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Abstract: Free chlorine (FC) plays a crucial role in ensuring the safety of drinking water
by effectively inactivating pathogenic microorganisms. However, traditional methods for
measuring FC levels often require specialized equipment and laboratory settings, limiting
their accessibility and practicality for on-site or point-of-use monitoring. QR Codes are
powerful machine-readable patterns that are used worldwide to encode information (i.e.,
URLs or IDs), but their computer vision features allow QR Codes to act as carriers of
other features for several applications. Often, this capability is used for aesthetics, e.g.,
embedding a logo in the QR Code. In this work, we propose using our technique to build
back-compatible Color QR Codes, which can embed dozens of colorimetric references, to
assist in the color correction to readout sensors. Specifically, we target two well-known
products in the HORECA (hotel/restaurant/café) sector that qualitatively measure chlorine
levels in samples of water. The two targeted methods were a BTB strip and a DPD powder.
First, the BTB strip was a pH-based indicator distributed by Sensafe®, which uses the
well-known bromothymol blue as a base-reactive indicator; second, the DPD powder
was a colorimetric test distributed by Hach®, which employs diethyl-p-phenylenediamine
(DPD) to produce a pink coloration in the presence of free chlorine. Custom Color QR
Codes were created for both color palettes and exposed to several illumination conditions,
captured with three different mobile devices and tested over different water samples.
Results indicate that both methods could be correctly digitized in real-world conditions
with our technology, rendering a 88.10% accuracy for the BTB strip measurement, and
84.62% for the DPD powder one.

Keywords: free chlorine; QR Code; colorimetric analysis; computer vision; machine
learning; water quality

1. Introduction
Ensuring food safety remains a critical global challenge, particularly in the context of

water quality monitoring and sanitation. The European Union has established one of the
most comprehensive food safety systems worldwide, featuring regulations and guidelines
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designed to shield consumers from potential hazards [1]. Despite these substantial endeav-
ors, significant challenges remain in ensuring food safety across the complex supply chain.
A primary issue lies in the deficiency of efficient verification and traceability systems, which
hinders the monitoring and enforcement of compliance with safety standards. Furthermore,
numerous food safety control methods rely on human interpretation, which is susceptible
to errors and inconsistencies [2].

In response to this, the digitization of self-monitoring processes has emerged as
a promising strategy to bolster the reliability and robustness of food safety plans. By
harnessing the capabilities of technology, it becomes feasible to develop tools capable of
objectively measuring and recording data, ensuring traceability while minimizing human
error. Smartphone-based methods are becoming increasingly popular in the field of self-
monitoring for food safety, as mobile devices are now equipped with digital cameras
that can serve as optical readers for colorimetric sensors [3,4]. However, the practical
deployment of such technologies to read out colorimetric sensors often still depends on
the commercialization of additional hardware to house the colorimetric sensors. Even the
most compact optical readers occupy additional space and cannot easily be embedded into
products [5,6].

To overcome the limitations of current approaches, we propose a smartphone-based
solution that combines image analysis with custom-designed Color QR Codes to digitize
and interpret free chlorine (FC) tests, as QR Codes are easy to read machine-readable
patterns [7], that can be recovered in adversarial scenarios [8–10]. This method is embedded
in a user-friendly mobile application tailored to support routine self-monitoring in food
safety workflows. Our system focuses on two widely used FC detection methods in
drinking water: a test strip based on bromothymol blue (BTB), which offers a simple
and rapid visual indication of chlorine concentration, and a cuvette-based assay using
N,N-diethyl-p-phenylenediamine (DPD), a reference technique in water analysis used due
to its high sensitivity and regulatory acceptance [11]. By adapting both tests to a digital
format, we enable fast, accurate, and traceable chlorine measurements without the need for
specialized instrumentation.

For both digitization pipelines we used a similar approach. At the core of both
methods is the use of custom-designed Color QR Codes, which serve as both geometric
references and color constancy charts [7]. Additionally, color correction was performed
using the embedded references in a Color QR Code, as a simple white balance correction
was insufficient for accurate colorimetric readout. To address this, we applied thin plate
spline transformations. This approach outperforms simple white-balancing, which is often
insufficient for accurately measuring the response of colorimetric dyes [12,13]. Finally, a
machine learning framework was used to fit the response data from the colorimetric space
to the FC expected response [14].

The performance of both systems was rigorously evaluated under various conditions,
including different lighting, mobile devices, and image capture settings. The results
demonstrate the potential of these systems to revolutionize water quality monitoring by
providing accessible and user-friendly tools for rapid and accurate FC determination.

2. Material and Methods
2.1. Free Chlorine Sample Preparation and Reagent Methods

Free chlorine (FC) solutions ranging from 0.1 to 8.4 ppm were prepared using a
stepwise dilution of sodium hypochlorite (NaClO, 37% w/w). A 100 ppm stock solution
was first obtained by adding 0.57 mL of sodium hypochlorite to 1 L of distilled water. From
this stock, a 10 ppm intermediate solution was prepared by diluting 10 mL of the 100 ppm
solution into 100 mL of distilled water. Subsequent dilutions were performed in 200 mL
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volumetric flasks to obtain the desired final concentrations. All solutions were thoroughly
mixed and stored in opaque containers to minimize photodegradation.

Concentrations in the low range (0–2.2 ppm) were verified using a DR300 Pocket
Colorimeter (Hach Company, Loveland, CO, USA). The Hach DR300 colorimeter used has
a reported LOD of 0.02 ppm, as specified by the manufacturer. Measurements below this
threshold were not considered reliable and were excluded from quantitative analysis. For
samples exceeding the instrument’s upper limit (2.2 ppm), dilution was carried out prior to
measurement, ensuring all readings remained within the calibrated range of the device. The
associated uncertainty for direct measurements was ±0.02 ppm, and for diluted samples,
error propagation was applied according to standard dilution procedures to obtain the final
concentration value.

Regarding commercially available reagents to digitize, we targeted two different reagent
methods that evaluated different ways to prepare samples and obtain a FC measurement:

• BTB strip: We used the Free Chlorine Water Check test from Sensafe® (Industrial Test
Systems, Inc., Rock Hill, SC, USA), an assay approved by United States Environmental
Protection Agency. This method is designed for testing 50 mL water samples. The
procedure involves immersing a single test strip into the 50 mL water sample for 20 s
while maintaining continuous back-and-forth motion. The immersion time is adjusted
based on the sample temperature, as indicated in the manufacturer’s datasheet. After
removal, the strip is gently shaken to eliminate excess liquid, followed by a 20-s wait
period before evaluating the color change. The strip employs bromothymol blue (BTB)
as a pH-sensitive dye, which exhibits a blue coloration in the presence of free chlorine.

• DPD powder: We employed a mixture of reagents commercially known as Permachem
Reagents, which contain diethyl-p-phenylenediamine (DPD) dye (Hach®, Loveland,
CO, USA). The reagent is supplied in single-dose powder packets designed to be mixed
with 10 mL of the water sample. The liquid sample was held in custom-designed
cuvettes specifically fabricated for this study. In the presence of free chlorine, the DPD
reagent reacts to produce a pink coloration, enabling colorimetric quantification.

The DPD powder method required the use of a cuvette to hold liquid samples for
colorimetric analysis. It is important to note that the perceived color of a translucent liquid
depends not only on the depth of the liquid but also on how light is confined within the
cuvette. To minimize color distortion during image acquisition, a custom cuvette was
designed and fabricated in our laboratory. Several prototypes with varying shapes and
internal dimensions were created using 3D printing, employing white polylactic acid (PLA)
filament. The prototypes were printed using an Ultimaker 5 3D printer (Ultimaker, Utrecht,
The Netherlands) (see Figure 1). The final design (far right in Figure 1), was selected based
on its superior performance in minimizing color distortion, plus squared shapes were easy
to find using computer vision algorithms, similar to QR Code ones. It features internal
dimensions of 1.1 cm (height) × 3.3 cm (length) × 3.3 mm (width), yielding an approximate
volume of 10 mL. Finally, once the size of the cuvette was refined in terms of light reflection
and color acquisition, the edges of the final cuvette where painted black, which improved
the accuracy of automatic cuvette detection within the image processing pipeline.
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Figure 1. From left to right: different cuvette prototypes for the DPD powder method and the final
cuvette design, with internal dimensions of 11.0 mm height, 33.0 mm length, 3.3 mm width. The
edges were painted black to improve cuvette detection.

2.2. Design and Fabrication of Color QR Codes

We created two back-compatible Color QR Codes for the digitization of each free
chlorine test (BTB strips and DPD powder); these QR Codes acted as colorimetric charts to
color correct the scenes of the acquired images. The QR codes shared encoding properties,
such as:

• Data: A URL to the Diesmar website (https://diesmar.com) along with a unique
digital identifier that changes with each new QR code generated, i.e., “n87RXv6i3”
(http://diesmar.com/#n87RXv6i3, accessed on 18 May 2025).

• Modules: version 3 of the QR Code standard was used, resulting in a 29 × 29 module
matrix, which could properly store the data and the colorimetric references.

• Size: The physical size of the QR Codes was approximately 1 in2 (2.54 cm × 2.54 cm).

The primary difference between the QR codes is in their respective color palettes:

• BTB Strip QR Code: The color palette was created in the CMYK color space and
was based on the suggested palette by Sensafe® brand for the product calibration at
different chlorine concentrations (see Figure 2a).

• DPD Powder QR Code: The color palette was created in the RGB color space and
is based on the range of colors exhibited by the DPD reagent when reacting with
different chlorine concentrations in our laboratory. To create such a palette, a set of
concentration within the range (0.1–10 ppm) were tested and captured with 6500 K
lighting and captured with Huawei P20 smartphone model (see Figure 2b).

(a) (b) 

Figure 2. (a) QR codes designed for use with Sensafe® chlorine test strips and (b) the DPD method
(right). The QR codes encode a URL to the Diesmar website and contain a color palette for color
correction. The specific URLs encoded are: (a) http://diesmar.com/#AdDk (accessed on 18 May
2025) and (b) http://diesmar.com/#n87RXv6i3 (accessed on 18 May 2025).

The back-compatible Color QR Codes were developed using standard Python 3 (>3.9)
libraries, with the widely used python-qrcode library serving as the foundation. The
codes were printed via commercial offset printing on white Sappi Magno Matt 300 g/m2

https://diesmar.com
http://diesmar.com/#n87RXv6i3
http://diesmar.com/#AdDk
http://diesmar.com/#n87RXv6i3
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paper with a polypropylene laminate (Sappi Limited, Johannesburg, South Africa). To
ensure accurate color reproduction of the embedded color references, ICC FOGRA27 color
profiling was applied during the printing process.

2.3. Experimental Setup and Data Acquisition

The series of water samples with known free chlorine concentrations—validated using
a Hach colorimeter—were analyzed using both the DPD powder and BTB strip methods.
Each sample was imaged within a custom-designed colorimetric setup that incorporated
controlled variations in lighting and a standardized reference pattern. To ensure the
robustness of the colorimetric models and the reliability of the results, several key factors
were carefully considered during dataset construction. In particular, the impact of changing
illumination conditions on image capture and color extraction was critically assessed to
better emulate real-world scenarios. Furthermore, multiple mobile devices with varying
camera specifications were employed to introduce hardware diversity and evaluate the
generalizability of the proposed models. As a result, data acquisition was carried out under
two distinct conditions: a Fixed Setup, featuring controlled lighting, and a Room Setup,
representing standard ambient lighting and more realistic use-case scenarios.

In the Fixed Setup, samples were placed inside a Konseen Professional Photo Light Box
(Shaoxing Shangyu Meisen Photography Co., Ltd., Shaoxing, China). To minimize shadows,
LED strips were placed around the top of the box to provide uniform illumination from all
directions. Variable light conditions were achieved using Phillips Hue Light® LED strip
(Signify N.V., Eindhoven, The Netherlands); see Figure 3. Light temperatures ranged from
2500 K to 6500 K in 500 K increments. For image acquisition, a Huawei P20 smartphone
(featuring 20 megapixels (MP) Monochrome (f/1.6) + 12 MP RGB (f/1.8)) was mounted
on a tripod to ensure consistent framing and focus. In the Room Setup, ambient lighting
from the laboratory environment was used to simulate real-world conditions. Images were
captured using four different smartphones: Huawei P20, iPhone SE (12 MP, (f/1.8)), Xiaomi
Mi A2 (12 MP, (f/1.75) + 20 MP), and Motorola Moto G6 (12 MP (f/1.8) + 5 MP (f/2.2)). To
assess the influence of additional lighting, each sample was photographed both with and
without flash. Images were taken without fixed positioning, replicating user variability in
typical real-life applications.

Figure 3. Setup versus image examples from datasets. (a) Fixed Setup configured to 2500 K color
temperature; (b) an image of the BTP strip sensor under the Fixed Setup at 2500 K; and, (c) an image
of the same sensor under the Room Setup, with laboratory light conditions at, approximately, 4500 K
color temperature.
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When available the Open Camera application was used across smartphones, in An-
droid devices. For iPhone the native OS camera application was used; QR Codes were
read out as a part of the post-processing pipeline using OpenCV [15]. Subsequent im-
age processing, color analysis, and statistical modeling were carried out using mainly a
Python distribution, with several Python packages such as the PyData NumPy stack [16],
OpenCV [15] and scikit-learn [14]. Tables 1 and 2 summarize all the variables for the Fixed
Setup and the Room Setup experiments, respectively.

Table 1. Summary of experimental variables for the Fixed Setup.

Variable Value Sample Size

Commercial test BTB strip, DPD powder 2

Chlorine Concentration
(Hach, w/o dilution) 0 to 2.2 ppm 65

Chlorine Concentration
(Hach, with dilution) 2.2 to 8.4 ppm 7

Illumination
(Hue Lights)

2500, 3000, 3500, 4000, 4500,
5000, 5500, 6000, 6500 K 9

Mobile Device Huawei P20 1

Table 2. Summary of experimental variables. (*) The flash was not used in the DPD experiments. (**)
The iPhone SE was not used in the DPD experiments.

Variable Value Sample Size

Commercial test BTB strip, DPD powder 2

Chlorine Concentration
(Hach, w/o dilution) 0 to 2.2 ppm 65

Chlorine Concentration
(Hach, with dilution) 2.2 to 8.4 ppm 7

Illumination
(Room) ~4500 K 1

Flash * Yes, No 2

Mobile Device Huawei P20, Xiaomi A2,
Motorola G6, iPhone SE ** 4

2.4. Pattern Recognition and Color Correction

The QR Code was used to locate the specific Region of Interest (ROI) in the captured
scenes. Locating the barcode helped us to locate the subsequent hardware component,
e.g., the strip or the cuvette, for both methods. Later, for each hardware, a method was
implemented to obtain the measurement of color. Then color was corrected using the color
references embedded in the QR Code. Next, we detail the pipeline in five steps:

1. Image acquisition: An image of the QR Code placed adjacent to the reacted test strip
or cuvette was captured using the smartphone camera.

2. QR Code detection: The QR Code was located by computer vision algorithms to
retrieve barcodes from different surfaces [8], then decoded, and the encoded URL and
digital identifier were retrieved.

3. Color correction: As the ID of the QR Code is known, our algorithm identified the
predefined locations of the color patches within the QR Code. Then, it proceeded to
register the colors against saved values of those colors (the same colors under the
Fixed Setup with 6500 K light and the Huawei P20 smartphone). These pairs of colors,
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captured and reference, were used to construct an advanced color correction map,
based on non-liner color maps using thin-plate splines [12,13].

4. ROI extraction: For each of the specific hardware a ROI was extracted,
5. BTB strip: a feature matcher, the Haar cascade scheme from OpenCV, was used to

retrieve features like the strip ink window.
6. DPD powder: a custom feature extractor was used based on a contour detection, plus

some simple aspect ratio relations of the square depicted by the cuvette.
7. Color measurement of the ROI: The average color value was measured from the

captured image. Then, for each image the recovered color correction map was ap-
plied [13,17]. RGB measured values were converted to HLS (hue, light, saturation) to
feed the different colorimetric models with both the RGB and HSL triplets.

2.5. Colorimetric Model

Following the pattern recognition and color correction process, the extracted color
features were utilized to develop predictive models capable of estimating chlorine con-
centration levels in water. Two independent models were developed for each analytical
method: a classification and a regression task. The classification task aimed to resolve
whether the free chlorine concentration was in a certain low range specific for each test. The
second task, regression, aimed to recover a measurement of the free chlorine concentration
in reference to the tagged values from the Hach device.

For the classification task, a support vector machine (SVM) classifier [14] was trained
using different colorimetric features for each sensor within their respective dataset. The
classification was a 3-class classification task as samples were relabeled as: “low concentra-
tion”, “acceptable concentration” and “excess chlorine”. These classes meant something
different in each of the datasets; for the BTB strip test:

• Low concentration: ≤0.2 ppm
• Acceptable range: 0.2–0.9 ppm
• Excess chlorine: ≥0.9 ppm

and, for the DPD powder test:

• Low concentration: ≤0.2 ppm
• Acceptable range: 0.2–1.1 ppm
• Excess chlorine: ≥1.1 ppm

following their respective manufacturers’ indications.
For the regression task, the relation between the RGB and HSL features and the free

chlorine concentration was assessed, for both sensor tests. For the BTB strip test, one of the
colorimetric features was directly used for this. For the DPD powder, a PCA was applied
to reduce dimensionality and extract the component capturing the most variance in the
feature space. This was then used as a univariate predictor in the regression model.

For both tasks, a train–test split of 80–20% was performed for both datasets; the
test–train splits remained the same for each of the tasks within each dataset.

3. Results and Discussion
3.1. BTP Strip Method

A first qualitative result was obtained regarding the computer vision pipeline to
capture the samples of the BTP strip test. Our object segmentation pipeline was based
upon QR Code detection [8] and training a well-known Haar-cascade scheme worked
precisely [15,18]. First, we detected the Color QR Code (see Figure 4a); then, we corrected
the image to an intermediate image where the strip was to be expected at the right side of the
barcode (see Figure 4b) Subsequently, the matching-pattern algorithm identified the location
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of the test strip within the image (see Figure 4c) Finally, the image was color-corrected
following the previously mentioned spline fitting methods [12]; see Figure 4d. This pipeline
was successfully applied to all images in the dataset without any noticeable issues.

Figure 4. Image processing pipeline for BTP Strip test detection and ROI identification. The figure
contains: (a) the original image showing the QR Code and test strip, with the QR Code outlined in
red; (b) the cropped region with the localized QR Code and test strip, again with the QR Code in red;
(c) ROI identification on the test pad, with the green contour indicating the bounding box from Haar
cascade matching and the yellow contour outlining the actual detected shape; and, (d) the same ROI
as in (c), corrected to a standard 6500 K illuminant to enhance color fidelity.

Once all the images were preprocessed in such fashion, to identify the most informative
color features for chlorine determination, six colorimetric features (red (R), green (G), blue
(B), hue (H), saturation (S), and lightness (L) [19]) were extracted from images of test
strips exposed to varying chlorine concentrations. Figure 5 illustrates the relationship
between these color features and the labeled free chlorine concentration. Clear trends were
observed between free chlorine concentration and the R, G, and L features, particularly in
the 0–4 ppm range. The R component exhibited an approximately exponential decay, while
G and L showed more linear decreases as concentration increased. In contrast, H remained
relatively constant, and S showed non-monotonic behavior, peaking around 2–3 ppm.

To classify chlorine concentration into three discrete categories—low (≤0.2 ppm),
medium (0.2–0.9 ppm), and high (≥0.9 ppm), as defined by the test strip manufacturer—we
trained a support vector machine (SVM) classifier using the six extracted colorimetric
features (R, G, B, H, L, and S). Prior to training, the features were normalized to ensure
comparability across scales. To visually assess the separability of the data, a principal
component analysis (PCA) was performed, reducing the six-dimensional feature space
to two components. This transformation preserved over 97.9% of the original variance
and revealed a clear clustering structure aligned with the target concentration classes
(Figure 6a).
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Figure 5. Relationship between the color features of extracted ROI and free chlorine concentration
measured with the Hach sensor for the BTP strip commercial method. From left to right, top to
bottom: red, green, blue, hue, lightness and saturation. Error bars represent the standard deviation
from pixels in the same ROI for each of the measurements.

(a) (b) 

Figure 6. Steps of the classification pipeline. (a) Data points after PCA from 6 to 2 components, class 0
represents low concentrations, class 1 represents medium and class 2 represents high concentrations.
(b) Confusion matrix for validation set, which consisted in data points from the Fixed Setup. Although
the dataset is unbalanced (2 samples in class 0, 3 in class 1, and 8 in class 2), the classifier achieved
perfect predictions across all classes, as shown by the 100% values on the diagonal.

For model development, the dataset was randomly split into training (80%) and
validation (20%) subsets, maintaining class balance. Prior to training, the features were auto-
scaled using standard normalization (zero mean and unit variance) to ensure comparability
across channels and to improve model performance. The resulting SVM model achieved an
accuracy of 89% on the training set and 100% on the validation set. The confusion matrix
for the validation set (Figure 6b) confirmed perfect agreement between predicted and actual
classes, demonstrating the classifier’s capacity to reliably distinguish between the three
concentration levels under the controlled conditions of the Fixed Setup dataset.

In parallel, we developed a simple regression model to estimate the chlorine con-
centration within the medium range (0.2–0.9 ppm). Rather than employing multivariate
techniques, we focused on the red channel intensity, which showed the strongest monotonic
relationship with concentration in this interval. A univariate model using the natural loga-
rithm of the red channel (ln(Ra)) yielded high R2 values and narrow confidence intervals,
offering an interpretable sub-model that complements the classification approach.
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Additionally, for samples classified within the medium 0.2–0.9 ppm range, a regression
task was performed. A linear regression model was introduced to predict the precise
free chlorine concentration. Based on the observed relationships in Figure 5, the natural
logarithm of the corrected red channel value ln (R c) was used as the independent variable.
The linear regression model, fitted to the training data, is shown in Figure 7, along with
the results on the validation set. The model achieved an R2 of 0.97 on the training set and
0.93 on the validation set, indicating a strong linear correlation between ln (R c) and the
free chlorine concentration. The equation of the fitted line, with a slope of −0.64 ± 0.05 and
a y-intercept of 3.3 ± 0.2, can be used to predict chlorine concentration from ln (R c) values.
The narrow confidence and prediction intervals further demonstrate the model’s precision.

Figure 7. Linear regression model for chlorine concentrations below 0.9 ppm using ln (R c) as the
predictor. (a) Regression model fitted to the training data (dashed line) vs. the validation data (blue
dots) with 95% confidence (light gray) and prediction (dark gray) intervals. (b) Predicted vs. true
chlorine concentration for training (light blue) and validation (blue) datasets. R2 values are shown for
both training and validation sets. The equation of the fitted line is shown in the top left of the graph.

Finally, for the BTB strip method, a test dataset built at room light conditions (Room
Setup) was used as test split for a series of smartphones and images were taken for the same
labeled chlorine concentrations as the Fixed Setup dataset. For each image, the same image
was taken with flash and another one without it. Not all smartphones were used to capture
every sample. Images from some devices were excluded from the evaluation dataset, as
their lower image quality or inconsistent capture conditions introduced variability that
interfered with model performance. Both tasks were tested under this dataset: (1) the
classification task that used R, G, B, H, L, S features for the whole three chlorine ranges
and (2) the regression task that used only the R features in the medium chlorine range.
Figure 8 depicts the detailed metrics of one of the smartphone cameras for both tasks, e.g.,
a confusion matrix for the classification task and a linear fit against the expected values for
the regression task. Figure 8b includes a few misclassified points that lie outside the valid
0.2–0.9 ppm range but were passed to the regression model due to incorrect classification.
These points deviate from the linear trend and are shown to highlight the limitations of
applying regression to misclassified samples. Table 3 details the results for both tasks for
each smartphone and a global accuracy of the classification model. All regression against a
perfect fit performed between 80 and 100%, except with Motorola G6, which exhibits the
worst results in the dataset.
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(a) (b) 

Figure 8. Evaluation of the final model using images captured without flash on a Huawei P20
smartphone. (a) Normalized confusion matrix for the classification task across concentration ranges,
achieving an overall accuracy of 88.1%. The dataset was moderately unbalanced, containing 9, 18, and
15 samples for the ≤0.2 ppm, 0.2–0.9 ppm, and ≥0.9 ppm classes, respectively. Most misclassifications
occurred between medium and high concentrations. (b) Regression analysis for the samples classified
within the 0.2–0.9 ppm interval, with a coefficient of determination R2 = 0.88, indicating a strong
correlation between predicted and true concentrations.

Table 3. Evaluation results for the BTP strip method. The model was originally trained using Fixed
Setup and tested in the Room Setup. The overall classification accuracy is 91.7%, regression performed
R2 > 80% for most cases exceptionally for the Motorola G6 and iPhone (with flash).

Smartphone Flash Classification
(Accuracy %) Regression (R2)

Huawei P20 No 88.1 0.88

Huawei P20 Yes 92.5 0.82

iPhone SE No 91.3 0.87

iPhone SE Yes 95.8 0.79

Motorola G6 No 87.0 0.78

Motorola G6 Yes 96.6 0.80

Xiaomi A2 No 100.0 0.96

Xiaomi A2 Yes 94.7 0.79

3.2. DPD Powder Method

Similarly to the BTP strip method, we successfully implemented a computer vision
pipeline to extract the cuvette of the DPD powder method and measure a ROI region inside
the cuvette with the powder colorant. The two main differences fell in the placement and
volume of the object to be recognized and the volume of the object itself (bigger than the
Color QR Code itself; see Figure 9a,b). For this pipeline, the cuvette was placed on the
right side of the machine-readable pattern. This ensured the deformation of the projective
transformation between the original image and the cropped image was minimized [8].
Plus, another algorithm was used to recover the color measurement, this was a classical
edge-contour detection, using state-of-the-art OpenCV functions [15]. A centered inner
ROI approximately 25 times smaller than the cuvette (5 times for x and y axis) was chosen
(see Figure 9c,d).
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Figure 9. Image processing pipeline for DPD powder test detection and ROI identification. The
figure contains: (a) the original image showing the QR code and powder cuvette, with the QR code
outlined in red; (b) the cropped region with the localized QR code and powder cuvette, again with
the QR code in red; (c) cuvette identification, with the green contour indicating the inner contour and
the yellow contour outlining the actual ROI used for measurement; and, (d) the same ROI as in (c),
corrected to a standard 6500 K illuminant to enhance color fidelity.

Again, to determine the most effective color features for quantifying free chlorine con-
centration, six parameters (red (R), green (G), blue (B), hue (H), saturation (S), and lightness
(L)) were extracted from the ROI of images representing various chlorine concentrations.
Figure 10 displays the contribution of each component. Despite this, not all the features
were used for the DPD powder models. First, as seen in Figure 10, the best contributions to
the model were the blue and green channels;, therefore, we used those two components
to build similar tasks, as before. For the SVC, both were used without any PCA. The next
difference from the BTP strip models is that our boundaries changed due to following
another manufacturer specifications, so the boundaries for the classification task were as
follow: low was ≤0.2 ppm; medium, 0.2–1.1 ppm; and, high, ≥1.1 ppm. Later, for the
medium concentration range, a regression task was trained against the first component of a
PCA performed over the logarithm of the G and B features, as opposed to the model for the
BTB strip method which used the R feature; this a logical approach as the DPD powder test
changes color in the reddish gamut, hence following color theory does not present changes
in the red channel of the measurement. We focused on the two most predictive features
(G and B channels) and used PCA to construct a univariate representation capturing the
dominant variance. This simplified model yielded good accuracy within the target range.

As with the BTB strip method, the DPD powder test also yielded strong quantitative
results. For instance, using the Huawei P20 smartphone in the Room Setup without flash,
the classification task achieved an accuracy of 84.6%, while the regression model reached
an R2 of 0.94, as shown in Figure 11. The use of flash was avoided for the DPD powder test
due to unwanted reflections caused by the cuvette. Table 4 summarizes the results obtained
across all smartphones tested under the Room Setup conditions.
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Figure 10. Relationship between the color features of extracted ROI and free chlorine concentration
measured with the Hach sensor for the DPD powder test. From left to right, top to bottom: red, green,
blue, hue, lightness and saturation. Error bars represent the standard deviation from pixels in the
same ROI for each of the measurements.

(a) (b) 

Figure 11. Evaluation of the final model for the DPD powder test using images captured without
flash on a Huawei P20 smartphone. (a) Normalized confusion matrix for the classification task across
concentration ranges, achieving an overall accuracy of 88.1%. The dataset was imbalanced, with 2,
16, and 8 samples corresponding to the ≤0.2 ppm, 0.2–1.1 ppm, and ≥1.1 ppm classes, respectively.
Most misclassifications occurred between the medium and high concentration ranges. (b) Regression
analysis for the samples classified within the 0.2–0.9 ppm interval, with a coefficient of determination
R2 = 0.88, indicating a strong correlation between predicted and true concentrations.

Table 4. Evaluation results for the DPD powder method. The model was originally trained using
Fixed Setup and tested in the Room Setup. The overall classification accuracy is 92.7%, regression
performed R2 > 80% for all smartphones.

Smartphone Classification (Accuracy %) Regression (R2)

Huawei P20 88.1 0.94

Motorola G6 100.0 0.82

Xiaomi A2 90.0 0.91
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3.3. Smartphone Application

In parallel with the training of machine learning models and the digitization of the
chlorine test samples, we developed a mobile application aimed at demonstrating the po-
tential integration of this technology into a product for prospective clients in the HORECA
(hotel/restaurant/café) sector. The resulting application, named Selfytest, was designed to
assist non-specialist operators in performing fast and reliable free chlorine measurements
on-site, using only a smartphone and a printed Color QR Code. The Selfytest app man-
aged a local database that stored user information, sample metadata, and measurement
results. Additionally, it communicated with a cloud infrastructure via a dedicated REST
API, through which the trained colorimetric models were deployed. This architecture
ensured platform independence and allowed model updates to be performed server-side
without requiring user intervention.

Figure 12 illustrates the main components of the smartphone platform. Figure 12a
shows a mockup of the SelfytestBot, a prototype messaging interface used in early-stage
demonstrations to simulate image acquisition and classification. It displayed automatically
extracted result alongside a visual comparison with predefined color references. Figure 12b
presents screenshots of the actual Selfytest application: the central panel shows the home
interface, which allowed users to access configuration options, sample management tools,
and result history; the right panel shows the live acquisition screen, where the system
detected the QR code and test strip prior to image capture. This system addressed specific
needs of the HORECA sector, where decentralized and routine monitoring of water quality
was essential, yet often constrained by the lack of laboratory infrastructure or trained
personnel [20]. By integrating advanced computer vision and machine learning into a
practical mobile interface, the Selfytest platform offered a promising, low-cost, and scalable
solution for on-site chlorine monitoring.

 

(b) (a) 

Figure 12. Different stages of the Selfytest application. (a) Mockup of the Selfytest application, as
a Telegram bot: a prototype interface was designed to simulate the expected behavior of the final
mobile application. It shows automated detection of the test area, comparison with reference color
bars, and the corresponding classification of free chlorine concentration. (b) Screenshots of the actual
Selfytest mobile application: the main menu (center) and the image acquisition stage (right), where
the QR Code and the test strip are detected in real-time for colorimetric evaluation.

4. Conclusions
In this work, we presented a complete pipeline for smartphone-based digitization

of free chlorine (FC) colorimetric assays, combining computer vision techniques with
custom-designed Color QR Codes for geometric alignment and color correction. Two
commercially available methods—the BTB strip test and the DPD cuvette test—were
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analyzed using machine learning models tailored for both classification and regression tasks.
High performance was achieved across diverse smartphone devices, with classification
accuracies exceeding 88% and regression R2 values consistently above 0.8. The BTB method
showed strong linearity in ln(Ra) response, particularly in the medium concentration range,
and benefited from flash illumination due to improved contrast. In contrast, the DPD
method achieved its best results without flash, as cuvette reflections under artificial lighting
negatively affected color consistency.

In parallel, a prototype mobile application, Selfytest, was developed to facilitate prac-
tical deployment. The app interfaces with a cloud-based inference engine and includes
features for sample tracking and user management, addressing the operational needs of the
HORECA sector [20]. Overall, the proposed system demonstrates the feasibility of using
smartphones and QR-based references to digitize chemical assays with high reliability.

Future work should focus on revisiting the machine learning pipeline to propose new
algorithms, i.e., a mix of both colorimetric sensor data could be studied to develop a sort of
“colorimetric nose”, an analogy with the term “electronic nose” for gas sensing devices that
use the data from several sensors to measure one or several quantities [21]. Also, the color
correction step could be enhanced, and advanced color correction techniques involving
deep-learning models could be implemented [22,23]. Moreover, advanced features could
be developed for our user-friendly mobile application. Ultimately, these advancements
represent significant progress in water quality monitoring, providing rapid, accurate, and
accessible methods for determining free chlorine concentration, empowering communities
to ensure access to safe drinking water.
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