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Abstract

This study addresses questions in real algebraic geometry, including its intersection with
computational aspects. In particular, the work focuses on characterizing the non-negativity
of multivariate polynomials. The content is organized into four sections, followed by some
conclusions.

The first chapter provides a detailed introduction to the fundamental concepts of the
field, including basic definitions and the main theoretical tools necessary for understanding
the subject. These concepts are also contextualized within their historical framework, with
the aim of offering a comprehensive overview of the topic.

The second chapter presents a generalization of the work developed in "Rational cer-
tificates of non-negativity on semialgebraic subsets of cylinders" by Gabriela Jeronimo and
Daniel Perrucci (see [9]), thereby extending the obtained results. Additionally, an explicit
calculation of a question posed in the same article is included, with the objective of offering
a more complete and detailed resolution.

The third chapter presents the implementation of three algorithms along with a set of
examples of their executions. The first algorithm determines whether a multivariate poly-
nomial is a sum of squares and, if so, provides a decomposition. The second algorithm
allows us to determine whether a multivariate polynomial belongs to the quadratic module
generated by a set of polynomials. Again, if this is the case, such a decomposition in the
quadratic module is provided. The third and final algorithm checks whether a quadratic
module is archimedean and, if so, provides a decomposition in the quadratic module. For
archimedeanity only theoretical characterizations previously existed, and in this work, a
computational version has been developed. Additionally, the code for the quadratic module
algorithm has been optimized through parallelization to run on the MareNostrum 5 super-
computer at the Barcelona Supercomputing Center.

Finally, the fourth chapter focuses on the parallelization of the quadratic module algo-
rithm and its performance evaluation. It details the methodology used to enhance efficiency
and analyzes the resulting improvements in execution time and scalability. The assessment
includes a comparison of sequential and parallel versions, highlighting the effectiveness and
potential limitations of the parallelization strategy implemented.

2020 Mathematics Subject Classification. 13P25, 14P10, 14Q20, 14Q30, 68W30



Resum

Aquest estudi aborda qüestions de geometria algebraica real, incloent la seva intersecció
amb aspectes computacionals. En particular, el treball es centra en la caracterització de la
no negativitat de polinomis en diverses variables. El contingut s’organitza en quatre blocs,
seguits d’algunes conclusions.

El primer capítol proporciona una introducció detallada als conceptes fonamentals de
l’àrea, incloent-hi les definicions bàsiques i les principals eines teòriques necessàries per
comprendre la matèria. També es contextualitzen aquests conceptes dins el seu marc històric,
amb l’objectiu d’oferir una visió global del tema.

En el segon capítol, es presenta una generalització del treball desenvolupat a "Rational
certificates of non-negativity on semialgebraic subsets of cylinders" per Gabriela Jeronimo
i Daniel Perrucci (veure [9]), ampliant així els resultats obtinguts. A més, s’inclou el càlcul
explícit d’una qüestió plantejada en el mateix article, amb l’objectiu de proporcionar una
resolució més completa i detallada.

El tercer capítol presenta la implementació de tres algorismes juntament amb un con-
junt d’exemples de les seves execucions. El primer algorisme determina si un polinomi
en diverses variables és una suma de quadrats i, en cas afirmatiu, permet obtenir una de-
scomposició. El segon algorisme permet determinar si un polinomi en diverses variables
pertany al mòdul quadràtic generat per un conjunt de polinomis. De nou, en cas afirmatiu,
es proporciona tal descomposició en el mòdul quadràtic. El tercer i últim algorisme permet
comprovar si un mòdul quadràtic és arquimedià i, en cas que ho sigui, proporciona una
descomposició en el mòdul quadràtic. Per a l’arquimedianeitat només existien caracteritza-
cions teòriques, i en aquest treball s’ha desenvolupat una versió computacional. A més,
s’ha dut a terme una optimització del codi de l’algorisme del mòdul quadràtic mitjançant
paral·lelització, per tal d’executar-lo al superodinador MareNostrum 5 del Barcelona Super-
computing Center.

Finalment, el quart capítol es centra en la paral·lelització de l’algorisme del mòdul
quadràtic i la seva avaluació de rendiment. Detalla la metodologia utilitzada per millorar
l’eficiència i analitza les millores obtingudes en el temps d’execució axí com l’escalabilitat.
L’avaluació inclou una comparació entre les versions seqüencial i paral·lela, destacant l’efec-
tivitat i les possibles limitacions de l’estratègia de paral·lelització implementada.
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Chapter 1

Positive Polynomials and Sums of
Squares

1.1 Basic Notation

Throughout this text, we will primarily focus in the ring R[X̄] of polynomials with
real coefficients in n ∈ N \ {0} indeterminates X̄ := (X1, . . . , Xn), but will also need to
consider polynomials over subfields of R. We will use the following monomial notation:
For a multi-index α = (α1, . . . , αn) ∈ Zn

≥0, let X̄α denote Xα1
1 . . . Xαn

n . The degree of
X̄α is |α| = α1 + . . . + αn, and the degree of a polynomial f ∈ R[X̄], denoted deg f , is
the maximum degree of the monomials in f with nonzero coefficients.

Thus, we can express a polynomial in R[X̄] as

f =
∑

|α|≤m

aαX̄
α,

where deg f is m, aα ∈ R, and aα ̸= 0 for some α with |α| = m.
Also, for α = (α1, . . . , αn) ∈ Zn

≥0, the multinomial coefficient corresponding to α is(
|α|
α

)
=

|α|!
α1! . . . αn!

,

whose name comes from the multinomial identity

(X1 + . . .+Xn)
m =

∑
|α|=m

(
m

α

)
X̄α,

which holds for any m ∈ N.

1



2 Positive Polynomials and Sums of Squares

Given two real square matrices A and B, we will use the notation ⟨A,B⟩ to denote the
trace of their product, i.e., trace(AB). Additionally, we will use the symbols C ⪰ 0 and
C ≻ 0 to indicate that a matrix C is positive semidefinite (PSD) and positive definite (PD),
respectively.

For a polynomial f ∈ R[X̄] in several variables, we will define its l1-norm as ||f ||1 =∑
|aα|, where the sum runs over all coefficients aα of f . We will write f ≥ 0 (or PSD)

if it is non-negative, i.e., if it is greater than or equal to 0 at all points in Rn, and f > 0

(or PD) if it is strictly positive. We will also consider the vector vd(X̄) = (X̄α)|α|≤d =

(1, X1, . . . , Xn, X
2
1 , X1X2, . . . , Xn−1Xn, X

2
n, . . . , X

d
1 , . . . , X

d
n)

′, which includes all mono-
mials of degree at most d. It has dimension s(d)×1, where s(d) :=

(
n+d
d

)
, and those mono-

mials form the canonical basis of the vector space R[X̄]d of polynomials of degree at most d.

We will denote by
∑

R[X̄]2 ⊂ R[X̄] the cone of sum of squares (SOS) polynomials,
which are the polynomials that can be expressed as g21 + . . .+ g2k, with g1, . . . , gk ∈ R[X̄]

and k ∈ Z+, where this representation may not be unique. Similarly, we will denote by
HN [X̄]2d the cone of homogeneous and non-negative polynomials of degree 2d (for some
d ∈ Z+), and by HS [X̄]2d the cone of homogeneous SOS polynomials of the same degree.
A complete definition of homogeneous polynomial, if needed, can be found in 1.4.

1.2 Historical Background and Preliminary Results

In real algebraic geometry, a key question is whether a non-negative polynomial can be
represented in a way that explicitly demonstrates its non-negativity, such as by expressing
it as a sum of squares. It is clear that a polynomial f with real coefficients that can be
written as a sum of squares of real polynomials will always be non-negative over Rn (an
explicit decomposition of f into a sum of squares immediately demonstrates this fact). This
idea, and its generalizations, underpins a substantial body of theoretical and computational
research related to positive polynomials and sums of squares.

The study of the relationship between non-negativity and sums of squares began with
David Hilbert in 1888, who showed that every non-negative real polynomial can be ex-
pressed as a sum of squares only in one of the following three cases: univariate polynomials,
quadratic polynomials, and bivariate polynomials of degree four. For all other cases, Hilbert
demonstrated the existence of non-negative polynomials that are not sums of squares, but
he did not explicitly provide a polynomial that is not a sum of squares.

The first explicit example appeared eighty years later and is due to Motzkin. Since then,
many explicit examples of non-negative polynomials that are not sums of squares have
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appeared.

Proposition 1.1. Motzkin’s polynomial m(x, y) = x4y2+x2y4+1−3x2y2 is non-negative.

Proof. By the AM/GM inequality (inequality of arithmetic and geometric means) we have

x4y2 + x2y4 + 1

3
≥ 3
√

x4y2 · x2y4 · 1 = x2y2,

so m is actually non-negative.

Proposition 1.2. Motzkin’s polynomial m(x, y) = x4y2 + x2y4 + 1− 3x2y2 is not SOS.

Proof. To show that is not SOS, we will need an auxiliary Lemma. Recall that the Newton
Polytope of a polynomial m, N(m), is the convex hull of the vectors of exponents of the
monomials of m.

Lemma 1.3. If p =
∑

i h
2
i is an SOS polynomial then for every i, we have the polytope

inclusion 2N(hi) ⊆ N(p).

Then, if m were a sum of squares of polynomials, by the previous Lemma, the squares
would be of the form (ax2y + bxy2 + cxy + d)2, with a, b, c, d ∈ R. However, none of
which can have negative coefficients for x2y2, so we have a contradiction.

In the case of polynomials in Q[X̄], we cannot ensure that a polynomial being a sum of
squares guarantees that the polynomials in this decomposition as a sum of squares live in
Q[X̄].

In order to keep going, we need the next definition.

Definition 1.4. A form is a homogeneous polynomial, i.e., one for which all monomials
have the same degree. Given f ∈ R[X̄] of degree d, the degree d homogenization of f ,
denoted f̄ , is a form in R[X1, . . . , Xn, Xn+1] of degree d, defined by

f̄ := Xd
n+1 · f

(
X1

Xn+1
, . . . ,

Xn

Xn+1

)
.

Similarly, if p ∈ R[X1, . . . , Xn, Xn+1] is a form of degree d, then the dehomogenization
of p is a polynomial of degree less than or equal to d in R[X̄] that results from evaluating
Xn+1 = 1, i.e., p(X1, . . . , Xn, 1).
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Example 1.5. Consider again the Motzkin polynomial m(x, y) = x4y2 + x2y4 − 3x2y2 +

1 ∈ R[x, y]. The degree of m is six and the decomposition of m into forms would be
m = m6 + m4 + m0 = (x4y2 + x2y4) + (−3x2y2) + 1. Therefore, the degree six
homogenization of m would be m̄(x, y, z) = x4y2+x2y4−3x2y2z2+ z6, which is a form
in R[x, y, z].

Then, going back to 1900, Hilbert proposed a list of twenty-three problems in the In-
ternational Congress of Mathematicians held at Paris. Among them, there was the famous
seventeenth problem which generalizes his previous results:

Is it true that every PSD form must be a sum of squares of quotient forms? Dehomog-
enizing, given a PSD polynomial f ∈ R[X̄], do there exist g1, . . . , gk, h1, . . . , hk ∈ R[X̄]

with hi ̸= 0 for all i, such that

f =
g21
h21

+ . . .+
g2k
h2k

?

An equivalent formulation (by clearing the denominators) could be:

Do there exist g1, . . . , gk, h ∈ R[X̄] with h ̸= 0 such that

h2f = g21 + . . .+ g2k?

The answer turned out to be affirmative, and it was proven by Emil Artin in 1927, using
the Artin-Schreier theory of real closed fields.

Example 1.6. We can represent the Motzkin polynomial as a sum of squares of rational
functions:

X4Y 2 +X2Y 4 − 3X2Y 2 + 1 =
X2Y 2(X2 + Y 2 + 1)(X2 + Y 2 − 2)2 + (X2 − Y 2)2

(X2 + Y 2)2

Before moving on, it is important to take into account the next detail.

Proposition 1.7. If f ∈ R[X̄] is PSD, then the degree of f must be even.

Proof. Suppose, first, the case of f being univariate. If deg f is odd, then f must have at
least one real root with odd multiplicity. Since f changes sign at this root, f cannot be PSD.

Now suppose the multivariate case, where f is in R[X̄] and has degree d. Descomposing
f into forms we get f = fd + fd−1 + . . .+ f0, where fi is homogeneous of degree i.
Suppose d is odd. Fix x = (x1, . . . , xn) ∈ Rn and consider the univariate polynomial

g(X) := f(x1X,x2X, . . . , xnX) =

d∑
i=0

fi(x)X
i.
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Since f is PSD, g(t) = f(x · t) ≥ 0 for any t ∈ R, hence g is PSD. Since g is an univariate
polynomial, it must have even degree, and since d is odd, this implies that fd(x) = 0. But
that must be hold for any x ∈ Rn, and therefore fd is the zero polynomial, which contradicts
that deg f = d. Thus the degree of f must be even.

Remark 1.8. The converse is not necessarily true, since a polynomial with even degree
might not be PSD.

Now, taking a deeper look at the study of sum of squares for univariate polynomials, let
us see some results.

Proposition 1.9. An even degree polynomial p(x) ∈ R[x] is PSD if and only if it can be
written as a sum of two squares, i.e., p(x) = p1(x)

2 + p2(x)
2, p1, p2 ∈ R[x].

Proof. The implication from right to left is clear. Let us now consider the other direction.
We first notice that every real root (if at all it exists) occurs with even multiplicity (it can be
seen from 1.7). Hence, we may write:

p(x) = c
∏
i

(x− αi)
2ni
∏
j

(x− βj)
mj
∏
j

(x− β̄j)
mj ,

where αi ∈ R, βj /∈ R, and c ∈ R≥0 since p is non-negative.
Now, let

h(x) =
∏
i

(x− αi)
ni
∏
j

(x− βj)
mj .

We have p(x) = c h(x)h̄(x), and writing h(x) = r(x) + is(x), with r, s ∈ R[x], we
end up with p(x) = c(r(x) + is(x))(r(x) − is(x)) = c(r(x)2 + s(x)2) = (

√
cr(x))2 +

(
√
cs(x))2.

The scenario in Q[x] is of particular interest as well. For instance, take the polynomial
f(x) = x2 + 3 ∈ Q[x], which is PD.

Proposition 1.10. The polynomial f(x) = x2 + 3 ∈ Q[x] cannot be written as f1(x)2 +
f2(x)

2, with f1, f2 ∈ Q[x].

Proof. Suppose that x2 + 3 = f1(x)
2 + f2(x)

2, for some f1, f2 ∈ Q[x]. Evaluating in
x = 0 we get: 3 = f1(0)

2 + f2(0)
2 = A2

B2 + C2

D2 , with A,B,C,D ∈ Z. Or, equivalently,
3B2D2 = (AD)2+(BC)2. But this contradicts Fermat’s theorem on sums of two squares,
which states that an integer can be expressed as a sum of two squares if and only if each of
its prime factors of the form 4k + 3, k ∈ Z, appears with an even exponent.
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However, we have that f(x) = x2 + 12 + 12 + 12, so it is a sum of squares. Indeed,
more than one hundred years ago Landau ([3]) proved that every polynomial in Q[x] which
is non-negative is a sum of eight squares of rational polynomials. This result was later
improved in [4] by Pourchet, who proved that five or fewer squares are enough. In [5],
algorithms for finding such a decomposition are studied.

1.3 Sums of Squares Representations and Semidefinite Optimiza-
tion

As said before, a sum of squares representation for a polynomial serves as an immediate
proof of its positivity, which is why finding such representations is of great interest. The
following important result, originally due to Choi, Lam, and Reznick [11], and later refor-
mulated in a more convenient form by Powers and Wörmann [12], provides an algorithm
for SOS decomposition. Following the notation from 1.1:

Theorem 1.11. A polynomial f ∈ R[X̄]2d has a sum of squares decomposition (or is SOS)
if and only if there exists a real symmetric and positive semidefinite matrix Q ∈ Rs(d)×s(d)

such that f(X̄) = vd(X̄)′Qvd(X̄), for all X̄ ∈ Rn.

Proof. Suppose, first, that f has a SOS decomposition f(X̄) =
∑k

i=1 hi(X̄)2 for some
family {hi : i = 1, . . . , k} ⊂ R[X̄]. Since f has degree 2d, we know that the degree of
each hi is bounded by d. Let Hi be such that hi(X̄) = H ′

ivd(X̄), i = 1, . . . , k, i.e., the
vector of coefficients of the polynomial hi. Thus,

f(X̄) =

k∑
i=1

vd(X̄)′HiH
′
ivd(X̄) = vd(X̄)′Qvd(X̄), ∀X̄ ∈ Rn,

with Q ∈ Rs(d)×s(d), Q :=
∑k

i=1HiH
′
i ⪰ 0, and the implication follows.

Suppose, now, that there exists a real symmetric s(d) × s(d) matrix Q ⪰ 0 for which
f(X̄) = vd(X̄)′Qvd(X̄), for all X̄ ∈ Rn. Then Q = GG′ for some s(d)× k matrix G, and
therefore,

f(X̄) = vd(X̄)′GG′vd(X̄) =

k∑
i=1

(G′vd(X̄))2i , ∀X̄ ∈ Rn.

Since (G′vd(X̄))i is a polynomial, then f is expressed as a sum of squares of the polyno-
mials (G′vd(X̄))i, i = 1, . . . , k, and the theorem is proved.

On one hand, the method described by Choi, Lam, and Reznick yields a matrix that
provides the form of the sum of squares decomposition. However, since the equations in-
volved in constructing this matrix contain several variables, the resulting matrix is often
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parametrized. To obtain an explicit SOS representation, one must determine the parameter
values that ensure the matrix is PSD. A common approach is to compute the eigenvalues of
the matrix. Nevertheless, finding eigenvalues of a matrix with parameter-dependent entries
is impractical, except for very small cases.

Powers and Wörmann, on the other hand, exploit the structure of the equations by not-
ing that each variable in the matrix construction appears only once per equation. They
decompose the matrix as a sum of several matrices, each multiplied by a parameter. Conse-
quently, they show that ensuring the initial matrix is PSD is equivalent to proving that a cer-
tain semialgebraic set is non-empty (a complete definition of semialgebraic set, if needed,
can be found in 1.14). There are various algorithms available for determining whether a
semialgebraic set is empty, such as those based on quantifier elimination. However, these
algorithms are generally limited to handling “small” examples, making this approach more
theoretical than practical.

Lasserre, Parrilo, and others have developed and studied a more practical approach
based on semidefinite programming, which can be roughly described as linear programming
over the cone of positive semidefinite matrices. Semidefinite programming generalizes lin-
ear programming but is not significantly more challenging to solve. Efficient numerical
algorithms for solving semidefinite programs have been developed and implemented.

Following the notation from the theorem above they observed that, since the identity
f(X̄) = vd(X̄)′Qvd(X̄) for all X̄ ∈ Rn provides linear equations that the coefficients of
the matrix Q must satisfy, writing

vd(X̄)vd(X̄)′ =
∑
α∈Nn

BαX̄
α,

for appropriate s(d)× s(d) real symmetric matrices with 0’s and 1’s, checking whether the
polynomial f(X̄) =

∑
α fαX̄

α is SOS reduces to solving the semidefinite optimization
problem:

Find Q ∈ Rs(d)×s(d) such that:

Q = Q′, Q ⪰ 0, ⟨Q,Bα⟩ = fα, ∀α ∈ Nn.

This is a tractable convex optimization problem. Indeed, for any fixed arbitrary precision
ϵ > 0, a semidefinite program can be solved in computational time that is polynomial in the
input size of the problem. Note that the size s(d) of the semidefinite program is bounded
by nd. However, it is important to keep in mind that using semidefinite programs to obtain
SOS representations in this manner involves numerical software, and therefore, there is no
guarantee of an exact solution.
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1.4 Between Non-negativity and Sums of Squares

Asking about the difference between the set of non-negative polynomials and the set of
polynomials that are sums of squares is truly interesting. As we have seen in the previous
section, there are efficient ways to check if a polynomial is a sum of squares, but checking
if it is non-negative is not that easy. Therefore, it is relevant to understand to what extent
we can gain information about non-negative polynomials by studying the polynomials that
belong to the cone of sums of squares. There are two kinds of results for that comparison,
depending on whether or not one keeps the degree fixed.

The first one, related to investigations done by Blekherman in the early 2000s, was ob-
tained looking at the “gap” between these cones and quantifying the discrepancy. The sec-
ond one, seeks closely approximating a PSD polynomial through SOS polynomials. This
is the case of Lasserre, who also around 2005, showed that every PSD polynomial f that
attains a global minimum can be approximated with respect to the l1 norm by SOS polyno-
mials.

We will show the results, but without going into the proofs, which are more laborious
and would take considerable time. However, more information about these can be found in
[6], [7], [8] for interested readers.

Since homogenization preserves non-negativity and sum of squares representation, the
next theorem works with forms. To compare both sets we need subsets of finite volume, so
let H be the hyperplane {f ∈ R[X̄] :

∫
Sn−1 fdµ = 1}, where µ is the rotation invariant

measure on the unit sphere Sn−1 ⊂ Rn, and let ĤN [X̄]2d := H ∩HN [X̄]2d, ĤS [X̄]2d :=

H ∩HS [X̄]2d, where we have followed the notation from 1.1.

Theorem 1.12. There exist constants K1,K2 > 0 depending only on d and such that

K1n
(d/2−1)/2 ≤ vol(ĤN [X̄]2d)

vol(ĤS [X̄]2d)
≤ K2n

(d/2−1)/2.

Therefore, if we make n → ∞ while keeping d fixed, the gap between ĤN [X̄]2d and
ĤS [X̄]2d can grow arbitrarily.

Now we will see that we can perturb a non-negative polynomial f ∈ R[X̄] to make it a
sum of squares. That said, we must keep in mind that there is a price to pay. In our case,
the approximation of f we need to consider does not have the same degree as f .
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Theorem 1.13. Given a polynomial f ∈ R[X̄], arbitrary r ∈ N, ϵ > 0, and let Θr, θr, f
1
ϵr, f

2
ϵr ∈

R[X̄] be the polynomials

Θr(x̄) := 1 +
n∑

i=1

x2ri , θr(x̄) :=
n∑

i=1

r∑
k=0

x2ki
k!

f1
ϵr(x̄) := f(x̄) + ϵΘr(x̄), f2

ϵr(x̄) := f(x̄) + ϵθr(x̄).

(i) If f is non-negative on [−1, 1]n, then for every ϵ > 0 there exists r1ϵ such that f1
ϵr ∈∑

R[X̄]2 for all r ≥ r1ϵ and ||f − f1
ϵr||1 → 0 as ϵ → 0 (and r ≥ r1ϵ ).

(ii) If f is non-negative, then for every ϵ > 0 there exists r2ϵ such that f2
ϵr ∈

∑
R[X̄]2 for

all r ≥ r2ϵ and ||f − f2
ϵr||1 → 0 as ϵ → 0 (and r ≥ r2ϵ ).

As we can see, this theorem is a denseness result with respect to the l1-norm of coeffi-
cients, and shows that a PSD polynomial can be approximated by SOS polynomials if the
number of variables is fixed and the degree of the SOS polynomials is allowed to grow.

1.5 Positivity on Semialgebraic Sets

When we express a PSD polynomial f ∈ R[X̄] as a sum of squares of polynomials, we
obtain a certificate of positivity for f in Rn. However, more generally, we are interested
in certificates of positivity or non-negativity on specific subsets S ⊆ Rn. Typically, we
focus on basic closed semialgebraic sets, which are subsets defined by a finite number of
non-strict polynomial inequalities.

1.5.1 Semialgebraic Sets

At its core, algebraic geometry is the study of algebraic sets, which are the sets of com-
mon zeros of a collection of polynomials. Traditionally, this field examines subsets of Cn

defined by polynomial equations, using methods rooted in algebra. Real algebraic geome-
try, on the other hand, focuses on finding solutions in Rn for polynomial equations defined
over R. In C there is no concept of "positivity" because it is not possible to define a rela-
tion ≥ that fulfills reasonable properties of positivity. However, in R, the order relation ≥
exists, allowing for the study of semialgebraic sets, which are sets defined by polynomial
inequalities.

There are multiple equivalent ways to define semialgebraic sets; we will present one.

Definition 1.14. A semialgebraic set in Rn is a subset that can be expressed as

m⋃
i=1

k⋂
j=1

{x̄ ∈ Rn|fi,j ∗i,j 0},
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where fi,j ∈ R[X̄] and ∗i,j ∈ {<,=}, for all i, j.

Since for a polynomial f ∈ R[X̄] we have

{x̄ ∈ Rn|f(x̄) > 0} = {x̄ ∈ Rn| − f(x̄) < 0},

{x̄ ∈ Rn|f(x̄) ̸= 0} = {x̄ ∈ Rn|f(x̄) < 0} ∪ {x̄ ∈ Rn|f(x̄) > 0},

{x̄ ∈ Rn|f(x̄) ≤ 0} = {x̄ ∈ Rn|f(x̄) < 0} ∪ {x̄ ∈ Rn|f(x̄) = 0},

{x̄ ∈ Rn|f(x̄) ≥ 0} = {x̄ ∈ Rn|f(x̄) > 0} ∪ {x̄ ∈ Rn|f(x̄) = 0},

then a semialgebraic set can be seen as a finite union of sets of solutions to systems of
finitely many polynomial equations and inequalities f ∗ 0, where ∗ ∈ {<,>,=, ̸=,≤,≥}.

Example 1.15. The set {(x, y) ∈ R2|y = ex} is not semialgebraic. Since ex is a transcen-
dental function, it cannot be expressed using polynomial equalities or inequalities.

Example 1.16. The set {(x, y) ∈ R2|x2 + y2 ≤ 1} is semialgebraic.

Definition 1.17. Given a finite family of polynomials g = {g1, . . . , gs} ⊆ R[X̄], the basic
closed semialgebraic set generated by these polynomials is

S(g) = {x̄ ∈ Rn|gi(x̄) ≥ 0, i = 1, . . . , s}.

Basic closed semialgebraic sets are crucial because many sets of interest in real alge-
braic geometry can be approximated arbitrarily well using finite unions and intersections of
these sets.

1.5.2 Preorders, Quadratic Modules, and Archimedeanity

For the most part, certificates of positivity for polynomials on semialgebraic sets come
from algebraic objects associated to the set. Two of these important objects are the preorders
and quadratic modules.

Let A be a commutative ring such that Q ⊆ A, and let∑
A2 = {a ∈ A|a = b21 + . . .+ b2k},

denote the set of sums of squares in A, for some k ∈ N \ {0} and b1, . . . , bk ∈ A.

Definition 1.18. A subset P of A is a preorder if

P + P ⊆ P, PP ⊆ P, a2 ∈ P ∀a ∈ A.

Definition 1.19. A subset M of A is a quadratic module if

M +M ⊆ M, a2M ⊆ M ∀a ∈ A, 1 ∈ M.
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Definition 1.20. Given a finite family of polynomials g = {g1, . . . , gs} ⊆ R[X̄], the pre-
order P (g) generated by these polynomials is the smallest preorder containing g. Con-
cretely, P (g) consists of all the polynomials f ∈ R[X̄] that can be expressed as

f =
∑

ϵ={ϵ1,...,ϵs}∈{0,1}s
σϵg

ϵ1
1 . . . gϵss ,

where each σϵ ∈
∑

R[X̄]2.

Definition 1.21. Given a finite family of polynomials g = {g1, . . . , gs} ⊆ R[X̄], the
quadratic module M(g) generated by these polynomials is the smallest quadratic mod-
ule containing g. Concretely, M(g) consists of all the polynomials f ∈ R[X̄] that can be
expressed as

f = σ0 + σ1g1 + . . .+ σsgs,

where σ0, σ1, . . . , σs ∈
∑

R[X̄]2.

Note that a representation of a polynomial f ∈ R[X̄] in the preorder P (g) or the
quadratic module M(g) generated by g1, . . . , gs ∈ R[X̄], serves as a certificate of non-
negativity for f on the basic closed semialgebraic set S(g) defined by these polynomials.

There are more general ways to define archimedean quadratic modules from a commu-
tative ring, taking into account preprimes and modules over preprimes. However, for the
purposes of our study, we will define them over the ring R[X̄].

Definition 1.22. A quadratic module M ⊆ R[X̄] is called archimedean if there exists
N ∈ R>0 such that

N −
n∑

i=1

X2
i ∈ M.

There are also alternative characterizations for the archimedeanity of quadratic modules
in R[X̄]. For instance, a quadratic module M ⊆ R[X̄] is archimedean if and only if there
exists N ∈ R>0 such that N ± Xi ∈ M for i = 1, . . . , n, or by the Jacobi-Prestel Crite-
rion, which transfers this property to prime ideals and weakly isotropic regular parts from
quadratic forms.

If a quadratic module M(g) is archimedean, the basic closed semialgebraic set S(g)
will be bounded, and since S(g) is closed, it will indeed be compact.

Remark 1.23. S(g) being compact does not imply that M(g) is archimedean.

We will provide some examples of this in chapter 3.
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1.5.3 The Positivstellensatz

The Positivstellensatz is a key theorem in real algebraic geometry and serves as a
representation theorem, involving denominators, for establishing positivity over any ba-
sic closed semialgebraic set. The term "Positivstellensatz", which translates from German
as “positive-locus-theorem”, is generally used in real algebraic geometry for a theorem that
characterizes polynomials that are strictly positive on a semialgebraic set. The name can
be seen as the real analogue of Hilbert’s Nullstellensatz in complex algebraic geometry.
Stengle published a version of the Positivstellensatz in 1974, although parts of the theorem
were already noted by Dubois in 1969. It was later found that the core ideas were present in
the work of the French mathematician Krivine as early as 1964. The theorem has multiple
forms, and the next one is the most general version.

Theorem 1.24. (The Positivstellensatz) Given g = (g1, . . . , gs) a finite subset of R[X̄], and
S(g), P (g) the respectives basic closed semialgebraic set and preorder. Then

1. f > 0 on S(g) ⇐⇒ there exist p, q ∈ P (g) such that pf = 1 + q.

2. f ≥ 0 on S(g) ⇐⇒ there exists an integer m ≥ 0 and p, q ∈ P (g) such that
pf = f2m + q.

3. f = 0 on S(g) ⇐⇒ there exists an integer m ≥ 0 such that −f2m ∈ P (g).

4. S(g) = ∅ ⇐⇒ −1 ∈ P (g).

Observe that all of these provide certificates of positivity, though they include denom-
inators, as in Artin’s Theorem. The proof of 1.24.1 result relies on many of the same con-
cepts as the proof of Artin’s Theorem, such as properties of orderings on fields and the
Tarski Transfer Principle. While we will not present the proof here, the interested reader
can refer to Marshall’s book [13] for a detailed explanation. The proof that the four state-
ments of the theorem are equivalent can be found in [2], Theorem 5.5.

In 1991, Schmüdgen demonstrated, as a corollary to a theorem on the multidimensional
moment problem, that if a basic closed semialgebraic set S(g) is compact, then every poly-
nomial strictly positive on on S(g) belongs to the preorder P (g). In other words, certificates
of positivity are guaranteed to exist for any polynomial strictly positive on a compact S(g).
This result, now widely known as Schmüdgen’s Positivstellensatz, is considered the first in-
stance of a representation theorem without denominators for a broad class of semialgebraic
sets. What makes this theorem particularly remarkable is that it ensures the existence of
denominator-free certificates regardless of the specific polynomials g1, . . . , gs defining the
semialgebraic set. A few years later, Putinar extended this result, showing that the preorder
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P (g) can be replaced with the quadratic module M(g) as long as M(g) is archimedean.

These certificates are highly significant because, under the necessary assumptions, veri-
fying whether a polynomial is positive on a basic closed semialgebraic set reduces to check-
ing whether the polynomial belongs to P (g) or M(g). We can implement algorithms capa-
ble of checking whether a polynomial lies in the preorder or quadratic module generated by
a set of polynomials, so this problem can be solved.

Next, we present the main theorems along with a couple of additional results that pro-
vide bounds for the degree of the decomposition within the preorder and quadratic module,
respectively. The proofs will not be included here, as they would considerably lengthen this
work, but they can be found in [14], [15], [16], and [17].

Theorem 1.25. (Schmüdgen’s Positivstellensatz) Let g = (g1, . . . , gs) be a finite subset
of R[X̄] such that S(g) is compact. Then for any f ∈ R[X̄] such that f > 0 on S(g),
f ∈ P (g).

Theorem 1.26. (Putinar’s Positivstellensatz) Let g = (g1, . . . , gs) be a finite subset of
R[X̄] such that M(g) is archimedean. Then for any f ∈ R[X̄] such that f > 0 on S(g),
f ∈ M(g).

Theorem 1.27. (Degree bound for Schmüdgen’s Positivstellensatz) For all polynomials
g1, . . . , gs ∈ R[X̄] defining a non-empty set S(g) ⊆ (−r, r)n, there is some c ∈ N with the
following property:
Every f ∈ R[X̄] of degree d with f∗ := min{f(x̄)|x̄ ∈ S(g)} > 0 can be written as

f =
∑

ϵ={ϵ1,...,ϵs}∈{0,1}s
σϵg

ϵ1
1 . . . gϵss ,

where σϵ ∈
∑

R[X̄]2 such that

deg(σϵg
ϵ1
1 . . . gϵss ) ≤ cd2

(
1 +

(
d2nd ||f(rX̄)||

f∗

)c)
.

Theorem 1.28. (Degree bound for Putinar’s Positivstellensatz) For all polynomials g1, . . . , gs ∈
R[X̄] defining an archimedean quadratic module M(g) and a non-empty set S(g) ⊆ (−r, r)n,
there is some c ∈ R>0 with the following property:
Every f ∈ R[X̄] of degree d with f∗ := min{f(x̄)|x̄ ∈ S(g)} > 0 can be written as

f = σ0g0 + σ1g1 + . . .+ σsgs,
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where g0 = 1, and σ0, σ1, . . . , σs ∈
∑

R[X̄]2 such that for all i = 0, . . . , s

deg(σigi) ≤ c exp
((

d2nd ||f(rX̄)||
f∗

)c)
.

1.6 Applications

The problem of recognizing non-negativity of multivariate polynomials and expressing
them as sums of squares has numerous applications throughout mathematics and several
fields such as chemistry or economics, among others. Recently, this area has garnered
significant attention due to its wide-ranging uses in computational mathematics and the dis-
covery that optimization over a notable subset of non-negative polynomials can be achieved
through sum of squares techniques. By exploring the properties of polynomials and their
representations, we can address questions from different areas and contexts.

A famous and important application of certificates of positivity is the problem of mini-
mizing a polynomial on a compact basic closed semialgebraic set, which is a hard problem
in general. However, since this topic has been extensively studied in the literature, we will
shift our attention to other uses instead. Specifically, in this section, we will explore a cou-
ple of applications in machine learning (ML) where the theoretical framework of positive
polynomials and sums of squares plays a crucial role. It should be emphasized that the
theorems presented here will not be proven, as doing so would extend this section too much
and the main objective is not to understand them in detail, but to illustrate why the problem
tackled in this work is relevant nowadays. Nevertheless, all the theorems can be found in
[18].

1.6.1 Shape-Constrained Regression Problem

To begin with, we introduce the Shape-Constrained Regression Problem. Suppose we
have a set of data points and aim to fit a polynomial regressor to these points. While we
could minimize the least squares, our main interest is to impose certain shape constraints on
these polynomial regressors (e.g., monotonicity, convexity, concavity).

An example application: Imagine you have two cars that are identical in all aspects
except for one feature, the age. An older car should logically be priced lower than a newer
one, implying a monotonic relationship with that feature. This approach can also be applied
to scenarios like determining interest rates for student loans, and other similar contexts.

How does this connect with optimizing over non-negative polynomials? We want a
polynomial regressor to fit the data, and the derivatives of these polynomials will also be
polynomials. Imposing monotonicity on a polynomial regressor over a range is the same
as imposing the non-negativity of its partial derivatives over that range. Similarly, if we
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want our polynomial regressor to be convex, imposing convexity is equivalent to requiring
that the Hessian1 of the polynomial be PSD, which, in turn, is equivalent to imposing the
non-negativity of a polynomial (since the elements of the Hessian are polynomials):

H(x) ⪰ 0 ∀x ∈ Rn ⇐⇒ yTH(x)y ≥ 0 ∀x, y ∈ Rn.

Now, let us delve deeper into monotone regression. The setup is as follows: We have N

data points (xi, yi), where xi ∈ Rn represents the feature vector and yi ∈ R is the response.
Assume that there is an underlying function f that generates these points yi, with some
added noise. That is, yi represents the noisy measurements of a monotone function:

yi = f(xi) + ϵi, ϵi > 0,

and also assume that our feature vector xi belongs to a box B ⊆ Rn. In addition, we will
assume that we have a so-called monotonicity profile:

ρj =


1 if f is monotonically increasing w.r.t. xj ,

−1 if f is monotonically decreasing w.r.t. xj ,

0 if no monotonicity requirements on f w.r.t. xj ,

for j = 1, . . . , n.

This means we know how our function f depends on the features. We have a vector
where each entry indicates how f depends on a specific feature. The main goal is then to fit
a polynomial to the data that maintains the monotonicity profile ρ over B.

Figure 1.1: Polynomial regressor.

Our first result, however, is not very promising.

Theorem 1.29. Given a cubic polynomial p, a box B, and a monotonicity profile ρ, it is
NP-hard to test whether p has profile ρ over B.

1The Hessian is a matrix where the entry of the i-th row and the j-th column is: (Hf )i,j = ∂2f
∂xi ∂xj

.
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Nevertheless, we have an SOS relaxation for this problem. Suppose we want to enforce
that our polynomial is increasing with respect to the variable xj . What we want is that

∂p(x)

∂xj
≥ 0 ∀x ∈ B,

with B = [b−1 , b
+
1 ] × . . . × [b−n , b

+
n ]. If p has an odd degree, we will relax this condition as

follows:
∂p(x)

∂xj
= σ0(x) +

∑
i

σi(x)(b
+
i − xi)(xi − b−i ),

and if p has an even degree, we will relax it this way:

∂p(x)

∂xj
= σ0(x) +

∑
i

σi(x)(b
+
i − xi) +

∑
i

τi(x)(xi − b−i ),

where σi, τi are SOS polynomials.

Obviously, these expressions ensure the positivity of the partial derivative of p with
respect to the variable of interest in the box B. Additionally, we have an approximation
theorem that tells us how good our potential approximation is.

Theorem 1.30. For any ϵ > 0 and any C1 function f with monotonicity profile ρ, there
exists a polynomial p with the same profile ρ, such that

max
x∈B

|f(x)− p(x)| < ϵ.

Moreover, one can certify its monotonicity profile using SOS.

The proof of this theorem uses results from approximation theory and Putinar’s Posi-
tivstellensatz (1.26).

1.6.2 Difference of Convex (DC) Programming

On the other hand, there is another type of problem that focuses on polynomial opti-
mization, known as Difference of Convex (DC) Programming. These are problems of the
folowing form:

min f0(x)

s.t. fi(x) ≤ 0

where fi := gi(x)− hi(x), with gi, hi convex.
The question we are interested in is the following: Given a polynomial f , can we find two
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convex polynomials g, h such that f = g − h?

First of all, we need to understand what SOS-convexity is. We know that a polynomial
f(x) is convex if and only if we impose the condition yTHf (x)y ≥ 0,∀x, y ∈ Rn, where
Hf is the Hessian. Now, we can replace the non-negativity condition with a sum of squares
condition, which is what we call SOS-convexity (yTHf (x)y SOS). This is advantageous
because it can be checked through an SDP program. Thus, the theorem we actually have is
the following:

Theorem 1.31. Any polynomial can be written as the difference of two SOS-convex poly-
nomials.

Corollary 1.32. Any polynomial can be written as the difference of two convex polynomials.

Then, we have seen that such a decomposition always exists, and in fact, we have shown
that sum of squares decomposition plays a key role here.

Both of these types of problems appear in ML applications such as Sparse PCA, kernel
selection, or feature selection in SVMs.

A concrete example of using Sparse PCA with shape constraints could be gene expres-
sion data analysis in the context of a disease like cancer. Suppose we have a dataset of gene
expression, where each variable represents the expression of a specific gene in different
cancer patient samples.

The goal of this analysis is to identify a subset of genes whose expression is strongly
associated with the disease state, such as cancer progression. To achieve this, Sparse PCA
could be used to reduce the dimensionality of the data and find linear combinations of genes
that explain the most variability observed. This is useful because, generally, most genes are
not relevant to the disease, and Sparse PCA helps identify only those genes that significantly
impact cancer-related variability.

However, for the results to be biologically interpretable, the combinations of genes
found need to follow certain structural constraints. For example, we might expect certain
genes to have an increasing influence on cancer progression as the disease advances, while
others might have a decreasing influence. This pattern could reflect the expected biological
behavior in the disease process, making it necessary to apply shape constraints.

In this regard, a shape constraint could be added to force the principal components de-
rived from Sparse PCA to respect an increasing or decreasing structure in the relationship
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between the genes. This means that, when searching for the most relevant gene combina-
tions, the model would not only seek those that maximize the data’s variability, but also
ensure that these combinations follow a trajectory consistent with the biological behavior
observed in cancer. In this way, the combination of Sparse PCA with shape constraints
enables the discovery of a more interpretable set of genes. Not only are the most influen-
tial genes in the data variability identified, but also their relationships follow an expected
biological pattern.



Chapter 2

Rational Certificates of
Non-negativity on Semialgebraic
Subsets of Cylinders

In this chapter, we provide a generalization of the work presented in [9] (so all references
to remarks or assumptions herein correspond to it). As we will see, this extension makes
sense from a theoretical point of view, but not from a computational one. Nevertheless,
even though it is not implementable (or at least easy to do), it is interesting to explore where
it leads from a theoretical approach. We also address certain aspects that arise during the
work, such as the explicit calculation of the bound in Remark 4.

2.1 Contextual Frame and Further Insights

As we have seen, the certificates of positivity and non-negativity have been moving
towards sets with different characteristics, such as closed, compact, or Archimedean semi-
algebraic sets. There are also studies addressing the non-negativity of polynomials in non-
compact sets. In this work, the authors study non-negativity in non-empty and possibly
unbounded subsets of cylinders, based on a rational expression having as the numerator a
polynomial in the quadratic module generated by g1, . . . , gs ∈ R[X̄, Y ], and as the denom-
inator a power of a non-constant polynomial q ∈ R[Y ] that is positive on R.

Other previous contributions in the literature have approached this type of set in different
ways, as well as investigations that have explored the existence of rational certificates with
the denominator being a power of a fixed particular polynomial. References to these can be
found in the introductory section of [9].

Now, let us delve into some more concrete aspects of the study, showing the explicit
calculation for the bound of M in Remark 4.

19
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We should keep in mind, first, from the expression of h in Proposition 3, that M and
the Mi’s let us homogenize this polynomial in (Y, Z) depending on the degree. Therefore,
if deg(h) = m, M would be 0 and we would use each Mi to ensure homogeneity. Other-
wise, if deg(h) = r + (2k + 1)(mi + ei) for some i, then we would use M to homogenize
the first part of h, and each of the remaining Mi’s for the homogenization of the second part.

Note that, in particular, for each i the difference between m and r + (2k + 1)(mi + ei)

will always be a multiple of m0: Since r is the remainder of m in the division by m0,
we can write m = C1m0 + r, and since m0 divides mi + ei for each i, we can express
mi + ei = C2im0, where C1, C2i ∈ Z.

Thus

m− (r + (2k + 1)(mi + ei)) = C1m0 + r − (r + (2k + 1)C2im0) =

= C1m0 − (2k + 1)C2im0 = m0(C1 − (2k + 1)C2i).

If m ≥ r + (2k + 1)(mi + ei) for each i, then C1 − (2k + 1)C2i ≥ 0 since m0 > 0. The
case where m < r + (2k + 1)(mi + ei) is analogous, and the same holds when computing
the difference r + (2k + 1)(mi + ei)− (r + (2k + 1)(mj + ej)), with i ̸= j.

Now, if we are in the case where deg(h) = r + (2k + 1)(mi + ei) for some i, then we
want m0M +m = maxi(r + (2k + 1)(mi + ei)) = r + (2k + 1)maxi(mi + ei). From
the proof of Proposition 3 we know that k ≥ 2λρr2s

ef• and λ ≥ KD c
ρr1
(4Kf• )L. Then,

m0M +m ≥ r + (
4λρr2s

ef• + 1)max
i

(mi + ei) ≥

≥ r+ (
4ρr2sKDc(4K)L

ef•ρr1(f
•)L

+1)max
i

(mi + ei) = r+ (
ρr2sDc(4K)L+1

eρr1(f
•)L+1

+1)max
i

(mi + ei).

Therefore,

M ≥ (r + (
ρr2sDc(4K)L+1

eρr1(f
•)L+1

+ 1)max
i

(mi + ei)−m)
1

m0
.

Having checked Assumptions 1, 2 and 3, certifying that f is non-negative on S is equiv-
alent to checking whether qMf belongs to M(g), taking an M as computed here. As we
will see in the next chapter, we have a code to determine whether a polynomial lies in the
quadratic module generated by a set of polynomials, so this task can be accomplished.

2.2 Certificates for Generalized Cylinders

Let us now consider g1, . . . , gs ∈ R[X̄, Ȳ ] = R[X1, . . . , Xn, Y1, . . . , Yl],

S = {(x̄, ȳ) ∈ Rn+l|g1(x̄, ȳ) ≥ 0, . . . , gs(x̄, ȳ) ≥ 0},
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and the quadratic module generated by g := (g1, . . . , gs),

M(g) = {σ0 + σ1g1 + . . .+ σsgs|σ0, σ1, . . . , σs ∈
∑

R[X̄, Ȳ ]2}.

Let Assumption 1 be the same: There exists N ∈ R>0 such that

N −
n∑

j=1

X2
j ∈ M(g).

Under this assumption S ⊂ B × Rl, where

B := {x̄ ∈ Rn|
n∑

j=1

X2
j ≤ N}.

Now, for i = 1, . . . , s, we write

gi(X̄, Ȳ ) =
∑

|k|≤mi

gik(X̄)Ȳ k =
∑

|k|≤mi

gik(X̄)Y k1
1 . . . Y kl

l ∈ R[X̄, Ȳ ],

where k = (k1, . . . , kl) ∈ Nl, |k| = k1 + . . .+ kl, and gik(X̄) ̸= 0 when |k| = mi.
Then, we write

g̃i(X̄, Ȳ , Z) := Zmigi(X̄, Ȳ /Z) =
∑

|k|≤mi

gik(X̄)Ȳ kZmi−|k| ∈ R[X̄, Ȳ , Z]

for the homogenization of gi with respect to the variables Y1, . . . , Yl.

We now make the following Assumption 2:

(i) S ̸= ∅.

(ii) If |k| = mi, then k1, . . . , kl are even.

(iii) S∞ := {x̄ ∈ Rn|gik(x̄) ≥ 0, |k| = mi} ⊂ B.

Let q ∈ R[Ȳ ] be a non-constant polynomial which is positive on Rl,

q(Ȳ ) =
∑

|k|≤m0

qkȲ
k

with m0 > 0 and qk ̸= 0 when |k| = m0. The assumption of q being positive on Rl implies
m0 is even. We write

q̃(Ȳ , Z) := Zm0q(Ȳ /Z) =
∑

|k|≤m0

qkȲ
kZm0−|k| ∈ R[Ȳ , Z].

Consider now the sets
C := {(ȳ, z) ∈ Rl+1|q̃(ȳ, z) = 1}
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and

S̃ := {(x̄, ȳ, z) ∈ Rn+l+1|g̃1(x̄, ȳ, z) ≥ 0, . . . , g̃s(x̄, ȳ, z) ≥ 0, (ȳ, z) ∈ C}.

Since we can write each element of C as u = λ(u)v(u) ∈ Rl+1, with λ(u) = ||u|| and
v(u) = u

||u|| = (v1, . . . , vl, vl+1) ∈ Sl, to see that C is compact it is enough to see that
λ(u) = ||u|| is bounded.

We have

q̃(||u||v(u)) =
∑

|k|≤m0

qk(||u||v1)k1 . . . (||u||vl)kl(||u||vl+1)
m0−|k| = ||u||m0 q̃(v(u)).

Then, enforcing q̃(||u||v(u)) = 1, we get

||u||m0 q̃(v(u)) = 1 ⇔ ||u||m0 =
1

q̃(v(u))
≤ max

v(u)∈Sl
1

q̃(v(u))
=: q̃0,

which exists since a continuous function on a compact set attains its minimum and maxi-
mum values.

From the last inequality, ||u||m0 ≤ q̃0 ⇔ ||u|| ≤ (q̃0)
1

m0 , that give us the bound and let
us see that C is compact.

Now, on one hand S̃ ∩ {z ̸= 0} ⊂ B × C, since g̃i(x̄, ȳ, z) = zmigi(x̄, ȳ/z) will
be non-negative if gi(x̄, ȳ/z) is non-negative (Assumption 2 ensures that mi is even, as
k1, . . . , kl being all even implies that mi = k1 + . . . + kl is also even), and gi is non-
negative on S. But S ⊂ B × Rl by Assumption 1, and by definition of S̃, (ȳ, z) ∈ C.
On the other hand, S̃ ∩ {z = 0} ⊂ B × C, since in this case we will have g̃i(x̄, ȳ, 0) =∑

|k|=mi
gik(x̄)y

k1
1 . . . ykll , which is non-negative by Assumption 2.

We conclude that S̃ ⊂ B × C and therefore S̃ is compact.

Also, for a polynomial

f(X̄, Ȳ ) =
∑
|k|≤m

fk(X̄)Ȳ k ∈ R[X̄, Ȳ ]

with fk(X̄) ̸= 0 when |k| = m, we write

f̃(X̄, Ȳ , Z) := Zmf(X̄, Ȳ /Z) =
∑
|k|≤m

fk(X̄)Ȳ kZm−|k| ∈ R[X̄, Ȳ , Z]

for the homogenization of f with respect to the variables Y1, . . . , Yl.

We make the following assumptions on the polynomial f as the Assumption 3.
If |k| = m, then:
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(i) k1, . . . , kl are even.

(ii) fk(x̄) > 0 on S∞.

Now, let us consider the same set ∆ ⊂ Rn. Lemma 2 still works (see Appendix A), and
Proposition 3 also holds taking

h(X̄, Ȳ , Z) = q̃(Ȳ , Z)M f̃(X̄, Ȳ , Z)−

− λ(Y 2
1 + . . .+ Y 2

l + Z2)
r
2

s∑
i=1

αi(Y
2
1 + . . .+ Y 2

l + Z2)
ei
2 g̃i(X̄, Ȳ , Z)

(αi(Y
2
1 + . . .+ Y 2

l + Z2)
ei
2 g̃i(X̄, Ȳ , Z)− q̃(Ȳ , Z)

mi+ei
m0 )2kq̃(Ȳ , Z)Mi .

Moreover, Lemmas 5 and 6 are still applicable since they only involve the variables X1, . . . , Xn.

Now, proceeding with the proof of the main theorem as in [9], we apply Lemma 5. Then,
we will have

h(X̄, Ȳ , Z) =
∑
|β|≤κ

bβ(Ȳ , Z)l̄(X̄)β,

with bβ(Ȳ , Z) > 0 for all (Ȳ , Z) ∈ C. Furthermore, for each β, since h is homogeneous in
(Ȳ , Z) and bβ is a linear combination of the coefficients of h seen as a polynomial in X̄ , then
bβ is a homogeneous polynomial. Thus, bβ(Ȳ , Z) > 0 for every (Ȳ , Z) ∈ Rl+1 \ {0}, and
applying Artin’s Theorem related to Hilbert’s seventeenth problem (explained in Section
1.2), there exist δβ, δ1β , . . . , δrβ ∈ R[Ȳ , Z] with δβ ̸= 0, and r ≥ 1, such that

δ2βbβ = δ21β + . . .+ δ2rβ .

Additionally, as proved by Reznick [10], since f is PD the denominator δβ can be chosen
uniformly to be a power of Y 2

1 + . . .+ Y 2
l + Z2.

In other words, for each bβ there exists δβ ̸= 0 ∈ R[Ȳ , Z] such that δ2β(Ȳ , Z)bβ(Ȳ , Z)

is SOS. In particular, δ2β(Ȳ , 1)bβ(Ȳ , 1) will be SOS.

Now, by the equality from Proposition 3,

δ2β1
(Ȳ , 1) . . . δ2βt

(Ȳ , 1)h(X̄, Ȳ , 1) = δ2β1
(Ȳ , 1) . . . δ2βt

(Ȳ , 1)q(Ȳ )Mf(X̄, Ȳ )−

− δ2β1
(Ȳ , 1) . . . δ2βt

(Ȳ , 1)λ
s∑

i=1

αi(Y
2
1 + . . .+ Y 2

l + 1)
r+ei

2 gi(X̄, Ȳ )

(αi(Y
2
1 + . . .+ Y 2

l + 1)
ei
2 gi(X̄, Ȳ )− q(Ȳ )

mi+ei
m0 )2kq(Ȳ )Mi ,
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and therefore

δ2β1
(Ȳ , 1) . . . δ2βt

(Ȳ , 1)q(Ȳ )Mf(X̄, Ȳ ) = δ2β1
(Ȳ , 1) . . . δ2βt

(Ȳ , 1)
∑
|β|≤κ

bβ(Ȳ , 1)l̄(X̄)β+

+ δ2β1
(Ȳ , 1) . . . δ2βt

(Ȳ , 1)λ
s∑

i=1

αi(Y
2
1 + . . .+ Y 2

l + 1)
r+ei

2 gi(X̄, Ȳ )

(αi(Y
2
1 + . . .+ Y 2

l + 1)
ei
2 gi(X̄, Ȳ )− q(Ȳ )

mi+ei
m0 )2kq(Ȳ )Mi .

Looking at the second term on the right-hand side of the last equation, since r+ei
2 and 2k

are even, if we make the assumption that q(Ȳ ) ∈ R[Ȳ ] is SOS, then this term is in M(g).
Let us now see that the first term on the right-hand side is also in M(g).

We know that each term of the sum will be of the form:

δ2β1
(Ȳ , 1) . . . δ2βt

(Ȳ , 1)bβ(Ȳ , 1)l̄(X̄)β,

where δ2βi
(Ȳ , 1)bβ(Ȳ , 1) will be SOS, for some 1 ≤ i ≤ t. Then, we will have an SOS

polynomial in (Ȳ , 1) multiplied by∏
j ̸=i

δ2βj
(Ȳ , 1)l̄(X̄)β.

It is clear that the result of the SOS polynomial in (Ȳ , 1) multiplied by the productory will
still be SOS in (Ȳ , 1), so we have to see that when multiplying by l̄(X̄)β we still have an
SOS polynomial.

By Lemma 6,
l0(X̄), . . . , ln(X̄) ∈ M(N − ||X̄||2),

and since M(N − ||X̄||2) is closed under multiplication (it is generated by a single poly-
nomial), the same holds for all the products l̄(X̄)β = l0(X̄)β0 . . . ln(X̄)βn . Now, by As-
sumption 1 we deduce that δ2β1

(Ȳ , 1) . . . δ2βt
(Ȳ , 1)bβ(Ȳ , 1)l̄(X̄)β ∈ M(g) for every β with

|β| ≤ κ. We conclude that δ2β1
(Ȳ , 1) . . . δ2βt

(Ȳ , 1)q(Ȳ )Mf(X̄, Ȳ ) ∈ M(g).

Thus, our generalized theorem is the following:

Theorem 2.1. Let g := g1, . . . , gs and f be polynomials in R[X̄, Ȳ ] such that f > 0 on S

and Assumptions 1, 2 and 3 hold. Let q ∈ R[Ȳ ] be a non-constant polynomial which is a
sum of squares. Then, there exist M ∈ Z≥0 and p ∈ R[Ȳ ] such that pqMf ∈ M(g).

Since q is a sum of squares, multiplying on both sides by q if necessary, we may assume
that M is even. Additionally, p has been shown to be a product of squares of polynomials.
Then, the identity

f =
σ0 + σ1g1 + . . .+ σsgs

pqM
,
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with σ0, σ1, . . . , σs ∈
∑

R[X̄, Ȳ ]2, is a rational certificate of non-negativity of f on S.

The infeasibility of implementing this generalization is mainly due to the polynomial p.
This polynomial is constructed as a product of the squares of several polynomials, which
are difficult to compute. First, we would need to determine the polynomials bβ that appear
when applying the version of Polya’s Theorem, and then, we would also need to find certain
bounds in order to compute the polynomial δβ from bβ for each β, using Reznick’s result.
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Chapter 3

Algorithms and Implementation

In this chapter we will explain the algorithms implemented and provide examples of
their execution. Rather than going through the code line by line (as the code files are avail-
able in the repository1), we will focus on detailing all the relevant information needed to
understand the workflow and logic behind the algorithms. Additionally, we will discuss
the key decisions made during the implementation process and highlight any challenges
encountered. This will provide a comprehensive overview of the algorithms structure and
functionality. We recommend having the codes nearby while reading this chapter for better
understanding.

3.1 Preliminaries

First of all, let us explain some details about how mathematical objects are represented
in the code. The primary objects of study are polynomials, which are represented using
lists of tuples. Each tuple in the list corresponds to a coefficient-monomial pair, where the
monomial is represented as an n-tuple containing the exponents of the variables involved.
In the case of univariate polynomials, the representation is given as a bivariate polynomial,
with the second coordinate of the tuple always equal to 0.

For instance, if we want to represent the polynomial

f(x1, x2, x3, x4) = 2 + 9x31x2x
7
4 − 61x2x3 + x1 ∈ Q[x1, x2, x3, x4],

we would write

f = [(2, (0, 0, 0, 0)), (9, (3, 1, 0, 7)), (−61, (0, 1, 1, 0)), (1, (1, 0, 0, 0))].

Our algorithms follow Lasserre’s approach described in Section 1.3, which requires the
use of an SDP solver. In our case, we employ the SCS solver [19], though we have explored

1GitHub repository.
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other options, as will be discussed below. This solver is accessed via a library that facilitates
the construction of the problem by incorporating the necessary constraints and variables in
a format compatible with the solver. Specifically, we use the CVXPY library [21]. CVXPY
also supports other solvers to address diverse needs, but SCS stands out as one of the best
suited to our requirements.

Apart from SCS, we have also tested the Mosek solver [20], with detailed tests provided
in the Jupyter Notebooks accompanying the code files. Although Mosek is not free, it offers
time-limited license options for students. Mosek appears to be significantly more accurate
and faster than SCS, and has the notable advantage of supporting parallelization, making it
an attractive option.

However, we have also observed that for the types of problems we submit to the solver,
there are several instances where Mosek fails, and the reasons for these failures are unclear.
In such cases, SCS continues to work but with reduced accuracy. As the complexity of
the problem increases—measured by the size of vd, which depends on the degree of the
polynomials involved and the number of variables—the frequency of Mosek failures also
rises. These failures do not appear to be random, as cases where a failure occurs will fail
again upon re-execution. For this reason, we have chosen to use SCS. While SCS is less
accurate, it seems to be more robust in this regard, and the level of accuracy it provides is
sufficient for our purposes.

Solvers are general tools designed to handle a variety of problem types. Ideally, one
could delve deeper into studying how solvers work internally, or even attempt to implement
one from scratch. This would provide valuable insights into how they solve our specific
type of problems and allow for a more accurate determination of thresholds when interpret-
ing solver outputs compared to expected solutions. However, this approach would require
significant time and effort, potentially constituting an entirely separate project.

It is important to keep in mind that working with numerical solvers yields only approx-
imations. For this reason, considering the accuracy of the solver we are using, we must
determine when an approximation is sufficiently accurate to be deemed correct and when
it is not. By default, unless stated otherwise, we will consider a number to be zero if it is
strictly smaller than 0.00001. In other words, the largest number treated as zero is 0.000009.
Despite not being perfect, this threshold seems to perform the best, and has been determined
empirically, based on examples where we knew what the expected outcome should be.

After obtaining an approximation from the solver, we check its validity by comparing
the coefficients of the input polynomial with those obtained through the algorithm. Specifi-
cally, for each monomial, we verify whether the difference between the real coefficient and
the approximated coefficient is smaller than 0.00001. If this condition is not satisfied for at
least one coefficient, the result is deemed incorrect.

This precision threshold can, of course, be adjusted: it can be relaxed if less precision
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is acceptable or tightened if higher accuracy is required.

There are studies focused on obtaining exact representations through perturbations,
such as [22], but since our primary objective was to construct an SOS decomposition al-
gorithm as a step toward developing the quadratic module decomposition and, ultimately,
the archimedeanity algorithm, we chose not to invest time in implementing an exact SOS
representation algorithm. Clearly, the algorithms presented here could be enhanced with
exact decomposition techniques, resulting in more precise solutions. However, this was not
the main focus of our work and can be pursued in future research.

Through testing, we have observed that, in our context, when working with at most 5
polynomials generating the quadratic module, the solver we are using remains effective up
to the point where the vectors vd contain approximately 50 elements. Beyond this point, the
solver becomes too slow to be practical. This implies that the size of these vectors, given by
s(d) =

(
n+d
d

)
, should not exceed this threshold. For example, with 2 variables, we can test

up to approximately degree 9, meaning that the σ’s in the quadratic module decomposition
could have a maximum degree of 18. Alternatively, with 3 variables, we could test up to
approximately degree 5, meaning that the σ’s could have a maximum degree of 10.

Furthermore, if we were able to use the Mosek solver, which is more efficient, the size
of the vectors vd could increase to approximately 250 elements. This would allow us to
work with significantly higher degrees in the decomposition.

It is also worth emphasizing at this point that when we talk about degrees in the decom-
position, we are usually referring to the maximum degree of the monomials in the vector
vd used to decompose each σ. Therefore, it should be multiplied by 2 to obtain the actual
degree of the σ polynomials in the decomposition.

3.2 Sums of Squares

This algorithm takes a rational multivariate polynomial as input. If the polynomial can
be expressed as a sum of squares of rational polynomials, the algorithm returns a possible
decomposition. Otherwise, it outputs a message indicating that the polynomial cannot be
expressed as a sum of squares.

This is a well-known algorithm and can be found in various libraries or software pack-
ages, such as [23] or [24]. However, we decided to build it from scratch to gain a deeper
understanding of the logic behind it and, as mentioned earlier, to enable the construction
of the quadratic module and archimedeanity algorithms later on. This algorithm is fully
implemented in Python and can be found in the SumsOfSquares.py file, accompanied by
thorough documentation.
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To begin with, the algorithm calculates the vector vd(X̄) based on the degree 2d of the
input polynomial. Then, following the notation introduced in the last part of Section 1.3,
it generates a matrix Q of variables and adds the constraint that Q must be symmetric and
PSD. Next, it computes the decomposition

vd(X̄)vd(X̄)′ =
∑
α∈Nn

BαX̄
α,

obtaining the matrices Bα corresponding to each monomial. The algorithm then iterates
over the monomials in this decomposition and adds the constraints related to the trace of the
product of the matrix associated with each monomial and the matrix of variables. Finally,
the solver is called to solve the optimization problem defined by these variables and con-
straints. If the solver returns a solution matrix Q, a decomposition Q = HH ′ is computed,
and a sum of squares decomposition is immediately obtained, as outlined in the proof of
Theorem 1.11. If no solution exists, a message is displayed indicating that such a decom-
position cannot be constructed.

After completing this process, a verification method is invoked to ensure that the solu-
tion provided by the solver is sufficiently accurate.

Example 3.1. Let us consider the univariate polynomial f(x) = x4 + x3 + x2 + x + 1.
When we input this polynomial into our algorithm, it outputs the decomposition:

f(x) = (−8.00752981× 10−1 − 6.34367731× 10−1x− 8.00752981× 10−1x2)2+

+ (5.96353066× 10−1 + 4.68164726× 10−17x− 5.96353066× 10−1x2)2+

+ (5.619344031× 10−2 − 1.41864293× 10−1x+ 5.61934403× 10−2x2)2

Example 3.2. If we instead take the univariate polynomial f(x) = x4 + x3 + x2 + x− 1,
the algorithm outputs that this polynomial is not a sum of squares, which is evident since it
is not non-negative.

Example 3.3. Let us now consider the multivariate polynomial f(x1, x2) = 2x41+2x31x2−
x21x

2
2 + 5x42. When we input this polynomial into our algorithm, it outputs the decomposi-

tion:

f(x) = (−0.77189296x21 + 2.18272409x22 − 0.18539422x1x2)
2+

+ (−1.11250237x21 − 0.47509339x22 − 0.9615459x1x2)
2+

+ (−0.40806831x21 − 0.1000096x22 + 0.52154646x1x2)
2

Example 3.4. If we instead take the multivariate polynomial f(x1, x2) = 2x41 + 2x31x2 −
x21x

2
2 + 5x42 − 1, the algorithm outputs that this polynomial is not a sum of squares, which

again is evident since it is not non-negative.
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3.3 Quadratic Modules

This algorithm takes as input a set of rational multivariate polynomials f, g1, . . . , gs ∈
Q[X̄] and a degree bound 2d. It checks whether f can be expressed as

f = σ0 + σ1g1 + . . .+ σsgs,

where each σi ∈
∑

Q[X̄]2 has a degree less than or equal to 2d. In other words, the algo-
rithm determines if the polynomial f lies in the quadratic module generated by g1, . . . , gs
with the specified degree bound. If the answer is affirmative, the algorithm provides a de-
composition in the quadratic module, i.e., it outputs the polynomials σ0, . . . , σs. If not, it
displays a message indicating that such a decomposition does not exist.

The only material we have found regarding this algorithm is a pseudocode for comput-
ing an exact quadratic module representation, described in [22], but implementations in the
literature—whether for exact decompositions or approximations—are rare. As before, we
developed our own implementation. In this case, the logic is similar to that of the SOS
algorithm but extends it to handle quadratic modules.

This algorithm is partially implemented in C++ and partially in Python, with its code
divided between the files QuadraticModule.cpp and QuadraticModule.py. These two
programming languages have been used because C++ enables more efficient parallelization,
while Python allows for a more straightforward and simpler implementation, in addition to
offering a wide range of available libraries.

Since we don’t know which combination of degrees for σ0, . . . , σs will yield the best
approximation, the first step is to compute all the possible degree combinations for these
polynomials. These degree combinations are, in fact, translated into the vectors vdi(X̄),
which are required to represent each σi = vdi(X̄)′Qivdi(X̄) for all i = 0, . . . , s. This
is why we must consider all combinations of degrees from 0 to d for each σi, resulting in
a total cardinality of (d + 1)s+1. However, in some cases, it is not necessary to test all
these combinations. The iteration space can be reduced by employing simple optimization.
Let k be the degree of f , and let k0, k1, . . . , ks denote the degrees of σ0, σ1g1, . . . , σsgs,
respectively. If ki > k for some i and ki > kj for all j ̸= i, then this combination is not
valid. This is because if σigi generates a monomial with a degree greater than that of f in the
decomposition, such a monomial would need to be canceled out through the contributions
of the other polynomials σjgj in the decomposition.

Note that increasing the bound on the degree of the polynomials in the decomposition
within the quadratic module not only increases the number of degree combinations to check
(iterations space), but also enlarges the vector vd, thereby leading to more complex prob-
lems for the solver to handle.
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Once the reduced iteration space is known, we attempt to express f within the quadratic
module generated by g1, . . . , gs for each of the degree combinations previously computed.
This is where parallelization plays a key role. Parallelization allows us to execute multiple
degree combinations for σ0, . . . , σs simultaneously. If an accurate enough decomposition
is found, the algorithm stops and outputs σ0, . . . , σs. If, instead, all combinations have
been tested without finding an accurate decomposition, the algorithm outputs a message
indicating that f does not lie in M(g), at least for the given range of degrees for the σ’s.
The details of the parallelization strategy are explained in the next chapter.

The logic explained above is implemented in the C++ file, while the Python file con-
tains the logic for verifying whether f can be expressed in terms of g1, . . . , gs and some
σ0, . . . , σs.

Let us now move on to this Python file. This file takes as input the polynomials
f, g1 . . . , gs, and a degree combination for σ0, . . . , σs (i.e., the vector vdi(X̄), i = 0, . . . , s),
and outputs a number indicating whether f is in M(g) for this combination. If such a de-
composition exists and meets the required precision, the function returns 1. If a decompo-
sition exists (the solver finds it) but does not meet the required precision, it returns 0. If
no such decomposition exists (the solver cannot find one), it returns -1. Finally, if there is
some internal error within the solver, the function returns -2.

The first step, as in the SOS algorithm, is to create the variable matrices Qi, imposing
them to be PSD as well as symmetric. Next, it computes vdi(X̄)vdi(X̄)′, and for each
product, finds the decomposition into the matrices Bαi . If it is the first iteration (σ0), it
calculates the general expression of vdi(X̄)′Qivdi(X̄) by computing ⟨QiBαi⟩ for each Bαi

in the decomposition, and saves the resulting coefficient-monomial pairs. If it is not the
first iteration (σ1, . . . , σs), it computes the general expression of vdi(X̄)′Qivdi(X̄)gi by
similarly computing ⟨QiBαi⟩ for each Bαi in the decomposition, and then multiplying by
gi.

At the end of this process, we obtain a list where each element represents a polynomial
σigi, i = 0, . . . , s, with g0 = 1. Each of these polynomials is represented as a list of tuples,
where each tuple corresponds to a coefficient-monomial pair. The key idea is that we now
have the expressions of these polynomials as functions of the variables in the matrices Qi.

Since there may be monomials that appear in more than one of the polynomials σigi, the
algorithm first loops over each of these polynomials and saves all the distinct monomials.
After obtaining the set of distinct monomials from the decomposition, we loop over them
and examine the monomials in the polynomial f . If a monomial from the decomposition
appears in f , we save the corresponding coefficient from f . Otherwise, we save 0. This
step is crucial to determine the value to which the coefficient of a monomial in the decom-
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position should be set. Finally, the algorithm loops over all the distinct monomials in the
decomposition and sums the coefficients that correspond to the monomial from the current
iteration. This process groups the coefficients of the monomials that appear in more than
one polynomial σigi. Once we have the full reduced decomposition, grouped by coefficient-
monomial pairs, we can compare it to the list we previously set up with the coefficients of
f , and impose the necessary constraints.

The algorithm then calls the solver with all the constraints. If a solution Q0, . . . , Qs

is returned, the decompositions Qi = HiH
′
i are computed, and the verification method is

called to check whether the solution is accurate enough. If no solution is found, a message
is displayed.

Example 3.5. Let us consider the univariate polynomial f(x) = 2x6 +2x5 + x4 + x2, and
the quadratic module generated by the univariate polynomials g1(x) = x4 and g2(x) = x2.
When we input these polynomials into our algorithm along with a degree bound of 2, it
outputs a possible decomposition within the quadratic module:

f(x) = (0.70710679x)2 + [(−0.70722971− 1.41418626x)2+

+ (−0.01757752 + 0.00879046x)2]g1(x) + [(0.70710679)2 + (0.70676529x)2]g2(x)

Example 3.6. If we instead take the univariate polynomial f(x) = 2x6+2x5+x4+x2−1,
and the quadratic module generated by the univariate polynomials g1(x) = x4 and g2(x) =

x2, the algorithm outputs that a decomposition of f within the quadratic module does not
exist. This can be seen by noting that, if such a decomposition did exist, f would need to
be non-negative on S(g), but 0 ∈ S(g) and f(0) < 0.

Example 3.7. Let us consider now the quadratic module generated by the multivariate poly-
nomials g1(x1, x2, x3) = x1x

2
3+1−x21−x22 and g2(x1, x2, x3) = −x1x

2
3+1. Clearly, the

multivariate polynomial f(x1, x2, x3) = 2−x21−x22 can be represented within this quadratic
module. When we input these polynomials into our algorithm along with a degree bound of
2, it outputs a possible decomposition within the quadratic module (the trivial):

f(x1, x2, x3) = (−0.00032352)2 + g1(x1, x2, x3) + [(1.00000002)2]g2(x1, x2, x3)

Example 3.8. Take now the multivariate polynomial f(x1, x2, x3) = 5−x21−x22−x23, and
the non-compact (and thus non-archimedean) quadratic module generated by g1(x1, x2, x3) =

x1, g2(x1, x2, x3) = x2, and g3(x1, x2, x3) = x3. When we input these polynomials into
our algorithm along with a degree bound of 6, it outputs that a decomposition of f within
the quadratic module does not exist, as expected. If a decomposition did exist, then M(g)

would be archimedean, which is not true.
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3.4 Archimedeanity

For an arbitrary number of variables and polynomials generating the quadratic module,
there are no implementable algorithms to verify archimedeanity; only theoretical character-
izations exist. In 2005, M. E. Canto Cabral presented an algorithm to verify this property in
the case n = 2 (polynomials in two variables) in her doctoral thesis, Archimedean Quadratic
Modules: A Decision Procedure in Dimension Two [25], although it appears that it has not
been implemented and, furthermore, the implementation is not straightforward.

Here, we present a result (and the implementation) for the general case that converts the
problem of finding N in Definition 1.22 into the problem of determining the radius R (if it
exists) of a ball that contains the semialgebraic set

S(g) := {x̄ ∈ Rn|g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0}.

Checking if a quadratic module is archimedean becomes a problem of finding a lower bound
for N . It is clear that if a particular value of N works, then any M ∈ R such that M > N

will also work, because we can express

M −
n∑

i=1

X2
i = N −

n∑
i=1

X2
i + (

√
M −N)2,

which clearly belongs to M(g).

Assume that S(g) is a compact set (otherwise, M(g) would not be archimedean). There-
fore, there exists R > 0 such that S(g) is contained in the ball centered at 0 ∈ Rn with
radius R. Define gR(x̄) := R2 − (x21 + . . .+ x2n).

Proposition 3.9. M(g) is archimedean if and only if gR ∈ M(g).

Proof. If M(g) is archimedean, then gR ∈ M(g) since gR > 0 on S(g), and hence Putinar’s
Positivstellensatz applies to it.

To prove the converse, suppose gR ∈ M(g). Then, for any M ∈ R such that M ≥
R2, we have M − (x21 + . . . + x2n) ∈ M(g). Consequently, M(g) is archimedean by
definition.

This result gives an effective and sharp bound on the number R to test whether a certain
quadratic module M(g) is archimedean or not if S is a compact set.

The problem now turns into finding the radius (if it exists) of a ball containing S. This
task can be accomplished using a quantifier elimination algorithm, for which software tools
are available, such as Reduce-Redlog package [26]. The property that a semialgebraic set is
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compact can be expressed in the first-order language of real closed fields. Both being closed
and being bounded can be written using formulas with no free variables (all variables are
quantified), and the quantifier elimination algorithm will output a statement that is either
trivially true or trivially false. Moreover, if the boundedness condition involving the norm
bound R is not quantified, then after quantifier elimination, one obtains a semialgebraic set
describing the half-line [R,+∞) of all possible bounds. In this case, the formula would
look like:

∀x̄(x̄ ∈ S(g) =⇒ ||x̄|| ≤ R),

where there are n + 1 variables (x̄, R), and only x̄ are quantified. Writing an equivalent
formula in terms of the free variables (unquantified) results in a semialgebraic set in the real
line, which corresponds to the half-line of upper bounds.

Once R is determined, we only need to use our quadratic module algorithm to check
whether the polynomial R2 −

∑n
i=1X

2
i lies in M(g).

That said, given the sequence g1, . . . , gs, we can always add gs+1 := R2−
∑n

i=1X
2
i to

the list to define S(g) with an archimedean quadratic module. So, the fundamental question
regarding archimedeanity relates to determining the compactness of semialgebraic sets. Is
there a way to certify if a given semialgebraic set is compact without using the quantifier
elimination algorithm? Moreover, can compactness be inferred directly from the coeffi-
cients or degrees of the polynomials generating the quadratic module?

The specific question we address by developing this algorithm is: given a compact
semialgebraic set, do we truly need to extend the set by adding an extra polynomial to en-
sure archimedeanity, or is the information ensuring archimedeanity already inherent within
the set itself? Our focus is always on finding the simplest way to define an archimedean
quadratic module without introducing redundant information. It is evident that a more com-
plex quadratic module increases the computational complexity when determining decom-
positions within it.

Then, this algorithm takes as input the polynomials g1, . . . , gs that generate the quadratic
module and a degree bound 2d for the decomposition within it. The polynomial f for the
quadratic module algorithm is then defined as f = N −

∑n
i=1X

2
i once N is determined.

If the archimedean property is verified within the degree range imposed, then σ0, . . . , σs
are returned, confirming that the quadratic module is archimedean and that a decomposition
exists within the specified degree range. On the other hand, if the property is not verified
within this range for the σ’s, we can only conclude that no such decomposition exists within
this range, and the archimedean property is not satisfied there. Beyond this range, the out-
come is uncertain: it might be that a decomposition exists for higher degrees, or it might
not. To address this uncertainty, one approach would be to set the degree bound as outlined
in 1.28, ensuring that if no decomposition is found within this bound, then the quadratic
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module is not archimedean. However, this theoretical bound is impractically large, making
implementation infeasible.

Example 3.10. Let us consider the quadratic module generated by the multivariate poly-
nomials g1(x, y) = x3 − y2, and g2(x, y) = 1 − x, the associated semialgebraic set
S(g) = {(x, y) ∈ R2|x3 − y2 ≥ 0, 1 − x ≥ 0}, and a degree bound of 10. Comput-
ing the radius with Reduce-Redlog we find that R =

√
2, confirming that S(g) is compact.

Let us take R = 2.

Figure 3.1: Ball containing the compact semialgebraic set S(g).

Next, we need to determine whether 2 − X2 − Y 2 ∈ M(g) for some polynomials
σ0, σ1, σ2 ∈

∑
Q[X,Y ]2 of degree less than or equal to 10, using the quadratic module

algorithm. The algorithm returns that a possible solution includes the polynomials:

σ0(x, y) = (−6.08039805× 10−1 − 8.68254866× 10−17y + 6.08038761× 10−1x)2+

+ (1.34755872× 10−15 − 7.50979301× 10−4y + 1.34745380× 10−15x)2+

+ (3.76491031× 10−4 + 1.35104192× 10−15y + 3.76491677× 10−4x)2,

σ1(x, y) = (−9.99999716× 10−1 + 9.30067140× 10−34y − 5.07394190× 10−10x)2+

+ (−2.59459204× 10−19 + 1.20657274× 10−52y + 5.11356132× 10−10x)2+

+ (1.53619622× 10−53 + 1.65170418× 10−20y + 3.89728629× 10−63x)2,

σ2(x, y) = (−1.26380019 + 2.59763929× 10−17y − 9.71597782× 10−1x)2+

+ (1.81924498× 10−1 − 1.35384393× 10−16y − 2.36637238× 10−1x)2+

+ (−1.05834740× 10−20 − 4.75101281× 10−5y + 1.23843747× 10−20x)2.

Now, we will examine a couple of additional examples of executions of our algorithm.
The first example involves an archimedean quadratic module, while the second example
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considers a non-archimedean quadratic module generated by a set of polynomials with a
compact semialgebraic set associated. These correspond, respectively, to Examples 5.3.9
and 6.3.1 from [27], where the proofs of archimedeanity can be found. We will now verify
that our algorithm produces the expected results.

Example 3.11. Consider the archimedean quadratic module generated by g1(x1, x2) = x1,
g2(x1, x2) = x2, and g3(x1, x2) = 1 − x1 − x2, along with the polynomial f(x1, x2) =

1−x21−x22, for which a decomposition exists. The radius R = 1 has been determined, again,
using Reduce-Redlog. When these polynomials are provided to the algorithm with a degree
bound of 12, it outputs the following polynomials, which provide a valid decomposition of
f within M(g):

σ0(x1, x2) = (−0.00069383)2,

σ1(x1, x2) = (−5.73953809× 10−1 − 8.34427487× 10−1x2 + 5.73936988× 10−1x1)
2+

+ (3.41056602× 10−1 − 4.69179305× 10−1x2 − 3.41057254× 10−1x1)
2+

+ (3.46955174× 10−4 − 3.82803085× 10−9x2 + 3.46959777× 10−4x1)
2,

σ2(x1, x2) = (−5.73953809× 10−1 + 5.73936988× 10−1x2 − 8.34427487× 10−1x1)
2+

+ (3.41056602× 10−1 − 3.41057254× 10−1x2 − 4.69179305× 10−1x1)
2+

+ (−3.46955174× 10−4 − 3.46959777× 10−4x2 + 3.82803085× 10−9x1)
2,

σ3(x1, x2) = (−9.83655974× 10−1 − 3.30746083× 10−1x2 − 3.30746083× 10−1x1)
2+

+ (3.73376214× 10−15 − 5.14430910× 10−1x2 + 5.14430910× 10−1x1)
2+

+ (−1.80059451× 10−1 + 2.67753065× 10−1x2 + 2.67753065× 10−1x1)
2.

Example 3.12. Now, consider the multivariate polynomial f(x1, x2) = 4−x21−x22 and the
non-archimedean quadratic module generated by the multivariate polynomials g1(x1, x2) =
x1 − 1

2 , g2(x1, x2) = x2 − 1
2 , and g3(x1, x2) = 1 − x1x2. The set S(g) is compact, and

the radius R =
√
4.25 (though we have taken R = 4) is determined as in the previous

examples. However, a decomposition of f within this quadratic module does not exist.
Indeed, if we input these polynomials into the algorithm along with a degree bound, the

algorithm confirms that f cannot be expressed within M(g).

To conclude this chapter, we would like to reflect on the following: a quadratic mod-
ule could be archimedean while admitting different decompositions that "generate" this
archimedeanity, i.e., different combinations of σ’s such that, for a fixed N ∈ R>0, N −∑n

i=1X
2
i = σ0 + σ1g1 + . . . + σsgs. For this reason, as future work, we could study

whether there is a relationship or pattern among the degrees of the different sets of σ’s that
"generate" archimedeanity. In other words, we could investigate how the degrees of the σ’s
that "generate" archimedean quadratic modules are distributed.
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Chapter 4

Parallelization and Performance
Evaluation

In this chapter, we will focus on understanding the motivation behind parallelization
and delving into the tools and techniques used to implement it, describing their functionality
and purpose in detail. Additionally, we will analyze the effectiveness of this parallelization
strategy by evaluating its performance across various scenarios, providing insights into their
strengths and limitations.

4.1 Parallelization

As explained earlier, our parallelization is implemented in the quadratic module algo-
rithm, using different combinations of degrees for the σ’s in the representation within the
quadratic module. For solvers supporting parallelization (like Mosek), a double layer of
parallelization could be studied, combining a first layer with the degrees for the σ’s and a
second layer implicitly managed by the solver, with benchmarking conducted to determine
the optimal distribution of threads across both layers.

We have used OpenMP [28], a parallel programming model that allows the paralleliza-
tion of code regions through directives also known as pragmas, and compiled the code using
Clang/LLVM. OpenMP supports multi-platform shared memory multiprocessing program-
ming in C, C++, and Fortran. It is a portable, scalable model that gives programmers a sim-
ple and flexible interface for developing parallel applications for platforms ranging from the
standard desktop computer to the supercomputer. It provides a set of compiler directives,
library routines, and environment variables that enable parallel programming. It is widely
used for parallelizing loops, sections of code, and other regions in a program, making it
easier to exploit multi-core processors and shared memory architectures.
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One of the key features of OpenMP is its ease of use: it allows programmers to paral-
lelize their code with minimal changes to the existing serial code by simply adding pragmas
or directives. These directives are used to specify parallel regions, work-sharing constructs
(such as loops), synchronization mechanisms (like critical sections, barriers, and atomic
operations), and tasking constructs that enable fine-grained parallelism.

OpenMP is not limited to a specific hardware architecture, and it works on shared-
memory systems, including multi-core and many-core processors, as well as on large-scale
distributed systems, when used in combination with other tools like MPI (Message Passing
Interface). This makes it highly versatile and effective for a wide range of computational
problems, from simple multi-threaded tasks to large-scale simulations.

In summary, OpenMP is a powerful tool for parallel programming, providing a simple
interface to harness the power of multi-core processors and shared-memory systems. Its
ease of use, flexibility, and broad support across platforms make it an excellent choice for
developing high-performance applications in scientific computing, engineering, and other
fields requiring parallel processing.

In our implementation, we have used the directive #pragma omp parallel for to create
a team of threads and run in parallel the loop that iterates over the combinations of degrees
for the polynomials σ0, . . . , σs. We have also used the directives #pragma omp cancel
for and #pragma omp cancellation point for, which allow us to stop the execution when
an accurate enough solution is found. The first directive cancels the parallel loop, while the
second allows us to define an explicit cancellation point within the loop, where it is veri-
fied if a cancellation of the loop has been requested. In other words, the first directive lets
us cancel the loop, and the second one specifies where the loop’s cancellation condition is
checked by the threads.

A node of the Marenostrum V supercomputer includes 2x Intel Sapphire Rapids 8480+
at 2Ghz and 56 cores in each socket (for a total of 112 cores per node). Each core has a
2MB L2 and the whole node shares a 105MB L3. Keeping this in mind, we have used the
omp_num_threads clause in the loop, so we can determine how many threads are created
and used within it.

Also, when compiling, we have added a couple of environment variables that con-
trol specific aspects of the OpenMP runtime behavior. First, we set to true the variable
OMP_CANCELLATION to enable thread cancellation, as explained earlier (by default, it
is disabled to avoid a negative impact on performance when cancellations are not required).
Secondly, we use the variable OMP_PROC_BIND, which is also set to true. This ensures
that threads are fixed to specific processors and do not migrate during execution, potentially
improving performance by reducing cache misses and enabling better memory locality.
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4.2 Performance Evaluation

Next, we present the results of the benchmarking process, comparing the execution
times of the sequential and the parallelized versions using different numbers of threads,
across several examples seen in the previous chapter.

1. Consider, first, the archimedean quadratic module generated by g1(x1, x2) = x1,
g2(x1, x2) = x2, and g3(x1, x2) = 1−x1−x2, along with the polynomial f(x1, x2) =
1 − x21 − x22, for which a decomposition exists. We will now examine how long it
takes to find a possible decomposition of f within the quadratic module for several
threads and degree bounds.

Threads/Bound deg 2 deg 3 deg 4 deg 5 deg 6

1 thread 5.757 sec 7.234 sec 8.247 sec 9.195 sec 10.353 sec

25 threads 8.792 sec 9.098 sec 10.956 sec 20.462 sec 26.325 sec

50 threads 5.673 sec 10.080 sec 11.815 sec 22.355 sec 29.608 sec

75 threads 4.642 sec 10.588 sec 18.211 sec 24.155 sec 33.607 sec

100 threads 5.511 sec 11.594 sec 15.916 sec 23.840 sec 37.289 sec

112 threads 4.678 sec 9.222 sec 18.161 sec 28.864 sec 34.412 sec

Table 4.1: Execution times first example.

Figure 4.1: Plot execution times first example.
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As we can observe, in this case, the sequential version appears to be the fastest. If we
fix a degree bound and increase the number of threads, the execution time becomes
slower. What happens here is that when using more than one thread, if one finds a
valid solution, it must wait for all the other threads to finish their ongoing executions.
In the sequential case, this does not happen, so the execution time is faster (especially
if a solution is found in the early iterations of the sequential process, which is what is
happening here). When we increase the number of threads while keeping the degree
bound fixed, more executions need to finish once a valid solution has been found,
which is why the execution time tends to increase. However, it is possible that, even
with a fixed degree bound and an increasing number of threads, the time does not
increase significantly or might even be slightly lower if the problems assigned to the
remaining threads are resolved quickly (as is the case with a degree bound of value
2). This happens especially when working with small degree bounds.

On the other hand, if we fix the number of threads and increase the degree bound, the
execution time will increase because higher-degree combinations are involved, and
the problems sent to the solver from each thread are likely to be more computationally
expensive. It could also happen that the first valid degree combination solution is not
at the beginning of the combination vector. In such a case, the sequential version
might take so long to find a solution that, even with the waiting time for all threads to
finish in the multithreading cases, using multithreading would be faster.

2. Now, if we take the polynomial f(x1, x2) = 4 − x21 − x22 with the non-archimedean
quadratic module generated by g1(x1, x2) = x1 − 1

2 , g2(x1, x2) = x2 − 1
2 , and

g3(x1, x2) = 1−x1x2, a decomposition of f in this quadratic module does not exist.
Therefore, we will examine how long it takes, using several threads, to check all
possible combinations while varying the bounds for the degree of the polynomials in
the decomposition.

Threads/Bound deg 2 deg 3 deg 4 deg 5 deg 6

1 thread 14.188 sec 51.681 sec 215.500 sec 594.932 sec 1456.710 sec

25 threads 2.586 sec 7.417 sec 28.509 sec 53.847 sec 154.680 sec

50 threads 3.734 sec 8.539 sec 20.601 sec 40.893 sec 93.169 sec

75 threads 2.555 sec 8.091 sec 18.091 sec 34.749 sec 69.054 sec

100 threads 2.542 sec 8.042 sec 13.657 sec 34.650 sec 66.762 sec

112 threads 3.610 sec 7.930 sec 14.893 sec 25.989 sec 60.081 sec

Table 4.2: Execution times second example.
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Figure 4.2: Plot execution times second example (logarithmic scale).

In this case, since the desired decomposition does not exist for any combination, all
possible combinations up to the degree bound are tested, meaning the entire combi-
nation vector is traversed. Therefore, as can be observed, it is much more efficient to
use the maximum number of threads possible to solve all the cases more quickly in
parallel.

3. Let us consider the quadratic module generated by g1(x1, x2, x3) = x1x
2
3+1−x21−x22

and g2(x1, x2, x3) = −x1x
2
3+1. Clearly, the polynomial f(x1, x2, x3) = 2−x21−x22

can be represented within this quadratic module. Let us examine how long it takes
for the algorithm to find a possible decomposition of f within it.

Threads/Bound deg 2 deg 3 deg 4 deg 5 deg 6

1 thread 2.472 sec 2.817 sec 2.727 sec 4.724 sec 2.230 sec

25 threads 3.299 sec 11.094 sec 28.813 sec 102.136 sec 210.550 sec

50 threads 2.430 sec 9.822 sec 28.100 sec 102.504 sec 212.361 sec

75 threads 2.446 sec 10.925 sec 28.876 sec 101.665 sec 211.171 sec

100 threads 1.622 sec 10.007 sec 28.735 sec 100.027 sec 212.246 sec

112 threads 2.309 sec 8.737 sec 32.399 sec 101.717 sec 211.413 sec

Table 4.3: Execution times third example.
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Figure 4.3: Plot execution times third example.

In this case, the situation is similar to what was explained in the first example. In fact,
here the execution times increase less when fixing a degree bound and increasing
the number of threads because, even though more threads are made available to the
program, the iteration space after optimization is smaller than the number of threads
provided. Therefore, fewer threads than those allocated are being used.

4. Finally, we will take the polynomial f(x1, x2, x3) = 5− x21 − x22 − x23, and the non-
compact (and thus non-archimedean) quadratic module generated by g1(x1, x2, x3) =

x1, g2(x1, x2, x3) = x2, and g3(x1, x2, x3) = x3. This setup allows us to observe
how much time the algorithm requires to check all possible combinations up to a
certain degree and verify that such a decomposition does not exist.

Threads/Bound deg 2 deg 3 deg 4

1 thread 27.907 sec 83.177 sec 730.149 sec

25 threads 6.627 sec 9.833 sec 166.875 sec

50 threads 2.154 sec 14.236 sec 93.066 sec

75 threads 2.654 sec 16.265 sec 64.641 sec

100 threads 5.408 sec 15.326 sec 59.115 sec

112 threads 5.935 sec 15.026 sec 61.475 sec

Table 4.4: Execution times fourth example.
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Figure 4.4: Plot execution times fourth example (logarithmic scale).

Finally, this is a case similar to the second example. Since the desired decomposition
does not exist, all possible degree combinations in the vector are tested, making it
more efficient to parallelize as much as possible.

Thus, after studying several examples, we can conclude that using the maximum number
of threads possible (in our case, 112) is the best option.

When we cannot express a polynomial in the quadratic module generated by other poly-
nomials for a given degree bound, and all combinations must be tested, it is always much
better to fully exploit multithreading. In cases where a decomposition does exist, if it cor-
responds to a degree combination found early in the iteration space, fully parallelizing is
slightly slower. However, the time lost in this scenario is minimal compared to the signif-
icant gains achieved by maximizing parallelization in cases where the decomposition does
not exist. Conversely, if the combination that provides the decomposition is found later in
the combination vector, then parallelization remains the more optimal choice.

Therefore, if we do not know in advance whether a given polynomial can be represented
in the quadratic module generated by other polynomials for a certain degree bound, it seems
that the best approach is to configure the program to use all available threads.
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Chapter 5

Conclusions

It is worth noting that the area of study of these topics is an active field of research
and truly fascinating. With this in mind, several conclusions can be drawn from the work
conducted.

First, it would be worthwhile to delve deeper into the work presented in Chapter 2 to
attempt the implementation of the main theorem by performing the necessary verifications
of the assumptions. Although some verifications may not be trivial to implement, it could
prove to be a valuable exercise.

Second, concerning the quadratic module algorithm and the bound on the represen-
tation for archimedean quadratic modules, it should be noted that the current theoretical
bound for Putinar’s Positivstellensatz, which would allow us to ensure non-archimedeanity
by setting the bound at this value, is too high to be computable. Our algorithm can verify
that a polynomial cannot be represented in the quadratic module up to a certain degree of
the polynomials in the decomposition, but reaching the theoretically prescribed degree is
currently not feasible. However, if a valid decomposition is found within the chosen degree
range, we can indeed confirm that the quadratic module is archimedean.

Finally, regarding efforts to improve and optimize these algorithms, the semidefinite
programming solver used internally by the quadratic module algorithm only functions up to
a certain size of input vectors and matrices. As the number of variables or the degree of the
polynomials in the decomposition increases, these vectors grow larger, causing the solver to
become slow and incapable of solving the given problem. Thus, there is a limitation in this
regard. This issue could be partially mitigated if a more powerful solver were available or if
the code were executed on multiple GPUs simultaneously, leveraging greater computational
capacity. It would be worthwhile to explore ways to reduce the iteration space in the combi-
nations of degrees by deriving an even more optimal criterion. However, this improvement
would be of limited utility if the issue with the solver is not addressed.
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Appendix A

Additional Proofs

Proof of Lemma 2: We want to see that, given a polynomial f ∈ R[X̄, Ȳ ], there is a
constant K > 0 such that, for every ξ1, ξ2 ∈ ∆× C,

|f̃(ξ1)− f̃(ξ2)| ≤ K||ξ1 − ξ2||.

Denoting by Df̃ the derivative of f̃ , by the mean value theorem, it is enough to show that
|Df̃(ξ)(e)| ≤ K for all ξ ∈ ∆×C and e ∈ Rn+l+1 with ||e|| = 1, where the expression of
K will be obtained later.

First of all, we are interested in bounding f̃ . We have

f̃(X̄, Ȳ , Z) =
∑
|k|≤m

fk(X̄)Ȳ kZm−|k|

and, rewriting fk(X̄),

f̃(X̄, Ȳ , Z) =
∑
|k|≤m

(
∑
α

aα

(
|α|
α

)
X̄α)

k

Ȳ kZm−|k|.

Then,

|f̃(X̄, Ȳ , Z)| =

∣∣∣∣∣∣
∑
|k|≤m

(∑
α

aα

(
|α|
α

)
X̄α

)
k

Ȳ kZm−|k|

∣∣∣∣∣∣ ≤
≤
∑
|k|≤m

∣∣∣∣∣∑
α

aα

(
|α|
α

)
X̄α

∣∣∣∣∣
k

|Ȳ |k|Z|m−|k| ≤
∑
|k|≤m

||f ||2d(n
√
N)d|Ȳ |k|Z|m−|k|,
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since∣∣∣∣∣∑
α

aα

(
|α|
α

)
X̄α

∣∣∣∣∣
k

≤

(∑
α

|aα|
(
|α|
α

)
|X1|α1 · · · |Xn|αn

)
k

≤

≤ ||fk||
dk∑
k=0

(n
√
N)k ≤ ||f ||

d∑
k=0

(n
√
N)k ≤ ||f ||(d+ 1)(n

√
N)d ≤ ||f ||2d(n

√
N)d,

where ||fk|| = maxα |aα|k, ||f || = maxk ||fk||, dk is the degree in X̄ of fk, d is the max-
imum degree in X̄ of all the fk’s (i.e. d = maxk dk), and the multinomial identity and the
fact that X̄ ∈ ∆ have been used.

Moreover, since C is compact, there exists ρ ∈ R which is the maximum value of ||(ȳ, z)||
for (ȳ, z) ∈ C. Then,

|f̃(X̄, Ȳ , Z)| ≤
∑
|k|≤m

||f ||2d(n
√
N)

d
|Y1|k1 . . . |Yl|kl |Z|m−|k| ≤

≤
∑
|k|≤m

||f ||2d(n
√
N)

d
ρk1 . . . ρklρm−|k| =

∑
|k|≤m

||f ||2d(n
√
N)

d
ρm ≤

≤
(
l +m

m

)
||f ||2d(n

√
N)

d
ρm,

where m is the degree in the variables Y1, . . . , Yl of f , and
(
l+m
m

)
is the number of all the

monomials Ȳ k of degree less than or equal to m.

Now that we have bounded f̃ , we are interested in bounding Df̃ . We know that

|f̃(X̄, Ȳ , Z)| ≤
∑
|k|≤m

||f ||
d∑

i=0

(|X1|+ . . .+ |Xn|)i|Ȳ |k|Z|m−|k|.

Then

∣∣∣∣∣∂f̃(X̄, Ȳ , Z)

∂Xi

∣∣∣∣∣ ≤ ∑
|k|≤m

||f ||
d∑

i=1

i(|X1|+ . . .+ |Xn|)i−1|Ȳ |k|Z|m−|k| ≤

≤
∑
|k|≤m

||f ||d2(|X1|+ . . .+ |Xn|)d−1ρm ≤
(
l +m

m

)
||f ||d2(n

√
N)

d−1
ρm,

∣∣∣∣∣∂f̃(X̄, Ȳ , Z)

∂Yi

∣∣∣∣∣ ≤ ∑
|k|≤m

||f ||
d∑

i=0

(|X1|+ . . .+ |Xn|)iki|Yi|ki−1
∏
j ̸=i

|Yj |kj |Z|m−|k| ≤

≤
∑
|k|≤m

||f ||
d∑

i=0

(|X1|+ . . .+ |Xn|)ikiρm−1 ≤
(
l +m

m

)
||f ||2d(n

√
N)

d
mρm−1,
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and

∣∣∣∣∣∂f̃(X̄, Ȳ , Z)

∂Z

∣∣∣∣∣ ≤ ∑
|k|≤m

||f ||
d∑

i=0

(|X1|+ . . .+ |Xn|)i|Ȳ |k(m− |k|)|Z|m−|k|−1 ≤

≤
∑
|k|≤m

||f ||2d(n
√
N)

d
(m− |k|)ρm−1 ≤

(
l +m

m

)
||f ||2d(n

√
N)

d
mρm−1.

This implies that

|Df̃(X̄, Ȳ , Z)(e)| =

∣∣∣∣∣
n∑

i=1

∂f̃(X̄, Ȳ , Z)

∂Xi
ei +

l∑
i=1

∂f̃(X̄, Ȳ , Z)

∂Yi
ei+n +

∂f̃(X̄, Ȳ , Z)

∂Z
en+l+1

∣∣∣∣∣ ≤
≤

n∑
i=1

∣∣∣∣∣∂f̃(X̄, Ȳ , Z)

∂Xi

∣∣∣∣∣ |ei|+
l∑

i=1

∣∣∣∣∣∂f̃(X̄, Ȳ , Z)

∂Yi

∣∣∣∣∣ |ei+n|+

∣∣∣∣∣∂f̃(X̄, Ȳ , Z)

∂Z

∣∣∣∣∣ |en+l+1| ≤

≤
(
l +m

m

)
||f ||d2(n

√
N)

d−1
ρm

√
n+

(
l +m

m

)
||f ||2d(n

√
N)

d
mρm−1

√
l+

+

(
l +m

m

)
||f ||2d(n

√
N)

d
mρm−1 =

(
l +m

m

)
||f ||d2(n

√
N)

d−1
ρm

√
n+

+

(
l +m

m

)
||f ||2d(n

√
N)

d
mρm−1(

√
l + 1) =

=

(
l +m

m

)
||f ||d(n

√
N)

d−1
ρm−1(dρ

√
n+ 2(n

√
N)m(

√
l + 1)),

since for a vector e on the unit sphere in Rn+l+1,
∑n

i=1 |ei| and
∑n+l

i=n+1 |ei| can reach at
most

√
n and

√
l respectively.

Then, we have shown that there exists a

K =

(
l +m

m

)
||f ||d(n

√
N)

d−1
ρm−1(dρ

√
n+ 2(n

√
N)m(

√
l + 1))

computed in terms of n, l, the degrees in X̄ and Ȳ of f , the size of the coefficients of f , N ,
and ρ, such that the condition |Df̃(ξ)(e)| ≤ K is satisfied, and thus the Lemma 2 is proved.
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