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Abstract
In this note we revisit the analysis performed in De Felice and Tsujikawa (2023
Phys. Lett. B 843 138047) of odd-parity perturbations around static and spher-
ically symmetric black holes in Einsteinian cubic gravity (ECG). We show that
the additional propagating modes always have masses much above the cutoff
of the theory. Therefore, contrary to what is claimed in that paper, the ECG
black holes remain stable within the effective field theory regime. We consider
the same analysis for a general cubic theory, showing that the ECG results are
not special in this regard. We use the occasion to make some clarifications on
the role, uses and limitations of ECG and its generalizations.

Keywords: black holes, modified theories of gravity, effective field theory

1. Einsteinian cubic gravity (ECG): what it is and what it is not

ECG was originally constructed in [1] as the most general gravity action including terms with
up to six derivatives of the metric built from contractions of the Riemann tensor and the met-
ric such that: (i) its linearized equations on general maximally symmetric backgrounds are
equivalent, up to a renormalization of the Newton constant, to the Einstein gravity ones; (ii) at
each order, the relative coefficients of the curvature invariants involved are the same in general
dimensions.
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These criteria select a linear combination of the cosmological constant, the Einstein–Hilbert
action, the quadratic and cubic Lovelock densities, plus a new cubic density given by3

P ≡+12Ra
c
b
dRc

e
d
fRe

a
f
b+RcdabR

ef
cdR

ab
ef − 12RabcdR

acRbd+ 8RbaR
c
bR

a
c . (1)

In four spacetime dimensions, the quadratic and cubic Lovelock pieces become topological
and trivial respectively, and one is left with a linear combination of the Einstein–Hilbert term
and P of the form

S=
1

16πG

ˆ
d4x

√
|g|

[
R− µℓ4

8
P
]
, (2)

where µ is a dimensionless coupling and we have set the cosmological constant to zero
(although this is not necessary).

Soon after the theory was constructed, it was observed that it possesses an interesting addi-
tional feature in the four-dimensional case. Namely, it admits static and spherically symmetric
black hole solutions which are continuous generalizations of the Schwarzschild one, charac-
terized by a single metric function [5, 6]. The solutions have the form

ds2 =−f(r)dt2 + dr2

f(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (3)

where the metric function satisfies a second-order differential equation given by

1− 2GM
r

= f+
µℓ4

8r

[
4f ′3+

12f ′2
r

− 24f( f− 1)
f ′

r2
− 12f f ′ ′

(
f ′ − 2( f− 1)

r

)]
, (4)

where M is an integration constant which will correspond to the mass of the solutions. The
above equation cannot be solved analytically, but it is still easy to verify that there exists a
unique mass-M black hole solution with the right asymptotic behavior whenever µ⩾ 0. At
leading order in µ, the solution takes the form

f = 1− 2GM
r

−

[
54(GM)

2

r6
− 92(GM)

3

r7

]
µℓ4 . (5)

Near-horizon and asymptotic expansions can be easily obtained [6], as well as an analytic
approximation in terms of continued fractions [25]. The full solution for fixed values of µℓ4

can be constructed numerically.
These results are surprising, as generic higher-derivative gravities require gttgrr ̸=−1. On

the other hand, examples of theories satisfying this property were known to exist in D⩾ 5:
Lovelock theories on the one hand [153–156], and the so-called Quasi-topological gravities
[9, 157–159], on the other. The observation that a four-dimensional theory admitting solutions
of this kind existed, triggered the discovery of a new class of theories [12, 13] which in fact con-
tained all the aforementioned cases. These ‘Generalized Quasi-topological gravities’ (GQTs)
are defined by the following technical condition: evaluating the gravitational Lagrangian on
an ansatz of the form (3), we say the theory is of the GQT class if the Euler-Lagrangian
equation resulting from varying it with respect to f (r) vanishes identically—see e.g. [121]
for more details. When this condition holds, the theory admits solutions of the form (3) where
the equation of f (r) can always be integrated once, resulting in a equation which is either

3 There are many developments related to ECG and its generalizations which have not been included in the present
summary—these are contained in [1–152].
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algebraic or differential of degree 2.4 The former case corresponds to Quasi-topological and
Lovelock theories, and only occurs in D⩾ 5, whereas the latter occurs in D⩾ 4, with ECG
being the lowest-order example in four dimensions. It is possible to prove that GQTs have lin-
earized equations identical to the Einstein gravity ones on maximally symmetric backgrounds
[13], but observe that the converse implication is not true (namely, there exist theories with
Einstein-like linearized equations which are not GQTs).

The GQTs static and spherically symmetric black holes are bona-fide continuous general-
izations of the Schwarzschild one controlled by the corresponding gravitational couplings. In
particular, as shown in [13], they are the solutions representing the gravitational field outside
spherically symmetric distributions of massM in those theories. This is nontrivial and, in fact,
it is possible to argue that only theories possessing the same linearized spectrum as Einstein
gravity are susceptible of admitting solutions characterized by a single function which describe
the exterior field of spherically symmetric mass distributions. In particular, this implies that
the Schwarzschild metric cannot describe the exterior field of a spherical body in generic f (R)
gravities, even though it is a solution of those theories.

Additional four-dimensional black hole solutions with gttgrr ̸= 1 are known to exist for
Einstein gravity plus quadratic terms [160, 161]. However, such black holes do not have an
interpretation in the effective field theory (EFT) context, since one can remove all quadratic
terms from the action using field redefinitions5.

While the order-reduction phenomenon of the equations of motion occurring for static
GQT black holes has been observed to extend in some cases to more general backgrounds—
including: extremal rotating black holes [61], slowly rotating black holes [72], Taub geometries
[33] and cosmological spacetimes [37, 39, 41]—of all GQTs, only the Lovelock ones have
second-order equations on general backgrounds. Consequently, one expects stability issues to
arise in certain regimes for these theories, just like for any generic higher-curvature gravity.
For instance, any String Theory effective action truncated at a finite order in α ′ will have the
same issue.

The structure and types of GQTs in general dimensions have been studied in detail in [58,
121, 149]. In particular, it has been shown that GQT densities exist for all D⩾ 4 and for
arbitrarily high curvature orders. Importantly, it was proven in [54] that any higher-curvature
gravitational effective action involving densities built from the Riemann tensor and the metric
can be mapped, by a field redefinition, to a GQT. In other words, GQTs provide a generat-
ing set of invariants for the most general gravitational action. In particular, ECG captures the
most general EFT extension of Einstein gravity up to six derivatives. One of the advantages of
working in the GQTs frame is that black hole solutions are much simpler and universal, while
the physical properties remain the same—see [54] for an explicit example. Observe that this
implies, in particular, that if there was an inconsistency with the solutions of ECG or GQTs
in the perturbative regime beyond Einstein gravity, this would spoil the validity of perturb-
ative modifications of the Schwarzschild black hole for completely general higher-curvature
actions. This seems unlikely. As we show below, the arguments presented in [2] suggesting
this to be the case are wrong.

GQT black holes have also been widely studied beyond the EFT regime. Let us say a few
words about this. Firstly, a particularly nice feature of these solutions is that many of their

4 If covariant derivatives of the Riemann tensor appear in the action, this degree can in principle be higher, but this
has not been explored so far.
5 This is because the most general non-trivial (or topological) quadratic action in D= 4 involves a linear combination
of R2 and RabRab terms and, on general grounds, any Ricci tensors can be removed order by order in the EFT by
redefinitions of the form gab → gab +αRab for certain constant α≪ 1—see e.g. [54].
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physical properties can be evaluated analytically for non-perturbative values of the gravita-
tional couplings—even when the solutions themselves cannot. In particular, this gives rise to
a procedure which allows to test the effects of infinite towers of higher-derivative terms—see
e.g. [15] for black hole thermodynamics and [41] for early-time cosmological evolution—by
considering the effect of each of those terms at arbitrary order and resuming them all. The
resumed result can be hoped to capture some of the effects present in a full quantum gravity
calculation. This idea certainly departs from the standard EFT approach and the validity of
its conclusions is unclear. Still, it is one of the only setups—see [162] for another—in which
questions like this can be formulated and answered explicitly.

From a different perspective, higher-curvature gravities provide toy models of holographic
CFTs inequivalent to Einstein gravity—see e.g. [163, 164]. This has been exploited to study
many physical properties, and to discover various universal relations valid for completely gen-
eral theories [120, 165–170]. GQTs are particularly useful for this, as many of the holographic
quantities which can be accessed using black holes and other solutions are much easier to
obtain and can be extracted fully analytically. In particular, D= 4 ECG provides a somewhat
canonical toymodel of a three-dimensional CFTwith a non-vanishing stress-tensor three-point
function coefficient t4 [27, 115]. This has been used to obtain a universal formula for the par-
tition function of general three-dimensional CFTs on a slightly squashed sphere [34, 65]. It
is conceivable that additional universal results can be obtained from holographic GQTs in the
future.

2. Odd parity perturbations of ECG static black holes

As we have mentioned in the introduction, ECG captures the most general EFT extension of
vacuum general relativity up to six derivatives. In this context, the dimensionful parameter ℓ
appearing in the action (2) naturally represents the cutoff of the theory, in the sense that one
should consider curvatures much smaller than 1/ℓ2 in order to ensure that the higher-derivative
terms remain small. In the same way, propagating modes with momentum k should also satisfy
|k| ≪ 1/ℓ. Anymode of the EFTwithmomentum above this cutoff is unphysical as at this point
the massive modes that have been integrated out from the putative UV complete theory enter
into play.

Keeping these ideas in mind, let us now turn to an analysis of the perturbations of the static
and spherically symmetric black holes with metric and metric function given by (3) and (5).
Note that this solution is within the EFT regime provided that the size of the black hole is
much larger than the length scale ℓ,

M∼ rh ≫ ℓ , (6)

which we shall assume throughout the rest of the paper.
In order to fix a few concepts, it is useful to study first the perturbations of a massive

test scalar field on the background of this black hole. Thus, we start with the Klein–Gordon
equation

∇2φ =M2φ, (7)

and we separate the scalar field as

φ = e−iωtΨ(r)Ylm (θ,ϕ) , (8)

4



Class. Quantum Grav. 41 (2024) 137001 Note

obtaining the equation

ω2

f(r)
+

1
r2

d
dr

(
r2f(r)Ψ ′ (r)

)
− l(l+ 1)

r2
Ψ(r) =M2Ψ(r) . (9)

Just like in [2], we focus on modes of large momentum, which simplifies the analysis.
Therefore let us write

Ψ(r) = A(r)eikrr∗ , (10)

where r∗ is the tortoise coordinate defined by dr∗ = dr/f(r), and the amplitudeA(r) is supposed
to remain approximately constant in distances of the order of 1/kr, this is,∣∣∣∣A ′

A

∣∣∣∣≪ |kr| . (11)

Then, in the limit of large kr and large l we get the following dispersion relation for this mode,

ω2 = k2r + f k2θ + fM2 , (12)

where we have introduced the notation

kθ =
l
r
. (13)

ForM= 0, this modemoves at the speed of light, but more generally we could have dispersion
relations of the form

ω2 = c2rk
2
r + c2θf k

2
θ + fM2 , (14)

where cr and cθ represent the speed of propagation in the radial and angular directions in the
limit of infinite momentum. The dispersion relations we obtain for gravitational perturbations
of ECG take precisely this form.

Let us then consider odd-parity gravitational perturbations on top of the SSS metric. In
the Regge–Wheeler gauge, the perturbations with harmonic numbers (l,m) = (l,0) can be
written as

hµν = e−iωt


0 0 0 h0 (r)
0 0 0 h1 (r)
0 0 0 0

h0 (r) h1 (r) 0 0

sinθ
∂Yl0
∂θ

. (15)

Note that there is no loss of generality in setting m= 0 as the equations for the radial func-
tions h0,1 are independent of m. We perform a direct evaluation of the equations of motion at
linear order in hµν (instead of using the reduced Lagrangian). The relevant components of the
equations of motion are Erϕ (of fourth order) and Eθϕ (of third order). These take a complicated
form, so, as in [2], we consider solutions of large momentum. A convenient way of writing
the radial functions is as follows

h0 (r) = A0 (r)e
ikrr∗ , h1 (r) =

A1 (r)
f(r)

eikrr∗ , (16)

where, as before r∗ is the tortoise coordinate, and the amplitudes A0,1(r) are supposed to vary
slowly, ∣∣∣∣A ′

i

Ai

∣∣∣∣≪ |kr| . (17)

The factor of 1/f(r) in h1 is introduced to get a well-behaved perturbation at the horizon.
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We then consider the large momentum/frequency limit. It must be emphasized that this
limit has to be taken with care. If the large momentum limit is taken naively, then the higher-
derivatives terms dominate when we take ω →∞, k→∞, and thus this is outside of the EFT
regime. Therefore, we should choose a momentum that is much larger than the inverse of the
size of the black hole but much smaller than the cutoff of the theory. This is,

1
rh

≪ |k| ≪ 1
ℓ
. (18)

In practice, this means that we must take the limit independently in the Einstein and in the
higher-derivative contributions to the equations of motion, keeping only the leading terms in
each case. Proceeding in this way, we get

Eθϕ ∝(A0ω+A1kr)
(
4f r+ 3µℓ4

(
−2ω2 + 2k2r − f k2θ

)
(−f ′ + rf ′ ′)

)
,

Erϕ ∝− 8r5
(
ω (ωA1 +A0kr)− fA1k

2
θ

)
+

6r3µℓ4

f

[
ω (ωA1 +A0kr)

(
ω2 − k2r

)
(2+ rf ′)

+f 2k2θ
(
2ω (ωA1 +A0kr)+ rA1k

2
θf

′ − r2A1k
2
θf

′ ′)
+f

(
−2ω (ωA1 +A0kr)

(
ω2 − k2r + k2θ

)
− 2r

(
2ωA0kr+A1

(
ω2 + k2r

))
k2θf

′

+r2
(
ω2A1 + 3ωA0kr+ 2A1k

2
r

)
k2θf

′ ′)] .
Let us analyze the solutions to these equations. There are three possible dispersion relations
that can be obtained, and we discuss each in turn.

Solution 1

The equation Eθϕ = 0 can be solved by

A0 =−A1
kr
ω
. (19)

Plugging this into the second equation, we obtain(
−ω2 + k2r + fk2θ

)[
4f r2 +µ

(
3
(
−ω2 + k2r

)(
2+ rf ′

)
+ f

(
6ω2 − 6k2r + 3rk2θf

′ − 3r2k2θf
′ ′
))]

= 0 .

(20)

Solving the first factor gives the dispersion relation

ω2 = k2r + f k2θ , (21)

which is the standard result in Einstein gravity.

Solution 2

Just like for Solution 1, we take

A0 =−A1
kr
ω
, (22)

which solves Eθϕ = 0. Now we solve the second factor in (20) which gives the following dis-
persion relation

ω2 = k2r + k2θ
f r
(
f ′ − rf ′ ′

)
2− 2f+ rf ′

+
4r2f

3µℓ4 (2− 2f+ rf ′)
. (23)
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Thus, comparing with (14) we find

c2r = 1 ,

c2θ =
r
(
f ′ − rf ′ ′

)
2− 2f+ rf ′

≈ 1 ,

M2 =
4r2

3µℓ4 (2− 2f+ rf ′)
≈ 2r3

9µℓ4M
. (24)

Note that for r> rh we necessarily have M2 ≫ 1/ℓ2, and hence according to our previous
discussion this mode is unphysical and should be regarded as an artifact of the EFT.

Solution 3

Returning to Eθϕ, we can instead solve the second factor of this equation to obtain the third
dispersion relation,

ω2 = k2r −
f
2
k2θ −

2rf
3µℓ4 (f ′ − rf ′ ′)

, (25)

and now we identify

c2r = 1 ,

c2θ =−1
2
,

M2 =− 2r
3µℓ4 (f ′ − rf ′ ′)

≈− r3

9µℓ4M
. (26)

Again this is a massive mode with a mass above the cutoff and therefore it is not meaningful
within EFT. Observe that if one naively takes kθ →∞, as in [2], one would conclude that this
mode is unstable as it has a negative speed squared in the angular direction. However, this
requires taking kθ above the cutoff 1/ℓ, and hence the conclusion is not valid.

2.1. Extra modes and validity of the EFT

Of the above modes, only that described by Solution 1 is within the domain of validity of the
EFT. Solutions 2 and 3 both have masses much above the cutoff, as we now describe in more
detail. The most natural choice for the cutoff is the scale given by the coupling constant of
the theory ℓcutoff ∼ µ1/4ℓ. Without loss of generality, we can take µ to be an O(1) constant so
that information about the cutoff is contained in ℓ. Then, the requirement that these modes be
within the EFT approximation requires that

M2 ≪ 1
ℓ2

⇒ r3 ≪ µℓ2rh . (27)

Now combining this with the requirement that the corrections to the metric should remain
small, i.e. rh ≫ ℓ, we have the chain of inequalities

r3 ≪ µℓ2rh ≪ r3h . (28)

Thus, we see that this condition can only be satisfied for r≪ rh deep within the black hole.
These modes are therefore not relevant for an EFT description of the physics outside the black
hole horizon. Note also that this conclusion is independent of these modes being tachyonic

7
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or not—in fact, one of the extra modes must always be a tachyon, M2 < 0. This is because,
having |M2| ≫ 1/ℓ2, such mode would have a frequency/momentum larger than the cutoff in
the black hole exterior, and therefore it lies beyond the limit of validity of EFT.

Actually, the authors of [2] do realize that their conclusions are only valid when their
equation (3.32) is satisfied,

2r2h
9µℓ4

r3

r3h
≪M2

cutoff . (29)

In our notation, this is equivalent to the condition M2 ≪ 1/ℓ2. They do not realize however
that if the cutoff of the theory coincides with the scale of the coupling constant of the higher
derivative terms (as we have just described) then their equation (3.32) is never satisfied6. An
alternative way to phrase this conclusion is that rather than excluding the ECG black holes,
the authors of [2] instead exclude cutoffs for the theory at energy scales that are parametrically
smaller than the natural cutoff set by the coupling.

In fact, none of these results are particular to ECG. In the appendix of this manuscript
we have considered odd-parity gravitational perturbations for a theory consisting of the most
general extension of general relativity with cubic powers of the curvature. Qualitatively the
analysis is exactly the same. There is a single mode that is within the domain of validity of the
EFT, while two additional modes have masses that are much above the cutoff of the theory.
This is not surprising. As we have emphasized in the introduction, ECG captures the most
general six-derivative corrections to Einstein gravity within the EFT regime. Had our analysis
concluded something special for ECG in the regimewhere EFT is valid, it would have signalled
issues for gravitational EFT more generally.

3. Discussion

Higher-derivative gravities, considered as EFT extensions of general relativity, generally lead
to the propagation of additional degrees of freedom that can have pathological properties.
However, all of these modes possess masses exceeding the theory’s cutoff, rendering them
outside the domain of validity of the EFT.

We have shown this to be the case for odd-parity perturbations around the spherically sym-
metric black hole solutions of ECG, but there is nothing special about this example, and we
expect this conclusion to hold for general theories and solutions. Therefore, one should under-
stand the extra modes and their associated instabilities as artifacts of the EFT rather than genu-
ine physical degrees of freedom. In particular, this implies that ECG black holes are physically
meaningful as long as their radius is larger than the cutoff length scale ℓ.

From a broader perspective, we conclude that it should be possible to make sense of dynam-
ical evolution of higher-curvature gravities within the EFT regime. How to excise the unphys-
ical instabilities and extract the dynamics in a sensible way is of course a much more complic-
ated question. However, there is compelling evidence that this is possible. Recent works have
been able to perform numerical relativity simulations in some of these theories by reformulat-
ing the equations of motion in an appropriate way [171, 172]. This evidence strongly suggests
that, despite their apparent pathological behavior, higher-curvature theories indeed give rise
to well-behaved dynamics within the EFT regime.

In this context, ECG and the whole family of GQTs are no different. What makes these the-
ories remarkable is that they allow us to answer many questions about black holes, holography,

6 See the Note added at the end of section 3.
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cosmology and other areas in a much simpler and clearer way. Hence, ECG and its general-
izations remain as useful theories that allow us to understand the effects of higher-curvature
corrections across a wide range of scenarios.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
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Note added

As a reaction to the first version of this paper, the authors of [2] made substantial changes
in their manuscript. In particular, they removed their claims regarding the exclusion of static
black holes in Einsteinian Cubic Gravity in the EFT regime. The new version of their paper is
compatible with the results presented here. The results presented in [173] soon after the first
version of this paper are also in agreement with ours.

Appendix. Odd parity perturbations for general cubic gravities

In this appendix we extend the results of the main text to general theories that supplement
Einstein gravity with terms cubic in the curvature. As we will see, the results are qualitatively
no different than the ECG case treated in the main text. This highlights the fact that the issues
claimed in [2] are not particular to ECG, and just like in that case, the purported pathologies
are always beyond the EFT regime.

We begin with the following action,

S=
1

16πG

ˆ
d4x

√
|g|

[
R+ ℓ4

(
c1Ra

c
b
dRc

e
d
fRe

a
f
b+ c2Rab

cdRcd
efRef

ab+ c3RabcdR
abc

eR
de

+ c4RabcdR
abcdR+ c5RabcdR

acRbd+ c6Ra
bRb

cRc
a+ c7RabR

abR+ c8R
3

)]
, (A1)

where as before ℓ is a length scale and ci are dimensionless coupling constants. Restricting to
static and spherically symmetric metrics, the above action admits a solution of the form

ds2 =−N(r)2 f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
. (A2)
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In this case, obtaining the solution involves solving a pair of coupled fourth-order non-linear
ordinary differential equations for the metric functions f (r) and N(r). In general, this will be
a formidable task and here we will content ourselves with a power-series solution constructed
by solving the equations of motion perturbatively near r→∞. The result to O(ℓ4) is,

f(r) = 1− r0
r
+

18ℓ4r20 (3c2 + c3 + 4c4)
r6

+
ℓ4r30 (c1 − 196c2 − 66c3 − 264c4)

4r7
+ · · · , (A3)

N(r) = 1+
3ℓ4r20 (3c1 − 36c2 − 14c3 − 56c4)

4r6
+ · · · . (A4)

Here we have normalized N(r) such that N(r)→ 1 as r→∞.
We wish to study odd-parity gravitational perturbations for these black holes. We proceed

in the same manner as in the main text. We work in the Regge–Wheeler gauge, writing the
perturbations as

hab = e−iωt


0 0 0 h0 (r)
0 0 0 h1 (r)
0 0 0 0

h0 (r) h1 (r) 0 0

sinθ
∂Yl0
∂θ

. (A5)

As before, instead of Lagrangianmethods, we perform a direct evaluation of the field equations
for the perturbed metric. The relevant components of the field equations are Erϕ and Eθϕ
which are in general horribly complicated expressions. We seek solutions in the limit of large
momentum, writing the radial functions as follows

h0 (r) = A0 (r)e
ikrr∗ , h1 (r) =

A1 (r)
f(r)

eikrr∗ , r∗ =
ˆ

dr
N(r) f(r)

. (A6)

Taking the large momentum limit carefully we obtain the following equations that will determ-
ine the dispersion relation for the various modes,

Eθϕ ∝+(ωNA0 + krA1)

[
2r2fN2 + ℓ4N2f k2θ

(
αr2f ′ ′ − 3βrf ′ + 24ν( f− 1)

)
+ 2ℓ4(N2ω2 − k2r )

(
−(α+ ξ)r2f ′ ′ − (12ν+α)rf ′ +(3β+ 2ξ + 3α+ 12ν)( f− 1)

)]
,

(A7)

Erϕ ∝−8N2f r5
(
N(ω2 − fk2θ)A1 + krωA0

)
− 4ℓ4r3

(
−A0ωkr

(
N2( fk2θ(r2f ′ ′(α− 12ν+ 2ξ )

+ 2rf ′(α+ 3(β+ 4ν))− 2( f− 1)(4α+ 3β+ 24ν+ 2ξ )
)
+ω2(12νr2f ′ ′ − 3βrf ′ + 2α( f− 1)

))
+ k2r

(
2
(
α− 6νr2f ′ ′ −αf

)
+ 3βrf ′

))
−A1

(
N3(ω2 − fk2θ

)(
fk2θ

(
−αr2f ′ ′ + 3βrf ′ − 24( f− 1)ν

)
+ω2(12νr2f ′ ′ − 3βrf ′ + 2α( f− 1)

))
+Nk2r

(
2fk2θ

(
r2(α+ ξ )f ′ ′ + r(α+ 12ν)f ′

− ( f− 1)(3α+ 3β+ 12ν+ 2ξ )
)
+ω2(2(α− 6νr2f ′ ′ −αf

)
+ 3βrf ′

))))
. (A8)

To simplify the expressions, we have introduced the following shorthand forms for certain
combinations of the coupling constants:

α≡ c3 + 8c4 +
3
2
c6 + 2c7 , (A9)

β ≡ c1 − 4c2 −
10
3
c3 −

32
3
c4 − c5 − 2c6 −

8
3
c7 , (A10)

10
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ξ ≡−4c4 + c5 −
3
2
c6 − c7 , (A11)

ν ≡ c2 +
5
12
c3 +

2
3
c4 +

1
6
c5 +

1
8
c6 +

1
6
c7 . (A12)

Now we will extract the different possibilities for the large momentum dispersion relations.
Note that for N(r) ̸= 1, the general dispersion relation (14) receives the simple modification,

ω2 = c2r
k2r
N2

+ c2θf k
2
θ + fM2 . (A13)

Let us now proceed with that analysis.

A.1. Solution 1

To obtain the first dispersion relation we solve Eθϕ by setting

A0 =−krA1

ωN
, (A14)

and substituting this into Erϕ. That equation then gives one dispersion relation

ω2 = f k2θ +
kr2

N2
, (A15)

which is the same as the usual Einstein gravity case. This mode is unaffected by any of the
cubic contributions to the action.

A.2. Solution 2

Next, as before, we solve Eθϕ by setting

A0 =−krA1

ωN
. (A16)

However, this time we solve the second factor of Erϕ to obtain the dispersion relation. The
result has the form

ω2 = c2θf(r)k
2
θ + c2r

k2r
N2

+ fM2 (A17)

with

c2r = 1 , (A18)

c2θ =
αr2f ′ ′ − 3βrf ′ + 24ν ( f− 1)
12νr2f ′ ′ − 3βrf ′ + 2α( f− 1)

≈ 1 , (A19)

M2 =
2r2

ℓ4 ((12νr2f ′ ′ − 3βrf ′ + 2α( f− 1))
≈− 2r3

r0ℓ4(2α+ 3β+ 24ν)
. (A20)

Above, for cθ and M, to go from the exact expressions to the approximate form, we expand
the result for small values of ℓ/r0.

11
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A.3. Solution 3

The final possibility for the dispersion relation is obtained by solving the second factor of Eθϕ.
This immediately gives the following

c2r = 1 , (A21)

c2θ =
αr2f ′ ′ − 3βrf ′ + 24ν ( f− 1)

2(α+ ξ)r2f ′ ′ + 2(α+ 12ν)rf ′ − (24ν+ 4ξ + 6β+ 6α)( f− 1)
≈−1

2
, (A22)

M2 =
r2

ℓ4
(
(α+ ξ)r2f ′ ′ +(α+ 12ν)rf ′ − (12ν+ 2ξ + 3β+ 3α)( f− 1)

) ≈ r3

r0ℓ4 (2α+ 3β+ 24ν)
.

(A23)

Above, for cθ and M, to go from the exact expressions to the approximate form, we expand
the result for small values of ℓ/r0.

A.4. Summary

The only mode that the EFT captures is that described by solution 1, which agrees with the
Einstein gravity case. The additional massive modes are outside the domain of validity of the
EFT for the same reasons given in the discussion in the main text. Thus the results for general
cubic theories are analogous to the ECG case. This is not surprising. As we have emphasized
in the main text, ECG captures the most general EFT for vacuum gravity with cubic powers of
the curvature. Therefore it would have been problematic for the entire EFT program had the
general cubic theory provided any essential differences.
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