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by Jon FERRERAS

Cardiac diseases are among the most common illnesses in the world, and data scien-
tists have created a wide range of tools to contribute to their detection and diagnosis.
In particular, topological data analysis has been used to work with medical imaging
and specifically with cardiac magnetic resonance images.

This project introduces the use of time-varying topological descriptors along a
cardiac cycle and applies them for disease diagnosis. The methods used aim to de-
velop the relationship between topological data analysis and temporal data. We
also intend to contribute to the simplification, interpretability and improvement of a
computational approach to cardiac disease diagnosis, which usually involves costly
calculations of radiomics or potential black boxes.
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Chapter 1

Introduction

1.1 Machine learning in medicine

The astonishing development of machine learning in recent years has reached all
fields in science, economy and many other disciplines, and medicine is not an ex-
ception. Machine learning and deep learning models have been successfully used
for a wide range of problems in the field (there is a good summary in Shehab et al.,
2022). Due to the nature of the medical sciences, though, there are some specific con-
ditions and requirements that need to be taken into account for machine learning
models before they can be implemented in clinical practice.

The first important condition that data scientists in the field face is difficulties
with accessing data. Medical data is much more delicate, hard to obtain and tough
to label than data in other fields. For medical data to be made public, it first needs
to go through a privatization filter, and even when it is accessible, it usually needs
cleaning to be functional. Moreover, annotating data requires work from experts,
so the amount of available data is usually small. An overview of this long pipeline
of medical data preparation can be found in Diaz et al., 2021. Private datasets with
better conditions usually require some layers of bureaucracy to access. This situa-
tion greatly conditions the options for data scientists, who usually have to resort to
techniques that learn from limited data or work with non-expert annotations, and
ask for feedback after development.

Medical data also tends to suffer from imbalance, particularly for rare diseases
where the possible pool of cases is very reduced. This can then turn into a lack of
generalizability due to overfitting in the training set. In this regard, the diversity
of medical data (different scanner models, different criteria of annotation between
countries or institutions, unintended particularities of a certain dataset...) can gen-
erate biased models that work very well for the dataset they were trained on but
quickly deteriorate for other cases (this phenomenon is known as domain shift).

Finally, machine learning still needs to gain the trust of clinical experts. While
the acceptance of artificial intelligence in medicine is growing, experts have basic
and reasonable concerns, mainly regarding the process by which the models take
decisions. Neural networks, for example, tend to achieve the best performance in
terms of accuracy, but they are considered black boxes because they do not provide
explanations for model outcomes, and hence cannot be trusted, because mistakes in
medicine are much more serious than in other fields. Moreover, incorrect artificial
intelligence results affect the performance of medical experts (Scheikl, Grüber, Glatz-
Krieger, et al., 2023). In this context, the need for explainable artificial intelligence
becomes more prominent, as well as studying the trade-off between accuracy and
explainability and designing additional models that can explain the basic models
(see Salih et al., 2023 for a study about explainability in cardiac imaging).
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1.2 Cardiac imaging

Cardiovascular diseases are the leading cause of death in the world (Vaduganathan
et al., 2022), even though scientific investigation in this field has greatly evolved in
the past decades. Any progress in improving cardiac disease diagnosis and detec-
tion is, hence, potentially saving many lives around the world. One of the most
remarkable advancements in this field is the ability to produce cardiac images to
assess the heart’s function and disease.

One way to acquire these images is magnetic resonance imaging (MRI), which
is a non-invasive technique without radiation that produces images with a good
temporal resolution (Campello, 2023). MRI generates two-dimensional slices that
are stacked to form a 3D volume, and it yields images at different time points to
obtain information about the whole cardiac cycle. Additionally, four different views
are generated, corresponding to the heart’s planes: the short axis, which consists of
slices that are orthogonal to the heart’s longitudinal direction, and three different
views for the long axis, where the different chambers of the heart are visualized in
the heart’s longitudinal direction. The short axis view and one of the long axis views
are shown in Figure 1.1.

FIGURE 1.1: Short axis and one of the long axis views of a cardiac
MRI. The image is taken from Campello, 2023.

When the quality of the images is acceptable, the experts analyse them visually
and quantitatively. This, as in many other fields in medicine, implies a long anno-
tation process consisting of detecting specific time points, such as the end-diastole
frame, which is the frame corresponding to the maximal cavity area achieved at the
expansion phase of the heart, and the end-systole frame, that is, the frame corre-
sponding to the minimal cavity area achieved at the contraction phase of the heart
(Darvishi et al., 2013); and also delineating important areas of the heart, such as
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the left ventricle, the left ventricular myocardium and the right ventricle. This last
process is also known as segmentation.

As expected, machine learning has also made its way into cardiac imaging, with
the goal of simplifying the tedious process of acquisition, annotation and diagno-
sis. For example, convolutional neural networks have been used to infer a full-
coverage stack from some slices (Upendra, Simon, and Linte, 2021) to avoid the
many long breath-holds that patients are usually required to do for MRIs, to au-
tomatically detect the end-diastole and end-systole (Pérez-Pelegrí et al., 2022) or
to perform the segmentation (Tran, 2017). For diagnosis, a common approach is
the extraction of radiomics from the regions of interest with posterior feature selec-
tion and evaluation of the model, which have proved to be useful to diagnose cer-
tain diseases, like myocardial infarction and hypertrophic cardiomyopathy (Martin-
Isla et al., 2020; Izquierdo et al., 2021). Radiomics are features extracted from im-
ages that can describe a wide range of properties: shape, intensity distribution, tex-
ture... A complete list of common radiomics can be found in the PyRadiomics library
(https://pyradiomics.readthedocs.io/en/latest/features.html).

Recently, topological data analysis (TDA) has also been used as a way to tackle
medical images (Singh, Farrelly, Hathaway, et al., 2023), presenting an alternative
or add-on to the often costly to extract and redundant radiomics, while also being
a quite interpretable model that can solve dimensionality issues and not requiring
as many samples as other machine learning models or neural networks to perform
correctly.

1.3 Problem description and objectives

This project was devised with the purpose of expanding on a Bachelor’s thesis (An-
guas, 2023). In this thesis, TDA was used to extract features from the end-diastole
and end-systole frames of a dataset (see Chapter 2) and used them for disease clas-
sification, proving that TDA achieves comparable results to radiomics and that a
combination of both achieves better results, that is, TDA enhances radiomics.

However, the above project did not use all the information available, but only
used the end-diastole and end-systole frames, in spite of the fact that the dataset pro-
vides all the frames of the cardiac cycle. Our hypothesis is that introducing temporal
information improves the performance of machine learning classifiers, i.e., that the
temporal evolution of the images contains information that is lost when only using
the first and last frame of the cycle.

Introducing every frame, though, multiplies the amount of information that the
machine learning classifiers need to analyse, because it generates several time series.
The main goal of the present project is, hence, finding out how to take advantage of
the temporal information available in a cardiac cycle while correctly managing the
dimensionality, explainability and simplicity of the problem.

The code used for this work can be found in the following GitHub repository:
https://github.com/jonferreras/MasterThesis.

https://pyradiomics.readthedocs.io/en/latest/features.html
https://github.com/jonferreras/MasterThesis
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Chapter 2

Dataset

In this chapter we go over the data used for this project, outlining its characteristics
to understand why TDA is able to extract information from it.

2.1 Overview

The Automated Cardiac Diagnosis Challenge Dataset (ACDC dataset from now on,
(Bernard et al., 2018)) is a dataset consisting of 150 three-dimensional short axis car-
diac MRI recordings with reference measurements and classification from medical
experts. It was created from real clinical exams carried out at the University Hospital
of Dijon. The 150 patients are divided into 5 subgroups: 1 for healthy patients and 4
for sick patients with different diseases:

Subgroup Label No. of patients
Normal (healthy) NOR 30

Previous myocardial infarction MINF 30
Dilated cardiomyopathy DCM 30

Hypertrophic cardiomyopathy HCM 30
Abnormal right ventricle RV 30

TABLE 2.1: Distribution of patients in the ACDC dataset

In addition to the recordings, the dataset provides the weight, height, and the
end-diastole and end-systole phase instants (from now on, diastolic and systolic) for
each patient. There are also segmentation masks for these instants, which allow the
division of the heart MRIs into three regions of interest: left ventricle, right ventricle
and myocardium.

The challenge was created for two purposes: checking performance of segmenta-
tion methods and checking performance of classification of the five subgroups. The
dataset is divided into 100 train subjects (20 from each subgroup) and 50 test subjects
(10 from each subgroup), and we use this division for our experiments as well.

2.2 Use of the ACDC dataset for our project

This data is interesting for our project for many reasons. For starters, it is one of the
largest fully-annotated public MRI cardiac datasets ever assembled. Moreover, the
pathologies of the patients are related to the shape and texture of the three parts of
the provided segmentations (left ventricle, right ventricle and myocardium), which
allows us to apply TDA methods that can detect differences in the shape or texture
and therewith classify. We can translate the pathologies into understandable differ-
ences as follows:
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• Patients with previous myocardial infarction could present differences in the
left ventricle and myocardium.

• Patients with dilated cardiomyopathy present differences in the left ventricle.

• Patients with hypertrophic cardiomyopathy could present differences in the
left ventricle and myocardium.

• Patients with abnormal right ventricle present differences in the right ventricle.

Aside from these differences directly related to the pathology, some particular pa-
tients could present other distinctions. For example, some patients with dilated car-
diomyopathy (of the left ventricle, which is the case in the dataset) can also present
differences in the right ventricle because their right ventricle adjusts to the dilation
of the left ventricle.

Furthermore, the dataset consists of temporal data (recordings of a cycle), so
it meets all the conditions to test our hypotheses. An important detail is that the
recordings have a different number of frames for each patient, and the amount of
frames between the diastolic and systolic instants also varies greatly between pa-
tients.

Figure 2.1 shows MRIs of the diastolic and systolic phase instants of the first
patient of the dataset, together with their corresponding segmentation masks. In
these masks, the white colour corresponds to the left ventricle, the light gray to the
myocardium, and the dark gray to the right ventricle. Since the images are 3D, for
visualization purposes here we are just showing the 2D images corresponding to a
slice.

As stated above, one key part of this dataset for our project is that it does not only
provide frames for the diastolic and systolic phase instants, but also all the frames in
between. In Figure 2.2 we can observe slices of the whole cycle for the same patient
as in Figure 2.1, which consists of 12 frames in this case. The dataset does not provide
segmentation masks for each frame.
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(A) Diastolic phase instant (B) Diastolic segmentation mask

(C) Systolic phase instant (D) Systolic segmentation mask

FIGURE 2.1: Slices of the diastolic and systolic MRIs
and their corresponding segmentation masks

FIGURE 2.2: Slices of all the frames of a cardiac cycle
ordered from left to right and from top to bottom
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Chapter 3

Image processing

The ACDC dataset contains a 3D cardiac MRI recording for every patient, as well as
the diastolic and systolic phase instants. The processing pipeline is the following:

1. Extract the frames between the diastolic and systolic instants (both included).
This ensures that we are working with a single cardiac cycle.

2. Apply segmentation masks to the frames of the cycle.

3. Apply additional processing to the segmented images.

The first step is performed as follows: for each patient’s cardiac MRI recording, we
read their diastolic and systolic phase instants (ACDC provides this information)
and we take the frames in between, including both ends.

3.1 Segmentation

As we said in Chapter 2, the ACDC dataset does not provide a segmentation mask
for every frame; there are only segmentation masks for the diastolic and systolic
frames. This led us to evaluate different options.

• We developed a basic segmentation model for the 2D slices of the dataset,
consisting essentially of a convolutional neural network with a weighted loss
that forced the network to generate white pixels, as initially it was generating
masks consisting of all black pixels. We obtained some useful results and were
considering different ideas to improve it further. Ultimately we discarded the
use of a 2D approach because we applied a 3D model.

• The BCN-AIM Artificial Intelligence in Medicine Lab has developed a Vir-
tual Research Environment (VRE) for the euCanSHare project (http://www.
eucanshare.eu/). The VRE contains many tools for heart research, and they
had developed a cardiac image segmentation tool trained precisely with the
ACDC dataset. However, the tool was no longer available.

In the end, we used a nnUNet (Isensee et al., 2021) model trained by the BCN-
AIM Lab with the M&Ms1 and M&Ms2 datasets (https://www.ub.edu/mnms/ and
https://www.ub.edu/mnms-2/), which were precisely designed for cardiac segmen-
tation. We applied this model to every frame (1600+ images in 3D) of the cardiac
cycles (including the diastolic and systolic ones, for consistence) to obtain 3D seg-
mentation masks. In Figure 3.1 we can see the masks that the model generates for
the frames in Figure 2.2.

The main problem with this generated segmentation is that it is not checked by
a medical expert, unlike the ones in ACDC. This led us to consider two different ap-
proaches: one with the nnUNet model segmentation, which we call NETSEG, and

http://www.eucanshare.eu/
http://www.eucanshare.eu/
https://www.ub.edu/mnms/
https://www.ub.edu/mnms-2/
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FIGURE 3.1: Slices of some masks generated by the nnUNet model

one with an approximate, rough segmentation, using only the elements in ACDC
called ROUSEG. It is approximate because we considered that the best option within
the ACDC dataset was to use the systolic phase mask to segment all the frames, that
is, extending the segmentation of the final instant of the cycle to every image in it.
We also considered using the diastolic mask, but this could lead to parts of the im-
age outside of the regions of interest being considered for classification. Using the
systolic mask made us lose some information about the shape, but it kept most of
the image in the regions of interest. Since almost all the methodology is the same
for both approaches, from now on everything that we say is applied to both, unless
otherwise specified.

The segmentation mask is applied to an image using the Hadamard product:

Definition 3.1.1. For two matrices A and B of the same dimension m × n, with ele-
ments aij and bij respectively, the Hadamard product is a matrix C of dimension m × n
with elements cij such that

cij = aij · bij

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. We write

C = A ◦ B.

Hence, the Hadamard product applied to 3D images consists of multiplying each
voxel of an image with the voxel on the same position. In particular, multiplying a
voxel by a black voxel generates a black voxel in the new image, as seen in Figures
3.2c, 3.2d and 3.2e. Notice that performing the segmentation yields three images
from each frame: one for the left ventricle, one for the myocardium and one for the
right ventricle. The following steps in this chapter and the next one are applied to
each of these images.
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(A) Original image (B) Segmentation mask

(C) Right ventricle (D) Myocardium (E) Left ventricle

FIGURE 3.2: Example of application of a segmentation mask

3.2 Additional processing

Since the ACDC images are quite diverse, as is common in medical imaging due
to the variabilities in the acquisition process, we applied a standard normalization
between 0 and 1: if the image has M and m as maximum and minimum values
respectively, then, for each value v of a voxel, the normalized value v′ is

v′ =
v − m
M − m

.

The images in the ACDC dataset have very different sizes in the three axes, rang-
ing from 154 to 256 in the x and y axes and from 6 to 21 in the z axis, so we also
considered padding or cropping the images to a standard size, but in the end we
considered that it was not necessary. For TDA, what is important is the generated
cubical complex (see Chapter 4), not the size of the image, and adding or cropping
black pixels makes no difference. Resizing the segmented regions of interests was
outside of the question, because the size of a region relative to other patients is a sig-
nificant metric for the dataset (patients with abnormal right ventricle, for example,
present bigger right ventricles than the other patients).
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Chapter 4

Topological data analysis

Topological data analysis (TDA) is a topology-based approach to the study of data. It
is relatively recent, having emerged around the year 2000, and it is based on combin-
ing algebraic topology concepts with statistical and algorithmic methods to describe
the "shape of data", that is, the topological and geometrical structures underlying
data. It detects connectivity of the data (connected components), loops and cavities
of higher dimension and clusters, among other things.

TDA has found many applications in machine learning, and it has been partic-
ularly useful in studies of biomedical sciences. This is due to many factors, but we
would like to highlight two: firstly, the shape (and texture) of the data is generally
more relevant than in other fields, mainly in medical image; and secondly, TDA is
easy to explain, which is a key factor in medical use of machine learning.

This chapter is divided into a theoretical introduction to TDA and its applica-
tion to our images. The first part is mainly based on Chazal and Michel, 2021 and
Kaczynski, Mischaikow, and Mrozek, 2004.

4.1 Background

4.1.1 Complexes

Simplicial complexes

The first thing that TDA needs is to convert the data to a topological space so that it
can extract topological features. Simplicial complexes, which are higher-dimensional
analogues of graphs, are the basic structures we can build from point clouds. Since
point clouds and images are finite, every complex we discuss in this work is finite.

Definition 4.1.1. Given a set P = {p0, . . . , pn} of n + 1 points in Rd, a point ∑n
i=0 λi pi

is an affine combination of P if ∑n
i=0 λi = 1. If λi > 0 for all i, then ∑n

i=0 λi pi is called
a convex combination. The convex hull of a set is the collection of all its convex combi-
nations.

Definition 4.1.2. An n-simplex in Rd, where 0 ≤ n ≤ d, is the convex hull of a
collection of n + 1 points p0, . . . , pn such that the vectors p0 p1, . . . , p0 pn are linearly
independent. We denote it as ∆(p0, . . . , pn), and we say that it has dimension n. Every
subset {pi0 , . . . , pik} ⊆ {p0, . . . , pn} with 0 ≤ k ≤ n spans a k-simplex, which is called
a k-face of ∆(p0, . . . , pn).

Definition 4.1.3. The standard n-simplex ∆n is the convex hull of the coordinate unit
points e0, . . . , en in Rn+1 where ei = (0, . . . , 1, . . . 0) with 1 is in the i-th position.
Hence,

∆n = ∆(e0, . . . , en) = {(x0, . . . , xn) ∈ Rn+1 | x0 + · · ·+ xn = 1, xj ≥ 0 for all j}.
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Definition 4.1.4. A geometric simplicial complex in Rd is a set X of simplices in Rd such
that:

1. Every k-face of a simplex of X is a simplex of X.

2. Any two simplices of X are either disjoint or intersect along one common face.

The dimension of a geometric simplicial complex is the maximum of the dimensions
of its simplices.

With this definition, we can understand why these are higher-dimensional ana-
logues of graphs; they encode relationships between points but are not confined to
the 1-dimensional structure of graphs, since higher-dimensional faces also contain
information.

Notice that geometric simplicial complexes are fully characterized by their ver-
tices and a combinatorial description of its simplices (such that they follow the two
rules above). Geometric simplicial complexes are, hence, combinatorial objects, well-
suited for computations. But we need more: to make use of algebraic topology, we
need to be able to consider them as topological spaces.

Definition 4.1.5. Every geometric simplicial complex X has an underlying topolog-
ical space |X|, which is the union of all the simplices in X, endowed with the Eu-
clidean topology. |X| is called a polyhedron and X is called a triangulation of |X|.

Definition 4.1.6. An abstract simplicial complex with vertex set V = {vi}i∈I is a collec-
tion K of nonempty finite subsets {vi0 , . . . , vik} ⊆ V such that:

1. {v} ∈ K for all v ∈ V.

2. If F ∈ K and G ⊆ F is nonempty, then G ∈ K.

Notice that the second condition here is analogous to the first one in the defini-
tion of a geometric simplicial complex.

Definition 4.1.7. The elements of V are called vertices of K and the elements of K are
called faces of K (a face {vi0 , . . . , vik} of cardinality k + 1 is called a k-face, or an edge if
it is a 1-face). With this definition, {v} is a 0-face of K for every v ∈ V. The collection
of all k-faces of K for all 0 ≤ k ≤ m is an abstract simplicial complex in itself, called
the m-skeleton of K.

The relation between geometric and abstract simplicial complex is then as fol-
lows: if K is an abstract simplicial complex and we define an order on its vertices,
then we can assign each k-face to a k-simplex in Rd, formed by the coordinate unit
points corresponding to the vertices of the face, and let XK be the set of all such sim-
plices associated with the faces of K. The set XK is called the geometric realization of
K and this allows us to define an underlying topological space for K as |K| := |XK|.
Conversely, if X is a geometric complex, we take V to be the set of 0-faces of X and
then X yields an abstract complex KX with vertex set V and faces given by the sim-
plices of X. In this situation, |X| is homeomorphic to |KX|.

In the end, we get that simplicial complexes can be considered as both combina-
torial objects and topological spaces, which is what makes them the basic constructs
for TDA.

There are two main ways of building a simplicial complex from a point cloud,
which we understand as an unordered finite collection of points X = {xi}i∈I in Rd,
for d ≥ 2.
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Definition 4.1.8. For each real number ϵ > 0, the Čech complex Cϵ(X) of X is the
abstract simplicial complex with vertex set X whose k-faces are collections of points
{xi0 , . . . , xik} such that the closed balls Bϵ/2(xi0), · · · , Bϵ/2(xik) have at least one com-
mon point.

An intuitive way of understanding Čech complexes is imagining balls of diame-
ter ϵ around each of the points, and edges and higher dimensional faces generating
where the balls meet1.

Definition 4.1.9. For each real number ϵ > 0, the Vietoris-Rips complex Rϵ(X) of X
is the abstract simplicial complex with vertex set X whose k-faces are collections of
points {xi0 , . . . , xik} such that d(xir , xis) ≤ ϵ for all r, s ∈ {0, . . . , k}.

Remark 4.1.10. The Čech and Vietoris-Rips complexes are not equivalent in general,
but they are related. For every X and every ϵ, there are inclusions Cϵ(X) ⊆ Rϵ(X)
and Rϵ(X) ⊆ C√

2ϵ(X).

Cubical complexes

Cubical complexes are analogous to simplicial complexes, but more restrictive, be-
cause they can only be built from points that are placed on a grid. As we will see,
these will be very useful for 2D and 3D images, which are essentially grids of pixels
or voxels.

Definition 4.1.11. An elementary interval I is a closed interval of the form I = [a, a+ 1]
(non-degenerate) or I = [a, a] (degenerate) for some a ∈ Z. We write [a] = [a, a] for the
intervals with just one point.

Definition 4.1.12. An elementary cube Q is a finite product of elementary intervals:

Q = I1 × I2 × · · · × Id ⊂ Rd

where each Ii is an elementary interval. The dimension of Q is the number of non-
degenerate intervals in the product.

Definition 4.1.13. A cubical complex C is a collection of elementary cubes such that if
Q ∈ C and Q′ ⊆ Q then Q′ ∈ C.

This definition is clearly analogous to that of simplicial complexes; elementary
cubes are to cubical complexes what simplices are to simplicial complexes. The ver-
tices are the endpoints, the edges are the intervals, 2-faces correspond to squares,
and so on. In fact, if Q′ ⊆ Q we say that Q′ is a face of Q. As one can imagine, the
faces correspond to the "boundaries" of the cubes. For example, for the elementary
cube [1, 2]× [1, 2] ⊂ R2 (a square), the faces of dimension 1 are [1]× [1, 2], [2]× [1, 2]
(the vertical sides), [1, 2]× [1] and [1, 2]× [2] (the horizontal sides).

Remark 4.1.14. Cubes in a cubical complex are placed in a grid, and hence they are
always either disjoint or intersecting along a common face; that is why we do not
need to add anything like the second condition in Definition 4.1.4.

Now that we have the tools to build topological objects from data, we will see
how we can obtain their topological features.

1There is a good visualization of this for a 2D point cloud in https://sauln.github.io/blog/
nerve-playground/.

https://sauln.github.io/blog/nerve-playground/.
https://sauln.github.io/blog/nerve-playground/.
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4.1.2 Persistent homology

As we have stated, TDA aims to capture the "shape" of data. To do this, it builds
complexes from data (we can say "on top of data" as well), but usually it is more in-
teresting to build a nested family of simplicial complexes that reflects the structure
of the data at different scales. These families are called filtrations, and we describe
below how to build them. By building filtrations, we can study changes in the topo-
logical features along the family, and for this we use persistent homology.

Filtrations

Definition 4.1.15. A filtration of a topological space M is a nested family of subspaces
(Mi)i∈I where I ⊆ R such that for any i, j ∈ I, if i ≤ j then Mi ⊆ Mj, and M =
∪i∈I Mi. In particular, a filtration of a simplicial complex K is a collection {Ki} of
subcomplexes of K such that Ki ⊆ Kj if i ≤ j and K = ∪i∈IKi.

Example 4.1.16. If K(m) is the m-skeleton of a simplicial complex K, then {K(m)}0≤m≤n
is a filtration, where n is the dimension of K.

Definition 4.1.17. A filtering function of a simplicial complex K is a function f : K →
R such that f (τ) ≤ f (σ) when τ ⊆ σ, where τ and σ are faces. When K is finite, a
filtering function f on K determines a finite filtration

K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K

where f takes the values {ϵ0, . . . , ϵm} with ϵ0 < · · · < ϵm and

Ki = {σ ∈ K | f (σ) ≤ ϵi} = f−1((−∞, ϵi])

for every i ∈ {0, . . . , m}. The complexes Ki are called sublevel complexes of f .

Looking at the definition of filtration, we see that the index set I could be in-
finite, which would be problematic from a computational point of view. But since
we will always be working with finite data, we can use filtering functions to build
filtrations. The most common approach for a point cloud X is to use the structure of
Vietoris-Rips complexes as follows: take the set {ϵ0, . . . , ϵm} of values of ϵ for which
a new face appears precisely at Rϵ(X), and the filtering function sends every face of
RD(X) to the ϵ value at which the face is born, where D is the diameter of the point
cloud (the longest distance between two points). A similar approach works for Čech
complexes. This generates a family of complexes which contain all the topological
information of the point cloud, because even with different values of ϵ, if there are
no new faces, the complexes are topologically the same.

Regarding cubical complexes, we can build them from a d-dimensional image in
two main ways (Solomon and Bendich, 2024):

• A lower-star filtration starts with considering the voxels as vertices and faces
as coming from voxel adjacencies; that is, a pair of adjacent pixels form an
edge, squares come from four voxels in a square position, and so on. Now,
given a real-valued function defined on the vertices (for example, assigning a
number between 0 and 255 to each voxel of a gray-scale image depending on its
brightness), we extend it by assigning to each cube the value of its maximum
vertex. In this way, the faces "appear" in a subcomplex only when all of its
vertices are in it.
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• An upper-star filtration considers the voxels as d-dimensional cubes, and the
lower-dimensional cubes are the faces of these voxels. In this case, the real-
valued function is defined on the voxels and the vertices appear in the adja-
cencies between voxels, and they are assigned the minimum of the values of
the surrounding voxels.

In this project we use lower-star filtration, as it is the standard way that GUDHI
(the TDA library for Python that we use, https://gudhi.inria.fr/) builds cubical
complexes. In Figure 4.1 we can see an example of a cubical complex filtration for a
2D gray-scale image.

(A) Original gray-scale image

(B) K0 (C) K1 (D) K2 (E) K3

FIGURE 4.1: A cubical complex filtration of a 2D image, where white
pixels have value 0, light-gray pixels have value 1, dark gray pixels
have value 2 and black pixels have value 3. Vertices are colored in

red, edges in blue and squares in green.

Homology

Homology is one of the main concepts in algebraic topology, as it is an algebraic
method to extract topological features of topological spaces (such as simplicial com-
plexes). There are many books to consult for a complete explanation of homology,
such as Hatcher, 2002.

For any dimension k ≥ 1, a topological space can have k-dimensional cavities.
One-dimensional cavities are called loops, and we can see one in Figure 4.1d around
the black pixels in the middle. The most obvious example is the space in the mid-
dle of a circle. Two-dimensional cavities are "volume" cavities, such as the inside
of an empty tetrahedron. For a topological space, k-dimensional cavities are repre-
sented by a vector space Hk the dimension of which is the number of these cavities.
Moreover, there is a vector space H0 which represents the set of path-connected com-
ponents of the space.

For a complex K, the vector spaces Hk, which are called homology vector spaces,
are calculated with chains and boundaries of simplices.

https://gudhi.inria.fr/
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Definition 4.1.18. If {σ1, . . . , σr} is the set of k-simplices of K, then a k-chain is

c =
p

∑
i=1

µiσi

where the coefficients µi can be taken in any field. We take coefficients in Z2, since
it is the standard choice for TDA libraries such as GUDHI.

The set of all k-chains is called the space of k-chains on K and we denote it Ck(K).

Definition 4.1.19. The boundary of a k-simplex σ, which we denote using its vertices
as σ = [v0, . . . , vk], is the (k − 1)−chain

∂k(σ) =
k

∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk]

where [v0, . . . , v̂i, . . . , vk] is the (k − 1)-simplex spanned by all the vertices in the list
except vi.

The boundary is hence the chain generated by the alternated sum of every (k −
1)-face of the k-simplex. This boundary operation can be extended to be a linear
map from Ck(K) to Ck−1(K), which has a kernel Zk(K) = {c ∈ Ck(K) | ∂k(c) = 0}
called the space of k-cycles of K, and there is also an operator ∂k+1 from Ck+1(K) to
Ck(K) which has image Bk(K) = {c ∈ Ck(K) | ∃c′ ∈ Ck+1(K), ∂k+1(c′) = c} called
the space of k-boundaries of K. One can easily prove that ∂k+1 ◦ ∂k ≡ 0 for every k, so
any boundary is a cycle, which means that Bk(K) ⊆ Zk(K) ⊆ Ck(K).

Definition 4.1.20. The k-th (simplicial) homology vector space of K is the quotient vector
space

Hk(K) = Zk(K)/Bk(K).

An element of this space is referred as a homology class.

In Figure 4.1d we can see an example of a cycle that is not a boundary, around
the black pixels. This generates a cavity of dimension one.

Due to the combinatorial nature of complexes, the computation of their cycles
and boundaries is neither difficult nor costly, which is why they are convenient struc-
tures to build on top of data.

Persistence diagrams

Now that we have homology at our disposal, we can apply it to families of com-
plexes built on top of data. First, we need to understand how homology behaves
through filtrations.

Given a filtration K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K of a complex K, for i ≤ j and
for every k, the inclusion Ki ↪→ Kj induces a linear map

φ
i,j
k : Hk(Ki) → Hk(Kj)

between the homology vector spaces of the subcomplexes.

Definition 4.1.21. A homology class α ∈ Hk(Kj) is born at Kj if it does not belong to

the image of φ
i,j
k for any i < j, and a homology class α ∈ Hk(Ki) dies at Kj for j > i if

φ
i,j
k for j > i if φ

i,j
k (α) = 0 but φ

i,j−1
k (α) ̸= 0.
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The notion behind homology classes "being born" and "dying" for the filtrations
that we have discussed is the following: when new faces appear, cavities can ap-
pear (such as in the transition between Figure 4.1c and Figure 4.1d) and disappear
(such as in the transition between Figure 4.1d and Figure 4.1e), so homology classes
are born and die respectively in these transitions. Knowing when the cavities ap-
pear and disappear is the core of persistent homology, which leads to the following
definition:

Definition 4.1.22. If a filtration K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K of a complex K
comes from a filtering function f : K → R for which Ki = {σ ∈ K | f (σ) ≤ ϵi} and
Kj = {σ ∈ K | f (σ) ≤ ϵj}, then if a homology class α is born at Ki and dies at Kj we
say that the persistence of α is ϵj − ϵi.

The persistence of homology classes measures the lifetime of the cavities that ap-
pear along the filtration, but it does not say at which point they appeared or disap-
peared. This is solved by combining both in the representation of persistence, which
starts with persistence barcodes. A persistence barcode is a collection of horizontal line
segments in a plane coordinate system whose x-axis has marks at {ϵ0, . . . , ϵm} (the
values of the filtering function) and whose y-axis represents classes of the homology
vector spaces H0, H1, and so on. If a homology class α is born at Ki and dies at Kj,
we draw a horizontal segment [ϵi, ϵj). If a class never dies, the segment is instead
a ray [ϵi, ∞). We order them by length, hence giving more importance to homology
classes with higher persistence.

The persistence diagram associated with a barcode has a point (bi, di) in a coordi-
nate plane for each segment in the barcode starting at bi and ending at di. Thus, a
point (bi, di) in a persistence diagram represents the persistence of a homology class
from the complex that originated the barcode. The rays [bi, ∞) are represented as
points (bi, ∞) where ∞ is a fixed arbitrary value larger than ϵm. The diagonal b = d
is added in the persistence diagram as well, as it is useful to check the importance
of the points (points near the diagonal have very small persistence, which can mean
that they are just noise). In both barcodes and diagrams, we represent classes of dif-
ferent homology vector spaces with different colors.

Persistence diagrams are the standard way of working with persistent homology
of filtrations. Since we will be working with several images of a cardiac cycle, which
means several cubical complexes and hence several persistence diagrams, it will be
useful to introduce a notion of distance or similarity between persistence diagrams.

Definition 4.1.23. Let D and D′ be two persistence diagrams, and suppose they have
the same number of points with infinite death coordinate. A matching between D and
D′ is a bijective function ϕ : D → D′ where diagonal points are counted with infinite
multiplicity.

Definition 4.1.24. The family of Wasserstein distances between two persistence dia-
grams is defined as

Wp[q](D, D′) = min
φ:D→D′

(
∑ dq((x, y), φ(x, y))p)1/p ,

where dq((x, y), (x′, y′)) = (|x − x′|q + |y − y′|q)
1
q . We say that p is the order of the

distance.
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In other words, the distance between diagrams is obtained by pairing each point
on diagram 1 with a point on diagram 2 (pairing the infinite points with each other
and without mixing different homology vector spaces) or with a point in the diago-
nal. Then, out of all possible pairings (matchings), we take the one that minimizes
the sum of distances, weighted by the order p ∈ [1, ∞] (a higher p gives more impor-
tance to points that are further away from the diagonal). The parameter q controls
the choice of the distance d.

Since the matchings are made for each homology vector space, we actually obtain
as many Wasserstein distances between two diagrams as homology vector spaces are
represented in those diagrams. A common approach (which we use) is to add every
distance through all dimensions to get a single distance between two diagrams.

Persistence descriptors

For TDA, we need some way to retrieve information, in numerical or vector form,
from persistence diagrams. Here we introduce the two metrics used in this project.
For this section, we let {(bi, di)}i∈I be the set of points of a certain homology dimen-
sion outside of the diagonal, with di ̸= ∞, in a given persistence diagram.

Definition 4.1.25. The total persistence of {(bi, di)}i∈I is defined as

P = ∑
i∈I

(di − bi)

which is the accumulated persistence of all the given points. Points are counted with
their corresponding multiplicities.

Definition 4.1.26. The entropy of {(bi, di)}i∈I is defined as

E = −∑
i∈I

di − bi

P
log2

di − bi

P
.

It can be proved that the entropy of a persistence diagram takes values in the interval
[0, log2 n], where n is the number of points in the set {(bi, di)}i∈I . A high entropy
value means that the points in the diagram have similar persistences, and log2 n is
reached if all points have the same persistence.

Persistence diagrams in general, and entropy in particular, are stable (Cohen-
Steiner, Edelsbrunner, and Harer, 2007; Atienza and Rucco, 2020), in the sense that
small perturbations on the data generate small perturbations in the diagrams and in
the entropy. This makes them useful tools to track the variation between similar but
evolving images.

Total persistence and entropy are both used as ways to retrieve information from
a persistence diagram, and there is no general preference to use one or the other. As
it is logarithmic, entropy may be more adequate in cases where there are outliers or
when comparing persistence diagrams with very different amounts of points.

Note that these descriptors are calculated for each homology dimension, so for
example a 3D image will provide three values of entropy: one for H0, one for H1 and
one for H2.

TDA and temporal data

Topological data analysis has not been widely used for temporal data. One approach
to use TDA for time series is to turn them into point clouds and calculating the
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persistence diagram of those clouds (Wu and Hargreaves, 2020), but this was too
intricate for our project (starting with images, then obtaining time series, then trans-
forming the series into point clouds would make us lose much information about
the important features). Another approach uses persistence vineyards (introduced
in Cohen-Steiner, Edelsbrunner, and Morozov, 2006; more recently used in Bubenik
and Bush, 2023), which studies the evolution of points in a temporal stack of persis-
tence diagrams. This seemed suitable for our project, but we dismissed it because it
is a very recent technology and it lacks implementation in the TDA libraries, as it is
still developing and not precisely defined.

Hence, we had to find other ways to describe the variation of topological de-
scriptors, adapted to the nature of our data. We go over these ways in 4.2.2, after a
brief explanation of the calculation of persistence diagrams and their descriptors.

4.2 Time-varying persistence features for cardiac data

In our data we have three images for each frame, and several frames for each pa-
tient’s cycle. Hence, each patient will be described by several persistence diagrams
and their descriptors.

4.2.1 Persistence diagrams and descriptors of a patient’s cycle

We start by computing the persistence diagram of every frame of the cycle. Then,
for each persistence diagram that we have generated, we have to compute its per-
sistence descriptor. As we said earlier, there is not a clear advantage of entropy
over total persistence, and it generally depends on the addressed problem. We were
more inclined to use entropy, because the diagrams had a wide range of amounts of
points (see Figure 4.2). This is due to the very diverse nature of the ACDC dataset.
Hence, we considered that the logarithmic character of entropy could help us with
classification, so we decided to use it instead of total persistence.

FIGURE 4.2: Two persistence diagrams of the right ventricle
of two different patients

After having computed a persistence diagram of every frame of the cycle, we
computed the Wasserstein distance (with p = q = 2, see Definition 4.1.24) between
the persistence diagram of a frame and the persistence diagram of the next frame for
all three regions of interest. So for the first patient, whose cycle consists of 12 frames
(see Figure 2.2), we obtain 11 distances for each region. The idea behind calculating
the distances between diagrams is to grasp the changes in the evolution of the cycle.
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This distance time series measures how different are the topologies of consecutive
images in the cycle, which is precisely the main goal of our project: to use all the
topological information available in the cycle and not just the endpoints.

In Figure 4.3 we can see some examples of time series of topological descriptors.
These are series of dimension 1 entropy of the right and left ventricle of the heart.
The five colours correspond to five random2 patients of each of the groups (see Table
2.1). The series show that the right ventricle entropy clearly distinguishes the patient
with abnormal right ventricle, and the left ventricle entropy presents significant dif-
ferences for the 5 classes.

(A) Right Ventricle - Dimension 1 entropy series
from 5 patients of the 5 subgroups

(B) Left Ventricle - Dimension 1 entropy series
from 5 patients of the 5 subgroups

FIGURE 4.3: Examples of entropy time series

4.2.2 Extraction of time-varying features

After processing and applying TDA tools, we obtain 12 time series that describe
each patient: for each of the 3 parts of the heart, we have the distance time series
and the entropy time series in dimensions 0, 1 and 2. Our hypothesis is that these
time series, that encode every frame of the cardiac cycle and its evolution, contain
useful information about the patient’s subgroup that is lost if we only use the initial
and final state of the cycle.

One important factor about these time series is that they are of different lengths
between patients (as we can see in Figure 4.3), ranging from 7 to 16 frames, 6 to 15 in
the case of the distance time series. This immediately dismissed the option of using
them directly as the features for a machine learning algorithm, and we wanted to
avoid putting the time series directly in a neural network. TDA is quite clear with
the process it follows, so using a black box algorithm at this point is risky because
we might lose explainability. Moreover, the dataset is very small, which makes it
more difficult to train a neural network, even with data augmentation.

The next step, then, was to study how to extract features from this short and un-
even time series. This proved to be quite difficult, because usual time series methods
such as ARIMA or calculating the peaks of the Fourier transform were not applicable
to time series of this length. ARIMA in particular, or any other measure of autocor-
relation, was also pointless, not only because of the length but also because we are
working with time series that represent a single cycle. In this context, autocorrela-
tion or forecasting has no meaning.

Even with these unusual conditions, it was necessary for our project to find fea-
tures that reflected the temporal nature of the data and its evolution, so we consid-
ered the following measures.

2The 5 patients in Figure 4.3a are not the same as the 5 patients in 4.3b.
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Mean, variance and skewness

The mean was an obvious choice for extraction of features, as well as the variance.
These are the first and second standardized moments, and we also wanted to add
the third one, also known as skewness, which is defined as

E

[(
X − µ

σ

)3
]

for a random variable X with mean µ and standard deviation σ. Skewness mea-
sures the relative size of the two tails of the distribution. Thus, a time series with
many small values and few large values will be right-tailed, which means positive
skewness, while a time series with many large values and few small values will
be left-tailed, i.e., have negative skewness. Symmetric distributions will have zero
skewness (the other way around is not always true, see Bastianin, 2020). Skewness
is significant for us because it contains information about significant changes in the
cardiac cycle. From this perspective, for an entropy time series a skewness close to
zero means that the topology of the heart has not made very significant changes dur-
ing the cycle or that the changes have been regular, while big (positive or negative)
skewness means that the topology of the heart has changed significantly at some
point.

We also considered kurtosis, which is the fourth standardized moment and mea-
sures the behaviour of the tail. However, in the end we dismissed it because for short
time series as ours, the behaviour of the tail was not noticeable, and some early tests
generated meaningless values.

Normalized jumps

We define the normalized jumps of a time series as the sum in absolute value of the
differences of the series divided by its length. That is, if we have a time series X =
(X1, . . . , Xn), the jumps are defined as

1
n

n−1

∑
i=1

|Xi+1 − Xi|.

Normalization is necessary because of the diverse length of the time series along the
dataset.

This is, again, a measure of how large the changes are in the topology of the heart
during a cycle. While in some cases the distance between diagrams was regular, in
other cases there were very big jumps. The main problem with this metric is that it
does not contain information about when the changes happen.

Normalized argmin and argmax

The argmax and argmin functions, applied to a time series, return the position where
the maximum and minimum are located respectively. We normalize them by divid-
ing that position by the length of the time series, again because of the diverse length
of the time series along the dataset. These features contain more temporal informa-
tion than the previous ones, as they provide the relative position in the series of its
extrema, so it can distinguish between early or late maxima and early or late minima.



24 Chapter 4. Topological data analysis

Permutation entropy

Permutation entropy (introduced in Bandt and Pompe, 2002) is a measure of the com-
plexity or randomness of a time series. Unlike other entropies, such as Shannon
entropy, it considers the order of the values in the time series rather than just their
distribution, which for series as ours is very important. Permutation entropy divides
the time series into overlapping windows of a certain dimension d and performs per-
mutations over this window. Then it computes the probability of each permutation
and calculates the entropy of these probabilities, that is,

H(d) = −∑ p(π) log p(π),

where the sum runs over all permutations π of order d. A high entropy means ran-
domness and noise, while a low entropy indicates more structure and predictability.

One important choice was the dimension d of the windows. For comparison pur-
poses, we had to choose the same d for every time series, as generating a different d
depending on the length of the series would generate inconsistent results. A general
recommendation for d is that d! << n, where n is the length of the time series, so
given that our shortest time series is just 6 steps long, our only option seemed to be
d = 2. However, in Cuesta-Frau et al., 2019 it is argued that the recommendation
d! << n is very restrictive for real-world time series and that a higher d tends to
reach better classification even if it does not fulfill the inequality. Hence, we decided
to choose d = 3.

Even though these features are already normalized with respect to the length of
the time series, the length itself could also be considered as a feature. The experts
that work with the BCN-AIM Lab, however, have never considered that the duration
of a cycle in an MRI is significant for diagnosis, so we decided to discard that option.
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Chapter 5

Experiments and results

In this chapter we go over the results of all the experiments performed with the
ROUSEG and NETSEG approaches. For both, the experiments consist of multi-
class classification (the five classes are in Table 2.1) using the features described in
the previous chapter. We used five machine learning models: Random Forest (RF),
Gradient Boosting (GB) eXtreme Gradient Boosting (XGB), Support Vector Machine
(SVM) and K-Nearest Neighbours (KNN), each of them finetuned with 5-fold cross-
validation GridSearchCV.

The experiments were conducted on a computer equipped with an AMD Ryzen
5 5500U with Radeon Graphics 2.10 GHz, 16 GB of RAM (3200 MHz), and a 512 GB
SSD, running Windows 11. Computational models were implemented using Python
3.11.10 and GUDHI 3.10.1.

5.1 Evaluation metrics for multi-class classification

Since we are dealing with a multi-class classification problem, we will use the usual
metrics: accuracy and macro-averaged precision, recall and f1-score. We define the
last three as follows:

Prec =
TP

TP + FP

Rec =
TP

TP + FN

F1-Score = 2 · Prec · Rec
Prec + Rec

where TP stands for the True Positive cases, FP for False Positive and FN for False
Negative. Macro-averaging means calculating the metric for each class and then
taking the arithmetic mean across all classes. Since there is no class imbalance in our
data, the macro-average coincides with the weighted-average.

Precision and recall are particularly important in medicine (Hicks, Strümke, Tham-
bawita, et al., 2022), as wrong diagnoses have far more serious consequences than in
other fields. For our experiments, a low precision or low recall would mean incorrect
diagnoses, either between sick and healthy patients or between different diseases.
For a binary sick-healthy classification, recall would be the most important one, be-
cause it grows as false negatives decrease and false negatives (i.e., determining that
a sick person is healthy) are critical mistakes.

We compute the confusion matrix as well, which is particularly useful in a prob-
lem like ours because it allows us to detect if the classifier is having problems distin-
guishing between two particular diseases.

Finally, we also compute the ROC-AUC score. While this metric is generally
used for binary classification, it can be extended to multi-class using a one-vs-rest
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approach, where the ROC-AUC is calculated for each class treated as the "positive"
class, then macro-averaged.

5.2 Feature selection

After extracting the 7 features from the 12 time series, we were left with 84 features
for each patient. TDA is well known for being able to describe things with few
variables, but the temporal nature of our data made the number of features grow
very quickly. To avoid dimensionality issues (especially with a small dataset like
ours) and keep the model simple, we implemented a process of feature selection.

We first wanted to find a way to check the relevance of the features within the
training test. We considered using the ANOVA test (a generalization of the t-test for
more than two variables) to discard statistically irrelevant features before classifying,
but in the end we chose mutual information as the way to select features.

Mutual information is a measure of the mutual dependence between two vari-
ables, that is, it quantifies the amount of information obtained about one random
variable through another. It is widely used for feature selection in machine learning
(e.g., Beraha et al., 2019; Huang et al., 2024) and for finding statistical dependencies
in general.

Following MacKay, 2003, for two random variables X and Y that take values in
the sets X and Y respectively, their mutual information I(X; Y) is calculated as

I(X; Y) = H(X)− H(X|Y)

where H(X) is the (marginal) entropy

H(X) = − ∑
x∈X

p(x) log p(x)

and H(X|Y) is the conditional entropy

H(X|Y) = − ∑
x∈X , y∈Y

p(x, y) log p(x|y).

With these formulas, we can understand what mutual information is quantifying:
entropy is a measure of the average level of information associated with the vari-
able’s potential states or outcomes, and the conditional entropy H(X|Y) is a mea-
sure of the average level of information remaining in x when y is known. Hence,
mutual information measures the average reduction in information about x that re-
sults from learning the value of y. Mutual information satisfies I(X; Y) = I(Y; X)
and I(X; Y) ≥ 0, and it is equal to zero when X and Y are independent (because then
knowing y gives no information about x). So if I(X; Y) is big, knowing y represents
a big part of the information contained in x, and this is how mutual information op-
erates for feature selection; if the labels are X and Y is a feature, it computes I(X; Y)
for every feature, which allows us to rank them from biggest to smallest MI score,
i.e., by how much they are related to the labels.

We computed the rankings for ROUSEG and NETSEG’s train data (see Appendix
A), and we use them in the following sections. With these rankings, we perform
three classifications: one with every feature, one with the features that have an MI
score bigger than a fixed threshold (0.1), and one with the optimal number of fea-
tures for each model, checked by tracking the evolution of the classification as we
add features along the ranking. Optimality is measured by accuracy and F1-score.
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5.3 Multi-class classification results with ROUSEG

In this section we present the results of the multi-class classification experiments
using the ROUSEG segmentation approach. Table 5.1 shows the results using all 84
features (without feature selection):

TABLE 5.1: ROUSEG best results for different models
without selection of features

Model Accuracy Precision Recall F1-Score ROC-AUC Score

RF 0.64 0.65 0.64 0.64 0.92
GB 0.60 0.67 0.60 0.59 0.84
XGB 0.66 0.70 0.66 0.67 0.87
SVM 0.72 0.75 0.72 0.72 0.93
KNN 0.70 0.74 0.70 0.70 0.93

(A) Confusion matrix (B) ROC curve

FIGURE 5.1: Confusion matrix and ROC curve
for ROUSEG - All features - SVM

Figure 5.1 shows the performance of the best model in this experiment, SVM. We
can observe that it mixes DCM and MINF predictions up (which will be a recurrent
occurrence in this chapter) and that it tends to overpredict that a patient is healthy,
which leads to a big false positive rate for the NOR subgroup.

Table 5.2 shows the results using the threshold selection of 42 features:

TABLE 5.2: ROUSEG best results for different models
with threshold selection of features (42)

Model Accuracy Precision Recall F1-Score ROC-AUC Score

RF 0.62 0.64 0.62 0.62 0.93
GB 0.62 0.68 0.62 0.61 0.84
XGB 0.68 0.71 0.68 0.69 0.87
SVM 0.82 0.86 0.82 0.81 0.94
KNN 0.82 0.83 0.82 0.82 0.92
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(A) Confusion matrix (B) ROC curve

FIGURE 5.2: Confusion matrix and ROC curve
for ROUSEG - Threshold selection - KNN

The KNN and SVM models achieve remarkably higher metrics with this selec-
tion of features than without it, while RF, GB and XGB do not present significant
changes. Figure 5.2 shows the performance of the KNN model, which attains much
better classification along the classes. There is a slight tendency to overpredict MINF
and NOR.

Table 5.3 shows the results using the optimal number of features for each model:

TABLE 5.3: ROUSEG best results for different models
with optimal selection of features for each model

Model Nº Features Accuracy Precision Recall F1-Score ROC-AUC Score

RF 59 0.68 0.72 0.68 0.69 0.92
GB 23 0.70 0.72 0.70 0.70 0.88
XGB 56 0.72 0.76 0.72 0.73 0.88
SVM 39 0.82 0.83 0.82 0.82 0.95
KNN 42 0.82 0.83 0.82 0.82 0.92

(A) Confusion matrix (B) ROC curve

FIGURE 5.3: Confusion matrix and ROC curve
for ROUSEG - Optimal selection - SVM
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With optimal selection of features, RF, GB and XGB improve slightly, but are still
far behind SVM and KNN. Figure 5.3 shows the performance of the SVM model,
which presents a very good classification for every class except DCM. The confusion
between DCM and MINF that we observed in Figure 5.1 is still present.

5.4 Multi-class classification results with NETSEG

In this section we present the results of the multi-class classification experiments
using the NETSEG segmentation approach. Table 5.4 shows the results using all 84
features (without feature selection):

TABLE 5.4: NETSEG best results for different models
without selection of features

Model Accuracy Precision Recall F1-Score ROC-AUC Score

RF 0.62 0.63 0.62 0.62 0.89
GB 0.58 0.58 0.58 0.58 0.82
XGB 0.60 0.60 0.60 0.60 0.87
SVM 0.62 0.66 0.62 0.62 0.89
KNN 0.60 0.65 0.60 0.60 0.87

(A) Confusion matrix (B) ROC curve

FIGURE 5.4: Confusion matrix and ROC curve
for NETSEG - All features - SVM

The models for this experiment achieve similar metrics. SVM, shown in Figure
5.4, presents the usual mixing between DCM and MINF (with overprediction tend-
ing to DCM in this case) and some significant wrong predictions of HCM as NOR
and NOR as RV.

Table 5.5 shows the results using the threshold selection of 37 features:
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TABLE 5.5: NETSEG best results for different models
with threshold selection of features (37)

Model Accuracy Precision Recall F1-Score ROC-AUC Score

RF 0.68 0.72 0.68 0.68 0.92
GB 0.58 0.59 0.58 0.58 0.83
XGB 0.60 0.61 0.60 0.59 0.87
SVM 0.60 0.62 0.60 0.60 0.91
KNN 0.68 0.69 0.68 0.68 0.91

(A) Confusion matrix (B) ROC curve

FIGURE 5.5: Confusion matrix and ROC curve
for NETSEG - Threshold selection - RF

The only models that improve with the threshold selection are RF and KNN. RF,
shown in Figure 5.5, presents similar problems to those of the previous experiment,
with the wrong NOR as RV predictions corrected but an almost 50/50 right-wrong
classification between DCM and MINF patients

Table 5.6 shows the results using the optimal number of features for each model:

TABLE 5.6: NETSEG best results for different models
with optimal selection of features for each model

Model Nº Features Accuracy Precision Recall F1-Score ROC-AUC Score

RF 12 0.72 0.74 0.72 0.72 0.91
GB 22 0.70 0.70 0.70 0.70 0.87
XGB 12 0.68 0.69 0.68 0.68 0.89
SVM 20 0.70 0.71 0.70 0.70 0.89
KNN 71 0.68 0.73 0.68 0.69 0.90
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(A) Confusion matrix (B) ROC curve

FIGURE 5.6: Confusion matrix and ROC curve
for NETSEG - Optimal selection - RF

This experiment generates significantly better results for all the models except
KNN, but RF is still the best with just 12 features. Figure 5.6 shows very similar
results to those in Figure 5.5.

5.5 Discussion and comparison with previous results

In this section, we compare our results with those obtained in Anguas, 2023, shown
in Table 5.7. As stated in Chapter 1, these results were obtained using only the dias-
tolic and systolic frames.

TABLE 5.7: Best results in Anguas, 2023

Method Accuracy Precision Recall

Radiomics 0.76 0.77 0.76
TDA 0.74 0.74 0.73
Radiomics+TDA 0.79 0.79 0.78

On one hand, the best results for the ROUSEG experiments with either type of
feature selection improved the classification obtained with only the diastolic and
systolic frames, even with radiomics+TDA. On the other hand, the NETSEG exper-
iments achieved worse results, even with optimal feature selection. In Figure 5.7
we can see a ROUSEG-NETSEG comparison of the same time series (left ventricle,
dimension 1 entropy) for five selected patients (the same in both graphs), which
suggests why NETSEG is working worse. The series in ROUSEG present just small
variations, because we are using the same mask for every frame, and this clearly dis-
tinguishes the classes from one another. In contrast, the series in NETSEG present
high variation, which makes them more faithful to reality, but they get mixed up and
are only distinguishable in the final points.

If we check the MI scores in Appendix A, we see that for ROUSEG the mean
features were more important, while in NETSEG the variance and jump features
were more important. The MI scores also show that the use of Wasserstein distances
between diagrams did not prove very useful for classification for both ROUSEG and
NETSEG. This could be a consequence of a wrong approach to its calculation, since
we simply added the distances for each homology dimension instead of designing a
weighted distance.
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(A) Left Ventricle - Dimension 1 entropy series
from 5 patients of the 5 subgroups (ROUSEG)

(B) Left Ventricle - Dimension 1 entropy series
from 5 patients of the 5 subgroups (NETSEG)

FIGURE 5.7: Comparison between ROUSEG and NETSEG
Left Ventricle - Dimension 1 entropy series for 5 patients of the 5 sub-

groups

In general, the most important features for both approaches were the means, the
variances and the jumps. A few argmin and argmax had some degree of importance,
and most of the skewness and permutation entropies where on the lower half of the
tables. In fact, some of them provided zero information about the diseases. We
believe that skewness had very small significance because our time series were very
short, and permutation entropy was not important because there was no difference
in the "randomness" of the series between patient groups.

Regarding the importance of the different regions of the heart, in both approaches
we obtained expected results; the left ventricle is the most important region for clas-
sification, because three diseases present differences there, followed by the right ven-
tricle for the patients with abnormal right ventricle (RV). This last group, as well
as the healthy patients, seem to be easily distinguished by topological descriptors,
while patients with previous myocardial infarction (MINF) and dilated cardiomy-
opathy (DCM) are often mistaken for each other.

The SVM and KNN models were the best or among the best for the two ap-
proaches. Both are among the most explainable models (Salih et al., 2023), so the
results are transparent and we believe that the whole classification pipeline could be
understood by a medical expert.

Finally, we remark that we are using a single train-test split (the default ACDC
dataset division) for the sake of comparison with these previous results. With such
a small dataset, particular cases in the test set can generate metrics that are not rep-
resentative. Hence, it is necessary to check the generalizability of our work, as we
discuss in the last section.
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Chapter 6

Conclusions and future work

6.1 Conclusions

The results presented in the previous chapter yield two conclusions. First and fore-
most, we proved the relevance of TDA for cardiac disease diagnosis. Introducing
more topological details improved classification without using radiomics (which
contain a large number of features, risking overfitting, and are costly to calculate).
However, it remains unclear why the ROUSEG approach, which used less accurate
segmentation masks than NETSEG, achieved higher classification accuracies. One
possible explanation could be that the variation of topology along a cardiac cycle is
less determinant than the information retrieved from the most relevant time instants.

We conclude that TDA is a useful tool for cardiac imaging and it can achieve
comparable or even better results than radiomics. Moreover, our findings suggest
that introduction of temporal information can yield improved classification results
under suitable settings.

6.2 Future work

As we mentioned in Chapter 1, a big challenge for data science in medicine is do-
main shift, so after this project we would like to check if the methodology is gen-
eralizable to other datasets. The confusion matrices in Chapter 5 already give hints
about what diseases seem to be clearly identifiable using our methods, so we could
start with that, and check for other heart diseases as well. We have the opportunity
to do so in the near future, because after introducing my project to people from the
BCN-AIM Artificial Intelligence in Medicine Lab, I gained access to the UK Biobank
(https://www.ukbiobank.ac.uk/) database, which contains thousands of medical
data, including hundreds of cardiac MRI recordings as those in the ACDC dataset,
so we will be able to check the generalizability of our work.

Regarding other possible methodologies, one that we considered but we did not
implement was describing each patient’s cardiac cycle with a graph and using graph
neural networks to classify. The idea behind this approach was to assign a node to
each diagram and have each edge between diagrams be weighted with the Wasser-
stein distance between them. The nodes would contain the nine entropy descriptors
of the three diagrams of the three regions of interest. This idea occurred to us when
we realized that we could not use the series directly as features due to the varying
length of the cardiac cycles. We dismissed it because we wanted to avoid neural
networks and because it needed more development; the resulting "graphs" were just
a branch of weighted nodes and edges, so they had very little graph structure. Nev-
ertheless, we think that this idea can be developed further and has the potential to
be a promising approach.

https://www.ukbiobank.ac.uk/
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Appendix A

Mutual information scores

In this appendix we display the MI scores of the features for both experiments. "L",
"M" and "R" stand for Left Ventricle, Myocardium and Right Ventricle respectively,
and "dist", "e0", "e1" and "e2" stand for Distance, Dimension 0 Entropy, Dimension 1
Entropy and Dimension 2 Entropy respectively.

A.1 ROUSEG MI scores

TABLE A.1: Mutual information scores for features in ROUSEG

Feature Mutual information score
L_e0_mean 0.588736
L_e1_mean 0.470237
L_e2_mean 0.468011
R_e2_mean 0.408692
R_e0_mean 0.399721
L_e0_var 0.386066
R_e0_var 0.385742
L_e1_jumps 0.357864
R_e1_mean 0.336981
L_e1_var 0.313763
L_e2_var 0.308686
M_e1_jumps 0.295472
M_e0_mean 0.272543
L_e0_jumps 0.244934
R_e1_var 0.237003
M_dist_var 0.234757
M_dist_jumps 0.231593
L_e1_argmin 0.228720
M_e2_jumps 0.222533
R_e2_jumps 0.201239
M_e1_mean 0.197879
M_e1_var 0.195544
M_e1_argmin 0.194388
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Feature Mutual information score
L_e2_jumps 0.193756
R_e2_var 0.167690
M_dist_argmax 0.149258
R_e0_jumps 0.149031
R_e0_skew 0.148126
L_dist_argmin 0.143596
M_e2_mean 0.143047
M_e0_permentro 0.138783
R_e1_jumps 0.138210
M_e0_jumps 0.137812
L_dist_jumps 0.132169
M_dist_mean 0.130348
L_dist_mean 0.128668
M_e1_skew 0.128605
R_e1_skew 0.125063
R_e1_permentro 0.124660
L_e0_permentro 0.124461
R_dist_mean 0.119899
R_e0_permentro 0.113595
R_e2_argmax 0.098884
M_e1_permentro 0.094432
L_e2_skew 0.093256
L_e1_skew 0.091879
M_dist_argmin 0.088905
R_e2_permentro 0.086422
L_e1_argmax 0.084279
L_e0_argmax 0.080324
L_e2_permentro 0.077789
R_e2_argmin 0.073256
L_dist_argmax 0.068826
L_e2_argmax 0.063913
L_e2_argmin 0.060156
M_e1_argmax 0.053506
R_dist_jumps 0.053122
L_e0_skew 0.048180
L_dist_permentro 0.042864
M_e0_argmax 0.042548
M_e0_argmin 0.039794
L_dist_var 0.037712
M_dist_permentro 0.035264
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Feature Mutual information score
M_e0_var 0.033932
R_e0_argmin 0.029715
R_dist_var 0.028909
M_e2_var 0.022093
R_e1_argmax 0.019291
M_e2_permentro 0.016158
M_e2_argmax 0.014449
M_e2_argmin 0.007501
L_e1_permentro 0.000000
R_dist_skew 0.000000
R_dist_permentro 0.000000
R_dist_argmax 0.000000
R_dist_argmin 0.000000
R_e2_skew 0.000000
L_e0_argmin 0.000000
M_e0_skew 0.000000
R_e1_argmin 0.000000
L_dist_skew 0.000000
R_e0_argmax 0.000000
M_e2_skew 0.000000
M_dist_skew 0.000000

A.2 NETSEG MI scores

TABLE A.2: Mutual information scores for features in NETSEG

Feature Mutual information score
L_e2_var 0.581166
L_e2_jumps 0.527956
L_e1_var 0.524543
L_e0_jumps 0.425281
R_e0_jumps 0.371193
L_e1_jumps 0.358846
R_e1_mean 0.350789
L_e2_mean 0.333611
R_e0_mean 0.332286
L_e0_var 0.328601
L_e0_mean 0.312192
M_e2_mean 0.310331
L_e1_mean 0.297011
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Feature Mutual information score
R_e1_jumps 0.267534
M_e2_var 0.259066
M_e1_var 0.251419
L_e1_argmin 0.228363
R_e2_mean 0.217956
M_e1_mean 0.216621
L_e2_permentro 0.198279
R_e2_var 0.193004
M_e2_jumps 0.183957
R_e0_var 0.170034
L_e0_argmax 0.164330
L_e1_argmax 0.160756
R_dist_argmin 0.141389
R_dist_argmax 0.138450
M_e0_jumps 0.137758
M_e0_mean 0.137166
M_e1_jumps 0.135194
M_e2_argmin 0.118715
L_e2_argmax 0.117473
M_dist_mean 0.115168
M_dist_permentro 0.109985
R_e0_skew 0.109025
R_e2_jumps 0.104083
M_e1_argmin 0.103279
M_dist_jumps 0.088953
M_e0_permentro 0.082252
L_dist_permentro 0.081790
M_dist_argmin 0.080616
L_dist_mean 0.075508
M_e1_argmax 0.074828
M_dist_var 0.068298
M_dist_argmax 0.066354
L_dist_var 0.062633
R_e0_argmin 0.059384
R_e1_var 0.059210
R_e2_permentro 0.058711
R_e1_argmin 0.058286
R_dist_skew 0.048245
M_e0_argmin 0.045844
M_e2_argmax 0.044273
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Feature Mutual information score
R_dist_mean 0.036925
M_dist_skew 0.033441
L_dist_jumps 0.032417
R_e0_permentro 0.031439
L_e0_argmin 0.025129
M_e0_var 0.019680
L_e1_permentro 0.016548
M_e0_argmax 0.011658
L_e2_argmin 0.011517
L_dist_argmin 0.010126
L_e0_permentro 0.006590
L_e0_skew 0.004357
R_e0_argmax 0.000000
R_dist_var 0.000000
L_e2_skew 0.000000
R_dist_jumps 0.000000
R_dist_permentro 0.000000
L_e1_skew 0.000000
R_e2_argmin 0.000000
R_e2_argmax 0.000000
L_dist_skew 0.000000
R_e1_skew 0.000000
M_e2_permentro 0.000000
R_e1_permentro 0.000000
R_e1_argmax 0.000000
M_e2_skew 0.000000
M_e1_permentro 0.000000
M_e1_skew 0.000000
R_e2_skew 0.000000
M_e0_skew 0.000000
L_dist_argmax 0.000000
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