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Abstract 

Alternative end-joining (alt-EJ) is an error-prone DNA repair pathw a y that cancer cells deficient in homologous recombination rely on, making them 

vulnerable to synthetic lethality via inhibition of poly(ADP-ribose) polymerase (PARP). Targeting alt-EJ effector DNA polymerase theta (POL θ), 
which synergizes with PARP inhibitors and can o v ercome resistance, is of significant preclinical and clinical interest. Ho w e v er, the transcriptional 
regulation of alt-EJ and its interactions with processes driving cancer progression remain poorly understood. Here, we show that alt-EJ is 
suppressed b y h ypo xia while positiv ely associated with MYC (m y elocytomatosis oncogene) transcriptional activity. Hypo xia reduces PARP1 and 
POLQ expression, decreases MYC binding at their promoters, and lo w ers PARylation and alt-EJ-mediated DNA repair in cancer cells. Tumors with 
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Introduction 

Homologous recombination (HR) is a high-fidelity molecu-
lar mechanism crucial for accurately repairing double-strand
breaks (DSBs) during the S and G2 phases of the cell cycle,
when a sister chromatid is available as a template [ 1–3 ]. In
cancer cells with defective HR—such as those with pathogenic
variants in breast cancer gene 1 ( BRCA1 ) or 2 ( BRCA2 ) [ 4–
6 ]—there is increased reliance on another DNA repair mech-
anism known as alternative end-joining (alt-EJ), also referred
to as microhomology-mediated end-joining (MMEJ) [ 7–13 ].
This dependence forms the basis of the synthetic lethality ex-
ploited by inhibition of poly(ADP-ribose) polymerase (PARP)
[ 7 , 8 ], a strategy that has revolutionized cancer care [ 14 ].
Thus, assessing HR status has made PARP inhibition (PARPi)
a standard treatment strategy for managing various cancers,
including those of the breast, pancreas, prostate, and ovary
[ 15–21 ]. Targeting alt-EJ is being extended to combination
therapies and complementary approaches, including inhibi-
tion of DNA polymerase theta (POL θ), a central effector of
alt-EJ / MMEJ or theta-mediated end-joining [ 10 , 13 , 22–26 ].
Inhibition of POL θ is synthetically lethal with the loss of
BRCA1 or BRCA2 , can synergize with PARPi, and can also
be applied to target cancer cells that developed resistance to
PARPi [ 10 , 23 , 24 ]. However, our understanding of the tran-
scriptional regulation of alt-EJ genes, particularly in the con-
text of tumorigenic processes influencing DNA repair, remains
limited [ 9 , 27 , 28 ]. 

The pleiotropic cytokine transforming growth factor β
(TGF β) can enhance the expression of HR components and
pathway functionality [ 29–34 ]. Gene expression signatures of
TGF β and alt-EJ competency are frequently found to be an-
ticorrelated in tumors, in a cancer cell-autonomous manner
[ 35 ]. Inhibition of TGF β signaling induces alt-EJ even in can-
cer cells that are HR-proficient [ 33 ]. TGF β inhibition results
in HR deficit because TGF β regulates BRCA1 expression via
miR182 and cells shift to alt-EJ [ 30 , 33 ]. Notably, neither alt-
EJ execution nor expression of alt-EJ genes ( LIG1 , PARP1 ,
or POLQ ) is miR-182-dependent, which mechanistically sep-
arates the effects of TGF β on HR from those on alt-EJ [ 33 ,
35 , 36 ]. Here, by analyzing functional gene modules in breast
cancer, we demonstrate that TGF β signaling suppresses alt-EJ
ia-inducible f actor 1 α or HIF1A e xpression depletion, combined with
ity of cancer cells. Deep learning re v eals the anticorrelation between
these and MYC activity achie v e area under the curve values between
 in modulating DNA repair and present a strategy for predicting and

via hypoxia-inducible factor 1 α (HIF1 α). Hypoxia downreg- 
ulates the alt-EJ competency signature, including PARP1 and 

POLQ genes, by altering MYC (myelocytomatosis oncogene) 
binding at the corresponding promoters. Hypoxia is associ- 
ated with reduced alt-EJ activity, while HIF1 α inhibition in- 
creases PARylation. Furthermore, inhibition of HIF1 α or de- 
pletion of HIF1A expression, in combination with PARPi or 
POL θi, acts synergistically to reduce the colony-forming abil- 
ity of cancer cells, including HR-proficient models. This in- 
verse relationship between alt-EJ and hypoxia is applied in 

cancer treatment prediction by using deep learning of tumor 
pathology images. The approach provides a framework for 
classifying tumors based on alt-EJ, hypoxia, and MYC activity,
offering novel insights into alt-EJ regulation and its potential 
for enhancing precision in cancer treatment and for advancing 
effective combination therapies. 

Materials and methods 

Gene expression and molecular datasets 

Clinical and gene expression [RNA sequencing FPKM 

(fragments per kilobase of transcript per million mapped 

reads) UQ (upper quartile-normalized)] data from The 
Cancer Genome Atlas (TCGA) studies [ 37 ] were ob- 
tained from the Genomic Data Commons (GDC) Data 
Portal ( https://portal.gdc.cancer.gov ). The cancer types are 
named using the corresponding TCGA study abbrevia- 
tions ( https:// gdc.cancer.gov/ resources- tcga- users/tcga- code- 
tables/tcga- study- abbreviations ). The pediatric and hemato- 
logical cancer normalized gene-expression data (reads per 
kilobase per million mapped reads (RPKM)) were also down- 
loaded from cBioPortal [ 38 ]. The HR-deficiency scores in 

TCGA breast cancer (BRCA) corresponded to the combina- 
tion of loss of heterozygosity, telomeric allelic imbalance, and 

large-scale transitions, computed in the HRDsum score [ 39 ,
40 ]. The TCGA kidney renal clear cell carcinomas (KIRC) 
with driver mutations of VHL were identified from cBioPor- 
tal [ 38 ], based on OncoKB annotations [ 41 ]. The TCGA tu- 
mors with HIF1A mutations, including frameshift, missense,
and nonsense mutations were also identified from cBioPor- 
tal [ 38 ]. The single-cell processed count matrices of cancer 
HIF1A mutations o v ere xpress the alt-EJ gene signature. Inhibition
PARP or POL θ inhibition, synergistically reduces the colon y -f ormin
alt-EJ and h ypo xia across regions in tumor images, and the predict
0.70 and 0.86. These findings further highlight the critical role of
improving outcomes centered on targeting alt-EJ. 
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cell lines induced to epithelial–mesenchymal transition (EMT) 
were downloaded from the Gene Expression Omnibus (GEO) 
reference GSE147405 [ 42 ]. The PRO-seq (Precision Run-On 

with sequencing) data of HIF1A 

−/ − and wild-type (WT) 
HCT166 cells in normoxia and hypoxia were downloaded 

from the GEO reference GSE145567 [ 43 ]. The Cancer Cell 
Line Encyclopedia (CCLE) [ 44 ] gene expression data were 
downloaded from the DepMap [ 45 ] portal ( https://depmap. 
org/ portal/ ; version 22Q2). The drug sensitivity data were 
also obtained from the DepMap portal, including the half- 
maximal inhibitory concentration (IC 50 ) and area under the 
dose-response curve (AUCdrug) from the CCLE [ 46 ] (version 

24Q2) and the IC 50 values from the Genomics of Drug Sensi- 
tivity in Cancer (GDSC) screens [ 47–49 ] (release 8.1). PARP1 

protein levels, as measured by mass spectrometry in the CCLE 

and GDSC cell lines, were obtained from the corresponding 
publications [ 50 , 51 ]. The optimal number of cell line clus- 
ters was computed using the elbow method [ 52 ] and samples 
were clustered using the kmean function in R’s stats package 
(version 4.3.1). The MYC protein expression values in cancer 
cell lines were downloaded from The Cancer Proteome At- 
las portal ( https:// tcpaportal.org/ tcpa/ download.html ; reverse 
phase protein array data, level 4) [ 53 ]. SPA T A2 software [ 54 ] 
was used to analyze the spatial transcriptomic data of glioblas- 
toma (GBM) [ 55 ] and gene signatures were computed using its 
addGeneSet function. Tissues with an average gene signature 
score < 20% were excluded from the analysis. 

Gene signature analysis 

The TGF β (genes n = 50) and alt-EJ (genes n = 36) signa- 
tures have previously been reported and functionally validated 

against mutational signatures and molecular markers [ 33 , 35 , 
36 ]. The hypoxia signature consisted of a 15-gene set [ 56 ], 
which was the best-performing among a group of functionally 
related signatures [ 57 ]. The MYC signature (genes n = 355) 
was derived from a MYC-centered regulatory network inde- 
pendent of a pluripotency network [ 58 ]. The signature scores 
were computed using the single-sample GSEA algorithm cal- 
culated using GSVA software [ 59 ] (version 1.43.1). 

Non-negative matrix factorization and machine 

learning 

Non-negative matrix factorization (NMF) [ 60 ] was used for 
unsupervised data dimension reduction and pattern identifica- 
tion in the TCGA BRCA dataset [ 37 , 61 ]. The original gene- 
by-tumor matrix was decomposed into the production of two 

low-rank non-negative matrices, a basic matrix W and a co- 
efficient matrix H . A rank of matrix factorization, k , from 2 

to 50, was examined to preserve the information of the in- 
put dataset. The reconstruction error was computed using the 
Frobenius norm of the deviation between the original ma- 
trix X and its approximation WH , expressed as error = ||X 

– WH|| F . The latent features (rows of matrix H ) were fed into 

a neural network with a structure comprising an input layer 
of the NMF ranks, two hidden layers, each composed of 128 

neurons using a rectified linear unit activation function [ 62 ], a 
layer with a 0.5 dropout rate to mitigate overfitting [ 63 ], and 

an output layer that predicted the HRDsum score. The Adam 

optimizer [ 64 ] was used for training, with a learning rate of 
0.001 and batch size of 32. A validation set consisting of 20% 

of the data was used to monitor overfitting during training. 
Early stopping with a patience of 10 epochs was employed 

to prevent overtraining [ 65 ]. Spearman correlations were cal- 

culated for the training and test datasets to assess the rela- 
tionship between the predicted and real HRDsum scores [ 39 , 
40 ]. The SHAP (Shapley additive explanations) values were 
computed as described [ 66 ] to assess the importance of each 

gene module in the model, identifying the most positively and 

negatively influential sets. The rank of gene weights in each 

module was evaluated for associations with curated gene sets 
using the GSEA algorithm (version 4.2.3) [ 67 ] with the classic 
metric, accounting for the uncertain biological impact of gene 
weights in NMF modules, including those with noncontribu- 
tory values (i.e. equal to 0). 

Multivariate regression analysis 

Nineteen cancer types from TCGA were included in the anal- 
ysis. The ratio of alt-EJ to TGF β signature scores was cal- 
culated and used as the dependent variable in the regression 

model. The following independent variables were included: 
age at diagnosis, cancer type, gender, tumor grade, normal- 
ized expression level of HIF1A , mutation status of MYC (ge- 
nomic amplification: yes / no), HRDsum score [ 39 , 40 ], and 

gene expression signature scores for hypoxia [ 56 ], MYC [ 58 ], 
and cell cycle phases (G1-S, S, G2, G2-M, and M-G1) [ 68 ]. 
Analogous analyses were conducted using expression levels of 
the cell proliferation marker MKI67 instead of cell cycle phase 
scores. The interaction term between the hypoxia and MYC 

signatures was included. The model was computed using the 
lm function in R software (version 4.3.1). 

Cell culture and molecular analyses 

The 22Rv1, DU145, MCF10A, MDA-MB-231, PC3, and 

T-47D cells were obtained from the American Type Cul- 
ture Collection. The OVCAR4 and A2780 cells were a gift 
from Thomas Hamilton (Fox Chase Cancer Center) and 

Josefa Giménez-Bonafé (University of Barcelona), respectively. 
The microarray gene expression data for the MCF10A cell 
line are available under the GEO reference GSE8240 [ 69 ]. 
PrimePCR 

TM SYBR® Green Assays (Bio-Rad) were used to 

assess the expression of the alt-EJ genes PARP1 and POLQ 

in total RNA of MCF10A cells, and gene control was pep- 
tidylprolyl isomerase ( PPIA ). Supplementary Table S1 lists 
the primer sequences of all genes examined in this study 
and the TaqMan assays used for validation. Gene expres- 
sion values were measured using real-time quantitative poly- 
merase chain reaction (qPCR) assays and differences com- 
puted by the ��Ct method [ 70 ]. The antibodies used for 
western blot were as follows: anti-actin (clone AC-15; di- 
lution 1:2500; Sigma–Aldrich Merck, catalog A5441); anti- 
HIF1 α, (described elsewhere [ 71 ]; dilution 1:500); anti-PAR 

(clone AM80; dilution 1:1000; Merck Millipore, catalog 
Ab-1 / AM80); anti-tubulin (clone B-5-1-2; dilution 1:2000; 
Sigma–Aldrich Merck, catalog T6079); and anti-vinculin (di- 
lution 1:2000; Sigma–Aldrich Merck, catalog V9131). 

Measurement of alt-EJ activity 

U2OS GFP-reporter cells (a gift from Prof. J. Stark) were em- 
ployed to measure alt-EJ repair of I- Sce I-induced DSBs [ 72 ]. 
The cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) medium supplemented with 10% fetal bovine serum 

(FBS) and standard antibiotics, in an atmosphere of 95% air 
and 5% CO 2 at 37 

◦C, or in physiological hypoxia, as de- 
tailed below. For the assays, 50 000 cells / well were seeded 

in 24-well plates and transfected the next day with an I- Sce I 
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expression plasmid (pCBA Sce I; Addgene, catalog 26477) us- 
ing Lipofectamine 2000 (Thermo Fisher Scientific) according 
to the manufacturer’s instructions. The transfection medium 

was replaced after 3 h with fresh DMEM 10% FBS and the 
cells were left for 24 h in normoxic or hypoxic conditions 
(21% versus 2% O 2 ; hypoxia using Whitley H35 Hypoxys- 
tation, Don Whitley Scientific). The wells for the hypoxic 
conditions were treated with medium plus dimethylsulfox- 
ide (DMSO) or PX-478 (5 μM). The cells were trypsinized, 
washed with phosphate-buffered saline (PBS), fixed with 10% 

formaldehyde, and analyzed for GFP positivity using a MAC- 
SQuant Analyzer 16 Flow Cytometer. Singlet cells were gated 

by plotting forward scatter height against forward scatter 
area. A logarithmic plot of the gated cells was obtained us- 
ing PE-A (yellow fluorescence, X -axis) and FITC-A (green 

fluorescence, Y -axis). Untransfected cells were used to detect 
autofluorescence. 

Colony-forming cell assays and drug synergism 

Colony-forming cell (CFC) assays were performed in a 12- 
well format using the following cell seeding numbers: 22Rv1, 
500 cells; A2780, 800 cells; DU145, 200 cells; MDA-MB-231, 
300 cells; OVCAR4, 1000 cells; PC3, 300 cells; and T47D, 
1500 cells. For high-density seeding, a 20-fold increase in 

cell counts was applied. In the assays, we evaluated the in- 
hibitory effects of monotherapy and specified drug combi- 
nations, including novobiocin (100 μM), olaparib (2 μM), 
PX-478 (5 μM), rucaparib (2 μM), and talazoparib (1 nM). 
Cells were treated with the indicated drugs every 24–48 h and 

cultured for 6–10 days. After treatment, cells were washed 

with PBS, stained with crystal violet solution, and thoroughly 
rinsed with tap water. Image acquisition was performed using 
QuPath software (version 0.5.0). The script for image analysis 
and Bliss synergy scoring [ 73 ] has been deposited on Zenodo 

and is available at https:// doi.org/ 10.5281/ zenodo.14885044 . 
Two-tailed Student’s unpaired t -test was used to assess the 
significance of the difference between control and treatment 
groups, with values of P < .05 considered significant. The 
Bliss independence model [ 73 ] assumes that two given drugs 
produce their effects independently and that significant de- 
viation from their multiplicative effect indicates antagonism 

or synergism. We implemented the Bliss synergy score from 

the SynergyFinder [ 74 ]. A bootstrapping resampling method 

was applied to estimate the 95% confidence interval (CI). A 

score of 10 was interpreted as a 10% response beyond expec- 
tation. Dose-response viability matrices were used to evalu- 
ate the combination of PX-478 (1.5–40 μM) and rucaparib 

(2.5–80 μM) over 72 h, with data analyzed using Combenefit 
software [ 75 ]. 

Lentiviral production and transduction, and gene 

depletion 

HEK-293FT cells were obtained from Invitrogen (Thermo 

Fisher Scientific) and maintained in DMEM 10% FBS at 
37 

◦C, in a 5% CO 2 incubator and split at 70%–80% 

confluence. Lentiviral particles and transduction were pro- 
duced following standard protocols as previously described 

[ 76 ], using the packing plasmid psPAX2 (Addgene, cata- 
log 12260) and envelope plasmid pMD2.G (Addgene, cat- 
alog 12259). The MISSION 

®-validated short-hairpin RNA 

(shRNA) against human HIF1A expression was reported [ 77 ] 
(TRCN0000003810; Sigma–Aldrich) and the control vec- 
tor was scrambled-pLK O .1 (Addgene, catalog 136035). The 

primer sequences for gene expression quantification are de- 
picted in Supplementary Table S1 . 

ChIP assays 

Cross-linking of proteins with DNA, fragmentation, and 

preparation of soluble chromatin followed by immunopre- 
cipitation with specific antibodies were performed as pre- 
viously described [ 78 ]. Briefly, 5 × 10 

6 cells subjected or 
not to hypoxia, as indicated, were incubated with 1% (v / v) 
formaldehyde in pre-warmed PBS for 10 min at 37 

◦C. Cells 
were then washed in cold PBS, harvested, and lysed to iso- 
late nuclei in hypotonic buffer containing 5 mM PIPES at 
pH 8.0, 85 mM KCl, and 0.5% NP-40. Nuclei were then 

resuspended, lysed in a buffer containing 1% sodium dode- 
cyl sulfate, 10 mM ethylenediaminetetraacetic acid (pH 8.0), 
and 50 mM Tris / HCl (pH 8.1), and sonicated in 15-ml tubes 
with a Bioruptor sonication device (seven cycles of 30 s ON, 
30 s OFF) to yield chromatin sizes of 150–300 bp. Subse- 
quently, 30 μg of DNA / sample was used for immunoprecipi- 
tation with 17 μl anti-MYC (N-262; Santa Cruz Biotechnol- 
ogy, catalog SC-764) and with the same amount of anti-rabbit 
IgG (Cell Signaling Technology). Immunoprecipitated and in- 
put DNAs were purified and subjected to qPCR analysis us- 
ing the primers amplifying the MYC-bound regions found 

in PARP1 and POLQ genes ( Supplementary Table S1 and 

Text S1 ). Chromatin immunoprecipitation (ChIP) was quanti- 
fied by real-time PCR using Roche LightCycler ® 480 RT PCR. 
The fold enrichment of the target sequence in the immunopre- 
cipitated (IP) relative to the input (Ref) fractions was calcu- 
lated using the comparative Ct (the number of cycles required 

to reach a threshold concentration) method, expressed by the 
term 2 

−(Ct(IP)-Ct(Ref)) . 

γH2AX immunofluorescence and quantification 

PC3 and T47D cells were cultured on coverslips in six-well 
plates and treated for 24 h with DMSO (control), rucaparib 

(2 μM), PX-478 (25 μM), novobiocin (100 μM), or a com- 
bination of PX-478 with either rucaparib or novobiocin. Fol- 
lowing treatment, cells were fixed in 4% paraformaldehyde 
for 15 min at room temperature, permeabilized with 0.5% Tri- 
ton X-100 for 15 min, and blocked in a solution of 5% normal 
donkey serum, 1% bovine serum albumin, and 0.01% Triton 

X-100 for 1 h. Cells were incubated overnight at 4 

◦C with an 

anti-phospho-Ser139 γH2AX antibody (Sigma–Aldrich, cat- 
alog 05-636) diluted 1:200 in blocking solution. After pri- 
mary antibody incubation, cells were washed and stained 

with a Cy3-conjugated donkey anti-mouse IgG secondary an- 
tibody (Jackson ImmunoResearch, catalog 715-165-151) di- 
luted 1:400 in blocking solution containing 1 μg / ml DAPI 
for nuclear staining. Secondary antibody incubation was per- 
formed at room temperature for 1 h. Coverslips were mounted 

onto microscope slides using Fluoromount-G with DAPI (In- 
vitrogen, catalog 00-4959-52), and images were acquired us- 
ing a Zeiss LSM 980 confocal microscope. For image analysis, 
a custom macro was applied to quantify the integrated inten- 
sity of phospho-Ser139 γH2AX staining for individual nuclei, 
as defined by DAPI staining. 

Deep learning tumor image modeling 

We implemented the weakly supervised method of clustering- 
constrained-attention multiple-instance learning (CLAM) 
[ 79 ] for whole-slide image (WSI) processing. Feature extrac- 
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tion utilized the universal self-supervised model for pathology 
(UNI) [ 80 ], which was not trained on the histology images 
of TCGA. The TCGA WSIs were downloaded from the GDC 

Data Portal ( https://portal.gdc.cancer.gov ) in scanned virtual 
slide (SVS) format. Since SVS images contain multiple reso- 
lutions, we classified the slides based on the highest magnifi- 
cation level, which, for all selected cancer types, was 20 × or 
40 ×. Following the CLAM pipeline, all slides were split into 

patches. Specifically, the 20 × images were divided into patches 
of 256 × 256 pixels, while the 40 × images were split into 

512 × 512 pixels to match the 20 × resolution when down- 
sampling. The patches were resized to 224 × 224 pixels, which 

was the input size for UNI, and the features of each patch were 
extracted into a 1024-dimensional vector. The data were split 
in an 80–10–10 ratio for training, testing, and validation when 

each predictor was represented in at least 20% of the pri- 
mary tumors of a TCGA study. Otherwise, a 60–20–20 ratio 

was used to ensure enough positive samples for both testing 
and validation. We applied a dropout rate of 0.5 for training, 
and learning rate of 3e −5, 10-fold cross-validation, a multi- 
branched CLAM model type, and a limit of 10 epochs, as the 
models converged relatively quickly. Other parameters were 
left at their default settings. The same parameters were used 

to evaluate the algorithm’s performance. All predictions based 

on signature scores utilized the top quartile as the threshold 

to distinguish between high and low tumor groups. For HRD- 
sum scores, a cutoff of 42 was applied to both BRCA and 

serous ovarian (OV) tumors. However, for prostate (PRAD), 
where very few samples exceeded a score of 42, a cutoff of 
20 was used to represent the top 25% of all samples. For 
generating heatmaps with attention scores, we used the same 
dropout rate, an overlap of 0.5, and applied a blur effect to 

produce smooth visual representations. The attention scores, 
which represent the contribution of each patch within a WSI 
to predict a class, were extracted for each correctly predicted 

sample and subsequently Z -score normalized. The top 20% 

of patches, ranked by the alt-EJ score, were selected for corre- 
lation analysis with the hypoxia and MYC scores in tumors. 

Results 

A cancer cell state defined by alt-EJ–TGF β
anticorrelation 

HR-deficient tumors rely on alt-EJ and frequently overexpress 
components of this pathway [ 10 , 35 , 81–84 ]. To better under- 
stand the cancer cell states in which alt-EJ is active, we de- 
veloped a machine-learning model to predict HR deficiency 
(HRD). Using the NMF method [ 60 , 85 ], we identified co- 
regulated gene modules within the TCGA BRCA dataset [ 37 , 
61 ], resulting in 24 gene modules (Fig. 1 A). These modules 
were used to predict HRD based on the HRDsum score, a 
genomic metric quantifying HRD in cancer cells by integrat- 
ing measures of loss of heterozygosity, telomeric allelic im- 
balance, and chromosomal state transitions [ 39 ]. The model 
demonstrated high predictive accuracy, achieving Spearman 

correlation coefficients of 0.90 and 0.81 between predicted 

and observed HRDsum scores in the training and test subsets, 
respectively (Fig. 1 B). 

To understand the contribution of each gene module to 

HRD status, we calculated average SHAP values, which quan- 
tify the contribution of each module to the prediction. This 
analysis revealed that module 2 had the strongest positive 

association with HRDsum, while module 11 exhibited the 
strongest negative association (Fig. 1 C). Consistent with these 
findings, the gene expression signature associated with alt- 
EJ activity [ 33 , 35 , 36 ] was positively correlated with mod- 
ule 2 and negatively correlated with module 11 (Fig. 1 D, left 
panels). In contrast, the signature of TGF β signaling activity 
[ 33 , 35 , 36 ] was positively correlated with both modules (Fig. 
1 D, right panels). The positive correlation of TGF β signaling 
activity with both modules suggests its pleiotropic function 

and / or an indirect role in the transcriptional regulation of 
alt-EJ, independent of small mothers against decapentaplegic 
(SMAD) factors. Prior studies have shown that BRCA1 loss 
promotes luminal-to-basal transformation and EMT in breast 
cancer [ 86–88 ], a process mediated by TGF β receptor 2 [ 89 ]. 

Since module 11 exhibited the strongest negative asso- 
ciation with HRDsum, we performed additional analyses 
to examine its associations with curated gene sets repre- 
senting various health and disease states [ 67 ]. In addition 

to EMT, this module showed positive associations with 

stemness-related pathways, including Hedgehog, NOTCH, 
and WNT / β-catenin signaling, as well as hypoxia signaling 
(Fig. 1 E and Supplementary Table S2 ). Conversely, it displayed 

negative associations with gene sets related to E2F and MYC 

targets (Fig. 1 E), suggesting a potential link to cell cycle regu- 
lation [ 90 , 91 ]. 

Hypoxia signaling is anticorrelated with alt-EJ 

TGF β signaling is known to promote the expression and stabi- 
lization of HIF1 α (encoded by the HIF1A gene) [ 92–95 ]. Con- 
sistently, the alt-EJ signature was found to be negatively cor- 
related with both HIF1A expression and a 15-gene hypoxia 
signature [ 56 ] across most cancer types analyzed ( n = 25; Fig. 
2 A). At the single-cell level, transcriptional analysis of four 
cancer cell lines exposed to TGF β-1 [ 42 ] revealed progres- 
sive upregulation of both the TGF β and hypoxia signatures, 
along with downregulation of the alt-EJ signature (Fig. 2 B), 
supporting the pan-cancer observation. 

We then explored the relationship between alt-EJ and 

TGF β signatures in TCGA KIRC stratified by the status of the 
von Hippel–Lindau (VHL) tumor suppressor, which targets 
HIF1 α for proteasomal degradation [ 96 ]. While the overall 
KIRC dataset did not show a significant anticorrelation be- 
tween alt-EJ and TGF β [ n = 534; Pearson’s correlation co- 
efficient (PCC) = −0.08; P = .078], a significant anticorrela- 
tion was observed in VHL -mutant tumors ( n = 173; PCC = 

−0.18; P = .012; Fig. 2 C). Next, we compared the alt-EJ sig- 
nature between tumors with frameshift, missense, or nonsense 
mutations in HIF1A and those without mutations. Although 

HIF1A mutations are relatively rare, a substantial number 
of predicted deleterious variants are identified in TCGA by 
the OncoKB mutation database [ 41 , 97 ] in cBioPortal [ 38 ] 
( Supplementary Table S3 ). The uterine corpus endometrial 
carcinoma (UCEC) dataset had the largest number of HIF1A 

mutations ( n = 25), with mutated tumors showing signifi- 
cant overexpression of the alt-EJ signature (Fig. 2 D). This 
pattern was also observed across all examined TCGA can- 
cer types, where tumors harboring HIF1A mutations ( n = 76) 
exhibited significantly higher alt-EJ signature expression (Fig. 
2 E). To further investigate the role of HIF1 α in alt-EJ sup- 
pression, we analyzed transcriptomic data from HCT116 col- 
orectal cancer cells comparing HIF1A -deleted ( HIF1A 

−/ −) to 

WT ( HIF1A 

+ / + ) cells under normoxic or hypoxic (1% O 2 
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6 Espín et al. 

Figure 1. Cancer gene modules associated with HR status. ( A ) Graph showing the reconstruction error of the original TCGA BRCA tumor-by-gene matrix 
using consecutive sets ( n ) of NMF modules. The set with minimum error is indicated. ( B ) Scatter plots showing the Spearman correlation coefficient ( r ) 
and associated P between the predicted and observed HR-deficiency score (HRDsum) using the machine learning model. Left and right panels show the 
results of the training and test sets, respectively. ( C ) Average SHAP values of NMF gene modules, with modules 2 and 11 (highlighted with circles) 
showing the strongest positive and negative contributions to HRDsum prediction, respectively. ( D ) GSEA outputs of the alt-EJ (left panel) and TGF β
(right panel) signatures in modules 2 (top panel) and 11 (bottom panel). The GSEA normalized enrichment scores (NESs) and statistical significance ( P ) 
are indicated. ( E ) Histogram depicting the GSEA “Cancer Hallmarks” gene sets positively [false-discovery rate (FDR)-adjusted P < .05; NESs > 1.0; red 
bars] and negatively (FDR-adjusted P < .05; NESs < 1.0; green bars) associated with module 11. The MYC V1 and V2 gene sets correspond to curated 
MYC target sets from The Molecular Signatures Database. 
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Targeting alternative end-joining regulation in cancer 7 

Figure 2. Hypoxia signaling anticorrelates with alt-EJ. ( A ) Forest plots showing the correlation (PCC and 95% CI) between the alt-EJ signature and HIF1A 

or the h ypo xia 15-gene signature across various cancer types (study acronyms and tumor frequencies are displa y ed). Nominally significant correlations 
( P < .5) are indicated in the inset. ( B ) Plots of the TGF β (left panel), h ypo xia (middle panel), and alt-EJ (right panel) signature scores o v er time 
(pseudotime) in single cancer cells (A549, lung; DU145, prostate; MCF7, breast; and O V CA420, o v arian) e xposed to TGF β-1. T he slopes from the 
numerical differentiation of the signatures are shown at the bottom. ( C ) Scatter plot showing the alt-EJ–TGF β correlation (PCC) in TCGA KIRC tumors 
stratified by VHL status, as indicated in the inset. ( D ) Violin plot showing the overexpression of the alt-EJ signature in HIF1A mutated (MUT) relative to 
WT TCGA UCEC tumors. The significance ( P ) of the t wo-t ailed Mann–Whitney test is indicated. ( E ) Violin plot showing the overexpression of the alt-EJ 
signature in HIF1A mutated (MUT) relative to WT TCGA pan-cancer ( n = 19 cancer types). The significance ( P ) of the t wo-t ailed Mann–Whitney test is 
indicated. ( F ) GSEA outputs of the alt-EJ signature in HCT116 HIF1A WT (left panel) and HIF1A -deteled (right panel) cells exposed to hypoxia versus 
normo xia. T he GSEA–NESs and P -v alues are indicated. ( G ) L eft panel, normaliz ed activity of alt-EJ as measured b y the EJ2-GFP reporter in UOS cells 
grown in hypoxia relative to hypoxia and exposed to PX-478, as indicated in the inset ( n = 4 independent assays). The significance ( P ) of the one-way 
ANO V A test with Tuk e y correction is indicated. There are also indicated the P -values of the t wo-t ailed Student’s paired-samples t -test. Right bottom 

panel, representative western blot results of PARylation in the above conditions. ( H ) Top-left panel, representative western blot results of PARylation in 
the f ollo wing f our UOS cell assa y s: normo xia; normo xia plus e xposure to PX-478; h ypo xia; and h ypo xia plus e xposure to PX-478, as indicated in the 
inset. Bottom left panel, quantification of PARylation relative to loading control in three independent assays. The significance of the t wo-t ailed Student’s 
paired-samples t -test relative to normoxia is indicated. Bottom right panel, quantification of alt-EJ as measured by the EJ2-GFP reporter in UOS cells 
grown in normoxia relative to normoxia and exposed to PX-478. 
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for 90 min) conditions [ 43 ]. WT cells showed suppression of 
alt-EJ under hypoxia, while this effect was absent in HIF1A - 
deleted cells (Fig. 2 F). 

To assess the impact of hypoxia on alt-EJ pathway activ- 
ity, we used human osteosarcoma U2OS cells with a GFP- 
based reporter for alt-EJ repair [ 72 ] and measured PARyla- 
tion in cell extracts [ 98 ]. PARylation, also known as polyADP- 
ribosylation—the addition of ADP-ribose molecules to target 
proteins—is essential for DNA repair and serves as a func- 
tional indicator of alt-EJ repair [ 99–101 ]. Cells cultured un- 
der hypoxia (2% O 2 for 24 h) exhibited a trend toward re- 
duced alt-EJ repair compared with normoxia, with an aver- 
age suppression of 19% (unpaired two-tailed Student’s t -test, 
P = .061; n = 4 independent assays; n = 2–3 replicates / assay; 
Fig. 2 G). Treatment with PX-478 (5 μM), an inhibitor of both 

constitutive and hypoxia-induced HIF1 α expression [ 102–
105 ], restored alt-EJ repair to an average level similar to nor- 
moxia, though outliers were noted (Fig. 2 G). At the molec- 
ular level, hypoxia reduced PARylation, which appeared to 

be restored by PX-478 treatment (Fig. 2 G). To further assess 
this observation, we quantified PARylation in three additional 
assays under the same conditions and including cells treated 

with PX-478 (5 μM) in normoxia. A significant reduction in 

PARylation was only observed in cells grown under hypoxia 
compared with those in normoxia (Fig. 2 H). 

Interplay between hypoxia and MYC influences 

alt-EJ 

Machine-learning modeling predicted that MYC promotes 
alt-EJ gene expression in TCGA BRCA, as shown by nega- 
tive GSEA–NES associations (green bars in Fig. 1 E). A positive 
correlation between MYC and alt-EJ expression was observed 

in 11 of 25 (44%) cancer types analyzed (Fig. 3 A, left panel). 
When a MYC-driven gene signature [ 58 ] was analyzed, this 
positive association was confirmed across all cancer types (Fig. 
3 A, right panel). Supporting this, 83% (30 / 36) of the genes in 

the alt-EJ signature were predicted to be MYC targets based 

on ChIP data from the ChIP-Atlas [ 106 ], and promoter se- 
quences of alt-EJ genes were significantly enriched for MYC 

binding across various cell types (Fig. 3 B). 
To experimentally assess the influence of TGF β/ hypoxia on 

alt-EJ, we used MCF10A epithelial cells, which can undergo 

EMT and acquire stemness upon exposure to TGF β-1 or hy- 
poxia [ 107–109 ]. Transcriptomic analysis of MCF10A cells 
exposed to TGF β-1 (500 pg / ml for 6 h) [ 69 ] revealed upregu- 
lation of the TGF β and hypoxia signatures, along with down- 
regulation of the alt-EJ and MYC signatures (Fig. 3 C). Semi- 
quantitative gene expression analysis in MCF10A cells under 
hypoxia (2% O 2 for 8 h) showed significant downregulation 

of PARP1 and POLQ by approximately 30%, while hypoxia- 
induced genes exhibited the expected opposite trend (Fig. 3 D). 
Analogous TaqMan-based assays showed similar downregu- 
lation of PARP1 and POLQ in hypoxia, though statistical sig- 
nificance was limited to POLQ suppression (Fig. 3 E). In agree- 
ment with prior studies demonstrating hypoxia-induced sup- 
pression of HR and NHEJ components [ 110 , 111 ], BRCA1 , 
PRKDC , and RAD51 were also downregulated (Fig. 3 E, mid- 
dle panel). Further analysis of MCF10A cells treated with the 
hypoxia mimetic CoCl 2 (200 μM for 24 h) showed signifi- 
cant reductions in PARP1 (25%) and POLQ (70%) expres- 
sion (Fig. 3 F). In addition, assessing the association between 

the hypoxia signature and PARP1 protein expression mea- 

sured by mass spectrometry in hundreds of cancer cell lines 
(CCLE and GDSC datasets [ 50 , 51 ]; POL θ was not reported) 
showed significant anticorrelation (Fig. 3 G). Akin to these 
suppressions, ChIP assays demonstrated hypoxia-induced re- 
ductions in MYC binding at the PARP1 and POLQ promot- 
ers in MCF10A cells grown under hypoxia (2% O 2 for 8 h) 
compared with normoxia (Fig. 3 H). 

The opposing roles of hypoxia and MYC in regulating alt- 
EJ were further assessed using multivariate regression analy- 
ses of the alt-EJ / TGF β ratio across TCGA studies, account- 
ing for cell cycle signatures [ 68 ] or MKI67 expression. Hy- 
poxia and MYC signatures were negatively and positively as- 
sociated, respectively, with the alt-EJ / TGF β ratio ( β ≤ −0.13; 
P = 4 × 10 

−13 and β ≥ 0.38; P < 2 × 10 

−16 ; Supplementary 
Tables S4 and S5 ). A significant interaction between hypoxia 
and MYC signatures ( P interaction = .02) further supported their 
opposing roles, as confirmed by analysis across tertiles of the 
alt-EJ / TGF β ratio (Fig. 3 I). Incorporating the HRDsum score 
into the regression analysis showed that the effects of hy- 
poxia (negative) and MYC (positive) on alt-EJ were indepen- 
dent of HR status ( Supplementary Tables S6 and S7 ). Simi- 
larly, correlations between alt-EJ and hypoxia / TGF β (nega- 
tive) or MYC (positive) signatures were consistent in TCGA 

BR CA and TCGA O V tumors, regardless of HRD or HR profi- 
ciency as defined by HRDsum ( Supplementary Fig. S1 ). These 
findings highlight that hypoxia / TGF β and MYC exert op- 
posing effects on alt-EJ gene expression, independent of HR 

status. 

Combined inhibition of HIF1 α and PARP or pol θ
synergistically reduces CFC 

Given that hypoxia signaling is often abnormally activated 

in cancer [ 112 ], we hypothesized that targeting this pathway 
could relieve suppression of alt-EJ and increase sensitivity to 

PARP or POL θ inhibitors. To test this, we analyzed the basal 
signature scores from hundreds of cancer cell lines and their 
response to PARPi (CCLE dataset [ 44 ]). Unsupervised clus- 
tering of the alt-EJ, hypoxia, MYC, and TGF β signatures re- 
vealed two major clusters (A and B; Supplementary Fig. S2 A). 
Cluster B, characterized by high alt-EJ and MYC signature 
expression, and low hypoxia and TGF β signature expres- 
sion, showed greater sensitivity (i.e. lower IC 50 ) to PARPi 
( Supplementary Fig. S2 B, C). Similar patterns were observed 

with three-cell clusters ( Supplementary Fig. S2 D). 
We then performed CFC assays on HR-proficient hu- 

man breast (MDA-MB-231, T47D) and ovarian (A2780, OV- 
CAR4) cancer cell lines, as well as HR-proficient (DU145, 
PC3) and HR-deficient (22Rv1, BRCA2 -mutant) prostate can- 
cer cell lines, exposed to compound or drug inhibition of 
HIF1 α and / or PARP or POL θ. For these assays, we used PX- 
478, PARP inhibitors (olaparib, rucaparib, and talazoparib), 
or the POL θ inhibitor novobiocin [ 24 ]. In two-dimensional 
viability assays, the IC 50 values of these drugs were fre- 
quently ≥10 μM, consistent with large screening datasets 
[ 45 , 113 ] ( Supplementary Tables S8 and S9 ). Cancer cells 
frequently exhibit some degree of HIF1 α activation, even 

in normoxic conditions [ 114 ]. Consistently, the hypoxia sig- 
nature scores of the selected cell lines (except of DU145, 
which lacked CCLE gene expression data) grown under nor- 
moxia were, on average, intermediate between the scores of 
cancer cell lines with deleterious HIF1A and VHL variants 
( Supplementary Fig. S3 ). 
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Figure 3. Interplay between hypoxia and MYC regulates alt-EJ. ( A ) Forest plots showing the correlation (PCC and 95% CI) between the alt-EJ signature 
and MYC expression (left panel) or the MYC-driven signature (right panel) across various cancer types (study acronyms and tumor frequencies are 
indicated). Nominally significant correlations ( P < .05) are indicated in the inset. ( B ) Violin plot showing MYC-binding (fold change) at the promoter 
regions ( ±5 kb from transcription start site) of alt-EJ genes, across tissue (inset). The results correspond to the tissue with ≥1 cell line (dots) with a 
significant MYC-binding at the alt-EJ promoter set (FDR-adjusted Fisher’s exact test P < .05). The cell lines with the highest MYC-binding in each tissue 
type are indicated. ( C ) Graph showing the time-course trends of the expression of the alt-EJ, hypoxia, MYC, and TGF β signatures in MCF10A cells 
exposed to TGF β-1 (500 pg / ml) for 0 to 6 h. The significance ( P ) of the difference in the hypoxia and TGF β signature slopes relative to alt-EJ (top inset) 
and MYC (bottom inset) signature slopes are indicated. ( D ) Left panel, downregulation of PARP1 and POLQ1 (quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) assays with specific primers and SYBR) in MCF10A cells cultured in hypoxia, as indicated in the inset. The bars 
show the mean ± standard deviation (s.d.), and the t wo-t ailed Student’s unpaired-samples t -test P -values are indicated ( n = 3 independent assays; 3 
replicates / assay). Middle panel, overexpression of GLUT1 , OCT4 , TGF β1 , and VIM in MCF10A cells cultured in hypoxia, as indicated in the inset. Right 
panel, western blot showing overexpression of HIF1 α in MCF10A cells under hypoxia. The loading control, α-tubulin (TUBA), is also shown. ( E ) Left 
panel, downregulation of PARP1 and POLQ1 (TaqMan assays) in MCF10A cells cultured under hypoxia, as indicated in the inset. The bars show the 
mean ± s.d., and the t wo-t ailed Student’s unpaired-samples t -test P -values are indicated ( n = 2 independent assays; 4 replicates / assay). Middle panel, 
results for genes involved in HR or NHEJ pathways. Right panel, confirmation of overexpression of GLUT1 and OCT4 in the cells under hypoxia. ( F ) Left 
panel, downregulation of PARP1 and POLQ1 (qRT-PCR assays with specific primers and SYBR) in MCF10A cells cultured in normoxia and exposed to 
CoCl 2 , as indicated in the inset. The bars show the mean ± s.d., and the t wo-t ailed Student’s unpaired-samples t -test P- values are indicated. Right 
panel, confirmation of GLUT1 o v ere xpression in the cells exposed to CoCl 2 . ( G ) Anticorrelation between the hypoxia signature and PARP1 protein 
expression in the GDSC and CCLE datasets. The correlation (PCC) and corresponding significance ( P ) are indicated. ( H ) Reduced MYC binding at the 
promoters of the PARP1 and POLQ genes in MCF10A cells grown under hypoxia, as indicated in the inset. The results are shown as the MYC-binding 
fold change relative to normoxia, including control isotype immunoglobulin (IgG). The unpaired two-sided Student’s t -test P -values are indicated ( n = 2 
independent assa y s; 3 replicates / assa y). ( I ) Violin plot sho wing the distributions of the alt-EJ and h ypo xia signature scores (inset) in the tertiles of the 
ratio of the alt-EJ / TGF β signature scores in TCGA cancer types ( n = 19). Trends in the alt-EJ and hypoxia signature are denoted by dashed lines. The 
paired two-sided Student’s t -test P- values are indicated for the signature comparisons in each tertile of the alt-EJ / TGF β ratio. Significance ( P ) of the 
ANO V A of the alt-EJ / TGF β ratio and signature score terms and their interaction are also indicated (bottom inset). 
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The combination of PX-478 (5 μM; IC 50 values between 

10 and 42 μM) with rucaparib (PARPi, 2 μM; IC 50 values 
between 20 and 302 μM) showed evidence of synergy (Bliss 
[ 73 ] scores ≥ 16) in five cell lines (excluding A2780 and 

22Rv1; n = 2 independent assays; n = 3 replicates / assay; 
Fig. 4 A). In parallel, dose-response matrices over 72 h showed 

synergistic effects in six cell lines (excluding OVCAR4; Fig. 
4 B). The synergy was also assessed by combining PX-478 (5 

μM) with two other PARP inhibitors (olaparib, 2 μM, and 

talazoparib, 1 nM) in three cell lines (OVCAR4, PC3, and 

T47D). These CFC assays yielded Bliss synergy scores ≥ 14 

in 6 / 7 of the settings ( n = 2 independent assays; n = 3 

replicates / assay; Supplementary Fig. S4 ). Synergistic effects 
were also observed in high-confluence settings across all cell 
lines tested ( Supplementary Fig. S5 ). 

The molecular alterations underlying the synergy between 

HIF1 α and PARPi were assessed in DU145 cells. PX-478 25 

μM (DU145 IC 50 = 27.5 μM) for 24 h reduced HIF1 α expres- 
sion and increased PARylation, while the combination with 

rucaparib strongly suppressed both HIF1 α and PARylation 

(Fig. 4 C). An analogous assay substituting rucaparib with ola- 
parib showed similar changes in PARylation and HIF1 α levels 
(Fig. 4 D). In addition, DU145 cells exposed to hypoxia (2% 

O 2 for 8 h) showed a significant decrease in PARylation (Fig. 
4 E). Furthermore, similar to MCF10A cells, MYC binding at 
the promoters of PARP1 and POLQ was significantly reduced 

in DU145 cells grown under hypoxia (2% O 2 for 8 h) com- 
pared with those grown under normoxia (Fig. 4 F). To deter- 
mine whether the observed alteration in MYC binding was 
influenced by changes in MYC expression, we analyzed MYC 

expression in the seven cell lines under normoxic and hypoxic 
conditions. This analysis did not reveal a consistent alteration 

in MYC expression levels ( Supplementary Fig. S6 A). Further- 
more, the expression of MYC and its gene product showed 

no clear correlation with the hypoxia signature score in the 
CCLE dataset ( Supplementary Fig. S6 B). 

Next, similar CFC assays were performed using the POL θ

inhibitor novobiocin [ 24 ]. This drug was applied at a con- 
centration of 100 μM, selected based on its reported high 

IC 50 values and minimal effect on HR-proficient cells [ 24 , 
115–119 ] (IC 50 values > 269 μM in the seven cell lines ana- 
lyzed; Supplementary Table S9 ). The combination of PX-478 

(5 μM) with novobiocin showed synergistic effects (Bliss syn- 
ergy scores ≥ 12) in 4 / 7 of the cell lines ( n = 2 independent 
assays; n = 3 replicates / assay Fig. 5 A). The combination of 
novobiocin or rucaparib with PX-478 was also assessed using 
acriflavine, which reduces HIF1 α signaling [ 120 , 121 ]. Bliss 
synergy scores ≥ 14 indicated synergism in 67% (4 / 6) of the 
tests conducted in three cell lines at relative high confluence 
(OVCAR4, PC3, and T47D; n = 3 independent assays; n = 3 

replicates / assay; Supplementary Fig. S7 A). In these assays, ex- 
posure to acriflavine increased PARylation while rucaparib re- 
duced this activity ( Supplementary Fig. S7 B). 

To test the prediction that combined inhibition of HIF1 α

and PARP or POL θ leads to increased DNA damage, we mea- 
sured phospho-Ser139 γH2AX levels in PC3 and T47D cells. 
Cells were treated with DMSO, rucaparib (2 μM), PX-478 

(25 μM), novobiocin (100 μM), or combinations of rucaparib 

and PX-478, as well as novobiocin and PX-478, for 24 h. PX- 
478 treatment alone caused a substantial increase in phospho- 
Ser139 γH2AX (Fig. 5 B), consistent with prior findings [ 122 ]. 
Compared with PX-478 alone, the combination with ruca- 
parib led to a slight, nonsignificant increase in γH2AX signal; 

however, the combination with novobiocin resulted in a sig- 
nificantly greater increase in phospho-Ser139 γH2AX in both 

cell lines (Fig. 5 B). The underlying basis of these differential 
effects is unclear but may reflect the distinct roles of PARP1 

and POL θ in DSB repair and alt-EJ / MMEJ, and the evalua- 
tion of HR-proficient backgrounds. 

To assess the effect of targeting HIF1A , we performed 

CFC assays using a shRNA directed against its expression 

(shHIF1A) [ 77 ] or a scrambled shRNA as a negative con- 
trol. The combination of shHIF1A with rucaparib (2 μM) 
or novobiocin (100 μM) showed a stronger inhibitory effect 
(unpaired two-tailed t-test P < .05) than the single-target as- 
says in the three cell lines analyzed, with evidence of synergy 
in 50% (3 / 6) of the assays (Bliss synergy scores ≥ 13; Fig. 
5 C and Supplementary Fig. S8 ). However, transduction with 

shHIF1A alone caused strong inhibition across the three cell 
lines and, unexpectedly, frequently reduced PARylation and 

PARP1 expression relative to pLKO ( Supplementary Fig. S9 ). 
These findings indicate that targeting HIF1A expression may 
induce additional molecular alterations that influence cell vi- 
ability and drug combination effects. 

Deep-learning prediction of alt-EJ and hypoxia in 

tumor pathology images for precision cancer 
treatment 

The observed influence of HIF1 α on alt-EJ offers potential 
for improving predictions of targeted therapy outcomes. To 

explore this, we analyzed spatial transcriptomics data from a 
GBM dataset [ 55 ]. Among the tumors in this study with in- 
formative expression of both alt-EJ and hypoxia signatures, 
63% (5 / 8) showed a significant negative correlation between 

these signatures (PCC ≤ −0.10; P < 1 × 10 

−8 ), while only 
one tumor exhibited a positive alt-EJ–hypoxia correlation 

(PCC = 0.12; Fig. 6 A). 
Next, we applied a deep-learning method [ 79 , 80 ] to pre- 

dict alt-EJ and hypoxia status, as well as common gene 
drivers, using tumor pathology images from TCGA BRCA 

[ 61 ], OV [ 123 ], and PRAD [ 124 ] cancers. The method demon- 
strated strong performance for both signatures, with area un- 
der the receiver operating characteristic curve (AUCROC) val- 
ues of ≥0.70 in all settings. The AUCROC for alt-EJ was 
0.768 ± 0.059, 0.702 ± 0.086, and 0.830 ± 0.0638, and for 
hypoxia, the AUCROC was 0.732 ± 0.051, 0.719 ± 0.044, 
and 0.621 ± 0.070 for BR CA, O V, and PRAD, respectively 
( Supplementary Table S10 and Fig. S10 A). The method also 

performed relatively well in predicting MYC signature activ- 
ity, with an AUCROC of 0.859 ± 0.058, 0.698 ± 0.064, 
and 0.821 ± 0.069 for BR CA, O V, and PRAD, respectively 
( Supplementary Fig. S10 B). Among other features analyzed, 
the best performance were achieved in predicting TP53 mu- 
tation and tumor subtype (PAM50 [ 61 ]) in BRCA: AU- 
CROC of 0.828 ± 0.068 and 0.892 ± 0.022, respectively 
( Supplementary Fig. S10 C and D). 

The analysis of the spatial distribution of inferred alt-EJ 
activity and hypoxia signaling in tumor images further em- 
phasized their anticorrelation. This relationship was particu- 
larly evident in a basal-like breast tumor from a patient with 

a germline pathogenic BRCA1 variant. While the tumor was 
predicted to have high levels of both alt-EJ and hypoxia, the 
attention scores—indicating the model’s focus on specific tu- 
mor regions during signature prediction—showed an inverse 
pattern across tumor patches (Fig. 6 B). To further investigate 

D
ow

nloaded from
 https://academ

ic.oup.com
/narcancer/article/7/1/zcaf007/8063268 by guest on 19 M

ay 2025

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf007#supplementary-data


Targeting alternative end-joining regulation in cancer 11 

Figure 4. Synergy between HIF1 α and PARPi in reducing cancer cell CFC. ( A ) Results of CFC assays in breast, ovarian, and prostate cancer cell lines 
exposed to vehicle (DMSO), rucaparib (2 μM), PX-478 (5 μM), and the combination of rucaparib and PX-478. The graphs show the mean ± s.d. The 
unpaired two-sided Student’s t -test P- values for the comparisons with the drug combination group are indicated. The Bliss synergy score (95% CI) is 
indicated at the bottom of each panel (Bliss score > 10 indicates synergism). ( B ) Drug dose matrix of PX-478 and rucaparib in cell viability assa y s. T he 
color scale indicates synergy or antagonism, with the numbers in the cells denoting the percent difference in loss of viability compared with expected 
values assuming no synergy. ( C ) Left panel, western blot results of PARylation and HIF1 α levels in DU145 cells exposed for 24 h to vehicle (DMSO), 
rucaparib (2 μM), PX-478 (25 μM), or the combination of the two drugs. The molecular weights, in kDa, are indicated. The results of the loading control 
(TUBA) are also shown. Right panel, quantification (arbitrary units, AU) of PARylation under previous conditions. The significance ( P ) of the t wo-t ailed 
Mann–Whitney test is indicated (mean ± s.d.; n = 4 independent assays). ( D ) Western blot analysis of PARylation and HIF1 α levels in DU145 cells 
e xposed f or 24 h to v ehicle (DMSO), olaparib (2 μM), and / or PX-478 (25 μM). PARylation and HIF1 α le v els are denoted in each condition as the ratio of 
the corresponding signal to the loading control ( β-actin, ACTB), normalized to the basal condition without drug treatment (set as 1). ( E ) Left panel, 
western blot results of total PARylation in DU145 cells grown under normoxia or hypoxia. The results of the loading control (ACTB) are also shown. Right 
panel, quantification (AU) of PARylation under previous conditions. The significance ( P ) of the t wo-t ailed Mann–Whitney test is indicated (mean ± s.d.; 
n = 5 independent assa y s). ( F ) Graph showing the ChIP assays of MYC binding at the promoters of the PARP1 and POLQ genes in DU145 cells grown 
under normoxic or hypoxic conditions, as indicated in the inset. The results are shown as MYC-binding fold change relative to normoxia, including the 
control IgG. The unpaired two-sided Student’s t -test P -values are indicated ( n = 2 independent assays; 3 replicates / assay). 
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Figure 5. Synergy between HIF1 α inhibition or HIF1A expression depletion and POL θ or PARPi in reducing cancer cell CFC. ( A ) CFC assays for vehicle 
(DMSO), no v obiocin (100 μM), PX-478 (5 μM), and the combination of no v obiocin and PX-478. T he graphs indicate mean ± s.d. T he unpaired tw o-sided 
Student’s t -test P -values for the comparisons with the drug combination group are indicated. The Bliss synergy score (95% CI) is indicated at the bottom 

of each panel (Bliss score > 10 indicates synergism). ( B ) Left panels, graphs showing the integrated density of phospho-Ser139 γH2AX signal per 
nucleus: top, PC3 cells; bottom, T47D cells. Data are presented as ≥ 100 nuclei per condition, with the mean value indicated by a horizontal line. The 
significance of the one-w a y ANO V A test is sho wn f or all conditions relativ e to DMSO and f or drug combinations relativ e to PX-478 alone. Right panels, 
representative images of phospho-Ser139 γH2AX immunodetection under the same conditions. The smaller images show the 
4 ′ ,6-diamidino-2-phenylindole (DAPI) merge for nuclear st aining . ( C ) Left panels, CFC assays for vehicle (DMSO), rucaparib (2 μM), and novobiocin (100 
μM) in T47D cells transduced with pLKO or shHIF1A. Middle panel, semi-quantitative gene expression analysis of HIF1A in the assayed T47D cells; the 
graphs show the mean ± s.d. ( n = 2 independent assays; 3 replicates / assay) relative to pLKO, and the PPIA gene was used as the control. The unpaired 
two-sided Student’s t -test P- value is indicated. Right panel, the graph shows the mean ± s.d. The unpaired two-sided Student’s t -test P -values for the 
comparisons with the vehicle are indicated. The Bliss synergy score (95% CI) is indicated at the bottom of each panel (Bliss score > 10 indicates 
synergism). 
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Figure 6. Deep learning classification of alt-EJ and h ypo xia status. ( A ) Left panels, representative images of the inferred alt-EJ and hypoxia signature 
scores in a GBM tissue. Right panel, scatter plot of the alt-EJ–h ypo xia signature (standardized score) correlation in GBM tumors ( n = 8). The 
corresponding PCCs are shown: five are significantly ( P < .05) negative, two are not significant, and one is significantly positive. ( B ) Pathology image, 
and alt-EJ and h ypo xia attention maps of a TCGA basal-like (PAM50-classified) breast tumor developed in a women carrier of a BRCA1 pathological 
variant (tumor ID: TCGA-AN-A0XU). ( C ) Volcano plot for PCCs between the alt-EJ and hypoxia or MYC signature attention scores in breast tumors 
correctly classified as “high-alt-EJ and high-h ypo xia”, “high-alt-EJ and lo w-h ypo xia”, or “high-alt-EJ and high-MYC”, as indicated in the inset. The tumors 
with “high-alt-EJ and high-h ypo xia” tended to show alt-EJ-hypoxia anticorrelation. 
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this observation, we examined the correlation between the sig- 
nature attention scores in breast tumors correctly categorized 

as either “high-alt-EJ and high-hypoxia” (high–high; n = 37) 
or “high-alt-EJ and low-hypoxia” (high–low; n = 44). Consis- 
tent with the HIF1 α-mediated suppression of alt-EJ, tumors in 

the high–high category frequently showed anticorrelations be- 
tween alt-EJ and hypoxia scores, whereas positive correlations 
were common in the high–low category (Fig. 6 C). Addition- 
ally, we observed that alt-EJ and MYC scores were positively 
correlated in most tumors (Fig. 6 C). The molecular insights 
gained from this study, combined with the deep-learning ap- 
proach, have the potential to improve patient stratification for 
precision treatment and guide future research on synergistic 
drug combinations. 

Discussion 

Based on gene expression, molecular, and cellular assays con- 
ducted across various cancer models and conditions, our study 
demonstrates that HIF1 α suppresses alt-EJ gene expression 

and pathway function. Consequently, depletion or inhibition 

of HIF1 α enhances alt-EJ activity, revealing a mechanism by 
which sensitivity to PARP and POL θ inhibitors can be in- 
creased in cancer cells, regardless of HR status. Incorporat- 
ing these findings with the ability to predict alt-EJ and HIF1 α

competency using tumor pathology images could improve pa- 
tient stratification and enhance therapeutic outcomes with 

PARPi and POL θi. Our pan-cancer observations and mech- 
anistic insights build on the association between resistance to 

neoadjuvant talazoparib in BRCA1 -mutant breast cancer and 

the basal expression of hypoxia and stem cell-related signa- 
tures [ 125 ]. Furthermore, our evidence aligns with recent find- 
ings that EMT, stemness, and hypoxia-related transcriptional 
programs contribute to cancer cell adaptation to PARPi [ 126 ]. 
Collectively, our data provide a rationale for future clinical 
trials combining PARPi or POL θi with HIF1 α-targeting com- 
pounds [ 127 , 128 ], which are predicted to synergistically en- 
hance efficacy even in cancers with functional HR-mediated 

DNA repair. 
The opposing effects of HIF1 α and MYC on the transcrip- 

tional regulation of alt-EJ reveal a functional interaction be- 
tween these master regulators that may influence cancer cell 
states and vulnerabilities. HIF1 α and MYC generally have 
contrasting roles in regulating cell cycle progression and pro- 
liferation in cancer cells [ 129–131 ]. HIF1 α promotes cell cycle 
arrest by partially displacing MYC from the promoters of cell 
cycle inhibitor genes [ 132 ]. By restricting proliferation, HIF1 α

also competes with MYC for the promoters of genes involved 

in HR- and mismatch-mediated DNA damage repair [ 110 , 
133 ]. HIF1 α further represses HR-associated genes through 

additional mechanisms [ 111 ]. However, complete cell cycle 
arrest is expected only under severe hypoxic conditions (ap- 
proximately < 0.1% O 2 ). Most cancer cells within a tumor 
reside in microenvironments of moderate or mild hypoxia, 
typically between 0.5% and 5% O 2 , with average measure- 
ments in human tumors often ranging between 1% and 2% 

O 2 [ 134 ] . This level of oxygenation can still support HIF1 α- 
mediated survival signals while allowing cancer cell prolifer- 
ation [ 135 , 136 ]. Our assays, conducted under conditions of 
mild or physiological hypoxia (2% O 2 ), demonstrated reduc- 
tions in PARP1 and POLQ expression, PARylation, and alt-EJ 
activity . Additionally , cancer cells often exhibit some degree of 
HIF1 α function even under normoxia, which may be driven 

by the rewiring of oncogenic pathways and metabolism, and 

increased oxidative stress, among other factors [ 137–139 ]. 
Recognizing that HIF1 α generally suppresses alt-EJ reveals a 
mechanism by which mutagenic DNA repair processes may be 
exploited to treat HIF1 α-driven aggressive cancer phenotypes 
[ 140 ]. These phenotypes are often resistant to DNA-damaging 
therapies, potentially due to reduced cell proliferation and the 
modulation of DNA repair pathways [ 141–143 ]. 

The evidence aligns with the frequent amplification and 

overexpression of MYC in HR-deficient breast, ovarian, and 

prostate tumors [ 123 , 144–146 ]. Additionally, some PARPi- 
sensitive but HR-proficient cancers are characterized by MYC 

overexpression [ 147–149 ], and this oncogene has been asso- 
ciated with alt-EJ-mediated mutagenesis in leukemias [ 150 ]. 
Furthermore, synthetic lethality between PARP and MYC in- 
hibition, independent of BRC A1 / BRC A2 status, has been 

identified in triple-negative breast cancer [ 151 ]. Increased sen- 
sitivity to PARPi in MYC-driven cancers may be due to height- 
ened replication stress, resulting in stalled replication forks 
and DSBs, impaired DSB repair, and / or increased reliance 
on alternative DNA repair mechanisms [ 150 , 152–156 ]. Our 
study expands on these concepts by illustrating the interplay 
between HIF1 α and MYC in the transcriptional regulation 

of key alt-EJ components, ultimately influencing alt-EJ path- 
way activity. These findings may also support the evalua- 
tion of PARPi and POL θi in tumors exhibiting “high MYC”
transcriptional activity, further facilitated by the implemented 

deep-learning approach. Tumors, or specific regions within 

tumors, that are, or become, resistant to PARPi or POL θi 
may exhibit basal activation or acquire activation of HIF1 α

and / or suppression of MYC. Anticipating these mechanisms 
could improve therapeutic outcome predictions and guide fu- 
ture combination therapies aimed at overcoming therapeutic 
resistance. 

While our study provides valuable insights into how TGF β

controls transcriptional regulation of alt-EJ by inducing HIF α

and suppressing MYC, it is not without limitations. Although 

consistent molecular associations were observed in tumor 
data analysis, the findings are primarily derived from in vitro 

and cell-based experiments conducted under specific condi- 
tions that do not fully capture the heterogeneity and complex- 
ity of tumors. Additionally, studies incorporating a diverse 
range of cancer cell types with various genetic alterations, 
alongside complementary assays, are necessary to establish 

the broader applicability of these results. While we identified 

significant drug synergism across several settings, definitive 
causality remains to be confirmed through further mechanis- 
tic studies and an expanded repertoire of precision-targeting 
approaches, including those involving HIF1 α. It is also con- 
ceivable that other oncogenic signaling pathways suppress alt- 
EJ, such those increasing cellular stress, causing metabolic 
rewiring, and / or modulating of DNA damage repair choice. 
In this context, synergies have been reported with the com- 
bined inhibition of PARP and PI3K / mTOR or MEK signaling 
[ 157–163 ]. Addressing these limitations in our study will be 
critical for validating and extending the clinical relevance of 
the findings. 
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