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Abstract
Microlensing near macro-caustics is a complex phenomenon in which swarms of micro-
images produced by micro-caustics form on both sides of a macro-critical curve. Recent
discoveries of highly magnified images of individual stars in massive galaxy cluster lenses,
predicted to be formed by these micro-image swarms, have stimulated studies on this topic.
In this article, we explore microlensing near macro-caustics using both simulations and an-
alytic calculations. We show that the mean total magnification of the micro-image swarms
follows that of an extended source in the absence of microlensing. Micro-caustics join into
a connected network in a region around the macro-critical line of a width proportional to the
surface density of microlenses; within this region, the increase of the mean magnification
toward the macro-caustic is driven by the increase of the number of micro-images rather
than individual magnifications of micro-images. The maximum achievable magnification in
micro-caustic crossings decreases with the mass fraction in microlenses. We conclude with
a review of applications of this microlensing phenomenon, including limits to the fraction of
dark matter in compact objects, and searches of Population III stars and dark matter subha-
los. We argue that the discovered highly magnified stars at cosmological distances already
imply that less than ∼ 10% of the dark matter may be in the form of compact objects with
mass above ∼ 10−6 M�.
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1 Introduction

Paczynski (1986) showed how a screen of point mass micro-lenses (stars) of sufficiently
high surface density produces an extended swarm of micro-images, the sum of whose fluxes
is, on average, equal to the flux expected for a point source lensed by a smooth mass distri-
bution with the same surface density (see also Katz et al. 1986; Granot et al. 2003; Saha and
Williams 2011).

A caustic is a closed one-dimensional locus in the source plane of a lens system that maps
onto a one-dimensional locus in the image plane – a critical curve – along which images
of point sources undergo infinite magnification in the geometric optics approximation. A
physical source has a finite angular size that implies a maximum magnification, which is
reached when the source straddles a caustic and gives rise to two merging mirror images
straddling the corresponding critical curve. When a source crosses a caustic, a pair of mirror
images either annihilates at or emerges from the critical curve (see e.g., Schneider et al.
1992).

These two distinct phenomena combine when one has micro-lensing near a caustic, with
the emergence or annihilation of a pair of elongated swarms of micro-images at a critical
curve. The combination of these two phenomena was considered by Wambsganss (1990) as
a possible explanation for BL Lac systems. The discovery of a bright transient, thought to
be a highly magnified star at redshift 1.5, near the critical curve of the lensing cluster MACS
J1149.5+2223 (Kelly et al. 2018) led to renewed interest, triggering theoretical studies of the
“trains” of micro-images, or elongated swarms, formed on the two sides of a macro-critical
curve (Venumadhav et al. 2017; Diego et al. 2018; Oguri et al. 2018; Dai and Pascale 2021)
as well as observational searches of more such events (Rodney et al. 2018; Chen et al. 2019;
Kaurov et al. 2019; Dai et al. 2020).

In what follows, after reviewing the macro-lens model near macro-caustics (Sect. 2), we
briefly review the behavior of extended sources in the vicinity of a caustic (Sect. 3). This is
then combined with the behavior of micro-image swarms in regions of high optical depth
discussed in the article by Vernardos et al. (2024, this collection) to show how these two
phenomena modify the predictions for each phenomenon considered separately and how
these can be used to interpret transients near macro-caustics (Sect. 4). Finally, we review
recent observations of micro-caustic crossing near macro-caustics and discuss some appli-
cations of these microlensing phenomena, including the possibility of searching for more
exotic substructure (Sect. 5).

2 The Macro Model

To study microlensing near macro-caustics, we define a macro mass model (i.e., the lens
model without microlenses) that contains a caustic and a critical curve, and set the coordinate
system origin of the image and source planes at a point on the critical curve and the caustic,
respectively. The Fermat time-delay surface that satisfies this condition is written as

τ = 1

2
(β − θ)2 − ψ(θ) , (1)



Microlensing Near Macro-Caustics Page 3 of 17 57

where β and θ are two-dimensional vectors of the angular positions in the source plane and
the image plane, respectively, with coordinates (β1, β2) and (θ1, θ2). The Taylor-expanded
deflection potential, up to third order at the origin, is

ψ(θ) =1

2
(ψ11θ

2
1 + 2ψ12θ1θ2 + ψ22θ

2
2 )

+1

6
(ψ111θ

3
1 + 3ψ112θ

2
1 θ2 + 3ψ122θ1θ

2
2 + ψ222θ

3
2 ) .

(2)

Note that the first order terms of the expansion disappear because of the requirement that
the origin of the image plane maps to the origin of the source plane. Denoting convergence
at the origin as κ0, i.e.,

ψ11 + ψ22 = 2κ0 , (3)

and using the condition that the critical curve and the caustic pass through the origin, the
second derivatives of the deflection potential can be described as

ψ11 = κ0 + (1 − κ0) cosω ,

ψ22 = κ0 − (1 − κ0) cosω ,

ψ12 = −(1 − κ0) sinω ,

(4)

where ω is an arbitrary constant parameter.
Equations (2) and (4) form a general expression of the lens model near the macro-caustic.

We have the additional freedom to rotate the coordinate system to simplify it further. For
instance, choosing the coordinate system with ω = 0 realizes the locally orthogonal coordi-
nate system around a fold caustic, which is our main interest here. We could also choose to
instead rotate the coordinate system to eliminate one of the third derivatives of the deflec-
tion potential, although such a transformation makes discussion regarding the direction and
extent of the image trains less intuitive.

It is also helpful to consider more restrictive cases for the microlensing analysis. One
possible choice is to make convergence constant across the field, for which we can easily at-
tain microlensing simulations with a constant stellar mass fraction to the total matter density.
Since convergence κ is computed from Eq. (2) as

κ = κ0 + 1

2
(ψ111 + ψ122)θ1 + 1

2
(ψ112 + ψ222)θ2 , (5)

we need ψ111 = −ψ122 and ψ112 = −ψ222 to realize constant convergence. Setting ω = 0
and denoting ψ111 = −1/d‖ and ψ112 = −1/d⊥, the lens equation becomes

β1 = θ2
1

2d‖
+ θ1θ2

d⊥
− θ2

2

2d‖
,

β2 =2(1 − κ0)θ2 + θ2
1

2d⊥
− θ1θ2

d‖
− θ2

2

2d⊥
,

(6)

which, apart from notation, is the same as the macro lens model adopted in e.g., Dai and
Pascale (2021).

The parameters d‖ and d⊥ have dimensions of the angular variable θ , and are on the
order of the Einstein radius of the macro lens model, which is O(1′′) for galaxy-scale strong
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lensing and O(10′′) for cluster-scale strong lensing. In this paper we will use a dimensionless
variable defined as the angular coordinates divided by the Einstein radius of each microlens,
θ�, which is θ� = O(10−6′′) for typical stars acting as microlenses at cosmological distances.
Thus d‖ and d⊥ are on the order of ∼ 106 − 107 in this dimensionless variable.

Alternatively, we consider a restricted case where the critical curve and a train of micro-
images (which follows the direction of the principal axis that has zero eigenvalue at the
critical curve) are perpendicular to each other. This is realized by setting ψ112 = ψ122 =
ψ222 = 0 along with ω = 0. Denoting ψ111 = −1/E, the lens equation becomes

β1 = θ2
1

2E
,

β2 =2(1 − κ0)θ2 .

(7)

The variable E again has dimensions of the angle θ , and is on the order of ∼ 106 − 107 in
the unit defined by θ�.

While this macro lens model is a restricted case, it makes the analysis much easier and
hence is instructive; we will use it in Sect. 3. From our experience in modeling such sys-
tems, introducing other degrees of freedom related to further derivatives of the potential
introduces modest quantitative changes but not major qualitative differences. In this model,
convergence changes near the critical line as

κ = κ0 − θ1

2E
. (8)

3 Extended Sources in the Vicinity of a Caustic

In this Section, we review the behavior of magnification of extended sources in the vicinity
of a macro caustic in the absence of microlensing. We use the simple macro model described
by Eq. (7). At an image plane position θ = (θ1, θ2), magnification factors along the θ1 and
θ2 directions, which we denote μ1 and μ2 respectively (equal to the inverse eigenvalues of
the magnification matrix), are easily computed as

μ1 =E

θ1
,

μ2 = 1

2(1 − κ0)
.

(9)

The magnification of a point image at that point is μ = μ1μ2. A point source at β = (β1, β2)

has two images on both sides of the critical curve at θ1 = ±√
2Eβ1 if and only if β1 > 0.

Thus the magnification of these two images of a point source at β is

μ(β) = 1

(1 − κ0)

√
E

2β1
, (10)

for β1 > 0.
For an extended source with a Gaussian surface brightness profile with standard deviation

σ , the magnification factor of the source at β is given by

μ(β) =
√

E

2
√

πσ(1 − κ0)

∫ ∞

0

dβ ′
1√

β ′
1

exp

[
− (β ′

1 − β1)
2

2σ 2

]
. (11)
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Fig. 1 Magnification factors as a
function of the source position
β1, both for the point source
(dashed) and the extended source
(solid), in absence of
microlensing. We adopt the
macro model of Eq. (7) with
κ0 = 0.5 and E = 107. The
extended source follows the
Gaussian surface brightness
distribution with σ = 0.14

As an example, Fig. 1 shows magnification factors as a function of the source position β1,
both for the point source and the extended source, for the case E = 107, κ0 = 0.5 and σ =
0.14. The magnification of the point source diverges as the source approaches the caustic
at β1 = 0, while the magnification of the extended source saturates at a maximum value
that can be estimated as the magnification of the point source (Eq. (10)) at β1 = σ (e.g.,
Miralda-Escudé 1991), i.e.,

μmax ≈ 1

(1 − κ0)

√
E

2σ
. (12)

For the example in Fig. 1, this estimate yields μmax ≈ 12,000, close to the maximum mag-
nification directly derived from Eq. (11), μmax ≈ 12,200.

4 Microlensing Near Macro-Caustics

We now describe the impact of microlensing on the magnification of sources.

4.1 Average Magnification Profile Interpreted as an Effectively Extended Source

As shown in Neindorf (2003) and Venumadhav et al. (2017), and discussed in the article
by Vernardos et al. (2024, this collection) for quasars, the total magnification of a source
in the presence of microlensing, averaged over all random point mass realizations of the
microlenses, is the magnification under the macro-lens model of the source profile convolved
with the probability distribution function (PDF) of the microlens deflection angle:

〈μ(β)〉 =
∫

I�(β
′)μB(β + β ′)d2β ′ , (13)

where β is the position of the source, β ′ is a dummy variable of integration over the source
plane, I�(β

′) is the source profile I (β ′) convolved with the PDF of the microlens deflection
angle p(α�), and μB(β) denotes the magnification factor of the background macro-model
(i.e., the mass model after the point mass lenses are smoothed) for a source at β . The mean
effect of microlenses is encapsulated in the convolved source profile I�(β

′). The PDF of the
deflection angle has a bivariate Gaussian core with a width of

σ� = θ�κ
1/2
�

[
ln(2e1−γE N1/2

� )
]1/2

, (14)
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Fig. 2 Magnification of a point
source as a function of source
position β1 near the
macro-caustic in the presence of
microlenses (blue solid line),
using the macro model of Eq. (7)
with κ0 = 0.5 and E = 107, and
convergence of point masses of
κ� = 0.0025. For comparison,
magnification of an extended
source with a Gaussian surface
brightness distribution with
σ = σα = 0.14 (see also Eq. (14))
in the absence of microlenses is
plotted by a dashed line

where κ� is the convergence of point mass lenses (stars), θ� is the Einstein radius of each
point mass, γE ≈ 0.577 is the Euler-Mascheroni constant, and N� is the number of point
masses.

Although the deflection angle distribution p(α�) is not precisely a Gaussian, it can be
approximated this way whenever the deflection is contributed by many microlenses, accord-
ing to the central limit theorem (this fails, of course, for the tails of this distribution caused
by large deflections near a single microlens). The behavior of the mean magnification of
point sources near a macro-caustic should then follow that of an extended Gaussian source
in the absence of microlensing as studied in Sect. 3. To explicitly check this point, we make
numerical simulations of the magnification of a point source in the simple macro model of
Eq. (7), with κ0 = 0.5 and E = 107θ�, adding randomly distributed microlenses of a single
mass corresponding to an Einstein radius θ�, within a circle of radius θmax = 15,000 θ�. A
surface density contributing a convergence κ� = 0.0025 in this macro model is replaced with
microlenses. This stellar mass fraction is similar to the expected value for the first discovery
of a micro-caustic crossing event due to stars making up the intracluster light (see Sect. 5.1).
With the choice of these parameters, from Eq. (14) we obtain the effective width of the
Gaussian as σ� ≈ 0.14 θ�. We solve the lens equation using an adaptive mesh method imple-
mented in the glafic software (Oguri 2010) together with a hierarchical tree algorithm to
speed up calculations of deflection angles from an ensemble of point mass lenses (see e.g.,
Wambsganss 1999).

Figure 2 shows the result of moving the source along the β1 axis, fixing β2 = 0 and com-
puting the total magnification as a function of the source position, or lightcurve. While many
sharp peaks corresponding to micro-caustic crossings are present, the mean magnification
closely follows the prediction of the total magnification for an extended source without mi-
crolenses as studied in Sect. 3, shown by a dashed line in Fig. 2. Note that the size of the
extended source is not fitted to the lightcurve, but determined by Eq. (14). This confirms the
average effect of microlensing in macro-caustic crossings can indeed be interpreted as an
effectively extended source, as discussed in the literature (e.g., Dai and Pascale 2021).

The lightcurve in Fig. 2 exhibits large fluctuations originating from a random realization
of positions of point masses. A better comparison with the model of an effectively extended
source is obtained by averaging the calculation of the lightcurve over independent realiza-
tions of the point mass positions. The mean of 10 realizations is shown in Fig. 3, indicating
a converging match of the lightcurve of an effectively extended source with the numerical
result.
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Fig. 3 Similar to Fig. 2, but
averaging over 10 realizations of
point mass positions

Fig. 4 An example of the micro-image swarms (or “trains”). Upper and lower panels show the source and
image planes, respectively, and the middle panel shows enlarged view of micro-images in the plane around
the swarms. The macro model caustic and critical curve (i.e., those in absence of microlenses) are vertical
lines at β1 = θ1 = 0. Micro-caustics and critical curves are shown by gray thin lines. The source position is
(β1, β2) = (1, 0), and corresponding multiple images in the image plane are shown by filled circles in the
middle and lower panels. The size of the circles scales with the logarithm of the magnification factor of each
image, and red and blue circles indicate micro-minimum and micro-saddle point images. In total there are 12
micro-minimum images on the negative parity side (θ1 < 0), and 15 micro-minimum images on the positive
parity side (θ1 > 0). The set-up of the calculation is same as the one in Fig. 2

4.2 Effective Sizes

Accounting for the high-angle tail of the PDF of the microlens deflection angle, about 99%
of the flux of a point source should be found within a region of size 10 · θ�κ

1/2
� in the

source plane, when considering the smooth mapping to the source place caused only by the
smoothed lens and including the average effect of microlenses as an effective source, as
explained above. Transforming to the image plane, one gets an ellipse of semi-major axes
r1 ≈ 10 · θ�κ

1/2
� μ1 and r2 ≈ 10 · θ�κ

1/2
� μ2. This effective size of the micro image swarm is

discussed as well in Vernardos et al. (2024) for the case of quasars.
Figure 4 shows an example of the micro image swarm (or “train”) from calculations given

in Sect. 4.1. The Figure indicates that there are two trains of the micro images on both sides
of the macro critical curve at θ1 = 0 such that they are highly spread along horizontal di-
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Fig. 5 Similar to Fig. 2, but
magnification factors on the
positive parity side (θ1 > 0) and
on the negative parity side
(θ1 < 0) are plotted separately by
solid and dotted lines,
respectively

rections. Since in our macro mass model μ2 = 1 and μ1(θ1 = 4000) = 2500, the discussion
above suggests that the size of the swarm are r1 ≈ 1250 and r2 ≈ 0.5 in the dimensionless
unit. The distribution of micro images shown in Fig. 4 appears to be consistent with this
estimate.

4.3 Parity Dependence

As seen in Fig. 4, unless β1 is small enough that the two swarms of images are merged, there
are two image swarms appearing on each side of the macro-critical line. If the two swarms
are well separated, they can be observationally resolved and their total magnification can
be separately measured. To check the different behavior of each swarm, Fig. 5 shows the
total magnifications of the two swarms located on the positive and negative parity sides as
a function of the source position. A noticeable difference is that the total magnification of
the negative parity side reaches significantly smaller values. As noted in Diego et al. (2018)
and Oguri et al. (2018), this is because in the negative parity region, a source can be more
strongly de-magnified by the microlenses de-magnified compared with the original macro
model magnification (see also, e.g., Schechter and Wambsganss 2002). This effect becomes
less pronounced as β1 decreases because of averaging over many micro-images (see also
Sect. 4.5).

4.4 Thickness of the Corrugated Macro-Caustic

The micro-critical lines are corrugated, that is to say, typically joined together in a large-
scale network, within a width θw around the original macro-critical curve, where the charac-
teristic size of the micro-critical curve of a single microlens is equal to the mean separation
between microlenses (Venumadhav et al. 2017). For microlenses with Einstein radius θ� and
convergence contribution κ�, their mean separation is given by θ�κ

−1/2
� . At a separation θ

from the macro-critical curve, the magnification eigenvalue of the smooth lens is θ/E, and
the micro-critical curve is boosted to a size θ�(θ/E)−1/2. Equating these two quantities we
derive the thickness of the corrugated micro-critical curves, θw, as

θw = Eκ� . (15)

For our specific example shown in this paper, we find θw = 25,000, which indicates that
results shown in previous subsections are those for micro-images well within the corrugated
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Fig. 6 Magnification factors
divided by the number of
micro-minimum images (nmin),
averaged over 10 realizations, are
plotted as a function of the source
position β1 near the
macro-caustic. For comparison,
the average total magnification
factors plotted in Fig. 3 are also
shown by a thin line. The set-up
of the calculation is same as the
one in Fig. 2

band. Within this thickness θw, the magnification of the individual micro-images is roughly
constant, and given by roughly the magnification at the separation θw i.e.,

μi ∼ 1

2(1 − κ0)κ�

, (16)

which reduces to μi ∼ 400 in our example. Note that this typical magnification of an individ-
ual micro-image is not the same as the total magnification, which increases as we approach
the macro-critical line owing to the increasing number of micro-images in the two swarms.
As we will see below, the maximum magnification achieved in microcaustic crossings is
also constant within the region of width rw , in the same way as the typical magnification of
a single micro-image.

4.5 Mean Number of Extra Micro-Image Pairs

Petters et al. (2009) provide a generic formula for the expected number of positive parity
images in lensing systems (see their Eq. 11). In general, the formula relies on knowing the
expected value of the magnification as a function of image plane position, conditional upon
the fact that image plane positions are mapped to a particular source-plane position. In the
case of constant surface mass density and shear, the formula simplifies greatly due to the fact
that the expected value of the magnification is independent of image plane position. This is
not the case near a macro-caustic, and the matter of the distribution of the magnification
is currently an open question. We cannot therefore provide analytic estimates of the mean
number of micro-minima, nor the mean magnification per micro-minima, as we could with
constant surface mass density and shear. However, we can provide some commentary based
on arguments from the simpler case.

For constant convergence and shear that produces an image of formally infinite magnifi-
cation, the equations in Vernardos et al. (2024) are found to produce an infinite number of
expected micro-minima. However, the random shear due to the micro-lenses combines in
such a way that the mean magnification per minimum is finite. We know that near a macro-
caustic, the magnification will not in fact diverge – as the discussion of the previous sections
show, the point mass behaves as a an extended source. The number of micro-minima will
not diverge then either.

Figure 6 shows the magnification divided by the number of micro-minima from calcula-
tions given in Sect. 4.1. The result indicates that the increase of the mean magnification as
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approaching the macro-caustic is achieved mainly by the increased number of micro-images,
rather than the increase of magnifications of individual micro-images. It is found that the av-
erage magnification of micro-minima is ∼ 200 − 300, which we find is reasonably close to
a rough estimation given in equation (16).

The maximum number of images is reached when the two swarms merge, over a region
in the source plane with the width of the effective source size induced by microlensing,
θ�κ

1/2
� ∼ 10−7 arcsec for typical values. The time it would take for a source to cross this

region is of the order of a year, so if a supermagnified source is close to the position of the
smooth model caustic, it should be possible to measure the variation in the frequency of
caustic crossings and average magnification that occurs at this position over this timescale.

4.6 Maximum Achievable Magnification

The maximum magnification in a microimage is reached when the source crosses a micro-
caustic, which occurs over a timescale determined by the source angular radius and the
transverse velocities of source and lens relative to us (Miralda-Escudé 1991). The maxi-
mum magnification is determined by the eigenvalue gradient E at the critical line, and its
characteristic value is limited by the presence of compact microlenses within the large-scale
gravitational lens. The practical case this has been observed in is when the large-scale lens is
a cluster of galaxies or a galaxy, and the compact microlenses are individual stars in cluster
galaxies or the intracluster population.

As shown in Sect. 4.4, within the corrugated band, the average magnification of any
random point (i.e., microimage) in the image plane is μ̄ ∼ [2κ�(1 − κ0)]−1. This can also
be interpreted as the eigenvalue with smallest absolute value fluctuating with a typical value
of κ� with the other eigenvalue being fixed to 2(1 − κ0). The scale of variation of the small
eigenvalue in the image plane is the mean distance between microlenses, θ�κ

−1/2
� , which in

the source plane results in a typical separation between micro-caustics of θ�κ
1/2
� , implying

that the maximum magnification that is typically reached for individual images of a source
of angular radius θs in micro-critical lines is

μpeak ∼ (θ�κ
1/2
� /θs)

1/2

2κ�(1 − κ0)
= θ

1/2
� κ

−3/4
�

2θ
1/2
s (1 − κ0)

. (17)

An interesting observation from this result is that the maximum achievable magnification
decreases with increasing stellar mass density κ�.

5 Applications of Observations

5.1 Summary of Observations

The first discovery of a micro-caustic crossing near a macro-caustic was reported by Kelly
et al. (2018), as the rapid transient MACS J1149 Lensed Star 1 (also known as ‘Icarus’) near
the macro critical curve of the massive cluster MACS J1149.5+2223 at z = 0.54, interpreted
as a highly magnified individual star at z = 1.49. The timescale of the lightcurve near the
peak (� 10 days) constrains the size of the background source to be � 200 R� for typical
transverse velocities expected from large-scale structure (Oguri et al. 2018). Together with
the spectral energy distribution and peak magnitude, this led Kelly et al. (2018) to conclude
that the transient is an image of a blue supergiant at z = 1.49 magnified by more than a
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factor of 2000. Stars making up the intracluster light can fully account for the observed
microlensing event rate. Kelly et al. (2018) also reported a separate short transient event
detected 0.26′′ from Lensed Star 1, which can be a counterimage of Lensed Star 1.

Rodney et al. (2018) reported two peculiar fast transients (collectively nicknamed
‘Spock’) in a giant arc at z = 1.0054 lensed by the massive cluster MACS J0416.1−2403 at
z = 0.397. While they interpret the transients as eruptions of a luminous blue variable star
or a recurrent nova, they also noted these events might be micro-caustic crossings near the
macro-critical curve. Improved mass modeling of this cluster to constrain the shape of the
critical curves would be helpful to discriminate these possibilities.

The discovery of Icarus has triggered searches of micro-caustic crossings in archival
Hubble Space Telescope images. Chen et al. (2019) and Kaurov et al. (2019) reported the
discovery of a highly magnified star (blue supergiant) at redshift z = 0.94 in a giant arc
behind the massive cluster MACS J0416.1−2403. The possible counterimage of the back-
ground star at an offset of ∼ 0.1′′ is also reported. The discovery suggests that micro-caustic
crossing events may be ubiquitously found in deep imaging of massive clusters of galaxies.

Dai et al. (2020) reported several asymmetric surface brightness features in a giant arc
at z = 2.93 produced by the galaxy cluster SDSS J1226+2152 at z = 0.43. While such
asymmetric features can be produced by micro-caustic crossings, Dai et al. (2020) concluded
that they are more likely to be produced by subhalos with masses of ∼ 106 − 108 M�, based
on the absence of notable time variation over a six-year baseline.

Several other observations of supermagnified stars in lensing clusters have been reported
recently, some of which are being given special names, and are continuing to be discovered
with the ongoing observations with JWST: an additional star called Mothra in MACSJ0416
(Diego et al. 2023b), the star Earendel in WHL0137-08 (Welch et al. 2022b,a), Godzilla in
PSZ1 G311.65 (Diego et al. 2022), Quyllur in the El Gordo cluster (Diego et al. 2023a),
and several other stars in Abell 2744 (Chen et al. 2022), MACSJ0647 (Meena et al. 2023b;
Furtak et al. 2024), and Abell 370 (Kelly et al. 2022; Meena et al. 2023a). In this short paper
we cannot do justice to all the wonderful science that is made possible by this blossoming
of discoveries.

5.2 Some Applications

We now discuss some applications that the phenomenon of super-magnification in the micro-
caustics of lensing clusers of galaxies has already demonstrated or may be developed in the
future. This list is by no means complete and is limited by the length of this paper; in general
any source, such as supernovae or quasars, may be studied in special ways when highly mag-
nified; in the case of gravitational waves, diffraction effects mean that the interest of lensing
observations shifts to masses larger than stellar ones, corresponding to a Schwarzshild radius
larger than the observed wavelengths.

5.2.1 Compact Objects in the Dark Matter

As discussed in Sect. 4, one of the most important model parameters that control the property
of microlensing near macro-caustics is the surface density of microlenses, κ�. Normally
only stars in lensing clusters or galaxies are considered as microlenses, whose abundance
near macro-caustics can be inferred from observations of intracluster light. However, if a
fraction of dark matter is composed of dark compact objects, such as primordial black holes
(Carr and Hawking 1974), the surface density of microlenses may be much higher. This, in
turn, means we can constrain the abundance of compact objects from observations of micro-
caustic crossings in a manner complementary to other constraints (see e.g., Sasaki et al.
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2018, for a review of constraints on primordial black holes), including quasar microlensing
(Mediavilla et al. 2017).

Constraints on compact objects from the Icarus highly magnified star have extensively
been explored in Kelly et al. (2018) as well as in follow-up papers by Venumadhav et al.
(2017), Diego et al. (2018), and Oguri et al. (2018). For instance, as explained in Sect. 4.6
the maximum achievable magnification is reduced as κ

−3/4
� . Following this idea, Oguri et al.

(2018) adopted a simple analytic model to derive constraints on the compact object abun-
dance for a wide range of mass ranging from 10−5 M� to 102 M�. In addition, a large κ�

reduces the time variability of lensed sources due to averaging effects, which also yields
constraints (Kelly et al. 2018; Diego et al. 2018).

Furthermore, as discussed in Sect. 4.4, the compact object abundance determines the
width of the corrugated band around the macro-critical curve within which most highly
magnified images appear, so an independent constraint is obtained from the spread of micro-
caustic crossings around macro critical curves (Venumadhav et al. 2017). A limit can then
be derived on κ� in compact objects from the set of highly magnified stars at cosmological
distances reported so far. The width of the corrugated band is θw = d‖κ�, where d‖ is the
gradient of the small magnification eigenvalue. In the first event named Icarus, the macro
model predicts d‖ � 4 arcmin−1, and the separation of the image from the predicted critical
curve is ∼ 0.13 arcsec (Kelly et al. 2018; Venumadhav et al. 2017). In the MACS J0416.1-
2403 event, the macro model predicts d‖ = 7 arcmin−1 and the separation of the image is 0.1
arcsec (Diego et al. 2018; Oguri et al. 2018). The ratios of the observed image separations
compared to the maximum separation where images with the highest magnifications are
observed is therefore 0.012κ� and 0.009κ�, respectively. The random probability these two
values are observed at least as small as they are is ∼ 10−4κ2

� . Requiring this probability to
be at least larger than 1% we obtain the limit κ� < 0.1. This is valid for a broad range of
microlens mass, roughly 10−6 M� < M , over which other effects like diffraction or source
size are not important (see Fig. 9 in Venumadhav et al. 2017). Naturally, as the number
of discovered events increases in cluster lenses that can be adequately modeled, this limit
on any objects that are sufficiently compact to act as microlenses near macro-caustics will
improve essentially to the value of the microlenses accounted by intracluster stars.

Recently, this argument has been developed in detail using most of the discovered su-
permagnified stars by Vall Müller and Miralda-Escudé (2024), and in the future this limit
should rapidly improve as more examples of these stars with extreme magnifications are
revealed by the potential of JWST and other telescopes.

5.2.2 Observing Population III Stars

Microlensing near the macro-caustics provides a means of observing distant individual stars
that cannot be observed without the high magnification achieved in micro-caustic crossings.
Windhorst et al. (2018) explored the possibility of observing individual Population III (Pop
III) stars, which are metal-free stars formed from pristine gas, at z � 7 − 17, and concluded
that direct observations of highly magnified Pop III stars would be possible by monitoring a
few to a few tens of mass clusters over a decade with the James Webb Space Telescope.

5.2.3 Dark Matter Subhalos

Dai et al. (2018) proposed a novel method to constrain the abundance of dark matter sub-
halos with masses of 106 − 108 M�, whose existence is naturally predicted by the standard
cold dark matter paradigm (e.g., Diemand et al. 2008), using observations of image pairs of
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sources near caustics. The method uses astrometry of these highly magnified image pairs of
stars or other luminous objects (star clusters or star-forming regions) in caustic-straddling
giant arcs and searches for perturbations of the shape of macro critical curves, which are
expected to be smooth on small scales in the absence of subhalos. Subhalos with masses of
106 − 108 M� produce irregularities on the critical curve shape (see also Abe et al. 2024),
and the astrometric perturbations of image pairs, at the level of 20 − 80 mas, which can be
detected by accurate centroid measurements of several magnified pairs by the James Webb
Space Telescope. Known cluster galaxies produce irregularities on larger scales only, corre-
sponding to their higher masses.

5.2.4 Axion Minihalos

Finally, axion minihalos may also be detectable using highly magnified stars. Axion mini-
halos are expected in many variations of the theory of axions for dark matter that solve the
strong QCD problem, with masses of ∼ 10−12 M�. These are extremely difficult to detect,
not only because of their tiny size but also because their surface density is highly subcritical
to lensing. However, when a star crosses one of the micro-caustics affected by micro-lensing
from intracluster stars, axion minihalos would create a secondary level of perturbations on
the magnification at smaller scales that would cause perturbations of the lightcurve of micro-
caustic crossing events on small time scales. This was predicted in Dai and Miralda-Escudé
(2020), proposing a possible route to the detection of axion dark matter using only astro-
physical methods.

6 Summary

In this artcile we have explored the expected microlensing magnification of sources close to
macro-caustics. For this purpose, we have performed simulations and compared the results
to the analytical expectations of the behavior of microimages, also described in Venumadhav
et al. (2017), Dai and Pascale (2021), Vernardos et al. (2024, this collection).

We have shown that the mean magnification due to lens plane microlenses of point
sources in the vicinity of the macro-caustic follows that of an extended source in the vicinity
of a macro-caustic in the absence of microlensing. This is precisely correct when the source
profile matches the probability distribution function of the microlens deflection angle.

Similarly, we have shown that the two swarms of microimages at each side of the macro-
caustic are spread within an ellipse that results from mapping the microlens deflection angle
PDF, or the corresponding “extended source”, to the lens plane. We note that even though the
sizes of the two image swarms are symmetric, the swarm of images at the negative parity side
of the macro-caustic can show significantly lower magnification values. This is consistent
with the findings of Schechter and Wambsganss (2002) who show that microlensed sources
in macro-saddle points are more prone to be de-magnified than in macro-minima.

We have reviewed the characteristic number and average magnification of the micro-
images within the microlens-distorted (or corrugated) macro-caustic. We observe that the
magnification per micro-image remains roughly constant within this corrugated caustic and
with a value given by the separation of micro-image pairs from micro-caustics. The max-
imum individual micro-image magnification is limited by the angular size of the source,
and decreases with increasing stellar mass density. The increase of the mean magnification
when approaching the position of the macro-caustic is driven by the increase in the num-
ber of micro-images rather than their individual magnifications. Analogous to the fact that
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micro-images behave as a lensed extended source and thus the total magnification is not
infinite when crossing the macro-caustic, the number of micro-images reaches a maximum
when the two image swarms merge.

The microlensing phenomena occurring near macro-caustics that we have reviewed in
this Chapter have not been observed until recently. Since the dawn of the era of time-domain
astronomy, in the past few years several transients have been shown to be consistent with
such microlensing in the vicinity of macro-caustics. These discoveries imply that microcaus-
tic crossing events should be ubiquitous when monitoring observations of massive galaxy
clusters, and will surely be increased by observations with JWST reaching for fainter mag-
nitudes. With this in mind, we have non-exhaustively reviewed some future (and current)
applications of the different observational signatures, ranging from identifying population
III stars from individual caustic crossing events to constraining the abundance and nature of
primordial black holes and dark matter subhalos from the statistical properties of observed
caustic crossing events and probing the distorted macro-caustic from astrometric perturba-
tions in magnified background stars.
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