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Half-vortex states in the rotating outer core of neutron stars
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We probe the superfluid-superconductor dynamics of the rotating outer core of neutron stars through half-
vortex states. By means of a generalized hydrodynamic model, where proton and neutron fluids are coupled
by both dynamic entrainment and Skyrme SLy4 nucleon-nucleon interactions, we analyze single flux tubes in
the proton-superconductor component of the system that thread proton vortices located faraway from neutron
vortices. It is shown how they give rise to hydrodynamic perturbations in the coexisting neutron superfluid,
and its structure remains unaltered for varying rotation rates and magnetic fields within ranges of observational
values.
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I. INTRODUCTION

Quantized vortices are the signature of superfluidity in
quantum degenerated matter systems. They were first ob-
served in type II superconductors in the presence of a
magnetic field [1], and in superfluid helium when subjected
to rotation [2]. Much later, in ultracold atomic gases under
highly controlled experimental conditions, isolated quantum
vortices, either singly [3,4] or multiply charged [5], and
vortex arrays [6–8] were observed in Bose-Einstein con-
densates (BECs), and also in strongly interacting quantum
degenerate Fermi gases [9,10], even in the presence of spin-
population imbalance [11]. In these systems, isolated vortices
can be generated by phase imprinting techniques, while vor-
tex arrays were usually produced by rotating the atomic
cloud. More recently, the realization of synthetic gauge poten-
tials, which simulate electromagnetic fields acting on neutral
atoms, opened a new path to observe quantum vortex arrays
[12].

Both agents of vortex excitation, rotation and magnetic
field, as high as 102–103 Hz and 1012–1015 G, respectively
[13], are naturally present in neutron stars [14], whose inner
layers, crust and core, are hypothesized to show superfluid
dynamics. This assumption was made plausible after the ob-
servation of the rotational frequency of pulsars, as measured
from radio wave signals [15]. It showed sudden spin-ups
followed by relatively large relaxation times, of the order of
days or months. In order to explain these events, called pulsar
glitches, Anderson and Itoh suggested almost 50 years ago
[16] that they could be due to vortex creeping in the inner
crust of neutron stars. This layer consists of positively charged
nuclear clusters, with different geometries, embedded in free
electron and neutron fluids at temperatures of the order of 108

K; neutrons achieve sub-nuclear saturation densities, and they
are expected to be in a superfluid state [14].

Deeper below the crust, the star’s outer core involves at
least three intermingled fluids: superfluid neutrons, supercon-
ductor protons, and a normal, but relativistic, electron fluid.
The neutron and proton components are mutually coupled,
apart from nucleon-nucleon interactions, by entrainment ef-
fects, as it happens in superfluid mixtures of 4He and 3He [17].
Also as in superfluid helium or in ultracold gases, the natural
rotation of the neutron superfluid triggers the formation of
an array of quantized vortices beyond a rotation threshold. In
addition, as in type II superconductors, strong magnetic fields
are believed to have induced an array of metastable quantized
flux tubes (or Abrikosov vortices) in the superconducting
protons since early stages of the neutron star formation. As
we know from the BCS theory [18], superconductivity in
Fermi fluids (or superfluidity for neutral particles) is driven
by an emerging bosonic pairing field, the order parameter,
associated with the creation of Cooper pairs of fermions,
and mediated by interparticle interactions, which causes an
energy gap in the spectrum of excitations. For electrically
charged systems, the electromagnetic gauge field combines
with the U (1) symmetry of the order parameter to preclude
collective excitations in the energy gap [19]. In neutron stars,
the strong nuclear interaction provides several channels in
which such a pairing is possible. At lower densities, in the
inner crust, the Cooper pairs of neutrons should be mainly
in the 1S0 state [20]. In the outer core, where neutrons and
protons settle in β equilibrium, superfluid protons remain
also at “small” densities and so again they should pair in
the 1S0 channel. However, since outer-core-neutron densi-
ties are about or larger than nuclear saturation density, the
neutron superfluid would mainly occur in the 3P2 - 3F2 chan-
nel. Maximum pairing gaps reached by S-proton pairs, as
computed with microscopic interactions, are about �p ≈ 1
MeV at baryon densities ρb ≈ 0.12 fm−3, which corresponds
to a Fermi wave number kF p ≈ 0.7–0.8 fm−1, while for the
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FIG. 1. Fermionic pairing and characteristic length scales in the
outer core. The Fermi wavelengths λFσ

and the coherence lengths ξσ

with σ = p, n, are estimated from the superfluid densities ρσ and the
fermionic pairings �σ (top panel, as reported in Ref. [21]).

PF -neutron pairs the numerical results produce clearly
smaller values �n ≈ 0.6 MeV at ρb ≈ 0.24 fm−3 with kFn ≈
2 fm−1 [18,22] (see Fig. 1).

Pairing fields �σ and particle densities ρσ (where σ =
n, p, correspond to neutrons and protons, respectively) are
associated with characteristic length scales: coherence (or
healing) length ξσ = h̄2kF /(πm�σ ) and Fermi wavelength
λFσ = 2πk−1

Fσ , respectively, that shape the vortex lines of the
superfluids. The typical vortex core size (see, e.g., Ref. [23]) is
of the order of the coherence length ξσ , whereas density inho-
mogeneities are characterized by the bulk value of the Fermi
wavelength λF (see Fig. 1 for the typical values in the outer
core). Numerical calculations in the BCS-BEC crossover
of ultracold atoms show, by solving self-consistently the
Bogoliubov–de Gennes equations [24,25], how the interplay
of these lengths is particularly manifest in the structure of
the vortex core within the BCS limit. In this latter regime,
although the pairing vanishes at the vortex core, the fermionic
density does not, due to the localization of fermionic An-
dreev (also named Caroli–de Gennes–Matricon) bound states
[23,26]. This is also the situation found in neutron stars, as
shown, for instance, in Ref. [27], where the spatial structure
of a vortex is obtained by a self-consistent approach at low
neutron-matter density in the inner crust. It was found that
the profile of the pairing field, related to the order parameter,
vanishes at the vortex axis, while the matter density only
shows a partial depletion [28]. Notice that this fermion-vortex
features contrast with those of vortices in bosonic diluted
gases, where both, pairing field and matter density profiles,
vanish at the vortex axis owing to the fact that the order
parameter is directly related to the bosonic density. The afore-
mentioned fermion-vortex features have been also reported
in other microscopic calculations of isolated vortices in the
inner crust [29,30], including finite temperature effects [28]
and vortex dynamics [31]. However, as far as we know, the
study of vortex structures in the outer core, where the super-
fluid dynamics involves a two-component system, are at least
scarce, and mainly focus on the collective effect of vortices

and vortex lattices [13,32–39], though some features related
to the energy and the magnetic field of single flux tubes in
rotating superconductors have been revealed [35,40,41].

Since the rotation rate and the magnetism of a neutron star
are assumed to produce vortex lattices in its superfluid layers,
additional relevant length scales arise from the separation
between neutron and proton vortices in these lattices, which
are estimated to be [35]

dn ≈ 4 × 10−4

(
P

1 ms

)1/2

cm,

dp ≈ 5 × 10−10

(
B̄

1012 G

)−1/2

cm, (1)

respectively, where P is the rotational period, and B̄ is the
average magnetic field. For example, for the Vela pulsar,
whose measured rotational period is 89.33 ms, the spacing
between neutron vortices is estimated to be 10−3 cm, while,
assuming a typical average magnetic field of 1012 G, the
distance between proton vortices should be around 10−10 cm.
This estimate indicates that proton-vortex (or fluxtube) arrays
would densely fill up the space between neutron vortices.
Then, it seems plausible to consider proton vortices lying
between faraway neutron vortices. Similarly as in other mul-
ticomponent superfluids [42], we will refer to this topological
defect, a proton-superconductor vortex without overlapping
neutron-superfluid vortex, as a half-quantized vortex in the
two-component superfluid of the outer core. In this case, the
Fermi wavelength and the healing distance in the supercon-
ducting fluid are typically of the order of 10 fm, much smaller
than the intervortex proton spacing, which, in turn, is assumed
to be several orders of magnitude smaller than the neutron vor-
tex separation. As a consequence of the entrainment as well
as of the nuclear interactions, the proton vortex is expected to
produce a long wavelength perturbation in the much denser
neutron superfluid.

In the present paper, we contribute to the characterization
of the structure and the effect of half-quantized vortices in the
two-component superfluid of the outer core of neutron stars
within a generalized hydrodynamic description. The model
includes the dynamical entrainment and the effective nucleon-
nucleon interaction (of Skyrme type SLy4) between superfluid
neutrons and superconductor protons; the dynamical variables
are the density and velocity, gathered in a complex order
parameter of the neutron and proton Cooper pairs. Essen-
tially the same model was recently used in the exploration of
the long wave length excitations of the outer-core superfluid
[43]. Since this approach cannot provide independent micro-
scopic information on the differences between the density of
fermions and the corresponding order parameter, we restrict
our focus on study cases where the typical fermionic and
bosonic length scales of the proton fluid approximately match.
This fact allows us to consider proton-superconductor vortices
characterized by a single length scale, which produce hydro-
dynamic perturbations on the underlying neutron superfluid.
The influence of realistic angular rotation and electromagnetic
fields on the vortex structure is considered.

The paper is structured as follows. In Sec. II, first we
derive the equations of motion in terms of the system’s order
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parameters in the absence of rotation and magnetic field; these
quantities are introduced later in the model to better show
their effects. In Sec. III we discuss the predictions of our
model, present our numerical calculations of a proton vortex
in the outer core, and compare with the literature. Finally,
Sec. IV presents the summary and prospects of future work.
The Appendixes A–D are devoted to featuring our choice for
the effective nuclear interaction, the effect of entrainment in
the energy density through a toy model, the corresponding
hydrodynamic equations of our system, and details of the
performed numerical simulations, respectively.

II. MODEL OF THE SUPERFLUID OUTER CORE

Neutron and proton superfluids will be described by two
complex order parameters ψn and ψp, respectively. From
them, superfluid densities and velocity fields are obtained
as ρσ = |ψσ |2, and �vσ = h̄∇θσ /m, respectively, where θσ =
arg ψσ , and m is the nucleon mass. The system energy follows
from the energy functional, E [ψn, ψp] = ∫

H d3r, whose en-
ergy density, in the absence of rotation and electromagnetic
field, reads

Hpn = 1

2m̃n
| p̂ψn|2 + 1

2m̃p
| p̂ψp|2 + νm�jn · �jp + εnuc, (2)

where m̃σ is a short notation for the effective masses
m̃n = m/(1 − νρp) and m̃p = m/(1 − νρn) (see Appendix B),
p̂ = −ih̄∇ is the canonical momentum operator, �jσ =
Re{ψ∗

σ p̂ψσ }/m = ρσ �vσ are the current densities of each com-
ponent when considered as separated fluids, and ν (with units
of volume) is the entrainment parameter that depends on the
nuclear interaction, which is in turn encapsulated in the en-
ergy term εnuc = εnuc(ρσ , ∇ρσ ) (see Appendix A for details).
Equation (2) gathers interaction terms up to second order
in the gradients of the order parameters [44], and explicitly
features the contribution of entrainment to the kinetic energy,
through the effective masses in the first two terms, and to the
coupling between current densities, in the third term.

Entrainment contributions are imposed by the Galilean
invariance of the coupled system, which demands current
densities �Jσ for each component that involve both superfluid
velocities �vn and �vp [17], as

�Jn = �jn + �jnp,

�Jp = �jp − �jnp, (3)

where �jnp = νρnρp(�vp − �vn) is the entrainment current den-
sity, and satisfy the continuity equations (see Appendix C)

∂ρn

∂t
+ ∇ �Jn = 0,

∂ρp

∂t
+ ∇ �Jp = 0. (4)

These expressions state, in this nonrelativistic approach, the
independent conservation of the number of neutrons and pro-
tons. Notice that while the total particle current �J = �Jn + �Jp =
�jn + �jp = ρn�vn + ρp�vp does not depend on entrainment, the
relative current density does: �Jn − �Jp = �jn − �jp + 2�jnp.

The equations of motion follow from the variation of
the total energy density Eq. (2), δH/δψ∗

σ = ih̄∂tψσ , which
produces generalized, coupled Ginzburg-Landau (or Gross-
Pitaevskii) equations

ih̄
∂ψn

∂t
= μnψn − h̄2

2m
∇2ψn

− h̄2ν

2m
[|∇ψp|2ψn − ∇(ρp∇ψn)]

− ih̄ν

2
[�jp∇ψn + ∇(�jpψn)], (5)

ih̄
∂ψp

∂t
= μpψp − h̄2

2m
∇2ψp

− h̄2ν

2m
[|∇ψn|2ψp − ∇(ρn∇ψp)]

− ih̄ν

2
[�jn∇ψp + ∇(�jnψp)], (6)

where we have introduced the (generalized) chemical
potentials

μσ = ∂εnuc

∂ρσ

− ∇ ∂εnuc

∂∇ρσ

, (7)

that include contributions from the density, ∂εnuc/∂ρσ , and the
density-gradient, Qσ = −∇(∂εnuc/∂∇ρσ ), dependence of the
nuclear interaction energy SLy4; explicitly, the latter contri-
butions are Qp = −h̄2(ϑ0

pp∇2ρp + ϑ0
np∇2ρn)/(2m) and Qn =

−h̄2(ϑ0
nn∇2ρn + ϑ0

np∇2ρp)/(2m), where the coefficients ϑ0
i j

are obtained from the parametrization of the interaction (see
Appendix A). As a whole, the right hand sides of Eqs. (5)–(6)
reflect an involved coupling between the two superfluids due
to entrainment effects.

A. Rotating superfluids subjected to a magnetic field

The star’s rotation and magnetic field are introduced in the
model, in a minimal coupling approach, through the kinetic
(or mechanical) momentum operators

�̂ = p̂ − m( �� × �r),

�̂A = p̂ − m( �� × �r) − e �A, (8)

where �� is the angular velocity of the star, �A is the electro-
magnetic vector potential, and e is the unit electric charge.
By means of Eq. (8), the energy density (2) is just rewrit-
ten in the rotating frame of reference with the replacements
p̂ψn → �̂ψn and p̂ψp → �̂Aψp, and the generalized cur-
rents of the independent superfluids, �jn = Re(ψ∗

n �̂ψn/m) =
ρn(h̄∇θn/m − �� × �r) = ρn�vn and �jp = Re(ψ∗

p�̂Aψp/m) =
ρp(h̄∇θp/m − �� × �r − e �A/m) = ρp�vp. In addition (see Ap-
pendix B), the energy density gets an energy shift given by

�Hpn = − ψ∗
n

m

2
( �� × �r)2ψn − ψ∗

p

×
[

m

2
( �� × �r)2 + e �A( �� × �r)

]
ψp. (9)
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On the other hand, to obtain the corresponding Maxwell
equations, the energy of the electromagnetic field and the
electron contributions have to be considered. Hence, the total
energy density becomes

H = Hpn + �Hpn + e(|ψp|2 − ne) � + e �Je · �A + | �B|2
2μ0

,

(10)

where � is the scalar electromagnetic potential, μ0 is the mag-
netic permeability, and (ne, �Je) are the electron density and
electron current density, respectively. The resulting general-
ized Ginzburg-Landau Eqs. (5)–(6), expressed in the rotating
frame of reference, become

ih̄
∂ψn

∂t
= μnψn + �̂2ψn

2m
− m

2
( �� × �r)2ψn + ν

[
|�̂Aψp|2

2m
ψn + 1

2
�jp�̂ψn + 1

2
�̂( �jpψn) + ih̄

2m
∇(ρp�̂ψn)

]
, (11)

ih̄
∂ψp

∂t
= (μp + e�)ψp + �̂2

Aψp

2m
−

[
m

2
( �� × �r)2 + e �A( �� × �r)

]
ψp

+ ν

[
|�̂ψn|2

2m
ψp + 1

2
�jn�̂Aψp + 1

2
�̂A( �jnψp) + ih̄

2m
∇(ρn�̂Aψp)

]
. (12)

while the resulting Ampere’s law ∇ × �B = μ0e ( �Jp − �Je) can
be written in terms of the vector potential, in the Coulomb
gauge ∇ · �A = 0, as

∇2 �A = −μ0e ( �Jp − �Je), (13)

where �Je is the current density of electrons. The coupled
equations (11)–(13) have to be self-consistently solved for the
set {ψn, ψp, �A}.

B. Vortices

Vortices are featured by the quantized winding of the phase
θσ around singular points that trace the vortex cores, where the
phase is not uniquely defined. Since the order parameters are
single-valued functions, the phase jumps in integer multiples
of 2π , that is

∮ �d� · ∇θσ = 2πq, where q = ±1,±2, . . . is
the winding number. Usually, we will refer to singly quan-
tized vortices, with q = 1, because vortices with winding
numbers larger than one are not energetically stable (see for
instance Ref. [45]). In the absence of rotation and magnetic
field, the quantized winding of the phase around the vortex
core translates also into a quantized velocity circulation �σ ≡∮ �d� · �vσ = (h̄/m)

∮ �d� · ∇θσ = (2π h̄/m) q. However, this is
not the general case when the kinetic momentum, as defined in
Eq. (8), have additional contributions apart from the canonical
momentum.

In the presence of rotation and magnetic field, energy mini-
mization with respect to the velocity fields, assuming constant
densities, leads to vanishing superfluid velocities �vn = �vp = 0
[44], hence to

h̄

m
∇θn = �� × �r, (14)

h̄

m
∇θp − e

m
�A = �� × �r. (15)

Equation (14) is complied with by means of quantum vortices
in the neutron superfluid, so it generates vorticity through
singular phase lines in the neutron phase θn that balance the
otherwise unbalanced vorticity 2 �� introduced by the angular

velocity. The ratio between the total flux of this vorticity (or
equivalentely, the circulation of the velocity) and the circula-
tion per vortex �n determines the inter-vortex distance dn of
Eq. (1). On the other hand, the gauge invariance of the proton
wave function prevents the appearance of proton vortices due
to rotation in the absence of an overall magnetic field (that
would have �A = 0). Instead, the generation of surface currents
gives rise to the so-called London’s magnetic field �BL, which
[from taking the curl of Eq. (15) for an emergent vector
potential �AL] and by fulfilling

e �BL

m
= −2 ��, (16)

is capable of balancing rotation, so that the protons do not
move in the rotating frame. Due to the typical rotation rates
|�| ≈ 100 Hz, this magnetic field takes small values, |BL| ≈
0.1–1 G, in comparison with the typical magnetic fields of
neutron stars inferred from observations. The latter fields are
believed to be trapped in the superconducting star interior
since early, non-superconducting stages of the star [14], and
have to satisfy Ampere’s law Eq. (13). Because of entrain-
ment, the current density �Jp includes a contribution from the
superfluid neutron velocity, which contributes also to the total
charge current density and so to the overall stellar magnetic
field. The associated magnetic flux threads the star outer core
through flux tubes along the core of quantum vortices in the
proton superconductor (assumed to behave as a type II su-
perconductor [14]). The ratio between the total magnetic flux
(as computed by the average magnetic field B̄ inferred from
observations) and the flux quantum per vortex φ0 = 2π h̄/e
determines the proton inter-vortex distance dp in Eq. (1).
The angular frequency of the cyclotron orbits, ωB, provides
the characteristic time ω−1

B = (e|B̄|/m)−1 and length �B =√
h̄/(mωB) =

√
h̄/(e|B̄|) scales of the magnetic field.

Proton supercurrents around vortex lines preserve super-
conductivity in the presence of strong magnetic fields, which
enter the bulk only up to small length scales �. This can be
seen, by assuming constant densities and point-like vortices in
Eq. (13), and using Eqs. (3) and (8), in the resulting London
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equation for the magnetic field (see, e.g., Ref. [46])

∇2 �B − �B
�2

= − φ0

�2
δ(�r) − μ0e νρnρp2 �� (17)

with a source term that consists of a proton vortex and a
neutron vorticity (assumed to take the average value 2 ��).
The London penetration depth is calculated as � =√

m [μ0e2ρp(1 − νρn)]−1, and takes values of the order � ≈
74 fm at ρ = 0.16 fm−3 (or ≈50 fm at higher density ρ =
0.24 fm−3 [44]). As a result, magnetic-field maxima of the
order of Bv ≈ φ0/(2π�2) ≈ 1015 G 	 B̄ are estimated to
peak at proton-vortex cores, as expected from a penetration
length (� ∝

√
B̄/Bv dp ≈ 10−2 dp) significantly smaller than

the distance between proton vortices dp.

III. PROTON VORTICES IN THE OUTER CORE

Although neutron and proton vortices can overlap produc-
ing a quantum vortex that wind the total phase of the system
twice (2π per component) around the vortex core, single
vortex excitations that winds only one of the two component
phases (so just 2π in one component’s phase and no winding
in the other) are also possible. This latter configuration is the
object of our study, and is referred to as half-quantized vortex
or just half-vortex. From a symmetry-based perspective, the
difference in phase winding is associated with the existence of
two U (1) symmetries, so an overall U (1) ⊗ U (1) symmetry,
which are broken by the Bose condensed fluids of neutrons
and protons (see for instance Ref. [42]).

We focus on a study case where the typical fermionic, λF p,
and bosonic, ξp, length scales of the proton superconductor are
the same (as obtained within the Skyrme SLy4 interaction). As
can be seen in Fig. 1, such a matching occurs deep in the outer
core for a nucleon density of ρ ≈ 0.16 fm−3, where λF p ≈
ξp = 10.3 fm. Due to the strong asymmetry, δ = 0.9, the
presence of a proton vortex is expected to produce just a hy-
drodynamic perturbation in the underlying neutron superfluid,
whose typical length scale is much smaller λFn = 3.8 fm.
Under these conditions, the structure of a proton vortex can be
plausibly characterized within our model, and so we will ana-
lyze straight vortex lines that are assumed to be invariant along
the z coordinate (which we ignore from now on). A proton
vortex centered at position �r0 = (x0, y0) in an XY plane, can
be described by an order parameter ψp(�r) = √

ρp(�r) exp(iϕ),
whose phase is given by the angle around the center θp = ϕ =
arctan[(y − y0)/(x − x0)], whereas its density vanishes at the
vortex core ρp(�r0) = 0, and, far from it, for |�r − �r0|/ξp 	 1,
recovers the bulk proton density ρ0

p = 7.66 × 10−3 fm−3.
With these constraints, Fig. 2 shows our numerical results
after solving Eqs. (11)–(13) for a proton vortex subjected to
angular rotation rate � = 100 Hz and average magnetic field
|B̄| = 1012 G (see Appendix D for details about the numerical
method). The neutron superfluid, as expected, shows only a
very small density depletion (≈1% with respect to the bulk
value ρ0

n = 0.152 fm−3) at the position of the proton vortex.
The observed depletion is mainly due to the the entrainment
coupling between components. Since close to the half-vortex
axis the entrainment contributes with a nonzero current den-
sity to the stationary neutron continuity equation (4), this extra

FIG. 2. Cross section of a half-vortex state in the superfluid-
superconductor mixture of neutrons and protons at typical nuclear-
matter density in the outer core of neutron stars. The vortex is
excited in the proton superconductor and produces a hydrodynamic
perturbation in the much denser neutron superfluid. The main graph
shows scaled densities with respect to the respective bulk-density
values of neutron and protons, ρ0

n and ρ0
p, whereas the inset shows

the density profiles in absolute units.

current is accompanied by a corresponding neutron density re-
duction in order for the equation to be satisfied. With regard to
the stellar rotation and magnetism, despite their apparent high
values, their influence on the vortex structure is negligible.
We have checked that the vortex structure shown in Fig. 2 re-
mains unaltered for varying rotation rates and magnetic fields
within ranges of realistic values 102–103 Hz and 1012–1015

G, respectively. This results (or absence of effects) can be
understood by computing the respective typical length scales,
�� = √

h̄/(m|�|) = 2.5 × 1010 fm and �B = 2.6 × 103 fm,
which reflect negligible energy contributions (proportional to
�−2) against the typical vortex energies (proportional to ξ−2

p ).
Characteristic values of the fluid velocity and current

density around the vortex core can be estimated from
vp ≈ h̄/(mξp) = 0.02 c, jp = ρpvp ≈ 10−4 fm−3c, and jnp ≈
νρnρpvp ≈ −0.24 jp, so that the overall proton current density
estimate is Jp ≈ 10−4 fm−3c; the magnetic field has nearly no
contribution to the velocity, since vB = �BωB ≈ 8 × 10−5 c.
Our numerical results produce current peak values that are
consistent with these estimates and are accompanied by long
tails, as can be seen in Fig. 3, which shows the current density
and magnetic field profiles around the proton vortex depicted
in Fig. 2. The bottom panel represents the total neutron and
proton current densities, whose contributions [according to
Eq. (3)] are separately plotted in the top panel. The long tails
show the peak currents reduced to half their values at distances
ξp ≈ 10 fm away from them, and are consistent with slower
decays of the magnetic field according to the larger penetra-
tion length � ≈ 70 fm estimated after Eq. (17). The magnetic
flux produced by this varying magnetic field gives rise to
one quantum of flux φ0 per vortex, the same flux associated
with the observed average field. As can be seen, due to the
entrainment, non-negligible neutron currents settle around the
proton vortex, which by means of the continuity equation are
translated into the small neutron-density variations observed
in Fig. 2.
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FIG. 3. Particle current densities corresponding to the proton
vortex shown in Fig. 2. The top panel depicts the currents of the
independent neutron �jn and proton �jp fluids, along with the en-
trainment current �jnp. The botton panel shows the current densities
of neutron �Jn and protons �Jp in the coupled system, as defined in
Eqs. (3)–(4), along with the magnetic �B field threading the vortex
[where λ = 2π h̄/(mc) is the Compton wavelength].

Although our results have been obtained for the typi-
cal core density of ρ = 0.16 fm−3, some general features
can be extrapolated to other densities in the core whenever
the proton vortex size (proton coherence length) is clearly
larger than the neutron fermi wave length. In these situa-
tions, the neutron density is expected to experience similar
small depletions due to the entrainment effects produced
by the proton vortex. On the contrary, when proton and
neutron vortices overlap, both fermionic densities are ex-
pected to become significantly depleted due to the overall
high current density affecting the whole system. It is also
worth commenting on the differences between a proton vor-
tex and a neutron vortex (as estimated in Ref. [44]), since
in the latter the threading magnetic flux is reduced by a
factor of νρn/(1 − νρn), thus by 0.19 at ρ = 0.16 fm−3,
with respect to the former [44]. Therefore, while we ob-
tain magnetic-field peaks of magnitude Bv ≈ 4 × 1015 G
at the proton-vortex core, lower values would be expected at
the corresponding neutron-vortex core. Figure 4 depicts the
carpet plot of the magnetic field showing the constrained flux
around the vortex core located at the origin �r0 = (0, 0).

IV. CONCLUSIONS

Since typical rotation rates of neutron stars give rise to a
low density of vortices in the outer-core neutron superfluid,
most of the flux tubes produced by the star magnetic field in
the accompanying proton superconductor thread single pro-
ton vortices that do not have a neutron vortex partner. We
have analyzed the structure of these half-vortices in a typical
configuration of a type-II superconductor, where the London
penetration length � is much larger than the superconductor
healing length ξp. By means of a generalized hydrodynamic
model that includes the effects of neutron-proton entrainment
and Skyrme SLy4 interactions, and through numerical sim-

FIG. 4. Single magnetic field flux tube threading the proton vor-
tex described in Figs. 2 and 3.

ulations that search for stationary quantum vortex states, we
have characterized the microscopic structure of the half-vortex
in a region of the star’s outer core with nuclear density ρ =
0.16 fm−3, where the typical length scales of proton pair-
ing and Fermi wave number match, kF p = ξp ≈ 10 fm. It is
shown how an isolated proton vortex produces a perturbative
depletion in the underlying neutron superfluid, and gener-
ates particle currents that are increased by the nondissipative
dragging of neutrons. Although the exponential decay of the
magnetic field away from the vortex core extends up to typical
lengths of several London penetration lengths, � ≈ 70 fm,
over which one quantum of magnetic flux φ0 and typical
average values of B̄ = 1012 G are achieved, the length of
the magnetic field’s tail is still orders of magnitude smaller
than the expected distance between neutron vortices dn ≈
10−4 cm. Despite the apparent very high values (although
consistent with observations) of both the rotation and the mag-
netic field considered, and due to the (even higher) nuclear
densities of the outer core, the revealed structure of the vortex
remains practically unaltered with respect to varying (or even
the absence of) both rotation and magnetic field intensity.

Our generalized hydrodynamic model provides a meso-
scopic picture of the interplay between superfluid neutrons
and superconductor protons in the outer core. As such,
this picture does not include damping effects that can be
directly associated with macroscopic nonequilibrium phe-
nomena observed in the dynamics of neutron stars, like
glitches. Nevertheless, there is an incresing interest to discern
the cause of this latter phenomenon, assuming that it is con-
nected with neutron vortices pinned to the inner crust, and
there is no clear role of the star’s outer core [47–49]. In this
direction, the present work contributes to understand features
of the outer core that can be relevant for its overall dynamics.
In addition„ our model can contribute to characterize aspects
of the thermal history of neutron stars similarly as in Ref. [50].
Prospects of future work involve this problem along with
further microscopic characterization of single half vortices
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by means of Hartree-Fock-Bogoliubov models, where both
the fermionic and the bosonic sectors of the coupled Fermi
systems are included, so that fermion densities and pairing
fields can be separately revealed.

DATA AVAILABILITY

No data were created or analyzed in this study.

APPENDIX A: SLY4 INTERACTION

These Skyrme forces describe effectively the nuclear in-
teraction and provide the equation of state of a neutron star
[51,52]. Its energy density,

εnuc = Hρ +H∇, (A1)

contains terms that depend on the nuclear densities Hρ (ρσ )
and also terms that depend on the gradients of the neutron and
proton densities H∇(∇ρσ ), and so the latter vanish for uni-
form density distributions but simulate otherwise finite-range
effects of the interaction. In turn,

Hρ = T +H0 +H3 +Heff , (A2)

where T is a kinetic term,H0 is a zero-range two-body term,
H3 is a three-body term, and Heff is an effective-mass term.
The pairing contribution to the total energy of the system is
not included assuming that it is negligible against the typical
Fermi levels. More explicitly,

T = h̄2

2m
(τn + τp) (A3)

accounts for the kinetic energy densities τi =
3 (3π2)2/3ρ

5/3
i /5 of the Fermi gas, whereas the other terms in

Eq. (A1) provide the bulk part of the potential energy

H0 = t0
4

[
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

p + ρ2
n

)]
, (A4)

H3 = t3 ρ1/6

24

[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

p + ρ2
n

)]
, (A5)

Heff = [t1(2 + x1) + t2(2 + x2)]
ρ(τn + τp)

8

+ [t2(2x2 + 1) − t1(2x1 + 1)]
τpρp + τnρn

8
, (A6)

and, as anticipated, the last term in Eq. (A1) is due to the short
range of the nucleon-nucleon interaction,

H∇ = 3

32
[t1(1 − x1) − t2(1 + x2)]

[
(∇ρn)2 + (∇ρp)2]

+ 1

16
[3t1(2 + x1) − t2(2 + x2)] ∇ρn · ∇ρp. (A7)

From this latter term, to compute the contributions to
the generalized chemical potential (7), we define ϑ0

nn =
ϑ0

pp = 3m [t1(1 − x1) − t2(1 + x2)]/(8h̄2) and ϑ0
np = ϑ0

pn =
m [3t1(2 + x1) − t2(2 + x2)]/(8h̄2).

The parameters in these expressions are [53,54]: t0 =
−2488.91 MeV fm3, t1 = 486.82 MeV fm5, t2 = −546.39
MeV fm5, t3 = 13777.0 MeV fm4, x0 = 0.834, x1 = −0.344,
x2 = −1.0, and x3 = 1.354. From them, following Ref. [55],

the entrainment parameter ν can also be calculated and takes
the value ν ≈ −1.566 fm3.

The β equilibrium in the bulk [56] can be locally deter-
mined in terms of the asymmetry δ = (ρn − ρp)/ρ by means
of Eq. (A1) and the condition μn = μp + μe, with μe =
h̄ c (3π2ρe)1/3 for ultrarelativistic electrons and assuming con-
stant densities and local electric-charge equilibrium ρe = ρp,
as (

h̄2

2m
+ C1

8
ρ

)(
3π2 ρ

2

)2/3
[(1 + δ)2/3 − (1 − δ)2/3]

− t0
2

ρ δ (1 + 2x0) − t3
12

(2x3 + 1)δ ρ7/6

+ 3π2

5
C2

(ρ

2

)5/3
[(1 + δ)5/3 − (1 − δ)5/3]

− h̄c

[
3π2 ρ

2
(1 − δ)

]1/3

= 0, (A8)

where C1 = t1(2 + x1) + t2(2 + x2) and C2 = t2(2x2 + 1)) −
t1(2x1 + 1). By solving this equation the density asymmetry
δ, that is the amount of neutrons and protons in the bulk, is
obtained for a given total nuclear density ρ.

APPENDIX B: CLASSICAL ANALOG OF ENTRAINMENT
IN THE PRESENCE OF ROTATION

AND MAGNETIC FIELD

To illustrate the transformation of the energy density
Eq. (2) in the presence of rotation and magnetic field, we con-
sider a toy, classical model of two point particles with coupled
velocities whose dynamics is described by the Lagrangian

L[r1, r2, ṙ1, ṙ2] = m11ṙ2
1

2
+ m22ṙ2

2

2
+ m12ṙ1ṙ2 + eAṙ2, (B1)

where A is the vector potential of a magnetic field that
couples only to one of the particles, and m1 = m11 + m12,

FIG. 5. Number density (top panels) and phase (bottom panels)
profiles of the neutron (left) and proton (right) order parameters
around the proton-vortex core.
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m2 = m22 + m12; the condition �m = m1m2 − m2
12 > 0 is as-

sumed. If the whole system, its center of mass, is brought
into a steady motion with velocity V0, the Lagrangian can
be rewritten in the reference frame moving with V0 as
L′[r′

1, r′
2, ṙ′

1, ṙ′
2] with new velocities ṙ′

1 = ṙ1 − V0 and ṙ′
2 =

ṙ2 − V0. The corresponding momenta are

p′
1 = ∂L′

∂ ṙ′
1

= m11ṙ′
1 + m12ṙ′

2 + m1V0, (B2)

p′
2 = ∂L′

∂ ṙ′
2

= m22ṙ′
2 + m12ṙ′

1 + m2V0 + eA, (B3)

and then the Hamiltonian is obtained from H ′[r′
1, r′

2, p′
1, p′

2] =∑
pσ ṙσ −L′ to be

H ′ = p′
1

2

2m̃11
+ (p′

2 − eA)2

2m̃22
+ p′

1 (p′
2 − eA)

m̃12

− αV0(p′
1 + p′

2) + (α − 1)

(
eAV0 + m1 + m2

2
V 2

0

)
,

(B4)

where new effective masses arise m̃i j = �m/mi j , with i, j =
1, 2, and the parameter α = [m1m2 − m12(m1 + m2)]/�m de-
termines how the Hamiltonian transforms. If m12 = 0 then
α = 1, and one recovers the usual transformation for the
Hamiltonian in the moving frame H → H − V0P with total
momentum P = p1 + p2. A nonvanishing coupling mass m12

produces the more involved transformation shown in Eq. (B4),

which can be rewritten as

H ′ = �′2
1

2m̃11
+ �′2

2

2m̃22
+ �′

1 �′
2

m̃12
− eAV0 − m1 + m2

2
V 2

0 ,

(B5)

in terms of the kinetic momenta

�′
1 = p′

1 − m1 V0, (B6)

�′
2 = p′

2 − m2 V0 − eA. (B7)

APPENDIX C: HYDRODYNAMIC EQUATIONS

The hydrodynamic equations can be derived directly from
the generalized time-dependent Ginzburg-Landau Eqs. (11)–
(12) by writing the order parameters in the so-called
Madelung transformation as ψσ = √

ρσ (�r, t ) exp iθσ (�r, t ) and
defining the superfluid velocities of the decoupled superflu-
ids as �vσ = h̄∇θσ /m. From the separation of the real and
imaginary parts of the resulting expressions, one obtains equa-
tions of motion for superfluid densities and phases in the
rotating frame. On the one hand, from the imaginary terms,
one recovers the continuity Eqs. (4) that can be rewritten as

∂ρn

∂t
+ ∇[ρn�vn + νρnρp(�vp − �vn)] = 0,

∂ρp

∂t
+ ∇[ρp�vp − νρnρp(�vp − �vn)] = 0; (C1)

on the other hand, after taking the gradient of the resulting real
terms, one gets the momentum equations

∂

∂t
(�vn + �� × �r) + ∇

{
μn

m
− h̄2

m2

[
(1 − νρp)∇2√ρn

2
√

ρn
+ ν

2
(∇√

ρp)2 − ν∇ρp∇ρn

4ρn

]

+ 1

2

[
�v2

n − ( �� × �r)2 − νρp(�vp − �vn)2 − νρp�vp( �� × �r)
]} = 0, (C2)

∂

∂t

(
�vp + �� × �r + e �A

m

)
+ ∇

{
μp + e�

m
− h̄2

m2

[
(1 − νρn)∇2√ρp

2
√

ρp
+ ν

2
(∇√

ρn)2 − ν∇ρp∇ρn

4ρp

]

+ 1

2

[
�v2

p − ( �� × �r)2 − e �A
m

( �� × �r) − νρn(�vp − �vn)2 − νρn�vn

(
�� × �r + e �A

m

)]}
= 0. (C3)

While the continuity Eqs. (C1) are related to the conservation
of the number of particles in each superfluid component, the
phase Eqs. (C2)–(C3) are related to the corresponding conser-
vation of momentum.

APPENDIX D: NUMERICAL SIMULATIONS

The stationary vortex states have been calculated
within a cylindrical computational domain, with the
vortex core aligned with the cylinder axis, and the
cylinder walls determined by imposed potentials W (�r) =
10μn {1 + tanh[5kFn(|�r| − R)]} in Eqs. (11) and (12). The
cylinder radius R has been fixed by the condition of reaching
both the bulk density values, ρ0

n and ρ0
p, of neutron and proton

superfluids in β equilibrium, and nonvarying magnetic fields
faraway from the vortex core. Our results have been tested by
achieving convergence in the densities, currents, and magnetic
field values against variations of the cylinder radius and the
number of computational grid points Nx × Ny; typical values
of these parameters were R ∈ [100, 500] fm and Nx × Ny ∈
[512 × 512, 1024 × 1024] points. In the search for stationary
states, the initial state was fixed by the bulk nuclear density
values and by imprinting a vortex phase in the proton order pa-
rameter, that is, ψn(x, y) = max[1 − W (x, y)/μn, 0] × √

ρ0
n

and ψp(x, y) = max[1 − W (x, y)/μp, 0] ×
√

ρ0
p exp[i arctan

(y/x)]; a vanishing density was also set at the vortex core
ψp(0, 0) = 0. Starting with this state, an imaginary time
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evolution of Eqs. (11) and (12), self-consistently with
Eq. (13), was performed until convergence by means of
standard finite-difference spatial discretization and time

integrators based in Runge-Kutta methods coded in Julia
programming language. An example of the density and
phases of the converged states is shown in Fig. 5.
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