to that of the divergence of the velocity field calculated in the expres-
sion of the center-of-mass of a 2D monolayer in Eq. 5.8. The polarization field
at equilibrium, which comes from the solution of Eq. 2.6 with the quasistatic
approximation, ∂tpα = 0, is written in Eq. 2.17 for a 1D system, being

p(x) =
sinh ((x−X)/Lc)

sinh (L/Lc)
, (6.4)

where X ≡ (x+ + x−)/2 is its center-of-mass position, L ≡ (x+ − x−)/2 the
monolayer half-width, and Lc the nematic length, characterizing the decay be-
tween maximal polarization at the edge, and vanishing polarization at the center
of the monolayer. For uniform substrate conditions, and thus constant ζi(x) = ζi,
we see from Eq. 6.3 that the mean velocity vanishes since the polarization from
Eq. 6.4 is an odd function.

However, this is not realistic. In monostiffness substrates, even clusters that
do not have significant shape fluctuations exhibit strong fluctuations of observ-
ables, such as cluster velocity (Fig. 6.1) or traction forces exerted on the substrate
(Fig. 6.2) [Trepat2009,Serra-Picamal2012,Pallarès2023]. The goal of this chap-
ter, thus, is to include stochastic terms in our continuum model to account for
these fluctuations and see what we can learn from them through their implica-
tions on the observed fluctuations of physical observables.

To this end, we have several ways of introducing noise in our continuum
model: In Section 6.2, we add it as an internal noise in the dynamics of the
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Figure 6.1: Random motion of cell clusters on uniform stiffness gels.
Representative trajectories of A431 cell clusters migrating on gels of different uni-
form stiffness. It corresponds to the same data as in Fig. 3.3a. From [Pallarès2023].

Figure 6.2: Maps of cell velocity, cell-substrate reactions, and monolayer
stresses. Phase-contrast images (a–c), velocity vx (d–f), tractions Tx (g–i), aver-
age normal stress σ (j–l) at 15 min, 120 min and 450 min after removing a PDMS
membrane with an opening used to pattern rectangular monolayers. Scale bar, 50
µm. From [Serra-Picamal2012].

polarity, in such a way that the number of additional parameters is minimal.
This can be done additively (Section 6.2.1) or multiplicatively (Section 6.2.2),
implying different spatial distribution of the fluctuations in the system. For
simplicity, the calculations for the additive noise case are more detailed, and we
leave a deeper study of the multiplicative case for future work. Another way to
introduce fluctuations is by adding noise in the active traction parameter, done
in Section 6.3, which accounts for an external noise related to the attachment
and detachment kinetics of the substrate adhesions with the cells in the mono-
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layer. In this chapter, we give the predictions and consequences of each type of
noise and try to distinguish which is the most relevant type through comparison
with experimental data, analyzed from [Uroz2018] and [Pérez-González2019] in
Section 6.4. Although the data analysis is not completely conclusive and, in
reality, all these noise sources (and possibly others) will be present, with this
simplified model we can already draw some conclusions and estimate some use-
ful parameters related to fluctuations, such as diffusion coefficients. Our model
is based on some assumptions and cannot capture all the richness of the problem.
We will also discuss some limitations in fitting real data, concerning for instance
the spatial correlation functions, which opens directions for future work.

In Appendix 6.A, we justify better the weak noise approximation for ac-
counting for the noise term in an easy way. Definitions of Fourier transforms
and Dirac delta functions used for the calculations throughout the chapter are in
Appendix 6.B, and other calculations, not strictly necessary for the progression
of the ideas in the chapter, in Appendix 6.C and Appendix 6.D. In Appendix 6.E,
we detail the methodology for the autocorrelation function analysis with the ex-
perimental data.

6.2 Internal noise: polarity dynamics

The full equation for the polarity dynamics was given in Eq. 2.1 from Chapter 2.
There, we neglected polarity advection and co-rotation, flow alignment, and
active spontaneous polarization effects (ν̄1, ν1, ϵ → 0), getting the simplified
relaxational polarity dynamics from Eq. 2.5 used throughout the thesis,

∂tpα = − 1

γ1

(
apα −K∇2pα

)
. (6.5)

In addition, a quasi-static approximation was assumed to account for the fast
relaxation of the polarization compared to velocity, taking ∂tpα = 0. Since we
now need to introduce noise terms, which in principle contain all time scales, we
need to keep the time derivative in Eq. 6.5. Then, it is not obvious whether the
other neglected terms can now be neglected. In Appendix 6.A, we justify for
the additive case, when it is possible to neglect advection and co-rotation, in the
context of a weak noise approximation.

We explore two ways of adding this noise: If additive (Section 6.2.1), the
noise in the polarization field contributes equally everywhere in the system. If
multiplicative (Section 6.2.2), the fluctuations are larger where the polarization
is also larger, which happens in regions up to a distance of Lc from the mono-
layer edges. We give the majority of the results in an arbitrary and very large
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d−dimensional system, being r ∈ Ld the positional coordinate, but we also show
some for a 1D system for simplicity, and for a 2D one for comparison with the
experimental data.

6.2.1 Additive noise

In this case, we add a white noise ψα in the polarity dynamics,

∂tpα = − 1

γ1

(
apα −K∇2pα

)
+ ψα, (6.6)

with ⟨ψα(r, t)ψβ(r
′, t′)⟩ = 2ϵδ(r − r′)δ(t − t′)δαβ , where ϵ is the noise intensity.

Introducing small-amplitude perturbations δp around the equilibrium state p0α,
we can write pα = p0α + δpα. Since p0α fulfills Eq. 6.5, we can actually write the
dynamics in terms of the perturbations,

∂tδpα = − 1

γ1

(
aδpα −K∇2δpα

)
+ ψα. (6.7)

The assumption of weak noise is implicit in the fact that the fluctuations in the
polarization are decoupled from those in the velocity. The nonlinear coupling due
to the advection is not present if we keep only linear orders in the perturbations
of the equilibrium state (Appendix 6.A). In this subsection, we will compute the
autocorrelation function for the polarization fluctuations, the structure factor,
and the power spectral density, which will allow us to get estimates for an effec-
tive temperature and relations between the model parameters when comparing
to experimental data in Section 6.4. We will also obtain an estimate for the
diffusion coefficient for a 1D monolayer, although we leave the comparison to
experimental data for future work.

6.2.1.1 Autocorrelation functions

In Fourier space for the position (δpα(r, t) → δp̂α(q, t)), we get from Eq. 6.7

∂tδp̂α(q, t) = −ω(q)δp̂α(q, t) + ψ̂α(q, t), (6.8)

where ω(q) is the dispersion relation, defined as

ω(q) ≡ 1

γ1

(
a+Kq2

)
=

1

τ

(
1 + L2

cq
2
)
, (6.9)
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where τ ≡ γ1/a and Lc ≡
√
K/a. Solving this differential equation in time1,

δp̂α(q, t) = e−ω(q)t

ˆ t

−∞
eω(q)t

′
ψ̂α(q, t

′)dt′. (6.10)

Then, using ⟨ψ̂α(q, t)ψ̂β(q
′, t′)⟩ = 2ϵ(2π)dδ(q + q′)δ(t − t′)δαβ (see Eq. 6.B.5

in Appendix 6.B), and that the dispersion relation fulfills ω(−q) = ω(q), the
autocorrelation function in Fourier space for the polarization fluctuations is

⟨δp̂α(q, t)δp̂β(q′, t′)⟩ =

= e−ω(q)t−ω(q′)t′
ˆ t

−∞
dt1

ˆ t′

−∞
dt2e

ω(q)t1+ω(q′)t2⟨ψ̂α(q, t1)ψ̂β(q
′, t2)⟩

= 2ϵ(2π)dδ(q+ q′)e−ω(q)(t+t′)

ˆ t

−∞
dt1

ˆ t′

−∞
dt2e

ω(q)(t1+t2)δ(t1 − t2)δαβ

= 2ϵ(2π)dδ(q+ q′)e−ω(q)(t+t′)δαβ

ˆ min (t,t′)

−∞
dt1e

2ω(q)t1

=
ϵ(2π)dδ(q+ q′)δαβ

ω(q)
e−ω(q)|t−t′|. (6.11)

Then, ⟨|δp̂(q, t)|2⟩ ≡ ⟨δp̂α(q, t)δp̂α(q, t)∗⟩ = ⟨δp̂α(q, t)δp̂α(−q, t)⟩, where we use
the Einstein summation convention over repeated greek indices. With t′ = t and
q′ = −q, and using δ(0) = Ld/(2π)d to account for the finite system size (see
Eq. 6.B.4 in Appendix 6.B), we obtain

⟨|δp̂(q, t)|2⟩ = ϵdLd

ω(q)
. (6.12)

Now, also in Fourier space for the time (δpα(r, t) → δ ˆ̃pα(q, ω)), from Eq. 6.7

δ ˆ̃pα(q, ω) =
ˆ̃
ψα(q, ω)

−iω + ω(q)
, (6.13)

being ω(q) the dispersion relation defined in Eq. 6.9, not to be confused with
the frequency ω. Using ⟨ ˆ̃ψα(q, ω)

ˆ̃
ψβ(q

′, ω′)⟩ = 2ϵ(2π)dδ(q + q′)2πδ(ω + ω′)δαβ

1A differential equation dg(q,t)
dt

= −ω(q, t)g(q, t) + h(q, t) can be solved by the integrat-
ing factor µ(q, t), so that dµ(q,t)

dt
= ω(q, t)µ(q, t) → µ(q, t) = e

´
ω(q)dt, and then g(q, t) =

1
µ(q,t)

´
µ(q, t′)h(q, t′)dt′ + c, where c = 0 if we choose properly the integration limits.
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(see Eq. 6.B.6 in Appendix 6.B), the autocorrelation function both in Fourier
space for time and position yields

⟨δ ˆ̃pα(q, ω)δ ˆ̃pβ(q′, ω′)⟩ = 2ϵ(2π)dδ(q+ q′)2πδ(ω + ω′)δαβ
(−iω + ω(q))(−iω′ + ω(q′))

. (6.14)

Like before, ⟨|δ ˆ̃p(q, ω)|2⟩ ≡ ⟨δ ˆ̃pα(q, ω)δ ˆ̃pα(q, ω)∗⟩ = ⟨δ ˆ̃pα(q, ω)δ ˆ̃pα(−q,−ω)⟩,
summing every component. With ω′ = −ω and q′ = −q in, and using δ(0) =
Ld/(2π)d in space and δ(0) = T/(2π) in time (Eq. 6.B.4 in Appendix 6.B), we
obtain

⟨|δ ˆ̃p(q, ω)|2⟩ = 2ϵdLdT

ω2 + ω2(q)
. (6.15)

From Eq. 6.11, we can compute the spatial autocorrelation function in real
space in both one and 2D systems, for t′ = t and using the inverse Fourier
transform definitions (see Appendix 6.B).

• 1D: The inverse Fourier transform F−1[·] of a Lorentzian function in one di-
mension is an exponential, and so we obtain

⟨δp(x, t)δp(x′, t)⟩ = 1

(2π)2

ˆ ∞

−∞
dq

ˆ ∞

−∞
dq′eiqxeiq

′x′⟨δp̂(q, t)δp̂(q′, t)⟩

=
1

(2π)2

ˆ ∞

−∞
dq

ˆ ∞

−∞
dq′eiqx+iq′x′ 2πϵδ(q + q′)

ω(q)
=

ϵ

2π

ˆ ∞

−∞
dq
eiq(x−x′)

ω(q)

=
ϵτ

2π

ˆ ∞

−∞
dq
eiq(x−x′)

1 + L2
cq

2
= ϵτF−1

x−x′

[
1

1 + L2
cq

2

]
=

ϵτ

2Lc
e−|x−x′|/Lc . (6.16)

The second moment of the fluctuations of the polarization, with x′ = x, is
thus

⟨δp2⟩ = ϵτ

2Lc
. (6.17)

• 2D: The inverse Fourier transform F−1[·] of the Lorentzian function in two
dimensions is a modified Bessel function of the second kindK0(·) (see Eq. 6.C.1
from Appendix 6.C, with c = L−1

c ), giving

⟨δpα(r, t)δpα(r′, t)⟩ =
1

(2π)4

ˆ
R2

dq

ˆ
R2

dq′eiq·reiq
′·r′⟨δp̂α(q, t)δp̂α(q′, t)⟩

=
2ϵτ

(2π)2

ˆ
R2

dq
eiq·(r−r′)

1 + L2
cq

2
=

2ϵτ

L2
c

F−1
r−r′

[
1

L−2
c + q2

]

=
ϵτ

πL2
c

K0

( |r− r′|
Lc

)
, (6.18)

where the 2 in the second equality appears because of the contribution of both
coordinates.
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6.2.1.2 Structure factor and energy equipartition

The static structure factor S(q) is the Fourier transform of the spatial correla-
tion function C(r), thus characterizing the structure of correlations throughout
the system. The step-by-step calculation can be found in Eq. 6.C.3 from Ap-
pendix 6.C, obtaining for the polarization fluctuations,

C(r) ≡
〈

1

Ld

ˆ
Ld

δpα(r
′, t)δpα(r

′ + r, t)dr′
〉
, (6.19)

S(q) ≡
ˆ
Ld

C(r)e−iq·rdr =
1

Ld
⟨|δp̂(q, t)|2⟩ = ϵd

ω(q)
, (6.20)

where Eq. 6.12 is used in the last equality. The integral of the structure factor
gives the second moment (see Eq. 6.C.4),

⟨δp2⟩ ≡ ⟨δpαδpα⟩ ≡ C(0) =
1

(2π)d

ˆ
Ωd

S(q)dq =
ϵd

(2π)d

ˆ
Ωd

dq

ω(q)
. (6.21)

Let’s explicitly compute the integral in one and two dimensions.

• 1D: We recover the same result as in Eq. 6.17,

⟨δp2⟩ = ϵτ

2π

ˆ ∞

−∞

dq

1 + L2
cq

2
=
ϵτ

2π

[
arctan (Lcq)

Lc

]∞

−∞
=

ϵτ

2Lc
. (6.22)

• 2D: Using dq = 2πqdq, where q is the modulus, we define a cutoff qmax,
necessary to avoid divergence of the integral and because of the experimental
resolution of the traction measurements. Then,

⟨δp2⟩ = 2ϵτ

(2π)2

ˆ
R2

dq

1 + L2
cq

2
=

2ϵτ

(2π)2

ˆ qmax

0

2πq

1 + L2
cq

2
dq

=
ϵτ

2πL2
c

ln
(
1 + L2

cq
2
max
)
. (6.23)

The energy equipartition theorem at equilibrium states that each component
and mode q of the free energy contributes with half a kBT , ⟨F̂q⟩ = 1

2kBTd.
Although our system is not at equilibrium, we can use the theorem to estimate
an effective temperature and see relations between the model parameters. Re-
call the simplified Frank elastic free energy1 from Eq. 2.4, written here for the
polarization fluctuations around a uniform, non-polarized equilibrium,

F =

ˆ
Ld

[
a

2
δpαδpα +

K

2
(∂αδpβ)(∂αδpβ)

]
dr. (6.24)

1Note that the parameters a and K will take different values and dimensions depending
on the dimensions of Ω.
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Using the inverse Fourier transform definitions, it reads

F =
1

2(2π)d

ˆ
Ωd

(
a+Kq2

)
|δp̂(q, t)|2dq

F =
1

2Ld

∑

q∈Ωd

(
a+Kq2

)
|δp̂(q, t)|2, (6.25)

where we discretized by multiplying by (2π)d/Ld. Since F =
∑

q F̂q, then

⟨|δp̂(q, t)|2⟩ = LdkBTd

a+Kq2
=
LdkBTd

γ1ω(q)
, (6.26)

being ω(q) the dispersion relation from Eq. 6.9. Finally, with ⟨|δp̂(q, t)|2⟩ =
ϵdLd/ω(q) (Eq. 6.12), we get an equivalence between the noise intensity, the
rotational viscosity, and an effective temperature of the system,

ϵγ1 = kBT. (6.27)

6.2.1.3 Power spectrum and fluctuation-dissipation relation

The dynamic structure factor S(q, ω) is the Fourier transform of the spatiotem-
poral correlation function C(r, t). With a very similar procedure to that of the
structure factor (see Eq. 6.C.6 in Appendix 6.C), we get

C(r, t) ≡
〈

1

LdT

ˆ
Ld

ˆ
T
δpα(r

′, t′)δpα(r
′ + r, t′ + t)dt′dr′

〉
, (6.28)

S(q, ω) ≡
ˆ
Ld

ˆ
T
C(r, t)e−iωte−iq·rdtdr =

1

LdT
⟨|δ ˆ̃p(q, ω)|2⟩

=
2ϵd

ω2 + ω2(q)
, (6.29)

where Eq. 6.15 is used in the last equality. The power spectral density (PSD)
S(ω) is the integral in q−space, which characterizes temporal correlations in the
system,

S(ω) ≡
ˆ
Ωd

S(q, ω)dq. (6.30)

Let’s explicitly compute it in one and two dimensions. Although we do not do it
here, it might be useful in the future to compare with spectroscopy experiments
of traction fluctuations.
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• 1D: Using the residues theorem,

S(ω) =

ˆ ∞

−∞

2ϵ dq

ω2 + 1
τ2

(1 + L2
cq

2)2
=
ϵπτ2

Lc

√
1

(τω)3
sec
(
1
2 arctan (τω)

)
(
1 + 1

τ2ω2

)3/4 . (6.31)

Defining x ≡ τω, the scaling for low (ω → 0) and high frequencies (ω → ∞),
using sec (a+ b) = (cos a cos b− sin a sin b)−1, gives1:

lim
ω→0

S(ω) ∼ ϵπτ2

Lc

(
1− 5

8
(τω)2 + · · ·

)
, (6.32)

lim
ω→∞

S(ω) ∼ ϵπτ2

Lc

√
2

(τω)3

(
1− 1

2τω
+ · · ·

)
. (6.33)

• 2D: Using dq = 2πqdq, where q is now the modulus, we get

S(ω) =

ˆ
R2

4ϵ dq

ω2 + 1
τ2

(1 + L2
cq

2)2
= 8πϵτ2

ˆ ∞

0

q dq

τ2ω2 + (1 + L2
cq

2)2

=
4πϵτ2

L2
c

1

τω

(
π

2
− arctan

(
1

τω

))
. (6.34)

The limits for low and high frequencies give

lim
ω→0

S(ω) ∼ 4πϵτ2

L2
c

(
1− 1

3
(τω)2 + · · ·

)
, (6.35)

lim
ω→∞

S(ω) ∼ 4πϵτ2

L2
c

1

τω

(
π

2
− 1

τω
+ · · ·

)
. (6.36)

The PSD in the 2D system case (Fig. 6.3b), is the most relevant one for compari-
son with typical experiments, and could be useful for inferring model parameters,
like τ, Lc, and ϵ.

The fluctuation-dissipation theorem relates the thermodynamic fluctuations
and the linear response in equilibrium systems. Even though our system is not at
equilibrium, we can obtain a formal analogy to the fluctuation-dissipation theo-
rem with an effective temperature, given that in our weak noise approximation,

1For x → 0: arctan (x) ≈ x− x3

3
+θ

(
x5

)
, cos (x) ≈ 1− x2

2
+θ(x4), sin (x) ≈ x− x3

6
+θ(x5),

(1 + 1
x2 )

3/4 ≈ 1

x3/2 + 3
4
x1/2 + θ(x5/2) and 1

1− x2

2

≈ 1 + x2

2
+ θ(x3). For x → ∞: arctan (x) ≈

π
2
− 1

x
+ 1

3x3 + θ
(
1/x5

)
, (1 + 1

x2 )
3/4 ≈ 1 + 3

4x2 + θ(1/x3) and 1

1+ 1
2x

≈ 1− 1
2x

+ 1
4x2 + θ(1/x3).
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a b

Figure 6.3: Power spectral density for an additive noise in the polarity
dynamics. Dimensionless PSD as a function of a dimensionless frequency τω, for
a 1D (a) and a 2D system (b). Continuous lines are the full expressions obtained
in Eq. 6.31 and Eq. 6.34, and dashed lines are the corresponding power-law decays
coming from the limit at large frequencies, obtained in Eq. 6.33 and Eq. 6.36
respectively.

the dynamics of the polarity is linear. The linear response function or suscepti-
bility χαβ(r, t), is defined by ⟨δ ˆ̃pα(q, ω)⟩ ≡ ˆ̃χαβ(q, ω)

ˆ̃Gβ(q, ω), being Gα(r, t) an
external force. If instead of Eq. 6.7 we write the dynamics of the polarity with
this Gα(r, t),

∂tδpα = − 1

γ1

(
aδpα −∇2δpα −Gα

)
+ ψα, (6.37)

then, the average of the Fourier transform in time and space reads

⟨δ ˆ̃pα(q, ω)⟩ =
ˆ̃Gα(q, ω)

γ1(−iω + ω(q))
≡ ˆ̃χαβ(q, ω)

ˆ̃Gα(q, ω), (6.38)

where we used that ⟨ ˆ̃Gα(q, ω)⟩ = ˆ̃Gα(q, ω) because the external force is not
noise-dependent and ⟨ ˆ̃ψα(q, ω)⟩ = 0. Thus, the susceptibility χαβ(r, t) verifies

ˆ̃χαβ(q, ω) ≡
δαβ

γ1(−iω + ω(q))
=

ω(q) + iω

γ1(ω2 + ω2(q))
δαβ, (6.39)

where the imaginary part is the dissipative response. Then, with Eq. 6.29, but
taking into account only one component (and so writing the indices αβ instead
of the contracted indices, and d = 1), then

Sαβ(q, ω) =
2ϵγ1
ω

Im( ˆ̃χαβ(q, ω)), (6.40)
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because (ω2+ω2(q))−1 = γ1
ω Im( ˆ̃χαβ(q, ω)). This result has the same structure as

the fluctuation-dissipation theorem if we map the prefactor to 2kBT/ω, yielding

2ϵγ1
ω

=
2kBT

ω
−→ ϵγ1 = kBT, (6.41)

so we retrieve the result we obtained from the energy equipartition argument
in Eq. 6.27. We will use these results to characterize the fluctuations of real
traction data in terms of an effective temperature in Section 6.4.

6.2.1.4 Cluster diffusion coefficient

Now we consider a 1D system, x ∈ [x−, x+], to get simplified results. Like in
Chapter 2 (Section 2.3), this is an effective setup that models non-deformable
circular clusters. We assume a uniform stiffness substrate and thus a constant
active traction parameter, ζi(x) = ζi, and we write the polarization field to linear
order in the perturbations, p(x, t) = p0(x) + δp(x, t), being p0 the expression
in Eq. 6.4. Then, from Eq. 6.3, the integral is just that of the polarization
fluctuations since p0 is odd,

v̄(t) =
ζi
2Lξ

ˆ x+

x−

δp(x, t)dx. (6.42)

The mean displacement,

x̄(t) =

ˆ t

0
v̄(t′)dt′ =

ζi
2Lξ

ˆ t

0
dt′
ˆ x+

x−

δp(x′, t′)dx′, (6.43)

and the mean squared displacement of the center-of-mass of the cluster, assuming
L constant and so that v̄ ≡ vCM (see detailed calculation in Eq. 6.C.7 from
Appendix 6.C), is

⟨x̄(t)2⟩ =
(

ζi
2Lξ

)2 ϵ

2π

ˆ x+

x−

dx′
ˆ x+

x−

dx′′
ˆ ∞

−∞
dqeiq(x

′−x′′)

· 2

ω2(q)

(
t+

1

ω(q)

(
e−ω(q)t − 1

))
. (6.44)

In general, L should be time-dependent. Consequently, our calculation is valid
in parameter regions close to the active spreading transition, where the system
size does not change significantly. In other regimes, one should determine the
mean spreading velocity from the deterministic model, but then the calculation
becomes more involved.
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If the long-time asymptotics is diffusive, then the diffusion coefficient is ob-
tained from ⟨x̄(t)2⟩ = 2tDdiff + f(t), where f(t)/t decays to zero at long times.
We thus have, in the constant L approximation,

Ddiff =

(
ζi
2Lξ

)2 ϵ

2π

ˆ x+

x−

dx′
ˆ x+

x−

dx′′
ˆ ∞

−∞
dqeiq(x

′−x′′) 1

ω2(q)

=

(
ζi
2Lξ

)2

ϵτ2
ˆ x+

x−

dx′
ˆ x+

x−

dx′′F−1
x−x′

[
1

(1 + L2
cq

2)2

]

=

(
ζi
2Lξ

)2

ϵτ2
ˆ x+

x−

dx′
ˆ x+

x−

dx′′
1

4Lc

(
1 +

|x′ − x′′|
Lc

)
e−|x′−x′′|/Lc

=

(
ζi
2Lξ

)2 ϵτ2Lc

2

(
4L

Lc
− 3 + e−2L/Lc

(2L
Lc

+ 3
))

, (6.45)

or, in terms of the variance of the polarization fluctuations ⟨δp2⟩ instead of the
noise intensity ϵ (both related by Eq. 6.17 for one dimension),

Ddiff =

(
ζi
2Lξ

)2

⟨δp2⟩τL2
c

(
4L

Lc
− 3 + e−2L/Lc

(2L
Lc

+ 3
))

. (6.46)
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Figure 6.4: Diffusion coefficient for an additive noise in the polarity
dynamics. Numerical simulations (dashed colored points) and analytical predic-
tions (black lines) for the diffusion coefficient as a function of the half-size of the
monolayer, for the different parameters shown in the legend. Other parameters are
Lc = 15 µm, ζi = 0.05 kPa/µm, ζ = −2 kPa, ξ = 0.2 kPa s/µm2, η = 20 MPa s.
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We perform numerical simulations of the problem by simulating a 1D system,
with the polarization given in Eq. 6.4 and noise in its dynamics following Eq. 6.6
[García-Ojalvo1992]. We assume periodic boundary conditions, but in order to
avoid spurious correlations between the two edges, we simulate this polarization
in a space that is extended by 3Lc beyond each side of the monolayer. With
Eq. 6.3, we obtain the mean velocity v̄(t) by integrating the polarization field
and with L(t) = (x+(t) − x−(t))/2, and we then evolve the edges by writing
x±(t + ∆t) = x±(t) + v̄(t)∆t. In this way, we obtain the new L(t + ∆t) and
simulate again the polarization field with additive noise, checking that in all the
cases, the changes in L are not very significant and so the assumption that it is
constant is justified. The coefficient diffusion is measured from the mean squared
displacement ⟨x̄(t)2⟩ over time.

In Fig. 6.4 we see that the analytical prediction matches well with the simu-
lations. However, experimental diffusion coefficients of monolayers were difficult
to analyze, and we leave the study for further work.

6.2.2 Multiplicative noise

In this case, we add a scalar white noise ψ multiplying the polarization field in
the polarity dynamics, in such a way that

∂tpα = − 1

γ1
(apα −K∇2pα) + p0αψ, (6.47)

with ⟨ψ(r, t)ψ(r′, t′)⟩ = 2ϵδ(r− r′)δ(t− t′), where ϵ is again the noise intensity.
The equation actually comes from adding a noise term in the a parameter, by
∂tpα = − 1

γ1
(a(1 + ψ)pα − K∇2pα) = − 1

γ1
(apα − K∇2pα) − a

γ1
ψp ≈ 1

γ1
(apα −

K∇2pα)− a
γ1
p0αψ, neglecting second order terms δpαψ and redefining a/γ1 inside

of the noise intensity ϵ. This approximation is also valid for sufficiently weak
noise. The terms considered correspond to the leading order within an expansion
on the noise intensity around the deterministic dynamics. To linear order, pα =
p0α + δpα and since p0α fulfills Eq. 6.5, we can thus write the dynamics in terms
of the perturbations,

∂tδpα = − 1

γ1
(aδpα −K∇2δpα) + p0αψ. (6.48)

The main difference between the additive and the multiplicative approach is
that in the former case, the noise has the same intensity throughout the system,
whereas in the latter it is stronger where the polarization is also stronger, which
happens near the boundaries. Since the effect of the multiplicative noise on the
diffusion of clusters is typically much smaller than that of the additive noise, and
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also being mathematically more involved, we will not pursue the multiplicative
case in detail, neither analytically nor numerically. If present, multiplicative
noise is expected to coexist with additive noise, hence providing a relatively small
correction to that case. In the following section we discuss a simple argument
in 1D to justify how the effect of the multiplicative noise scales with the system
size, and yields typically smaller diffusion coefficients than the additive noise.

6.2.2.1 Diffusion coefficient estimate

The diffusion coefficient in the multiplicative case is less dependent on the size of
the system than on the additive noise. Here, we give a heuristic argument for the
1D system. Assuming that p(x±) = ±1, and p ≈ 0 elsewhere, we can consider
a system with N elements of size Lc, having in total a length 2L = NLc. Then
only the x+ and x− elements have non zero polarization, yielding

δp̄(t) =
1

2L

ˆ x+

x−

δp(x, t)dx ≈ 1

N
(δp(x+) + δp(x−)) ∼ ±

√
2⟨δp2⟩
N

. (6.49)

Then, the mean velocity for a constant friction is (Eq. 6.42)

v̄(t) =
ζi
ξ
δp̄(t) ∼ ±ζi

ξ

√
2⟨δp2⟩
N

, (6.50)

and the diffusion coefficient, using that D ∝ (v̄τ)2/τ = v̄2τ ,

D ∼ ζ2i
ξ2

⟨δp2⟩ L
2
c

2L2
τ. (6.51)

Note that with this same argument, for an additive noise, all the intervals con-
tribute to the calculus of the mean polarization fluctuations, δp̄ =

∑N
i=1 δpi/N ∼√

⟨δp2⟩/N , and then,

D ∼ ζ2i
ξ2

⟨δp2⟩Lc

2L
τ, (6.52)

which is in accordance with the first term of the exact relation found in Eq. 6.46.
Consequently, the diffusion coefficient for the multiplicative noise decreases with
a stronger inverse power of system size, namely as L−2 instead of L−1.

6.3 External noise: maximal-traction fluctuations

For the additive internal noise in the polarity dynamics, the relaxation time
is given by ω(q)−1 (Eq. 6.11), and so it is different for every mode q, as a
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consequence of the dynamical equation for the polarity. Instead, an external
noise in the traction will reflect different physics associated with the kinetic
processes of the linkers with the substrate. A detailed modeling of these processes
would define the statistics of such fluctuations. However, we will not pursue such
detailed modeling here and assume for simplicity that the traction fluctuations
exhibit one single characteristic time scale, irrespective of the spatial Fourier
mode, and a single characteristic length scale. These noise parameters will not
be related to those associated with the polarity dynamics. We thus consider
an external noise in the active traction parameter ζi to account for fluctuations
originated in the attachment and detachment of the adhesions of the monolayer
with the substrate. For simplicity, we write the formalism for a 1D system, but
it could easily be translated to higher dimensions. The main model equation
Eq. 6.1 has now an active traction such that

ζi(x, t) = ζ0i (1 + αψ(x, t)), (6.53)

being ψ the noise term and α a parameter controlling the noise intensity. We
want ψ to be a colored noise, exponentially correlated in time and space. Being
λ the correlation length, τ the correlation time and ϵ the noise intensity,

⟨ψ(x′, t′)ψ(x′ + x, t′ + t)⟩ = ϵ

2λτ
e−|x|/λe−|t|/τ , (6.54)

which gives way to a white noise in the limit of λ, τ → 0, ⟨ψ(x, t)ψ(x′, t′)⟩ →
2ϵδ(x−x′)δ(t− t′). Since the system is finite and because we now want a unique
relaxation time for all the modes q, we write ψ as a decomposition of N Fourier
modes, being 2L the system’s size (see the step-by-step generation of the noise
as this decomposition in Appendix 6.D). This decomposition is also useful for
numerical implementation and gives

ψ(x, t) =
N∑

n=0

(
an(t) cos

(2πn
2L

x
)
+ bn(t) sin

(2πn
2L

x
))

. (6.55)

To have the exponential decay in the spatial correlation function, we need the
amplitudes of all the modes to be normal (Gaussian) independent variables
an, bn ∼ N(0,

√
⟨a2n⟩), with variances

⟨a2n⟩ = ⟨b2n⟩ =





ϵ
L n = 0
ϵ
L

2

1+λ2(πn
L )

2 n = 1, . . . , N.
(6.56)

To have as well an exponential decay in the temporal correlation function, the
amplitudes must follow an Ornstein-Uhlenbeck process, such that

dan
dt

= −1

τ
an +

1

τ
η(t), (6.57)
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where η(t) is a white noise, with ⟨η(t)η(t′)⟩ = 2µnδ(t− t′). This way,

⟨an(t′)an(t′ + t)⟩ = µn
τ
e−|t|/τ = ⟨a2n⟩e−|t|/τ , (6.58)

and the same for bn, where we used that for t = 0, ⟨an(0)2⟩ = ⟨a2n⟩ and so µn =
τ⟨a2n⟩ (variances in Eq. 6.56). Summarizing, in space and time (see Eq. 6.D.3
and Eq. 6.D.7), we get

⟨ψ(x′, t)ψ(x′ + x, t)⟩ = ϵ

L

(
1 +

N∑

n=1

2

1 + λ2
(
πn
L

)2 cos
(πn
L
x
))

≈ ϵ

λ
e−|x|/λ,

(6.59)

⟨ψ(x, t′)ψ(x, t′ + t)⟩ = ϵ

L

(
1 +

N∑

n=1

2

1 + λ2
(
πn
L

)2

)
e−|t|/τ ≡ µ

τ
e−|t|/τ , (6.60)

being µ ≡∑N
n=0 µn =

∑N
n=0⟨a2n⟩τ .

6.3.1 Diffusion coefficient

Taking the active traction parameter from Eq. 6.53, and the polarity from
Eq. 6.4, then the mean velocity (Eq. 6.3) is

v̄(t) =
1

2Lξ

ˆ x+

x−

ζ0i (1 + αψ(x, t))p(x)dx =
ζ0i α

2Lξ

ˆ x+

x−

ψ(x, t)p(x)dx

=
ζ0i α

2Lξ

ˆ x+

x−

ψ(x, t)
sinh ((x−X)/Lc)

sinh (L/Lc)
dx, (6.61)

where in the first equality we have used that p is an odd function. The mean
displacement and the mean squared displacement give

x̄(t) =

ˆ t

0
v̄(t′)dt′

=
ζ0i α

2Lξ sinh (L/Lc)

ˆ t

0
dt′
ˆ x+

x−

ψ(x′, t′) sinh

(
x′ −X

Lc

)
dx′, (6.62)

⟨x̄(t)2⟩ =
(

ζ0i α

2Lξ sinh (L/Lc)

)2 ˆ t

0
dt′
ˆ t

0
dt′′
ˆ x+

x−

dx′
ˆ x+

x−

dx′′

· ⟨ψ(x′, t′)ψ(x′′, t′′)⟩ sinh
(
x′ −X

Lc

)
sinh

(
x′′ −X

Lc

)
, (6.63)
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and since ⟨x̄(t)2⟩ = 2tDdiff for long times, we can obtain the diffusion coefficient
by substituting the noise correlation function. As before, we are assuming a
colored noise defined by the correlation function in Eq. 6.54, and we get

⟨x̄(t)2⟩ =
(
ζ0i α

Lξ

)2 ϵ

8λτ sinh2 (L/Lc)
F (t)G(L), (6.64)

where the functions F (t) and G(L) are given by

F (t) = 2τ
(
t+ τ(e−t/τ − 1)

)
, (6.65)

G(L) =
Lc

λ

1

(1/λ2 − 1/L2
c)

(
sinh

(
2L

Lc

)
− 2L

Lc

)

+
4e−L/λ

(1/L2
c − 1/λ2)2

(
1

Lc
cosh

(
L

Lc

)
+

1

λ
sinh

(
L

Lc

))

·
(

1

Lc
cosh

(
L

Lc

)
sinh

(
L

λ

)
− 1

λ
sinh

(
L

Lc

)
cosh

(
L

λ

))
. (6.66)

Therefore, the exact solution for the diffusion coefficient reads

Ddiff =

(
ζ0i α

Lξ

)2 ϵ

8λ sinh2 (L/Lc)
G(L). (6.67)

For a very small correlation length λ ≪ Lc (limit of spatially white noise), we
obtain a simplified expression using G(L) ≈ λLc

(
sinh

(
2L
Lc

)
− 2L

Lc

)
,

Ddiff ≈
(
ζ0i α

Lξ

)2 ϵLc

8 sinh2 (L/Lc)

(
sinh

(
2L

Lc

)
− 2L

Lc

)
. (6.68)

If we take a strictly white noise in both time and space, with ⟨ψ(x, t)ψ(x′, t′)⟩ =
2ϵδ(x− x′)δ(t− t′), from Eq. 6.63 we get

⟨x̄(t)2⟩ =
(

ζ0i α

2Lξ sinh (L/Lc)

)2

2ϵt

ˆ x+

x−

dx′ sinh2
(
x′ −X

Lc

)

=

(
ζ0i α

Lξ

)2
ϵLct

4 sinh2 (L/Lc)

(
sinh

(
2L

Lc

)
− 2L

Lc

)
, (6.69)

yielding the same diffusion coefficient as in Eq. 6.68.
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The full expression for the colored noise (continuous lines in Fig. 6.5a) gives
an interesting non-monotonic behavior, where at the limit of small system sizes
(L → 0), Ddiff ≈ 8L

15λ + θ(L2), and so the diffusion coefficient increases with
system size until a maximum at L∗, plotted in Fig. 6.5b as a function of the
noise correlation length λ. After the peak, the diffusion coefficient decreases
with size. There are thus two effects at play: On the one hand, for enough small
systems, if L is smaller or comparable to λ, then this correlation throughout the
system enhances the overall motion, since a value taken by the noise persists
in the entire system and for the correlation time, thus increasing the diffusion
coefficient. This effect is less pronounced for larger systems, which generically
average out fluctuations, leading to a decreasing diffusion coefficient with system
size. For white noise or in the small correlation length limit λ ≪ Lc (dashed
lines in Fig. 6.5a), the diffusion coefficient already decreases with the size, since
at L→ 0, Ddiff ≈ 4λ

3L+θ(L). This is because now λ→ 0, and only the decreasing
effect due to an increase in system size is at play.
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Figure 6.5: Diffusion coefficient for an external noise in the active trac-
tion. a, Analytical predictions for a dimensionless diffusion coefficient as a function
of the half-size of the monolayer, for a noise correlation length of λ = 2 µm (light
blue) and λ = 15 µm (dark blue), being Lc = 30 µm. The continuous line is the full
expression (Eq. 6.67), whereas the dashed line is the limit for λ ≪ Lc (Eq. 6.68),
which is a better approximation for the λ = 2 µm case. b, Half-size L∗ that gives
the peak for the diffusion coefficient in a, as a function of the noise correlation
length (continuous line). The dotted line shows the L∗ = λ curve.

These results could be interesting for comparison with experimental measure-
ments of diffusion coefficients of cellular clusters. A measured non-monotonic
behavior could thus be a signature of external noise such as the one here modeled
and would provide us with a way of inferring the noise correlation length.
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6.4 Experimental data analysis

To compare the theoretical predictions from the previous chapters with exper-
iments, and to try to infer the noise parameters, in this chapter we analyze
data of traction force measurements in epithelial monolayers, from [Uroz2018]
for the spreading of rectangular monolayers of MDCK cells, and from [Pérez-
González2019] for confined circular monolayers of MDA-MB-231 cells. In this
last experiment, the cells were genetically engineered to have an inducible pro-
moter of the gene responsible for the expression of E-cadherin by adding dex-
amethasone. Therefore, E-cadherin expression increases with time, and so we
cannot do temporal averages since the conditions, and hence parameters, are
changing. Nevertheless, it is useful to analyze the data and focus on given time
points. With this analysis, we argue to what extent the data can inform us
about the noise origin, and use the theory (mainly for the additive noise in the
polarity dynamics) to obtain some parameter estimates.

6.4.1 Noise origin

The experimental data has a subcellular resolution, but since our model is not
intended to capture subcellular scales of the traction fluctuations, we apply a
coarse-graining of the data to eliminate these fluctuations. We average windows
of w × w traction values that should be comparable to the size of a cell, with
w being odd integers so that the averaged value remains in the center of the
window. For experiments in rectangular geometry, 1 bright field pixel ∼ 0.16
µm and each traction value corresponds to 16 pixels ∼ 2.56 µm. Since cells are
around ∼ 100− 200 pixels (16− 32 µm), we take w = 7, 9, 11, 13. In the circular
monolayers, we have less resolution, 1 bright field pixel ∼ 0.32 µm, but also each
traction value corresponds to 16 pixels ∼ 5.12 µm. Cells are similar sizes as in the
rectangular case, so the sliding window is taken as the half, w = 3, 5, 7. In any
case, we have checked that the results are not very sensitive to this parameter.

In Fig. 6.6 we plot the average kymographs for the rectangular and the
circular monolayers. As expected, the horizontal traction Tx (Fig. 6.6b) and the
radial traction Tr (Fig. 6.6e) (in the rectangular and circular cases respectively),
are larger near the boundaries and point inwards, whereas the vertical traction
Ty (Fig. 6.6c) and the tangential traction Tt (Fig. 6.6f) average to zero.

In Fig. 6.7, we plot the traction values and standard deviations as a function
of the distance to the edge (either with the horizontal coordinate x for the rect-
angular case, or the radial coordinate r in the circular case). For the rectangular
geometry, the fit for the traction in cartesian coordinates is exponential (only
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d fe

a cb

Figure 6.6: Traction kymographs. a-c, Traction kymographs of rectangular
monolayers, averaging data from 3 experiments of MDCK cells from [Uroz2018],
with a coarse-graining parameter of w = 11. Traction modulus (a), traction in the
x direction (b, parallel to the direction of motion of the cells), and traction in the
y direction (c, transversal to the direction of motion). d-f, Traction kymographs
of circular confined monolayers of 200 µm of radii of MDA-MB-231 cells, and a
100 µg/ml collagen density in the coating solution. Data is averaged from 15
experiments, from [Pérez-González2019], with a coarse-graining parameter of w =
5. Traction modulus (d), traction in the radial direction (e), and traction in the
tangential direction (f). Note the scale of the color bar is different in all the plots.

one side of the sinh from Eq. 6.4), so we can write

Tx(x) = T0e
−x/Lc , (6.70)

whereas for the circular geometry, in polar coordinates, is [Pérez-González2019]

Tr(r) = T0
I1((R− r)/Lc)

I1(R/Lc)
, (6.71)

being R the radius of the monolayer and I1 the modified Bessel function of the
first kind and first order. Here r is the distance from the edge, instead of the
radial coordinate from the center to the edge. The first increase of traction
very close to the edge in Fig. 6.7b is not captured by the model. Presumably,
this may be a spurious effect due to fluctuations of the position of the edge.
After this initial increase, the decrease is reasonably well fitted by this Bessel
function. In both Fig. 6.7a and Fig. 6.7b, the standard deviation of the traction
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a b

Figure 6.7: Traction as a function of the distance from the edge. a, Data
of the X traction, Tx, and its standard deviation averaging both right and left
edges. The fit (Eq. 6.70) gives Lc ∼ 30 µm (about 2 − 3 cells) and T0 ∼ 105 Pa,
and the estimate for the standard deviation far from the edge is

√
⟨δT 2

x ⟩ ∼ 21 Pa.
Same data as in Fig. 6.6a-c, also with a coarse-graining of w = 11 but averaged in
time to improve the statistics. b, Data of the traction in the radial direction, Tr,
and its standard deviation, averaging radially. Same data as in Fig. 6.6d-f, also
with a coarse-graining of w = 5, for the time point t = 30 h. The fit (Eq. 6.71)
gives Lc ∼ 31 µm and T0 ∼ 869 Pa, and

√
⟨δT 2

r ⟩ ∼ 126 Pa.

measurements is larger near the edge, but still significantly large deep inside
the monolayer, where we fit a horizontal line to estimate

√
⟨δT 2

α⟩. This is a
signature that both multiplicative noise (larger fluctuations where tractions are
larger) and additive noise (homogeneous fluctuations throughout the system)
coexist in the real tissue. The plot in Fig. 6.7b for the circular geometry is for
a fixed time point since, in those experiments, the conditions change with time,
and therefore, we cannot do temporal averages. However, we obtain good fits in
all the time points, allowing us to plot the evolution of the fitted parameters in
Fig. 6.8.

The experiments of circular confined monolayers were performed for three
different collagen densities (1, 10, and 100 µg/ml) in the solution for the sub-
strate coating. Since this density influences the number of cell-substrate adhesion
ligands, we hypothesize that a difference in the fluctuations measurements could
be interpreted as a signature of external noise in the active traction parameter.
However, in Fig. 6.9 no significant differences are observed in the standard devi-
ation fit far from the edge of the monolayer. Therefore we conclude that, within
our modeling framework, the external noise is not as important as the internal
one, that is, the noise in the polarity dynamics.
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a b c

Figure 6.8: Evolution in time of the fitted parameters in circular mono-
layers. Evolution for the parameters Lc and T0 obtained from fitting the radial
traction Tr from Fig. 6.6d-f with Eq. 6.71, and ⟨δT 2

r ⟩ with a horizontal line far from
the edge. They increase with time because the values of the tractions are also larger
due to a greater E-cadherin expression. The values from Fig. 6.7b correspond to
the t = 30 h time point.

Figure 6.9: Effect of the coating density in circular monolayers. Standard
deviation fits of the radial traction Tr with time, for different coating densities
(1, 10, and 100 µg/ml). The last corresponds to the data in Fig. 6.6d-f, Fig. 6.7b
and Fig. 6.8.

Moreover, although the multiplicative and the additive noise in the polarity
coexist (as seen in Fig. 6.7), the plateau far from the edge remains larger than
the increase in the edge, and so we conclude that the additive noise should
be more significant than the multiplicative one. Both for this reason and for
simplicity, in the following sections we focus on the analysis and comparison of
the experimental data with the predictions of an additive noise in the polarity
dynamics.
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6.4.2 Estimation of an effective non-equilibrium temperature

Although the system is not at equilibrium, in Section 6.2.1.3 we saw that, in
the approximation where the polarity dynamics is linear and decoupled from the
velocity, a formal analogy with the fluctuation-dissipation theorem holds with
an effective temperature. From this result, and to the extent that fluctuations in
the system are consistent with those of the model, we can use the data to assign
an effective temperature to the system. Since both the rectangular and circular
geometry experiments are effectively 2D systems, we can obtain the variance
of the polarization fluctuations through the integral of the structure factor in
Eq. 6.23. However, note that there ⟨δp2⟩ ≡ ⟨δp2x + δp2y⟩ ≡ ⟨δp2r + δp2t ⟩, but in
Fig. 6.7 we plot only one component. Therefore, we divide the result of Eq. 6.23
by 2. Using ϵγ1 = kBT (Eq. 6.27) and τ ≡ γ1/a, we get

⟨δp2α⟩ =
kBT

4πaL2
c

ln
(
1 + L2

cq
2
max
)
. (6.72)

Here, both a and K correspond to the 2D free energy, but from the literature,
we typically have values in a volume, that is, in three dimensions. Therefore,
we must convert this a to the typical 3D one by multiplying by the height of
the monolayer h, a = ha3D, since we integrate over the vertical dimension of the
system. The effective equilibrium temperature thus reads

kBT =
4πha3DL

2
c⟨δp2α⟩

ln
(
1 + L2

cq
2
max
) , (6.73)

where the cutoff qmax = 2π/λmin comes from the coarse-graining in the data anal-
ysis. As explained in Section 6.4.1, we have taken values of the coarse-graining
w such that we average approximately the size of a cell, and so λmin ∼ (16− 32)
µm1. We also need to relate ⟨δp2α⟩ to experimental observables. From the
experimental data we get values of the variance of the traction force mea-
surements ⟨δT 2

α⟩, which are related to the polarization through force balance
Tα = −hfα = h(ξvα − ζipα) (Eq. 2.15). Then,

⟨δT 2
α⟩ = ⟨(Tα − ⟨Tα⟩)2⟩ = h2⟨(ξδvα − ζiδpα)

2⟩ = h2
(
ξ2⟨δvα⟩2

+ ζ2i ⟨δpα⟩2 − 2ξζi⟨δvαδpα⟩
)
≈ h2

(
ξ2⟨δvα⟩2 + ζ2i ⟨δpα⟩2

)
, (6.74)

where we have assumed first order in the fluctuations, ⟨δvαδpα⟩ = ⟨vαpα⟩ −
⟨vα⟩⟨pα⟩ ≈ 0. By definition, T0 ≡ hζi is the maximal traction stress in the

1To be more precise, λmin = 2.56w µm for the rectangular geometry and λmin = 5.12w µm
for the circular one.
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experiments, and so

⟨δp2α⟩ ≈
1

h2ζ2i

(
⟨δT 2

α⟩ − h2ξ2⟨δv2α⟩
)
≈ 1

T 2
0

(
⟨δT 2

α⟩ − h2ξ2⟨δv2α⟩
)
. (6.75)

Moreover, taking realistic estimated values from experiments, we see that the
term containing the friction and the velocity fluctuations can be neglected. A
realistic range for the friction parameter is ξ ∼ (100− 600) Pa · s/µm2 ∼ (0.03−
0.2) Pa · h/µm2 [Pérez-González2019], and we take

√
⟨δv2x⟩ ∼ 5 µm/h for the

fluctuations in the velocity (Fig. 6.10). Thus, assuming a typical monolayer
height of h ∼ 5 µm, the friction term is of the order of h2ξ2⟨δv2x⟩ ∼ (0.6−25) Pa2.
Considering that the fluctuations of the traction are ⟨δTx⟩2 ∼ 212 Pa2 = 441
Pa2 (Fig. 6.7a), the friction term is between one and three orders of magnitude
smaller and can thus be neglected. Therefore,

⟨δpα⟩2 ≈
⟨δT 2

α⟩
T 2
0

. (6.76)

a bb

Figure 6.10: Velocity in rectangular monolayers. a, Kymograph of the X
velocity, vx for a rectangular monolayer. b, vx as a function of distance from the
edge, averaging both edges (changing the sign of the velocity on the left edge). We
estimate from here

√
⟨δv2x⟩ ∼ 5 µm/h. Data is from only one experiment of MDCK

cells from [Uroz2018], with a coarse-graining parameter of w = 11.

Let’s now give values in the two different geometries. It is important to note
that the coarse-graining parameter w does not change the order of magnitude of
the results, because although qmax decreases if w increases, also ⟨δp2α⟩ decreases
since the traction fluctuations are averaged on a larger window (Fig. 6.11c),
while both Lc and T0 remain very similar for different coarse-graining parameters
(Fig. 6.11a,b). Therefore, we just show the estimates for the coarse-graining
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a b c

Figure 6.11: Effect of the coarse-grainig in circular monolayers. Evolu-
tion in time for the parameters Lc and T0 obtained from fitting the radial traction
Tr with Eq. 6.71, and ⟨δT 2

r ⟩ with a horizontal line far from the edge. Data comes
from the kymographs of circular monolayers but with different coarse-graining pa-
rameters (w = 3, 5, 7, 9, from light to dark green). The w = 11 case corresponds to
the same curves as in Fig. 6.8.

parameters already chosen in Fig. 6.6 and Fig. 6.7. Taking a3D ∼ (1 − 20) Pa
and h ∼ 5 µm [Blanch-Mercader2017a,Pérez-González2019], then:

• Rectangular monolayers: From Fig. 6.7a (coarse-graining w = 11 → λmin ∼
28 µm), we take Lc ∼ 30 µm, T0 ∼ 105 Pa and

√
⟨δT 2

x ⟩ ∼ 21 Pa. From
Eq. 6.76, ⟨δp2x⟩ ∼ 0.04, and so using Eq. 6.73, we get

kBT ≈ 4π
5 · a3D · 302 · 0.04

ln
(
1 + 302 ·

(
2π
28

)2 ) ≈ (0.6− 11.8) · 103 Pa · µm3,

which is kBT ≈ (0.6 − 11.8) · 106 pN · nm ≈ (0.15 − 2.9) · 106 kBT ∗ (at room
temperature T ∗ = 298 K, we know kBT

∗ = 4.11 pN·nm).

• Circular monolayers: From Fig. 6.7b (coarse-graining w = 5 → λmin ∼ 26
µm), we take Lc ∼ 31 µm, T0 ∼ 869 Pa and

√
⟨δT 2

r ⟩ ∼ 126 Pa. From Eq. 6.76,
⟨δp2r⟩ ∼ 0.02, and so using Eq. 6.73, we get

kBT ≈ 4π
5 · a3D · 312 · 0.02

ln
(
1 + 312 ·

(
2π
26

)2 ) ≈ (0.3− 6.0) · 103 Pa · µm3,

which is kBT ≈ (0.3− 6.0) · 106 pN · nm ≈ (0.07− 1.5) · 106 kBT ∗.

Summarizing, we get an effective temperature around 105 − 106 kBT
∗. This is

quite big, because the fluctuations in the system are indeed macroscopic, and
energetically significant at the characteristic energy scale of the polarization,
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aL2
c = K. We can compare this energy scale of fluctuations with an estimation

based on cell mechanics in the tissue. Considering the typical traction force per
unit area of a cell as ∼ (10 − 100) Pa (standard deviation in the center of the
monolayer in Fig. 6.7) and its typical length as ∼ 10 µm, then the typical force
scale is ∼ (1 − 10) · 103 Pa·µm2 = (1 − 10) nN. The lamellipodia has turnover
times in the order of 30 seconds to a few minutes. Taking ∼ 1 min, and with a
velocity of ∼ 5 ·µm/h (standard deviation in Fig. 6.10), this gives a displacement
of ∼ 0.1 µm. Then, the work is ∼ (0.1 − 1) nN·µm = 105 − 106 pN·nm. This
is the same order of magnitude as what we obtained above. So we can argue
that the energy of the fluctuations is comparable to the scale of the mechanical
energy generated by the cells. Therefore, the fluctuations originate from the cell
machinery itself.

6.4.3 Autocorrelation functions

In Section 6.2.1.1 we predicted the autocorrelation functions for the polarization
fluctuations, both spatially and temporally (Eq. 6.11 and Eq. 6.18 for a 2D sys-
tem). Mapping the traction with the polarization, we expect the autocorrelation
of the traction fluctuations to have the same dependence. Therefore, for the X
traction Tx in the rectangular geometry, and for the radial traction Tr in the
radial geometry, we expect a temporal correlation function ⟨δTα(t)δTα(t′)⟩ ∝
e−|t−t′|/τ , and a spatial correlation function ⟨δTα(r)δTα(r′)⟩ ∝ K0(|r − r′|/Lc).
In Fig. 6.12 we plot the spatial and temporal autocorrelation functions in the two
experimental datasets. The data analysis method is explained in Appendix 6.E.

We can see that an exponential function fits well the temporal correlation
functions (Fig. 6.12b,d), giving correlation times of τ ∼ 0.6 h for the rectangular
geometry, and τ ∼ 0.8 h for the circular one. However, a clear discrepancy exists
between the experimental data and the theoretical fits for the spatial correlation
functions (Fig. 6.12a,c). Instead, at least for the rectangular geometry Fig. 6.12a,
we see a negative autocorrelation at lengths of about 30 µm, between one and
two cells, which could be a signature of the internal structure of cells, which
exhibit anticorrelation at the cell scale due to the dipolar force distribution.
The inner force distribution at this single-cell scale is clearly not captured by
our model, which is designed to describe supracellular structures. However, in
other experiments that do not reflect such internal structure, we could still expect
to observe the behavior predicted by our theory of additive noise in the polarity
dynamics. For instance, this might be the case of [Saraswathibhatla2021], where
the spatial traction autocorrelation decays to zero over a distance of two cell
diameters. Whether those data can be fitted with our theory will be discussed
elsewhere.
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a

d

b

c

Figure 6.12: Autocorrelation functions of the traction fluctuations. a,b,
Spatial (a) and temporal (b) autocorrelation of the X traction δTx in rectangular
monolayers, from the same data as in Fig. 6.6a-c, also with a coarse-graining of
w = 11 and averaged in time. c,d, Spatial (c) and temporal (d) autocorrelation of
the radial traction δTr in circular monolayers, from the same data as in Fig. 6.6d-f,
also with a coarse-graining of w = 5. The spatial correlation is very similar at
different time-points (inset, c), and so in c we plot the time average up to 36 h.
The black continuous line is the mean of all the experiments (which are represented
in the grey thin lines), and the dashed line is the theoretical fit, taking Lc either
from Fig. 6.7a or averaging Fig. 6.8a for the considered times.

In addition to the discrepancies between our model and real data due to
the data’s subcellular resolution, there is yet another general limitation that
must always be considered with care, namely, the assumption of weak noise.
This has allowed us to decouple the polarization field from the velocity (see
Appendix 6.A) and thus largely simplify the analysis. However, we have seen that
fluctuations are relatively large, compared to the typical energy scales associated
with cell polarization. It is thus possible that the coupling between velocity and
polarization is relevant in some cases, requiring a more general treatment of

172



6

6.5 Discussion and conclusions

noise. Overall, in the simplicity of our model resides the power to make strong
and useful predictions in many situations. A model with full nonlinear couplings
is expected to be more accurate but would lack some of the insights and predictive
power of our simplified version.

6.5 Discussion and conclusions

In this chapter, we have proposed three different ways to introduce stochastic
terms in our continuum model of epithelial monolayers, accounting for the in-
herent randomness of biological systems, and we have compared the predictions
with experimental data of traction force fluctuations.

We first modeled an internal noise coming from the tissue by introducing
noise in the polarity dynamics. We considered cases of both additive and multi-
plicative noise. We focused mostly on the additive one for simplicity and because
it was observed in the experimental data that it was the most relevant noise
source. We obtained theoretical predictions for the diffusion coefficient of a cell
cluster for both cases, also showing that the multiplicative noise case was sub-
dominant for large systems. For the additive noise, we computed the correlation
functions and the power spectral densities. These observables can be compared
with existing data, except for the diffusion coefficient, for which no sufficient
data was available. For the correlation functions, we obtained that the temporal
correlation was well captured by the model, and could give estimates for the
correlation time. The spatial correlation function, however, featured effects not
included in our model, possibly related to internal structure at the subcellular
scale. The discrepancies can also be attributed partly to the weak noise approx-
imation assumed in the model, which excludes correlations between polarization
and velocity fluctuations. The results obtained for the power spectral density
and the diffusion coefficient could also be useful to fit experimental data and
infer model parameters, which we defer to future work.

Another possible noise source we have considered is that of an external noise
coming from the adhesion with the substrate, through the ligand kinetics. This
was modeled by adding noise to the active traction parameter. In this case,
the diffusion coefficient gives a non-monotonic dependency with the monolayer
cluster size, which we did not observe when adding noise in the polarity dynam-
ics. Therefore, if this behavior was observed in experimental data, it could be a
signature of the presence of this type of external noise.

The proposed formalism also gave us a way to characterize the noise statistics
in terms of an effective, nonequilibrium temperature in the tissue. From the
experimental data, we could get values of the effective energy scale kBT which
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are large, consistent with the macroscopic character of the fluctuations at the cell
scale, which is consistent with estimates based on the inner mechanical processes
that generate the polarization fluctuations.

All in all, this new formalism gives us the possibility to model more realistic
situations that account for the randomness of living systems, and a powerful tool
to get information about the system through the fluctuations of some variables,
in this case, the traction forces. Our model is a first step towards a theory of
fluctuating hydrodynamics of tissues. The next step to improve our approach
must include the coupling of polarization and velocity fluctuations in the bulk
as well as the fluctuations of the boundary.
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Appendices

6.A Weak noise approximation

The full equation for the polarity dynamics was given in Eq. 2.1 from Chapter 2.
Neglecting flow alignment and active spontaneous polarization effects (ν̄1, ν1, ϵ→
0), but keeping the advection and co-rotation terms, it reads

(∂t + vβ∂β)pα + ωαβpβ = − 1

γ1

(
apα −K∇2pα

)
+ ψα, (6.A.1)

where we have added a noise term ψα. We can also write the force balance
equation, which comes from Eq. 2.9, Eq. 2.14 and Eq. 2.15, being

η∇2vα − ξvα = −ζipα − ζ∂β(pαpβ). (6.A.2)

To linear order in the perturbations, and so assuming a weak noise approxi-
mation, the solutions for the polarization and velocity can be written as pα =
p0α + δpα and vα = v0α + δvα, where p0α and v0α are the respective fields at equi-
librium. Then, the dynamics of the polarity perturbations reads

∂tδpα + v0β∂βδpα + δvβ∂βp
0
α + ω0

αβδpβ + δωαβp
0
β =

= − 1

γ1

(
aδpα −K∇2δpα

)
+ ψα. (6.A.3)

In the central region of the system (r < R − Lc for a circular monolayer),
we can assume that p0α ≈ 0, and with a small friction (ξ → 0), we get v0α ∼
(ζiLc/η)rα from Eq. 6.A.2. This gives ω0

αβ ≈ 0. Thus the equation for the
polarity perturbations gets greatly simplified,

∂tδpα + v0β∂βδpα ≈ − 1

γ1

(
aδpα −K∇2δpα

)
+ ψα. (6.A.4)
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Assuming that ∂βδpα ∼ δpα/Lc, we see that the term v0β∂βδpα can be neglected
in front of aδpα/γ1 if

ζiLcR

η

δpα
Lc

≪ a

γ1
δpα −→ ζiR

η
≪ a

γ1
≡ τ−1 −→ τ ≪ η

ζiR
. (6.A.5)

The advection term can thus be neglected as long as the relaxation of the polarity
field is sufficiently fast compared to other processes in the system. Equivalently,
this implies that the shear viscosity is much larger than the rotational viscosity,
satisfying γ1

η ≪ a
ζiR

. If this applies, we get

∂tδpα ≈ − 1

γ1

(
aδpα −K∇2δpα

)
+ ψα, (6.A.6)

This is the main equation we use throughout the chapter, introduced in Eq. 6.7.
In general, if the noise is strong, and/or if the above condition is not satisfied,
a stochastic model for the two coupled equations for velocity and polarity must
be considered.
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6.B On Fourier transforms and Dirac delta functions

Given a function f(r, t), r ∈ Rd, the Fourier transform in space is defined as

f̂(q, t) =

ˆ
Rd

f(r, t)e−iq·rdr, (6.B.1)

while given f̂(q, t), the inverse Fourier transform is

f(r, t) =
1

(2π)d

ˆ
Rd

f̂(q, t)eiq·rdq. (6.B.2)

The Fourier transform in time is equally defined but for the integration limits in
a 1D space. The Dirac Delta function is

δ(r) =
1

(2π)d

ˆ
Rd

eip·rdp, (6.B.3)

and it is an even function, since δ(−r) = δ(r). We see from the definition that,
for p in a spatial domain p ∈ Ld, or in a temporal domain p ∈ T , then

δ(0) =
1

(2π)d

ˆ
Rd

eip·0dp =
Ld

(2π)d
, δ(0) =

1

2π

ˆ
R
eip·0dp =

T

2π
. (6.B.4)

Being ⟨ψα(r, t)ψβ(r
′, t′)⟩ = 2ϵδ(r−r′)δ(t−t′)δαβ the autocorrelation function

for a vectorial noise ψα, then in Fourier space for the position, it reads

⟨ψ̂α(q, t)ψ̂β(q
′, t′)⟩ =

ˆ
Rd

dr

ˆ
Rd

dr′e−iq·re−iq′·r′⟨ψα(r, t)ψβ(r
′, t′)⟩

=

ˆ
Rd

dr

ˆ
Rd

dr′e−iq·r−iq′·r′2ϵδ(r− r′)δ(t− t′)δαβ

= 2ϵ

ˆ
Rd

dre−i(q+q′)·rδ(t− t′)δαβ = 2ϵ(2π)dδ(q+ q′)δ(t− t′)δαβ. (6.B.5)

And also in Fourier space for the time,

⟨ ˆ̃ψα(q, ω)
ˆ̃
ψβ(q

′, ω′)⟩ =
ˆ
Rd

dr

ˆ
Rd

dr′
ˆ ∞

−∞
dt

ˆ ∞

−∞
dt′e−iq·r−iωte−iq′·r′−iω′t′ ·

· ⟨ψα(r, t)ψβ(r
′, t′)⟩ =

ˆ
Rd

dr

ˆ
Rd

dr′
ˆ ∞

−∞
dt

ˆ ∞

−∞
dt′e−iq·r−iq′·r′e−iωt−iω′t′ ·

· 2ϵδ(r− r′)δ(t− t′)δαβ = 2ϵ

ˆ
Rd

dre−i(q+q′)·r
ˆ ∞

−∞
dte−i(ω+ω′)t

= 2ϵ(2π)dδ(q+ q′)2πδ(ω + ω′)δαβ. (6.B.6)
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6.C Additive polarity calculations

Using polar coordinates (r and q are the moduli), we compute the inverse Fourier
transform of a Lorentzian function in two dimensions,

F−1

[
1

c2 + q2

]
=

1

(2π)2

ˆ
R2

eiq·r

c2 + q2
dq =

1

(2π)2

ˆ ∞

0

ˆ 2π

0

eiqr cos θ

c2 + q2
qdqdθ

=
1

(2π)2

ˆ ∞

0

qdq

c2 + q2

ˆ 2π

0
eiqr cos θdθ =

1

2π

ˆ ∞

0

qJ0(qr)

c2 + q2
dq =

K0(cr)

2π
, (6.C.1)

where J0 is the Bessel function of the first kind and K0 is the modified Bessel
function of the second kind, both of zeroth-order.

Using the definition for the correlation function of the polarization fluctua-
tions in a d−dimensional domain Ld,

C(r) ≡
〈

1

Ld

ˆ
Ld

δpα(r
′, t)δpα(r

′ + r, t)dr′
〉
, (6.C.2)

with a change of variables s = r′ + r, the static structure factor is

S(q) ≡
ˆ
Ld

C(r)e−iq·rdr =
1

Ld

〈ˆ
Ld

ˆ
Ld

δpα(r
′, t)δpα(r

′ + r, t)e−iq·rdr′dr

〉

=
1

Ld

〈ˆ
Ld

ˆ
Ld

δpα(r
′, t)δpα(s, t)e

−iq·(s−r′)dr′ds

〉

=
1

Ld

〈ˆ
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δpα(r
′, t)e−i(−q)·r′dr′

ˆ
Ld

δp(s, t)e−iq·sds

〉

=
1

Ld

〈
δp̂α(−q, t)δp̂α(q, t)

〉
=

1

Ld

〈
|δp̂(q, t)|2

〉
. (6.C.3)

The autocorrelation, which is the correlation function for r = 0, reads

⟨δp2⟩ ≡ C(0) =

〈
1

Ld

ˆ
Ld

δpα(r)δpα(r)dr

〉
=

1

Ld

〈ˆ
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dr
1
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iq·rdq

1

(2π)d

ˆ
Ωd

δp̂α(q
′, t)eiq

′·rdq′
〉

=
1

Ld(2π)d
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Ωd

ˆ
Ωd

〈
δp̂α(q, t)δp̂α(q

′, t)
〉
δ(q+ q′)dqdq′

=
1

Ld(2π)d

ˆ
Ωd

⟨|δp̂(q, t)|2⟩dq =
1

(2π)d

ˆ
Ωd

S(q)dq, (6.C.4)

because ⟨|δp̂(q, t)|2⟩ = LdS(q) has just been computed in Eq. 6.C.3.
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Now, if the signal evolves with time, then the correlation function is

C(r, t) ≡
〈

1

LdT

ˆ
Ld

ˆ
T
δpα(r

′, t′)δpα(r
′ + r, t′ + t)dt′dr′

〉
. (6.C.5)

With a change s = r′ + r and ξ = t′ + t, the dynamic structure factor is

S(q, ω) ≡
ˆ
Ld

ˆ
T
C(r, t)e−iωte−iq·rdtdr

=
1
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〉
. (6.C.6)

For a 1D system, the mean squared displacement can be computed by plug-
ging the autocorrelation in Fourier space (Eq. 6.11) in the third equality, and
also using that

´ t
0 dt

′ ´ t
0 dt

′′e−|t′−t′′|/β = 2β
(
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. It gives
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. (6.C.7)
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6.D Generating the external noise as a Fourier decom-
position

We want to express the noise added in the active traction parameter (Eq. 6.53)
as a decomposition in Fourier modes, as written in Eq. 6.55, where an, bn are
normal independent variables of mean zero. For this reason, we should find their
variances ⟨a2n⟩ so that the noise is exponentially correlated both in space and
time, with a unique correlation time for all the modes. We use that ⟨anam⟩ =
⟨an⟩⟨am⟩ = 0 for n ̸= m, (since ⟨an⟩ = ⟨bn⟩ = 0), and the same for the b’s.
Defining a 1D system from x− = X − L to x+ = X + L, where X is the center-
of-mass and L the half-width of the system, the correlation in space reads

⟨ψ(x′, t)ψ(x′ + x, t)⟩ = 1

2L

N∑

n=0

ˆ x+

x−

dx′
〈
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〉

=
1
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x−

dx′
(
⟨an(t)2⟩ cos

(
2πn

2L
x′
)
cos

(
2πn

2L
(x+ x′)

)

+ ⟨bn(t)2⟩ sin
(
2πn

2L
x′
)
sin

(
2πn

2L
(x+ x′)

))

=
1

2L
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(
⟨an(t)2⟩

ˆ x+
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dx′ cos
(πn
L
x′
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cos
(πn
L
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)
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dx′ sin
(πn
L
x′
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sin
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(⟨an(t)2⟩+ ⟨bn(t)2⟩)L cos
(πn
L
x
)

=

N∑

n=0

⟨an(t)2⟩ cos
(πn
L
x
)
, (6.D.1)

where we have used that ⟨b2n⟩ = ⟨a2n⟩. We want an exponential correlation
function1, ⟨ψ(x′, t)ψ(x′ + x, t)⟩ ≡ C(x) = ϵ

λe
−|x|/λ, that in Fourier space reads

Ĉ(q) =

ˆ ∞

−∞
C(x)e−iqxdx =

ϵ

λ

ˆ ∞

−∞
e−|x|/λ−iqxdx =

2ϵ

1 + λ2q2
. (6.D.2)

1So that in the limit for a small correlation length we get a Delta function (and so a white
noise): C(x) = ϵ

λ
e−|x|/λ λ→0−−−→ 2ϵδ(x).
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Back to real space,

C(x) =
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, (6.D.3)

where we have used that the sin function is odd and so its integral vanishes,
and we have then discretized the integral by multiplying it by 2π

2L and putting
q ≡ 2πn

2L = πn
L (where, except for the mode n = 0, the modes n = 1, . . . , N

should be multiplied by 2). We obtain thus the result in Eq. 6.59. This must be
equal to the result obtained in Eq. 6.D.1, and so the variances of the modes are

⟨a0(t)2⟩ =
ϵ

L
, (6.D.4)

⟨an(t)2⟩ =
ϵ

L

2

1 + λ2
(
πn
L

)2 , for n = 1, . . . , N. (6.D.5)

which is the result in Eq. 6.56.

The correlation in time, following a similar procedure as before, is
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dt′
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⟨a2n⟩e−|t|/τ , (6.D.6)

where we have used that ⟨an(t′)an(t′ + t)⟩ = ⟨bn(t′)bn(t′ + t)⟩ = µn

τ e
−|t|/τ =

⟨a2n⟩e−|t|/τ (Eq. 6.58, since an(t), bn(t) are Ornstein-Uhlenbeck processes). There-
fore, plugging the variances of the modes here (Eq. 6.D.4 and Eq. 6.D.5), we get
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an exponential function for the correlation in time for the noise,

⟨ψ(x, t′)ψ(x, t′ + t)⟩ = ϵ

L

(
1 +

N∑

n=1

2

1 + λ2
(
πn
L

)2

)
e−|t|/τ ≡ µ

τ
e−|t|/τ , (6.D.7)

with

µ ≡
N∑

n=0
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L
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(
πn
L

)2

)
,

attaining the result in Eq. 6.60.
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6.E Methods for the experimental data analysis

The spatial and temporal autocorrelation functions plotted in Fig. 6.12 were
obtained from the experimental data of fluctuations of the traction forces. In
order not to be influenced by the higher values near the edges (Fig. 6.7), we
compute in both cases the correlation in a region of the center of the monolayer.
In Fig. 6.E.1 and Fig. 6.E.2, we show these regions in the initial time points of the
traction maps for the different experimental realizations, both in the rectangular
and in the circular geometry.

For the spatial correlation, we average time points separated by more than
∼ τ , not to be influenced by the temporal correlation of the data. A maximum
distance from the center rmax is selected to define a region (black lines in the
figures), and the correlation of all the points in that region is computed and
averaged. In the rectangular case, we compute the correlation of a point with
that at distance ∆x of the same row, and then average for all the rows (that is,
average through the coordinate y). We do the same for the circular geometry but
taking two points separated by a radial distance ∆r, and then averaging for the
angular coordinate. In the computation, we always subtract the mean traction,
in order to obtain the autocorrelation of the traction fluctuations instead of the
traction values themselves.

Figure 6.E.1: Autocorrelation computation in rectangular monolayers.
X traction colormap in the three analyzed experiments with rectangular geometry
from [Uroz2018], for the first time point and with a coarse-graining parameter of
w = 11. Their temporal sequences give the kymographs in Fig. 6.6a-c.

The temporal correlation is computed in a very similar procedure, but now
we select points inside of the central region that are equally spaced and separated
by ∼ Lc (black dots in the figures), not to be influenced by the spatial correlation
of the data. We take those points at a time t and calculate the autocorrelation
with the same point at time t+∆t, also subtracting the mean values to get the
autocorrelation of the fluctuations.
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Figure 6.E.2: Autocorrelation computation in circular monolayers. Ra-
dial traction colormap in the fifteen analyzed experiments with circular geometry
from [Pérez-González2019], for the first time point and with a coarse-graining pa-
rameter of w = 5. Their temporal sequences give the kymographs in Fig. 6.6d-f.
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General conclusions

In this thesis we explored several examples of collective cell migration of cell
clusters, directed by different forms of symmetry-breaking, either extrinsic, such
as external gradients of environmental stiffness, or intrinsic, such as the new
phenomenon of shape sensing. We also explored the role of a nontrivial rheology
of the substrate in how the collective motion may be triggered. Under the soft
active matter physics framework, we examined the extent to which a mechani-
cal description alone can account for observed collective migration phenomena.
Here, we summarize our work’s main conclusions and the perspectives of future
developments derived from it.

The first two chapters establish a general physical framework to describe
and understand collective durotaxis in epithelial tissues. In Chapter 2, we ex-
tended a continuum model of 2D epithelial monolayers as active, viscous polar
systems, and we generalized it to consider 3D cellular aggregates in Chapter 3.
Through a comprehensive study of the model phenomenology and comparison
with experimental data, the main findings are:

• In the presence of a stiffness gradient of the substrate, 2D monolayers per-
form durotaxis, and their center-of-mass (or durotactic) velocity increases
with the active traction gradient, related to the substrate’s stiffness. It
also increases for larger tissue sizes, decreases for increased friction or ac-
tive traction saturation, and is independent of the contractility and the
traction offset. The spreading velocity increases with the traction offset,
the tissue size, and the hydrodynamic length, but decreases with the con-

185



7

Chapter 7. General conclusions

tractility and is independent of the active traction gradient if it does not
change significantly over the monolayer width.

• Three durotactic regimes emerge: Large monolayers spread indefinitely,
small ones contract, and those in an intermediate size range display a non-
monotonic evolution whereby they switch from contraction to spreading at
a certain time.

• Adding surface tension and elastic resistance is a realistic way to prevent
the indefinite spreading, slowing down expansion and accelerating contrac-
tion.

• 3D cellular aggregates perform cohesive durotactic migration as their in-
terface advances on the stiff side and retracts from the soft side, and their
durotactic velocity is non-monotonic with the local substrate stiffness.

• To explain this non-monotonic behavior, the contribution of the surface
tension of the 3D structure on top of the basal monolayer is needed, gen-
eralizing the theory of active wetting and connecting the clusters’ wetting
properties with durotaxis. Clusters display low motility on the soft and
stiff regions of the substrate, where they fully dewet and wet the surface,
respectively, but at an intermediate stiffness, close to the crossover between
low and high wettability, they are maximally motile.

• The optimal stiffness can be shifted to higher or lower stiffness by tuning
cluster size and active forces, which could be a way for organisms to trigger
and regulate this directed migration.

In the majority of the experiments with 2D monolayers, the tissues expand
indefinitely because either contractility is not large enough or active tractions
are too large. However, for 3D cellular aggregates, the intermediate mode of
coherent migration was observed. Future directions include incorporating more
realistic ingredients into the model, such as spatial pressure variations across a
cluster, size-dependent surface tension of cell aggregates, elastocapillary effects
resulting from substrate deformation, or differences in surface tension across a
cluster that could result in different contact angles at the stiff versus the soft
side. Additionally, performing more experiments to observe and characterize the
full spectrum of dynamical evolutions, and tracking individual clusters during
all their migration, would be necessary to fully validate the model predictions.

In Chapter 4, we explored how extracellular matrix (ECM) stiffening in-
teracts with cellular traction forces. Given the strain-stiffening properties of
biopolymer networks, we assessed the feedback between substrate stiffness and
traction forces. Key points of the results include:

186



7

• The strain of the substrate is non-monotonic with its stiffness. On the
one hand, greater stiffness provokes an increase in traction, which leads to
a greater strain, while on the other hand, the stiffening of the substrate
makes it more resistant to deform.

• The bistable nature of the solutions in a certain parameter regime allows
a sudden increase in traction forces when the substrate rigidifies, or the
contractility or active traction saturation value is increased, enabling tis-
sues to overcome intercellular contractility and potentially triggering the
spreading. Bistability also implies the existence of hysteresis.

• This could have implications in contexts where there is an increased intra-
cellular contractility, or where the ECM stiffens by secreting and accumu-
lating matrix components (tumor progression, embryonic development, or
wound healing), with a high-traction state that enhances tissue migration.

An interesting follow-up of this project would involve designing experiments that
tune substrate stiffness or modulate myosin phosphorylation to observe the dis-
continuous jump in cellular traction values. Additionally, numerical simulations
could validate the analytical findings and characterize the nonlinear transition
to the stationary state.

In Chapter 5, experimental work was conducted to test the predictions on
the relationship between tissue morphology and motility in globally unpolarized
cell clusters without external cues, that is, due to shape asymmetry alone. The
theoretical analysis predicts that spontaneous motility of clusters is generically
expected if the range of alignment interactions is not too small compared to the
system size, and if the screening length that measures the range of hydrodynamic
interactions is larger than the system size. Depending on whether contractility is
small or large, two different modes of sustained collective migration are identified:
anisotropic spreading and coherent migration, both with a finite and sustained
velocity of the center of mass. We have designed experiments as a proof of
concept for these predictions, which had not been tested before. Specifically, we
have found that:

• A systematic study of shapes and sizes shows unequivocally that the phe-
nomenon of shape-sensing motility is present in monolayer clusters.

• The experiments allow us to measure the crucial parameter of the range
of alignment forces, Lc. This measurement confirms that the observed
migration mode, the anisotropic spreading, is clearly distinguished from
the case of isotropic spreading, which would not involve a center of mass
speed.
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• Once a finite Lc is measured, our data proves that the phenomenon is
generic, as long as a systematic front-rear velocity difference is observed.
We check this through the statistical analysis of different shapes and sizes,
and different cell lines.

• The coherent migration mode predicted for large contractility is not ob-
served in our series of experiments because the used cells did not exhibit
sufficient contractility. However, by revisiting data from previous exper-
iments designed for other purposes, we have identified a few cases where
coherent migration is, in fact, observed. These observations also indicate
that the effect of shape-sensing motility may be larger than durotactic cues
and could thus overcome durotaxis.

These results prove experimentally for the first time that cell clusters can ef-
fectively sense their global shape and thus, without other external clues, drive
the collective migration of the cluster. In this scenario, cells obtain positional
information from force transmission through the cluster. Further controlled ex-
periments are needed to verify more systematically the coherent migration mode
with rear-edge retraction and to thoroughly characterize other migratory behav-
iors related to shape asymmetry in cohesive tissues. Another potential extension
of this work would be to couple the shape-sensing mechanism with externally
guided migratory processes, such as durotaxis, exploring the complex, intercon-
nected nature of collective cell migration in real biological environments. The
combined use of durotaxis and shape-sensing experiments could also provide an
alternative procedure to prepare asymmetric initial conditions in a less aggres-
sive way than the mask peeling we have used in this work, and allow a more
precise testing of all predictions.

In Chapter 6, we extended the hydrodynamic model to include fluctuations
of different origins. Experiments and measurements on variables such as traction
and velocity show large fluctuations. In some cases, such as in the presence of
fingering instabilities, fluctuations must be incorporated explicitly. As a first
step towards a fluctuating hydrodynamics theory of tissues, we have proposed,
analyzed, and simulated different stochastic equations to account for internal or
external noise sources.

• An internal noise, added in the polarity dynamics, accounts for stochastic-
ity in the cells’ cytoskeleton and yields predictions for different observables,
such as the diffusion coefficient of the finite cell clusters, the power spectral
density, and the correlation function of traction measurements. Noise can
be introduced additively or multiplicatively, yielding different predictions
that can be experimentally tested.
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• An external noise, added in the active traction parameter, accounts for
the noise coming from the attachment and detachment kinetics of ligands
between the cells and the substrate, giving a non-monotonic diffusion co-
efficient with the monolayer size, absent in the internal noise models.

• Our results for additive noise, which turn out to be the most adequate
formulation of traction fluctuations at the inner, unpolarized regions of the
tissue, allow us to characterize them in terms of an effective temperature
of the system, through the formulation of an effective, non-equilibrium
fluctuation-dissipation relation.

• Analyzing experimental data of traction fluctuations, we observe that the
additive noise in the polarity dynamics is the most relevant in the system.
The model predicts temporal correlation functions accurately, but deviates
on the spatial correlation, possibly reflecting a subcellular structure and
the limitations of a weak noise approximation.

Future work should involve further analysis of additional experiments to compare
and fit our theoretical predictions, such as power spectral density and diffusion
coefficients of cell clusters. For example, observing a non-monotonic diffusion
coefficient with the monolayer size could indicate the significance of external
noise over internal noise in tissue dynamics.

In summary, developing effective theoretical models for complex systems like
cells and tissues deepens our understanding of the biophysical principles under-
lying collective migration. Specifically, continuum models of tissues have proven
insightful and predictive, often describing phenomena only observed in experi-
ments a posteriori. These models not only shed light on the underlying physics
of fundamental biological processes but also inspire new experimental designs,
allowing for a close and fruitful integration between theory and experiments in
our quest to explain nature.
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Resum en català

Migració cel·lular dirigida: forces, formes i fluctuacions en teixits.
De la hidrodinàmica activa als experiments.

Paraules clau: Matèria condensada tova, matèria activa, teixits, mecànica,
migració cel·lular col·lectiva, durotaxi.

Aquesta tesi està dedicada a estudiar la migració cel·lular col·lectiva en teixits
epitelials, sota el marc de la física de la matèria tova activa. Modelitzem els
teixits epitelials com fluids polars actius, ja que els seus components, les cèl·lules,
tenen una font interna d’energia i s’alineen, polaritzant-se, per tal de generar el
moviment. Tot i la miríada d’interaccions químiques i cascades de senyalització
extremadament complexes dins de les cèl·lules, en última instància el moviment
ha d’estar governat per les lleis més bàsiques de la física. L’enfocament d’aquesta
tesi, doncs, és utilitzar models fenomenològic simples, codificant totes aquestes
complexes interaccions en termes de les forces físiques i paràmetres materials
del teixit. Això ens permet, de manera molt simplificada però efectiva, tenir un
model genèric per a modelitzar diversos escenaris rellevants en migració cel·lular
col·lectiva.

L’escenari més estudiat, especialment als Capítols 2–3, és el de la durotaxi
col·lectiva, que consisteix en la migració dirigida del teixit per factors mecànics
externs a les cèl·lues. S’observa quan l’entorn de les cèl·lules—en el cas dels
experiments in vitro, el substrat, típicament un gel de poliacrilamida recobert
amb proteïna de la matriu extracel·lular—, presenta un gradient de rigidesa.
Estudiem a fons un model d’una monocapa epitelial basat en la teoria de gels
actius, desenvolupat prèviament al grup, i l’estenem per tal d’explicar resultats
experimentals de durotaxi col·lectiva d’agregats cel·lulars.

Al Capítol 2 ens centrem en un model per a monocapes bidimensionals,
classificant les dinàmiques d’escampament o contracció segons la mida del tei-
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xit. Solucionem el model analíticament en casos simples però rellevants, per tal
d’obtenir una idea clara de la fenomenologia i dels mecanismes de la migració
pels diferents règims dels paràmetres del model. Al Capítol 3, desenvolupem i
generalitzem el model per tal de tenir en compte l’estructura tridimensional d’un
agregat cel·lular, per tal de comparar amb experiments de durotaxi col·lectiva.
La tensió superficial i les propietats de mullat de l’agregat són crucials per ex-
plicar el comportament no monòton, observat als experiments, de la velocitat de
durotaxi amb la rigidesa local del substrat. Per zones molt toves o molt rígides,
els agregats o bé es contrauen del tot, formant angles de contacte molt grans
amb el substrat, o bé fan un escampament total mullant-lo completament, amb
angles de contacte molt petits. Entremig, un angle de contacte finit, acoblat amb
l’augment de les forces de tracció amb la rigidesa, fa que motilitat dels agregats
augmenti, donant lloc a una rigidesa òptima per la qual la velocitat de durotaxi
és màxima.

En conjunt, el fenomen de la durotaxi podria tenir implicacions en processos
biològics fonamentals on hi ha moviment dirigit de cèl·lules, ja sigui en desenvo-
lupament embrionari—com ja s’ha observat en estudis amb Xenopus laevis—o
metàstasi cancerígena. Desxifrar els mecanismes físics subjacents d’aquest mo-
viment, és doncs molt important per entendre millor aquests processos biològics.

Seguint en la línia d’estudiar les interaccions entre el teixit i el seu entorn
extracel·lular, al Capítol 4 examinem la influència de les forces de tracció en la
rigidesa del substrat. Que la rigidesa de l’entorn afecta les forces de tracció que
fan les cèl·lules és conegut i incorporat en molts models, però aquí explorem com
aquestes forces, alhora, afecten la rigidesa del substrat. Típicament, les xarxes
biopolimèriques són materials elàstics no lineals que s’endureixen amb la defor-
mació, és a dir, quanta més deformació se’ls hi aplica més rígides es tornen. Per
tant, a més força de tracció, més deformació i més rígids són els substrats, reco-
berts d’aquestes xarxes biopolimèriques. Incorporant aquesta retroalimentació
al model, veiem que existeix una biestabilitat per algunes solucions de la tracció,
cosa que podria ser rellevant per desencadenar la migració al saltar a un estat de
tracció més elevada. Aquest resultat podria ser aplicable en la progressió d’un
tumor, on les cèl·lules passarien a un estat de més alta tracció a mesura que
l’estroma es rigidifica i la seva contractilitat augmenta.

Al Capítol 5, investiguem la migració dirigida per la forma dels teixits enlloc
de la rigidesa de l’entorn. No només factors externs a les cèl·lules poden generar
un moviment dirigit, sinó que l’asimetria en la forma del teixit també podria
provocar aquest moviment espontani, col·lectiu i dirigit. És diferent al compor-
tament d’estol en el sentit que aquí el teixit no està polaritzat globalment, però
el trencament de simetria provoca un desequilibri de forces que genera el movi-
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ment. Motivats per la teoria, duem a terme experiments per tal d’analitzar el
moviment de teixits epitelials dels quals imposem la forma inicial. Amb els ex-
periments, principalment podem distingir el mode d’escampament anisotròpic,
ja que estem massa lluny de les condicions en què podríem observar migració
coherent de tot el teixit, amb l’extrem posterior retractant-se. La cerca d’aquest
mode en els experiments és per un futur estudi, però els resultats del capítol
suporten la idea que la migració cel·lular col·lectiva pot emergir de mecanismes
purament físics sense necessitat d’una polarització global del teixit.

Finalment, per tal de modelitzar situacions més realistes, al Capítol 6 este-
nem el model hidrodinàmic d’un teixit per incloure-hi soroll, tenint en compte
l’estocasticitat inherent dels sistemes biològics. Afegim soroll intern a la dinà-
mica de la polaritat, o bé extern al paràmetre de tracció activa, per tal de mo-
delitzar el soroll del còrtex d’actomiosina cel·lular o la cinètica d’adhesió entre
les cèl·lules i el substrat, respectivament. Comparant amb dades experimentals
de les fluctuacions de les forces de tracció, podem veure quin tipus de soroll és
més adequat i ens dona unes prediccions més encertades, així com ajustar els
paràmetres del model. Varis dels resultats teòrics, com els coeficients de difusió
o la densitat espectral de potències, poden servir com a bases per a dissenyar
futurs experiments.

En conclusió, amb aquesta tesi contribuïm al coneixement dels mecanismes
físics subjacents a la migració cel·lular col·lectiva en teixits, en relació amb la
interacció dels teixits amb el seu entorn i en l’organització i coordinació de com
emergeix la migració espontània o dirigida. L’estudi és rellevant ja que la mi-
gració cel·lular col·lectiva és present en diversos processos biològics, ja sigui en
desenvolupament embrionari, metàstasi cancerígena, regeneració de teixits o tan-
cament de ferides. El desenvolupament de models teòrics simples però efectius,
no només il·lumina la física subjacent a aquests processos, sinó que també pot
inspirar nous dissenys experimentals, permetent una integració fructífera entre
teoria i experiments en la nostra recerca per explicar la natura.
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List of symbols

Description [Units] Estimate References
σαβ Stress tensor [ML−1T−2]
fα Force density [ML−2T−2]
Tα Traction force [ML−1T−2]
pα Polarity [·]
vα Velocity [LT−1]
X Center-of-mass, CM [L]
L Half-width [L]
R Contact radius [L]
U, vX CM velocity [LT−1]
V, vS Spreading velocity [LT−1] 1− 20 Pa
K Frank constant [MLT−2] 2− 10 nN

a
Restoring coefficient

[ML−1T−2]

h Monolayer height [L] 5 µm
[Trepat2009,Pérez-

González2019,Blanch-
Mercader2017b]

Lc Nematic length [L] 25 µm (15 µm) —”—,
√
K/a

ζ Contractility [ML−1T−2] −20 kPa
(−2 kPa) —”—

η Viscosity [ML−1T−1] 80 MPa·s
(20 MPa·s) —”—
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List of symbols

Description [Units] Estimate References

γ1
Rotational viscosity

[ML−1T−1]

λ Hydrodynamic length [L] 300 µm
(420 µm)

√
2η/ξ

Lp Active polar length [L] 200 µm |ζ|/(2ζi)

ζ0i
Active traction offset

[ML−2T−2] 0.05 kPa/µm
[Sunyer2016,
Alert2019b,

Douezan2012a]

ζ ′i
Active traction gradient

[ML−3T−2] 0.08 Pa/µm2

ζ∞i
Active traction saturation

[ML−2T−2] 0.3 kPa/µm
[Trepat2009,Pérez-

González2019,Blanch-
Mercader2017b]

ξ0 Friction offset [ML−3T−1] 0.22 kPa·s/µm2

ξ∞
Friction saturation

[ML−3T−1] 0.5 kPa·s/µm2 [Cochet-
Escartin2014]

E0
Substrate’s softest

stiffness [ML−1T−2] 0.5 kPa Fig. 3.5, Fig. 3.8a

E′ Stiffness gradient
[ML−2T−2] 33 kPa/mm —”—

E∗ Characteristic stiffness of
saturation [ML−1T−2] 140 kPa [Douezan2012b]

P0x
Pressure offset
[ML−1T−2] 4.2 Pa

sP
Pressure sensitivity to

stiffness [·] 0.018

γ Surface tension [MT−2] 1-10 mN/m

[Foty1994,
Forgacs1998,

Guevorkian2010,
Stirbat2013,Cochet-

Escartin2014,
Nier2015]

Unless otherwise specified in the captions, these values are used in Chapter 2 and
those in the parenthesis in Chapter 3. These symbols are also for Chapters 5–6.
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