
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE
MASTER’S THESIS

LLM Adaptation Techniques.
Evaluating RAG Strategies.

Author:
Francesc Josep Castanyer
Bibiloni

Supervisor:
Eloi Puertas i Prats

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

January 17, 2025

http://www.ub.edu
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

LLM Adaptation Techniques. Evaluating RAG Strategies.

by Francesc Josep Castanyer Bibiloni

This thesis explores the application of Retrieval-Augmented Generation
(RAG) systems to optimize question answering tasks, addressing limita-
tions of Large Language Models (LLMs) in scalability, efficiency, and domain
adaptability. A theoretical foundation is established, highlighting RAG’s role
in integrating external knowledge to enhance language models.

A RAG pipeline is implemented and evaluated through experiments an-
alyzing embedding models, similarity metrics, retrieval parameters (k), and
re-ranking using cross-encoders. Results demonstrate that re-ranking im-
proves retrieval accuracy, even with noisy, large-scale datasets, and highlight
trade-offs between retrieval scope and generative performance.

This study underscores RAG’s potential as a scalable alternative to fine-
tuning, enabling efficient adaptation to dynamic datasets. Future research
could explore advanced RAG variants and hybrid methods for broader ap-
plications.

The corresponding code notebook can be found on the following GitHub
repository, https://github.com/XiscoCasta/LLM-adaptation-techniques.
-Evaluating-RAG-models.

HTTP://WWW.UB.EDU
http://mat.ub.edu
https://github.com/XiscoCasta/LLM-adaptation-techniques.-Evaluating-RAG-models
https://github.com/XiscoCasta/LLM-adaptation-techniques.-Evaluating-RAG-models

v

Acknowledgements
First of all, I would like to express my deepest gratitude to my thesis

supervisor, Dr. Eloi Puertas i Prats, for his invaluable guidance and sup-
port. His continuous feedback and suggestions have greatly contributed to
improving this work.

I am also profoundly grateful to my family, who have always supported
me and believed in me throughout this journey. I would like to thank my
friends from my hometown, who have always been there for me, and Arturo
and Diego, who have accompanied me along my path in mathematics.

Finally, I wish to thank my classmates for their help and collaboration. In
particular, I want to mention Jon and Sergio for their ongoing cooperation
and support during the entire master’s program, and Jokin and Ana for the
countless hours we spent in the library, where much of this thesis took shape.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Background 3
2.1 What is an LLM? . 3

2.1.1 Structure of LLMs. 3
The Transformer Architecture 3
Components of the Transformer 4
Encoders and Embedding Models 5

2.1.2 Training LLMs . 6
2.1.3 Applications and Limitations of LLMs 6

2.2 Adaptation Techniques . 7
2.2.1 Prompt Engineering with Few-Shot Learning 8

How it Works . 8
Advantages . 9
Challenges and Considerations 9

2.2.2 Fine-Tuning . 9
How it Works . 10
Advantages . 10
Challenges and Considerations 11

2.2.3 Retrieval-Augmented Generation (RAG) 11
How it Works . 12
Role of Encoders in RAG 13
Advantages . 14
Challenges and Considerations 14

3 Experimentation 17
3.1 Building a Naive RAG: Step-by-Step Explanation 17

3.1.1 Indexing and Retrieval 17
3.1.2 Generation . 18

3.2 First Experiments . 18
3.2.1 Experiment: Distance and Embedding Model 19
3.2.2 Experiment: Value of k 20

3.3 Real Case Experiment . 22
3.3.1 Experiment: Specific Wikipedia Passages 23
3.3.2 Experiment: Additional Wikipedia Passages 24

3.4 Re-Ranking and Filtering Experiments 25
3.4.1 Experiment: Re-Ranking Retrieval 26

viii

3.4.2 Re-Ranking on Different Questions Datasets 27

4 Conclusions 29
4.1 Limitations and Future Work 30

Bibliography 31

1

Chapter 1

Introduction

The field of Natural Language Processing (NLP) has witnessed significant
advancements in recent years, with Large Language Models (LLMs) emerg-
ing as powerful tools for language understanding and generation. Built on
the Transformer architecture, LLMs can process vast amounts of text data,
capturing complex linguistic patterns and long-range dependencies. This has
enabled them to excel at diverse tasks, such as text summarization, question
answering, and content generation, transforming various domains including
education, healthcare, and business (Brown et al., 2020).

Despite their remarkable capabilities, LLMs face several limitations that
restrict their applicability, particularly in specialized or dynamic contexts.
One key challenge lies in their reliance on large-scale, generic pretraining,
which equips them with broad language understanding but often lacks the
precision required for domain-specific tasks. Additionally, the computa-
tional demands of training and fine-tuning these models make them less
accessible for smaller organizations or resource-constrained environments.
Furthermore, adapting LLMs to evolving datasets or tasks can require sig-
nificant effort, as retraining entire models is costly and time-consuming.

To address these challenges, researchers have developed various adapta-
tion techniques that enhance the performance of LLMs in a more efficient and
targeted manner. Among these methods, Retrieval-Augmented Generation
(RAG) stands out as a promising approach. RAG systems augment LLMs by
integrating external knowledge sources into their response generation pro-
cess, enabling them to retrieve and utilize relevant information dynamically.
This reduces the need for extensive fine-tuning and allows models to stay
current with new or domain-specific knowledge. Other techniques, such as
prompt engineering and partial fine-tuning, also provide flexible ways to
adapt LLMs without the resource-intensive processes associated with full
retraining.

This thesis focuses on the practical implementation and evaluation of
RAG systems for question answering tasks. Specifically, it investigates how
the retrieval and generation components of a RAG system can be optimized
to balance computational efficiency and accuracy. Through a series of ex-
periments, we evaluate the impact of various parameters, such as the choice
of embedding models, similarity metrics, and the number of retrieved doc-
uments (k), on the system’s overall performance. Additionally, we explore
the role of advanced techniques like re-ranking with cross-encoders to refine
retrieval accuracy and reduce noise in the generation process.

2 Chapter 1. Introduction

The contributions of this thesis are as follows:

1. A detailed implementation of a naive RAG pipeline, including prepro-
cessing, embedding, retrieval, and generation steps.

2. An evaluation of retriever performance across different embedding
models, similarity metrics, and k values on both controlled datasets
(e.g., SQuAD) and real-world datasets (e.g., TriviaQA).

3. The integration of a re-ranking mechanism using cross-encoders to im-
prove retrieval quality, demonstrating its effectiveness in both small
and large-scale datasets.

4. An analysis of the scalability and practical implications of RAG systems
when applied to noisy, large-scale data.

The remainder of this thesis is organized as follows: Chapter 2 provides
a theoretical background on LLMs, adaptation techniques, and the RAG
framework. Chapter 3 describes the experimental setup and presents the
results of various RAG configurations. Finally, Chapter 4 discusses the find-
ings, limitations, and future directions for research in this domain.

By addressing the general limitations of LLMs through efficient adapta-
tion techniques, this thesis contributes to the ongoing efforts to make these
models more practical, scalable, and applicable to a wider range of real-
world tasks.

3

Chapter 2

Background

The aim of this chapter is to introduce the concepts that are crucial to under-
stand the whole project. It begins from the basics of what an LLM is, pro-
gressing to more advanced procedures and techniques that can be applied to
them, in order to understand the experimental section.

2.1 What is an LLM?

Large Language Models (LLMs) are a type of AI that are trained to under-
stand, generate, and interact with human language in a way that is both co-
herent and contextually relevant. These models are ‘large’ not only in their
size, spanning billions of parameters, but also in the vast amount of data
they are trained on. This training involves the analysis of a wide array of text
sources, from books and articles to websites and social media posts (Czerny,
2024).

These models are based on the Transformer architecture, due to Vaswani
et al., 2017. This has been the base of all the advanced LLM models to date.
It is based on the concept of attention mechanisms, which allows the model
to weight the importance of the different parts of the input data, and use it to
generate the outputs. A key innovation here is the self-attention mechanism,
which enables the model to capture relationships between all the words in a
sentence, regardless of their position. This contrasts with previous models,
which could struggle with long sentences, as they worked sequentially.

2.1.1 Structure of LLMs.

As mentioned, Large Language Models (LLMs) are based on the Transformer
architecture. At its core, the architecture consists of two main components:
the encoder and the decoder. These components work in tandem to model
relationships between tokens within and across sequences. The encoder-
decoder structure can be seen in Figure 2.1.

The Transformer Architecture

The encoder is responsible for analyzing the input sequence and converting
it into a continuous representation. This representation captures both the
individual meanings of tokens and their contextual relationships within the
sequence. By leveraging self-attention mechanisms, the encoder allows the
model to focus on relevant parts of the input, regardless of their position in

4 Chapter 2. Background

FIGURE 2.1: Transformer architecture with encoder and de-
coder components (Vaswani et al., 2017)

.

the sequence. As mentioned, this is particularly important for understanding
long-range dependencies and complex sentence structures.

The decoder uses the encoded representation as a foundation to generate
the output sequence, one token at a time. It relies on two key mechanisms:
self-attention, which ensures that previously generated tokens are consid-
ered when predicting the next token, and encoder-decoder attention, which
aligns the generated output with the context provided by the encoder. To
maintain the causal structure of text generation, the decoder employs mask-
ing, preventing it from accessing future tokens during prediction.

The self-attention mechanism, central to both the encoder and decoder,
assigns weights to different tokens in a sequence based on their relevance
to the current token being processed. This is achieved by comparing query,
key, and value representations derived from the input tokens. The result is
a context-aware representation that enables the model to generate coherent
and contextually appropriate outputs.

Components of the Transformer

The Transformer architecture consists of multiple neural network layers
working together to achieve the results desired. A brief description of each
type of layer within the architecture is provided below and illustrated in
Figure 2.1.

2.1. What is an LLM? 5

• Embedding Layer with Positional Encoding: It converts input tokens
into continuous vectors and injects positional information, since the
Transformer does not inherently process sequences in order.

• Multi-Head Self-Attention Layer: It allows the model to focus on dif-
ferent positions within the input sequence to capture contextual rela-
tionships.

• Feed-Forward Neural Network Layer: It applies non-linear transfor-
mations to enhance the model’s expressive power after attention mech-
anisms.

• Layer Normalization and Residual Connections: They improve train-
ing stability and help in training deeper networks by facilitating better
gradient flow.

• Output Layer: It projects the final representations back to the token
space to generate probabilities over the vocabulary for language mod-
eling tasks.

Although subsequent research has introduced variations to the Trans-
former architecture, these core components remain essential to understand-
ing how LLMs function.

Encoders and Embedding Models

Encoders play a crucial role in the Transformer architecture, and will also
feature prominently in subsequent sections of this document, in the form of
embedding models.

Encoders are responsible for transforming input sequences into continu-
ous vector representations, known as embeddings. These embeddings cap-
ture both the semantic meaning of individual tokens and their contextual
relationships within a sequence. In the Transformer architecture, the encoder
achieves this by leveraging the self-attention mechanism, which allows it to
assign importance to different tokens based on their relevance to the cur-
rent token being processed. This process ensures that long-range dependen-
cies and nuanced relationships within the input sequence are effectively cap-
tured.

Embedding models, on the other hand, are specialized implementations
of encoders that are often pre-trained to generate high-quality vector repre-
sentations for a wide range of tasks. For example, Sentence-BERT (SBERT), as
introduced in Reimers and Gurevych, 2019, adapts the Transformer architec-
ture to efficiently produce embeddings for sentence-level semantic similarity
tasks. These models map text into a shared high-dimensional vector space,
where semantically similar tokens or phrases are positioned closer together.
For instance, the words "king" and "queen" may have embeddings that are
nearby in this space, reflecting their semantic similarity, while being distant
from unrelated words like "apple.

6 Chapter 2. Background

The concepts of encoders and embedding models introduced here will
reappear in later sections, particularly in the context of adaptation tech-
niques, where their utility in retrieval and context generation becomes ap-
parent.

2.1.2 Training LLMs

The training of LLMs involves processing really large amounts of textual
data, to learn patterns and structures in human language. This data comes
from diverse sources, as books, articles, websites, and social media.

The training process is primarily unsupervised, where the model learns
by predicting the next word in a sentence based on the previous context.
This training is computationally intensive, requiring specialized hardware,
and often takes weeks or months to complete. During training, the model’s
billions of parameters are optimized using techniques like stochastic gradi-
ent descent, enabling it to generalize language patterns effectively. Addi-
tionally, regularization methods like dropout are used to prevent overfitting,
and adaptive optimizers, such as Adam, are applied to improve convergence
speed and stability (Brown et al., 2020).

While this training enables the model to develop a broad understand-
ing of language, it does not inherently prepare it to perform specific tasks.
In many cases, these limitations can be addressed by using well-crafted
prompts that provide clear instructions on the task at hand. This approach,
known as prompt engineering, allows users to adapt the model’s behavior
without altering its underlying structure. However, when prompts alone are
insufficient, further adaptation techniques, such as fine-tuning or Retrieval-
Augmented Generation (RAG), are commonly employed to specialize the
model for specific applications.

These adaptation techniques will be explained in more detail in subse-
quent sections.

2.1.3 Applications and Limitations of LLMs

Large Language Models have revolutionized various domains by enabling
complex language understanding and generation tasks. Their versatility
comes from their ability to model and leverage context, making them indis-
pensable in areas such as natural language processing, machine learning and
artificial intelligence.

Applications

The range of tasks LLMs can perform is vast, spanning areas such as text
generation, machine translation or question answering (Brown et al., 2020).
They excel at producing coherent and contextually relevant outputs, summa-
rizing information or rewriting text to suit specific needs. In machine transla-
tion, their capacity to recognize linguistic patterns has significantly improved

2.2. Adaptation Techniques 7

the quality of translations. Additionally, LLMs are essential to customer ser-
vice automation, where they power chatbots and virtual assistants to provide
seamless interactions. Another notable application is in content moderation
and analysis, where they help identify and filter inappropriate or harmful
content.

Limitations

While LLMs are remarkably versatile, they are not without their challenges.
One significant drawback is their lack of domain expertise. Although they
can generate general responses, their outputs often lack the depth required
for specialized fields unless fine-tuned with domain-specific data. Further-
more, LLMs are prone to hallucinations, where they produce factually incor-
rect or misleading information.

Scalability also presents a challenge. Training and deploying these mod-
els demand substantial computational resources, making them less accessi-
ble to smaller organizations. Additionally, the ethical implications of de-
ploying LLMs are a growing concern, as biases in training data can result
in prejudiced outputs, and the potential misuse of these models for harmful
purposes raises questions about their broader societal impact (Brown et al.,
2020).

To overcome or mitigate these limitations, adaptation techniques are nec-
essary. Methods like fine-tuning enable the model to specialize in a particular
domain or task by training it on domain/task-specific data. Prompt engineer-
ing allows the user to guide the model’s behavior by carefully crafting input
instructions, leveraging the model’s inherent language capabilities without
modifying its internal structure. Additionally, Retrieval-Augmented Gener-
ation (RAG) enhances accuracy by integrating external knowledge retrieval
into the generation process, reducing hallucinations and improving factual
correctness. These adaptation methods will be explored in detail in subse-
quent sections.

2.2 Adaptation Techniques

This section outlines key adaptation techniques aimed at enhancing a model’s
performance on specific tasks. These techniques include prompt engineer-
ing, fine-tuning, and Retrieval-Augmented Generation (RAG).

Prompt engineering is a straightforward method that doesn’t require ex-
tra implementation. It involves creating clear and specific instructions to
guide the model’s behavior, using its existing abilities without making any
changes to its structure or how it works. While the concept may look sim-
ple, crafting effective prompts can become quite complex, especially for ad-
vanced or nuanced tasks.

Fine-tuning is a more advanced approach that changes the model’s be-
havior to make it perform better on specific tasks. It requires further training
the model with data focused on a particular domain or task. While it is an

8 Chapter 2. Background

effective and widely used technique, fine-tuning demands a lot of compu-
tational resources because it involves retraining either specific parts of the
model or the entire model.

RAG is a method specifically designed to enhance a model’s performance
by providing access to external information. Its purpose is to retrieve rele-
vant data from knowledge bases or document repositories during the gen-
eration process, enabling the model to incorporate additional context or fac-
tual information into its outputs. Despite its focused purpose, RAG can be
applied across a wide range of tasks, making it particularly valuable for ap-
plications like question answering, summarization or fact-checking, where
access to up-to-date or domain-specific information is crucial.

The experimental phase of this project centers on utilizing RAG systems
for question answering tasks, which significantly benefit from the additional
context provided by RAG. This approach was selected over other techniques
because it has a strong impact on these tasks while needing fewer computa-
tional resources than the resource-intensive fine-tuning.

The next subsections will explain these adaptation techniques in greater
detail.

2.2.1 Prompt Engineering with Few-Shot Learning

Prompt engineering with few-shot learning is a naive yet effective approach
to adapt LLMs to specific tasks without altering the model’s parameters or
structure. In this method, the user provides a few examples (few-shots) of
the desired input-output behavior within the prompt itself. This helps the
model understand the task and generate appropriate responses based on the
given examples.

How it Works

Few-shots learning involves including a small number of demonstrative ex-
amples in the prompt to guide the model’s output. The prompt typically
consists of:

• Task Description: A brief explanation of what the user wants the
model to do.

• Examples: A few input-output pairs to demonstrate the desired behav-
ior.

• Query: The new input for which the user wants the model to generate
an output.

By providing these components, the model can infer the task and generate
accurate responses that align with the examples.

The following is an example of a few-shot learning prompt designed for
sentiment classification of movie reviews:

2.2. Adaptation Techniques 9

Classify the sentiment of the following movie reviews as
Positive or Negative.

Review: "I absolutely loved this movie! The plot was
gripping and the characters were well developed ."
Sentiment: Positive

Review: "The film was a waste of time. The storyline was
predictable and the acting was subpar ."
Sentiment: Negative

Review: "The cinematography was stunning , but the pacing
was too slow for my taste."
Sentiment:

In this prompt, the model is given examples of movie reviews along with
their sentiment classification. The model is then expected to classify the sen-
timent on the new review.

Advantages

• No Training Required: Does not require any additional training or
fine-tuning of the model.

• Flexibility: Can be quickly adapted to a wide range of tasks by chang-
ing the examples in the prompt.

• Accessibility: Easy to implement and requires minimal computational
resources.

Challenges and Considerations

• Maximum input size: The model’s maximum input size limits the
number of examples that can be provided.

• Inconsistent Performance: The model may not always generalize well
from the few examples provided.

• Prompt Sensitivity: Small changes in the prompt wording or examples
can lead to significant variations in output.

Few-shot learning through prompt engineering is a practical starting
point for adapting LLMs to specific tasks. However, for more complex or
specialized applications, more advanced techniques like fine-tuning or RAG
may be necessary.

2.2.2 Fine-Tuning

Fine-tuning is a powerful technique for adapting LLMs to specific tasks by
updating the model’s parameters based on task-specific data. Unlike prompt

10 Chapter 2. Background

engineering, which requires no modification to the model, fine-tuning in-
volves training the model on a smaller dataset tailored to the task, enabling
it to better understand and solve specialized problems.

As explained previously, the general training phase of an LLM equips it
with a broad understanding of language patterns and structures. Fine-tuning
builds on this foundation by tailoring the model’s knowledge to a specific
context, such as domain-specific terminology, tone or skills. Applications of
fine-tuning include (among a wide variety):

• Specialized text processing: It helps the model learn to handle techni-
cal documents, legal contracts, or medical records where specific termi-
nology is critical

• Customer service or support: It trains the model to communicate in a
specific tone and style suited to a particular business or industry.

• Task-specific optimization: It allows the model to enhance its perfor-
mance on different tasks like sentiment analysis, summarization or en-
tity extraction, among others.

How it Works

Three general methods of fine-tuning can be identified, each suited for dif-
ferent situations regarding computational resources, model size and task re-
quirements:

• Full model fine-tuning: This approach involves adjusting all parame-
ters of the model to fully specialize on the new tasks. While it can yield
highly effective results, it is computationally expensive and also has the
risk to overfit in small datasets.

• Layer-wise: In this method, only specific layers of the model (typically
those closer to the output layer) are fine-tuned. This method is great
when one has limited computational resources, because it allows for
domain adaptation while not having to train the whole model.

• Parameter-efficient tuning: These techniques aim to modify only a
small subset of parameters, by adding new parameters as adapters, or
adjusting low-rank matrices to determine a subset to modify. These
methods are particularly useful for larger models, as they reduce mem-
ory usage while still allowing the learning.

Advantages

Fine-tuning provides exceptional flexibility, making it one of the most effec-
tive techniques for customizing LLMs to specific tasks or domains. It can be
applied to a wide range of use cases, from handling domain-specific termi-
nology in fields like healthcare and law to optimizing performance in tasks
like sentiment analysis, summarization, or question answering.

2.2. Adaptation Techniques 11

This adaptability extends across scales, working well with both small,
focused datasets and large, complex ones. Fine-tuning also allows precise
control over a model’s behavior, enabling developers to align outputs with
specific tones, styles, or functional requirements. This ability to finely tune
model behavior makes it a critical tool for developers aiming to build solu-
tions that align with both technical and business goals.

Its flexibility, wide range of use cases, and ability to control the model’s
behavior precisely in each scenario make fine-tuning one of the most widely
used techniques in the field of machine learning.

Challenges and Considerations

While fine-tuning is a powerful technique, it comes with several limitations
that must be considered, particularly regarding its resource requirements and
data preparation needs.

One of the most significant challenges of fine-tuning is the substantial
computational resources required to train the entire model. This becomes
particularly evident when dealing with large-scale LLMs, as fine-tuning
involves updating billions of parameters. The process often necessitates
high-performance hardware such as GPUs or TPUs, making it both time-
consuming and expensive, especially for organizations with limited access
to computational infrastructure.

Another important limitation is the reliance on pre-prepared datasets.
Fine-tuning typically follows a supervised learning approach, meaning the
model requires labeled data specific to the target task or domain. Preparing
such datasets can be labor-intensive, requiring careful curation, labeling, and
preprocessing to ensure quality and relevance. Moreover, the availability of
such datasets may be limited in highly specialized fields, further complicat-
ing the fine-tuning process.

Additionally, fine-tuning carries a risk of overfitting, particularly when
working with small or narrowly focused datasets. Overfitting can lead to
a model that performs well on training data but struggles to generalize to
unseen examples, reducing its practical utility.

While these limitations can be challenging, they highlight the need to
carefully consider whether fine-tuning is practical and worth the cost before
using it. In some cases, less resource-demanding techniques may be enough
to achieve the desired results.

2.2.3 Retrieval-Augmented Generation (RAG)

The following section is primarily based on information from Gao et al., 2024
and Yu et al., 2024.

Retrieval-Augmented Generation (RAG) is a technique designed to im-
prove the capabilities of LLMs by incorporating information from external
sources. This allows the model to access relevant and up-to-date information
at the time of generating the output, addressing problems like "hallucination"

12 Chapter 2. Background

that is, when the model makes up the information on the output because it
does not have the knowledge required by the input.

By using RAG, LLMs can retrieve document chunks relevant to the user
query by calculating semantic similarity, and integrate this information to
generate the response.

Its applications include a wide range of areas where the model benefits
from having additional information, such as question answering, fact check-
ing or text generation among others.

How it Works

This section outlines the structure of a naive RAG system and highlights
modifications introduced in more advanced models to enhance performance.
The basic schema can be seen in figure 2.2. It consists on three processes,
which are the following:

FIGURE 2.2: Naive RAG schema
(modified from Gao et al., 2024).

1. Indexing: In this step, the documents
are split into chunks and embedded into
a vector space, which are stored in an in-
dexed database. This indexing is done
in a way that enables efficient similarity
searches, which allows the model to retrieve
information rapidly.

2. Retrieval: The model performs a simi-
larity search comparing the query to all in-
dexed documents, and retrieves to top k.
This retrieval process provides the model
with the additional information needed in
the next step.

3. Generation: Once the documents are re-
trieved, they are combined with the query
and introduced to a frozen LLM (meaning
it isn’t modified in this process). Then,
the LLM generates a response based on the
query and on the retrieved documents, pro-
ducing an output based on the context re-
trieved.

On this basis, Advanced RAG models
may introduce introduce several key mod-
ifications, including:
- Query expansion and transformation:
Advanced RAG models incorporate mecha-
nisms to transform the initial query through

expansion or rephrasing, in order to improve the chance of retrieving rele-
vant information.

2.2. Adaptation Techniques 13

FIGURE 2.3: Comparison between Bi-encoders and Cross-
encoders (modified from Transformers, n.d.).

- Re-ranking and filtering: After retrieving the relevant documents, an ad-
vanced RAG re-ranks them using a more computationally expensive proce-
dure which grants better results (it only has to re-rank a small amount of
already retrieved documents), ensuring the order of the retrieved documents
is more accurate in terms of relevance. Then, it filters out the less relevant
ones which are ranked at the bottom.

- Refined prompting: The retrieved context is structured and formatted with
optimized prompts, allowing the LLM to produce more coherent and contex-
tually appropriate responses.

Further building upon advanced RAG, modular RAG introduces addi-
tional flexibility, implementing independent specialized modules, such as a
memory module for retaining context across interactions, or a routing mod-
ule for directing queries to the most suitable components based on the task.
Each module in modular RAG can be customized or replaced, making the
system highly adaptable and customizable for different applications.

Role of Encoders in RAG

Encoders play a crucial role in RAG systems, as the indexing step relies on
embedding models to represent document chunks in a vector embedding
space. A similarity search is then performed between the query and the in-
dexed documents. This process uses a bi-encoder, which individually em-
beds both the documents and the query, and computes the similarity mea-
sure between their respective vectors. This procedure is illustrated in Figure
2.3.

Another important role of encoders in RAG systems is re-ranking. For
this task, a cross-encoder is used. The cross-encoder directly computes the
similarity measure by processing both the query and the document together
as input, as shown in Figure 2.3. This approach generally yields better re-
sults because the cross-encoder is able to compare the query and the docu-
ment directly when scoring their similarity, enabling more accurate ranking.
However, cross-encoders cannot be used for the initial retrieval step because
they are much more computationally demanding. Instead, after a small set
of documents has been retrieved, the cross-encoder can be applied to re-rank
them and order the results more accurately.

14 Chapter 2. Background

Advantages

RAG systems offer several advantages that make them an attractive choice
for many tasks, particularly when scalability, flexibility, and efficiency are
critical. These benefits include:

• Scalability and Dynamic Updates
RAG systems are designed for scalability, enabling them to handle
increasing volumes of data and expand their knowledge base effort-
lessly. By dynamically incorporating new information through simple
updates to the indexed database, they eliminate the need for retrain-
ing the underlying language model. This capability makes RAG sys-
tems ideal for applications that require frequent updates or operate in
rapidly evolving domains.

• No Need for Preprocessed or Curated Datasets
Unlike fine-tuning methods that often rely on labeled or curated
datasets, RAG systems can process raw, unstructured data directly.
This reduces setup time and makes them accessible for a wide range of
use cases.

• Efficient Use of Computational Resources
RAG systems optimize computational efficiency by separating retrieval
and generation processes. Retrieval focuses only on relevant data,
while the frozen LLM generates responses, reducing resource demands
compared to full fine-tuning.

Challenges and Considerations

While RAG systems offer numerous advantages, they also come with specific
challenges that need to be addressed to ensure optimal performance. Key
considerations include:

1. Quality and Coverage of Indexed Data
The effectiveness of a RAG system hinges on the quality and coverage
of the indexed dataset. If the necessary information to perform well on
the task is absent or inadequately represented, the system will strug-
gle to produce accurate outputs. Ensuring comprehensive and relevant
coverage of the knowledge domain is critical.

2. Noise in Retrieved Results
Despite advancements in embedding models and retrieval algorithms,
irrelevant or low-quality documents may still be retrieved, introducing
noise into the generation process. This can confuse the language model
and degrade the accuracy or coherence of its outputs. This will be ad-
dressed by optimizing the number of documents retrieved, or even re-
ranking and filtering retrieved documents.

2.2. Adaptation Techniques 15

3. Dependence on Effective Retrieval Models
The retrieval component of a RAG system is crucial for providing rele-
vant and contextually appropriate information to the generative model.
Suboptimal retrieval models or poorly tuned similarity metrics can lead
to irrelevant or insufficiently detailed inputs, undermining the system’s
performance.

With the necessary context established and having reviewed the fundamen-
tal concepts and relevant adaptation techniques, we are now ready to explore
the implementation of the RAG system, examining the details of its configu-
ration and functionality for specific tasks.

17

Chapter 3

Experimentation

In this chapter, we build a RAG system and experiment with different con-
figurations and datasets to evaluate the system’s performance under various
conditions.

All experiments are conducted on a system with the following specifica-
tions:

• Processor: 13th Gen Intel® CoreTM i7-1355U @ 1.70 GHz

• RAM: 16 GB

For tasks involving large datasets, such as processing embeddings for
Wikipedia passages, we utilized GPU acceleration provided by Google Co-
lab’s T4 GPU environment.

3.1 Building a Naive RAG: Step-by-Step Explana-
tion

This section outlines the process of constructing a general naive RAG system
step by step, as depicted in Figure 2.2. Subsequently, different databases and
configurations for the RAG system are tested, and various characteristics of
the advanced RAG system introduced earlier are explored.

We employ the Python libraries datasets and transformers from Hug-
ging Face’s well-known framework (HuggingFaceTeam, 2024), designed for
managing models and datasets. For each component of the RAG pipeline,
the specific packages utilized are explained.

The pipeline consists of three main steps: indexing, retrieval, and genera-
tion. In this context, indexing and retrieval are executed jointly.

3.1.1 Indexing and Retrieval

Dataset Preparation and Chunking

To begin, we use the datasets library to download and access the datasets
required for our experiments.

The first task involves preprocessing the documents within the dataset.
Depending on the structure and length of the original documents, they may
need to be divided into smaller chunks to enable effective embedding into a
vector space. This step is crucial: if the chunks are too small, critical context

18 Chapter 3. Experimentation

and information might be lost. Conversely, overly large chunks may exceed
computational limits from the retriever, the generative model or both. To
accomplish this, we utilize the RecursiveCharacterTextSplitter function
from LangChain (LangChainTeam, 2024), which allows to split the text tak-
ing into account the length of the text after being tokenized, but returns plain
non-tokenized text.

The chunk length and maximum overlap are also important hyperparam-
eters to consider in each experiment. Their values will be specified at the
beginning and assumed to remain unchanged unless otherwise stated.

Document Embedding, storage and Retrieval

Once the text preprocessing is complete, the next step is to embed the text
chunks into a vector space and store these embeddings. The embedding
model will be also a parameter on the experiment. Model selection will be
based on the MTEB leaderboard (Muennighoff et al., 2022), which compares
the performance of different models for different tasks, taking into account
the size of the model. We will be using small models to deal with our low
computational resources.

After generating the embeddings, they are stored in a vector database to
enable retrieval based on a similarity metric. For this purpose, we employ
the FAISS library (Johnson, Douze, and Jégou, 2017), which is designed for
efficient similarity searches and clustering of dense vectors. FAISS provides a
direct command to perform similarity-based retrieval, specifying a similarity
metric and the number of documents to retrieve, k.

3.1.2 Generation

Finally, after retrieving the documents, the remaining step is to input them to
a generative model alongside with the initial query, and generate a response
from the model.

The transformers library is used to load and apply the models, combin-
ing the retrieved documents with the query to create the input for the model.
The choice of model is a parameter in every experiment. Due to limited com-
putational resources, the Google FLAN-T5 small model (Chung et al., 2022)
is utilized for all experiments. This model is a compact and efficient version
of the FLAN-T5 series, fine-tuned on a variety of instruction-following tasks.
Its small size enables faster inference while maintaining good performance,
which is crucial for this thesis as it involves numerous evaluations, each in-
volving 1000 or 2067 generations per test case.

3.2 First Experiments

Initial experiments focus on retriever parameters, including embedding mod-
els, k values, and distance metrics. A test RAG model is also used to examine
generation behavior with varying numbers of input contexts.

3.2. First Experiments 19

3.2.1 Experiment: Distance and Embedding Model

As stated, the first experiments target the retriever by analyzing the impact of
various embedding models and distance metrics. For this purpose, the SQuAD
database (Rajpurkar et al., 2016), a reading comprehension dataset based on
Wikipedia articles, is utilized. From this dataset, a subset of 2067 unique
question-context pairs is extracted. The objective is to measure how often
the retriever successfully identifies the correct context paired with a given
question among the retrieved documents. So, the evaluation formula is

Score =
Number of correct contexts retrieved

Total number of retrievals
(3.1)

In this case, as the contexts for the questions are pre-processed chunks,
we will not be using the text splitter to break them in smaller chunks. For
this reason, chunk size is not a parameter of the experiment.

The embedding model selection is guided by the MTEB leaderboard, which
ranks models based on retrieval performance. We experiment with the top
three models in the small category (less than 100 million parameters). Each
of these models has 33 million parameters:

• NoInstruct small Embedding v0

• Snowflake’s Arctic-embed-s

• Bge small retail finetuned

Additionally, we evaluate the impact of different distance measures, which
include the following:

• Cosine Distance: Measures the angular similarity between two vectors.
It is calculated as:

dcosine(x, y) = 1 − x · y
∥x∥∥y∥ (3.2)

where x and y are vectors, · denotes the dot product, and ∥ · ∥ is the
Euclidean norm.

• Euclidean Distance: Measures the straight-line distance between two
points in a vector space. It is given by:

deuclidean(x, y) =

√
n

∑
i=1

(xi − yi)2 (3.3)

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in an n-
dimensional space.

• Dot Product Distance: Measures the negative of the dot product be-
tween two vectors. It is defined as:

ddot(x, y) = −(x · y) (3.4)

20 Chapter 3. Experimentation

where x and y are vectors, and · represents the dot product. The higher
the dot product, the more similar the vectors.

By evaluating these similarity measures, our objective is to identify the
method that performs best in retrieving documents relevant to the given
query context. Additionally, by experimenting with different k values, we
aim to determine whether certain similarity metrics excel at identifying exact
matches, while others are more effective at capturing relevant context within
the top k retrieved results. The results can be seen on Table 3.1.

Evaluation Results

TABLE 3.1: Performance of Different Embedding Models (Val-
ues Represent the Score Metric).

Model k = 1 k = 2 k = 3 k = 5 k = 10 k = 20
NoInstruct small Embedding v0 0.7213 0.8302 0.8761 0.9231 0.9594 0.9816
Snowflake’s Arctic-embed-s 0.5839 0.7073 0.7692 0.8234 0.8936 0.9361
Bge small retail finetuned 0.7286 0.8287 0.8742 0.9202 0.9550 0.9811

In Table 3.1, the distance metric used is not specified, as all tested metrics
yielded the same results (refer to the code for more details). For the sake of
consistency and simplicity, Euclidean distance will be utilized in all subse-
quent experiments, as it serves as the default metric in FAISS.

Regarding the models, the table highlights performance variations de-
pending on the k value chosen. This is particularly evident when compar-
ing the top two models, NoInstruct small Embedding v0 and Bge small retail
finetuned, which consistently outperform Snowflake’s Arctic-embed-s across all
metrics. Notably, Bge small retail finetuned performs best when k = 1, while
NoInstruct small Embedding v0 outperforms the others when k > 1. These
findings will guide our model selection in future experiments, prioritizing
the best performers.

Furthermore, the table shows that in 98% of cases, the correct context is
included among the top 20 retrieved documents. This result demonstrates
the importance of high k values during retrieval to maximize the likelihood
of retrieving relevant contexts. By applying an effective re-ranking strategy,
we can further refine the selection, ensuring the correct context is prioritized.
This motivates the implementation of re-ranking techniques in later experi-
ments to enhance retrieval quality and overall performance.

3.2.2 Experiment: Value of k

In this section, we explore the optimal value of k for the database used in
our first RAG model. The database utilized by the model consists of the
contexts corresponding to the evaluation questions. This setup ensures that
the necessary information to answer each query is present in the dataset,
eliminating the possibility of having unanswered questions.

3.2. First Experiments 21

As stated previously, the Euclidean distance is used, along with the em-
bedding model that demonstrated the best performance for each specific k
value. For this experiment, the value of k is limited to k ∈ {1, 2, 3}, as the
generating model imposes constraints on input length, and larger values of
k would exceed these limitations. This is because the contexts weren’t split
into smaller chunks, so with k = 4 the maximum length of the input for the
generative model is exceeded.

The process for combining the query with the retrieved context is straight-
forward. The model receives the following input query without additional
formatting:

"question: original query, context: retrieved context "

This simple structure allows the model to focus directly on the question
and its associated retrieved context without unnecessary distractions from
additional preprocessing steps.

Based on insights from the previous experiment, increasing k is expected
to improve model performance by raising the likelihood of retrieving the cor-
rect information needed to answer the question. However, this relationship is
not entirely realistic in practical scenarios. While larger k values improve the
probability of retrieving relevant information, they also introduce additional
noise by including unnecessary data. This can difficult the model’s ability
to filter out irrelevant details and focus on generating accurate responses.
Consequently, performance is anticipated to improve with higher k values
only up to a certain threshold, beyond which the gains may plateau or even
diminish.

For the evaluation process, we define a custom metric similar to the Ex-
act Match Score. The Exact Match Score considers an answer valid only
when it fully matches the ground truth and computes the percentage of such
matches. In contrast, our custom Match Score adds flexibility by tokenizing
both the model’s responses and the ground truth answers using the model’s
tokenizer.

A response is considered valid if there is at least an 80% match between
the tokenized model response and the tokenized ground truths. This 80%
threshold provides a balance between strictness and flexibility: it allows mi-
nor variations in phrasing while avoiding the acceptance of incomplete an-
swers, which can happen because responses are often short.

The Match Score is computed as:

Match Score =
Number of valid responses
Total number of responses

(3.5)

Below are some examples of acceptable answers under this evaluation
method:

• Model response: ’an arbitrary graph’, ground truths from the dataset:
[’arbitrary graph’, ’arbitrary’, ’arbitrary’].

• Model response: ’the Qur’an’, ground truths from the dataset: [’Qur’an’,
’Qur’an’, ’Qur’an’]

22 Chapter 3. Experimentation

• Model response: ’31 July 2013’, ground truths from the dataset: [’July
2013’, ’In July 2013’, ’July 2013’]

Evaluation Results

We evaluated the performance of the RAG model for different values of k us-
ing the metrics outlined above. These models are also compared to a baseline
model (model without any context input), and to the generative model when
given the exact correct context. Results are shown in Table 3.2.

TABLE 3.2: Match Score on SQuAD questions with Contexts
Dataset.

System / Configuration k Match Score
Baseline Model (without contexts) - 0.0179 (37 / 2067)

RAG System with Contexts Dataset
1 0.5235 (1082 / 2067)
2 0.5636 (1165 / 2067)
3 0.5627 (1163 / 2067)

Model with Correct Context - 0.6957 (1438 / 2067)

From these results, we observe a steady improvement in exact match per-
formance when increasing k from 1 to 2, suggesting that providing additional
context improves the model’s ability to generate correct answers. However,
when k is further increased to 3, the exact match score slightly decreases com-
pared to k = 2. This behavior supports our earlier hypothesis that while in-
creasing k may provide more relevant context, it also introduces additional
noise, making it harder for the model to focus on the most critical informa-
tion.

While k = 2 achieves the best balance between providing sufficient con-
text and avoiding excessive noise, there is still room for improvement.

After these experiments, the gap between the best RAG model’s perfor-
mance (0.5636) and the model provided with the correct context (0.6957)
highlights limitations in the retrieval process. To address this, we will fo-
cus on re-ranking and filtering strategies in future experiments to enhance
the model’s ability to retrieve and prioritize the most relevant contexts.

3.3 Real Case Experiment

In previous experiments, we were using small, pre-prepared chunks of text
containing the necessary information to answer all the questions. This sec-
tion presents an experiment designed to simulate a scenario closer to real-
world applications.

The TriviaQA dataset (Joshi et al., 2017) is utilized in this experiment,
with a subset of 1000 questions selected to ensure they can be answered us-
ing information from Wikipedia. We conduct two related experiments: the
first uses a RAG database consisting only of the Wikipedia passages where

3.3. Real Case Experiment 23

the answers can be found, and the second adds a large number of additional
Wikipedia passages without verifying if they contain any relevant informa-
tion. This approach allows us to evaluate whether adding extra documents
to the dataset introduces noise and negatively impacts the model’s perfor-
mance.

3.3.1 Experiment: Specific Wikipedia Passages

As described in the introduction to this section, this experiment uses the
TriviaQA questions dataset. For the RAG system, we use a dataset of Wikipedia
passages where the answer to each question is guaranteed to appear (a total
of 1537 passages). Since these are real Wikipedia passages, they must be pre-
processed and divided into chunks, as outlined in Section 3.1.

Specifically, we use the RecursiveCharacterTextSplitter function from
LangChain to divide the text into manageable chunks. This function ensures
that each chunk’s tokenized text does not exceed a specified limit. The split-
ting is done coherently, using a prioritized list of separators to preserve as
much context as possible. The list of separators, in order of priority, is as
follows:

MARKDOWN_SEPARATORS = [
"\n\n", # Paragraph breaks
"\n", # Line breaks
". ", # Sentence endings
"? ", # Question endings
"! ", # Exclamation endings
" ", # Fallback to spaces
"" # Catch -all

]

This means the splitter first tries to keep paragraphs intact. If the text is
still too long, it keeps lines together, and so on. The chunk size is set to a max-
imum of 128 tokens to comply with the input length constraints of the gen-
erative model, and a chunk overlap of 10%. While larger chunks would pre-
serve more context, computational limitations necessitate this smaller size.
Additionally, the title of each passage is prepended to the start of each chunk
to provide the retriever with extra context.

After chunking the text, we create the vector database using the embed-
ding model and the FAISS library, as described earlier. This process is com-
putationally intensive, as the final dataset contains 111, 999 chunks, each re-
quiring embedding using the model and storage in the vector database.

After setting up the retriever, it is connected to the generative model to
produce responses. The evaluation process utilizes the custom Match Score
described earlier, and system performance is tested across various values of
k.

We expect lower performance compared to previous experiments, as this
dataset consists of real Wikipedia passages divided into chunks rather than

24 Chapter 3. Experimentation

small, preprocessed contexts. The system’s performance is compared against
the baseline model, which does not use any additional documents or context.

Evaluation Results

We evaluated the performance of the RAG system on the TriviaQA dataset
using different values of k. These results are compared against a baseline
system (without any context input). The results are shown in Table 3.3.

TABLE 3.3: Match Score for RAG Systems on TriviaQA Ques-
tions.

System / Configuration k Match Score
Baseline Model (without contexts) – 0.070 (70 / 1000)

RAG System with Wikipedia Contexts

1 0.384 (384 / 1000)
2 0.457 (457 / 1000)
3 0.476 (476 / 1000)
4 0.487 (487 / 1000)
5 0.478 (478 / 1000)
6 0.475 (475 / 1000)

Similar to the previous experiment on SQuAD, we observe an improvement
in the Match Score as k increases, up to a certain point. In this case, the best
performance is achieved at k = 4 with a Match Score of 0.487. Beyond this,
the score begins to decline slightly as k increases further.

This behavior mirrors the pattern observed earlier, where increasing k ini-
tially provides more relevant context but eventually introduces additional
noise, reducing the model’s ability to focus on critical information. How-
ever, in this experiment, the optimal k value is higher compared to the SQuAD
experiment (k = 2). This is likely due to the shorter chunks of text resulting
from our preprocessing step, which necessitates the inclusion of more chunks
to capture sufficient context for answering questions accurately.

These results reinforce again the need to carefully balance k to maximize
performance while minimizing noise.

3.3.2 Experiment: Additional Wikipedia Passages

In this experiment, we combine the 1537 Wikipedia passages provided as
context in the TriviaQA dataset with extra passages from an additional dataset,
the wikipedia.20220301.simple dataset from HuggingFace, 2022. This ad-
ditional dataset is a preprocessed collection of 205, 328 Wikipedia entries in
English, provided by HuggingFace. While some of the added passages might
help answer a few questions, most of them are unrelated and introduce noise
into the retrieval process. This setup creates a more realistic scenario for test-
ing the system.

We preprocess the passages in the same way as the previous experiment
and merge all the chunks into a single FAISS vector database as the retriever.
The final database contains 768, 281 chunks.

3.4. Re-Ranking and Filtering Experiments 25

With this larger dataset, we expect that if the retriever is not robust enough,
the added noise will reduce the system’s performance. The results from this
setup are compared to the best-performing model from the previous experi-
ment, with evaluations conducted across various k values. The outcomes are
presented in Table 3.4.

Evaluation Results

TABLE 3.4: Match Score for RAG Systems on TriviaQA Ques-
tions.

System / Configuration k Match Score
Baseline Model (without contexts) – 0.070 (70 / 1000)
RAG System with Wikipedia Contexts 4 0.487 (487 / 1000)

RAG System with Additional Contexts

1 0.399 (399 / 1000)
2 0.463 (463 / 1000)
3 0.487 (487 / 1000)
4 0.500 (500 / 1000)
5 0.496 (496 / 1000)
6 0.493 (493 / 1000)

The results show steady improvement as k increases, with the highest
Match Score of 0.500 at k = 4. This pattern is similar to the one in the previ-
ous experiment, where increasing k initially improves performance but then
slightly reduces it as k becomes too large.

When comparing both real-case experiments, this last experiment shows
slightly better results overall. For example, the Match Score improves from
0.487 in the previous setup to 0.500 here, both at k = 4. This suggests that
the retriever is strong enough to manage the extra passages and still retrieve
relevant contexts. So, we conclude that adding large volumes of potentially
unrelated text does not necessarily degrade performance, always when being
capable to deal with computational costs.

3.4 Re-Ranking and Filtering Experiments

For the final experiment, we implemented a re-ranking and filtering mech-
anism for the retrieved documents to improve the performance of our re-
triever.

To achieve this, we used a cross-encoder model to compute new similarity
scores and re-rank the retrieved documents. Unlike the bi-encoder used in
the initial retrieval—which embeds the query and documents separately into
a vector space and computes their similarity—the cross-encoder takes both
the query and the document as inputs and directly computes their similarity.
This approach is explained in detail in Section 2.2.3.

26 Chapter 3. Experimentation

The cross-encoder used is cross-encoder/ms-marco-MiniLM-L-12-v2, a
cross-encoder fine-tuned specifically for retrieving and re-ranking documents
based on queries.

3.4.1 Experiment: Re-Ranking Retrieval

The retrieval strategy begins by retrieving kretriever = 20 documents using the
bi-encoder-based retriever. Each of these documents is then paired with the
query and scored using the cross-encoder. These new similarity scores are
used to re-rank the documents, and the top krerank documents are selected
for the final generation step. The choice of kretriever = 20 is based on the
results from Table 3.1, which show that 98% of the time, the correct context
is found among the top 20 retrieved documents. By re-ranking the correct
context to a higher position and filtering out less relevant ones, we aim to
improve model performance.

This experiment is closely aligned with the previous one that assessed
the retrievers (Table 3.1). In this case, the re-ranking retriever’s ability to
retrieve the correct context is evaluated with different values of krerank. A
higher performance with lower krerank would indicate that the cross-encoder
effectively prioritizes the most relevant retrieved contexts. The Score metric
from the earlier experiment is also applied here

Score =
Number of correct contexts retrieved

Total number of retrievals
. (3.6)

Results are presented in Table 3.5.

Evaluation Results

TABLE 3.5: Performance of NoInstruct Small Embedding v0
with and without Cross-Encoder (Score Metric).

Configuration k = 1 k = 2 k = 3 k = 4
NoInstruct Small Embedding v0 (Bi-Encoder) 0.7213 0.8302 0.8761 0.9231
NoInstruct Small Embedding v0

0.9163 0.9584 0.9719 0.9739
+ ms-marco-MiniLM-L-12-v2 (Cross-Encoder)

The results clearly demonstrate the superior performance of the cross-
encoder-enhanced retriever compared to the bi-encoder-only approach across
all values of k. For k = 1, the cross-encoder achieves a significantly higher
score (0.9163 vs. 0.7213), and this trend persists at higher k-values. However,
performance plateaus at k = 4, indicating diminishing returns as additional
contexts are included.

Since the model already achieves strong performance at k = 1, increas-
ing k often does not provide additional necessary information but instead
introduces noise, outweighing the cases where it adds useful context. There-
fore, we anticipate better performance with lower k-values in the subsequent
experiments with RAG systems using re-ranking.

3.4. Re-Ranking and Filtering Experiments 27

3.4.2 Re-Ranking on Different Questions Datasets

The RAG systems with re-ranking, as detailed in this section, are imple-
mented next. The experiments conducted throughout the thesis are repeated,
utilizing kretriever = 20 while testing various values of krerank.

Experiment: SQuAD questions

In the first place, the experiment with the SQuAD questions is repeated, using
as the RAG dataset the contexts of the questions. We compare the results
with the ones obtained in previous experiments. Results are shown in Table
3.6

TABLE 3.6: Match Score for Different Configurations on SQuAD
Questions.

System / Configuration k Match Score
Baseline Model (without contexts) - 0.0179 (37 / 2067)
Best Simple RAG System 2 0.5636 (1165 / 2067)

RAG System with Re-Rank
1 0.6454 (1334 / 2067)
2 0.6188 (1279 / 2067)
3 0.6091 (1259 / 2067)

Model with Correct Context - 0.6957 (1438 / 2067)

The results in Table 3.6 confirm the behavior anticipated in previous ex-
periment: smaller krerank values provide better performance as the cross-
encoder effectively prioritizes the most relevant context while avoiding noise
introduced by less relevant ones. The best performance is achieved with
krerank = 1, achieving a Match Score of 0.6454. While performance slightly
decreases for larger krerank values, it remains competitive. Importantly, the
gap between the best-performing re-ranked configuration (krerank = 1) and
the model provided with the correct context (0.6957) has significantly nar-
rowed, highlighting the effectiveness of re-ranking in improving the retrieval
process.

Experiment: TriviaQA questions with Wikipedia contexts

The next experiment is the same as in 3.3, using the TriviaQA questions
dataset, and using as the RAG’s database only the Wikipedia passages di-
rectly related to the questions. Again, we compare the results obtained with
re-ranking to the previous best results otained. These are presented in Table
3.7

The results in Table 3.7 demonstrate a significant improvement in Match
Score when re-ranking is applied to the RAG system with Wikipedia con-
texts. The best performance is achieved with k = 2 and k = 3, both reach-
ing a Match Score of 0.554, notably higher than the best non-re-ranked RAG
configuration (0.487). This confirms the effectiveness of the cross-encoder in
prioritizing relevant contexts and filtering noise. Similar to previous experi-
ments, the system performs better with lower k-values. However, as seen in

28 Chapter 3. Experimentation

TABLE 3.7: Match Score for RAG Systems with Re-Ranking on
TriviaQA Questions.

System / Configuration k Match Score
Baseline System (without contexts) – 0.070 (70 / 1000)
Best RAG System with Wikipedia Contexts 4 0.487 (487 / 1000)
Best RAG System with Additional Contexts 4 0.500 (500 / 1000)

RAG System with Wikipedia Contexts and Re-Ranking
1 0.547 (547 / 1000)
2 0.554 (554 / 1000)
3 0.554 (554 / 1000)

earlier comparisons between the SQuAD and TriviaQA datasets, the optimal k
is slightly higher for TriviaQA (k = 2, 3, not k = 1), likely because the text is
shorter after preprocessing.

Experiment: TriviaQA questions with additional contexts

Finally, we repeat the last experiment on the TriviaQA questions dataset, us-
ing as the RAG’s database all the additional Wikipedia passages, as in 3.4.
Results are shown in Table 3.8.

TABLE 3.8: Match Score for RAG Systems with Re-Ranking on
TriviaQA Questions.

System / Configuration k Match Score
Baseline System (without contexts) – 0.070 (70 / 1000)
Best RAG System with Wikipedia Contexts 4 0.487 (487 / 1000)
Best RAG System with Additional Contexts 4 0.500 (500 / 1000)
RAG System with Wikipedia Contexts and Re-Ranking 2 0.554 (554 / 1000)

RAG System with Additional Contexts and Re-Ranking
1 0.553 (553 / 1000)
2 0.563 (563 / 1000)
3 0.558 (558 / 1000)

In Table 3.8, we observe consistent gains in performance with re-ranking,
even when using the larger, noisier dataset. The highest Match Score (0.563)
is achieved with k = 2, surpassing the best non-re-ranked system with ad-
ditional contexts (0.500). However, as k increases to 3, performance slightly
decreases (0.558), which further reinforces the idea that the inclusion of ad-
ditional contexts introduces noise to the generator.

Overall, these results highlight the robustness of re-ranking strategies,
both when handling narrower and larger, more complex datasets, and demon-
strate their ability to outperform simpler configurations. While a Match Score
of 0.563 may seem modest, it is important to note that the generative model
paired with the correct preprocessed context achieved a maximum Match
Score of only 0.7. Therefore, the results from these experiments reflect a
strong performance of the retrieval system with re-ranking.

29

Chapter 4

Conclusions

In this thesis, we explored the theoretical foundations of Large Language
Models (LLMs) and adaptation techniques, applying it to a practical imple-
mentation of Retrieved-Augmented Generation (RAG) systems for question
answering tasks. We emphasized the challenge of balancing computational
efficiency and the generation of high-quality responses using advanced mod-
els. The key findings of this study are summarized below:

1. Effective retrieval is essential.
Our experiments showed that the choice of the embedding model and
the retrieval process plays a critical role in improving the model’s per-
formance. We observed how a large value of k (the number of retrieved
documents) almost guarantees that the correct passages are retrieved.
This is a crucial step in the RAG pipeline. On small, controlled datasets,
we observed near-perfect retrieval in top 20 documents, while in larger
noisier datasets, retrieval quality remained high based on the results.

2. Trade-offs in k value.
Increasing k raises the chances of retrieving relevant documents con-
taining the answer. However, this doesn’t necessarily boost the model’s
performance, as adding too many documents to the generative model
may introduce noise, compromising the model’s ability to answer cor-
rectly, even when the right context is among the retrieved documents.
The optimal k value depends on the context. Smaller k values worked
better with preprocessed, concise chunks, while larger k values worked
better for longer or less structured texts, closer to real-world scenarios.

3. Re-ranking with cross-encoders.
Incorporating a cross-encoder to re-rank retrieved documents signif-
icantly enhanced performance in all experiments. This underscores
the importance of the retrieval process and the trade-offs in k values.
The cross-encoder allows the system to rank the most relevant pas-
sages higher, even with smaller krerank values. Its superior ability to as-
sess query-document similarity outperformed the bi-encoder retriever
alone.

4. Scalability and practical implications.
Our experiments showed that adding large volumes of potentially un-
related text does not necessarily degrade performance, provided the

30 Chapter 4. Conclusions

retriever system is robust enough. This result encourages the develop-
ment of systems with vast knowledge bases, as they can handle large-
scale information without sacrificing accuracy.

4.1 Limitations and Future Work

While the findings are promising, several limitations were identified that
open opportunities for future work:

• Model size and computational constraints.
We relied on a small generative model (FLAN-T5 small) to handle re-
peated evaluations efficiently. Although practical for this study, larger
models may yield better results by processing more extensive and com-
plex contexts. Future work could incorporate larger models to fully
explore the real potential of RAG systems.

• Domain-Specific adaptations.
The datasets used in this study focused on generic language and vocab-
ulary. In specialized domains such as medicine or law, RAG systems
might require additional techniques like partial fine-tuning or carefully
designed prompts to achieve better performance. Further studies could
explore hybrids methods that combine the strengths of fine-tuning and
RAG.

• Advanced RAG variants.
Techniques such as query expansion, dynamic re-ranking, or even mod-
ular RAG systems, could further boost performance. Testing these en-
hancements across diverse scenarios would help optimize RAG pipelines
for specific tasks and real-world applications.

We believe that these proposals provide a strong foundation for further
research and practical advancements in the field.

31

Bibliography

Brown, Tom B. et al. (2020). Language Models are Few-Shot Learners. arXiv:
2005.14165 [cs.CL]. URL: https://arxiv.org/abs/2005.14165.

Czerny, Thomas (2024). An Intro to Large Language Models (LLMs). https :
//medium.com/@thomasczerny/an-intro-to-large-language-models-
llms-41f0c802b900. Accessed: November 2024.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in
Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Reimers, Nils and Iryna Gurevych (Nov. 2019). “Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing. Associa-
tion for Computational Linguistics. URL: https://arxiv.org/abs/1908.
10084.

Gao, Yunfan et al. (2024). Retrieval-Augmented Generation for Large Language
Models: A Survey. arXiv: 2312.10997 [cs.CL]. URL: https://arxiv.org/
abs/2312.10997.

Yu, Hao et al. (2024). Evaluation of Retrieval-Augmented Generation: A Survey.
arXiv: 2405.07437 [cs.CL]. URL: https://arxiv.org/abs/2405.07437.

Transformers, Sentence (n.d.). Cross-Encoders: SentenceTransformers Documen-
tation. https://www.sbert.net/examples/applications/cross-encoder/
README.html. Accessed: December 2024.

HuggingFaceTeam (2024). Hugging Face: State-of-the-art Machine Learning for
Everyone. https://huggingface.co/. Accessed: November 2024.

LangChainTeam (2024). LangChain: A Framework for Developing Applications
Powered by Language Models. https://python.langchain.com/. Accessed:
November 2024.

Muennighoff, Niklas et al. (2022). “MTEB: Massive Text Embedding Bench-
mark”. In: arXiv preprint arXiv:2210.07316. DOI: 10.48550/ARXIV.2210.
07316. URL: https://arxiv.org/abs/2210.07316.

Johnson, Jeff, Matthijs Douze, and Hervé Jégou (2017). FAISS: A library for
efficient similarity search and clustering of dense vectors. https://faiss.ai/.
Accessed: November 2024.

Chung, Hyung Won et al. (2022). Scaling Instruction-Finetuned Language Mod-
els. arXiv: 2210.11416 [cs.LG]. URL: https://arxiv.org/abs/2210.
11416.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://medium.com/@thomasczerny/an-intro-to-large-language-models-llms-41f0c802b900
https://medium.com/@thomasczerny/an-intro-to-large-language-models-llms-41f0c802b900
https://medium.com/@thomasczerny/an-intro-to-large-language-models-llms-41f0c802b900
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2405.07437
https://arxiv.org/abs/2405.07437
https://www.sbert.net/examples/applications/cross-encoder/README.html
https://www.sbert.net/examples/applications/cross-encoder/README.html
https://huggingface.co/
https://python.langchain.com/
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://arxiv.org/abs/2210.07316
https://faiss.ai/
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416

32 Bibliography

Rajpurkar, Pranav et al. (2016). SQuAD: 100,000+ Questions for Machine Com-
prehension of Text. arXiv: 1606.05250 [cs.CL]. URL: https://arxiv.org/
abs/1606.05250.

Joshi, Mandar et al. (2017). TriviaQA: A Large Scale Distantly Supervised Chal-
lenge Dataset for Reading Comprehension. arXiv: 1705.03551 [cs.CL]. URL:
https://arxiv.org/abs/1705.03551.

HuggingFace (2022). Wikipedia Dataset. Accessed: November 2024. URL: https:
//huggingface.co/datasets/wikipedia.

https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/wikipedia

	Abstract
	Acknowledgements
	Introduction
	Background
	What is an LLM?
	Structure of LLMs.
	The Transformer Architecture
	Components of the Transformer
	Encoders and Embedding Models

	Training LLMs
	Applications and Limitations of LLMs

	Adaptation Techniques
	Prompt Engineering with Few-Shot Learning
	How it Works
	Advantages
	Challenges and Considerations

	Fine-Tuning
	How it Works
	Advantages
	Challenges and Considerations

	Retrieval-Augmented Generation (RAG)
	How it Works
	Role of Encoders in RAG
	Advantages
	Challenges and Considerations

	Experimentation
	Building a Naive RAG: Step-by-Step Explanation
	Indexing and Retrieval
	Generation

	First Experiments
	Experiment: Distance and Embedding Model
	Experiment: Value of k

	Real Case Experiment
	Experiment: Specific Wikipedia Passages
	Experiment: Additional Wikipedia Passages

	Re-Ranking and Filtering Experiments
	Experiment: Re-Ranking Retrieval
	Re-Ranking on Different Questions Datasets

	Conclusions
	Limitations and Future Work

	Bibliography

