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Abstract

In tidal torque theory, the angular momentum (AM) of dark matter halos arises from the tidal torque suffered by
aspherical collapsing patches due to surrounding mass fluctuations. This theory was implemented in the peak
model, where protohalos are ellipsoidal. However, the adopted delimitations of these objects were doubtful and the
protohalo AM was calculated numerically, which complicated the interpretation of the result and compromised its
applicability. In addition, the AM of the final halos was derived without taking into account nonlinear effects. Here,
we rederive the protohalo AM in the peak model, delimiting ellipsoids in the usual natural way and following a
novel fully analytic approach that leads to a very simple and practical expression. The predicted AM is shown to
fully agree with the results of cosmological simulations. In the following Paper II, we will apply this model to infer
the rotational properties of relaxed halos, accounting for shell crossing and major mergers.

Unified Astronomy Thesaurus concepts: Cosmology (343); Dark matter (353); Galaxy dark matter halos (1880);
Hierarchical cosmology (730)

1. Introduction

Dark matter halos are believed to acquire their angular
momentum (AM) through the tidal torque of neighboring mass
fluctuations on their seeds (International Union of Theoretical
and Applied Mechanics 1951). Although P. J. E. Peebles (1969)
found that this mechanism, the so-called tidal torque theory (TTT),
does not work for spherical protohalos, A. G. Doroshkevich (1970)
and S. D. M. White (1984) showed that it does in cases of other
shapes, due to the misalignment of the protohalo inertia tensor with
respect to the gravitational tidal tensor.

Specifically, in the Y. B. Zel’dovich (1970) approximation
holding to first order in perturbed quantities, by Taylor
expanding to second order the deformation tensor around the
center of mass (COM) of the protohalo and integrating over its
volume, S. D. M. White (1984) found that the Cartesian
components of the protohalo AM, J, grow with time t,
according to

( ) ( ) ( ) ( )» - J t a t D t T I , 1i ijk jl lk
2

where òijk is the fully antisymmetric Levi-Civita rank-three
tensor, Tjl = ∂2f/∂xj∂xl is the tidal tensor (equal to the shear or
deformation tensor in the linear regime), i.e., the Hessian of the
linear gravitational potential f at the protohalo COM, and Ilk is
the protohalo inertia tensor with respect to that point. The growth
of Ji is thus encoded in the factor ( ) ( )a t D t2 , where a(t) and D(t)
are the cosmic scale and linear growth factor, respectively, and a
dot denotes the time derivative, the remaining factor being the
so-called Lagrangian protohalo AM, independent of the arbitrary
initial time ti where it is calculated.

The AM growth of protohalos has been studied analytically
(S. D. M. White 1984; Y. Hoffman 1986) and numerically
(G. Efstathiou & B. J. T. Jones 1979; J. Barnes & G. Efstathiou
1987; P. Catelan & T. Theuns 1996b; B. Sugerman et al. 2000,
hereafter SSK00; C. Porciani et al. 2002a, 2002b). The results

confirmed the validity of Equation (1) roughly until protohalos
reach turnaround and rapidly contract, so that the AM basically
freezes out (P. J. E. Peebles 1969). In addition, the AM of halos of
massM was found to be proportional toM5/3 (but see S. Liao et al.
2015).
To determine the typical AM of halos and understand the

origin of the J ∝ M5/3 relation, A. Heavens & J. Peacock
(1988), Y. Hoffman (1988), and P. Catelan & T. Theuns
(1996a) (see also B. S. Ryden 1988; T. Quinn & J. Binney
1992; D. J. Eisenstein & A. Loeb 1995) implemented
Equation (1) in the peak model of structure formation, where
collapsing patches, marked by triaxial density maxima in the
Gaussian-smoothed density field, are naturally ellipsoidal
(A. G. Doroshkevich 1970). However, at that moment, the
collapse time and extension (mass) of protohalos associated
with peaks were unknown, so these authors adopted the top-hat
spherical collapse and delimited ellipsoids in an unusual
arguable way. In addition, the average over the sharpness,
shape, and shear field of peaks prevented them from obtaining a
practical final expression.
However, since the publication of these works, a new

formalism has been developed (see the recapitulation in
E. Salvador-Solé & A. Manrique 2021) that provides the tools
appropriate to addressing these issues. Indeed, the so-called
ConflUent System of Peak Trajectories (CUSP; A. Manrique &
E. Salvador-Solé 1996) has already allowed one to derive,
directly from peak statistics and with no free parameters, the
halo density and kinematic profiles (E. Salvador-Solé et al.
2012a, 2012b, 2023), substructure (E. Salvador-Solé et al.
2022a, 2022b, 2022c), mass function (E. Juan et al. 2014b),
and primary and secondary biases (E. Salvador-Solé &
A. Manrique 2024; E. Salvador-Solé et al. 2024), leading in
all cases to theoretical predictions in full agreement with the
results of simulations.
The aim of the present paper and a forthcoming one (Paper

II) is to apply TTT to derive the typical halo AM in the peak
model. Here, we revisit the application of this theory to
protohalos in the linear regime, following a novel approach that
remedies the shortcomings of previous works. Instead of
dealing with the global shear field at the location of the
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protohalo, we split it into the torques of individual neighboring
(positive and negative) mass fluctuations. This allows us to
clarify the origin of the typical protohalo AM properties and to
make physically motivated approximations, leading to a simple
final expression that can be readily checked against simulations. In
this strategy, CUSP plays a crucial role, as it provides: (i) accurate
masses and collapse times of ellipsoidal patches (E. Juan et al.
2014a); (ii) the connection between neighboring mass fluctuations
of different scales (A. Manrique & E. Salvador-Solé 1995); and
(iii) the correlation between all these objects (E. Salvador-Solé &
A. Manrique 2024). In Paper II, this model will be used to
derive the rotational properties of halos, taking into account the
effects of shell crossing and major mergers, thanks to the results
reported in E. Salvador-Solé et al. (2012a) and E. Salvador-Solé &
A. Manrique (2021).

The layout of the paper is as follows. In Section 2, we recall
some elements of CUSP used in the derivation. In Section 3,
we describe our strategy and the planning of the work. The
protohalo inertia tensor and the tidal tensor of neighboring
mass fluctuations are derived in Sections 4 and 5, respectively.
In Section 6, we compute the typical protohalo AM. Our results
are summarized and discussed in Section 7.

2. The CUSP Formalism

Next, we briefly explain some results of CUSP that are used
in our derivation. Interested readers are referred to the cited
works for more details.

2.1. Accurate Protohalo Extension and Collapse Time

As is well known, the collapse time tc of ellipsoidal patches
at ti depends not only on their size and mass, as in spherical
collapse, but also on their concentration and shape (e.g.,
P. J. E. Peebles 1980) or, equivalently, on the scale R, height ν
(the density contrast δ scaled to its rms value σ0), curvature or
sharpness x (minus the Laplacian scaled to its rms value σ2),
ellipticity e, and prolateness p of the associated peaks in the
Gaussian-smoothed density field. However, e and p depend
only on x (see below), whose probability distribution function
(PDF) is very sharply peaked, so all peaks with fixed δ and R
collapse essentially at the same time tc.

In these circumstances, choosing the scale R(M, tc, ti) of
protohalos with fixed δ at ti that evolve at tc (in the cosmology
under consideration) into halos of different masses M (according
to the chosen halo mass definition, i.e., their characteristic
overdensity), all protohalos associated with peaks with δ(tc, ti) at
scale R(M, tc, ti) will collapse, by construction, at the same time,
regardless of their mass M.

E. Juan et al. (2014a) showed that the functions M(R, tc, ti)
and tc(δ, ti) setting the mass and collapse time of protohalos
associated with Gaussian peaks with δ at R are fully determined
by the consistency conditions that: (i) the halo mass function
predicted by CUSP is correctly normalized; and (ii) the halo
density profile predicted by CUSP leads to the mass used to
derive it. Specifically, writing the density contrast δ and scale R
of peaks at ti as proportional to their well-known counterpart in
top-hat spherical collapse, denoted by index “th,”

( ) ( ) ( ) ( ) ( ) ( )
( )

( )d d d= =d dt t r t t t r t t
D t

D t
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where ( )d tc
th is the critical linearly extrapolated density contrast

for top-hat spherical collapse at t (equal to 1.686 in the
Einstein–de Sitter or EdS cosmology), and the proportionality
functions rδ(tc) and rσ(M, tc) are well fitted by specific analytic
functions dependent on the cosmology and halo mass definition
given in E. Salvador-Solé & A. Manrique (2024), though
approximately satisfying rδ(tc) ≈ a(tc)/D(tc) and rσ(M, tc) ≈ 1
in all cases.
These relations imply in turn

( ) ( )
( )

( ) ( )
( )

( ) ( )n n n= »d

s
M t

r t

r M t
M

a t

D t
M,

,
, 4c

c

c
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c

th

showing that the Gaussian height of the peaks associated to
protohalos collapsing at tc is directly related to the mass M, as
in top-hat smoothing. Note that this relation is independent of
ti.
Equation (3) implicitly gives the scale R as a function of M,

tc, and ti, through the 0th Gaussian and top-hat spectral
moments. However, for power-law spectra P(k, t0) = P0k

n,
where t0 is the present time, R can be directly related to
its top-hat counterpart Rth, satisfying, at leading order,

( ) ¯ ( )( )/p r=M t R4 3 i
th 3, where ¯ ( )r t is the mean cosmic density

at t. Indeed, in this case, the jth spectral moments for Gaussian
and top-hat filters f read

( ) ( ) [ ( )]
( )

( ) ( )

( )

( )/
òs

p
=

+ +

¥
+ +R t

P D D t

R
x x W x,

2
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n f2 0 0

2

2 3 2j 0

2 1 j 2

where D0 = D(t0), so their ratio leads to

( ) ( ) ( ) ( )=R M t t r M t R M t, , , , 6c i R c
th

i

with

( ) [ ( )] ( )/º sr M t K r M t, , , 7n
m

R c c
1

where ( ) ( ) ( )/ò òº
¥ + ¥ +K x x W x x x W xd dn

n n2
0

2 th 2
0

2 2 , with
W and Wth being the Fourier transforms of the Gaussian and
top-hat filters, respectively, and m ≡ −(n + 3)/2. Since the
cold dark matter (CDM) spectrum is locally a power law, for
galaxy mass halos, we can also adopt the relation of
Equation (7), with n ≈ −1.75, m ≈ −0.63, and Kn ≈ 1.6.
This leads to rR, a function of M (explicitly and through the
index n) and tc, except for virial masses—i.e., masses
encompassing virial overdensities (G. L. Bryan & M. L. Norman
1998) with respect to the mean cosmic density—in which case rσ
depends only onM (E. Salvador-Solé & A. Manrique 2024), as rR
does, too.
It may be argued that these protohalo masses and collapse

times rely on CUSP. That is true, but there is no doubt about
the goodness of CUSP, as evidenced by all its many successful
results, listed in Section 1.
For simplicity in the notation, we skip from now on, unless

necessary, the argument ti in all quantities referring to the
(arbitrary) initial time, as well as the argument R of the spectral
moments σj.
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2.2. Continuous Peak Trajectories

The functions δ(tc) and R(M, tc) define a correspondence
between halos and peaks. Indeed, the general relation

( ) ( ) ( ) ( )d
d s

¶
¶

=  º -
r

r r
R

R
R R x R R

,
, , 82

2

holding for Gaussian smoothing shows that when the
smoothing scale R is increased, the density contrast δ of
individual peaks decreases, which conforms with the fact that
the functions δ(t) and R(M, t) in that correspondence must be
monotonically deceasing and increasing functions of t and M,
respectively. Moreover, the relation of Equation (8) allows one
to identify peaks (essentially at the same fixed point) tracing the
same halo at infinitesimally close smoothing scales R
(A. Manrique & E. Salvador-Solé 1995).

Therefore, the mass growth of any individual accreting halo
traces a continuous peak trajectory in the δ–R plane, the
solution for the suited boundary condition of the differential
equation (see Equation (8))

[ ( )] ( )d
d s= -

d

dR
x R R R, , 92

where x[R, δ(R)] is the curvature of the peak at the point (δ
(R), R) of the trajectory. Individual peak trajectories are hard to
calculate, because they depend on the particular realization of
the density field around the peak. However, they zigzag around
the mean peak trajectory, the solution of Equation (9) with the
curvature x[R, δ(R)] replaced by the mean curvature 〈x〉[R, δ
(R)] and the same boundary condition. We can thus adopt such
mean trajectories for the typical evolution of peaks in the δ–R
plane.

The mean curvature of peaks with δ at R is (J. M. Bardeen
et al. 1986, hereafter BBKS):
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0 2 . As shown by BBKS, 〈x〉 takes the form γν + θ

(γ, γν), with the function θ being negligible at large scales, as
corresponding to the large-scale mass fluctuations causing
torques (see Section 5). Consequently, in the case of power-law
spectra (and the CDM spectrum) for which R2σ2 ∝ σ0, the
mean trajectories of such peaks satisfy (see Equation (9))

( )d
=

d

d R
m

ln

ln
. 12

For simplicity in the notation, we skip from now on, unless
necessary, the arguments of the curvature moments and write
〈x〉, 〈x2〉, and so on.

Continuous peak trajectories are interrupted when the
corresponding accreting halos merge. Thus, trajectories starting
at peaks with δ0 at R0 will reach a typical maximum scale

( )dR R ,max 0 0 equal to the mean separation between peaks at
that scale, when the corresponding accreting halos typically
come in contact and merge.

2.3. Correlation Between Peaks

At first order of the “perturbative bias expansion,”
the correlation ξp(r) between peaks with δ at R reads

( ) ( ) ( )x n x=r B R r,p 1
2 , where ξ(r) is the matter correlation

function (well fitted by ( ) ˜/ g-r s0 , with g̃ » 2 and
s0 ∼ 15 h−1 Mpc; M. H. Abdullah et al. 2024) and B1(R, ν)
is the Lagrangian linear peak bias, given by (E. Salvador-Solé
& A. Manrique 2024)

( )
( )

( )/
n

n g
s g

=
- á ñ á ñ

-
B R q

x x
,

1
, 131

2

0
2

with q being equal to 2(n+3)/2 for power-law spectra in general
and about 1.6 in the case of the CDM spectrum.

2.4. Peaks and Holes

The peak model was developed to deal with protohalos as
local maxima in the linear Gaussian random density field at ti.
But in this paper, we will also be concerned with local minima
or holes. Fortunately, the statistics of peaks is the same as that
of holes, except for the sign of the eigenvalues of the Laplacian
of the density field at the peak. Thus, all expressions derived
for peaks can be readily extended to holes, simply by changing
the sign of the trace x of the scaled Laplacian. (The ellipticity
and prolateness of peaks and holes are also defined in terms of
the Laplacian eigenvalues, though they are always defined with
a positive sign.)
This comment applies, in particular, to the continuous peak

trajectories and the peak–peak correlation discussed above,
which can be readily extended to holes. The only noticeable
difference between the continuous trajectories of peaks and
holes is that the former trace, as mentioned, the mass growth of
accreting halos, while the latter do not trace the mass evolution
of voids, because underdense regions do not collapse—they
only deepen. In other words, continuous hole trajectories only
trace the same fixed voids seen at different scales.

3. Strategy

The usual approach followed in calculating the typical AM
of protohalos of mass M collapsing at tc (or with δ at R) is to
compute the protohalo inertia tensor I, and the tidal
(or deformation) tensor T at the protohalo COM and use the
joint PDF of all quantities appearing in those tensors,
P(q1, q2, q3,...|δ, R), to average the modulus of the protohalo
J given by Equation (1).
Instead, we will calculate the tidal tensor Ta due to each

individual neighboring tidal source, proceed in the usual way to
find the AM caused by it, Jts, integrate the AM due to all
sources, and average the resulting global J over all possible
configurations of this composite system.
The joint PDF Pa(q1, q2, q3, ...|δ, R) of the properties qi of

each single torque source will be split into the product of the
conditional probability Pa of finding such properties q1, q2,
q3,..., subject to having found the protohalo with the properties
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q̃1, q̃2, q̃3,... times the probability Ppk that the protohalo of given
δ at R has such properties:

( ∣ ) ( ∣ ˜ ˜ )
( ˜ ˜ ∣ ) ( )

d d
d

= ¼
´

P q q R P q q q q R

P q q R

, , ... , , , ... , , , ,

, , ... , . 14
a 1 2 a 1 2 1 2

pk 1 2

This facilitates concentrating, in Section 4, in the calculation
of the protohalo inertia tensor and the PDF of the protohalo
(or peak) properties, ( ˜ ˜ ˜ ∣ )dP q q q R, , , ... ,pk 1 2 3 and, in Section 5, in
the calculation of the tidal tensor due to one torque source
and the conditional PDF of the torque source properties subject
to having found the protohalo with some properties,

( ∣ ˜ ˜ ˜ )d¼P q q q q q q R, , , ... , , , , ,a 1 2 3 1 2 3 . Finally, the resulting PDF
of each torque source will be used in Section 6 to integrate and
average the protohalo AM.

It is also worth mentioning that it will often happen that
some property qi, e.g., q2, or some property q̃i, e.g., q̃2, does not
correlate with the remaining properties. In this case, it will
disappear from the respective conditional PDF, though not
from the global joint PDF, where its own PDF will appear as an
isolated factor, e.g.,

( ∣ ) ( ) ( ˜ )
( ∣ ˜ ˜ ) ( ˜ ˜ ∣ ) ( )

d
d d

=
´ ¼

P q q q R P q P q

P q q q q R P q q R

, , , ... ,

, , ... , , , , , , ... , . 15
a 1 2 3 a 2 pk 2

a 1 3 1 3 pk 1 3

4. Protohalo

The conditional PDF of finding in an infinitesimal volume at
ti a peak with some given curvature, shape (i.e., ellipticity and
prolateness), and orientation (Euler angles α, β, and κ),
globally denoted by C = (x, e, p, α, β, κ), subject to having the
density contrast δ (or height ν = δ/σ0), at R is

( ∣ ) ( )n n= P C R C R, , ,pk pk , where
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is the average number density of peaks with those properties
(BBKS). In Equation (16), /s sºR 3 1 2, PE(α, β, κ) is the
usual isotropic PDF of Euler angles,1 and
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2
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e p

e e p p

ep
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2
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2

is the joint PDF of the ellipticities e = (λ1 − λ3)/(2xσ2) (e� 0)
and prolatenesses p = (λ1 − 2λ2 + λ3)/(2xσ2) (−e� p� e),
where λ1� λ2� λ3 are minus the eigenvalues of the Laplacian,
related to the peak curvature through λ1 + λ2 + λ3 = xσ2. To
write Equation (17), we have taken into account that, for large x
as corresponding to the massive halos of interest, Pep(e, p) is
nearly Gaussian, with means { [ ( )] }/ / /á ñ = +e x x1 5 1 6 5 2 1 2

and { [ ( )] }/ /á ñ = +p x x6 5 1 6 54 2 2 and dispersions /s = á ñe 6e

and /s = á ñe 3p (BBKS). This reflects the fact that, as
mentioned, the peak shape correlates with the height ν only
through x.

As mentioned, the second factor on the right-hand side of
Equation (16) giving the x-PDF is very sharply peaked, so the
average of any function f (x) is essentially equal to f (〈x〉). This
allows us to marginalize the curvature and work with x replaced
by 〈x〉(R, δ) everywhere.2

By doing this, we are led to

( ∣ ) ( ) ( ) ( )n n= P C R P e p R, , , , 18pk ep pk

with C = (e, p) and
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giving the average number density of peaks with ν at R.
The inertia tensor I of the ellipsoidal protohalo relative to its

COM in Cartesian coordinates oriented along the principal axes
is
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2
1
2, with

a1 > a2 > a3 being the semi-axes of the ellipsoidal protohalo at
ti, inversely proportional to the square root of the eigenvalues
λ1 < λ2 < λ3, respectively. To write Equation (20), we have
taken into account that Equation (1) holds to first order in
perturbed quantities and the tidal tensor is necessarily of first
order, being caused by peculiar mass fluctuations, so we can
take the density of the protohalo to leading order, i.e., with
uniform density equal to ¯ ( )r ti . Thus, I is a Lagrangian tensor (it
does not depend on t) independent of ti, as expected.
The semi-axes ai of the (nonsmoothed) protohalo are

completely fixed by its (accurate) mass M or extension Rth.
Indeed, the mass ( ) ¯ ( )/p r=M t a a a4 3 i 1 2 3 of the ellipsoid is, by
definition of Rth, equal to ( ) ¯ ( )( )/p r t R4 3 i

th 3, implying
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the relations given above between the peak shape and
eigenvalues lead to

( ˆ ˆ ) ( ˆ ) ( )= - = -- - -e a a p a
1

2
,

1

2
1 3 , 231

2
3

2
2

2

and ˆ= å -a1 k k
3 2.

We stress that protohalo ellipsoids have been delimited in the
usual natural way: from their mass M and their uniform density
(to linear order in perturbed quantities) ¯ ( )r ti , by simply taking
into account their shape, set in this case by the triaxial peak. In
spherical objects, this leads to their top-hat radius Rth through
the relation ( ) ¯ ( )( )/p r=M t R4 3 i

th 3. Similarly, in ellipsoid
objects with known ellipticity and prolateness, the relation

( ) ¯ ( )/p r=M t a a a4 3 i 1 2 3 has led to the top-hat semi-axes. Note
1 The orientations of triaxial peaks do not depend on their remaining
properties, so the set of properties C in the conditional probability Ppk(C|ν, R)
is reduced to C = (x, e, p).

2 The e- and p-PDFs are less peaked, so it is preferable not to make a similar
approximation for these quantities.
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also that the inertia tensor is ( ) /µ µR Mth 5 5 3, simply because
the semi-axes ai are ∝Rth.

5. Torque Sources

The torque suffered by a protohalo is caused by neighboring
positive and negative mass fluctuations, marked by density
maxima (peaks) with positive height and density minima
(holes) with negative height, respectively. For the moment, we
will concentrate on the torque caused by mass excesses and
postpone the case of mass defaults to the end of the section.

Mass excesses of scale smaller than the scale R of the
protohalo do not contribute to the tidal torque. Their individual
effect is weak and they are very numerous and roughly
isotropically distributed around the protohalo, so their added
effect cancels (particularly when averaging over all configura-
tions; see Section 6). On the other hand, many of the larger-
scale mass excesses actually correspond to a few real ones
responsible for the torque, seen at different scales. We must
thus find those “authentic” mass excesses, hereafter denoted by
the index “a.”3

Each series of embedded large-scale mass excesses traces a
continuous peak trajectory, the solution of Equation (12), i.e.,
of the form ( ) ( ) ( )/d d=¢ ¢ ¢ ¢R R R R m, starting at some peak,
hereafter called the “reference peak,” with the minimum scale
R and a density contrast ( )d ¢ R different in general from the
density contrast δ of the protohalo (but see below). Given that
m is negative (for any allowed spectral index n and for CDM in
the relevant mass range), ( )d ¢ ¢R decreases with increasing ¢R ,
although less rapidly than ( )¢ -R 3, so the mass excess ( )( )d ¢ ¢ ¢R R 3

increases with increasing scale. Therefore, the scale Ra of
the authentic mass excess is limited by the typical maximum
scale ( )dR R,max of those peak trajectories (see Section 2.2)
and by the “top-hat” separation r between their COM and
the COM of the protohalo,4 so [ ( ) ]d=R R R r rmin , ,a max R

and ( )( )/d d= ¢ R R R m
a a .

The conditional probability that an authentic mass excess of
scale Ra with νa and Ca = (ea, pa, αa, βa, κa) lies at a distance r
from the COM of the protohalo is

( ∣ )
[ ( )]

( ∣ ) ( ∣ ) ( )
ò

n d

p d x n n

n d d d

= +

´
-¥

¥ ¢

¢ ¢

P C R r C R

r d r R R

C R R P R r C R

, , , , ,

4 1 ; , , ,

, , , , , , , , 24

a a a a

2
pk a a

pk a a a

where ( ∣ )d d¢P R r C R, , , , is the probability of finding a point
with d ¢ at a distance r from the peak with δ and C in the density
field smoothed at scale R, ( ∣ )n d ¢ C R R, , ,pk a a a is the average
conditional number density of peaks with νa and Ca at Ra

subject to having d ¢ at R, and 1 + ξpk(r; νa, Ra, ν, R) is the
factor enhancing this number density due to the cross-
correlation between peaks with δ at R and with δa at Ra.

5

Both ( ∣ )n d ¢ C R R, , ,pk a a a and ( ∣ )d d¢P R r C R, , , , were
calculated by BBKS. But we do not need the explicit form of
the former. As shown in Appendix A, for massive halos, as
corresponding to bright galaxies, and separations r not too
large compared to R, as corresponding to the protohalo

neighborhood, ( ∣ )d d¢P R r C R, , , , turns out to be null for all
values of d ¢, except for d d»¢ . In other words, it is close to a
Dirac delta independent of C. This remarkable result is a
consequence of the well-known protohalo bias (i.e., the more
massive objects are, the more clustered), together with the rapid
fall of the (proto)halo mass function with increasing mass. The
combination of both effects implies that close pairs of
protohalos of the same scale tend to be twin, i.e., to have the
same density contrast (though not necessarily the same shape
and orientation). Therefore, Equation (24) becomes

( ∣ )
[ ( )]
( ∣ )
[ ( )] ( )

( ∣ ) ( )

n d
p x n n

n d

p x n n

d

» +

´

= +

º





P C R r C R

r r R R

C R R

r r R C R

P C r R

, , , , ,

4 1 ; , , ,

, , ,

4 1 ; , , ,

, , . 25

a a a a
2

pk a a

pk a a a

2
pk pk a

a a

To write the first equality on the right-hand side of
Equation (25), we have taken into account that δa and Ra are
functions of δ and R of the reference peak, through the relations

[ ( ) ]d=R R R r rmin , ,a max R and ( ) ( )/d d= ¢ R R R m
a a , with

( )d d=¢ R thanks to the abovementioned Dirac delta. And, in
the second equality, we have taken into account that the
probability of finding the peak with νa at Ra at some point is the
same as finding the reference peak with ν at R at the same
point, so the cross-correlation ξpk between the protohalo and
authentic mass excesses equals the autocorrelation between
identical peaks. Thus, making use of the linear peak bias
(Section 2), the conditional probability Pa becomes

( ∣ ) [ ( ) ( )] ( )
( )

d p n x n» + P C r R r B R r C R, , 4 1 , , , .

26
a a

2
1
2

pk a

Like all patches marked by peaks, authentic mass excesses are
ellipsoidal with semi-axes aa1, aa2, and aa3.

6 In addition, to first
order in perturbed quantities, they have a uniform “peculiar
density” equal to ( ) ¯ ( )d rt ti i and a peculiar mass equal to

( ) ( ) ¯ ( )/p d r=M a a a t t t4 3 ,a a1 a2 a3 a c i i . Consequently, the pecu-
liar gravitational potential they cause, in Cartesian coordinates
with the origin at their COM and aligned with their own
principal axes, at a point x = (x1, x2, x3) external to it (the
potential at internal points vanishes), is (S. Chandrasekhar
1987)

( ) ( )

( ) ( ) ( )
( )

¯

( ) ( )åò ò

p d rF =

´
D
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¥
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x a a a G t
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a s s
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27

x xS
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i S
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a a1 a2 a3 a i

1

3
2

a
2

⎡
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⎤
⎦⎥

where G is the gravitational constant,

( ) [( )( )( )] ( )/D º + + +s a s a s a s , 28a1
2

a2
2

a3
2 1 2

3 Dubbing them as “effective” would be more appropriate, but the index “e”
is already occupied by ellipticities.
4 Ellipsoidal shells, or homoeoids, beyond r do not contribute to the
gravitational potential at the COM of the protohalo; see below.
5 The point with d ¢ at R essentially coincides with the reference peak of the
authentic mass excess.

6 This is certainly true for high peaks (BBKS); for low ones, as corresponding
to authentic mass excesses, it is an approximation. But we are only interested in
the peculiar gravitational potential they yield, which is much less sensitive to
small departures of the sources from the ellipsoidal symmetry.
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and S(x) denotes the positive root of the equation:

( )å
+

=
=
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a S
1. 29

i

i
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3 2

a
2

Thus, given the relation ( ) ( ) [ ( ) ( ) ¯ ( )]/f p r= F D t a t G tx x 4 2 ,
between the linear gravitational potential f(x) in Equation (1)
and the usual peculiar gravitational potential Φ(x), the Hessian
of Φa(x) at the COM of the protohalo, x, of modulus r leads to
the tidal tensor (see Appendix B):
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As can be seen, this tensor, which is proportional to δa, is also
Lagrangian (it does not depend on t) and independent of ti (it is
only a function of tc; see Equation (2)).

Let us come back to mass defaults also contributing to the
torque. For the reasons explained in Section 2.4, the preceding
derivation for mass excesses (and peaks) also holds for mass
defaults (and holes), with the only difference that, in the latter
case, δa and 〈xa〉 are negative. Since the number density
contrast of peaks with positive δ at R is δpk = B1(R, |ν|)δ m and
that of holes with negative δ at R is δh = −B1(R, |ν|)δ m (see
Equation (13)), the peak–hole cross-correlation is given by

( ) ( ∣ ∣) ( )x n x= -r B R r,pk h 1
2 . Consequently, the probability of

finding an authentic large-scale mass excess or default, from
now on simply a torque source, with δa at Ra at a distance r
from the protohalo is Pa(Ca|δ, R, r), given by Equation (26), but
a factor of 2 higher and no bias term arising from the
correlation between sources because the peak–peak correlation
exactly cancels with the peak–hole one, i.e.,

( ∣ ) ( ) ( )d p n= P C r R r C R, , 8 , , . 31a a
2

pk a

The fact that the protohalo–torque source correlation vanishes
when both peaks and holes are taken into account is well
understood: given a peak, the probability of finding other peaks
in its neighborhood is higher than the average, but the
probability of finding holes is lower, and both effects balance
each other. This result has important consequences in the next
calculations.

6. Protohalo AM

Given a protohalo of mass M and collapse time tc (or with δ
and R), the components, in a Cartesian reference system with
the origin at its COM, of its Lagrangian AM with respect to that
point due to the torque of one source only is (Equation (1))

[ ] [ ] ( )= -J A T A AIA , 32i ijk jl lka a a a
T T

where I and Ta are the Lagrangian inertia tensor of the
protohalo and the Lagrangian tidal tensor due to that torque
source, both oriented along their own axes, given in Sections 4
and 5, respectively, and A and Aa, with the index T denoting
transposition, are the rotation (or direction cosine) matrices that
reorient them along the reference system. Therefore, to find the
typical AM of protohalos, we must sum up the contribution of
every single torque source in a given configuration and average
the result over all possible configurations (mutual separations,
shapes, and orientations of all objects). This task may seem
unfeasible, but, as shown next, the absence of correlation

between the protohalo and the torque sources and between
torque sources themselves makes it possible.
The torque strength of individual sources behaves as

( )/dR r ra
3

a R
3, with Ra bounded to [ ( ) ]dR R r rmin , ,max R , so,

for fixed δa, the strength decreases with increasing r or stays at
most constant for torque sources at small r. And, since

( )/d d= R R m
a a decreases with increasing Ra, the strongest
torque source is necessarily the closest one to the protohalo, at
a separation smaller than the typical mean separation between
sources, so it satisfies Ra = rRr or, equivalently, =R ra

th . This
result will be used to simplify the form of the tidal tensor
(Equation (30)), but, what is more important here, it greatly
simplifies the integration of the contributions of all sources in
one configuration of the system and the average over all
configurations.
Given that the N-point correlations vanish,7 all objects are

uncorrelated. Therefore, they are randomly distributed around
any particular subsystem, such as the one formed by the
protohalo and the nearest torque source, so, when averaging
over all configurations with a fixed protohalo–nearest torque
source subsystem, the added torques of all the remaining
sources cancel. We may thus concentrate on averaging over all
possible configurations of the protohalo–nearest torque source
subsystem only.
The probability of finding the nearest torque source with Ca

at a distance r from the protohalo is the probability of finding
one such torque source inside r times the probability that there
is none at smaller separations (see Equation (31)):

( ∣ ) ( )

( ) ( )

d p n
p

n

=

´ -
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, , 8 , ,

1
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3
, , . 33

st a
2

pk a

3
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Therefore, the joint PDF of the protohalo–nearest torque source
properties to be used in the average of Ja given by
Equation (32) (though referring to the nearest torque source)
over all configurations of this subsystem is PE(αa, βa, κa)
PE(α, β, κ) times

( ∣ ) ( ∣ ) ( ∣ ) ( )d d d=P C C r R P C r R P C R, , , , , , , 34st a st a pk

with Ca = (ea, pa), C = (e, p), and the conditional probabilities
Ppk and Pst given by Equations (18) and (33), respectively.
We will start by averaging Ja over the uncorrelated

orientations of the protohalo and the nearest torque source,
i.e., over the Euler angles α, β, κ and αa, βa, κa. We must not
average, of course, the components J ia themselves, but the
modulus of Ja. However, by the isotropy of the Universe, the
average of any component J ia must be the same, implying
á ñ = á ñJ J3 ia

2
a

2. Consequently, the average modulus can be
calculated from the average of any given component. The
resulting AM is (Appendix C)
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7 The extension of the two points to N > 2 involves the reduced N-point
correlations, which, in cases of peaks, are written down approximately as N− 1
products of two-point correlations (e.g., Y. Suto & T. Matsubara 1994).
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where r̄0, H0, and Ω0 are the current mean cosmic density, the
Hubble constant, and the matter density parameter, respec-
tively, and H(ea, pa) is a function of the ellipticity and
prolateness of the torque source, given by Equation (C7) with

=R ra
th . We remark that the factor δ = δ(tc, ti) arises from the

peculiar densities of torque sources, written in terms of the
density contrast of the protohalo, and the factor M5/3 arises
from the inertia tensor.

Then, averaging over the ellipticity and prolateness of the
protohalo and of the nearest torque source, we arrive at
(Appendix D)
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is time-invariant and weakly dependent on M.
Last, we must average over all possible separations r of the

nearest torque source for Pst(r|δ, R) given by Equation (34),
with no Ca and C arguments, since they are already averaged,
i.e.,

( ∣ ) ( ) ( ) ( )d p n
p

n= - P r R r R r R, 8 , 1
8

3
, . 38st

2
pk

3
pk⎡

⎣
⎤
⎦

That is, we must perform the integral
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where we have taken into account that the minimum scale of
the torque source is the scale R of the protohalo, so that the
minimum possible value of r is 2Rth. In Equation (39), rone is
the radius of the sphere centered at the COM of the protohalo
that harbors one main torque source, the solution of the implicit
equation
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At this point, it is worth mentioning that following the
previous derivation for protohalos conditioned to lie in a
background δ m at scale R m > 3R instead of for unconditioned
ones, we would have been led to Equation (40) with the torque
source number density pk including an additional term
proportional to νδ m/σ0 for peaks and another for holes (see
E. Salvador-Solé et al. 2024). But since ν has the opposite sign
in peaks and holes, those additional terms would cancel and
rone/R

th would remain the same. The reason for this is simple:
in overdense backgrounds, there are more peaks, but also less
holes, and conversely in underdense backgrounds. The result
that rone does not vary with background density was used in

E. Salvador-Solé et al. (2024), in the study of the secondary
bias of halo AM.8

In Figure 1, we plot rone/R
th in the Planck 14 cosmology

(Planck Collaboration et al. 2014) and for virial masses where
rσ and rR are time-independent. rone/R

th is kept quite constant
(∼2.1), except at the high-mass end, where the halo number
density falls off and the typical separation rapidly increases.
Similar results are obtained for other cosmologies and mass
definitions.
The final average of Equation (39) leads, to leading order in

1 − 2Rth/rone = 1, to the desired expression of the mean
Lagrangian protohalo AM:
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Note that J does not depend on ti, because rone/R
th is

independent of it (Equation (41)) and δ stands for ( )d =t t,c i

( ) ( ) ( ) ( )/ddr t t D t D tc c
th

c i c (Equation (2)).
The predicted mean Lagrangian AM (Equation (42)) is

shown in Figure 2 for the same cosmology and mass definition
as in Figure 1. As can be seen, J is very nearly proportional to
M5/3, as found in simulations (e.g., J. Barnes & G. Efstathiou
1987; SSK00), regardless of whether n is taken as equal to the
effective spectrum index or with a running value dependent on
mass according to the CDM spectrum. This shows that the
prediction is little sensitive to the power-law approximation.
Similar results are obtained for other cosmologies (with CDM
and power-law spectra) and halo mass definitions.
The theoretical Lagrangian AM is compared in Figure 3 to

the results of simulations carried out by SSK00 in the EdS

Figure 1. Maximum separation between the COMs of the protohalo and the
main tidal torque source, in units of the protohalo (top-hat) radius, as a function
of the halo virial mass in the Planck 14 cosmology. Shown are the solutions
obtained with fixed n equal to −1.75 (violet line) and running n(M), drawn
from the relation γ2 = (n + 3)/(n + 5) holding for power-law spectra, with the
accurate spectral coefficient γ(M) (red line).

8 The detailed form of the function g(γ, γν) announced in that paper is to be
replaced by the right one derived here.
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(H0 = 50 km s−1 Mpc−1) cosmology.9 Specifically, the
“empirical” Lagrangian J(M) relation corresponds to the best
power-law fit to the Eulerian J(M) relation of simulated halos in
the sample best suited to the comparison, the so-called
LG > 200 catalog, whose objects evolved without undergoing
major mergers, as implicitly assumed in our theoretical model,
and have more than 200 dark matter particles, so that their AM
is well determined, while they are still numerous enough to

have good statistics. The best power index of the Eulerian J(M)
relation found by SSK00 for this halo sample is 5/3 (see their
Table 6). The zero-point of this relation is not explicitly
provided by these authors, but it can be estimated from their
Figures 15 and 7. Indeed, as can be seen in their Figure 15, the
relations with slightly different power indices fitting the AM of
the different halo samples basically pivot around a point at the
center of the mass range10 near a halo of the LG sample,
marked with a triangle, lying beside another halo marked with a
cross. Thus, we have adopted its AM J ≈ 1015Me kpc2 Gyr−1

(Figure 15) and mass M = 7 × 1011 Me (Figure 7) as a fair
estimate of the desired zero-point. SSK00 identified halos at t0
using the Friends-of-Friends algorithm with linking length
b = 0.075, which led to a limiting (local) overdensity of
∼1000. Since the halo mass definition resulting from this
procedure differs from the usual ones, we have converted the
masses in the J(M) relation derived by SSK00 to virial masses.
To do this, we have taken into account that, for halos that are
approximately isothermal, the linking length used leads to a
mean inner overdensity of Δ ∼ 3400 (see, e.g., Equation (3) of
E. Juan et al. 2014b), i.e., ∼20 times the virial overdensity
Δ vir = 178. Thus, their virial radius is~ 20 times larger than
the actual radius at the limiting overdensity of 1000, implying a
virial mass 4.5 times larger.11 The J(M) relation of simulated
halos so obtained refers to the Eulerian AM at the present time
t0. But, as mentioned by SSK00, the AM of objects stays fixed
after the turnaround, so this J(M) relation also holds at the
mean turnaround time tta = 1.51 ± 0.61 Gyr of halos in that
sample. Thus, dividing the Eulerian AM by the factor

( ) ( ) ( )/=a t D t H t3 22
ta ta 0

2
ta, we have obtained the corresp-

onding Lagrangian relation plotted in Figure 3. On the other
hand, the theoretical Lagrangian relation plotted in the same
figure has been derived using Equation (42) in the EdS
cosmology with the appropriate mean collapse time
tc = 3.01 ± 1.05 Gyr (SSK00).
As can be seen in Figure 3, the theoretical relation overlaps

with the numerical one (it is just a factor of 1.05 larger). Of
course, the theoretical relation is a leading-order approximation
and the empirical fit to the simulated data and the mass
conversion applied to it are affected by a substantial error, so
we must not attach too much importance to that almost full
matching. But, in any event, it is clear that the predicted typical
protohalo AM agrees with the AM of simulated objects. In fact,
it agrees even better than found by SSK00 from the direct
application of Equation (1), where a factor of ∼3 difference
was observed. Both theoretical predictions are based on TTT,
but, while applying Equation (1) requires the smoothing of the
deformation tensor, Equation (42) directly uses the potential Φa

of mass fluctuations associated with the peaks of the
corresponding scales larger than R. This suggests that the
departure of a factor of ∼3 between the predictions of TTT and
the results of the simulations reported by SSK00 could simply
arise from such an uncertain smoothing.
Finally, we can also calculate the median protohalo AM,

Jmed. The Euler angles have flat PDFs and do not enter Jmed.
The uncorrelated PDFs of the ellipticities and prolatenesses of
the protohalo and the nearest torque source are Gaussian, so
their median values are equal to their means. Last, the median

Figure 2. Mean Lagrangian protohalo AM (the same lines as in Figure 1) as a
function of the virial mass of current halos in the Planck 14 cosmology
compared to the best J ∝ M5/3

fit (black dashed line).

Figure 3. Comparison of the predicted mean Lagrangian protohalo AM to that
found in simulations by SSK00 in the EdS cosmology with
H0 = 50 km s−1 Mpc−1.

9 C. Porciani et al. (2002a) do not provide enough information to carry out
this comparison.

10 The scatter increases, indeed, from there, where it is particularly small,
toward the high- and low-mass ends.
11 Such a mass conversion is little sensitive to the exact scale-free density
profile assumed (e.g., for a logarithmic slope of −2.5, the factor would be 4.4).
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separation, rmed, is given by the value of r for which the
cumulative PDF ( ( )p n d» r8 ,2

pk ; Equation (38)) is one half,
i.e., the solution of the implicit equation
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implying rmed ≈ rone to leading order in 1 − 2Rth/rone.
Plugging these median values of all arguments in the
nonaveraged protohalo AM (Equation (35)) and taking into
account that ( )/ gná ñ »x r R m

a
th is substantially smaller than 6/

5 (as in Appendix D), we are led to a Jmed equal to J at the
present order of approximation.

7. Summary and Discussion

We have derived the typical Lagrangian protohalo AM
predicted by TTT within the peak model of structure formation.
This has been done by following a novel approach that splits
the global tidal tensor into the contributions of individual
neighboring mass fluctuations. The interest of this procedure is
that it allows one to average the AM of protohalos of mass M
collapsing at tc in a fully analytic manner, which leads to a
practical simple expression of this AM and facilitates the
traceability of its functionality.

Specifically, after characterizing the positive and negative
mass fluctuations of all scales contributing to the global torque,
and taking into account the correlation between them and with
the protohalo, we have integrated the AM they cause and
averaged over all configurations of the system. This has led to
the following simple expression of the mean (and also the
median) Lagrangian protohalo AM:
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where r̄0, H0, and Ω0 are the present mean cosmic density,
Hubble constant, and matter density parameter, respectively;
m = −(n + 3)/2, where n is the real or effective power-law
index of the power spectrum; D(t) is the cosmic growth factor;
g(γ, γν) is a weak function of M given by Equation (37);
rδ(t) ≈ a(t)/D(t) is the ratio between the critical density contrast
for ellipsoidal collapse at t and its spherical counterpart

( )d »t 1.686c
th ; and rone/R

th ≈ 2 is the separation between the
COMs of the protohalo and the main torque source, scaled to
the protohalo top-hat scale.

But the main difference between the theoretical protohalo
AM derived here from previous similar ones (A. Heavens &
J. Peacock 1988; Y. Hoffman 1988; P. Catelan &
T. Theuns 1996a) is that it is based on the accurate protohalo
mass and ellipsoidal collapse time provided by CUSP. In the
absence of this information, ellipsoids were delimited by
adopting a fixed isodensity contour, which led to protohalo
semi-axes ai ∝ ν1/2, masses M ∝ ν3/2, and AM J ∝ ν5/2. In
addition, the Gaussian height ν of protohalos collapsing at tc
could not be related to its top-hat counterpart νth, so the relation
M ∝ ν3/2 could not be compared to the well-known M(νth)
relation arising from the power spectrum. Instead, using the
accurate protohalo mass and collapse time of Gaussian peaks,
we have obtained ν ≈ (rδ/rσ)ν

th ∝ νth, so M ∝ ν3/2 is
equivalent to ( ) /nµM th 3 2, which is inconsistent with the

( ) ( )/nµ +M nth 6 3 arising from (real or approximate) power-law
spectra.
In the present derivation, ellipsoids have been delimited in

the usual (consistent) way: from the mass, shape (set by the
ellipticity and prolateness of the associated peaks), and density
of linear protohalos. This has led to protohalo semi-axes
ai ∝ Rth, masses ( )µM Rth 3, and AM ( )µJ Rth 5, implying that
the relation J ∝ M5/3 found in simulations directly arises from
the inertia tensor of individual protohalos. (In previous works,
it was thought to be a statistical relation, as found by comparing
the average AM of protohalos of all heights collapsing at a
fixed time with the average of different powers of M.)
This intrinsic origin of the J ∝ M5/3 relation contradicts the

common belief that it is a consequence of the halo bias: the
more massive (proto)halos are, the larger their AM, because
they are more clustered and suffer stronger torques. Halo
clustering is responsible, indeed, for the secondary bias of their
AM (E. Salvador-Solé et al. 2024), but not for the J ∝ M5/3

relation. Even though peaks are correlated, holes are antic-
orrelated by the same strength with respect to protohalos, so the
average torque due to neighboring positive and negative mass
fluctuations is the same everywhere, i.e., clustering does not
affect the AM of (proto)halos.
The validity of the protohalo AM predicted here (and its

physical consequences) has been checked against simulations.
This is important, because it is the first time that the typical
protohalo AM predicted by TTT in the peak model has been
compared to simulations. Previous similar predictions were not,
because, as mentioned, their format was little practical and
numerical studies aimed at checking the validity of TTT (SSK00;
C. Porciani et al. 2002a) preferred to directly use Equation (1).
The result of the comparison has been that the protohalo AM
given by Equation (44) is in good agreement with the AM of
simulated objects, even better than found from Equation (1) with
an uncertain smoothing of the deformation tensor.
Since the Eulerian protohalo AM grows through the factor
a D2 until about turnaround and then freezes out, we could use

the predicted Lagrangian AM together with the accurate
ellipsoidal collapse time to estimate the final AM of halos.
But we can do better and also take advantage of CUSP
providing the clues for properly addressing the effects of shell
crossing and halo mergers (E. Salvador-Solé et al. 2012a;
E. Salvador-Solé & A. Manrique 2021). This will allow us, in
Paper II, to clarify how the AM freezes out in accreting halos
collapsing monolithically though not homogeneously, to derive
the AM of ordinary halos having undergone major mergers,
and to infer the typical inner rotational properties of halos.
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Appendix A
Probability of Finding a Density Contrast near to a

Protohalo

The probability function of finding a point with d ¢ at a
distance r from a peak with δ and C in the density field
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Gaussian-smoothed on the scale R of the peak is normal, with
mean (BBKS)
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where ψ is the matter correlation function ξ(r) at scale R
normalized to ξ(0) and y¢ is its r-derivative (in BBKS, the
separation r is in units of Rå). As discussed in BBKS, for high
peaks (massive halos), 〈x〉 approaches γν, and the gradients of
ψ can be neglected in front of unity and ψ, which is of order
unity when r is small (of order R). Consequently, 〈[Δδ(r)]2|C]〉
approaches ˆ [ ]s s yº - »1 00 0

2 2 and 〈δ(r)|C〉 essentially
becomes δψ ≈ δ.

Therefore, the conditional probability ( ∣ )d d¢P R r C R, , , , in
Equation (24) approaches
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where ( )d d d-¢D is the Dirac delta. Note that the properties C
and the separation r do not appear in the final approximate
expression, because they do not correlate with other properties,
so ( ∣ )d d¢P R r C R, , , , becomes ( ∣ )d d¢P R R, , .

Appendix B
Tidal Tensor

Given that the linear gravitational potential f entering
Equation (1) is [ ( ) ( ) ¯ ( )]/ p rD t a t G t1 4 2 times the usual peculiar
gravitational potential Φ (Equation (27)), the Hessian of Φ at a
point x from the torque source leads to the following tidal
tensor:
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where δij is the Kronecker delta and Δ[S(x)] is given by
Equation (28), but with s replaced by S(x) defined in
Equation (29).

The relation ( )=a a a Ra1 a2 a3 a
th 3 implies that the semi-axes of

the putative ellipsoidal isodensity contours at x with modulus r

are /r Ra
th times the real semi-axes of the torque source.

This implies in turn that /å = x ak k k1
3 2

a
4 = ( )/ /å =r R a1k ka

th 2
1

3
a
2 =

[ ( ) ]/ /sá ñ Lr R xa
th 2 2

a 2a a and ( ) ( )D = R0 a
th 3. On the other hand,

taking into account that the ellipticity and prolateness of peaks
are moderate (BBKS), so that ( )/ /»S a S Ria

2
a
th 2, we have

( ) ( )» -xS r R2
a
th 2, Δ[S(x)] = r3, and ( ) ( )D = R0 a

th 3. Conse-
quently, the tidal tensor at the COM of the protohalo takes the
form
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In Equation (B2),
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which, given that the ellipticity and prolateness of large-scale
peaks are moderate (BBKS), becomes
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Appendix C
Average over Orientations

Since for any spatial configuration of the protohalo–torque
source subsystem, there is another one yielding an AM with the
same modulus and opposite sign, the average of ∣ ∣J ia must be
carried out over half the whole composite solid angle ( )p8 2 2 sd.
Since the averages over the two sets of Euler angles may be

carried out independently, we can start by averaging over α, β,
and κ in the whole solid angle 8π2 sr. The scaled inertia tensor
(Equation (20)) then becomes
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i
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and the component i of the AM reads
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with i, j, and k in the usual cyclic order.
Since the principal axes of I may not coincide with those of

Ta, regardless of the orientation of Ta, we may assume
i - i º -a aj k k j

2 2 in Equation (C2), equal to -a a3
2

1
2. This

is very convenient, because then we simply have (see
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Equations (22)–(23))
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to first order in e and |p| (for peaks of galactic mass,
0 < e  0.3 and |p|  0.1), in which case Λ/(〈x〉σ2) ≈ 1/3.

Consequently, we are led to
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in terms of the ellipticity and prolateness of the peak associated
with the protohalo.

We must now average over the Euler angles αa, βa, and κa in
8π2/2 sr from any arbitrary initial orientation of the position
vector ra of the COM of the protohalo (e.g., in the aai
direction). After a lengthy calculation, and taking into account
Equation (22), we arrive at the following average of
[ ]A T Aa a a

T
23, with Ta given by Equation (30):
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where we have taken into account ( )/d d= R R m
a a . Given the

equalities ˆ ( )/= + +-a p e1 3 31
2 , ˆ ( )/= --a p1 2 32

2 , and
ˆ ( )/= + --a p e1 3 33

2 , we can write H(aai) in terms of ea and
|pa|. To first order in these quantities, so that Λa/(〈xa〉σ2a)
≈ 1/3, we obtain
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Having performed these averages, the (positive) average of
the first Cartesian component of the Lagrangian protohalo AM
takes the form

( ) ( ) ( )( ) ( )

( )

¯

/ /

/
/

á ñ º áá ñ ñ »

´ -

a b k a b k p

r d

W
J J

H e p p e, 1 2 , C8

G M

D t H

R

r

R

R

m

a1 a1 , , , ,
0.040

3

3

a a

a a a 4 3 2 3
0

1 3
5 3

i 0
2

0

a
th

a

where H0 and Ω0 are the current Hubble constant and the matter
density parameter, respectively, implying an average modulus
of the Lagrangian AM equal to
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And, in the case of the nearest torque source, we must take
=R ra

th (Section 6).

Appendix D
Average over Ellipticities and Prolatenesses

Given the uncorrelated ellipticity and prolateness PDFs
(Equation (17)), the averages of Ja given by Equation (C9) over
the ellipticity and prolateness of the protohalo and the nearest
torque source lead to

( )
( ) ( )

( )

¯

/ /

/
/

»

´ + á ñ + á ñ - á ñ á ñ
p

r d

W
J

p e p e1 0.116 2.287 2 . D1

G M

D t H

R

R

m
a

0.107

3

a a

5 6 2 3
0

1 3
5 3

i 0
2

0

a

Last, expressing 〈e〉, 〈ea〉, and 〈pa〉 as functions of 〈x〉 and 〈xa〉
and taking into account that—for large masses, as is the case
particularly for torque sources—〈xa〉 is approximately equal to
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