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Abstract: The measured non-zero value of a Cosmological Constant (CC), Λ, has been the
source of many theoretical discussions at the core of the concordance ΛCDM. The identification of
the value of Λ/(8πG) in the gravitational action with the vacuum energy density (VED) leads to
a huge discrepancy between theory and observations, due to ∼ m4 contributions (for any quantum
field with mass m) and forces an absurd fine-tuning of the parameters. Running Vacuum Models
(RVM), characterized by a dependence of the VED with even powers of the Hubble rate, offer a
possible solution to this fine-tuning problem. Phenomenologically, even though the ΛCDM model
has been an observational triumph for some time, precision measurements of CMB, BAO, SNIa,
LSS and other sources currently threaten its validity because of tensions around the observational
values of H0 and σ8. In this context, the RVM proposal predicts an evolving behaviour that might
help alleviate these tensions. The aim of this work is to expose how the method of adiabatic
renormalization in curved spacetime applied to a quantized scalar field non-minimally coupled to
gravity reproduces the dynamical VED of the RVM, ρvac(H). We find how in the recent universe
this VED deviates from the CC through a mild component ∼ νH2, with |ν| ≪ 1, accompanied with
a logarithmic running of the gravitational coupling G(lnH). We also study the impact of quantum
effects in the equation of state of the vacuum, which is no longer wvac = −1. Finally, we verify
how the higher order O(H4) contributions may be responsible for a genuinely new mechanism of
inflation in the early universe, called RVM-inflation.

Resum: La detecció d’una Constant Cosmològica Λ diferent de zero ha estat la font de moltes
discussions teòriques al nucli del Model Estàndar Cosmològic (ΛCDM). La identificació del valor de
Λ/(8πG) en l’acció gravitatòria amb una densitat d’energia del buit (VED) condueix a un desajust
enorme entre teoria i observacions, degut a contribucions ∼ m4 (per tot camp quàntic de massa m),
que ens obliga a afinar els valors dels paràmetres d’una manera absurda. Els “Running Vacuum
Models” (RVM), caracteritzats per una dependència de la VED en potències parelles de la funció
de Hubble, ofereixen una possible solució a aquest problema d’ajust fi. Des d’un punt de vista
fenomenològic, tot i que el model ΛCDM ha estat un triomf observacional, mesures de precisió del
CMB, BAO, SNIa, LSS i altres amenacen la seva validesa degut a les tensions al voltant dels valors
de H0 i σ8. En aquest context, els RVM prediuen una evolució que pot ajudar a mitigar aquestes
tensions. L’objectiu d’aquest treball és exposar com el mètode de renormalització adiabàtica en
espaitemps corbat aplicat a un camp escalar quantitzat i acoblat a la gravetat reprodueix la VED
dinàmica ρvac(H) del RVM. Trobem com en l’univers recent aquesta VED es desvia del valor constant
a través d’una component suau ∼ νH2, amb |ν| ≪ 1, acompanyat d’una evolució logaŕıtmica de
l’acoblament gravitacional G(lnH). També estudiem l’impacte dels efectes quàntics en l’equació
d’estat del buit, que ja no és wvac = −1. Finalment, verifiquem com les contribucions O(H4) poden
generar un mecanisme genüınament nou d’inflació en l’univers primitiu, anomenat inflació RVM.
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I. INTRODUCTION

Ever since Einstein modified his gravitational field
equations to introduce the Cosmological Constant (CC)
term Λ, it has sourced uncountable discussions around
its nature. Although its original purpose was to allow
for a description of a static universe, the accelerated
expansion does not rule it out. The justification for
this constant Λ stems from the Bianchi identity of
the Riemann tensor, which implies ∇µGµν = 0. If the
gravitational coupling GN is a fundamental constant and
matter is covariantly conserved (∇µTµν = 0) we derive

∂µΛ = 0 as a mathematical statement. Once we accept
that its structure is allowed due to general covariance,
we must keep it unless there is a well-established reason
to discard it. The cosmological fit of parameters has
found that it takes a non-zero value [1] and hence we
must unravel what is the ultimate meaning of this term.
In fact, the natural interpretation is to regard it as part
of the matter content rather than a geometrical term:
dimensionally, one can associate it to a vacuum energy
density (VED) ρ0vac = Λ/(8πGN ) and interpret it as a
negative pressure fluid (Pvac = −ρvac). However, this
stumbles upon the difficulty of a consistent connection
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with quantum theory.

Following this line of thought, Zeldovich computed the
zero-point energy (ZPE) due to quantum fluctuations
of massive fields (vacuum-to-vacuum diagrams) [2], by
means of regularization with a UV-cutoff. A naive
renormalization of the VED enforces an intolerable
fine-tuning of the parameters induced by ∼ ℏm4 con-
tributions which are in huge disagreement with the
measured value ρ0vac ∼ 10−47 GeV4. Indeed, all particles
in the Standard Model (except for a neutrino in the
meV range) lead to discrepancies of several orders of
magnitude, establishing what is now known as the
CC problem. On top of this, the Higgs field also gets
involved in this conundrum, not only because of its huge
mass (M4

H ∼ 108 GeV4) but because of the vacuum
expectation value (VEV) of its potential.

Despite this discussion seems an insurmountable obsta-
cle, possible subterfuges are feasible. One can consider
a time-variable VED as long as the Bianchi identity is
protected with matter not being locally self-conserved
or with a time dependent coupling GN (t). In this sce-
nario, Running VacuumModels (RVM) offer a theoretical
picture for an H dependence based on Renormalization
Group (RG) arguments (see [3, 4]). The renormalization
scale M ∼ H is the natural choice in cosmology and the
RG equation up to O(H4) is

dρvac
d lnH2

=
1

(4π)2

∑
i

[
aiM

2
i H

2 + biH
4 +O

(
H6

M2
i

)]
,

(I.1)
where ai, bi are dimensionless coefficients related to the
β-functions and Mi the masses of the fields involved.
The specific coefficients must be computed from the
QFT context, but this general RVM comprises an
effective description for a dynamical VED.

On the phenomenological side, although the concor-
dance ΛCDM model has been a successful framework
for decades, it also suffers from more practical issues.
Observational tensions emerging from precision mea-
surements of structure formation (σ8) and the H0 value
(from cosmic distance ladder and CMB) call into ques-
tion the simplicity of ΛCDM. Exploring beyond-ΛCDM
alternatives such as RVM becomes a necessity that might
hopefully mitigate these tensions as well as enlighten the
theoretical inconsistencies [5].

In this report, we focus on the adiabatic renormaliza-
tion of a scalar field that is non-minimally coupled to
gravity. In the semiclassical approach to QFT in curved
spacetime, we use a Wentzel-Kramers-Brillouin (WKB)
expansion of the field modes in a Friedmann-Lemâıtre-
Robertson-Walker (FLRW) background. In Section IIA,
we compute the VEV of the energy-momentum tensor up
to fourth adiabatic order and in Section II B we describe
the off-shell renormalization prescription. In Section IIC

we consistently obtain the expected result for Minkowski
spacetime. These computations enable us to derive the
Equation of State of the vacuum from the trace of the
energy-momentum tensor in Section IID, where we dis-
cover that quantum corrections make it deviate from the
canonical value wvac = −1. The running of the VED in
the recent universe is explored in Section III, where we
describe the low energy regime and the running of the
gravitational coupling. In Section IV, we dwell upon how
this dynamical VED behaves in the high energy regime,
which has implications in an inflationary scenario.

II. RENORMALIZATION OF THE VACUUM
ENERGY DENSITY

We will consider the calculation of the vacuum energy
density (VED) due to a scalar field non-minimally cou-
pled to gravity in a FLRW spacetime. The Einstein-
Hilbert action for gravity plus matter is

SEH+m = SEH+Sm =

∫
d4x

√
−g

(
1

16πG
R− ρΛ

)
+Sm ,

(II.1)
where ρΛ is a bare constant at this stage. By varying
this action with respect to the metric gµν , one obtains
Einstein’s equations

1

8πG
Gµν ≡ 1

8πG

(
Rµν − 1

2
gµνR

)
= −ρΛgµν + Tm

µν .

(II.2)
Here, Tm

µν is the energy-momentum tensor (EMT) of mat-
ter:

Tm
µν = − 2√

−g

δSm

δgµν
. (II.3)

A. Adiabatic expansion for a real scalar field

The action for a non-minimally coupled real scalar field
with mass m is

Sϕ = −
∫

d4x
√
−g

(
1

2
gµν∂µϕ∂νϕ+

1

2
(m2 + ξR)ϕ2

)
,

(II.4)
where ξ is the non-minimal coupling to gravity. It is
well-known that for ξ = 1/6 and m = 0, this action is
conformally invariant. This field satisfies a Klein-Gordon
equation in curved spacetime (□−m2−ξR)ϕ = 0, where
□ϕ = gµν∇µ∇νϕ. The EMT for this matter action reads:

Tϕ
µν = (1− 2ξ)∂µϕ∂νϕ+

(
2ξ − 1

2

)
gµν∂

σϕ∂σϕ

− 2ξϕ∇µ∇νϕ+ 2ξgµνϕ□ϕ+ ξGµνϕ
2 − 1

2
m2gµνϕ

2 .

(II.5)
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It will be useful to use the FLRW metric with con-
formal time τ =

∫
dt/a, where t is cosmic time and

a the scale factor, so the line element becomes ds2 =
a2(τ)ηµνdx

µdxν (conventions described in Appendix A).
We will denote derivatives with respect to conformal
time as ′ ≡ d/dτ , so the Hubble rate in conformal time
H(τ) ≡ a′/a is related to the usual one H(t) = ȧ/a (with
˙≡ d/dt) as H(τ) = aH(t). The Klein-Gordon equation
in these coordinates becomes:

ϕ′′ + 2Hϕ′ −∇2ϕ+ a2(m2 + ξR)ϕ = 0 . (II.6)

We can expand in Fourier modes

ϕ(τ,x) =

∫
d3k

(2π)3/2
[
Ake

ik·xϕk(τ) +A∗
ke

−ik·xϕ∗
k(τ)

]
.

(II.7)
With a convenient rescaling φk = aϕk and defining
ω2
k(m) ≡ k2+a2m2, the Klein-Gordon equation simplifies

to

φ′′
k +

(
ω2
k(m) + a2(ξ − 1/6)R

)
φk = 0 . (II.8)

Until this point, we have treated the field ϕ as classical.
We can study quantum fluctuations of the field around a
background value ϕb:

ϕ(τ, x) = ϕb(τ) + δϕ(τ, x) . (II.9)

Now, one can identify the vacuum expectation value
(VEV) of the field with the background value:
⟨0|ϕ(τ, x) |0⟩ = ϕb(τ). For this to be consistent, the VEV
of the fluctuation must vanish ⟨δϕ⟩ ≡ ⟨0| δϕ |0⟩ = 0, but
not necessarily the VEV of bilinears ⟨δϕ2⟩ ≠ 0. There-
fore, the zero-point energy (ZPE) of the field can be de-
fined as the vacuum contribution of the fluctuations in
the EMT, ⟨T δϕ

µν ⟩ ≡ ⟨0|T δϕ
µν |0⟩. In the r.h.s. of Eq. (II.2),

besides the EMT, there is the parameter ρΛ, which can
be regarded dimensionally as some energy density that
is not included in the matter content Tm

µν . Therefore the
complete vacuum contribution must include both terms:

⟨T vac
µν ⟩ = −ρΛgµν + ⟨T δϕ

µν ⟩ . (II.10)

We quantize the field by promoting the Fourier coeffi-
cients of the fluctuating part to creation-annihilation op-
erators:

δφ(τ,x) =

∫
d3k

(2π)3/2

[
Ake

ik·xhk(τ) +A†
ke

−ik·xh∗
k(τ)

]
,

[Ak, A
†
k′ ] = δ(k− k′) , [Ak, Ak′ ] = 0 .

(II.11)

Inserting this in Eq. (II.8), one finds that the frequency
modes obey

h′′
k +Ω2

k(τ)hk = 0 , Ω2
k ≡ ω2

k(m)+a2(ξ− 1/6)R .
(II.12)

There is no general solution to this equation, so we may
use an approximation based on recursive self-consistent

iteration. Following the procedure described in [6, 7], we
start with an ansatz

hk(τ) =
1√

2Wk(τ)
exp

(
−i

∫ τ

dτ̃Wk(τ̃)

)
, (II.13)

and we obtain

W 2
k (τ) = Ω2

k(τ)−
1

2

W ′′
k

Wk
+

3

4

(
W ′

k

Wk

)2

, (II.14)

which can be solved via a WKB expansion (valid for large
k and weak gravitational fields, so it is appropriate to
study UV-divergences). In the context of the adiabatic
regularization procedure, this asymptotic expansion is
organized in different adiabaticity orders. In general,
each time derivative increases by one the adiabaticity
order (for example, k2 and a2 are of adiabatic order 0;

H = a′

a of order 1; a′′, (a′)2, H′ and H2 of order 2).
With the aim of computing the vacuum expectation
value (VEV) of the EMT, we must define what we mean
by the vacuum state, since we are in curved spacetime
and a particle interpretation is not as straight-forward
as in Minkowski. The mode functions are not e±iωkτ ,
so one cannot define particles with a definite frequency.
A useful definition is the adiabatic vacuum [8], which
is annihilated by all the operators Ak (Ak |0⟩ = 0 ,∀k).
Instead of the exact modes, we are using modes that
match the exact solution up to some adiabatic order.
Thus, the vacuum we will use can be understood as an
adiabatic approximation to the vacuum.

In this work, we will restrict ourselves to order 4, so

Wk = ω
(0)
k + ω

(2)
k + ω

(4)
k + ... , (II.15)

where the absence of odd-order terms is due to general
covariance of the theory (and of the effective action). In-
deed, every curvature invariant that we can construct will
only depend on terms with an even number of derivatives
of the scale factor a (for example the Ricci scalar in a gen-

eral FLRW is R = 12H2+6Ḣ). We will follow an off-shell

prescription, so that ωk ≡ ωk(τ,M) =
√
k2 + a2(τ)M2,

where M is an arbitrary mass scale at this stage. Work-
ing out the different orders by inserting Eq. (II.15) in
Eq. (II.14) recursively:

ω
(0)
k = ωk ,

ω
(2)
k =

a2∆2

2ωk
+

a2R

2ωk
(ξ − 1/6)− ω′′

k

4ω2
k

+
3ω′

k
2

8ω3
k

,

ω
(4)
k = − 1

2ωk

(
ω
(2)
k

)2
+

ω
(2)
k ω′′

k

4ω3
k

−
ω
(2)
k

′′

4ω2
k

−
3ω

(2)
k ω′

k
2

4ω4
k

+
3ω′

kω
(2)
k

′

4ω3
k

,

(II.16)

where ∆2 ≡ m2 −M2 is of adiabatic order 2. This does
not contradict M being of adiabatic order 0 because in
the off-shell case we must go to the next allowed order
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(i.e. 2) to account for ∆ ̸= 0. This is more transparent in

the expansionm =
√
M2 +∆2 = M+ ∆2

2M − ∆4

8M3 +O(∆6).
Although in this text we are only considering scalars,
this procedure has been extended in order to include
both fermions and bosons (see [9]). We can now com-

pute the ZPE, which is the 00-th component of the EMT

of the fluctuations. Up to adiabatic order 4 (T
δϕ(0−4)
00 ≡

T
δϕ(0)
00 + T

δϕ(2)
00 + T

δϕ(4)
00 ), moving to Fourier space and

integrating over angles [6, 7]:

⟨T δϕ
00 ⟩ =

〈
1

2
(δϕ′)2 +

(
1

2
− 2ξ

)
(∇δϕ)2 + 6ξH δϕδϕ′ − 2ξδϕ∇2δϕ+ 3ξH2 δϕ2 +

a2m2

2
(δϕ)2

〉
, (II.17)

⟨T δϕ
00 ⟩ =

1

4π2a2

∫
dkk2

[
|h′

k|
2
+ (ω2

k + a2∆2)|hk|2 + (ξ − 1/6)
(
−6H2 |hk|2 + 6H

(
h′
kh

∗
k + h∗

k
′hk

))]
. (II.18)

⟨T δϕ
00 ⟩

(0−4)
=

1

8π2a2

∫
dkk2

[
2ωk +

a4M4 H2

4ω5
k

− a4M4

16ω7
k

(2H′′ H−H′2 +8H′ H2 +4H4)

+
7a6M6

8ω9
k

(H′ H2 +2H4)− 105a8M8 H4

64ω11
k

+

(
ξ − 1

6

)(
− 6H2

ωk
− 6a2M2 H2

ω3
k

+
a2M2

2ω5
k

(6H′′ H−3H′2 +12H′ H2)− a4M4

8ω7
k

(120H′ H2 +210H4) +
105a6M6 H4

4ω9
k

)

+

(
ξ − 1

6

)2(
− 1

4ω3
k

(72H′′ H−36H′2 −108H4) +
54a2M2

ω5
k

(H′ H2 +H4)

)]

+
1

8π2a2

∫
dkk2

[
a2∆2

ωk
− a4∆4

4ω3
k

+
a4 H2 M2∆2

2ω5
k

− 5

8

a6 H2 M4∆2

ω7
k

+

(
ξ − 1

6

)(
−3a2∆2 H2

ω3
k

+
9a4M2∆2 H2

ω5
k

)]
.

(II.19)

B. Off-shell renormalization of the VED

We employ an off-shell renormalization prescription,
where the renormalized EMT up to adiabatic order N
will be the on-shell value M = m up to order N minus
the off-shell value up to order n, with n the spacetime
dimension, in this case n = 4 ([6, 7]):

⟨T (0−N)
µν (x)⟩

ren
(M) = ⟨T (0−N)

µν (x)⟩ (m)−⟨T (0−n)
µν (x)⟩ (M) .

(II.20)
We only subtract up to adiabatic order n = 4 because
those are the UV-divergent terms. Higher adiabatic or-
ders result in integrals that are fully convergent, so there
is no reason for subtracting those finite contributions. In
our case, the 00-th component is given explicitly in Ap-

pendix A. After integration ([6, 7]), this yields

⟨T δϕ
00 ⟩

(0−4)

ren (M) =

=
a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
−
(
ξ − 1

6

)
3H2

16π2

(
m2 −M2 −m2 ln

m2

M2

)
+

(
ξ − 1

6

)2
9(2H′′ H−H′2 − 3H4)

16π2a2
ln

m2

M2
.

(II.21)

Recall that the total vacuum energy density contains also
a term with ρΛ. Writing the 00-th component of Eq.
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(II.10) more explicitly

ρvac(M) =
⟨T vac

00 ⟩ren (M)

a2
= ρΛ(M) +

⟨T δϕ
00 ⟩ren (M)

a2
,

(II.22)
where we will use the expression obtained up to adiabatic
order 4, Eq. (II.21):

ρvac(M) = ρΛ(M)

+
1

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
+

(
ξ − 1

6

)
3H2

16π2a2

(
M2 −m2 +m2 ln

m2

M2

)
+

(
ξ − 1

6

)2
9(2H′′ H−H′2 − 3H4)

16π2a4
ln

m2

M2
.

(II.23)

In terms of H and its cosmic time derivatives,

ρvac(M) = ρΛ(M)

+
1

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
+

(
ξ − 1

6

)
3H2

16π2

(
M2 −m2 +m2 ln

m2

M2

)
+

(
ξ − 1

6

)2
9(6H2Ḣ + 2HḦ − Ḣ2)

16π2
ln

m2

M2
.

(II.24)

As usual in renormalization works, it will be use-
ful to consider the subtraction of the VED at two dif-
ferent renormalization points, M and M0. Note that
given this off-shell renormalization prescription, includ-
ing higher adiabatic orders only adds new finite depen-
dence on m but not on M . Therefore, if we subtract two
scales all these finite contributions will cancel. When
relating two scales, we should account for the value of
ρΛ(M)− ρΛ(M0), where now this is a renormalized cou-
pling. We can write the generalized Einstein equations
in terms of the renormalized couplings as

M2
Pl(M)Gµν+ρΛ(M)gµν+α(M) (1)Hµν = ⟨T δϕ

µν ⟩ren (M) ,

(II.25)
where MPl is the reduced Planck mass and (1)Hµν a
higher-derivative tensor with coupling α(M). Subtrac-
tion of the 00-th component of Eq. (II.25) produces

⟨T δϕ
00 ⟩ren (M)− ⟨T δϕ

00 ⟩ren (M0) = −a2(ρΛ(M)− ρΛ(M0))

+(M2
Pl(M)−M2

Pl(M0))G00 + (α(M)− α(M0))
(1)H00 .

(II.26)

By comparing the structure on both sides, one can find

δρΛ(m,M,M0) ≡ ρΛ(M)− ρΛ(M0) =

=
1

128π2

(
M4 −M4

0 − 4m2(M2 −M2
0 ) + 2m4 ln

M2

M2
0

)
.

(II.27)

At a given cosmic time, it is reasonable to relate the
renormalization parameter with the Hubble rate [4].
From the RG approach (see Eq. I.1), this identification
is physically meaningful: FLRW spacetime is dynamical,
so M = H should act as a sensible running scale in a
cosmological context. Hence, we can subtract the VED
at two different points of the cosmic evolution by chang-
ing not only M but also H. In other words, the suitable
subtraction is ρvac(H,M = H) − ρvac(H0,M0 = H0) ≡
ρvac(H)− ρvac(H0):

ρvac(H)− ρvac(H0) =

=
3
(
ξ − 1

6

)
16π2

[
H2

(
H2 −m2 +m2 ln

m2

H2

)
−H2

0

(
H2

0 −m2 +m2 ln
m2

H2
0

)]
+ f4(H,H0, Ḣ, Ḣ0, Ḧ, Ḧ0,m) ,

(II.28)

where f4(H,H0, Ḣ, Ḣ0, Ḧ, Ḧ0,m) contains terms
O(H4)1. Note that every Hubble rate that appears in
f4 is accompanied at least by one derivative of it. In the
following subsections, this term will play no significant
role. On the one hand, in the low energy regime we
can neglect O(H4) contributions because they will be
subleading. On the other hand, in the inflationary
scenario we will discuss, the expansion is triggered by a
short period where H = constant, so the derivatives in
f4 will make it vanish.

C. Minkowski spacetime

In the particular case of Minkowksi, a = 1 and H =
H = 0, so all curvature terms vanish and we recover the
expected value of the fluctuations of a scalar field in flat
spacetime:

⟨T δϕ
00 ⟩ |Mink =

1

8π2

∫
dkk22ωk =

∫
d3k

(2π)3

(
1

2
ℏk
)

.

(II.29)
This serves as a consistency check for our procedure.
Note that Einstein’s equations in Minkowski simplify to

ρΛ(M)ηµν = ⟨T δϕ
µν ⟩

Mink

ren
(M) , (II.30)

where we have set gµν = ηµν . The 00-th compo-

nent shows ⟨T δϕ
00 ⟩

Mink

ren (M) = −ρΛ(M). Rearranging
this equation illustrates that the VED vanishes exactly,
“ρΛ+ZPE = 0”, as one should expect from normal order-
ing of the operators. The absence of gravity dynamics in
Minkowski makes M a quantity devoid of physical mean-
ing. Nothing can run with M in Minkowski.

1 This terms are O(H4) prior to the identification M = H. In
Eq. (II.28) there is a term H4 that only appears when one sets
M = H. We have not included it in f4 because this one is not
accompanied by derivatives, so it will not vanish if H = constant.
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D. Trace renormalization

One should not assume that the vacuum satisfies the
classical Equation of State (EoS) Pvac = −ρvac. To find
the EoS, we can treat the vacuum as a perfect fluid:

⟨T vac
µν ⟩ = Pvacgµν + (ρvac + Pvac)uµuν , (II.31)

where uµ is the 4-velocity of the fluid. Under the assump-
tion of isotropy, any spatial ii-th component of the EMT
will account for the pressure. Consider, for simplicity, the
11-th component in the conformal metric, T vac

11 = a2Pvac.
Hence, the renormalized value of the pressure is

Pvac(M) ≡
⟨T vac

11 ⟩ren (M)

a2
= −ρΛ(M) +

⟨T δϕ
11 ⟩ren (M)

a2
.

(II.32)
Notice that the isotropy condition allows to compute the
11-th component of the EMT with the 00-th component
that we have already computed and the trace:

⟨T δϕ
11 ⟩ren (M)

a2
=

1

3

(
⟨T δϕ⟩ren (M) +

⟨T δϕ
00 ⟩ren (M)

a2

)
.

(II.33)

We will use the same renormalization prescription for the
trace,

⟨T δϕ⟩ren (M) = ⟨T δϕ⟩(0−4)
(m)− ⟨T δϕ⟩(0−4)

(M) .
(II.34)

Start by taking the classical trace of the EMT tensor
from the expression Eq. (II.5):

T cl = (6ξ − 1)gµν∇µϕ∇νϕ+ 2(3ξ − 1)m2ϕ2

+ 6

(
ξ − 1

6

)2

Rϕ2 +

(
ξ − 1

6

)
Rϕ2 ,

(II.35)

and compute the VEV of the fluctuations:

⟨T δϕ⟩ =
〈
(6ξ − 1)gµν∇µδϕ∇νδϕ+ 2(3ξ − 1)m2δϕ2

+ 6

(
ξ − 1

6

)2

Rδϕ2 +

(
ξ − 1

6

)
Rδϕ2

〉
.

(II.36)

Following an analogous calculation as we did for the
00-th component, the trace can be found to be [7]:

⟨T δϕ⟩ = − (6ξ − 1)

a2

(
H2

(2π)3a2

∫
d3k|hk|2 +

1

(2π)3a2

∫
d3k|h′

k|
2 − H

(2π)3a2

∫
d3k(hkh

′
k
∗
+ h′

kh
∗
k)

)
+

(6ξ − 1)

a2
1

(2π)3a2

∫
d3kk2|hk|2 + 2(3ξ − 1)m2 1

(2π)3a2

∫
d3k|hk|2 + 6

(
ξ − 1

6

)2

R
1

(2π)3a2

∫
d3k|hk|2

+

(
ξ − 1

6

)
R

1

(2π)3a2

∫
d3k|hk|2

=
1

(2π)3a2

∫
d3k

(
−(6ξ − 1)

H2

a2
+ (6ξ − 1)

k2

a2
+ 2(3ξ − 1)m2 + 6

(
ξ − 1

6

)2

R+

(
ξ − 1

6

)
R

)
|hk|2

− (6ξ − 1)

a2
1

(2π)3a2

∫
d3k|h′

k|
2
+

(6ξ − 1)

a2
H

(2π)3a2

∫
d3k(hkh

′
k
∗
+ h′

kh
∗
k) .

(II.37)

Up to 4th adiabatic order [7],

⟨T δϕ⟩(0−4)

ren (M) =

=
1

32π2

(
3m4 − 4m2M2 +M4 − 2m2 ln

m2

M2

)
+

3
(
ξ − 1

6

)
8π2

(
m2 −M2 −m2 ln

m2

M2

)(
2H2 + Ḣ

)
− 9

8π2

(
ξ − 1

6

)2 (
12H2Ḣ + 4Ḣ2 + 7HḦ +

...
H
)
ln

m2

M2
.

(II.38)

Finally, we find the renormalized pressure, by using

ρvac(M) to eliminate ρΛ(M) in Eq.(II.32):

Pvac(M) = −ρvac(M)

+
1

3

(
⟨T δϕ⟩ren (M) + 4

⟨T δϕ
00 ⟩ren (M)

a2

)
,

(II.39)

Pvac(M) = −ρvac(M)

+

(
ξ − 1

6

)
8π2

Ḣ

(
m2 −M2 −m2 ln

m2

M2

)
− 3

8π2

(
ξ − 1

6

)2 (
6Ḣ2 + 3HḦ +

...
H
)
ln

m2

M2
.

(II.40)
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III. LOW ENERGY REGIME AND THE
EQUATION OF STATE

Let us focus on the difference of VED values Eq. (II.28)
where M0 = H0 represents the energy scale in our cur-
rent epoch and M = H is a close point in the cosmic
evolution. At these low energies, contributions O(H4)
are completely irrelevant and we can safely neglect them.
However, we must keep O(H2) terms, since they provide
a dynamical behaviour to the VED. Without them, we
would just recover the standard ΛCDMmodel with a cos-
mological constant. One can write this approximation as

ρvac(H) = ρvac(H0) +
3νeff(H)

8π
m2

Pl(H
2 −H2

0 ) +O(H4) ,

(III.1)
where we have defined the running parameter νeff as

νeff(H) =

=
1

2π

(
ξ − 1

6

)[
m2

m2
Pl

(
ln

m2

H2
− 1

)
− H2

H2 −H2
0

m2

m2
Pl

ln
H2

H2
0

]
.

(III.2)

This parameter is not a constant, but a function that
evolves with H. However, we must recall that in the low
energy regime H2 ≪ m2. The dependence on H is thus
very mild and we can approximate [7, 10]:

νeff ≃ 1

2π

(
ξ − 1

6

)
m2

m2
Pl

ln
m2

H2
0

≡ ϵ ln
m2

H2
0

. (III.3)

Considering particles in the GUT scale, M2
X/m2

Pl ∼
10−6, so we expect this coefficient to be small |νeff | ≪ 1.
The specific value is obtained by fitting data and one
finds that typical values are of order νeff ∼ 10−3, with
νeff > 0 the preferred sign [5].

Dividing Eq.(II.40) by ρvac(M) and setting M = H,
we obtain that the parameter of the EoS is

wvac(H) ≡ Pvac(H)

ρvac(H)
=

= −1 +

(
ξ − 1

6

)
8π2ρvac(H)

Ḣ

(
m2 −H2 −m2 ln

m2

H2

)
− 3

8π2ρvac(H)

(
ξ − 1

6

)2 (
6Ḣ2 + 3HḦ +

...
H
)
ln

m2

H2
,

(III.4)

where there are deviations from the classical value wvac =
−1. Neglecting O(H4) terms in the current universe and
using the approximation for νeff ,

wvac(H) = −1 +

(
ξ − 1

6

)
8π2ρvac(H)

Ḣm2

(
1− ln

m2

H2

)
+O(H4) ≃ −1− νeffm

2
Pl

Ḣ

4πρvac(H0)
.

(III.5)

Throughout this development we have not considered
the running of the gravitational constant G(H). This

running of the gravitational coupling constant is funda-
mental if we want to preserve the Bianchi identity, i.e.
∇µGµν = 0 [4]. However, there are many ways to pro-
tect it. We could assume a dynamical exchange between
vacuum and matter2 while keeping G fixed. In contrast,
if we assume that matter is covariantly conserved, this
specific running of G ensures a dynamical exchange be-
tween G and the VED that compensates in such a way
that the identity is preserved. In the latter scenario, the
Bianchi identity simplifies to

ρ̇vac + 3H(ρvac + Pvac) = − Ġ

G
(ρm + ρvac) = − Ġ

G

3H2

8πG
,

(III.6)
where Friedmann’s equation has been used in the second
equality, neglecting higher-derivative terms. Using that
at low energies

Pvac(H) + ρvac(H) ≃
(
ξ − 1

6

)
8π2

Ḣm2

(
1− ln

m2

H2

)
,

(III.7)
and including the exact expression Eq. (III.2) for νeff(H)
before computing ρ̇vac, the previous equality can be writ-
ten as ([7])

dG

G2
=

(
ξ − 1

6

)
π

m2 dH

H
. (III.8)

Integrating from the present time (H0, GN = G(H0) =
1/m2

Pl) up to an arbitrary point in the recent universe
(H, G(H)), we can determine the running of the cou-
pling at low energies (the general running can be found
in Appendix A):

G(H) =
GN

1− ϵ ln H2

H2
0

, (III.9)

where the parameter ϵ has been defined in Eq. (III.3).

We may as well study the evolution of the EoS in the
recent universe, where we have a dynamical departure
from the standard ΛCDM model. Recall that the Hubble
rate for it is

H2
ΛCDM = H2

0 [Ω
0
m(1+ z)3+Ω0

r (1+ z)4+Ω0
vac] , (III.10)

where we have included non-relativistic matter and ra-
diation. In our model, the Hubble rate resulting from
Friedmann equations is different, and we can separate
the ΛCDM part from the rest. Neglecting O(H4) con-
tributions, we can derive O(ϵ) corrections to the Hubble
rate

H2 =
8πG(H)

3
(ρm(H) + ρr(H) + ρvac(H)) ≃ H2

ΛCDM

+ ϵ(H2
ΛCDM −H2

0 )

(
−1 + ln

m2

H2
0

)
+O(ϵ2) .

(III.11)

2 In this scenario it is reasonable to assume that this exchange
happens for just dark matter, and hence we do not have to change
the covariant conservation laws of known species.
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Furthermore, a combination of Friedmann’s equations
yields Ḣ = −4πG(H)

∑
i(ρi + Pi), which allows us to

obtain

Ḣ = ḢΛCDM + ϵḢΛCDM

(
−1 + ln

m2

H2
0

)
+O(ϵ2) .

(III.12)
Inserting these expressions in Eq. (III.5) and using the

approximations ln m2

H2
0
≫ 1 and

lnH2
ΛCDM/H2

0

ln m2

H2
0

≪ 1, where

the latter is valid in the entire FLRW regime, we recover
the result found in [10]:

wvac(z) ≃ −1 +
νeff

(
Ω0

m(1 + z)3 + 4
3Ω

0
r (1 + z)4

)
Ω0

vac + νeff

[
−1 +

H2
ΛCDM(z)

H2
0

]
(III.13)

Figure 1. Parameter of the EoS for the vacuum in the recent
FLRW regime as a function of redshift, Eq. (III.13) for dif-
ferent values of νeff . We have also marked the boundary of
acceleration w = −1/3 and the limiting value w = 1/3.

As shown in Fig. (1), the EoS of the vacuum exhibits
an interesting behaviour as we look into the past (increas-
ing redshift). It starts from the canonical value −1 but
then evolves to values of the quintessence regime w > −1.
Further into the past, wvac exhibits a plateau around the
value of dust w = 0, in a range that depends on the
specific numerical value of νeff . Finally, it evolves and
saturates to the radiation EoS w = 1/3: as we examine
the regime z ≫ zeq (where zeq ∼ 3000 is the matter-
radiation equality redshift) the term concerning radia-
tion is the main contribution in Eq. (III.13). In other
words, the EoS of the vacuum mimics the dominant com-
ponent of each cosmic epoch. For the future (z −→ −1) it
asymptotically reaches a de Sitter epoch.

IV. INFLATION FROM RUNNING VACUUM

The RVM provides an alternative mechanism to
describe inflation without requiring any inflaton field. It
suffices to consider a short phase where H = constant.
In order to trigger inflation in the early universe, one
needs that this constant H is also close to a typical
GUT scale [11]. In this case, the vacuum energy density
dominates and afterwards must decay into relativistic
particles. This is an essential feature to achieve the
necessary exit from the inflationary epoch and recover
the ΛCDM behaviour. During this stage, we can see
from Eq. (II.40) that H =const. makes all additional
terms vanish and we find the canonical EoS for the
vacuum, that is Pvac(H) = −ρvac(H).

Consider the general expression of the dynamical VED,
with κ2 = 8πG(H0) [11]:

ρvac(H) =
3

8πG(H)

(
c0 + νH2 +

H4

H2
I

)
,

ρvac(H) ≃ 3

κ2

(
c0 + νH2 +

H4

H2
I

)
.

(IV.1)

As we have shown in the previous section, the running
of the gravitational constant is logarithmic. The more
general running of G(M) can be obtained in a similar
way as we derived the running of ρΛ(M) and is shown
explicitly in Appendix A. We can neglect this running
as it will play no significant role in contrast to the ∼
H4 dependence, so G(HI) ≃ G(H0). The Friedmann
equations including vacuum and relativistic matter (with
EoS wr = 1/3) can be written as

3H2 = 8πG(ρrad + ρvac) ,

3H2 + 2Ḣ = −8πG(Pvac +
1

3
ρrad) .

(IV.2)

By making a few justified approximations, one can ob-
tain an analytical solution of these equations for a dy-
namical VED with even adiabatic orders higher than 2
[11]. When we considered the dynamical VED in the
low energy regime, the subtracted scale H0 represented
the value of the Hubble constant in the current universe.
Now, we are analyzing the evolution as a function of H
in the inflationary epoch. Therefore, H0 is any point out-
side this regime. The result will not depend on this spe-
cific value, since any point outside the inflationary regime
will have negligible values of the VED and H. We can
safely neglect H0 and ρvac(H0). In fact, the low energy
VED ρvac(H0) ≃ (3/κ2)(c0 + νH2

0 ) relates the coefficient
c0 with cosmological parameters as c0 = H2

0 (Ω
0
vac − ν),

where Ω0
vac is the present density parameter of Λ. Per-

forming all these approximations to Eq. (II.28), we ob-
tain

ρvac(H) ≃
3
(
ξ − 1

6

)
16π2

[
H4 +H2m2

(
ln

m2

H2
− 1

)]
.

(IV.3)
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Let us define

ν(H) =
1

2π

(
ξ − 1

6

)
m2

m2
Pl

(
−1 + ln

m2

H2

)
= ϵ

(
−1 + ln

m2

H2

)
.

(IV.4)

For ν constant, one can solve Friedmann equations
(IV.2) by first obtaining H(a) and from it the energy
densities [11]:

H(a) =
√
1− ν

HI√
1 +Da4(1−ν)

, (IV.5)

ρrad(a) =
3H2

I (1− ν)2Da4(1−ν)

κ2(1 +Da4(1−ν))2
, (IV.6)

ρvac(a) =
3H2

I (1− ν)(1 + νDa4(1−ν))

κ2 (1 +Da4(1−ν))2
, (IV.7)

where D = 1
1−2ν a

−4(1−ν)
eq ≡ a

−4(1−ν)
∗ . aeq is the value of

the scale factor at the transition from a vacuum domi-
nated era to a radiation era, i.e. ρvac(aeq) = ρrad(aeq).
This can be expressed in a more compact way in terms
of the rescaled variables â = a/a∗ and H̃I =

√
1− νHI :

H(â) =
H̃I√

1 + â4(1−ν)
, (IV.8)

ρrad(â) = ρ̃I(1− ν)
â4(1−ν)

[1 + â4(1−ν)]2
, (IV.9)

ρvac(â) = ρ̃I
1 + νâ4(1−ν)

[1 + â4(1−ν)]2
, (IV.10)

where ρ̃I = 3
κ2 H̃

2
I . The value of ν we have obtained from

our QFT calculation is not constant, but the depen-
dence on H is subleading, since it is through a logarithm.

To solve Friedmann equations numerically with Math-
ematica [12], we combine Eq. (IV.2) to eliminate ρrad
and use d

dt = aH d
da . We observe that the global factor

in Eq. (IV.3) can be expressed in terms of the parameter
ϵ defined in Eq. (III.3), so we only need to fix m, ϵ and
a boundary condition. For the former, consider a typical

GUT scale MX ∼ 1016 GeV ( m2

m2
Pl

∼ M2
X

m2
Pl

∼ 10−6). By

comparison of Eq. (IV.1) and Eq. (IV.3), the scale of
inflation HI is fixed:

H2
I =

2π(
ξ − 1

6

)m2
Pl =

m2

ϵ
. (IV.11)

We expect |ν| ≪ 1, so the solution Eq. (IV.8) can be
used for the boundary condition of the numerical solu-
tion. Therefore, we impose that for â = 1:

H(â = 1) ≃ 1√
2
HI =

1√
2

m√
ϵ

(IV.12)

In order to establish the order of magnitude of ϵ, we may
use that data fitting with RVM has determined νeff ∼

10−2− 10−3 [5]. By means of Eq. (III.2), inserting H0 ∼
1.2× 10−61mPl and m2 ∼ 10−6m2

Pl:

νeff ≃ ϵ ln
m2

H2
0

∼ ϵ ln 10116 ∼ 270ϵ ;

ϵ ∼ 10−6 − 10−5 .

(IV.13)

We note that for â ≪ 1 the huge Hubble rate makes
the system of equations insensible to ν. To set up an
approximate constant value for ν in Eq. (IV.8), we may
consider a point in the opposite regime. For â ∼ 100
the VED has decayed enough and this coefficient can
play a role. From the numerical solution one finds
H(â = 100) ∼ 10−5mPl, so ν ∼ O(10)ϵ.

(a)

(b)

Figure 2. a) Energy densities of the vacuum and radiation,
normalized to the characteristic inflation value ρ̃I as a func-
tion of the rescaled variable â for ϵ = 10−5. b) Comparison
between the numerical solution for the VED with the loga-
rithmic term using Mathematica ([12]) and the approximation
for ν = 10−4.
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From Fig. (2 a), in the beginning there is no radiation
and the vacuum dominates. On the contrary, for â ≫ 1,
the vacuum decays very fast into radiation and we exit
the RVM-inflation to a FLRW radiation-dominated
epoch. Note that after the universe exits this inflating
phase, for â ≫ 1, both densities scale as ρ ∼ a−4, with
a tiny correction ν. The vacuum evolves to have the
EoS of radiation, wvac −→ 1/3 and this connects with the
recent FLRW we have studied in the previous section.
It is relevant to highlight that this model is not only
capable of achieving a graceful exit from the inflationary
era, but also the VED is suppressed in front of radiation.
This is necessary in order to avoid spoiling Big Bang
Nucleosynthesis.

The corrections of order ∼ H2 only become relevant
for the slope at which the VED decreases. As one can
see from Fig (2 b), the approximation proves to be
reasonable, as it only misses the abrupt decay. A closer
look to Eq. (IV.3) reveals that the ultimate reason
for this abrupt decay is that it allows for a root at
H = m. An amplification of the VED in this region
(without logarithmic scale) is displayed in Fig. (3).
Although here we do not show the comparison for the
approximations of ρrad and H, we must remark that
both are indistinguishable from the numerical solution.

Figure 3. Vacuum energy density as a function of â in the
region of abrupt decay to 0.

An estimate for the temperature at which the universe
reheats can be obtained under the assumption of con-
stancy of the specific entropy (per particle) of the pro-
duced particles [13]. This guarantees the standard law
ρrad ∝ T 4

rad although the temperature does not evolve
as the usual scaling Trad(t) ∼ a(t)−1 until we are well
within the radiation epoch (a ≫ a∗). By equating the
expression of radiation density with the standard ther-
modynamical form of a bath of relativistic particles we

have

ρrad(a) = ρ̃I(1− ν)
(a/a∗)

4(1−ν)

[1 + (a/a∗)
4(1−ν)

]2
=

π2

30
g∗T

4
rad(a) ,

(IV.14)
where g∗ = O(100) is the number of relativistic degrees
of freedom (for the Standard Model of Particle Physics
we have g∗ = 106.75). Then,

Trad(a) =

(
30ρ̃I(1− ν)

g∗π2

)1/4
(a/a∗)

(1−ν)

[1 + (a/a∗)
4(1−ν)

]1/2
.

(IV.15)
The maximum value of the radiation temperature is
achieved at a∗:

Tmax =

(
30ρ̃I(1− ν)

g∗π2

)1/4
1√
2
∼
(
45m2

Plm
2

16π3g∗ϵ

)1/4

(IV.16)

V. CONCLUSIONS

Throughout this project, we have reviewed recent de-
velopments concerning the renormalization of the vac-
uum energy density. We have focused on the adiabatic
expansion of a real scalar field non-minimally coupled to
gravity, in a semiclassical approach to QFT in curved
spacetime.

• We have shown how the adiabatic renormalization
of the energy-momentum tensor in a FLRW space-
time, based on a WKB approximation, offers an
iterative and consistent method for obtaining suc-
cessive orders in a series expansion.

• The off-shell subtraction procedure has allowed us
to obtain a dynamical VED that exhibits a mod-
erate evolution on cosmological scales. This result
emerges from explicit renormalization calculations
in a QFT context within the FLRWmetric and is in
accordance with basic ideas of the Renormalization
Group (RG). The identification of the RG running
scale M with the characteristic energy scale in the
cosmic history, namely the Hubble rate H, is only
possible in this off-shell framework. This proves to
be a most appropriate approach, as it leads both to
a mild evolution ∼ νH2 (|ν| ≪ 1) of the VED with
H, which is completely free from unwanted ∼ m4

contributions, as well as to a very soft logarithmic
running of the gravitational coupling, G(lnH).

• We have emphasized the difference between the
zero-point energy and the bare parameter ρΛ in
the action before renormalization. Moreover, we
have explicitly recovered the well-known Minkowski
VED yet highlighting that the running vacuum
proves only meaningful in a FLRW background.
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• The dynamical VED takes the expected form of the
more general Running Vacuum Model, in which we
have a departure from the Cosmological Constant
of the ΛCDM model with even powers of H.

• The final renormalized ρvac is free from ∼ m4 con-
tributions and has allowed us to eschew the main
root of the fine-tuning of the CC. Therefore, the
RVM yields a possible solution to the CC problem
associated to the fluctuations of the vacuum.

• The subtraction used to compare the VED at 2
different points of the cosmic history is a necessary
feature of the RG approach and similar to the or-
dinary developments in gauge theories.

• The evolving VED arising solely from quantum
vacuum furnishes an unified background with the
potential to accommodate different cosmic epochs
without the need to introduce quintessence or
phantom fields.

• In the recent universe, the low energy form of the
VED exhibits a chamaleonic behaviour. The pa-
rameter of the vacuum Equation of State departs
from the canonical value wvac = −1 and imitates
the dominant component. In fact, at low redshift
it stays at wvac −→ −1, but for higher z it exhibits
a plateau around the dust value w −→ 0. As we
look further into the past, it saturates around the
radiation one w −→ 1/3. This already encompasses
the chronology of the universe after inflation ends.

• This model provides an alternative description of
inflation that does not require any ad hoc inflaton
field. It is sufficient to consider a short period of
time when H ≃ constant and that the VED even-
tually decays into relativistic species.

• Although logarithmic corrections are present, we
have verified that inflation is unleashed by the term
∼ H4, which arises as the dominant contribution.

• The dynamical VED in the early universe is capa-
ble of providing a graceful exit to the inflationary
epoch. Vacuum decays into relativistic particles
and then its presence becomes suppressed in front
of radiation. In this way, the successful predictions
from Big Bang Nucleosynthesis are not jeopardized
by it.

• The conception of a quantum vacuum that has a
changing behaviour during cosmic evolution has
huge implications. On the one hand, it sets a frame-
work for exploring intertwined aspects between cos-
mology and quantum theory. Furthermore, increas-
ing precision measurements from Planck, BAO,
SNIa and others might eventually elucidate the
source of the H0 and σ8 tensions, which the RVM

can help alleviate. Despite ΛCDM constitutes
a powerful model for describing our cosmological
knowledge, it is still plagued with phenomenologi-
cal artifacts that are devoid of a grounded expla-
nation in terms of first principles, such as the Cos-
mological Constant. Research around ΛCDM in-
consistencies and observational tensions might shed
light on not fully understood aspects of its theoret-
ical foundations.
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Appendix A: Conventions and formulas

We use natural units ℏ = c = 1, except when ℏ is in-
troduced explicitly to emphasize a result. Then, we have
that the gravitational coupling is related to the Planck
mass as GN = 1/m2

Pl, where mPl ≃ 1.22× 1019 GeV and

the reduced Planck mass is MPl = mPl/
√
8π.

The geometrical conventions are: metric signature
(−,+,+,+); Riemann tensor Rλ

µνσ = ∂νΓ
λ
µσ + Γρ

µσΓ
λ
ρν-

(ν ↔ σ); Ricci tensor Rµν = Rλ
µλν and Ricci scalar

R = gµνRµν . Derivatives with respect to cosmic time
are denoted with a dot and the ones with respect to con-
formal time with a prime. Useful relationships between
the Hubble rate in cosmic time H = ȧ

a and the conformal

one H = a′

a are

H = aH , (A.1)

a′ = aH = a2H , (A.2)

a′′ = a3(2H2 + Ḣ) , (A.3)

H′ = a2(H2 + Ḣ) , (A.4)

H′′ = a3(2H3 + 4HḢ + Ḧ) . (A.5)

The first and second derivatives of ωk that appear in
Eq.(II.16) can be written as ([7]):

ω′
k = a2 H M2

ωk
, (A.6)

ω′′
k = 2a2 H2 M2

ωk
+ a2 H′ M

2

ωk
− a4 H2 M4

ω3
k

. (A.7)

The intermediate expression of the subtraction up to
fourth adiabatic order before integration discussed in Sec-
tion II B is ([7]):
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⟨T δϕ
00 ⟩

(0−4)

ren (M) =
1

8π2a2

∫
dkk2

[
2(ωk(m)− ωk(M))− a2∆2

ωk(M)
+

a4∆4

4ω3
k(M)

]
−
(
ξ − 1

6

)
6H2

8π2a2

∫
dkk2

[
1

ωk(m)
− 1

ωk(M)
− a2M2

ω3
k(M)

− a2∆2

2ω3
k(M)

+
a2m2

ω3
k(m)

]
−
(
ξ − 1

6

)2
9(2H′′ H−H′2 − 3H4)

8π2a2

∫
dkk2

[
1

ω3
k(m)

− 1

ω3
k(M)

]
−
(
ξ − 1

6

)
3∆2 H2

8π2
.

(A.8)

From the generalized Einstein’s equations, we have
that the subtraction of the reduced Planck mass at two
different scales is ([7])

δM2
Pl(m,M,M0) ≡ M2

Pl(M)−M2
Pl(M0) =

=

(
ξ − 1

6

)
1

16π2

[
M2 −M2

0 −m2 ln
M2

M2
0

]
,

(A.9)

Recalling that M2
Pl(M) = 1/(8πG(M)), the previous

equation can be rephrased as

G(M) =
G(M0)

1 +
(ξ− 1

6 )
2π G(M0)

(
M2 −M2

0 −m2 ln M2

M2
0

) .

(A.10)

[1] N. Aghanim et al. (Planck), Planck 2018 results. VI.
Cosmological parameters, Astron. Astrophys. 641, A6
(2020), [Erratum: Astron.Astrophys. 652, C4 (2021)],
arXiv:1807.06209 [astro-ph.CO].

[2] Y. B. Zel’dovich and A. Krasinski, The Cosmological con-
stant and the theory of elementary particles, Sov. Phys.
Usp. 11, 381 (1968).

[3] J. Solà Peracaula, The cosmological constant prob-
lem and running vacuum in the expanding universe,
Phil. Trans. Roy. Soc. Lond. A 380, 20210182 (2022),
arXiv:2203.13757 [gr-qc].
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