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The molecular diagnosis of mismatch repairedeficient cancer syndromes is hampered by difficulties in
sequencing the PMS2 gene, mainly owing to the PMS2CL pseudogene. Next-generation sequencing short
reads cannot be mapped unambiguously by standard pipelines, compromising variant calling accuracy.
This study aimed to provide a refined bioinformatic pipeline for PMS2 mutational analysis and explore
PMS2 germline pathogenic variant prevalence in an unselected hereditary cancer (HC) cohort. PMS2
mutational analysis was optimized using two cohorts: 192 unselected HC patients for assessing the
allelic ratio of paralogous sequence variants, and 13 samples enriched with PMS2 (likely) pathogenic
variants screened previously by long-range genomic DNA PCR amplification. Reads were forced to align
with the PMS2 reference sequence, except those corresponding to exon 11, where only those inter-
secting gene-specific invariant positions were considered. Afterward, the refined pipeline’s accuracy was
validated in a cohort of 40 patients and used to screen 5619 HC patients. Compared with our routine
diagnostic pipeline, the PMS2_vaR pipeline showed increased technical sensitivity (0.853 to 0.956,
respectively) in the validation cohort, identifying all previously PMS2 pathogenic variants found by
long-range genomic DNA PCR amplification. Fifteen HC cohort samples carried a pathogenic PMS2
variant (15 of 5619; 0.285%), doubling the estimated prevalence in the general population. The refined
open-source approach improved PMS2 mutational analysis accuracy, allowing its inclusion in the routine
next-generation sequencing pipeline streamlining PMS2 screening. (J Mol Diagn 2024, 26: 727e738;
https://doi.org/10.1016/j.jmoldx.2024.05.005)
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Lynch syndrome (LS) is a common, dominantly inherited,
cancer-predisposing condition caused by germline patho-
genic variants affecting the function of mismatch repair
(MMR) genes (MLH1, MSH2, MSH6, and PMS2).1 Despite
its incomplete penetrance, individuals harboring an MMR
pathogenic variant have increased chances of developing
colorectal and endometrial cancers, among others.2 Biallelic
pathogenic alterations damaging the same MMR genes
cause constitutional mismatch repair deficiency (CMMRD),
a very rare (1 in 1,000,000) and severe condition that pre-
disposes to multiorgan cancersdmainly brain, hematologic,
and colorectaldusually with childhood onset.3e5 Its pene-
trance is more than 90% at the age of 20.

The estimated population frequency of pathogenic PMS2
variant carriers is the highest among the four MMR genes (1
in 714; 0.140%).1 Accordingly, PMS2 is the most frequently
mutated gene in CMMRD syndrome, accounting for nearly
60% of cases.5 In contrast, PMS2 is the least frequently
mutated gene in the LS series, probably owing to its lowest
penetrance in heterozygous carriers and the former use of
clinical criteria for LS tumor screening. Nevertheless, the
cancer risk varies widely even among heterozygous carriers
from the same family.2,6,7

Gene panels using targeted next-generation sequencing
(NGS) of short reads are the tests most used in the field of
hereditary cancer (HC) because of their optimal balance be-
tween cost and benefit. However, short-readebased NGS has
significant limitations in the identification of variants in
complex regions.8 Indeed, PMS2 gene analysis presents a
major challenge mainly because of the existence of multiple
pseudogenes.9,10 Specifically, there are 14 pseudogenes
located at the 50 end, spanning exons 1 through 5, and an
additional 15th pseudogene located at the 30 end, known as
PMS2CL. Remarkably, the PMS2CL pseudogene is an
inverted partial duplication located on the same chromosome
7 that exhibits notable sequence homology (>98% identity)
with exons 9 and 11 to 15 of the PMS2 gene. Some bases,
called paralogous sequence variants (PSVs), differ in PMS2-
PMS2CL reference sequence.11,12 It has been proven that
sequence exchange (recombination and gene conversion) is a
frequent event observed between these two loci.13,14 This
makes it difficult to discriminate reliably whether an identi-
fied variant is located in the gene or the pseudogene.13,14

Genomic DNA long-range PCR (LR-PCR) amplification
and gene-specific cDNA amplification using primers located
in less-homologous regions, and DNA/cDNA long-read
sequencing, can analyze PMS2 specifically.7,15e20 Never-
theless, these techniques are labor-intensive, complicate
routine diagnostic workflows, and present many technical
challenges, which question the feasibility of implementing
them in large cohorts. Bioinformatic approaches partially
can palliate these difficulties. In this sense, Gould et al11

proposed a workflow in which gene and pseudogene vari-
ants were forced to align with the PMS2 gene reference
sequence. By this means, they identified seven PSV posi-
tions in PMS2 exon 11, where none of the 707 ethnically

diverse patients from their cohort differed from the gene and
pseudogene reference sequences. These positions, herein-
after referred to as invariant PSVs, were demonstrated to be
useful in identifying the origin of variants identified in NGS
reads overlapping them.11 Despite these advances, to our
knowledge, there is no free open-source pipeline available
to analyze PMS2 accurately. Thus, the inclusion of the
PMS2 gene in routine NGS diagnostic pipelines remains a
challenge for most genetic testing laboratories.
To address this need, PMS2_vaR is presented, the first

free open-source pipeline written in R, which integrates and
upgrades the previously reported strategy. The aim of this
study is to increase the accuracy of PMS2 variant detection
using routine NGS panel data, in addition to reducing the
number of samples that need to undergo LR-PCR. This
study also aimed to assess the prevalence of PMS2 patho-
genic variants in an HC cohort upon implementation.

Materials and Methods

Study Cohorts

Table 1 and Supplemental Figure S1 provide an overview of
the cohorts used.
The PMS2_vaR pipeline was optimized using samples

from two cohorts: optimization cohort A, comprising 192 HC
patients used to assess the allelic ratio of PSVs in unselected
samples; and optimization cohort B, enriched in samples
harboring PMS2 (likely) pathogenic variants, composed of
13 cancer patients in whom blood DNA was analyzed pre-
viously by PMS2 LR-PCR, enabling the identification of
PMS2 variants. For validation purposes, a LS suspicion
cohort of 40 patients analyzed previously by PMS2 LR-PCR
was used to determine the pipeline’s accuracy.
Finally, a large HC cohort of 5619 patients was studied.

According to clinical phenotypes, the cohort comprised 13
LS-suspected patients showing exclusive PMS2 loss of
expression in tumors (blood samples were not analyzed
previously by LR-PCR), 36 patients diagnosed with early
onset colorectal cancer (age, <50 years at diagnosis)
showing MMR-conserved protein expression or with no
available immunohistochemistry information, 798 patients
fulfilling other LS suspicion criteria (Amsterdam criteria or
MMR expression loss but not exclusively of PMS2), and
4772 patients tested for suspicion of other HC syndromes.

Sample Collection and Preprocessing

DNA samples were obtained from peripheral blood leukocytes
of individuals with HC suspicion referred to the Molecular
Diagnostics Service at the Institut Català d’Oncologia from its
network of genetic counseling units. Informed written consent
for both diagnostic and research purposes was obtained from
this cohort of patients. The study protocol was approved by
the Ethics Committee of the Catalan Institute of
OncologyeBellvitge University Hospital (PR278/19).

Munté et al
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Routine Diagnostics Pipeline

Genetic testing was conducted on peripheral blood DNA
using NGS custom panel ICO-IMPPC Hereditary Cancer
Panel (I2HCP).21 This panel encompasses a comprehensive
selection of 122 to 168 genes (depending on the version
used) associated with HC susceptibility. The bioinformat-
ics approach used for the routine diagnostics pipeline was
described previously.21,22 The selection of genes for
analysis was based on the phenotype of each patient23 and
their family, following the Catalan Health Service
guidelines.

PSV Determination

A list of 31 exonic base differences was obtained by
comparing the PMS2 (NM_000535.7; https://www.ncbi.
nlm.nih.gov/nuccore/1519311653, last accessed May 15,
2024) and PMS2CL (NR_002217.1; https://www.ncbi.nlm.
nih.gov/nuccore/NR_002217.1, last accessed May 15,
2024) sequences using the BlastN tool from the National
Center for Biotechnology Information. Because some
variants were consecutive, they were considered
compound variants, thus the final list was 28 PSVs, 23 of
which were located within exon 11. Supplemental Table
S1 contains the complete list of all 28 PSVs.12

Bioinformatic Pipeline Development

The PMS2_vaR pipeline was conceived for the R statistical
computing environment (v4.2.1; https://github.com/emunte/
PMS2_vaR, last accessed March 22, 2024). It requires the
installation of the following software: SAMtools (v1.10;
https://www.htslib.org), Picard (v.2.26.4.jar; https://github.
com/broadinstitute/picard), BWA (0.7.17; https://github.
com/lh3/bwa), and VarDictJava (v1.8.3; https://github.com/
AstraZeneca-NGS/VarDictJava). It also uses functions from
both R/Bioconductor and CRAN packages (https://cran.r-
project.org; see the required libraries in the GitHub space).

The pipeline consists of two scripts: modify_reference
and run_PMS2_vaR (Figure 1).

modify_reference Script
Given a human reference genome sequence FASTA file and
its PMS2CL FASTA sequence, the workflow generates a
PMS2CL-masked reference genome in which the PMS2CL
genomic sequence is replaced by Ns (any base). This file is
needed as an input file for the Run_PMS2_vaR algorithm.
This step only needs to be executed once (per human
reference genome version).

run_PMS2_vaR Script
To feed the pipeline, the user is required to provide several
input files, including a text file containing paths to the BAM

Table 1 Summary of Cohorts Analyzed

Group Subgroup Clinical and molecular criteria n
Recommendation for PMS2 LR-
PCR analysis Purpose

Optimization
cohort

Cohort A HC suspicion, unselected 192 No Determine allele ratio
Cohort B LS suspicion; IHC: PMS2e; PMS2

LR-PCR analysis previously
performed Enriched in PMS2
(L)PAT variants

13 Previously performed Determine pipeline
accuracy

Validation
cohort

LS suspicion; PMS2 LR-PCR
analysis previously performed

40 Previously analyzed Determine pipeline
accuracy

Hereditary
cancer
cohort

LS suspicion; IHC: PMS2e; PMS2
LR-PCR analysis not performed

13 Yes, in samples with an identified
PMS2 (likely) pathogenic
variant*

Determine prevalence in
this subgroup

Early onset CRC suspicion; IHC:
conserved expression

36 Yes, in samples with an identified
PMS2 (likely) pathogenic
variant*

Determine prevalence in
this subgroup

LS suspicion (Amsterdam criteria
or IHC MMR expression loss
excluding PMS2)

798 Yes, in samples with an identified
PMS2 (likely) pathogenic
variant*

Determine prevalence in
this subgroup

Other HC suspicions 4772 Yes, in samples with an identified
PMS2 (likely) pathogenic
variant*,y,z

Determine prevalence in
this subgroup

*Pathogenic paralogous sequence variants (c.1864_1865del and c.1730dup) will be considered for LR-PCR testing only if the variant allele frequency is
>60%.

yPseudogenic exon 13 c.2186_2187del and c.2243_2246del PMS2 variants will be considered for LR-PCR testing only if the tumor molecular characteristics
are indicative of a PMS2 alteration (microsatellite instability or exclusive IHC PMS2 loss) or when IHC analysis is not possible.

z(Likely) pathogenic variants called by the general approach but filtered out after the refined E11 approach will not be tested unless the tumor molecular
characteristics are indicative of a PMS2 alteration (microsatellite instability or exclusive IHC PMS2 loss) or when IHC analysis is not possible.
CRC, colorectal cancer; HC, hereditary cancer; IHC, immunohistochemistry; (L)PAT, (likely) pathogenic; LR-PCR, long-range PCR; LS, Lynch syndrome; MMR,

mismatch repair.
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files, a yaml file detailing the paths to the necessary tools
(SAMtools, Picard, BWA, and VarDictJava), another yaml
file specifying the parameters to be used with VarDictJava,
and a comma delimited file listing classified PMS2 variants.
The template for these files is available at https://github.
com/emunte/PMS2_vaR.

In the general approach, to obtain the list of candidate
variants that need to be validated further by LR-PCR, gene
and pseudogene reads in the highly homologous regions
were aligned with the PMS2CL-masked human genome
reference sequence. To this end, first, reads aligning with
PMS2 or PMS2CL in the standard pipeline BAM were
selected using SAMtools. The resulting BAM file was
transformed into paired-end FASTQ files using Picard
software. Afterward, the FASTQ files were realigned with

the modified reference genome using BWA-MEM. The
SAM file was converted to a BAM file, sorted, and indexed
using SAMtools.
Subsequently, exon (E)11 was analyzed based on the

approach of Gould et al11 (hereinafter called the E11
approach). Following their recommendations, only reads that
intersected with any of the seven invariant PSVs were
included (Supplemental Table S1). Read names overlapping
the corresponding positions were obtained using SAMtools
and the reads then were filtered by name using Piccard. These
were aligned to the standard (nonmasked) reference genome.
The resulting E11 BAM was merged with the BAM obtained
for the other exons with the general approach.
Variant calling was performed for both approaches using

VarDictJava. The following parameters were modified: i)

run_PMS2_vaR

E11 PMS2 

PMS2 PMS2CL

PMS2
PMS2CL

PMS2CLPMS2

Figure 1 Schematic representation of the
PMS2_vaR pipeline. The modified reference
genome sequence file is obtained using the
“modify_reference” script. Given a BAM file, a
classified variants csv file and the yaml files
specifying the tool’s paths and parameters for
VardictJava, the run_PMS2_vaR script produces a
text file containing all PMS2 and PMS2CL variants.
The steps to construct the final PMS2 candidate
variants list are detailed in run_PMS2_vaR Script.
.fa, FASTA file.

Munté et al
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the minimum allele frequency was set to 0.1 to accommo-
date the factual tetra-allelic situation because the new
alignments (without the PMS2CL sequence in the reference)
combine four alleles in PMS2 E9, 11 to 15, and nearby
positions (Supplemental Figure S2); ii) the region of interest
(-R) was set to chr7:6012350-6049257 for hg19 and
chr7:5972719-6009626 for hg38; iii) the minimum phred
score (-q) was set to 15; and iv) the number of mismatches
allowed in a read (-m) was set to 10 for greater permis-
siveness. In addition to variants with all filters passed,
variants tagged for mean mismatches in reads �5.25
(NM5.25) or for being adjacent to an insertion variant
(InIns) were kept. In a diploid variant calling situation, these
filters would point to likely false-positive variants, however,
this study tried to be conservative.

The two variant calling files were converted into txt files
using the vcfR R package and were merged into the same
document. This allows the user to verify whether the variant
was found by one or both approaches. The pipeline followed
the decision algorithm described in Results to suggest whether
LR-PCR should be performed or not for each variant.

PMS2 Variant Validation by LR-PCR

Candidate variants in PMS2 (NM_000535.7, NG_008466.1,
https://www.ncbi.nlm.nih.gov/nuccore/NG_008466.1, last
accessed May 15, 2024) identified by vaR_PMS2 were
analyzed using previously described LR-PCR proced-
ures.15,16 A schematic representation detailing the annealing

positions of all the primers used can be found in
Supplemental Figure S3. In brief, amplicons encompassing
entire exons 1 to 5 (long-range amplicon LR1), 9 (LR2), and
11 to 15 (LR3) were generated using LaTaq polymerase
(TaKaRa Bio, Inc, Otsu, Shiga, Japan) and the corre-
sponding primers are listed in Table 2. Amplification of LR-
PCR products was confirmed by agarose gel electrophoresis.
The LR3 product was purified by gel extraction to avoid
pseudogene amplification from genomic DNA instead of
from the LR-PCR product in the following exon-specific
PCR. LR-PCR products (or purified products) were
diluted 1:10 and 1 mL of this dilution was used as the
template for nested exon-specific amplifications. Exon-
specific PCRs were performed using DreamTaq DNA po-
lymerase (Thermo Fisher Scientific, Waltham, MA) and the
corresponding primers (Table 2). For exons 6, 7, 8, and 10,
genomic DNA was used as the PCR template. Amplification
was confirmed by agarose gel electrophoresis and PCR
products were sequenced using the Big Dye Terminator v.3.
1 Cycle Sequencing kit (Applied Biosystems, Waltham,
MA) and an Applied Biosystems 3130XL Genetic
Analyzer.15,16

Variant Classification

A list of 129 PMS2 classified variants was provided to
feed the pipeline (Supplemental Table S2). Variants
initially were classified using the vaRHC R package24 and
subsequently curated by the Catalan Institute of Oncology

Table 2 Primer Sequences for PMS2 Amplification

Target Template Forward primer Reverse primer

LR1 (exons
1e5)

gDNA 50-ACGTCGAAAGCAGCCAATGGGAGTT-30*,y 50-CTTCCACCTGTGCATACCACAGGCT-30*,y

LR2 (exons
7e9)

gDNA 50-GGTCCAGGTCTTACATGCATACTGT-30*,y 50-CTGACTGACATTTAGCTTGTTGACA-30*,y

LR3 (exons
11e15)

gDNA 50-GCGTTGATATCAATGTTACTCCAGA-30*,y 50-CCTTCCATCTCCAAAACCAGCAAGA-30*,y

Exon 1 LR1 50-M13F-ACGTCGAAAGCAGCCAATGGGAGTT-30*,y 50-M13R-CAGGTAGAAAGGAAATGCATTCAGT-30*,y

Exon 2 LR1 50-ACAGTGTTGAGTCATTTCCCACAGT-30*,y 50-TTCTTAGCATAACACCTGCCTGGCA-30*,y

Exon 3e4 LR1 50-M13F-CTGGGCTAGTAAATAGCCAGAAAG-30y 50-M13R-TATGACTTAGATTGGCAGCGAGACA-30*,y

Exon 5 LR1 50-M13F-CTTGATTATCTCAGAGGGATCGTCA-30*,y 50-M13R-TCTCACTGTGTTGCCCAGTCCTAAT-30*,y

Exon 6 gDNA 50-M13F-TGCTTCCCTTGATTTGTGCGATGAT-30*,y 50-M13R-CATTCTACTGGAAGGGACAATGGA-30

Exon 7 gDNA 50-M13F-ACCCACGAGTTTGACATTGCAGTGA-30* 50-M13R-AAAAGACACGAAACTATTAGCCTTAGA-30

Exon 8 gDNA 50-M13F-AGATTTGGAGCACAGATACCCGTGA-30*,y 50-M13R-TGCGGTAGACTTCTGTAAATGCACA-30*,y

Exon 9 LR2 50-M13F-CCTTCTAAGAACATGCTGGTTGGTT-30*,y 50-M13R-ATCTCATTCCAGTCATAGCAGAGCT-30*,y

Exon 10 gDNA 50-M13F-AATTAGCCAGTGTGGTGGCACTTG-30y 50-M13R-AGCTTTAGAAGCTGTTTGTACAC-30y

Exon 11a LR3 50-M13F-TCACATAAGCACGTCCTCTCACCAT-30*,y 50-M13R-GAATGGCAGTCCACATCTGAAAAAG-30

Exon 11b LR3 50-M13F-CAGAGCGGAGGTGGAGAAGGAC-30 50-M13R-GTGAAACCCTGTTTCCACCAAAAAT-30

Exon 12 LR3 50-M13F-GCCAAGATTGTGCCATTGCACTGTA-30* 50-M13R-AGTAGATACAAGGTCTTGCTGTGTT-30*,y

Exon 13 LR3 50-M13F-TTGTTTTCATTTCATTTCTGCTG-30 50-M13R-ATGTTAGCCAGGCTGGTCTCAAACT-30*,y

Exon 14 LR3 50-M13F-GCTTTCAAGTGAAACGTGTTTGTCA-30 50-M13R-GCACGTAGCTCTCTGTGTAAAATGA-30*,y

Exon 15 LR3 50-M13F-GCTGAGATCTAGAACCTAGGCTTCT-30*,y 50-M13R-ACACACGAGCGCATGCAAACATAGA-30*,y

*Primers from Clendenning et al.15
yPrimers from Vaughn et al.16

LR, long range; gDNA, genomic DNA; M13F sequence, 50-TGTAAAACGACGGCCAGT-30; M13R sequence, 50-CAGGAAACAGCTATGACC-30.

Open Access NGS PMS2 Pipeline

The Journal of Molecular Diagnostics - jmdjournal.org 731



Hereditary Cancer Molecular Diagnostics Service. The
draft version of the InSiGHT-ClinGenespecific MMR
variant classification guidelines were followed (https://
www.insight-group.org/content/uploads/2021/11/DRAFT_
Nov_2021_TEMPLATE_SVI.ACMG_Specifications_InSiG
HT_MMR_V1.pdf, last accessed March 22, 2024). Users
have the flexibility to incorporate additional classified
variants or modify the classification of existing ones,
tailoring the system to their specific requirements (see
GitHub for further details).

Assessment of Routine and PMS2_vaR Pipelines
Performance

The performance of the routine and the PMS2_vaR
pipelines was analyzed against the results obtained from
LR-PCR in both the optimization and validation cohorts.
A comprehensive set of performance metrics was
computed, including accuracy, sensitivity, specificity,
positive predictive value, and negative predictive value.
The McNemar test was used to determine significance,
with a predefined P value of 0.05. Statistical analyses
were conducted using R v.4.2.2, leveraging the CRAN
package DTComPair v.1.2.2 (https://CRAN.R-project.org/
packageZDTComPair). To assess the reduction in long
and short PCRs [(LR)-PCR] workload achieved by using
PMS2_vaR, the location of each candidate variant
identified in the HC PMS2 cohort was examined to
determine the precise PCR reaction required for
validation. This result was compared with the total
number of PCR reactions needed in the PMS2 analysis
by (LR)-PCR.

Results

Bioinformatic Pipeline Development: Data Processing
and Variant Calling

A bioinformatic pipeline was developed to identify PMS2
variants from multigene panel NGS data with high accuracy.
First, reads aligning to PMS2 or PMS2CL were converted
into FASTQ files and realigned with a human reference
genome with the PMS2CL sequence masked. This forced
both PMS2 and PMS2CL reads to map to the PMS2 refer-
ence. Subsequently, the PSV variant allele frequency (VAF)
was assessed from a cohort of unselected samples (optimi-
zation cohort A). Given that PSVs are positions where gene
and pseudogene reference sequences diverge, it would be
expected that when one of these variants is called, the reads
that support it come from the pseudogene. Consequently,
PSVs would have an expected VAF of approximately 50%
(present in two of four alleles). However, in the analysis of
samples of the optimization cohort A, the observed VAF
ranged from 35% to 45% for most PSVs (Supplemental
Figure S4). This reduction suggested that the probes have
a slightly weaker affinity for PMS2CL regions harboring

PSVs according to the reference genome. Moreover, some
PSVs deviated strongly from the expected proportions: three
exhibited a VAF below 25% across multiple samples,
indicating that these variants likely are pseudogene poly-
morphisms, and another three displayed VAFs exceeding
60%, suggesting that they likely are gene polymorphisms
(Supplemental Figure S4).
In addition to this general approach, a refined method for

analyzing exon 11 subsequently was introduced, including
only reads overlapping invariant PSVs for this exon. Results
from the two approaches were integrated into the same data
frame.

Decision-Making Algorithm

An algorithm was designed to assess the presence of vari-
ants in MMR genes and to recommend if a called PMS2
variant would need confirmation by (LR-)PCR analysis
(Figure 2). For each PMS2 candidate variant, the algorithm
first assessed if the variant passed the quality filters and if it
was in a region of interest (this study’s setting was a coding
region � 20 bp). Next, it checked if it was a PSV. Among
the 28 exonic PSVs listed (Supplemental Table S1), 2 were
classified as (likely) pathogenic variants if located in the
gene (c.1730dup and c.1864_1865del). These two variants
were called in all samples from the optimization cohort A
and, in most cases, they corresponded to the pseudogene
reference sequence rather than being a gene variant.11 To
avoid the need for LR-PCR analysis of each sample,
paralogous variants were regarded exclusively as potential
gene candidates if their VAF exceeded 60% (Table 1 and
Figure 2). The selected threshold presumes that candidate
variants at PSV positions should be present in at least three
of the four alleles of PMS2 and PMS2CL (Supplemental
Figure S2).
For non-PSV variants or those PSVs with VAFs �60%,

the algorithm examined whether the variant was classified or
not. If the variant was considered pathogenic or likely
pathogenic and also was called with the E11 approach, LR-
PCR was recommended (Figure 2). However, in samples
with any called PMS2 pathogenic variant discarded by the
E11 approach, LR-PCR analysis would be recommended
only when the family phenotype strongly indicated Lynch
or CMMRD syndromes (ie, loss of PMS2 protein expres-
sion or microsatellite instability). Variants of unknown
significance did not undergo LR-PCR because they are not
currently clinically actionable. They were reported only if
the variant was detected with both approaches, with a
disclaimer clarifying that they were not validated by LR-
PCR. Finally, benign or likely benign variants were not
reported.
Apart from PSVs, some common pseudogenic variants

also can be found in the gene, albeit at very low population
frequencies. Specifically, exon 13 recurrent variants
c.2186_2187del (p.Leu729Glnfs*6) and c.2243_2246del
(p.Lys748Metfs*19) are of particular interest because they
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attain a (likely) pathogenic classification within the gene
context. The presence of these two variants within the PMS2
gene was identified in 0.01% (1 of 7593) and 0.07% (2 of
2739) of HC-suspected patients in whom the variants had
been called by NGS, respectively.25 Taking this into ac-
count, LR-PCR was performed only on samples that
harbored these two recurrent pseudogenic variants when the
clinical criteria and tumor molecular characteristics of

the carriers indicated a potential PMS2 alteration or when
the VAF was �60%.

Assessment of PMS2_vaR Pipeline Performance in the
Optimization and Validation Cohorts

To assess the accuracy of the newly developed
PMS2_vaR pipeline, the optimization cohort B, including

PMS2

PMS2CL PMS2

MLH1  MSH2  MSH6  MUTYH  POLE  POLD1

PMS2

Figure 2 Algorithm used to analyze samples with suspected Lynch syndrome (LS). It assesses the presence of variants in MMR genes using a panel
approach. For PMS2 gene analysis, the PMS2_vaR pipeline indicates when long-range (LR)-PCR analysis should be recommended to confirm a PMS2 called
variant. Recurrent PMS2CL pathogenic variants c.2186_2187del and c.2243_2246del will be examined only if PMS2 expression is lost in tumors. BEN, benign;
IHC, immunohistochemistry; LBEN, likely benign; LPAT, likely pathogenic; PAT, pathogenic; PSV, paralogous sequence variant; ROI, region of interest; VAF,
variant allele frequency; VUS, variant of unknown significance.

Table 3 Accuracy, Sensitivity, Specificity, Positive Predicted Value, and Negative Predicted Value Obtained by the Previous Routine
Diagnostic Pipeline and the Refined Pipeline (General þ E11 Approach) in ROIs (�20 bp)

Pipeline

Accuracy Sensitivity Specificity PPV NPV

Op B Val Op B Val Op B Val Op B Val Op B Val

Diagnostics pipeline 0.9993 0.9993 0.9067 0.8528 0.9994 0.9996 0.7391 0.7818 0.9998 0.9997
PMS2_vaR pipeline 0.9994 0.9996 0.9733 0.9561 0.9994 0.9997 0.7449 0.8435 0.9999 0.9999

NPV, negative predictive value; Op B, optimization cohort B; PPV, positive predictive value; ROI, region of interest; Val, validation cohort.
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samples previously analyzed by LR-PCR, was analyzed.
An increased sensitivity in variant identification
compared with the routine diagnostic pipeline was found,
increasing it from 0.907 (95% CI, 0.841 to 0.972) to
0.973 (95% CI, 0.937 to 1), while maintaining specificity
(0.999) (Table 3). This improvement allowed us to
identify all pathogenic variants (Supplemental Table S3),
but not two benign polymorphic PSVs with a VAF below
60% (Supplemental Figure S5). These variants were
ignored intentionally according to the decision-making
algorithm, and in agreement with their benign

classification, to reduce the number of LR-PCR confir-
mations needed.
In the analysis of 40 samples from the validation cohort,

the PMS2_vaR pipeline improved sensitivity significantly
from 0.853 (95% CI, 0.807 to 0.899) to 0.956 (95% CI,
0.930 to 0.983), in comparison with the routine diagnostic
pipeline (McNemar test; score Z 24; P Z 9.634 � 10e7).
Again, all pathogenic variants were identified (Table 3 and
Supplemental Table S3). As in the optimization cohort B,
there were variants (10 in this case) that were not called by
the PMS2_vaR pipeline (Supplemental Figure S5), and all

Table 4 Detailed Information of (Likely)-Pathogenic PMS2 Variants Identified by PMS2_vaR in HC Clinical Phenotype Cohorts

Group ID Variant Protein Location Personal phenotype

LS suspicion with exclusive PMS2
IHCe

1 c.312del p.(Phe104Leufs*8) E04 ENDO (54 y), CRC (67 y)
2 c.584C>A p.(Ser195*) E06 Sebaceoma

3 c.706-1G>T p.? I06 CRC (44 y)
4 c.1144þ2T>G p.? I10 CRC (73 y)

5 c.1687C>T p.(Arg563*) E11 ENDO (48 y)
Early onset CRC with IHC
conserved

Other LS suspicion criteria
(Amsterdam criteria or MMR
expression loss but not
exclusive of PMS2)

6 c.717_723dup p.(Phe242Hisfs*9) E07 CRC (49 y), BBC (51 y)

7 c.904-1G>A p.? I08 CRC (43 y)

8 c.988þ1G>A p.? I09 ENDO (62 y)

9 c.1145-1_1145del p.? I10eE11 CRC (68 y)
10 c.1882C>T p.(Arg628*) E11 CRC(44 y)
11 c.1239dup p.(Asp414Argfs*44) E11 CRC (37 y)

Other HC syndromes 12 c.137G>T p.Ser46Ile E02 OV (66 y)

13 c.137G>T p.Ser46Ile E02 BR (33 y)
14y c.989-2A>G p.? I09* PAN (68 y)
15y c.989-2A>G p.? I09 LG (18 y)

BR (43 y)

16 c.2341C>T p.(Gln781*) E14 BR (49 y), PAN (49 y)

(table continues)

Tumors that were not confirmed by medical reports have the suffix _nc (not confirmed). Cancer family history is broken down by first-degree relatives and
second- and third-degree relatives. Each bullet point refers to an individual.

yThese two individuals are family members.
BBC, basocellular carcinoma; BileDuc, bile duct cancer; BL, bladder cancer; BR, breast cancer; CNS, central nervous system; CRC, colorectal cancer; E, exon;

ENDO, endometrial cancer; FDR, first-degree relative; HC, hereditary cancer; I, intron; ID, identification; IHC, immunohistochemistry; KID, kidney cancer; LG,
lung cancer; LK, leukemia; LS, Lynch syndrome; MMR, mismatch repair; OV, ovarian cancer; PAN, pancreatic cancer; PV, pathogenic variant; SDR, second-degree
relative; STO, stomach cancer; TDR, third-degree relative; U, unknown.
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of them corresponded to polymorphic PSVs with a VAF
below 60%, classified as benign following Insight-ClinGen
MMR-specific guidelines.

Prevalence of PMS2 Pathogenic Variants in a
Hereditary Cancer Cohort

The implementation of the refined PMS2_vaR pipeline in
samples from a HC cohort of 5619 patients identified 16
samples harboring a putative (likely)-pathogenic PMS2
variant (0.285%) (Table 4). Subsequent (LR-)PCR analysis
confirmed a bona fide PMS2 variant in 15 of these 16 cases:

five patients harbored tumors showing exclusive PMS2 loss
with immunohistochemistry, five patients met other LS
suspicion criteria [four displayed tumor DNA mismatch
repair protein Msh6 (MSH6)/mismatch repair endonuclease
PMS2 (PMS2) loss and one exhibited DNA mismatch repair
protein Mlh1 (MLH1)/PMS2 loss], and five individuals
were tested for other HC suspicions (PMS2 expression was
later reported as heterogeneous in one ovarian tumor and
MMR expression was conserved in the remaining four
tumors) (Table 4).

Only variant c.904-1G>A in intron 8, found in a patient
with an unavailable tumor, was found to be pseudogenic (case

Table 4 (continued)

Family history of FDR
Family history of
SDR or TDR

MMR expression in
proband’s tumors Comments True variant? Prevalence

� BR (50 y), ENDO (55 y) No PMS2e BRCA2 PV carrier Yes 38.462% (5/13)
� OV (58 y), ENDO (58 y)
� PAN (56 y)

No PMS2e IHC conserved of the FDR
OV cancer

Yes

No No PMS2e Yes
� ENDO (46 y)
� PR (79 y)

� STO_nc (55 y) PMS2e Yes

No � LK_nc (3 y) PMS2e Yes
0% (0/16)

� ENDO (55 y) � CRC (U y)
� ENDO (75 y)

MSH6 and PMS2e Yes 0.627% (5/798)

� BR (61 y)
� BL (77 y)

� STO (54 y)
� CRC (58 y)
� CRC (83 y)
� CRC_nc (55 y)
� STO_nc (37 y)

U MMR conserved expression
in the SDR STO and CRC
(58 y) cancers

Pseudogenic

� BileDuc_nc (58 y) � ENDO_nc (40 y)
� CNS_nc (30 y)

MLH1 and PMS2e Yes

� ENDO (58 y)
� CRC (61 y)

No MSH6 and PMS2e Yes

No No MSH6 and PMS2e Yes
No � BR_nc (55 y)

� PAN_nc (55 y)
MSH6 heterogenous
expression and PMS2e

Yes

No � KID (44 y)
� BR (70 y)
� BR_nc (55 y)
� PAN_nc (63 y)
� CRC_nc (80 y)

PMS2 heterogenous
expression, MLH1
conserved

Yes 0.105% (5/4772)

No � CRC_nc (44 y) Conserved Yes
� BR (43 y) � CRC_nc (60 y) Conserved Yes
� BR (61 y), CRC (64 y)
� PAN (68 y)

� CRC _nc (66 y) Conserved (LG and BR) MMR conserved expression
in FDR CRC and PAN
tumors

Yes

� PR (77 y) � ENDO_nc (74 y) Conserved (PAN) BRCA2 germline PV carrier
(proband)

Yes
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7) (Table 4). Colorectal and stomach cancers of their relatives
showed preserved MMR protein expression. The alignment
of the region, assessedwith the Integrative Genomics Viewer,
showed that the variant was in cis with PSVs, supporting its
pseudogenic origin (Supplemental Figure S6).

Recurrent pseudogenic exon 13 variants, c.2186_2187del
and c.2243_2246del, were detected in 39 and 30 samples of
the HC cohort, respectively, at a VAF ranging from 12.28%
to 34.67% (Supplemental Table S4). None of them had
clinical criteria or tumor molecular characteristics suggest-
ing a PMS2 alteration, thus LR-PCR was not performed
according to the proposed algorithm.

Before implementing PMS2_vaR, 3 LR-PCRs and 15
short PCRs of PMS2 (Supplemental Figure S3) were con-
ducted on each sample exhibiting exclusive loss of PMS2 in
immunohistochemistry. Therefore, the analysis of the 13
PMS2-suspected samples of the HC cohort (Table 1)
resulted in 39 LR-PCR and 195 short PCRs. With the
implementation of PMS2_vaR, only five samples were
recommended for PCR analysis (two LR-PCRs and five
short PCRs), resulting in a reduction of 95% of LR-PCRs
and 99% of short PCRs.

Discussion

Gene panels are used widely for genetic testing purposes in
HC. However, they face challenges when detecting variants
in genes that share high homology with pseudogenes.8 LR-
PCR using primers outside the highly homologous regions
is the gold standard for discriminating these cases.7,15,16

Nonetheless, because of its complexity and high costs, it
becomes unfeasible as a screening tool in most clinical
contexts. In this work, PMS2_vaR was developed, a pipe-
line designed to address this clinical need in the mutational
analysis of the PMS2 gene. This open-source code uses data
already available as the output of a standard panel testing
analysis and requires the installation of a few commonly
used bioinformatic tools, making it easy to implement in
diagnostic pipelines. The pipeline identifies candidate PMS2
variants and classifies them according to the variant classi-
fication list provided. Only samples carrying putative
(likely) pathogenic PMS2 variants are recommended for
subsequent LR-PCR analysis.

Our results demonstrated substantial clinical improve-
ments, significantly increasing sensitivity for variant iden-
tification from 0.853 to 0.956 in the validation cohort while
preserving specificity. Notably, all pathogenic variants were
identified. PSVs were regarded as potential gene variants
only if their VAF was over 60%, reducing the number of
samples requiring confirmation by LR-PCR or cDNA
analysis. As an illustration, in the HC cohort, consisting of
5619 samples, the pipeline only recommended (LR-)PCR
analysis in 16 cases (0.28%), a number that can be handled
in a routine clinical setting. The implementation of
PMS2_vaR significantly reduced the number of required

PCR analyses, highlighting its efficiency within the diag-
nostic workflow. By selectively targeting candidate variants
identified by PMS2_vaR, this study was able to streamline
the analysis process, minimizing unnecessary PCR reactions
and conserving valuable resources. Moreover, this also ac-
celerates the diagnostic process, ultimately reducing the
turnaround times of the reports.
The selection of invariant positions to filter candidate

gene variants in exon 11 was based on the analysis of 707
patient samples.11 In rare cases, this method may lead to
erroneous variant assignments owing to gene
conversionerelated sequence exchange. Therefore, PMS2
gene variants potentially might be lost when following the
PMS2_vaR algorithm. To reduce this possibility, PMS2
(likely) pathogenic variants filtered out after the E11
approach should be confirmed by LR-PCR if tumor mo-
lecular characteristics are indicative of a PMS2 alteration. A
similar strategy is recommended for the recurrent pseudo-
genic c.2186_2187del and c.2243_2246del variants in
exon 13.
The integration of the PMS2_vaR pipeline into the daily

diagnostics routine may produce a notable clinical impact
by improving the identification of CMMRD and LS.
Because of the complexity of clinically diagnosing
CMMRD,4,5 an accurate and prompt diagnosis is essential
for genetic counseling, surveillance recommendations, as
well as therapeutic decisions.3 In contrast, the identification
of germline PMS2 monoallelic variant carriers is more
controversial because of its relatively lower penetrance
compared with the other MMR genes,2,26,27 although sig-
nificant phenotypic variability has been observed among
monoallelic carriers, even between individuals from the
same family.7,26,27 The use of effective screening tools for
accurate PMS2 variant detection will help in refining the
LS phenotype associated with germline alterations in this
gene.
MMR genes, including PMS2, are considered clinically

actionable because pathogenic variant identification has
high benefits for the patient and family in clinical practice.28

The American College of Medical Genetics proposed
reporting secondary incidental findings in these genes in
clinical exome and genome sequencing analyses.29 For
panel testing under HC suspicion, analysis of the MLH1,
MSH2, MSH6, BRCA1, and BRCA2 genes has been rec-
ommended as opportunistic testing in adult cancer patients,
regardless of the main clinical phenotype.23 Expanding this
framework to encompass PMS2 requires the availability of
optimized pipelines such as PMS2_vaR.
Nine of the 10 PMS2 pathogenic variant carriers iden-

tified in the LS suspicion cohorts harbored tumors dis-
playing isolated PMS2 or MSH6/PMS2 loss patterns,
highly indicative of PMS2 deficiency, as the main driver of
carcinogenesis. In contrast, in the HC cohort, four of the
five PMS2 carriers identified presented tumors showing
conserved MMR expression. Although an immunohisto-
chemistry test can yield false-negative results, especially
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for missense MMR variants,30 this also could agree with
recent findings describing that some individuals carrying
PMS2 pathogenic variants may develop MMR-proficient
tumors.31 Nevertheless, the prevalence of PMS2 patho-
genic variants was enriched in the HC cohort (0.285%)
compared with the estimated prevalence in the general
population (0.140%).1

As a limitation, the PMS2_vaR pipeline has not been
optimized to detect copy number variants in the PMS2 gene.
However, the assessment of copy number variant detection
tools tailored for panel data using the modified BAM files
obtained by PMS2_vaR represents a promising strategy for
the future. Of note, one of the major strengths of the
PMS2_vaR tool is that it can be adapted for PMS2 variant
calling in the analysis of NGS panels, exomes, and ge-
nomes. Moreover, there is potential for extension to other
genes in the same situation through necessary code adjust-
ments (eg, the PRSS1 gene in the context of HC gene
panels).

Conclusions

We have developed a pipeline to improve the accuracy of
PMS2 genetic testing by using standard NGS diagnostic
workflows. The results show that its use reduces the number
of samples that need to undergo LR-PCR and clearly
improves the identification of PMS2 variant carriers.
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Abstract

Germline copy number variants (CNVs) play a significant role in hereditary diseases. However, the accurate detection of CNVs from
targeted next-generation sequencing (NGS) gene panel data remains a challenging task. Several tools for calling CNVs within this
context have been published to date, but the available benchmarks suffer from limitations, including testing on simulated data, testing
on small datasets, and testing a small subset of published tools. In this work, we conducted a comprehensive benchmarking of 12
tools (Atlas-CNV, ClearCNV, ClinCNV, CNVkit, Cobalt, CODEX2, CoNVaDING, DECoN, ExomeDepth, GATK-gCNV, panelcn.MOPS, VisCap)
on four validated gene panel datasets using their default parameters. We also assessed the impact of modifying 107 tool parameters
and identified 13 parameter values that we suggest using to improve the tool F1 score. A total of 66 tool pair combinations were also
evaluated to produce better meta-callers. Furthermore, we developed CNVbenchmarker2, a framework to help users perform their own
evaluations. Our results indicated that in terms of F1 score, ClinCNV and GATK-gCNV were the best CNV callers. Regarding sensitivity,
GATK-gCNV also exhibited particularly high performance. The results presented here provide an evaluation of the current state of the
art in germline CNV detection from gene panel data and can be used as a reference resource when using any of the tools.
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Introduction
Copy number variants (CNVs) are structural genomic alterations
that involve an abnormal number of copies of a DNA segment,
resulting in both deletions and duplications. They are a type of
structural variation caused by genomic rearrangements, vary-
ing in size from 50 bp to several megabases [1, 2]. CNVs are a
major source of genomic variation in humans [3]. They affect
various biological processes, including evolution, adaptation, and
the development and predisposition to diseases such as autism,
obesity, and cancer [4–6]. Once a CNV is identified, its clinical
significance can be determined, and medical management and
prevention measures can be implemented. Their detection is
therefore crucial in clinical diagnostics [7].

Several methods to detect CNVs have been developed in recent
decades.Thesemethods include Polymerase chain reaction-based
methods such as multiplex ligation–dependent probe amplifi-
cation (MLPA), array-based technologies like microarray-based
comparative genomic hybridization (aCGH) or SNP microarrays,
massive parallel sequencing, fluorescence in situ hybridization
(FISH), or Southern blotting. From the above list, MLPA, aCGH,
and SNP microarrays are frequently used in diagnostic routines,
being MLPA the most common approach for testing one or a
few genes [8, 9]. However, these methods are still expensive,
time-consuming, and have gene-specific limitations. For example,
MLPA relies on single-gene approaches,while aCGH’s sensitivity is
restricted to sequences within the array’s design assembly [2].

The arrival of next-generation sequencing (NGS) has trans-
formed genetic testing by allowing millions of fragments to be
sequenced simultaneously [10]. Diagnostic laboratories are using
NGS methods to identify multiple types of variation, including
CNVs. In diagnostic settings, where laboratories handle a large
number of samples, targeted gene panels have emerged as a
common and cost-effective approach.

Many bioinformatic tools have been published to identify
germline CNVs from NGS data. While most of these tools are
reliable for detecting large CNVs, they often struggle to detect
small CNVs, especially those spanning a single exon. Furthermore,

most tools are not optimized for calling CNVs from targeted
gene panel data, as they were originally developed for use
with whole-genome or whole-exome data. Beyond addressing
these challenges, tools must demonstrate high sensitivity and
specificity in diagnostic settings [9]. Therefore, it is crucial to
accurately measure tool performance on gene panel data.

Previous studies have evaluated the performance of germline
CNV callers on gene panel data. However, these studies suffer
from some limitations. Most of them were performed by the tool
authors, covered a small subset of currently available tools, and
were evaluated on a single dataset [11–15]. To our knowledge,
three benchmarks have been published to date by authors who
did not evaluate their own tool [16–18]. However, two of them
have similar limitations: Roca et al. evaluated mainly on sim-
ulated data with only a small number of validated CNVs, and
Lepkes et al. benchmarked four tools on a single dataset where
MLPA tests were performed only for CNV calling confirmation.
The limitations were partially addressed in our previous work,
which evaluated five tools on four real datasets with MLPA results
available prior to tool execution [17]. However, our previous work
only covered a subset of the tools published until 2018. Moreover,
several new tools have been published since 2018, so our previous
benchmark provides an incomplete assessment of the current
state of the art. Here, we aim to provide a wider, comprehensive,
and up-to-date evaluation of germline CNV detection tools on
gene panel data by benchmarking 12 tools on four real and
publicly available datasets, evaluating the impact of modifying
107 tool parameters and combining tool pairs.

Material and methods
Datasets
We defined the criteria for including datasets in the benchmark.
These requirements comprised being obtained from gene panel
sequencing, having MLPA results before in silico calling, including
germline single-exon CNVs, and being publicly available. To the
best of our knowledge, only four datasets met the requirements
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as of April 2024, namely, the ICR96 exon CNV validation series
(96 samples) [19], a subset of the data used in the panelcn.MOPS
publication referred to as panelcnDataset (161 samples) [13],
and two in-house datasets (130 and 108 samples sequenced in
Illumina MiSeq and HiSeq platforms, respectively) [17]. Table 1
provides further details of the datasets used in this work. All
datasets were obtained from hybridization-based capture panels
designed for hereditary cancer diagnostics: the TruSight Cancer
Panel (Illumina, San Diego, CA) and the ICO-IMPPC Hereditary
Cancer Panel (I2HCP) [20]. The bed file defining the regions of
interest (ROIs) for the ICR96 and panelcnDataset datasets can be
found in Supplementary Table 1,whereas the one for the in-house
datasets is in Supplementary Table 2. Datasets contain single and
multi-exon CNVs detected in diagnostic routine through MLPA
testing. Negative MLPA results, indicating unaffected genes, are
also available. MLPA results for each dataset can be found in
Supplementary Table 3.

Sample alignment was performed using Burrows-Wheeler
Aligner (BWA) mem v0.7.17 to the GRCh37 human genome
assembly [21, 22] We then used SAMtools v1.16.1 [21] to sort
and index Binary Alignment Map (BAM) files and Picard v2.27.4 to
include read group information. No further processing or filtering
was applied to the BAM files.

Copy number variant detection tools
The selection of detection tools was based on multiple criteria.
Specifically, they must be publicly available, capable of calling
germline CNVs at the exon level, designed to work with gene
panel data, and not purposely built only for amplicon-based
sequencing data. Following the completion of the literature review
in December 2023, 12 tools were selected according to these
criteria (Table 2): clearCNV v0.306 [23], GATK-gCNV v4.5.0 [24],
Atlas-CNV v.0 [15], Cobalt v0.8.0 [25], ClinCNV v1.18.3 [26], CNVkit
v0.9.10 [27], VisCap v0.8 [28], DeCoN v2.0.1 [29], panelcn.MOPS
v1.20.0 [13], ExomeDepth v1.1.16 [30], CoNVaDING v1.2.1 [11], and
CODEX2 v1.3.0 [31]. The latter five were evaluated in our previous
work, but we included them here to facilitate tool comparison
and to evaluate the most updated versions. Nine germline CNV
detection tools were considered for inclusion in this work butwere
later discarded for multiple reasons: SeqCNV, CNVPanelizer, CNV-
Z, ifCNV, SavvyCNV, CCR-CNV, Hadoop-CNV-RF, PattRec, and the
pipeline used by Singh et al. [9] Supplementary Table 4 provides a
list of discarded callers and the reason for their exclusion.

Benchmark evaluation metrics
The performance of each tool was evaluated at two levels: per ROI
and per gene. Detailed definitions of both levels can be found in
Supplementary File 1.

For each tool, across all dataset and evaluation levels, a range
of performance metrics were computed, including sensitivity,
specificity, positive predictive value, negative predictive value,
false negative rate, false positive rate, F1 score, accuracy,
Matthews correlation coefficient, and Cohen’s kappa coefficient
(Supplementary File 1). We also measured tool run times on the
ICR96 dataset using a workstation with 24 GB random access
memory (RAM) and 1 central processing unit (CPU) per job.

Benchmark execution
We implemented CNVbenchmarkeR2, an R framework that
enables the automatic and flexible benchmarking of CNV callers.
Code and documentation are available at https://github.com/
jpuntomarcos/CNVbenchmarkeR2, so other users can benefit Ta
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from it to benchmark the tools against their own datasets. We
used CNVbenchmarkeR2 to run each tool on each dataset using
the default parameters specified in the tool documentation.

The CNVbenchmarkeR2 code shows the steps performed
to run each tool. In the case of GATK-gCNV, we followed the
guide published by GATK (https://gatk.broadinstitute.org/hc/
en-us/articles/360035531152--How-to-Call-rare-germline-copy-
number-variants) to call rare germline variants, including the
AnnotateIntervals and FilterIntervals steps, both recommended
in the guide. However, since these steps are described as optional
in the guide and users may ignore their impact on performance,
we benchmarked two additional workflows to compare themwith
the final one. Thus, we benchmarked: (i) the complete workflow
(GATK-gCNV) including both AnnotateIntervals and FilterIn-
tervals steps, (ii) a workflow excluding AnnotateIntervals and
FilterIntervals steps (GATK-gCNV_no_AI_FI), and (iii) a workflow
excluding the AnnotateIntervals step (GATK-gCNV_no_AI), which
is the default approach in the GATK germline cohort workflow
description language pipeline.

Parameter evaluation
All tools evaluated in this benchmark have adjustable param-
eters. However, in most cases, neither the tool documentation
nor any other source is clear about the impact on tool per-
formance when these parameters are changed. To address this
issue, we systematically evaluated tool parameters by testing
them over a wide range of values on all datasets. For numer-
ical parameters, we tested 15 parameter values, including the
default one. For categorical parameters, we tested all available
options in the tool. We computed the metrics described in the
Benchmark Evaluation Metrics section for all executions.

For numerical parameters, we also obtained the optimal range
as follows: (i) for each dataset, we identified the parameter value
that maximized the F1 score at the ROI level; (ii) The optimal
range is defined by the lowest and highest parameter values
obtained from the previous step. We used the optimal range to
identify parameters where the optimal range is completely below
or above the default parameter value. For these parameters, we
also determined the suggested parameter value to use, which we
defined as the value of the optimal range that is closest to the
default value.

Combination of tool pairs
We assessed the impact of tool pair unions and intersections on
performance and ascertained whether any pair was capable of
detecting all CNVs. All 66 possible tool pairs were evaluated by
combining the results obtained separately when using the default
parameters on the four datasets included in this work. Both per
ROI and per gene metrics were generated. The R package Genom-
icRanges v1.48.0 was used to calculate the union and intersection
of tool calls.

Results
Benchmark with default parameters
The tools were run on every dataset using default parameters.
Evaluationmetrics were then calculated at two levels: per ROI and
per gene (see Material and Methods section for details).

Per ROI metrics allow us to assess tool performance at single-
exon resolution (Fig. 1, Supplementary Table 5). Regarding the
F1 score, a common measure of binary classifier accuracy,
tool performance varied widely across datasets, ranging from
0.42 (CNVkit in ICR96) to 0.98 (GATK-gCNV in panelcnDataset).

Interestingly, GATK-gCNV and ClinCNV were the only tools to
consistently score in the top five for each dataset, with values
between 0.78 and 0.98. On the other hand, all tools were highly
specific, achieving values over 0.94 in all tool–dataset runs. In
terms of sensitivity, we observed more variability, with tools
ranging from 0.43 to 0.99. For both the ICR96 and panelcnDataset
datasets, all tools except Atlas-CNV and VisCap achieved a
sensitivity >0.90. CNVkit exceeded this threshold as well, but
only for the ICR96 dataset. However, in the in-house datasets,
only ClinCNV, CODEX2, GATK-gCNV, and CoNVaDING achieved
sensitivity values >0.90. Supplementary Figure 1 shows per ROI
results sorted by sensitivity to facilitate the analysis.

Figure 2 and Supplementary Table 5 show benchmark results
at the gene level, which are particularly relevant in diagnostic set-
tings. Regarding sensitivity, a metric commonly used in diagnos-
tics to assess the classifier’s ability to detect positives, some tools
demonstrated high performance. In particular, GATK, CoNVaD-
ING, DECoN, and CODEX2 obtained values >0.93 for each dataset.
CoNVaDING showed very high performance in detecting positives:
it missed only 3 out of 231 positives across all datasets. GATK-
gCNV, DECoN, and CODEX2 missed more positives in total (7, 11,
and 12, respectively) but generated fewer false positives (FPs; 27,
62, and 93, respectively) compared to CoNVaDING (150 FPs). On
the other hand, ClearCNV and Cobalt were the callers that missed
most of the positives: 65 and 61, respectively. Supplementary Fig-
ure 2 shows the per gene results sorted by sensitivity. In terms of
F1 score, tools showed again large differences with values ranging
from 0.26 to 0.98. GATK-gCNV exhibited the highest performance
based on this metric: only DECoN surpassed it in the InHouse
HiSeq dataset.

Supplementary File 1 shows tool run times obtained in a work-
station with 24 GB RAM and 1 CPU per job. The benchmarked
tools required a median of 53 minutes to perform CNV calling on
the ICR96 dataset. ClinCNV and CODEX2 were the fastest tools,
completing the task in 13 and 14minutes, respectively. In contrast,
Atlas-CNV, CNVkit and VisCap were the most time-consuming
tools, requiring 147, 148 and 192 minutes, respectively.

GATK-gCNV workflows
The GATK-gCNV results presented in this work were obtained
including the AnnotateIntervals and FilterIntervals steps. How-
ever, to better understand the effect of including these steps,
two additional workflows were benchmarked (see Methods).
Supplementary File 1 shows that certain metrics exhibited
considerable variability across workflows. With regard to per
ROI metrics, the workflows including the FilterIntervals step
demonstrated higher sensitivity across all datasets in comparison
to the GATK-gCNV_no_AI_FI workflow, with increases ranging
from 0.01 to 0.09. The enhancement was even more pronounced
in per gene metrics. In particular, the workflows including
the FilterIntervals step demonstrated superior performance
compared to GATK-gCNV_no_AI_FI, with gains ranging from 0.03
to 0.30. Furthermore, these two workflows exhibited notable
F1 score improvement at the gene level, with values increasing
between 0.01 and 0.22.

When comparing both workflows that include the FilterInter-
val step, GATK-gCNV and GATK-gCNV_no_AI, neither tool demon-
strated a clear advantage in terms of sensitivity, specificity, or F1
score across all datasets.

Parameter evaluation
We systematically varied each tool parameter over a broad
range of values to assess its impact on tool performance (see
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6 | Munté et al.

Figure 1. Benchmark results at the ROI level. The tools were run using default parameters and are listed in descending order based on their F1 score in
each dataset. (FN, false negative; FP, false positive; F1, F1 score).

Material and Methods). A total of 6110 executionswere conducted
to evaluate 107 tool parameters across all datasets. All results are
presented in Supplementary Table 6. Additionally, 436 figures
containing sensitivity, specificity, and F1 score at the ROI and
gene level were also generated and are available at https://doi.
org/10.6084/m9.figshare.25930960. Tool users can utilize these
results as a guide to understand the expected effect when
modifying each parameter.

Modifying each parameter had a different effect on tool perfor-
mance. We identified four main patterns of performance change:
(i) no discernible effect on the tool performance, resulting in
flat curves (e.g. DECoN mincorr parameter); (ii) Increase in sen-
sitivity and decrease in specificity or vice versa (e.g. CODEX2
cn_del_threshold parameter); (iii) sensitivity or specificity exhibit-
ing a bell-shaped behavior (e.g. ClearCNV zscale parameter); (iv)
performance changes without a distinct pattern, often showing
successive increases and decreases in sensitivity (e.g. ClearCNV
sample_score_factor parameter).

At the ROI level, we also determined the optimal range for
each numerical parameter and identified 13 parameters where
the optimal range was completely below or above the default
parameter value (Table 3). In such cases, adjusting the default
parameter value in one direction, increasing or decreasing it,
results in a higher F1 score at the ROI level across all datasets.
We therefore identified the suggested parameter value to use as
the one within the optimal range closest to the default value.

Combination of tool pairs
We evaluated all 66 combinations of tool pairs using their
parameters set to default (Supplementary Table 7). The union

of calls from tool pairs resulted in better sensitivity albeit at the
expense of a lower specificity. From an ROI-level perspective,
no combination of tools achieved a sensitivity of 1. As per
gene level results, five tool pairs achieved the maximum
sensitivity across all datasets (Supplementary File 1): Atlas-
CNV/CoNVaDING, CODEX2/CoNVaDING, CNVkit/CoNVaDING,
panelcn.MOPS/CoNVaDING, and DECoN/CODEX2. Among these
pairs, the union of CNVkit and CoNVaDING yielded the lowest
specificity in most datasets, with values between 0.65 and
0.84. The other pairs did not show large differences between
them and achieved values ranging from 0.78 to 0.97 across
datasets.

In contrast, intersecting tool calls increased specificity at the
expense of a lower sensitivity. No tool pair achieved perfect
specificity across all datasets. However, the intersection of
CODEX2/GATK-gCNV and CODEX2/DECoN identified all true
CNVs in the panelcnDataset dataset at the gene level, without
generating FPs.

Discussion
The published benchmarks of germline CNV callers for gene panel
data suffer from certain limitations. These limitations include
evaluating mainly simulated data, evaluating small datasets, or
testing only a small subset of published tools [16–18]. Here, we
conducted a comprehensive benchmark of 12 tools on four pub-
licly available datasets, using tool default parameters, assess-
ing the impact of changing tool parameter values, and eval-
uating the combination of tool pairs to produce better meta-
callers.
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Figure 2. Benchmark results at the gene level. The tools were run using default parameters and are listed in descending order based on their F1 score in
each dataset. The F1 scores for CNVkit on ICR96 and panelcnDataset, which were not included in the presented figure, are 0.26 and 0.35, respectively.
(FN, false negative; FP, false positive; F1, F1 score).

Table 3. Suggested parameter values. Suggested parameter values to be used for improving the F1 score at the ROI level. The suggested
value is the value within the optimal range closest to the default value. The mean F1 increase is calculated as the difference between
the mean of the F1 scores obtained across datasets using the default value and the mean of the F1 scores obtained across datasets
using the suggested value.

Tool Parameter Default value Optimal range Suggested value Mean F1 increase

Atlas-CNV threshold_dup 0.4 [0.44–0.6] 0.44 0.0040 (+0.76%)
ClearCNV trans_prob 0.001 [0.0015–0.02] 0.0015 0.0006 (+0.07%)
ClinCNV scoreG 20 [25–50] 25 0.0126 (+1.43%)
CNVkit alpha (segmetrics) 0.05 [0.0001–0.04] 0.04 0.0006 (+0.09%)
CNVkit drop-outliers 10 [1–4] 4 0.0080 (+1.26%)
Cobalt high-depth-trim-frac 0.01 [0.025–0.1] 0.025 0.0033 (+0.50%)
Cobalt var-cutoff 0.9 [0.91–0.99] 0.91 0.0053 (+0.81%)
CODEX2 cn_del_threshold 1.7 [1.3–1.67] 1.67 0.0172 (+2.14%)
CODEX2 cn_dup_threshold 2.3 [2.5–2.8] 2.5 0.0352 (+4.38%)
CODEX2 gc_thresh_down 20 [30–40] 30 0.0018 (+0.22%)
CoNVaDING ratioCutOffLow 0.65 [0.5–0.6] 0.6 0.0168 (+2.28%)
panelcn.MOPS CN3 1.46 [1.6–1.7] 1.6 0.0173 (+2,41%)
panelcn.MOPS corrThresh 0.99 [0.5–0.985] 0.985 0.0017 (+0,24%)

Benchmark with default parameters
Several approaches can be used to measure tool performance.We
have benchmarked tools using two levels of resolution, ROI and
gene level, and several metrics such as F1 score, sensitivity, or
specificity. These approaches facilitate the analysis of which tools
aremore suitable in each context. If we focus on the overall perfor-
mance of the tool, the F1 score is a commonmetric used to evalu-
ate the performance of binary classifiers. Based on this metric, we

highlight GATK-gCNV and ClinCNV, which showed outstanding
performance at the ROI level, with GATK-gCNV demonstrating
superior performance at the gene level. Therefore, we suggest
using ClinCNV and GATK-gCNV when the priority is to maximize
the overall performance according to the F1 score and especially
the latter when the focus is on the gene level. It is noteworthy
that ClinCNV was also the fastest tool, requiring only 13 min to
call CNVs. While run time is not typically the primary factor in
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selecting a calling tool, it may be advantageous in settings where
computational resources are limited or results must be delivered
as quickly as possible.

On the other hand, sensitivity is a key metric in diagnostic
settings, where the aim is usually to minimize the number of
FNs. Also, in genetic diagnostics it is frequently useful to focus
on the gene level because, if at least one exon from the CNV is
detected, a subsequent MLPA test could be performed to confirm
the CNV [17]. Focusing on the sensitivity and the per genemetrics,
CoNVaDING, GATK-gCNV, CODEX2, and DECoN were among the
best five in all datasets. Although we highlight the power of
CoNVaDING to detect positives, with only three FNs across all
datasets, it also produced a high number of FPs. In contrast, GATK-
gCNV demonstrated high sensitivity and high specificity at the
same time, whichmakes it a valuable candidate for use in genetic
diagnostics. In any case, the aforementioned tools produced a
relevant number of FPs. Since most diagnostic units validate
CNV calls using orthogonal methods, the number of FPs should
be taken into consideration to ensure the cost-effectiveness of
diagnostic routines. On the opposite side, the highest rates of
FNs were obtained by ClearCNV and Cobalt. This suggests that,
when their default parameters are used, these tools may not
be appropriate solutions for calling CNVs in genetic diagnostic
settings from NGS panel data.

No previous work has evaluated the sensitivity and specificity
of the two most highlighted tools discussed here, GATK-gCNV
and ClinCNV, on gene panel data. Demidov et al. evaluated the
performance of ClinCNV on WGS and WES data in their ClinCNV
publication and only compared it with ExomeDepth and DELLY
[26]. In the GATK-gCNV publication, the authors demonstrated
that GATK-gCNV was capable of achieving 95% sensitivity in
detecting CNVs of two or more exons [24]. However, GATK-gCNV
was run on WES data, and the methodology differed from that
used in the work presented here. Lepkes et al. included GATK-
gCNV in their benchmark on gene panel data, but MLPA tests
were performed after the benchmark execution, preventing the
calculation of sensitivity and specificity [16].

GATK-gCNV workflows
The GATK guide to call rare germline CNVs includes two
optional steps: AnnotateIntervals and FilterIntervals. To gain
a deeper understanding of the effect of including them, we
evaluated alternative GATK-gCNV workflows as detailed in
Materials and Methods. Interestingly, the inclusion of the Fil-
terIntervals step had a relevant impact on the performance:
the workflows incorporating the FilterIntervals step clearly
outperformed the one that excluded it. We consequently
recommend including this step for the detection of rare germline
CNVs from gene panel data. The GATK guide describes this
step as optional but recommended, which may lead some users
to overlook this step despite its impact on performance. We
believe that the results observed here will encourage users to
include the FilterIntervals step in their workflows. On the other
hand, the inclusion of the AnnotateIntervals step, which entails
explicit guanine and cytosine (GC)-content-based filtering, did
not result in a discernible improvement in performance across all
datasets. The GATK guide also described this step as optional but
recommended, so we suggest users to further validate its effect
on their own datasets.

Parameter evaluation
The available documentation on the effect of each parameter on
tool performance is often scarce or nonexistent. Deciding which

parameter to modify and how to tune it may be particularly
challenging when a tool provides dozens of parameters, as is
the case with GATK-gCNV. To address these issues, we repeated
benchmark executions, modifying each parameter individually
over a range of values. We generated 436 figures that can be used
as reference guidance for research and diagnostic laboratories
that are currently using or planning to use any of the tools in
their settings. These results should help users to better under-
stand the contribution of each parameter on tool performance,
prevent them from inadvertently overlooking the most relevant
parameters, and facilitate fine-tuning of tool parameters.

Parameters affected performance in multiple ways, and we
grouped these changes into four main patterns. Some parameters
had no effect on performance and should not be considered when
trying to enhance tool performance. Other parameters resulted in
the typical trade-off of binary classifiers: an increase in sensitivity
leads to a decrease in specificity or vice versa. We recommend
modifying this type of parameters to adjust the balance between
sensitivity and specificity.Other parameters showed a bell-shaped
behavior in sensitivity or specificity, suggesting that the tool per-
formance could be optimized around a certain value. Finally, other
parameters affected tool performance without a clear pattern,
often with successive increases and decreases in sensitivity. We
suggest modifying these parameters with caution as the observed
variability makes it difficult to predict their impact on perfor-
mance.

It is noteworthy that for certain parameters, the highest F1
scores across all datasets were observed on one side of the
default parameter, either below or above it. Thus, we were able to
identify the optimal range for 13 parameters, wherein the tools
demonstrated superior performance compared to the default
parameters. One possible explanation for this finding is that the
tools were developed for specific datasets, which may restrict
their applicability to other datasets, such as those used in this
manuscript. Also, the authors may have optimized their tools
based on performance metrics other than the F1 score. Anyway,
while any value within this range could potentially improve the
F1 score, the parameter value we suggested was the closest to the
default value. Since it is the closest to the value set by the authors,
we understand that this is the most conservative approach.

Using the suggested parameter values resulted in different F1
score increases. Although some yielded modest F1 score incre-
ments, such as the trans_prob and alpha parameters, others pro-
duced notable F1 score changes.Modifying the cn_dup_threshold,
CN3, ratioCutOffLow, and cn_del_threshold parameters resulted
in an average F1 increase of >2%. In any case, all suggested
parameter values represent an opportunity to enhance the overall
performance of the tools, and we recommend tool users to try
them on their own datasets for further validation.

Combination of tool pairs
A common approach in bioinformatics is to join or intersect the
results obtained by variant callers separately to produce new
meta-callers [32–34]. In this work, no tool was capable of detecting
all CNVs at the ROI or gene level with their default parameters.We
therefore assessed the effect of tool unions and intersections on
performance to determine if any meta-caller could achieve 100%
sensitivity.

Although no union of tools detected all true positive ROIs in
the per ROI results, five tool pairs did so at the gene level. These
pairsmay be employed in diagnostic scenarios where no true CNV
should be overlooked. Indeed, if a CNV caller or meta-caller is
capable of detecting all CNVs, it can be used as a screening step
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prior to an orthogonal method validation, such as MLPA [35]. This
approach has the potential to enhance the mutation detection
yield and reduce costs in genetic testing for hereditary cancer
[17]. In any case, we observed that the five tool pairs obtained
largely different specificity values across the datasets. We hence
encourage diagnostic units to conduct a thorough evaluation of
their performance on their own in-house datasets.

Limitations
The results presented in this work have some limitations to note.
First, the datasets used have an unusually high frequency of rare
CNVs compared to the general population, where CNV frequency
is expected to be considerably lower [36]. It would be of interest
to assess the performance of the tools on datasets that would
more accurately reflect the incidence of CNVs in the general
population. Anyway, the datasets used in this benchmark provide
a challenging scenario for the evaluation of the tools. Second,
regarding the combination of tool pairs and the identification
of suggested parameter values, we did not divide the datasets
into training and validation subsets to assess whether the tool
performance observed in a training subset was confirmed in a
validation dataset. Hence, we recommend users to evaluate how
tool pairs and suggested parameter values behave on their own
datasets. Finally, we only evaluated combinations of tool pairs,
leaving open the question of whether a combination of three or
more tools could lead to a better meta-caller.

Conclusion
Here, we conducted a comprehensive evaluation of the current
state of the art in germline CNV detection from gene panel data.
Although the identification of CNVs remains challenging, our
results indicate that certain tools can achieve very high perfor-
mance. In terms of F1 score, ClinCNV and GATK-gCNV demon-
strated superior calling performance compared to the other tools,
with GATK-gCNV exhibiting high effectiveness in identifying true
positives. The benchmark results, parameter evaluation, combi-
nation of tool pairs, and the CNVbenchmarkeR2 framework that
we developed can serve as a valuable guide to research and
diagnostic teams facing the task of detecting germline CNVs from
gene panel data.

Key Points

• Comprehensive evaluation of 12 copy number variation
callers on four real-validated datasets.

• ClinCNV and GATK-gCNV excelled, with GATK-gCNV
achieving superior sensitivity.

• Assessment of the effect of modifying 107 tool parame-
ters: 436 figures are publicly available.

• CNVbenchmarker2 enables users to conduct their own
tool evaluations.
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Abstract

Motivation: Germline variant classification allows accurate genetic diagnosis and risk assessment. However, it is a
tedious iterative process integrating information from several sources and types of evidence. It should follow gene-
specific (if available) or general updated international guidelines. Thus, it is the main burden of the incorporation of
next-generation sequencing into the clinical setting.

Results: We created the vaRiants in HC (vaRHC) R package to assist the process of variant classification in hereditary
cancer by: (i) collecting information from diverse databases; (ii) assigning or denying different types of evidence
according to updated American College of Molecular Genetics and Genomics/Association of Molecular Pathologist
gene-specific criteria for ATM, CDH1, CHEK2, MLH1, MSH2, MSH6, PMS2, PTEN, and TP53 and general criteria for
other genes; (iii) providing an automated classification of variants using a Bayesian metastructure and considering
CanVIG-UK recommendations; and (iv) optionally printing the output to an .xlsx file. A validation using 659 classified
variants demonstrated the robustness of vaRHC, presenting a better criteria assignment than Cancer SIGVAR, an
available similar tool.

Availability and implementation: The source code can be consulted in the GitHub repository (https://github.com/
emunte/vaRHC) Additionally, it will be submitted to CRAN soon.

1 Introduction

Cancer is a main public health problem and a leading cause of death
(Siegel et al. 2022). Around 5%–10% of cancers worldwide are attrib-
utable to hereditary cancer (HC) syndromes (Nagy et al. 2004). HC
patients harbour pathogenic germline variant(s) in cancer predispos-
ition genes making them prone to develop multiple primary cancers at
younger ages. Early identification of these individuals allows us to per-
sonalize their risk assessment, adapt their clinical follow-up, provide
some targeted therapies, and offer cascade testing to relatives.

The use of next-generation sequencing (NGS) in diagnostics
expands the number of genes analysed in a single test, increasing the
diagnostic yield (Tung et al. 2016) but also the identification of var-
iants of unknown significance (Lumish et al. 2017; Feliubadaló et al.
2019). Accurate variant classification is a huge challenge and a main
burden of the incorporation of NGS into the clinical setting; only a cor-
rect classification allows proper genetic diagnosis and personalized risk
assessment. Nowadays, variant classification is a time-consuming pro-
cess that combines different type of evidence such as variant conse-
quence, population frequencies, functional assays, in silico predictors,
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and co-segregation studies. Moreover, it is iterative due to continuous
information updates and guideline refinement, enforcing periodic
revisions of variant classification.

In 2015, the American College of Molecular Genetics and
Genomics (ACMG) with the Association of Molecular Pathologists
(AMP) published generic guidelines to standardize and provide an ob-
jective framework for evaluating variant pathogenicity in Mendelian
disorders (Richards et al. 2015). However, some criteria proposed
were qualitative and indefinite, allowing discrepancies in variant inter-
pretation between laboratories (Amendola et al. 2016). Later, specific
guidelines were published for some genes by collaborative groups or
expert panels like Clinical Genome Resource (ClinGen) to adjust vari-
ant classification to gene and disease particularities (https://clinicalge
nome.org/; accessed November 2022). Moreover, it was demonstrated
that the criteria combination in ACMG/AMP guidelines was compat-
ible with a quantitative Bayesian formulation (Tavtigian et al. 2018),
which was later abstracted to a naturally scaled point system
(Tavtigian et al. 2020). Additionally, CanVIG-UK consensus recom-
mendations proposed some limitations to overlapping criterion combi-
nations to avoid double counting of evidence (Garrett et al. 2021,
https://www.cangene-canvaruk.org/_files/ugd/ed948a_f64f11f58e6445
21bc88f0b4ef1f5d01.pdf; accessed November 2022).

Different programmes have been developed to automatize variant
classification by integrating different types of information. Most tools
are based on ACMG/AMP general rules, like InterVar (Li and Wang
2017), PathoMAN (Joseph et al. 2017; Ravichandran et al. 2019),
ClinGen Pathogenicity Calculator (Patel et al. 2017), CharGer (Scott
et al. 2019), Varsome (Kopanos et al. 2019), or Franklin (https://frank
lin.genoox.com). Other tools focus on a set of genes like
CardioClassifier (Whiffin et al. 2018) and CardioVai (Nicora et al.
2018) for inherited cardiac conditions or Cancer Predisposition
Sequencing Reporter (CPSR) (Nakken et al. 2021) and Cancer-
SIGVAR (Li et al. 2021) for cancer predisposition genes. CPSR uses
SherLoc algorithm (Nykamp et al. 2017) that provided several refine-
ments to the original guidelines. Cancer-SIGVAR uses a ClinGen up-
date of ACMG/AMP guidelines (Abou Tayoun et al. 2018), considers
ClinGen’s specific guidelines for PTEN (Mester et al. 2018), CDH1
(Lee et al. 2018), RASopathies (Gelb et al. 2018), RUNX1 (Luo et al.
2019) and hearing loss (Oza et al. 2018), and other sources (https://
www.acgs.uk.com/media/11285/uk-practice-guidelines-for-vari
ant-classification-2019-v1-0-3.pdf). However, specific guidelines
or recommendations have been published for other HC genes like
ATM (https://www.clinicalgenome.org/site/assets/files/7451/clingen_hbop_
acmg_specifications_atm_v1_1.pdf; accessed November 2022), CHEK2
(Vargas-Parra et al. 2020), TP53 (Fortuno et al. 2021), and mismatch re-
pair genes (MMRs) (https://www.insight-group.org/content/uploads/
2021/11/DRAFT_Nov_2021_TEMPLATE_SVI.ACMG_Specifications_
InSiGHT_MMR_V1.pdf; accessed November 2022). A deeper com-
parative of the above-mentioned tools can be found in Supplementary
Table S1. Although automated tools aid the variant interpretation jour-
ney, the curator is still needed for proper integration of some clinical,
genetic, functional, and literature information. Therefore, not all crite-
ria can be fully automated.

Here, we introduce vaRiants in HC (vaRHC), an R package devel-
oped to automate, as far as possible, the variant classification process for
HC genes. The Catalan Institute of Oncology is a monographic cancer
centre, and our diagnostics laboratory is dedicated to HC testing.
Accordingly, we aimed to increase accuracy in variant classification by
automated collection and combination of data, and assignation of sev-
eral criteria according to gene-specific guidelines for ATM, CDH1,
CHEK2, MLH1, MSH2, MSH6, PMS2, PTEN and TP53, and the
updated general ACMG/AMP rules for other cancer susceptibility genes.

2 Materials and methods

2.1 vaRHC package
The vaRHC package was conceived for the statistical computing en-
vironment R (v4.1.2), using functions from both R/Bioconductor
and CRAN packages (more details in https://github.com/emunte/
vaRHC).

2.2 Criteria analysis
ACMG/AMP original guidelines proposed 28 different criteria to
evaluate pathogenicity or benignity. Not all criteria have the same
strength: pathogenic criteria can be very strong (PVS1), strong (PS1–
PS4), moderate (PM1–PM6), or supporting (PP1–PP5), whereas be-
nign criteria can be standalone (BA1), strong (BS1–BS4), or support-
ing (BP1–BP7) (Richards et al. 2015). ClinGen later further specified
these criteria. For instance, a decision-tree algorithm was developed
to adapt PVS1 strength according to type and position of loss of
function (LoF) variants (Abou Tayoun et al. 2018). PP5 and BP6 cri-
teria, relying on reputable source classification without access to pri-
mary data, could lead to errors and double counting and were
removed (Biesecker and Harrison 2018). Hence, many of the 28 cri-
teria were changed, deleted, or extended to different weights de-
pending on the gene.

Individual analysis of the criteria was performed to determine
which could be fully automated, partially automated (requiring
manual curation), not automatable, and which do not apply to some
or all HC genes. General and gene-specific criteria used by vaRHC
and their combinations are detailed in Supplementary Tables S2 and
S3, respectively.

2.3 Criteria combination for variant classification
Tavtigian et al.’s (2020) naturally scaled point system was used to
calculate the final classification of variants. In this approach, each
pathogenic criterion achieving supporting, moderate, strong, or very
strong strength sums 1, 2, 4, or 8 points, respectively, to the final
score, and each criterion in favour of benignity subtracts these same
values. The final score determines the classification of the variant
(�10: pathogenic; 6–9: likely pathogenic; 5–0: unknown
significance; (�1)–(�5): likely benign; and ��6: benign).

2.4 Information retrieval and database
vaRHC leverages several existing databases and programmes. Due to
their different conception and implementation, the information is
retrieved from those sources in real time or queried in a local relational
database implemented with MySQL (8.0.28-0ubuntu0.20.04.3 for
Linux on x86_64).

2.4.1 Local queries

Some source databases display stable information, with a renewal
frequency of over 1 year. Hence, they are not queried real-time to
decrease execution time and avoid possible issues due to their web-
page maintenance. Instead, vaRHC is fed with a relational database
(MySQL) gathering the information. The database is maintained at
the Institut de Recerca Biomèdica de Bellvitge. Since SpliceAI and
Provean predictors have recently retired their web-based or API ver-
sion, the only way to obtain their scores is by downloading the soft-
ware. To mitigate the difficulties that may cause installing extra
software, several scores have been precalculated. The types of var-
iants with precalculated scores and the complete information source
list are found in Supplementary Methods.

2.4.2 Real-time queries

Other databases, like ClinVar (Landrum et al. 2014, 2018) and
InSiGHT (https://www.insight-group.org/variants/databases/; accessed
November 2022) are updated weekly or monthly. To access the latest
information, vaRHC queries them real-time via web scrapping, which
it also uses to interrogate web interfaces from databases without down-
load options. Online programmes without pre-computed databases are
queried via REST API. The complete list of databases queried real-time
is in Supplementary Methods.

2.4.3 Customizable parameters

For easy customization, our local database contains a table with
general and gene-specific cut-offs used for several criteria (BA1,
BS1, PM2, PP3, BP4, and BP7). The user can provide vaRHC a txt
file with custom values to change the default ones. See https://

2 Munté et al.



github.com/emunte/vaRHC/blob/main/data/gene_specific.txt to
download a template.

2.5 Performance assessment
Classified variants from ATM (n¼32), CDH1 (n¼279), PTEN
(n¼139), and TP53 (n¼118) were downloaded from the ClinGen
evidence repository (https://erepo.genome.network/evrepo/, March
2022). For CHEK2, 13 variants classified in Vargas-Parra (2020)
were used. An in-house dataset of 78 variants classified according to
‘ClinGen InSiGHT Hereditary Colorectal Cancer/Polyposis Variant
Curation Expert Panel Specifications to the ACMG/AMP Variant
Interpretation Guidelines Version DRAFT 1’ was used for MMR
genes.

The comparison between vaRHC results and manual classifica-
tion of the aforementioned variants was performed criterion by cri-
terion, instead of only considering the final variant classification.
Outcomes were grouped into nine scenarios for each criterion taken
(Table 1).

2.6 Benchmark dataset
CDH1 and PTEN variant datasets were also analysed with Cancer-
SIGVAR (Li et al. 2021) using default settings. The number of dif-
ferences between both software was statistically evaluated using the
Kappa test from vcd (v 1.4-10) CRAN package; P-value was
adjusted using Benjamini–Hochberg correction for multiple compar-
isons (Benjamini and Hochberg 1995). Significance for the adjusted
P-value was 0.05.

3 Results

3.1 vaRHC package
The vaRHC package classifies single-nucleotide substitutions, dele-
tions, and insertions up to 25-bp, intronic variants, and untranslated
region variants.

Our package has a main function vaR() acting as a wrapper for
three functions: vaRinfo, vaRclass, and vaRreport (Fig. 1). From the
input of a gene, a transcript (RefSeq ID), and a variant name (in cod-
ing DNA nomenclature; http://varnomen.hgvs.org/), vaRinfo gath-
ers relevant information from diverse sources. The second function
vaRclass() uses the output of vaRinfo() to apply updated ACMG/
AMP criteria considering gene specificities to calculate the different
criteria met by the variant and explains the assignment or rejection
of each criterion. Furthermore, it returns a final variant classifica-
tion using Tavtigian’s Bayesian metastructure and most CanVIG-UK
recommendations (Supplementary Table S3). Lastly, vaRreport()
generates a user-friendly .xlsx file to examine and store results,
allowing non-bioinformatic users to work with them and modify the
file, adding their considerations or information regarding non-
automatable criteria.

For users wanting to classify variants in batch, vaRbatch() func-
tion has been created to interrogate vaR() function sequentially. The
input can be either a dataframe with variants in coding DNA no-
menclature or a variant call format file. The latter can be based on
the GRCh37 or GRCh38 genome assemblies and will be annotated
in coding DNA, considering MANE select transcript or Locus
Reference Genomic (LRG) t1 transcripts depending on user specifi-
cations. Moreover, each time it is executed a new log file is created.
This provides an accurate per variant time-execution registry and
collects all possible errors encountered during the process.

The current package works properly for the main HC genes
(n¼53). It was also tested for all genes with a LRG entry (n¼1325)
and it works for most of them (listed in Supplementary Table S4). It
should also work for most genes with a MANE select transcript, al-
though not all of them have been tested. However, variants located
at positions where the reference allele differs between GRCh37 and
GRCh38 cannot be computed by vaRHC. Nevertheless, these var-
iants are usually polymorphisms that can be classified as benign
based only on their high frequency in population datasets. The pack-
age relies on Mutalyzer v3 for variant nomenclature correction.
Since not all transcript versions are supported by Mutalyzer, the
tool searches for an available version and returns a warning to in-
form the user.

3.2 Performance assessment
To evaluate vaRHC’s performance, 659 variants previously manual-
ly classified using specific guidelines were selected, of which 20
(3%) were not supported by vaRHC due to their nature (complex
deletion–insertions, deletions/duplications >25bp, inversions); thus,
639 variants were finally assessed: 29 ATM, 274 CDH1, 13
CHEK2, 13 MLH1, 22 MSH2, 33 MSH6, 10 PMS2, 128 PTEN,
and 117 TP53.

3.2.1 Criteria assignation performance

The tool’s performance was compared with the previous classifica-
tion, showing that each fully automated criterion is correctly
assigned in at least 97.7% of the variants. Figure 2 shows the per-
formance broken down by gene and criteria (details in
Supplementary Table S6). Supplementary Tables S7–S12 include all
variants used for validation and a detailed explanation of discordant
criteria (labelled according to Table 1).

Below, the validation results are depicted according to the differ-
ent criteria groups.

3.2.1.1 Population data (criteria codes BA1, BS1, BS2, PS4, and

PM2). The gnomAD v2.1.1 dataset was chosen to assess the variant
allele frequency in control populations (Karczewski et al. 2020).
Although v2 gathers fewer genome sequences than v3, it contains
many more exome sequences (the main regions of interest for

Table 1. Labels assigned to the nine possible scenarios to quantitatively evaluate the performance of the programme.

Label Description/scenario

Positive agreement The criterion is assigned by both manual classification and vaRHC.

Negative agreement The criterion is denied by both.

Previous version The criterion used in the manual classification did not follow the most up to date guidelines for

the gene.

Manual error The manual choice clearly differs from the criterion statement in the guidelines.

Refined criterion There is a discrepancy between the manual judgement and our software but in our view

vaRHC’s output is more accurate.

Partially automated There is a discrepancy due to the inability to fully automate the criteria.

Not assessed When BA1 is assigned by manual classification, other criteria are sometimes not evaluated by

manual classification, thus the performance of the additional criteria for that variant cannot be

compared.

Not automated The criterion has not been automated.

Not applicable According to the guidelines, the criterion should not be applied.

vaRHC: an R package for semi-automation of variant classification 3



diagnostics), reaching a much higher allele number (6250 000) and
increasing its statistical power. These databases were not aggregated
as they overlap and it would distort allele frequencies (Gudmundsson
et al. 2022). Specifically, the non-cancer dataset (minimum coverage
of 20�) was selected (details in Supplementary Methods).

Furthermore, following ENIGMA recommendations (https://
enigmaconsortium.org/library/general-documents/enigma-classifica

tion-criteria/; accessed November 2022), for BA1 and BS1, gnomAD
founder populations, like Ashkenazi Jewish and Finnish, were omit-
ted as bottleneck effects could mask natural negative selection of
pathogenic variants. This exception was not considered in ClinGen;
thus, disagreements were labelled as ‘refined criteria’.

Positive and negative agreements were found in 98.9% of var-
iants for BA1 and in 96.9% for BS1. The refined criterion accounted

Figure 1 varRHC package: main functions and workflow. vaR() contains three functions as follows: (A) vaRinfo: retrieves variant information from distinct databases; (B)

vaRclass: combines information to assign or deny ACMG criteria returning a final classification of the variant; and (C) vaRreport: prints the results in a spreadsheet (.xlsx) file.

vaRbatch() allows to do the process sequentially.

Figure 2 Tool performance assessed by gene and criteria. Stacked bar diagrams show the proportion of variants falling within each scenario (Table 1), labelled with a different

colour (see legend in the figure). Each gene and criterion is evaluated separately (only fully or partially automated ones). Maximum number of variants analysed per gene is in

parenthesis and corresponds to variants evaluated for BA1 and BS1. Since BA1 is a standalone criterion (incompatible with BS1), when BA1 was assigned by manual classifica-

tion, the remaining criteria were not assessed in most variants and omitted from the comparison.
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for 0.63% of variants for BA1 and 1.10% for BS1. When manual
ClinGen classifications used gnomAD v3, Exome Aggregation
Consortium, or 1000 Genomes as population datasets to assign BA1
or BS1, these were conservatively labelled as ‘partially automated’
and accounted for 0.16% and 0.47% of variants, respectively.

Some gene-specific guidelines require the use of the lower confi-
dence interval (CI) limit of allele frequencies from population data-
sets to compare them with maximum credible allele frequencies for
a pathogenic variant to assign BA1 or BS1. Nevertheless, the corre-
sponding manual classification dataset has not always applied it (see
Supplementary Table S8). These manual errors explain the remain-
ing 0.31% and 1.57% for BA1 and BS1, respectively.

Regarding the PM2 criterion, positive and negative agreements
were found in 77.2% of variants. The main reason for disagree-
ments was that some ClinGen pilot variants were classified using
previous versions of gene-specific guidelines, lacking recent specifi-
cations, as vaRHC does. For example, for CDH1, PM2 was down-
graded in version 3 to supporting strength, but many variants in the
repository remain as moderate. These variants account for 20.0% of
the total and were labelled as ‘previous version’.

Only two variants (0.34%) were not assigned because they were
only present in the gnomAD v3 non-cancer dataset (partially auto-
mated). Manual errors account for 2.2% of cases, many consisting
of input variant nomenclature mistakes (e.g. using information from
another variant or not finding the variant in the gnomAD database,
although it was there). For HC susceptibility genes, gnomAD non-
cancer is a more accurate population dataset, thus 0.2% of the var-
iants were labelled as refined criterion. The BS2 criterion does not
apply to ATM and CHEK2 guidelines (6.2%) and is not automated
for CDH1 and MMR genes (52.9%). The lack of databases sharing
this information impedes full automation of this criterion.
Consequently, positive agreements only accounted for 0.69% of
cases and were based on information from the FLOSSIES database
and, for some genes, homozygote status from the gnomAD v2.1.1
non-cancer dataset. Negative agreements represented a 33.4%.
ClinGen expert panels assign BS2 to 6.7% of variants thanks to in-
house datasets (not shared), the literature, or ClinVar comments,
which are not easily automatable. Only one variant (0.17%) was
labelled as manual error (see Supplementary Table S11).

The PS4 criterion is not applicable to MMR genes or relies on in-
formation not stored in public databases, thus is not automated for
other genes.

3.2.1.2 Computational and predictive criteria (PVS1, PS1, PM4,

PM5, PP3, BP4, and BP7). For PVS1, the programme follows an al-
gorithm based on Tayoun’s decision tree (Abou Tayoun et al. 2018)
for general classification and incorporates gene specificities where
there are specific guidelines (Fig. 3). As shown in the figure, it inte-
grates the splicing prediction, as a splicing alteration would affect
the variant consequence.

Positive and negative agreements represented 96.7% of variants
for PVS1 and 2.7% were labelled as ‘partially automated’. The limi-
tation in automation was mostly due to difficulty in determining
splicing outcome when spliceAI predicts a splice site gain. Thus,
vaRHC is conservative, assigning a supporting strength and return-
ing a warning message suggesting an RNA test before assigning a
higher strength. Likewise, when exon skipping is predicted for ca-
nonical splice variants located at the first or last exon, vaRHC
returns a warning with no PVS1 strength assigned.

PTEN guidelines do not incorporate Tayoun’s algorithm, only
assigning a very strong strength. As a refined criterion, vaRHC con-
siders modified Tayoun workflow for this gene (but incorporates the
specific guideline consideration that truncating variants 50 to c.1121
must be assigned as very strong); this changes the PVS1 strength
assigned to two PTEN variants (0.34%).

Furthermore, variant c.1137þ1delG in CDH1 was assigned as
very strong by ClinGen. However, per site-specific recommenda-
tions in the splicing table in version 3.1, it should be downgraded to
strong. Thus, the variant was classified as ‘previous version’
(0.17%).

Regarding prediction criteria (PP3 and BP4), only some guide-
lines specify which to use and their cut-offs. For the other genes, as
general guidelines, REVEL metapredictor was adopted to predict
protein impact, with optimized cut-offs proposed by Cubuk (2021).
SpliceAI (Jaganathan et al. 2019) was selected as the main splice pre-
dictor. Since no cut-off was previously established, 518 RNA-tested
variants were analysed to set PP3 and BP4 thresholds
(Supplementary Methods and Supplementary Table S13). The final
cut-offs for spliceAI were �0.5 for PP3 and �0.15 for BP4, giving
pathogenicity odds ratio values of 25.3 and 0.037 for PP3 and BP4,
respectively. Per Tavtigian’s Bayesian framework, these could ac-
count for PP3_Strong and BP4_Strong, but a supporting strength
was conservatively maintained in the tool.

Only MMR gene splice defect prediction combines SpliceAI with
other algorithms from http://priors.hci.utah.edu/PRIORS, as speci-
fied in their guidelines. The retrieved predictors and cut-offs for
each gene are in Supplementary Table S14.

From the above data, positive and negative agreement repre-
sented 96.7% of variants for PP3 and 97.5% in for BP4. For PP3,
two TP53 variants were affected by changes in predictor cut-offs be-
tween specific guideline versions and thus classified as ‘previous ver-
sion’ (0.34%). Manual errors in PP3 were mostly due to applying
PP3 when PVS1 or PM1 (by functional domain) was also assigned.
According to CanVIG-UK, these criteria should not be combined as
the same information is used to calculate them. Another manual
error arises from mistakes in variant information queries. Manual
errors represented 1.37% in PP3 and 0.18% in BP4. Discrepancies
due to lack of detail in specific guidelines, which led us to choose

Figure 3 Flowchart showing the algorithm implemented in the vaRHC package to

assign different PVS1 criterion strengths to LoF variants, based on ClinGen recom-

mendations (Abou Tayoun et al. 2018).
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REVEL and SpliceAI, were considered ‘refined criterion’ and
accounted for 0.86% in PP3 and 2.29% in BP4. Four variants
(0.69%) were categorized as partially automated for PP3 (see
Supplementary Tables S8, S10, and S11).

The BP7 criterion was classified as positive or negative agree-
ment in 98.1% of variants. In CDH1, three variants were labelled as
‘previous version’, since manual classification did not assign BP7 to
them, for being in a highly conserved nucleotide, a condition no lon-
ger applied. Manual errors correspond to six variants in PTEN
(1.03%) where the nucleotide is predicted to be strongly conserved
by Phastcons (value¼1) but manual classification assigned BP7 any-
way. Moreover, Phylop was also assessed to determine nucleotide
conservation (when required). Some scores obtained with the tool
did not match those from manual classification. Three variants in
CDH1 were manually classified according to previous versions
(0.51%) and two PTEN variants as refined criteria (0.34%) (see
Supplementary Table S11).

Concerning PS1 and PM5, variants in the same codon as the test
variant must be also classified according to gene-specific guidelines.
Moreover, some guidelines, such as TP53, require that the variant
be specifically classified by the ClinGen expert panel. To ensure this,
vaRHC uses information from ClinVar variants classified by an ex-
pert panel (i.e. ClinGen for HC genes). Furthermore, these criteria
were modified over time in CDH1 guidelines: PS1 no longer applies
and PM5 uses a new criterion applying to non-sense and frameshift
variants predicted or proven to undergo NMD and to some canonic-
al splicing variants.

It was difficult to validate vaRHC for PS1 and PM5 since the cri-
teria dictates to compare test variants with expert panel classified
variants. This is ClinGen dataset, the same that we are using to do
the performance assessment. As expected, there were few pairs of
variants at the same codon, both classified by the expert panel.
Therefore, no variant was assigned PS1 by the software, and 116 of
121 variants assigned PM5 were due to the new CDH1 criterion for
truncating variants rather than the classic variant comparison criter-
ion. To reliably validate the tool’s performance, a list of 37 hypo-
thetical variants located at the same codons as the variants used in
the primary validation was created (see Supplementary Methods
and Supplementary Table S15). The programme assigned PS1 or
PM5 to 19 variants; PS1 and PM5 were denied in the remaining 18
variants as some criteria requirements were not met.

3.2.1.3 Functional data (PS3, PM1, PP2, BS3, and BP3). Functional
data were generally refractory to automatic extraction. However, pub-
lication of some mid-to-high throughput clinically calibrated function-
al assays allowed their incorporation as an innovative feature of
vaRHC. Most articles listed in gene-specific guidelines and some
accomplishing the experimental conditions demanded in Brnich et al.
(2019) to assign PS3 or BS3 were collected in the database (see
SupplementaryMethods, Section 1.1). Consequently, 5.1% of variants
were assigned PS3 and 12.2% BS3. No literature information was
used to assign PS3/BS3 to CDH1 and PMS2 genes (42.0%), or BS3 to
PTEN (63.2%). Criteria were assigned only by manual classification
in 5.8% of variants for PS3 and 0.69% for BS3.

Additionally, a search string combining different names for the
variant was provided to be used in Internet search engines; this can
help users find the most relevant articles for functional, allelic, and
clinical criteria.

The PM1 criterion does not apply to ATM, CDH1, and MMR
genes (56.8%). Only one variant (c.892G>T in TP53, 0.17%) was
labelled as ‘manual error’ since manual classification assigned it
PVS1 and PM1. Per CanVIG-UK, they should not be combined be-
cause PM1 can only be used for missense variants and small in-
frame deletions and insertions. The remaining 43.0% correspond to
positive and negative agreements.

Per specific guidelines, the PP2 criterion should only be used for
PTEN, being correctly assigned in all cases.

3.2.1.4 Allelic data (PM3 and BP2). PM3 was not automated as al-
lelic data in patients are seldom collected in databases. The BP2

criterion does not apply to MMR genes (12.7%) and can only be
partially automated for CDH1. Specifically, only supporting
strength can be assigned when the variant is in homozygosity in
gnomAD since no public database of individuals without personal
and/or family history of associated tumours was found. Manual
classification assigned BP2_Strong to some variants as they were
homozygous in a control cohort (gnomAD v2.1.1). However,
according to Harrison et al. (2019), individuals in gnomAD should
be cautiously considered as general population instead of healthy
individuals for adult-onset conditions. Thus, 0.3% of variants were
categorized as ‘manual errors’.

3.2.1.5 Other databases (PP5 and BP6). According to ClinGen, rep-
utable source not linked to the supporting evidence should not be
used as criteria thus PP5 and BP6 should not be applied (Biesecker
and Harrison 2018).

3.2.1.6 Segregation data (PP1 and BS4), de novo data (PS2 and

PM6), and other data (PP4 and BP5). Due to the current lack of seg-
regation information in databases, none of these criteria could be
automated.

3.2.2 Automated classification performance

vaRHC classified each variant in 15–120 s. Automated classification
concorded with manual classification in 63.4% of variants with
five-tier classification, increasing to 74.0% with three-tier classifica-
tion (Supplementary Table S5). Users would be expected to add
non-automatable criteria to reach a final classification.

3.3 Benchmark
Cancer-SIGVAR (Li et al. 2021) is a free web tool (http://cancersig
var.bgi.com) based on ACMG/AMP rules and focused on interpret-
ing HC variants. We analysed, criteria by criteria, the performance
of Cancer-SIGVAR and vaRHC for CDH1 and PTEN variants
against the ClinGen repository (the same as in the validation data-
set). However, in the vaRHC previous performance assessment we
had identified manual errors and a proportion of variants classified
without updated guidelines (see Fig. 2 and Supplementary Tables
S7–S12). To address this, some ClinGen criteria assignments were
modified, correcting variants labelled as ‘manual errors’ and ‘previ-
ous version’. Conservatively, variants categorized as ‘refined criter-
ion’ were not altered. The performance of both tools against this
modified benchmark dataset was compared in (Fig. 4).

As it can be seen in the figure, vaRHC does not use PP5 and BP6
criteria, as dictated by ClinGen (Biesecker and Harrison 2018), it
incorporates the updated v3 CDH1 guidelines (September 2021)
and also data from functional assays. Due to these and other assets,
vaRHC improves the performance of Cancer-SIGVAR.

Cohen’s Kappa test comparing cancer-SIGVAR and vaRHC
revealed significant differences for PM2 (kappa¼0.06, P-
value¼2.98E�06), PM5 (kappa¼0.33, P-value¼1.34E�101),
PP3 (kappa¼0.32, P-value¼9.91E�05), and BP4 (kappa¼0.47,
P-value¼1.72E�07) criteria in CDH1 and PM1 (kappa¼0.48, P-
value¼0), PM4 (kappa¼0.42, P-value¼3.08E�02), PM5
(kappa¼0.30, P-value¼2.63E�02), BP4 (kappa¼0.42, P-
value¼4.49E�10), and BP7 (kappa¼0.35, P-value¼6.58E�03)
in PTEN. In contrast, comparing vaRHC with the modified bench-
mark dataset, all these criteria obtained Kappa values >0.7 (see
Supplementary Table S16).

4 Discussion

Variant classification is a main challenge and bottleneck in the gen-
etic testing process using NGS. ClinGen and expert panels work on
adapting generic ACMG/AMP guidelines has led to several gene-
specific recommendations, adding difficulty to the already long and
complex manual classification process. Thus, the development of
automated tools could assist this process, accelerating it and
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reducing manual error. However, most tools available use original
ACMG/AMP general recommendations and few are adjusted to
gene-specific ones.

Here, we present vaRHC, an R package developed to cover
these needs. It automates as much as possible the variant classifica-
tion process: it collects pieces of information from several data-
bases and it combines them to assign or deny criteria according to
the most up-to-date guidelines. To support classification in a more
meaningful clinical class, vaRHC leverages Tavtigian’s Bayesian
approach and it also integrates most CanVIG-UK recommenda-
tions to finally assign or deny criteria, thus avoiding combining
overlapping criteria, evading double counting. Moreover, vaRHC
can be easily incorporated into bioinformatic pipelines, and adds a
downloadable output as an editable, user-friendly spreadsheet
(.xlsx) file. This function allows variant curators unfamiliar with
the R environment to work with the data and add extra considera-
tions, like the refinement of automated criteria or information
derived from non-automatable criteria. Our validation demon-
strates the robustness of the software developed in assigning auto-
mated criteria supporting the notion that automation tools are
valuable in the variant classification process. However, they should
not substitute the crucial role of the variant curator in supervising
automated criteria, reviewing and incorporating data from the lit-
erature and in-house databases to assign semi-automatable and
non-automatable criteria.

Despite ACMG/AMP and ClinGen’s efforts to standardize guide-
line criteria to provide an objective framework, some ambiguous cri-
teria remain that could cause discrepancies between laboratories.
When identified we have labelled them as ‘refined criteria’.
Examples are the use of the non-cancer dataset and outbred subpo-
pulations to calculate criteria related to population data or the
choice of predictors and/or thresholds when the criteria do not es-
tablish them. Particularly, SpliceAI was selected as the unique splic-
ing predictor, except for MMR genes, where Prior (UTAH) was also
used according to gene-specific guidelines. Some guidelines suggest

variant scoring using a consensus of two or three predictors.
However, it was recently demonstrated that this provides little bene-
fit (Wai et al. 2020). Moreover, a benchmark recommended the use
of SpliceAI because it has the highest area under the curve (Riepe
et al. 2021). To establish cut-offs for benignity and pathogenicity, a
specific assessment was designed with 518 RNA-tested variants. Of
note, vaRHC uses all proposed thresholds as defaults but is easily
modifiable with a txt file.

Previous tools have almost exclusively focused on the final classi-
fication of the variant instead of analysing criterion by criterion. As
automated tools lack some information derived from non-
automatable criteria, many variants are classified as ‘unknown sig-
nificance’. To palliate this, some programmes are less strict in
assigning some criteria (e.g. permissive population frequency thresh-
olds for BA1, BS1, and PM2 by software like Varsome) or use crite-
ria that currently do not apply (e.g. PP5 and BP6 by SIGVAR,
InterVar, Varsome, Franklin, Pathoman, and CharGer) to leverage
ClinVar classification information and artificially approach its re-
sult. We recommend to use these tools in a research context to pri-
oritize variants rather than directly employ them in diagnostics. One
of vaRHC’s strengths is that it is strict in assigning criteria.
Moreover, for each denied or assigned criteria, it always returns an
explanation and, when appropriate, suggests extra considerations
that should be noted for manual curation of criteria. This makes
vaRHC suitable for use in molecular diagnostics units. In fact, the
package is currently used by the Catalan Institute of Oncology
(ICO) Molecular Diagnostics Service.

Although vaRHC was developed to answer to HC genetic testing
needs, its approach to classify variants in HC genes without gene-
specific guidelines is generalizable to most genes where loss-of-
function variants cause heritable diseases. Furthermore, the custom-
izable nature of most parameters allows users to adapt the tool to
their needs. The use of the gnomAD v2.1. non-cancer dataset for
variant population frequency assessment is compatible with other
diseases, this dataset has only subtracted a few samples belonging to
cancer patients, that could have invalidated conclusions for variants
involved in these conditions and would not have increased substan-
tially the power of the datasets.

The performance of our tool was compared with the ClinGen
datasets for each HC gene with specific ClinGen guidelines. These
datasets have a limited size compared with ClinVar, but they are
manually curated by experts and inform the assignation of each cri-
terion, which cannot be matched by the ClinVar dataset. Although a
more homogeneous dataset would be desirable, each ClinGen
Variant Curation Expert Panel chose the number of variants for its
curated set as appropriate to exemplify the use of its criteria. We
have expanded this collection with manually curated CHEK2 var-
iants from an article that ‘proposes’ CHEK2-specific rules and with
MMR gene variants from the in-house ICO diagnostics laboratory
DB. Our tool and Cancer-SIGVAR were compared with the
ClinGen dataset only for CDH1 and PTEN, since those are the
genes where Cancer-SIGVAR follows gene-specific guidelines.
Cancer-SIGVAR incorporates specific guidelines for some genes but
does not cover recent ClinGen guidelines for relevant cancer genes.
For impartiality, variants labelled as ‘manual errors’ and ‘previous
version’ in ClinGen were corrected. Besides the aforementioned dif-
ferences in using non-applicable criteria, the Kappa Test analysis
revealed significant differences in other criteria assigned, favouring
vaRHC.

A limitation of vaRHC is that, currently, it does not work for all
variant types or lengths. Its execution time is around 15–30 s per
variant, but can reach 2min for insertions and deletions, where
SpliceAI cannot be precomputed. Furthermore, its connection to
ClinVar and other databases relies on the good performance and
connectivity of their websites. Moreover, perpetual maintenance is
planned and needed because any change in the html structure or
content of queried websites via web scrapping can lead to different
types of errors. Also, the database contains information on some
published functional assays, but this is not due to a self-renewing
ability to mine the literature, but to a manual effort. Nevertheless,
the current vaRHC release plan includes the addition of recently

Figure 4 Performance of Cancer-SIGVAR and vaRHC in comparison with the modi-

fied benchmark dataset. Stacked bar diagrams show the proportion of variants fall-

ing within each scenario (see Sections 3, 3.3, and Table 1), labelled with a different

colour (see legend in the figure), for CDH1 and PTEN genes. The maximum number

of variants analysed per gene is in parenthesis. This corresponds to variants eval-

uated for BA1 and BS1. Since BA1 is a standalone criterion (incompatible with

BS1), when BA1 was assigned by manual classification, the remaining criteria were

not assessed in most variants and omitted from the comparison.
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published functional assays. Also, updates will include multiple fea-
tures such as using gnomAD v3 information and downloading the
report in other file extensions.

In summary, the performance assessment and benchmark car-
ried out in the present work corroborates the robustness and excel-
lent performance of vaRHC to assist variant classification. To our
knowledge, our package outperforms tools available for several
reasons: (i) it is the first freely available R package that semi-
automates the process; (ii) it uses Tavtigian’s Bayesian metastruc-
ture nuanced by CanVIG-UK criterion combination rules, and (iii)
it includes gene-specific guidelines for several commonly studied
cancer genes, like ATM, CDH1, CHEK2, MLH1, MSH2, MSH6,
PMS2, PTEN, and TP53. Altogether, we expect that vaRHC will
facilitate the task of variant curators in clinical settings by reducing
time for variant classification, limiting manual errors, and allowing
the personalization of some parameters according to clinical and
laboratory data.
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ABSTRACT 
Structural variants (SVs) represent a significant source of genomic variation, playing a key role in the etiology of 
numerous genetic diseases, including cancer. Current diagnostic algorithms, primarily based on short-read NGS 
data and depth-of-coverage analyses, often fail to detect certain SVs. GRIDSS software integrates multiple 
strategies to improve SV detection, but its lack of specificity and annotation strategy complicates its clinical 
implementation. This study aimed to develop a pipeline incorporating filters to prioritize germline SVs in a 
diagnostic setting. 

We analyzed 9,750 samples from patients with suspected hereditary cancer using GRIDSS. The custom R pipeline 
was designed to exclude recurrent variants identified in our dataset, focus on clinically relevant regions of 
actionable genes, and remove alignment artifacts. Candidate SVs were visually inspected in IGV, and those with 
potential clinical relevance were experimentally validated. 

Initial analyses identified over 1.3 million candidate variants. After applying filters and performing visual 
inspection, 24 variants were prioritized. Of these, 15 were excluded due to limited clinical relevance, and the 
remaining nine were validated, confirming all as true positives. These included two pathogenic variants in MSH6, 
one likely pathogenic variant in BARD1, one likely pathogenic LINE insertion in APC, four likely pathogenic Alu 
insertions (two in BRCA2, one in PALB2, and one in ATM), and one variant of uncertain significance in PALB2. All 
findings were consistent with patients’ phenotypes. 

The restrictive filtering strategy we employed has proven applicable in a diagnostic setting, providing a reliable 
method to enhance the detection of clinically relevant SVs and improve hereditary cancer diagnostics. 

 

INTRODUCTION 

Targeted short-read NGS panels are widely used in 
routine diagnostics due to their optimal balance 
between cost and efficiency (Rehm, 2013). Despite 
their numerous advantages, targeted approaches 

may miss certain variants located outside the 
regions of interest. Moreover, short-read data may 
challenge the detection of certain types of variants, 
such as those located in homologous, low-
complexity, highly variable or highly repetitive 
regions, as well as structural variants of 



intermediate size (Lincoln et al., 2021). Although 
there is no consensus definition of 'intermediate 
size', it typically refers to variants ranging from 50 
bp to 1 kb, which are particularly difficult to detect 
as they may partially span or even exceed the read 
length (Mahmoud et al., 2019). 

Structural variants represent a significant 
source of genomic variation that may play a role in 
numerous diseases with a genetic etiology, 
including cancer. Therefore, improving detection 
methods is crucial to uncover these variants and 
fully understand their role in human diseases. There 
are four main strategies to call structural variants 
from short-read data, which can be based on read 
depth, paired-end mapping, split reads or 
assembling (Escaramís et al. 2015). The read depth 
method relies on statistical comparisons of 
coverage changes across specific genomic windows, 
determining whether the observed coverage 
matches the expected levels. Paired-end mapping 
analyzes the distribution of paired-end reads to 
identify discrepancies in the expected distance, 
orientation, or order. The split-read strategy, as the 
name itself suggests, detects structural variants by 
identifying those reads that map to at least two 
genomic locations. These misaligned bases are 
called soft-clipped bases. Lastly, de novo assembly 
methods reconstruct genomic sequences without a 
reference genome. Reads are assembled into 
longer contiguous sequences known as contigs, 
which are then compared to the reference genome 
or another assembly. 

Each method has its own strengths and 
limitations, thus relying on a single approach can 
lead to incomplete detection of some variant types. 
For instance, many molecular diagnostics 
laboratories rely exclusively on read depth-based 
methods, which are effective for identifying large 
copy-number variants but often overlook other 
structural variants. To address this issue, recent 
efforts have focused on developing tools that 
combine multiple strategies to improve detection 
capabilities. One such tool is GRIDSS (Genome 
Rearrangement Identification Software 
Suite),(Cameron et al., 2017) which integrates 
three of the four detection methods (paired-end 
mapping, split reads and de novo assembly), 

offering a more comprehensive approach to 
increase variant identification. 

However, implementing GRIDSS in routine 
diagnostics poses certain challenges. Originally 
designed for Illumina sequencing data in a whole-
genome context, GRIDSS has not yet been validated 
for exon-targeted data. Additionally, it reports 
variants in a breakend notation, which, although 
comprehensive in describing structural variations, 
can be difficult to interpret. While GRIDSS offers 
high sensitivity, it lacks specificity, often returning 
many variants. Even though the authors have 
developed a code to filter somatic variants, no 
specific guidance or tools are available for filtering 
germline variants, further complicating its use in a 
diagnostic setting. 

This study aims to determine the prevalence of 
structural variants that were previously overlooked 
following the read-depth approach, by adapting 
GRIDSS for use with gene panel data. In addition, 
the study seeks to establish practical filters to 
identify germline structural variants, making the 
process suitable in a routine diagnostic practice 
context. 

 

METHODS 

Studied Cohort 

A total of 9,750 NGS panel results from patients 
with suspected hereditary cancer were included in 
this study. All of them were referred to the 
Molecular Diagnostics Service at the Catalan 
Institute of Oncology (ICO) and provided informed 
written consent for both diagnostic and research 
purposes. The study protocol was approved by 
the Ethics Committee of the Catalan Institute of 
Oncology–Bellvitge University Hospital (PR278/19). 

 

Routine diagnostics genetic testing 

DNA was extracted from peripheral blood 
leukocytes and genetic testing was performed using 
the custom NGS ICO-IMPPC Hereditary Cancer 
Panel (I2HCP), which includes between 122 and 165 
hereditary cancer-associated genes, depending on 
the panel version (Castellanos et al., 2017). 



Samples were sequenced using three different 
platforms: 5,598 samples were sequenced on a 
NextSeq platform (average coverage = 595x, 
average read length = 150 bp), 2,707 on a HiSeq 
platform (average coverage = 868x, average read 
length = 250 bp), and 1,445 on a MiSeq platform 
(average coverage = 494x, average read length = 
300 bp) (Illumina, San Diego, CA, US). Two callers 
were used for variant detection: VarsCan for single-
nucleotide variants and short indels and DECoN for 
large copy-number variants (Castellanos et al., 
2017; Moreno-Cabrera et al., 2020, 2022). Gene 
selection for the analysis was phenotype-driven, 
based on each patient's clinical presentations, and 
typically ranged from 6 to 20 genes, in compliance 
with the Catalan Health Service guidelines 
(Feliubadaló et al., 2019). 

 

Bioinformatic pipeline 

GRIDSS 

GRIDSS (v.2.13.2) software was installed, and the 
core script was executed on each BAM file using the 
default parameters to generate a GRIDSS SV VCF 
file. Additionally, Repeat Masker (v.4.1.5) was 
configured to enable the use of the 
gridss_annotate_vcf_repeatmasker script, which 
annotates the VCF file with breakpoints and single 
breakend inserted sequences based on 
RepeatMasker classification.  

Variant filtering pipeline 

The filter_gridss pipeline was developed in the R 
statistical computing environment (R-4.2.1), using 
functions from both R/Bioconductor and CRAN 
packages. 

For each VCF file, breakpoints with a mate ID 
matching another event were paired to ensure that 
each variant was represented by a single row. These 
variants composed a dataset dedicated to two-
breakend variants. Variants without a matching 
mate ID were stored separately in a single-
breakend dataset. This separation allowed for the 
application of distinct filtering criteria to each 
dataset. Variants involving breakpoints on different 
chromosomes were excluded from the analysis. 

The following filters were applied uniformly to 
both datasets: 1) exclusion of variants with 
identical breakpoints detected in more than ten 
samples; 2) exclusion of variants located outside 
coding regions or beyond ±150 bp from intron 
boundaries in genes related to the patient’s 
phenotype; 3) exclusion of variants with a variant 
allele frequency (VAF) lower than 10%; 4) 
exclusion of variants called in genomic regions 
where more than ten highly similar variants were 
called across different samples, as these likely 
represented the same underlying event 
inaccurately called; 5) exclusion of regions 
classified as simple repeats or low-complexity 
region by RepeatMasker.  

Additional dataset-specific filters were 
applied. For the two-breakend dataset, 
exclusion of deletions shorter than 20 bp. For the 
single-breakend dataset, the analysis was 
restricted to variants identified as transposable 
elements by RepeatMasker.  

 

Selection of candidates by visual inspection 

Following the pipeline, structural variants were 
visually inspected in Integrative Genomics Viewer 
(IGV) to identify likely true positive calls. Coverage 
patterns, read pair orientation and soft-clipped 
bases were examined, and the exact breakpoints 
were extracted for subsequent experimental 
validation.  

 

Experimental validation 

Variants selected after visual inspection were 
validated in genomic DNA by Sanger sequencing. 
PCR reactions were performed using primers 
flanking the expected breakpoints, with DreamTaq 
DNA Polymerase or Phusion High-Fidelity DNA 
Polymerase (Thermo Fisher Scientific, Waltham, 
MA, US) according to the manufacturers’ protocols. 
PCR products were purified with ExoSAP-IT and 
sequenced on an AB3500 Genetic Analyzer using 
BigDye™ Terminator v3.1 kit (Thermo Fisher 
Scientific). Primer sequences and PCR conditions 
are available upon request. A Long Interspersed 
Nuclear Element (LINE) insertion in the APC gene 



Figure 1. Overview of the GRIDSS analysis and filtering workflow for germline structural variant detection.

was validated through long-read sequencing. 
The analysis followed the Comprehensive Germline 
Cancer Panel Workflow by Oxford Nanopore 
Technologies. Briefly, genomic DNA libraries were 
prepared using the Native Barcoding Kit 24 V14 
(SQK-NBD114.24) and sequenced on a PromethION 
instrument with an R10.4.1 flow cell (Oxford 
Nanopore Technologies, Oxford, UK). In silico
enrichment of a panel targeting 241 hereditary 
cancer genes was performed via adaptive sampling, 
and the analysis was run in EPI2ME with the 
workflow wf-hereditary-cancer.

An mRNA assay was performed in those patients 
harboring structural variants predicted to disrupt 
splicing, as previously described (Rofes et al., 2020)
. Briefly, total RNA was isolated using TRIzol reagent 
from cultured peripheral blood lymphocytes 
treated with and without puromycin, and reverse 
transcribed with iScript cDNA Synthesis kit (Bio-Rad 
Laboratories, Hercules, CA, US). cDNA amplification 
was performed using exonic primers that 
encompassed the region of interest with DreamTaq 
DNA Polymerase (Thermo Fisher Scientific), and 
PCR products were purified and sequenced on an 

AB3500 Genetic Analyzer (Thermo Fisher 
Scientific).

Variant classification

Variants were classified following the American 
College of Medical Genetics and Genomics and the 
Association for Molecular Pathology (ACMG/AMP) 
guidelines (Richards et al., 2015). Gene-specific 
guidelines developed by ClinGen’s Sequence 
Variant Interpretation Working Group (SVI WG) 
were used whenever possible (accessible at: 
https://cspec.genome.network/cspec/ui/svi/). 
Variants with splicing evidence were classified 
according to the recommendations from ClinGen 
SVI Splicing Subgroup (Walker et al., 2023)

RESULTS

Variant filtering strategy

The filter_gridss script was developed to prioritize 
germline variants from the VCF files generated by 
the gridss_annotate_vcf_repeatmasker script. BAM 
files of 9,750 samples (5,598 sequenced on a 



NextSeq platform, 2,707 on a HiSeq and 1,445 on a 
MiSeq) were analyzed using GRIDSS and 
subsequently filtered using the filter_gridss script. 
The initial two-breakend dataset contained 824,026 
variants (317,587 from NextSeq, 404,841 from 
HiSeq and 101,598 from MiSeq), while the single-
breakend dataset included 520,298 variants 
(453,660 from NextSeq, 51,114 from HiSeq and 
15,524 from MiSeq). After applying the filters 
described in the Methods section, 76 two-breakend 
variants and 8 single-breakend variants passed the 
filtering criteria. For a detailed breakdown of the 
number of variants filtered at each step, refer to 
Supplementary Figure 1. Of the remaining 84 
variants, 30 had been previously detected by 
routine diagnostic callers (13 short indels detected 
by VarScan and 17 copy-number variants detected 
by DECoN) and were therefore disregarded. A total 
of 54 variants were retained for visual inspection 
(Figure 1).   

 

Visual inspection of candidate variants 

Visual inspection involved analyzing coverage 
patterns to detect regions with abnormal read 
depth and identifying the exact positions of 
breakpoints by examining soft-clipped bases. 
Additionally, evaluating pair orientation using the 
read pair option, along with aligning soft-clipped 
bases through IGV-assisted BLAT, provided a clearer 
understanding of the nature of many underlying 
variants. Of the 54 variants visually inspected, 30 
showed no evidence of structural variation and 
were discarded. Of the 24 remaining variants, eight 
involved the POLE or POLD1 genes, in which loss of 
proofreading function is associated with missense 
pathogenic variants (Mur et al., 2020); two were 
located within exon 1 or intron 3 of EPCAM gene, 
regions unrelated to MSH2 inactivation (Ligtenberg 
et al., 2013); and five were detected within deep 
intronic or untranslated regions. These 15 variants 
were not experimentally validated due to their 
unexpected clinical relevance (Table 1; Figure1). 

 

Experimental validation of candidate variants and 
their clinical relevance 

Nine variants located within coding regions were 
experimentally validated and confirmed (four two-
breakpoint and five one-breakpoint) (Table 1; 
Figure 1). Among two-breakpoint variants, two 
pathogenic frameshift duplications in the MSH6 
gene were identified: c.3834_3862dup 
(p.Lys1288Thrfs*49) and c.3922_3979dup 
(p.Asn1327Thrfs*11). These findings were 
consistent with the loss of MSH6 expression in the 
tumors of both patients, which helped in their 
classification as pathogenic, leading to a diagnosis 
of Lynch syndrome Additionally, the BARD1 
c.1865_1903+274del variant was identified in a 
breast cancer patient. Since this deletion 
encompassed the canonical donor site of exon 9, an 
mRNA was performed to assess its effect on 
splicing. Two alternative transcripts were detected: 
(1) the predominant transcript caused the skipping 
of exons 8 and 9 (r.1678_1903del), resulting in a 
frameshift predicted to trigger nonsense-mediated 
decay (p.Met560Glyfs*2); (2) the minor transcript 
resulted in the skipping of exon 9 (r.783_806del), an 
in-frame alteration that removed a central region 
within the BRCT1 domain 
(p.Val604_Trp635delinsGly). Consequently, this 
variant was classified as likely pathogenic. Lastly, an 
in-frame duplication in the PALB2 gene was 
identified in a breast cancer patient (c.739_891dup; 
p.Thr247_Thr297dup). However, with the current 
information, it was classified as a variant of 
uncertain significance (VUS) (Table 2). 

Among the five single-breakend variants, four 
were Alu insertions: one in the PALB2 gene 
identified in a breast cancer patient diagnosed at 
age 38, one in the ATM gene found in a prostate 
cancer patient diagnosed at age 53, and two in the 
BRCA2 gene, both identified in breast cancer 
patients with two tumor diagnoses each (ages 33 
and 57 in patient 23, and ages 46 and 51 in patient 
24). The fifth case involved a LINE1 element 
insertion in the APC gene, found in a patient 
diagnosed with adenomatous polyposis at age 14. 
His family history included his mother’sdiagnosis of 
colorectal polyposis at age 38 and his brother's 
diagnosis at age 18 (Table 2).



Table 1: List of structural variants identified by GRIDSS and filtered-in using our custom pipeline. 

ID Gene Predicted 
breakpoint(s) 

Sequencing 
instrument 

Experim. 
vali? (Method) 

Variant type 
(Length*) Variant location 

1 ATM 11:108190859-
108190860 NextSeq No Duplication Intron 44 

2 BARD1 2:215609517- 
215609831 NextSeq Yes (Sanger) Deletion         (313 

bp) Exon 9 

3 EPCAM 2:47596709- 
47601826 NextSeq No Deletion Exon 1 

4 EPCAM 2:47602010- 
47602368 HiSeq No Deletion Intron 3 

5 MSH6 2:48033622- 
48033623 HiSeq Yes (Sanger) Duplication      (29 

bp) Exon 9 

6 MSH6 2:48033711- 
48033768 NextSeq Yes (Sanger) Duplication     (58 

bp) Exon 9 

7 PALB2 16:23646978- 
23647130 NextSeq Yes (Sanger) Duplication (153 bp) Exon 4 

8 POLD1 19:50902799- 
50902845 HiSeq No Deletion Intron 3 

9 POLD1 19:50902799-
50902845 NextSeq No Deletion Intron 3 

10 POLE 12:133235843-
133235844 MiSeq No Duplication Intron 26 

11 POLE 12:133235853-
133235880 NextSeq No Deletion Intron 26 

12 POLE 12:133235865-
133235866 MiSeq No Duplication Intron 26 

13 POLE 12:133240781-
133240821 HiSeq No Deletion Intron 22 

14 POLE 12:133250054-
133250126 NextSeq No Deletion Intron 13 

15 POLE 12:133250054-
133250126 NextSeq No Deletion Intron 13 

16 RAD51D 17:33446835-
33446874 NextSeq No Deletion 5' UTR 

17 SMAD4 18:48556699-
48556700 NextSeq No Duplication 5' UTR 

18 APC 5:112174697 HiSeq Yes (LRS) LINE1 insertion 
(L1Ta1d) Exon 16 

19 ATM 11:108204717 NextSeq No Alu insertion 
(AluYa5) Intron 54 

20 ATM 11:108204717 NextSeq No Alu insertion 
(AluYa5) Intron 54 

21 ATM 11:108106407 NextSeq Yes (Sanger) Alu insertion 
(AluYa5) Exon 5 

22 BRCA2 13:32893302 NextSeq Yes (Sanger)  Alu insertion 
(AluYa5) Exon 3 

23 BRCA2 13:32910689 NextSeq Yes (Sanger) Alu insertion 
(AluYb8) Exon 11 

24 PALB2 16:23614840 HiSeq Yes (Sanger)  Alu insertion 
(AluYb8) Exon 13 

*Lenght only specified if experimental validation was performed. Abbreviations: bp: base pairs; LINE: long 
interspersed nuclear element; LRS: long-read sequencing; UTR: untranslated region. 



Table 2: Experimentally validated structural variants and clinical information of patients and relatives. 
 Structural variant information Clinical Information 

 Gene Variant 
nomenclature (c.)1 

Variant 
nomenclature 

(r.)1 

Variant 
nomenclatur

e (p.)1 

Variant 
classifica

tion 
(Score1,2) 

ACMG/AMP 
Criteria 

Proband 
phenotype   

(age at 
diagnosis) 

Family history of FDR     
(age at diagnosis) 

Family history of SDR or TDR     
(age at diagnosis) 

(Likely) 
pathogenic 
variants in 

other cancer-
susceptibility 

genes 

2 BARD1 c.1865_1903+274d
el 

r.[1678_1903d
el,1811_1903

del] 

p.[Met560Gly
fs*2,        

Val604_Trp63
5delinsGly] 

LP (9) PVS1 (RNA) 
+ PM2_sup  BR (35) - Mother: MEL (28)  

- Father: MEL (55) 

- Maternal grandfather: CRC (U) 
- Paternal aunt: BR_nc (50) 
- Paternal uncle: LK_nc (55) 

Not identified 

5 MSH6 c.3834_3862dup - p.Lys1288Thr
fs*49 P (10) PVS1  + PP4 

+ PM2_sup CRC (55) 
- Mother: PAN_nc (83)     
- Father: BL (65), CRC 
(77), PELV (82) 

- Maternal aunt: STO_nc (75) 
- Maternal grandfather: LV_nc 
(U) 

Not identified 

6 MSH6 c.3922_3979dup - p.Asn1327Thr
fs*11 P (10) PVS1  + PP4 

+ PM2_sup 
CRC (57), 
ENDO (62) - Mother: BR (63) 

- Maternal uncle: PENIS (65), 
PAN (68) 
- Maternal uncle: PR_nc (U) 
- Maternal aunt: OV_nc (U) 

ATM 
c.6289G>T; 
p.Glu2097* (P) 

7 PALB2 c.739_891dup - p.Thr247_Thr
297dup VUS (2) PVS1_Sup + 

PM2_Sup BR (48, 59) - Father: BL_nc (U), 
LG_nc (U) 

- Maternal aunt: BR_nc (58) 
- Paternal aunt: BR_nc (53), 
ENDO_nc (U) 
- Paternal aunt: BR (65) 
- Paternal aunt: ENDO_nc (U) 
- Paternal uncle: LG_nc (60) 

Not identified 

18 APC c.3406_3407insLINE
1 - 

p.(Glu1136Gl
yfs*9) 

 
LP pending CR polyp 

(14) 

- Mother: CR polyp 
(38), CRC (63, 63) 
- Brother: CR polyp (18) 

- CRC_nc (80) Not identified 

21 ATM c.342_343insAluYa5  p.(Leu115Glyf
s*40) LP pending PR (53) - Mother: MM (74) - Paternal uncle: PR (86) 

- Paternal cousin: LG (54) Not identified 

22 BRCA2 c.156_157insAluYa5 - p.(Lys53Alafs
*9) LP pending BR (33, 57) - Father: THY_nc (60) 

- Brother: HN (61) 
- Maternal uncle: LG_nc (U) 
- Paternal cousin: BR_nc (50) Not identified 

23 BRCA2 c.2197_2198insAluY
b8 

 p.(Val733Glyf
s*32) LP pending BR (46, 51), 

HN (54) 
- Mother: BR (68, 78)  
- Sister: BR (36) - Maternal cousin: BR (37) Not identified 

24 PALB2 c.3501_3502insAluY
b8 - p.(Asp1168Tr

pfs*32) LP pending BR (38)   Not identified 

1. Lenght, variant nomenclature and variant classification only specified if experimental validation was performed. For RNA variant nomenclature, an mRNA assay was required. 2. Scored 
ACMG/AMP classification reference: Tavtigian et al., 2020 (PMID: 32720330). Abbreviations: LP: likely pathogenic variant; nc: not confirmed cancer diagnosis; P: pathogenic variant; U: unknown 
age at diagnosis; VUS: variant of uncertain significance. Cancer abbreviations: BL: bladder; BR: breast; CRC: colorectal; ENDO: endometrial; HN: head and neck; LG: lung; LK: leukemia; LV: liver; 
MEL: melanoma; MM: multiple myeloma; OV: ovarian; PAN: pancreatic; PELV: renal pelvic; PR: prostate; STO: gastric; THY: thyroid...



DISCUSSION 

Our study aimed to adapt GRIDSS for detecting 
germline structural variants of intermediate size 
from targeted NGS data, addressing a gap in routine 
diagnostics. By implementing a customized filtering 
pipeline, we identified eight (likely) pathogenic 
variants, increasing the diagnostic yield by 0.6%. In 
terms of colorectal cancer susceptibility, we 
diagnosed two patients with Lynch syndrome and 
one patient with familial adenomatous polyposis. 
Additionally, we identified four (likely) pathogenic 
variants in breast cancer susceptibility genes and 
one likely pathogenic variant in a prostate cancer 
patient, highlighting the role of structural variants 
in the missing heritability of cancer. These 
diagnoses are of high clinical value, involving high- 
to moderate-risk genes with well-established 
management, surveillance, and treatment 
protocols. Furthermore, other family members may 
benefit from predictive testing, allowing for 
personalized risk management and prevention 
strategies.   

Notably, five of the eight (likely) pathogenic 
variants from our dataset were mobile element 
insertions, including Alu and LINE elements. While 
their detection is challenging due to their repetitive 
nature and ubiquitous presence in the genome, 
mobile elements are estimated to account for up to 
0.3% of all disease-causing variants (Qian et al., 
2017). Therefore, our findings further reinforce the 
importance of incorporating mobile element 
detection strategies into routine diagnostic 
pipelines.  

When developing a new tool for clinical 
practice, achieving an optimal balance between 
sensitivity and specificity is crucial. Our filtering 
strategy was designed to reduce variant burden and 
focus on clinically relevant findings. Variants 
frequently detec
were disregarded. Although this cutoff was 
arbitrary, it was intended to reduce false positive 
calls, sequencing artifacts and polymorphisms. 
However, it could hinder the detection of recurrent 
or founder disease-causing variants that other tools 
might miss. Likewise, we implemented a filter to 
discard highly similar variants detected in more 
than 10 samples, assuming these would likely 

represent the same underlying event miscalled 
multiple times. Recognizing that this threshold 
might exclude frequent structural variants, we 
adjusted it to 15 samples, thus identifying an AluYa5 
insertion in intron 54 of the ATM gene 
(c.8010+30_8010+31insAluYa5; 
p.(Val2671Serfs*17)). This insertion was found in 
five breast cancer patients and six additional 
individuals with no clinical suspicion of ATM-related 
conditions (including melanoma, polyposis, 
ovarian, and gastric cancers). Previously reported 
(Klein et al., 2023), this variant is known to cause 
exon 54 skipping in 38% of total ATM transcripts in 
heterozygous carriers, with incomplete expressivity 
and probably reduced penetrance due to the leaky 
splicing effect. While our filtering pipeline would 
not have detected this variant, its apparently 
reduced lifetime cancer risk supports our strategy 
of prioritizing variants with clearer pathogenic 
impact.   

We also acknowledge that setting a 10% VAF 
threshold may be too restrictive, particularly for 
mosaic variants and those located in challenging 
regions, where reads may be sparse or poorly 
aligned. Additionally, excluding repetitive regions 
to minimize sequencing artifacts could result in the 
loss of clinically relevant variants located within 
these regions.  

While GRIDSS is a powerful tool, its 
performance can be influenced by sequencing 
quality. In our dataset, an AluYb8 insertion in BRCA2 
was identified in patient 23. Although typically one 
proband per family is studied, two family members 
were also included in the study: her sister, 
diagnosed with breast cancer at age 36, and a 
distant cousin, diagnosed with breast cancer at age 
37. Initially, the Alu insertion was not detected in 
either relative. However, upon further inspection of 
the VCF files, the variant was found in the sister's 
data but had failed to meet the GRIDSS quality 
threshold of 1,500 (quality score = 918) and was 
subsequently discarded. Additionally, there were 
few reads supporting this variant (VAF = 6.4%). 
Visual inspection using IGV, however, suggested 
that the variant was present. It is plausible that 
other structural variants with low quality 
parameters may have remained undetected due to 
this same issue.  



It is important to note that GRIDSS cannot 
detect structural variants with breakpoints located 
outside covered regions. While this is usually not an 
issue for whole-genome sequencing data, it 
certainly hinders the detection of structural 
variants in targeted approaches. In contrast, read-
depth methods could identify some of these 
variants if the affected region includes at least one 
exon. Given the strengths and limitations of each 
tool, combining methods based on different 
strategies is a more suitable approach to optimize 
the detection of all variant types and sizes.  

Despite these challenges, our approach has 
advanced the detection of clinically relevant 
structural variants. The restrictive filtering strategy 
we employed has shown practical applicability in a 
diagnostic setting, offering a reliable method for 
identifying high-impact variants in clinical practice.   
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ABSTRACT 

Molecular diagnostics often focus on coding regions, overlooking untranslated regions (UTRs) despite 
their critical role in post-transcriptional regulation. Variants in 5’UTRs can disrupt translation in various 
ways, such as affecting the ribosome’s ability to recognize the start codon, altering or creating upstream 
open reading frames (uORFs), or impacting splicing. 

We analyzed the 5’UTR of 55 clinically relevant hereditary cancer genes in 4,533 samples. Variants were 
prioritized according to Martin-Geary et al. (2023) filters, targeting those creating/disrupting uORFs, 
modifying Kozak sequences, or impacting splicing. 

From 86,694 identified variants, 860 were unique, and fourteen remained after applying a filtering 
process. Four variants were prioritized by UTRannotator, two by SpliceAI, and one based on its location 
affecting the Kozak sequence. Among all these candidate variants, only one variant, CDKN2A c.-34G>T 
was classified as pathogenic and correlated with the patient phenotype.  

This study highlights the feasibility of integrating 5’UTR variant analyses into diagnostics and their 
potential clinical relevance. Broader UTR coverage and experimental validation are essential to confirm 
or exclude the functional impact of candidate variants and enhance diagnostic approaches. 

 

INTRODUCTION 

To date, most molecular diagnostics units 
predominantly use exome sequencing (ES) or 
targeted gene panels, focusing on coding 
regions and their immediate surroundings.  
Genome sequencing (GS), which enables 
detection of variants in all regions of the 
genome, is becoming more common in 
diagnostics and is expected to lead the field in 
the coming years. However, the complexity of 
variant interpretation often limits studies to 

coding regions, despite having data from the 
non-coding parts of the genome.  

Therefore, untranslated regions (UTRs), 
which are present in the mRNA but not 
translated into protein, are frequently 
overlooked. However, these regions play a 
crucial role in post-transcriptional regulation, 
influencing RNA stability, intracellular 
localization and translation efficiency 



(Bashirullah, Cooperstock and Lipshitz, 2001; 
Jansen, 2001; Mignone et al., 2002). 

Of particular interest are 5’UTR regions, as 
they play a key role in regulating the rate at 
which the coding sequence of a gene is 
translated (Van Der Velden and Thomas, 1999). 
They contain a multitude of regulatory 
elements, including upstream open reading 
frames (uORFs), located before the main coding 
sequence. uORFs are elements that are present 
due to an upstream AUG (uAUG) start codon in 
the 5’UTR (Morris and Geballe, 2000; Pesole et 
al., 2001). They can either be non-overlapping if 
they have initiation and termination codons 
before the main ORF. In contrast, upstream 
overlapping ORFs (uoORFs) do not have a stop 
codon before the main ORF. These uoORFs can 
either be in-frame with the main ORF, resulting 
in translation of an N-terminally extended 
protein product (NTE), or out-of-frame, 
terminating at a different stop codon to the 
main ORF (Calvo, Pagliarini and Mootha, 2009). 

The efficiency of translation initiation from 
any AUG start codon is largely influenced by the 
local sequence context, the Kozak sequence, 
which surrounds the AUG (Kozak, 1986, 1987a, 
1987b). Positions -3 and +4 relative to the A in 
the initiator AUG have been identified as the 
most critical for ribosomal recognition (Kozak, 
1986, 1997). A strong Kozak sequence enhances 
the likelihood of the ribosome initiating 
translation at the uORF, thereby influencing the 
overall expression of the main ORF. uORFs can 
thus act as modulators of gene expression, often 
competing with the main ORF for ribosomal 
binding and impacting the protein level. 
Subsequent studies have shown that positions -
2, -4, and +5 also influence translation efficiency, 
experimentally evaluating all possible 
combinations (NNNNNNAUGNN, where N 
represents any nucleotide) to determine their 
effect on translational efficiency (Noderer et al., 
2014).  

Variants in 5'UTRs can disrupt regulatory 
functions in multiple ways. For example, 
variants located just upstream of the CDS that 
alter the Kozak sequence may impact translation 
efficiency by affecting ribosome’s ability to 
recognize the start codon (Mohan et al., 2014). 
Additionally, certain variants can create new 
uORFs by introducing a uAUG (Wright et al., 

2021), eliminate existing uORFs by deleting a 
uAUG, or alter an existing uORF by removing its 
stop codon (uStop) or causing an upstream 
frameshift (uFrameshift) that changes the 
reading frame of a uORF (Filatova et al., 2021). 
Splicing variants within the 5'UTR can also 
introduce uFrameshifts or affect the length, 
inclusion, or exclusion of uORFs, altering 
translation efficiency in various ways (Filatova et 
al., 2021).  

The Kozak sequence of these uORFs, along 
with the nature of the uORF, are critical in 
determining the regulatory impact of these 
variants, which could potentially contribute to 
diseases. These types of variants have been 
demonstrated to be under strong negative 
selection (Whiffin et al., 2020). 

Considering all these, UTRannotator was 
developed to prioritize variants in 5'UTR regions 
that create or eliminate uORFs (Zhang et al., 
2021). It identifies the type of uORF and assesses 
the strength of the Kozak sequence. 
Additionally, SpliceAI is widely used to prioritize 
splicing variants, aiding in the identification of 
potential splicing aberrations (Jaganathan et al., 
2019). Both UTRannotator and SPliceAI are 
integrated into Ensembl's Variant Effect 
Predictor (VEP) (McLaren et al., 2016).   

To facilitate the analysis of 5’UTR variants, 
Martin-Geary et al. (2023) suggested an 
annotation approach that prioritizes variants in 
diagnostic settings, allowing for the 
identification of candidate variants without 
substantially increasing the number of variants 
to be classified. These candidate variants must 
then undergo functional validation to confirm 
their impact. 

In this study, we used UTRannotator and 
applied the filters proposed by Martin-Geary et 
al. (2023)  to evaluate a cohort of patients with 
suspected hereditary cancer, with the aim of 
identifying potential pathogenic variants within 
their 5'UTR regions. 

 

METHODS 

Study Cohort 

A total of 4533 samples from patients with 
suspected hereditary cancer were analyzed. 
These patients had previously undergone 



genetic testing at the Molecular Diagnostic 
Laboratory of the Catalan Institute of Oncology, 
and all provided informed consent for both 
diagnostic and research purposes. 

Routine diagnostics pipeline 

DNA was extracted from peripheral blood 
leukocytes, and all samples were sequenced 
using a NextSeq550 platform (Illumina, San 
Diego, CA, USA). A customized NGS gene panel, 
the ICO-IMPPC Hereditary Cancer Panel (I2HCP, 
v3), was used, including 165 genes. For 24 genes, 
the capture included all exons of the 5'UTR 
region. For the remaining genes, only about 150 
bp upstream of the AUG start codon were well 
covered. For diagnostic purposes, only genes 
related to the individual's phenotype and 
variants located in coding regions or within 20 
base pairs of these regions had been analyzed. 

5’UTR regions definition 

The bed file utilized in the I2HCP diagnostic 
pipeline does not encompass the complete 
5'UTR regions for most genes. To address this, a 
custom bed file was created specifically for the 
5’UTR regions of the 55 genes included in the 
Catalan Health Instruction guidelines and 
covered in I2HCP v3 (Table 1). These genes were 
selected due to their recognized clinical 
relevance and, therefore, are the ones used for 
diagnostic purposes.  

The transcripts selected for all genes were 
the MANE Select transcripts, with the exception 
of CDKN2A, for which the MANE Plus Clinical 
transcript was also included (Supplementary 

Table 1). The 5'UTR regions were extracted from 
the .gff file provided by Ensembl’s latest GRCh38 
release (https://ftp.ensembl.org/pub/release-
113/gtf/homo_sapiens/Homo_sapiens.GRCh38.
113.gtf.gz). However, as the alignment in our 
diagnostic pipeline is performed using the 
GRCh37 genome, a liftover was applied to 
convert these positions to their GRCh37 
coordinates. 

Extent of UTR coverage 

To determine the extent of UTR coverage for 
each gene, we analyzed the distance between 
the transcription start site and the translation 
start site for each transcript of interest. 
Transcripts with complete exonic coverage of 
the 5'UTR (though not necessarily covering 
intronic regions) and those with a 5'UTR shorter 
than 150 bp consisting of a single exon were 
considered well-covered (Supplementary Table 
1). 

Variant calling at 5’UTR 

Variant calling was performed using VarDict Java 
(v1.8.3; https://github.com/AstraZeneca-NGS/ 
VarDictJava). The variant allele frequency (VAF) 
threshold was set at 0.1, and the custom bed file 
was used to restrict the variant calls to 5’UTR 
regions. All other parameters were left at 
default settings. Complex variants, as defined by 
VarDict Java (i.e., multiple alterations in close 
proximity, such as an insertion near a singe 
nucleotide variant or a deletion), and variants 
supported by fewer than six reads were not 
considered. 

 
 

Table 1: List of the 55 clinically relevant genes included in the Catalan Health Institute instruction 
guidelines and in I2HCPv3 panel 
AIP CDK4 MAX POLD1 SDHAF2 
APC CDKN1B MEN1 POLE SDHB 
ATM CDKN2A MET POT1 SDHC 
BAP1 CHEK2 MLH1 PRKAR1A SDHD 
BARD1 CTNNA1 MSH2 PRSS1 SMAD4 
BMPR1A DICER1 MSH6 PTEN STK11 
BRCA1 EPCAM MUTYH RAD51C TMEM127 
BRCA2 FH NF1 RAD51D TP53 
BRIP1 FLCN NTHL1 RET TSC1 
CDC73 KIF18 PALB2 RNF43 TSC2 
CDH1 KIT PMS2 SDHA VHL 

 

 



Variant prioritization 

All resulting variants were processed using 
Ensembl’s VEP with both UTRannotator and 
SpliceAI enabled. Only variants from the 
transcripts of interest were selected 
(Supplementary Table 1). Variants were 
prioritized according to any of the following 
criteria (Martin-Geary et al., 2023): 1. 
UTRannotator annotation suggested one of the 
following scenarios: a) Gain of a uAUG creating 
an oORF with a strong or moderate Kozak 
sequence; b) Loss of uStop with no other stop 
codon upstream of the main ORF with a strong 
or moderate Kozak sequence; c) Loss of a uAUG 
with a strong Kozak sequence or d) uFrameshift 
resulting in an oORF with a strong or moderate 
Kozak sequence. 2. Any of their SpliceAI delta 

located at 
position -3 relative to the main ORF, where an A 
or G changed to C or T.  

SpliceAI-10k was used to help interpret the 
splicing effect of variants with any SpliceAI delta 

 (Canson et al., 2023).  

GnomAD v4.1.0 was utilized to determine 
the minor allele frequency (MAF) of the 

candidate variants in the general population 
(Chen et al., 2023). 

The translation efficiency rate predictions 
used in this study were derived from the work of 
Noderer et al. (2014). 

 

RESULTS 

After analyzing the length of the 5'UTRs, we 
found that 24 of the 55 clinically relevant genes 
included in the I2HCP v3 panel have a short, 
single-exon 5'UTR that are fully covered, while 
an additional 11 genes have at least all 5’UTR 
exons and 150 bp of intronic boundaries covered 
(see Supplementary Table 1). Variant calling was 
performed on NGS results from 4,485 samples, 
focusing exclusively on these 5’UTR regions.  A 
total of 86,694 variants were identified, of which 
860 were unique. After filtering (see Methods), 
14 variants remained. 

Variants selected with UTRannotator  

Although UTRannotator provided annotations 
for eighteen variants (Table 2), only four met the 
specific filtering criteria (Table 3). 

 

Table 2: Summary of the total number of variants annotated in the 5'UTR by UTRannotator, 
categorized by consequence. For each consequence, the resulting ORF type and the Kozak strength of 
the gained or lost ORF are specified. Cases highlighted in gray indicate where variants would meet the 
filtering criteria if present in the dataset. 

Consequence Type of ORF regarding consequence Kozak strength of each type 
5'UTR 

consequence Total types Total Strong Moderate Weak 

premature start 
codon gain 

variant 
9 

inFrame_oORF 2 1 0 1 
OutOfFrame_oORF 4 1 1 2 

uORF 3 0 2 1 

uORF stop codon 
loss variant 1 

another stop codon 
upstream of the main ORF 0 0 0 0 

no other stop codon 
upstream of the main ORF 1 1 0 0 

premature start 
codon loss variant 6 

inFrame_oORF 0 0 0 0 
OutOfFrame_oORF 0 0 0 0 

uORF 6 0 3 3 

uORF frameshift 
variant 2 

OutOfFrame_oORF 0 0 0 0 
uORF 2 0 1 0 

TOTAL 18      
 



Table 3: Variants selected by UTRannotator filters. The type of uORF and the Kozak strength predicted 
by UTRannotator are shown, as well as the translation efficiency of the main ORF and the new uORF. 
Additionally, the table indicates the minor allele frequency (MAF) in GnomAD v.4.1.0, the number of 
carrier patients whose clinical suspicion was related to the variant gene, and the number of carrier 
patients where it was not.  

Variant description UTRannotator 
Predicted 

translation 
efficiency 

GnomAD  
(v.4.1.0) 

Nº of 
individuals 

with clinical 
phenotype* 

Gene Variant Type Kozak 
strength oORF Main 

ORF MAF (%) Yes No 

CDKN2A c.-34G>T 

premature start 
codon gain variant  

-> OutOfFrame 
oORF 

Strong 100 79 
0.0060 

(91/ 
1509400) 

1 2 

MSH6 c.-22T>A 

premature start 
codon gain variant -

> OutOfFrame 
oORF 

Moderate 71 103 
0.0001 

(2/16109
06) 

1 0 

AIP c.-76T>C 

uORF stop codon 
loss variant -> no 
other stop codon 
upstream of the 

main ORF 

Strong 109 135 0 0 1 

STK11 c.-33C>A 
premature start 

codon gain variant -
> InFrame_oORF 

Strong 113 80 0 1 0 

* The clinical indication is based on guidelines in the Catalan Health Instruction (Supplementary File 1)

 

Two of them create a uAUG that generates 
an uoORF out-of-frame with the CDS (Figure 1, A 
and B). The CDKN2A c.-34G>T variant has been 
previously reported in the literature as 
pathogenic (Liu et al., 1999). This variant was 
identified in three unrelated probands. One 
proband had melanoma at the age of 55 and 
breast cancer at the age of 70, and a niece with 
melanoma at the age of 28. The other two 
probands were diagnosed with ovarian cancer. 
Additionally, in one of the ovarian cancer cases, 
there were unconfirmed diagnoses of skin 
cancer in the family, affecting the proband's 
mother and aunt. The MSH6 c.-22T>G variant is 
located in a moderate Kozak context. This 
variant was found in a patient with polyposis 
who had developed endometrial cancer. 
However, immunohistochemistry performed on 
the tumor showed preserved expression of the 
MSH6 protein. Additionally, the patient’s 
mother and grandmother both had colorectal 

cancer, but genetic panel testing on the mother 
revealed that the variant did not co-segregate 
with the disease. This variant was not therefore 
considered to be a good candidate to explain 
disease in this family.  

The STK11 c.-33C>A variant creates a uAUG 
with a Strong Kozak context, predicted to result 
in an in-frame oORF with the CDS (Figure 1, C). 
The patient was tested with a polyposis panel 
that includes STK11. Mutations in this gene are 
typically associated with hamartomatous 
(juvenile-type) polyps, characteristic of Peutz-
Jeghers syndrome. However, after reviewing the 
only report available for the patient, it specifies 
that the patient had >100 polyps, some of which 
were hyperplastic, with no indication that any 
were hamartomatous. Given this information, 
we would not initially consider this condition to 
be STK11-related. 

 



Figure 1: Schematic representation of the N terminus of genes with candidate variants 
prioritized by UTRannotator. For each gene, all wild-type uORFs, both those with and without 
supporting evidence, are shown. In cases A, B, and C, the variants create an out-of-frame uORF 
overlapping the coding sequence (CDS) (oORF-creating). If translation initiates at the uAUG, the 
ribosome will not translate the CDS. In case C, the variant creates a uAUG that is in-frame with 
the CDS. If translation initiates at this point, an elongated protein will be translated.

The remaining variant, AIP c.-76T>C, deletes 
a uORF stop codon, with no other stop codon 
before the main ORF’s first methionine, leading 
to an out-of-frame oORF in a strong Kozak 
context (Figure 1, D). This variant was found in a 
patient with prostate cancer. However, AIP is 
not indicated for analysis with this phenotype
(Supplementary File 1); it is typically indicated 
for certain pituitary tumors.

Variants selected with SpliceAI

A total of eleven variants had at least one 
SpliceAI delta score of 0.20 or higher (Table 4). 
Two variants were dismissed as no splicing 
aberration was predicted by SpliceAI-10k. Of the 
nine left, two were filtered out due to a minor 
allele frequency (MAF) >1%. Finally, five variants 
were excluded as they were not found 
exclusively in samples from patients whose 
phenotype was related to their gene, leaving 
two variants for further inspection (Figure 2). 

The BRCA2 c.-117C>G variant is predicted to 
generate a potential new donor site, leading to 
a partial exon skipping of 77bp, with a delta 
score of 0.64 (reference score = 0.04, alternative 
score = 0.68). However, donor loss of the natural 
site is not predicted (delta score 0.02, reference 
score = 0.99, alternative score = 0.97) and the 
score for the natural donor site in the presence 
of the variant outweighs that of the new 
potential site. This suggests that while 
alternative splicing may occur, it would likely be 
at a lower frequency compared to the use of the 
natural splice site. Similarly, the BRIP1 c.-
232G>A variant is also predicted to generate a
donor gain with a delta score of 0.39 (reference 
= 0.01, alternative = 0.40), leading to a partial 
exon skipping of 205bp As with BRCA2, the 
natural donor site has a predicted probability 
clearly higher than the new one (delta score = 
0.04, reference = 0.88, alternative = 0.84).



Figure 2: Schematic representation of the N-
terminus of genes with candidate variants 
prioritized by SpliceAI, with splicing 
aberrations predicted by SpliceAI-10k and 
found exclusively in samples from patients 
whose phenotype was related to the gene. In 
the upper part of each panel, the splicing 
pattern of the full-length isoform is shown, 
along with its raw scores for the reference allele. 
In the lower part, the alternative raw scores for 
the natural site and the donor gain site caused 
by the variant are displayed. Both variants cause 
a partial exon skipping, represented in dark gray, 
with the lost region size indicated. DG (Donor 
Gain) and DL (Donor Loss) delta scores reflect 
the likelihood of gaining or losing donor splice 
sites, respectively. 

Table 4: Variants selected according to SpliceAI delta scores. The four delta scores provided by 
SpliceAI are shown, along with the SpliceAI-10K splicing aberration prediction.  Additionally, the table 
indicates the minor allele frequency (MAF) in GnomAD v.4.1.0, the number of carrier patients whose 
clinical suspicion was related to the variant gene, and the number of carrier patients where it was 
not. Variants selected for further exploration and discussed in the text are highlighted in light gray.

Variant description SpliceAI SpliceAI-10K GnomAD (v4.1.0)
Nº of individuals 

with clinical 
phenotype*

Gene Variant AG AL DG DL Splicing 
aberration?

MAF (%) Yes No

ATM
c.-

31+61A>G
0.02 0 0.65 0 PIR 0.5960 

(958/160736)
15 13

BMPR
1A

c.-287A>G 0.01 0 0.79 0.13 PED 0.0388
(59/151976)

0 1

BRCA2 c.-117C>G 0 0 0.64 0.02 PED 0.0007
(1/152362) 1 0

BRIP1 c.-31+6T>C 0.03 0 0.36 0.39 PED 0 0 1
BRIP1 c.-232G>A 0.04 0 0.39 0.04 PED 0 1 0

CHEK2 c.-7+286A>T 0.03 0 0.26 0.01 NCP
2.011 

(3062/152228) 4 0

FLCN
c.-24-

394A>G **
0.04 0 0.48 0.11 NCP 51.50 

(119706/232442)
6 2

MEN1
c.-23-

135G>A
0 0 0.36 0 No 0.0043

(27/627826)
0 4

MUTY
H

c.-7+5C>G 0.02 0 0.63 0.31 No 98.76 
(1384292/1401720) 498 1433

PTEN c.-714G>A 0.03 0 0.28 0 PED
0.0095 

(37/390758) 0 2

TP53 c.-28-82G>A 0.60 0 0.02 0 PIR & NCP 0.0094 (88/
934420)

0 1

* The clinical indication is based on guidelines in the Catalan Health Instruction (Supplementary File 1)
** This region is not well covered by our panel (0.14% of individuals have at least 10 reads covering the 
position), and we are likely underestimating the number of individuals with the variant in our cohort.
Abbreviations: PIR: partial intron retention; PED: partial exon deletion; NCP: non-coding pseudoexon.



Table 5: Variants selected for -3 position relative to A in the main AUG. The translation efficiency of 
the main ORF is shown, where "REF" indicates the efficiency in the reference sequence (without the 
variant) and "ALT" indicates the efficiency with the variant. Additionally, the table indicates the minor 
allele frequency (MAF) in GnomAD v.4.1.0, the number of carrier patients whose clinical suspicion was 
related to the variant gene, and the number of carrier patients where it was not. 

Variant description Predicted Translation 
efficiency main ORF 

GnomAD 
(v.4.1.0) 

Nº of individuals with clinical 
phenotype* 

Gene Variant REF ALT MAF (%) Yes No 

BRCA1 c.-3G>T 74 60 
0,0001 

(1/1610582) 1 0 
* The clinical indication is based on guidelines in the Catalan Health Instruction (Supplementary File 1) 

 

Variants at position -3 relative to the main ORF 

The only variant found 3 bp upstream the main 
ORF, where an A/G changes to C/T, is BRCA1 c.-
3G>T (Table 5). This variant is predicted to 
reduce the translation efficiency of the main 
ORF. It was observed in a patient diagnosed with 
triple-negative medullary breast cancer at the 
age of 52. Her sister had also breast cancer at 
the age of 59. Their mother was diagnosed with 
Leukemia at the age of 76.  

 

DISCUSSION 

UTR regions are crucial for post-transcriptional 
regulation of gene expression. However, they 
are often overlooked in diagnostics settings due 
to the lack of clear guidelines for their 
classification.  

To address this gap, experts have proposed 
filters to prioritize promising variants for further 
study, while maintaining a manageable number 
of candidates for classification (Martin-Geary et 
al., 2023). This is particularly important, given 
that variant classification remains a major 
bottleneck in molecular diagnostics units. 

Using their approach, we prioritized seven 
variants Four were selected by UTRannotator. 
Of these, only the CDKN2A c.-34G>T variant, 
which had already been described in the 
literature (Liu et al., 1999), is definitively 
pathogenic. This finding has enabled the 
adaptation of clinical follow-up for the three 
probands and the initiation of cascade testing in 
their relatives. However, according to their 
phenotype, the study of CDKN2A was not 
indicated for two of them. Nevertheless, one of 

them has an aunt with an unconfirmed diagnosis 
of skin cancer, which should be further 
investigated to assess whether CDKN2A variant 
could be the cause, while the other is clearly an 
incidental finding. The MSH6 c.-22T>G variant, 
although it matches the family’s clinical context, 
further analysis revealed that it does not co-
segregate with the disease in the proband's 
mother. Moreover, the IHC showed normal 
expression of the MSH6 protein, suggesting that 
this variant is not the cause of the family’s 
condition. The remaining two variants, STK11 c.-
33C>A and AIP c.-76T>C, have an unknown 
effect in the absence of functional follow-up. 
The first variant predicts an in-frame oORF, 
resulting in a NTE of eleven amino acids. 
Although the patient’s polyps do not appear to 
be hamartomatous (typically associated with 
STK11-related conditions), we have limited 
clinical information, which prevents us from 
definitively excluding the presence of these 
polyps. The AIP variant is unrelated to the 
patient’s phenotype, as AIP is typically linked to 
pituitary tumors, while the patient has prostate 
cancer. 

We prioritized two variants based on 
potential splicing effects due to their position; 
however, neither appeared to have a significant 
impact on splicing after further investigation. 
Although they are predicted to create new 
donor sites, neither is expected to surpass the 
strength of the natural donor sites, suggesting 
that any alternative splicing events would likely 
occur at a lower frequency compared to the full-
length isoform. While in silico tools like SpliceAI 
are highly predictive, they do not always 
accurately reflect biological outcomes, which 
are influenced by many other factors. Functional 



studies, such as mini gene assays or RNA-seq, 
would be necessary to confirm the putative 
splicing effects.  

We identified one variant at a -3 position in 
BRCA1 gene, which is predicted to slightly 
reduce translation efficiency; although 
experimental validation, such as luciferase 
assays, would be needed to confirm this 
reduction. Nonetheless, RNA studies on other 
BRCA1 variants suggest that even with only 20-
30% of BRCA1 tumor suppressor function is 
sufficient to avoid a high risk of cancer (de la 
Hoya et al., 2016). Therefore, it is unlikely that 
this variant is the cause of the family’s condition. 

Here, we applied a strict filtering approach, 
and it is important to consider that the 
restrictiveness of the filters used may 
inadvertently exclude other potentially relevant 
variants. For example, while UTRannotator is a 
powerful tool, it does not consider non-
canonical start codons, which have been shown 
to initiate translation with considerable 
efficiency under certain Kozak sequence 
contexts (De Arce, Noderer, and Wang, 2018). 
Additionally, it does not consider variants that 
may modify the strength of the Kozak sequence 
of existing uORFs which could potentially impact 
gene expression. 

This study has some limitations. First, 
although we achieved full exonic coverage of the 
5’UTR region for 35 genes, for 19 genes we only 
captured approximately 150 bp upstream of the 
start codon, and for one gene, 500bp, in both 
cases, this coverage is insufficient to encompass 
the entire exonic 5’UTR (Supplementary Table 
1). Therefore, we may have missed relevant 
variants in uncovered regions. Future versions of 
our panel will hopefully cover the whole 5’UTR 
of these genes. 

Secondly, we studied single nucleotide 
variants and short indels, without considering 
copy number variants in the 5’UTR regions. They 
should be included to provide a more 
comprehensive understanding of the regulatory 
impact of UTR variants. For example, deletions 
affecting the first exon and promoter of the 
MEF2C 5'UTR are predicted to disrupt enhancer 
function and have been identified in patients 
with developmental disorders (Wright et al., 
2021). Additionally, our focus was limited to 

variants in the 5’UTR regions, but future studies 
should also consider variants in 3’UTR, internal 
ribosome entry sites and transcription factor 
binding sites, which can also play key regulatory 
roles. 

Finally, this study represents a prioritization 
approach proposal, and as mentioned earlier, 
experimental validation is necessary to confirm 
the functional impact of the identified variants.  

In summary, our study highlights the 
potential of analyzing 5'UTR regions to uncover 
clinically relevant variants in hereditary cancer. 
The use of strict prioritization filters 
demonstrates that incorporating these regions 
into diagnostic workflows can be feasible, 
paving the way for more comprehensive genetic 
analyses in the future.  
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