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Abstract

The aim of this work is to explore algebraic geometry and its connections with complex
analysis and topology through a proof of Torelli’s Theorem for compact Riemann surfaces.
The theorem asserts that a compact Riemann surface is uniquely determined by its Jacobian
and theta divisor. To establish this result, we first develop the theoretical framework, begin-
ning with differential 1-forms and the concept of divisors. We then prove the Riemann-Roch
Theorem, followed by a study of the theory of Jacobians via the Abel Theorem. These tools
and results finally culminate in the proof of Torelli’s Theorem.
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Introduction

Some Context

During the 19th century, Bernhard Riemann (1826-1866) began to develop the concept now
known as Riemann surfaces, to create a more comprehensive and strong theory of analytic
functions of complex variables. Similarly to how topology and differential geometry develop a
theory of two-dimensional manifolds as spaces locally resembling R2, we can apply the same
idea but require that our spaces locally resemble C, and the transition functions between
local charts to be holomorphic functions. This leads to the construction of Riemann surfaces,
which, at first glance, appear to be purely analytic objects, but possess significant value from
a geometric, topological, and algebraic perspective.

From the viewpoint of algebraic geometry, it is interesting to focus on compact Riemann
surfaces, as they are not only strongly related to projective curves, which are the zero loci of
sets of complex homogeneous polynomials, but also allow us to define a topological genus
for these surfaces. The compactness introduces an immediate problem: globally holomorphic
functions defined on compact Riemann surfaces are rigid. The Maximum Modulus Theo-
rem is both exciting and disappointing; it tells us that if X is a compact Riemann surface
and f : X → C is a holomorphic function, then f must be constant. This prompts us to
relax our conditions. What happens if we allow poles? Can we guarantee the existence of
non-constant meromorphic functions on our compact Riemann surface? This was Riemann’s
original question. He proved that, indeed, non-constant meromorphic functions exist and
further provided a lower bound related to the genus of the compact Riemann surface. His
student Gustav Roch (1839-1866) later added a correction term, turning the inequality into an
equality, which came to be known as the Riemann-Roch Theorem.

Just as in two-dimensional manifolds, where we have homeomorphisms, by working with
holomorphic functions, we can define a new equivalence relation: analytic isomorphisms.
From this equivalence arises one of the major themes in mathematics: the classification of
objects. To classify complex objects, it is often more effective to work with simpler objects.
In topology, the use of the fundamental group is often quite efficient. In the case of compact
Riemann surfaces, we use what are known as period matrices, which are defined through
the topological and analytic properties of the surface. The problem with these matrices is that
they are not canonically obtained, leading to two issues. Firstly, to what extent do they depend
on the base and the representatives of the isomorphism class of compact Riemann surfaces?
Secondly, is there an injective relation between compact Riemann surfaces and the period
matrices? To solve these problems, one associates to the matrix a more complex object, the
geometry of the theta divisor defined on a variety with a group structure called the Jacobian.
Here, the Abel-Jacobi map plays a crucial role, providing a natural embedding of a compact
Riemann surface into its Jacobian. Finally, Torelli’s Theorem, named after Ruggiero Torelli
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2 Introduction

(1884-1915), tells us that the geometry of the theta divisor and the Jacobian are sufficient to
recover our compact Riemann surface.

This work aims to prove Torelli’s Theorem for compact Riemann surfaces by constructing
all the necessary theoretical frameworks through the Riemann-Roch Theorem and the Abel-
Jacobi map.

Structure of Work

The work is divided into three main blocks, each presenting a detailed proof of one or two
key theorems. The first block, which primarily follows [Mir95], comprises Chapters 1, 2, 3,
and 4, and introduces compact Riemann surfaces. Once the object of interest is presented,
the focus shifts to the key functions: meromorphic functions and mappings between two
Riemann surfaces, which enable the establishment of the category of Riemann surfaces.
In Chapter 2, 1-forms are introduced as tools suitable for defining integration on Riemann
surfaces.

Chapter 3 introduces the concept of the divisor of a meromorphic function (or a meromor-
phic 1-form), which is essentially the formal sum of the zeros and poles of the function (or
1-form) at each point of its domain. Several properties are derived, and known results from
the course on Algebraic Curves are revisited using this formalism. Chapter 4 culminates the
first block with the Riemann-Roch theorem. This cornerstone result relates the dimension of
the space of meromorphic functions (understood as a complex vector space) to meromorphic
1-forms and the topological genus of the compact Riemann surface. Some straightforward
applications are presented, illustrating the immediate utility of the Riemann-Roch theorem.

The second block (primarily based on [Gri89] and [FarKra80]), covered in Chapter 5,
briefly introduces the concept of homology in order to quickly talk about the Jacobian, a space
with a group structure that offers both a topological and analytical perspective for studying
compact Riemann surfaces. Moreover, we introduce the period matrix, which encodes the
integrals of holomorphic 1-forms over a chosen basis of homology cycles. The Abel-Jacobi
map is then presented, linking a compact Riemann surface to its corresponding Jacobian.
Finally, the Abel theorem and the Jacobi Inversion theorem are proven, which relate the
divisors of meromorphic functions to the Jacobian.

Finally, the third block, presented in Chapter 6, is dedicated to the Torelli theorem, an
advanced result that states that a compact Riemann surface is completely determined by its
Jacobian and period matrix. The proof follows the approach of Henrik Martens ([Mar63]) and
the book [Nar92] which state that Torelli’s theorem is a combinatorial result of the Riemann-
Roch theorem and the Abel-Jacobi map.

Throughout this work, we use without proving results from the following subjects of the
degree: Complex Analysis, Algebraic Curves, and Topology and Geometry of Manifolds.



Chapter 1

Riemann Surfaces: Preliminary
Concepts

A Riemann surface is fundamentally a space that, locally, resembles an open set in the
complex plane. In this section, we formalize this concept.

1.1 Complex Chart and Complex Structures

Definition 1.1. Let X be a topological space. A complex chart on X is a homeomorphism
ϕ : U → V, where U ⊂ X is an open set in X, and V ⊂ C is an open set in the complex plane.
The open subset U is called the domain of the chart ϕ. The chart ϕ is said to be centered at
p ∈ U if ϕ(p) = 0.

Just like real manifolds, a chart on X can be seen as providing a local (complex) coordinate
system on its domain. Similarly, if two charts overlap, we need to ensure that their local
coordinates do not introduce conflicting structures.

Definition 1.2. Let X be a topological space and let ϕ1 : U1 → V1 and ϕ2 : U2 → V2 be
two complex charts on X. We say that ϕ1 and ϕ2 are compatible if either U1 ∩ U2 = ∅, or
ϕ2 ◦ ϕ−1

1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2) is holomorphic.

Note that the definition is symmetric: if ϕ2 ◦ ϕ−1
1 is holomorphic on ϕ1(U1 ∩ U2) then

ϕ1 ◦ ϕ−1
2 is holomorphic on ϕ2(U1 ∩ U2). The function T = ϕ2 ◦ ϕ−1

1 is called the transition
function between complex charts and it is a bijection in any case. These functions have the
following property.

Lemma 1.3. Let T be a transition function between two compatible charts. Then, the derivative
T′ is never zero on the domain of T.

Proof. Let S denote the inverse of T, so that S ◦ T is the identity on the domain of T, i.e.,
S(T(w)) = w for all w in the domain of T. Taking the derivative of this equation gives
S′(T(w))T′(w) = 1, so that T′(w) cannot be zero.

With the idea of compatibility, we can construct an atlas for X, and, given the equiva-
lence relation obtained with the compatibility between different atlases (analogously to real
2-manifolds), we can define a complex structure. Now, with all this information, we can define
a Riemann surface.
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4 Riemann Surfaces: Preliminary Concepts

Definition 1.4. A Riemann surface is a second countable connected Hausdorff topological
space X with a complex structure.

There is one example of considerable utility.

Example 1.5. The Riemann sphere is the set C∞ = C ∪ {∞} with domains U0 = C and
U1 = (C \ {0}) ∪ {∞}, and corresponding charts given by:

ϕ0(z) = z and ϕ1(z) =

{
1
z , if z ̸= ∞

0, if z = ∞

Sometimes it is useful to set aside the complex structure of a Riemann surface and consider
it as a simple real 2-manifold, allowing us to apply familiar concepts. To start with, since
connectedness and path-connectedness are equivalent for real manifolds, the same applies to
Riemann surfaces.

Additionally, holomorphic maps between two subsets of the complex plane preserve the
orientation of the plane by the Cauchy-Riemann relations. Consequently, we can establish a
well-defined local orientation at each point of a Riemann surface by "pulling back" the orienta-
tion through a complex chart that contains that point. These local orientations define a global
orientation on the Riemann surface, making every Riemann surface orientable. Therefore, we
have the following:

Proposition 1.6. Every Riemann surface is an orientable path-connected 2-dimensional C∞

real manifold. Every compact Riemann surface is diffeomorphic to the g-holed torus for some
unique integer g ≥ 0 called the topological genus.

The Riemann sphere, therefore, is a compact Riemann surface with topological genus 0.
In general, we can define charts to open sets in Cn and obtain what we know as complex

manifolds of dimension n. A Riemann surface is just a complex manifold of dimension 1.

1.2 Examples of Riemann Surfaces

Let us introduce some examples of Riemann Surfaces.

Example 1.7. (Complex torus). Let us begin by selecting two complex numbers w1, w2 ∈ C

that are linearly independent over R. Define the lattice L as the subgroup of C generated by
integer linear combinations of w1 and w2:

L = Zw1 + Zw2 = {m1w1 + m2w2 | m1, m2 ∈ Z}.

Let X = C/L denote the quotient group and π : C → X the projection. Via π we induce the
quotient topology, where a subset U ⊂ X is open if, and only if, π−1(U) is open in C. With
this definition, π is continuous, and therefore, X is connected. In particular, π is an open map.

For any z ∈ C, define the parallelogram:

Pz = {z + λ1w1 + λ2w2 | λ1, λ2 ∈ [0, 1]}.

Every point in C is congruent modulo L to a point in Pz, and π maps Pz onto X. Since Pz is
compact, X is also compact. The discreteness of L ensures the existence of ε > 0 such that
|w| > 2ε for all nonzero w ∈ L. Fix such an ε and z0 ∈ C, and let D = D(z0, ε) be the open disc
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of radius ε centered at z0. The choice of ε guarantees that no two distinct points in D differ by
an element of L. Consequently, the restriction π|D : D → π(D) is a homeomorphism since it
is onto, continuous, open, and injective from the choice of ε.

To define a complex atlas on X, fix ε as before, consider z0 ∈ C and Dz0 = D(z0, ε).
The inverse map ϕz0 : π(Dz0) → Dz0 of π|Dz0

acts as a local chart on X, as we have seen
above. It remains to show that these charts are pairwise compatible. Taking two points
z1, z2 ∈ C and considering two charts ϕ1 = ϕz1 and ϕ2 = ϕz2 as defined earlier, let U denote
the intersection π(Dz1) ∩ π(Dz2). If U is empty, the compatibility is trivial. Otherwise, if
U ̸= ∅, let T(z) = ϕ2(ϕ

−1
1 (z)) = ϕ2(π(z)) for z ∈ ϕ1(U). We need to verify that T is

holomorphic on ϕ1(U). Observe that π(T(z)) = π(z) for all z ∈ ϕ1(U), which implies that
T(z)− z = ω(z) ∈ L for all z ∈ ϕ1(U). The function ω : ϕ1(U) → L is continuous, and since
L is discrete, ω is locally constant on ϕ1(U). Thus, locally, T(z) = z + ω for some fixed w ∈ L,
and consequently, T is holomorphic as desired. As a result, ϕ1 and ϕ2 are compatible, and the
collection of charts {ϕz | z ∈ C} is a complex atlas on X. Thus, X is a Riemann surface, which
is called the complex torus. If we view it as a simple real 2-manifold, this is basically a torus.
Thus, g = 1.

Starting from the course on Algebraic Curves, it is interesting to observe how curves (both
affine and projective), under certain restrictions, are Riemann surfaces. Let us begin with a
remark.

Remark 1.8. Let V ⊂ C be a connected open subset of the complex plane, and let g be a
holomorphic function defined on V. Consider the graph X of g as a subset of C2:

X = {(z, g(z)) | z ∈ V}.

Endow X with the subspace topology, and let π : X → V be the projection onto the first
coordinate. The map π is a homeomorphism with inverse z 7→ (z, g(z)). Thus, π is a complex
chart on X whose domain covers all of X, providing a complex atlas. Therefore, X has the
structure of a Riemann surface.

With this idea, we can understand the following example.

Example 1.9. (Smooth irreducible affine plane curves). A smooth affine plane curve is the
locus of zeros in C2 of a polynomial f (z, w) that is nonsingular, i.e., for every root p, either
∂ f /∂z(p) or ∂ f /∂w(p) is not zero.

Using the Implicit Function Theorem we can obtain complex charts by concluding that a
smooth affine plane curve is locally a graph. Specifically, let p = (z0, w0) ∈ X. If ∂ f /∂w(p) ̸= 0
(the other case is analogous), find a holomorphic function gp(z) such that in a neighborhood
U of p, X is the graph w = gp(z). Thus, the projection πz : U → C (mapping (z, w) to z) is
a homeomorphism from U to its image V, which is open in C (analogously with πw). This
gives a complex chart on X .

Let us verify the compatibility between charts. First, suppose both charts are obtained
using πz. If their domains intersect nontrivially, the composition of the inverse of one with
the other is the identity map. Now, assume one chart is defined by πz and the other by πw.
Let p = (z0, w0) be a point in their common domain U. Near p, suppose X is locally given by
w = g(z) for some holomorphic function g. Then, on πz(U) near z0, the inverse of πz maps
z to (z, g(z)). Consequently, the composition πw ◦ π−1

z maps z to g(z), which is holomorphic.
Therefore, any two charts are compatible.
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Since X is a subspace of C2, it is second countable and Hausdorff. Therefore, to establish
that X is a Riemann surface, it remains to check that X is connected. To do so, we can
assume that the polynomial f (z, w) is irreducible. Now, the proof of connectedness of X if f
is irreducible requires some machinery of algebraic geometry, for further details one can use
[Sha77]. Granting this, every smooth irreducible affine plane curve is a Riemann surface.

Example 1.10. (Smooth projective plane curves). Let F(x, y, z) be a homogeneous, nonsin-
gular polynomial, i.e., we have no common solutions in P2 to F = ∂F

∂x = ∂F
∂y = ∂F

∂z = 0. A
basic theorem of the course of algebraic curves states that every nonsingular homogeneous
polynomial is automatically irreducible. With these assumptions,

X = {[x, y, z] ∈ P2 | F(x, y, z) = 0}

is a Riemann surface. To show this, notice that the intersections Xi of X with the open sets
that cover P2,

U0 = {[x, y, z] ∈ P2 | x ̸= 0}, U1 = {[x, y, z] ∈ P2 | y ̸= 0}, U2 = {[x, y, z] ∈ P2 | z ̸= 0}

are smooth irreducible affine plane curves viewed in C2. Recall that the coordinate charts on
Xi are simply the projections, which in our case are straightforward to describe: they are the
functions y/x and z/x for X0, and similar ratios of the other variables for the other sets. To
verify that the complex structures given on the Xi are compatible, we need to check statements
like the following. Consider a point p ∈ X that belongs to both X0 and X1: p = [x, y, z] with
x, y ̸= 0. Suppose that ϕ0 = y/x is a chart near p for X0, and ϕ1 = z/y is a chart near p
for X1. We must show that ϕ1 ◦ ϕ−1

0 is holomorphic. Now, ϕ−1
0 (w) = [1 : w : h(w)] for some

holomorphic function h (locally, X is the graph of h). Thus, ϕ1 ◦ ϕ−1
0 (w) = h(w)/w, which is

holomorphic since w ̸= 0 (as p ∈ X1).
With the arguments of the previous example, we have that X is a Riemann surface, in

particular, a compact one, since it is covered by three compact sets.

1.3 Functions on Riemann Surfaces

Modern geometric philosophy strongly asserts that once the objects of interest are defined,
the next step is to establish the relevant functions associated with them.

Let X be a Riemann surface, let p be a point of X, and let f be a complex-valued function
defined in a neighborhood W of p.

Definition 1.11. f is holomorphic at p if for every chart ϕ : U → V with p ∈ U the composition
f ◦ ϕ−1 is holomorphic at ϕ(p). We say f is holomorphic in W if it is holomorphic at every
point of W.

With this idea, we can inherit the concepts of removable singularity, pole, and essential
singularity. In other words, we say that f has a removable singularity (respectively, a pole
or an essential singularity) if there exists a chart such that the composition with f has a
removable singularity (respectively, a pole or an essential singularity).

Following the concept of holomorphic functions, we can introduce meromorphic functions.

Definition 1.12. A function f on X is meromorphic at a point p ∈ X if it is either holomorphic,
has a removable singularity, or has a pole at p. We say f is meromorphic on an open set W if
it is meromorphic at every point of W.
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We will mostly work with compact Riemann surfaces. Now, because of the following
theorem, meromorphic functions are the natural functions to look at.

Theorem 1.13. Let X be a compact Riemann surface. Suppose that f is holomorphic in all of
X. Then, f is a constant function.

Proof. Since f is holomorphic, its absolute value | f | is a continuous function. Therefore, since
X is compact, | f | achieves its maximum value at some point of X. By the Maximum Modulus
Theorem (inherited from the course of Complex Analysis), f must then be constant on X,
since X is connected.

Let ϕ : U → V be a chart on X with p ∈ U. If we think of z as a local coordinate on X near
p, so z = ϕ(x) for x near p, we can use the concept of Laurent series around z0 = ϕ(p):

f (ϕ−1(z)) = ∑
n∈Z

cn(z − z0)
n.

A Laurent series not only allows for the determination of the nature of a singularity, but also
enables the extraction of the order of a zero or pole for meromorphic functions. Recall that
the principal part is the part of the sum that has strictly negative exponents. We will use this
concept later.

Definition 1.14. Let f be meromorphic at p, whose Laurent series in a local coordinate z is
∑n cn(z − p)n. The order of f at p, denoted by ordp( f ), is the minimum exponent that appears
(with a nonzero coefficient) in the Laurent series:

ordp( f ) = min{n | cn ̸= 0}.

Proposition 1.15. The operator ordp( f ) is well-defined.

Proof. Suppose that ψ : U′ → V ′ is another chart with p ∈ U′, giving the local coordinate
w = ψ(x) for x near p. Furthermore, assume that ψ(p) = w0. Consider the transition function
T(w) = ϕ ◦ ψ−1. By Lemma 1.3, we have that T′(w0) ̸= 0. Therefore:

z = T(w) = z0 +
∞

∑
n=1

an(w − w0)
n,

with a1 ̸= 0. Suppose now that cn0(z − p)n0 + (higher order terms) is the Laurent series for f
at p in terms of the coordinate z, with cn0 ̸= 0, so that the order of f computed via z is n0. To
obtain the Laurent series for f in terms of w, we compose with z − z0 = ∑∞

k=1 ak(w −w0)k. The
term of lowest possible order in the variable w − w0 of the composition is cn0 an0

1 (w − w0)n0 ,
therefore, the order of f computed via w is also n0.

Remark 1.16. Suppose that f is meromorphic at p. Then, f is holomorphic at p if, and only
if, ordp( f ) ≥ 0. In this case, f (p) = 0 if, and only if, ordp( f ) > 0. Moreover, f has a pole
at p if, and only if, ordp( f ) < 0. Finally, f has neither a zero nor a pole at p if, and only if,
ordp( f ) = 0.

To end this section, let us inherit a theorem from complex analysis that we will use several
times without mentioning.

Theorem 1.17. Let f be a meromorphic function defined on a connected open set W of a
Riemann surface X. If f is not identically zero, then the zeros and poles of f form a discrete
subset of W.
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A direct consequence is the following:

Corollary 1.18. If X is a compact Riemann surface, the set of zeros and poles of a meromorphic
function is finite.

To conclude this subsection, we introduce an example that we will use later, which will
help reconnect with compact Riemann surfaces.

Example 1.19. (Intersections of homogeneous polynomials in a smooth projective plane
curve). Let X be a projective plane curve which is defined by a nonsingular polynomial
F(x, y, z) = 0. Let p = [x0, y0, z0] be a point on X with x0 ̸= 0. Then, the ratios y/x and z/x
are holomorphic functions on X at p. Moreover, any polynomial function g(y/z, z/x), when
restricted to the smooth projective plane curve X, is a holomorphic function at p. Note that
such a polynomial function may be written as a ratio G(x, y, z)/xd, where G is the homog-
enization of the polynomial g, of degree d. More generally, if G(x, y, z) is a homogeneous
polynomial of degree d, and H(x, y, z) is a homogeneous polynomial of the same degree, then
the ratio G(x, y, z)/H(x, y, z) is a meromorphic function on X as long as the denominator does
not vanish identically on X.

1.4 Holomorphic Maps Between Riemann Surfaces

Let us define a mapping between two Riemann surfaces, enabling us to establish the cate-
gory of Riemann surfaces.

Definition 1.20. Let X and Y be Riemann surfaces. A mapping F : X → Y is holomorphic
at p ∈ X if, and only if, for all charts ϕ1 : U1 → V1 on X with p ∈ U1, and ϕ2 : U2 → V2 on
Y with F(p) ∈ U2, the composition ϕ2 ◦ F ◦ ϕ−1

1 is holomorphic at ϕ1(p). F is a holomorphic
map if, and only if, F is holomorphic on all of X.

When can we consider two Riemann surfaces to be the "same"? We have a natural answer.

Definition 1.21. An (analytic) isomorphism between Riemann surfaces is a holomorphic map
F : X → Y that is bijective, and whose inverse F−1 : Y → X is holomorphic. If there exists an
isomorphism between X and Y, we say that X and Y are isomorphic.

In particular, an isomorphism is a homeomorphism. Therefore, the topological genus is
invariant by isomorphism.

Let us introduce some useful results that are immediate consequences of the corresponding
theorems concerning holomorphic functions in complex analysis.

Proposition 1.22. (Open Mapping Theorem). Let F : X → Y be a nonconstant holomorphic
map between Riemann surfaces. Then, F is an open mapping.

Proposition 1.23. Let F : X → Y be an injective holomorphic map between Riemann surfaces.
Then, F is an isomorphism between X and its image F(X).

With the above two propositions, we can prove the following results.

Proposition 1.24. Let X be a compact Riemann surface, and let F : X → Y be a nonconstant
holomorphic map. Then, Y is compact and F is surjective.



1.5 Global Properties of Holomorphic Maps 9

Proof. Since F is holomorphic and X is open in itself, F(X) is open in Y by the open mapping
theorem. Now, since X is compact, F(X) is compact; since Y is Hausdorff, F(X) must be
closed in Y. Hence, F(X) is both open and closed in Y, and since Y is connected, it must be
all of Y. Thus, F is surjective, and Y is compact.

Proposition 1.25. (Discreteness of Preimages). Let F : X → Y be a nonconstant holomorphic
map between Riemann surfaces. Then, for every y ∈ Y, the preimage F−1(y) is a discrete
subset of X. In particular, if X and Y are compact, then F−1(y) is a nonempty finite set for
every y ∈ Y.

Proof. Fix a local coordinate z centered at y ∈ Y, and for a point x ∈ F−1(y), choose a local
coordinate w centered at x. Then, the map F, written in terms of these local coordinates, is
a nonconstant holomorphic function z = g(w); moreover, g has a zero at the origin, since x
(which is w = 0) maps to y (which is z = 0). Since the zeros of nonconstant holomorphic
functions are discrete, we see that, in some neighborhood of z, x is the only preimage of y.
This proves that F−1(y) is a discrete subset of X. The second statement follows since F must
be surjective (Proposition 1.23) and discrete subsets of compact spaces are finite.

Any meromorphic function f can be seen as a holomorphic map to the Riemann sphere.
Let f be a meromorphic map on X. Define a function F : X → C∞ such that:

F(x) =

{
f (x), if x is not a pole of f ,

∞, if x is a pole of f .

This mapping is a holomorphic map. If p ∈ X is not a pole, we choose the chart ϕ0(z) = z
on C∞; if p ∈ X is a pole, we choose the chart ϕ1(z) = 1/z. The above construction induces
a bijective correspondence between meromorphic functions f on X and holomorphic maps
F : X → C∞ which are not identically ∞.

1.5 Global Properties of Holomorphic Maps

Essentially, every holomorphic map between two Riemann surfaces is a power map.

Proposition 1.26. (Local Normal Form). Let F : X → Y be a nonconstant holomorphic map
defined at p ∈ X. Then, there is a unique integer m ≥ 1 which satisfies that for every chart
ϕ2 : U2 → V2 on Y centered at F(p), there exists a chart ϕ1 : U1 → V1 on X centered at p such
that:

ϕ2(F(ϕ−1
1 (z))) = zm.

Proof. Fix a chart ϕ2 on Y centered at F(p), and choose any chart ψ : U → V on X centered at
p. Then, the Taylor series for the function T(w) = ϕ2(F(ψ−1(w))) must be of the form

T(w) = cmwm + cm+1wm+1 + . . .

with cm ̸= 0, and m ≥ 1 since T(0) = 0. Thus, we have T(w) = wmS(w), where S(w) is
a holomorphic function at w = 0, and S(0) ̸= 0. In this case, there exists a function R(w)

holomorphic near 0 such that R(w)m = S(w), so that T(w) = (wR(w))m. Let η(w) = wR(w);
since η′(0) ̸= 0, we see that near 0 the function η is invertible, and of course holomorphic.
Hence, the composition ϕ1 = η ◦ ψ is also a chart on X defined and centered near p. If we
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think of η as defining a new coordinate z (via z = η(w)), we see that z and w are related by
z = wR(w). Thus,

ϕ2(F(ϕ−1
1 (z))) = ϕ2(F(ψ−1(η−1(z)))) = T(η−1(z)) = (wR(w))m = zm.

The uniqueness of m arises from the fact that if local coordinates at p and F(p) exist such
that F takes the form z 7→ zm, then there are exactly m preimages of points near F(p). Thus,
m is determined by the topological properties of F near p and is independent of the chosen
coordinates.

This motivates the following:

Definition 1.27. The multiplicity of F at p, denoted multp(F), is the unique integer m such
that there are local coordinates near p and F(p) with F having the form z 7→ zm.

Using local coordinates z near p and w near F(p), where p corresponds to z0 and F(p) to
w0, the map F can be expressed as w = h(z). The multiplicity of F at p is given by multp(F) =

1+ordz0

(
dh
dz

)
, which implies that it is well-defined since the derivatives of transition functions

between complex charts have order 0 by Lemma 1.3. The formula indicates that points in the
domain where F has multiplicity at least two form a discrete set, as these points correspond
to the zeros of the derivative of the local function h, which is holomorphic.

Definition 1.28. Let F : X → Y be a nonconstant holomorphic map. A point p ∈ X is a
ramification point for F if multp(F) ≥ 2. A point y ∈ Y is a branch point for F if it is the
image of a ramification point for F.

There is a beautiful property of holomorphic maps between compact Riemann surfaces.

Proposition 1.29. Let F : X → Y be a nonconstant holomorphic map between compact Rie-
mann surfaces. For each y ∈ Y, define dy(F) to be the sum of the multiplicities of F at the
points of X mapping to y:

dy(F) = ∑
p∈F−1(y)

multp(F).

Then dy(F) is constant, independent of y.

Idea of the proof. We won’t provide all the details of the proof (for further details see
[Mir95]), but the idea is to show that y 7→ dy(F) is a locally constant function from Y to Z.
Since Y is connected, a locally constant function must be constant. To establish this, we first
consider the open unit disc D = {z ∈ C | ∥z∥ < 1} and the map f : D → D defined by
f (z) = zm for some integer m > 1. It can be proved that this map satisfies the constancy
condition. Next, we show that any nonconstant holomorphic map can be locally expressed as
a disjoint union of these power maps around any point using the Local Normal Form. □

The above proposition motivates the next definition.

Definition 1.30. Let F : X → Y be a nonconstant holomorphic map between compact Riemann
surfaces. The degree of F, denoted deg(F), is the integer dy(F) for any y ∈ Y.

We have some direct results using Proposition 1.23 and Proposition 1.24:

Corollary 1.31. A holomorphic map between compact Riemann surfaces is an isomorphism
if, and only if, has degree one.
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Suppose that X is a compact Riemann surface, and f is a meromorphic function with a
simple pole at p and no other poles. Then, the corresponding map F : X → C∞ has multiplicity
one at p, and p is the only point mapping to ∞. Therefore, by the previous corollary, this is
an isomorphism.

Corollary 1.32. If X is a compact Riemann surface having a meromorphic function f with a
single simple pole, then X is isomorphic to the Riemann sphere.

The constancy of the degree combined with the Euler number gives an important formula
that we will use later.

Theorem 1.33. (Hurwitz’s Formula). Let F : X → Y be a nonconstant holomorphic map
between compact Riemann surfaces. Then

2g(X)− 2 = deg(F)(2g(Y)− 2) + ∑
p∈X

[
multp(F)− 1

]
.

Proof. Note that since X is compact, the set of ramification points is finite, so the sum is finite.
Take a triangulation of Y such that each branch point of F is a vertex. Assume there are

v vertices, e edges, and t triangles. Lift this triangulation to X via the map F, and assume
there are v′ vertices, e′ edges, and t′ triangles on X. Note that every ramification point of F
is a vertex on X. Since there are no ramification points over the general point of any triangle,
each triangle of Y lifts to deg(F) triangles in X. Thus t′ = deg(F)t and e′ = deg(F)e. Now fix
a vertex q ∈ Y. The number of preimages of q in X is |F−1(q)|, which we can rewrite as

|F−1(q)| = ∑
p∈F−1(q)

1 = deg(F) + ∑
p∈F−1(q)

[1 − multp(F)].

Therefore, the total number of preimages of vertices of Y is

v′ = ∑
vertex q of Y


deg(F) + ∑

p∈F−1(q)

[1 − multp(F)]




= deg(F)v − ∑
vertex q of Y

∑
p∈F−1(q)

[multp(F)− 1]

= deg(F)v − ∑
vertex p of X

[multp(F)− 1].

Thus

2g(X)− 2 = −v′ + e′ − t′

= −deg(F)v + ∑
vertex p of X

[multp(F)− 1] + deg(F)e − deg(F)t

= −deg(F)e(Y) + ∑
vertex p of X

[multp(F)− 1]

= deg(F)(2g(Y)− 2) + ∑
p∈X

[multp(F)− 1].

A direct consequence of Hurwitz’s Formula is the following:

Corollary 1.34. Let F : X → Y be a nonconstant holomorphic map between compact Riemann
surfaces. Then, g(X) ≥ g(Y). Moreover, if deg(F) ≥ 2, then either g(X) > g(Y), or g(X) =

g(Y) = 1 and there are no ramification points.
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Chapter 2

Differential 1-Forms

We need suitable objects for integration. In this short chapter, we introduce these objects,
known as differential 1-forms.

2.1 Differential Forms

Definition 2.1. A meromorphic/holomorphic 1-form on an open set V ⊂ C is an expression
ω of the form

ω = f (z)dz

where f is a meromorphic/holomorphic function on V. We say that ω is a meromorphic/holo-
morphic 1-form in the coordinate z.

We want to transport this object to a general Riemann surface via complex charts.

Definition 2.2. Let ω1 = f (z)dz be a meromorphic/holomorphic 1-form in the coordinate z,
defined on an open set V1, and ω2 = g(w)dw be a meromorphic/holomorphic 1-form in the
coordinate w, defined on an open set V2. If z = T(w) defines a holomorphic mapping from V2

to V1, then ω1 transforms to ω2 under T if g(w) = f (T(w))T′(w).

Now we can define our object of interest.

Definition 2.3. Let X be a Riemann surface. A meromorphic/holomorphic 1-form on X is
a collection of meromorphic/holomorphic 1-forms {ωϕ}, one for each chart ϕ : U → V in
the coordinate of the target V, such that if two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 have
overlapping domains, then the associated meromorphic/holomorphic 1-form ωϕ1 transforms
to ωϕ2 under the change of coordinate mapping T = ϕ1 ◦ ϕ−1

2 .

Definition 2.4. In a local coordinate centered at p, we may write ω = f (z)dz where f is a
meromorphic function at z = 0. The order of ω at p, denoted by ordp(ω), is the order of the
function f at z = 0.

The order is well-defined since T′(ω) does not introduce zeros or poles by Lemma 1.3.

Definition 2.5. A C∞ 1-form on an open set V ⊂ C is an expression of the form

ω = f (z, z)dz + g(z, z)dz

where f and g are C∞ on V. With this notation, we define the differential of ω as

dω =

(
∂g
∂z

− ∂ f
∂z

)
dz ∧ dz

13
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where ∧ denotes the wedge product.

We can relax the meromorphic/holomorphic conditions and, analogously, define C∞ 1-
forms on a Riemann surface.

2.2 Integration on Riemann Surfaces

Let ω be a C∞ 1-form on a Riemann surface X. Let γ be a path on X, that is to say, a
continuous piecewise C∞ function γ : [a, b] → X from a closed interval in R to X. Choose a
partition {γi} of γ such that each γi is C∞ on its domain [ai−1, ai] and has its image contained
in the domain Ui of a chart ϕi. With respect to each chart ϕi, write the 1-form ω as ω =

fi(z, z) dz + gi(z, z) dz. Consider the composition ϕi ◦ γi as defining the function z = z(t) for t
in the domain of ϕi.

Definition 2.6. With the above notation, the integral of ω along γ is the complex number:
∫

γ
ω = ∑

i

∫ ai

ai−1

(
fi(z(t), z(t))

dz
dt

+ gi(z(t), z(t))
dz
dt

)
dt.

This definition is independent of the choice of charts, taking into account Definition 2.3.
Moreover, it is invariant under a refinement of the partition.

Definition 2.7. Let ω be a meromorphic 1-form on a Riemann surface X at a point p ∈ X.
Choosing a local coordinate z centered at p, we may write ω via a Laurent series as

ω = f (z)dz =

(
∞

∑
n=−M

cnzn

)
dz

where c−M ̸= 0, so that ordp(ω) = −M. The residue of ω at p, denoted by Resp(ω), is the
coefficient c−1 in a Laurent series for ω at p.

With the same idea of complex analysis, if f is a meromorphic 1-form defined in a neigh-
borhood of p ∈ X and γ a small path on X enclosing p and no other poles of ω. Then,

Resp(ω) =
1

2πi

∫

γ
ω.

Theorem 2.8. (Residue Theorem). The sum of all the residues for a meromorphic 1-form ω

on any compact Riemann surface X is 0.

Proof. Let p1, . . . , pn be the set of all poles of the 1-form ω. Surround every point pi with a
small disk Di, which does not contain other poles. On the set X0 = X \⋃ int(Di), our 1-form
is holomorphic and, seen as a C∞ 1-form, dω = 0 by the Cauchy-Riemann equations. Hence,
by the Stokes Theorem of complex analysis transferred to the complex plane via a chart map1,
we have:

∑
p∈X

Resp(ω) = ∑
i

∫

∂Di

ω =
∫

∂X0

ω =
∫

X0

dω = 0.

If f is a meromorphic function at p ∈ X, then d f / f is a meromorphic 1-form. In fact,
Resp(d f / f ) = ordp( f ). Applying the Residue Theorem to this 1-form we have:

Corollary 2.9. Let f be a nonconstant meromorphic function on a compact Riemann surface
X. Then

∑
p∈X

ordp( f ) = 0.

1For further details about how to inherit this theorem see [Mir95].



Chapter 3

Divisors

For us, divisors will be a way of organizing into one package the zeros and poles of a
meromorphic function or 1-form.

3.1 Divisors

Definition 3.1. Let X be a Riemann surface. A divisor on X is a function D : X → Z whose
support (the set of points p ∈ X where D(p) ̸= 0) is a discrete subset of X. Therefore, if X
is compact, the support is finite. The divisors on X form a group under pointwise addition,
denoted by Div(X). We use the following notation:

D = ∑
p∈X

D(p) · p.

The following definition follows.

Definition 3.2. The degree of a divisor D on a compact Riemann surface is

deg(D) = ∑
p∈X

D(p).

Now let f be a meromorphic function on X which is not zero.

Definition 3.3. The divisor of f , denoted by div( f ), is the divisor defined by the order func-
tion:

div( f ) = ∑
p∈X

ordp( f ) · p.

Any divisor of this form is called a principal divisor on X. The set of principal divisors on X
is denoted by PDiv(X).

From Corollary 2.9, we have:

Lemma 3.4. Let X be a compact Riemann surface. If f is a nonzero meromorphic function,
the degree of div( f ) is zero.

Analogously we can define a divisor of a meromorphic 1-form ω on X.

Definition 3.5. The divisor of ω, denoted by div(ω), is the divisor defined by the order
function:

div(ω) = ∑
p∈X

ordp(ω) · p.

Any divisor of this form is called a canonical divisor on X. The set of canonical divisors on
X is denoted by KDiv(X).

15
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We can introduce an ordering for divisors.

Definition 3.6. Let D be a divisor on a Riemann surface. We write D ≥ 0 if D(p) ≥ 0 for
all points p; in this case, we say that the D is effective. We say D > 0 if D ≥ 0 and D ̸= 0,
and write D1 ≥ D2 if D1 − D2 ≥ 0. This introduces a partial ordering on the set of divisors
Div(X).

Note that, every divisor D can be uniquely written as D = P − N, where P and N are
effective divisors with disjoint support.

To connect with the course of Algebraic Curves, let us introduce an example of a particular
divisor.

Example 3.7. (Intersection divisors). Let X be a smooth projective plane curve on P2. Fix a
homogeneous nonzero polynomial G(x, y, z) on X. We want to define a divisor which records
the points where G = 0 on X. Of course, we must take into account multiplicities.

Fix a point p ∈ X where G vanishes, and choose a homogeneous polynomial H of the
same degree as G, which does not vanish at p. In this case, the ratio G/H is a meromorphic
function on X, which vanishes at p. We define the integer div(G)(p) to be the order of this
meromorphic function at p. Note that since G vanishes at p and H does not, this order
is strictly positive. Using another polynomial H′ is basically multiplying our meromorphic
function G/H by H/H′, which has order 0 at that point. Thus, our definition is well-defined.
At points q where G ̸= 0, we set div(G(q)) = 0.

The divisor div(G) is called the intersection divisor of G. When G has degree one, the
intersection divisor is called a line divisor.

Example 1.19 with Lemma 3.4 leads to the following lemma:

Lemma 3.8. Let X be a smooth projective plane curve. Let F(x, y, z) and G(x, y, z) be two
homogeneous polynomials of the same degree that do not vanish identically on X. Then,
their intersection divisors have the same degree.

Now that we have the tools, allow us to prove two results truly relevant in the course of
Algebraic Curves.

Theorem 3.9. (Bezout’s Theorem). Let X be a smooth projective plane curve of degree d and
let G(x, y, z) be a homogeneous polynomial of degree e which does not vanish identically on
X. The degree of the intersection divisor div(G) on X is the product of the degrees of X and
of G:

deg(div(G)) = deg(X) · deg(G) = d · e.

Proof. Let H be a homogeneous polynomial of degree one, defining a line divisor div(H) on
X. Note that He has degree e, which is the same as the degree of G. Therefore, by Lemma 3.8,
the intersection divisors div(He) and div(G) on X have the same degree since X is compact.

Since div(He) = e div(H), we have deg(div(He)) = e deg(div(H)). Also, deg(div(H)) =

deg(X) = d by the definition of the degree of X. Hence, we have that deg(G) = d · e, as
claimed.

If we see the intersection divisor as counting the multiplicity of intersection between G and
X, seen as projective plane curves, we recover the result that we have proved in the course
of Algebraic Curves. Finally, using Riemann-Hurwitz we can prove the genus formula for a
smooth projective plane curve. We begin with a lemma.
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Lemma 3.10. Let X be a smooth projective plane curve defined by a homogeneous polynomial
F(x, y, z) = 0. Consider the map π : X → P1 defined by π([x, y, z]) = [x, z]. Note that ∂F/∂y
is also a homogeneous polynomial. In this case, the intersection divisor div (∂F/∂y) on X is:

div (∂F/∂y) = ∑
p∈X

(multp(π)− 1) · p

Proof. It suffices to prove the statement in the open set where z ̸= 0, as the argument in the
other open sets is analogous. In this case, X is isomorphic to the affine plane curve defined by
f (x, y) = 0, where f (x, y) = F(x, y, 1); furthermore, π is simply the projection map that sends
(x, y) to x. Let p = (x0, y0) be a point of ramification for π, which implies that p is also a zero
of ∂ f /∂y. Since X is smooth at p, ∂ f /∂x is nonzero at p, making y a local coordinate for X
near p. By the Implicit Function Theorem, X is locally the graph of a holomorphic function
g(y) near p. Thus, f (g(y), y) vanishes identically in a neighborhood of y0. Differentiating
with respect to y, we find that (∂ f /∂x)g′(y) + ∂ f /∂y is identically zero on X near p; therefore,

∂ f /∂y = −(∂ f /∂x)g′(y)

near p.
The function g(y) represents the local expression for the projection map π. Hence, the

order of g(y) corresponds to the multiplicity of π. Since taking the derivative reduces the
order by one, the order of g′(y) is one less than the multiplicity of π. Given that ∂ f /∂x ̸= 0 at
p, the order of g′(y) matches the order of ∂ f /∂y. Thus, we have

ordp(∂ f /∂y) = multp(π)− 1.

Proposition 3.11. (Genus formula). Let X be smooth projective plane curve of degree d, then

g =
(d − 1)(d − 2)

2
.

Proof. Let X be a smooth projective plane curve of degree d, defined by a homogeneous poly-
nomial F. Consider the holomorphic map π : X → P1 defined by [x, y, z] 7→ [x, z]. This map,
as seen in the course of Algebraic Curves, has degree d, and

div (∂F/∂y) = ∑
p∈X

(multp(π)− 1) · p

by Lemma 3.10. Now, by Bezout’s Theorem, this intersection divisor has degree d(d− 1), since
(∂F/∂y) has degree d − 1. Therefore, using Hurwitz’s formula

2g − 2 = d(−2) + d(d − 1)

for the genus g of X. Solving for g we obtain our desired result.

3.2 Spaces of Functions and Forms

The concept of "differing by a principal divisor" is important enough to give a definition.

Definition 3.12. Two divisors on a Riemann surface X are linearly equivalent, D1 ∼ D2,
if their difference is the divisor of a meromorphic function. The linear equivalence is an
equivalence relation on the set Div(X).



18 Divisors

Using Lemma 3.4, we obtain:

Lemma 3.13. On a compact Riemann surface, if two divisors D1 and D2 are linearly equivalent,
then deg(D1) = deg(D2).

Remark 3.14. If X is a compact Riemann surface and if ω1 and ω2 are meromorphic 1-forms on
a compact Riemann surface X their divisors are linearly equivalent. If in some neighborhood
U ⊂ X our 1-forms can be written as ω1 = f1 dz, ω2 = f2 dz, then we only have to considerate
the meromorphic function f1/ f2. By Definition 2.3 this function is well-defined.

If X is a smooth projective curve and G1 and G2 are two homogeneous polynomials in the
ambient variables of the same degree, then their intersection divisors are linearly equivalent
by forming the meromorphic function f = G1/G2.

Let us construct vector spaces of meromorphic functions.

Definition 3.15. The complex vector space of meromorphic functions with poles bounded
by D, denoted by L(D), is the set of meromorphic functions

L(D) = { f ∈ M(X) | div( f ) ≥ −D}.

where M(X) denotes the set of meromorphic functions over X.

The conditions for f ∈ L(D) either allow poles up to a specified order or require zeros of
at least a certain order at discrete points of X.

If D1 ≤ D2, then any function with poles bounded by D1 has poles certainly bounded by
D2. Thus, we see that if D1 ≤ D2, then L(D1) ⊆ L(D2), as it follows from the definition.

Remark 3.16. Suppose that D1 and D2 are linearly equivalent on a Riemann surface X. If we
write D1 = D2 + div(h). The multiplication by h gives an isomorphism of complex vector
spaces, L(D1) ∼= L(D2).

We can even construct projective varieties using divisors.

Definition 3.17. The complete linear system of D, denoted by |D|, is the set of all effective
divisors E ≥ 0 which are linearly equivalent to D:

|D| = {E ∈ Div(X) | E ∼ D and E ≥ 0}.

Recall the projectivitation P(V) of a vector space V, the set of 1-dimensional subspaces of
V. Take the vector space L(D) and define the function

S : P(L(D)) → |D|

by sending the class of a function f ∈ L(D) to the divisor div( f ) + D. Since div(λ f ) = div( f )
for any constant λ, the above map S is well-defined.

Proposition 3.18. If X is a compact Riemann surface, the map S is a bijective correspondence.

Proof. Take a divisor E ∈ |D|. Since E ∼ D, there is a meromorphic function f on X such that
E = div( f ) + D. Since E ≥ 0, f ∈ L(D). Clearly, S( f ) = E, showing that S is surjective.

Suppose that S( f ) = S(g). This implies, after canceling the D’s, div( f ) = div(g). There-
fore, div( f /g) = 0, so that f /g has neither zeros nor poles on X. Since X is compact, f /g
must be a nonzero constant λ; hence, f and g have the same span in L(D) and represent the
same point in |D|.
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The same construction used above can be used for meromorphic 1-forms.

Definition 3.19. The space of meromorphic 1-forms with poles bounded by D, denoted by
L(1)(D), is the set of meromorphic 1-forms

L(1)(D) = {ω ∈ M(1)(X) | div(ω) ≥ −D},

where M(1)(X) denotes the set of meromorphic 1-forms over X.

We have that if D1 ∼ D2 are linearly equivalent divisors, then L(1)(D1) ∼= L(1)(D2).
The spaces of meromorphic 1-forms and meromorphic functions bounded by a divisor are

related:

Remark 3.20. L(1)(D) spaces can actually be related to the spaces L(D). Fix K = div(ω) a
canonical divisor and let D be another divisor. Suppose that f is a meromorphic function in
L(D + K) its easy to see that the meromorphic 1-form f ω is in L(1)(D). The map obtained by
multiplication by ω gives us an isomorphism between L(D + K) and L(1)(D).

The dimension of L(D) can be bounded for a compact Riemann surface. We require a
lemma.

Lemma 3.21. Let X be a Riemann surface, let D be a divisor on X, and let p be a point of X.
Then, either L(D − p) = L(D) or L(D − p) has codimension one in L(D).

Proof. Take a local coordinate z centered at p, and let n = −D(p). Every function f in L(D)

has a Laurent series at p of the form czn+ (high order terms). Define a map α : L(D) → C by
sending f to the coefficient of the zn term in its Laurent series. Clearly, α is a linear map, and
the kernel of α is exactly L(D − p). If α is identically zero, then L(D − p) = L(D). Otherwise,
α is surjective, so L(D − p) has codimension one in L(D).

Now we can prove the desired property.

Proposition 3.22. Let X be a compact Riemann surface, and let D be a divisor on X. Then,
the space of functions L(D) is a finite-dimensional complex vector space. Furthermore, if we
write D = P − N, with P and N effective divisors with disjoint support, then dim L(D) ≤
1 + deg(P).

Proof. We prove the result by induction on the degree of the positive part P. If deg(P) = 0,
then P = 0, so that dim L(P) = 1; since D ≤ P, we see that L(D) ⊂ L(P), so that dim L(D) ≤
dim L(P) = 1 = 1 + deg(P).

Assume the statement true for divisors whose positive part has degree k − 1, for k ≥ 1.
Consider a divisor D with a positive part of degree k, and write D = P − N. Choose a
point p in the support of P. Consider the divisor D − p; its positive part is P − p, which
has degree k − 1. Hence, dim L(D − p) ≤ deg(P − p) + 1 = deg(P). Now we apply the
codimension statement of the previous lemma, and conclude that dim L(D) ≤ 1 + dim L(D −
p) ≤ deg(P) + 1 .

3.3 The Degree of a Canonical Divisor

Canonical divisors are a specific type of divisor that will appear in the upcoming results.
To study their degree, we need to introduce a definition.
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Definition 3.23. Let F : X → Y be a nonconstant holomorphic map between Riemann surfaces,
and let ω be a C∞ 1-form on Y. Consider local charts ϕ : U → V on X and ψ : U′ → V ′ on Y
with F(U) ⊂ U′, giving local coordinates z on U′ and w on U. In these coordinates, F takes
the form z = h(w) for some holomorphic function h. If ω = f (z, z) dz + g(z, z) dz, we define
the pullback of ω via F by

F∗ω = f (h(w), h(w))h′(w) dw + g(h(w), h(w))h′(w) dw.

It is immediate that if ω is a meromorphic/holomorphic 1-form, so is F∗ω.
We have the tools to prove the following result.

Proposition 3.24. Suppose that F : X → Y is a holomorphic map between Riemann surfaces,
and ω is a meromorphic 1-form on Y. Fix a point p ∈ X. Then,

ordp(F∗ω) = (1 + ordF(p)(ω)) multp(F)− 1.

Proof. Choose local coordinates w at p and z at F(p) such that near p, F has the form z = wn,
where n = multp(F). With respect z, the form ω is (czk + (higher order terms))dz, where
k = ordF(p)(ω). Thus, the form F∗ω is (cwnk + (higher order terms))(nwn−1)dw. We see
immediately then that the order of F∗ω is nk + n − 1, and this is equivalent to the above.

With the above proposition, we are ready to determine the degree of a canonical divisor.

Proposition 3.25. If X is a compact Riemann surface of genus g which has a nonconstant
meromorphic function1, then there is a canonical divisor on X of degree 2g − 2.

Proof. Let X be a compact Riemann surface of genus g. Suppose that f is a meromorphic
function on X; consider f as a holomorphic map F : X → C∞. Let us assume F has degree d.
Then, by Hurwitz formula, we see that

∑
p∈X

(
multp(F)− 1

)
= 2g − 2 + 2 deg(F).

Consider the meromorphic 1-form ω on C∞ of degree −2, defined by ω = dz; it has a double
pole at ∞, and no other poles or zeros. Let η = F∗(ω) be the pullback of ω to X.

deg(div(η)) = ∑
p∈X

[
(1 + ordF(p)(ω))multp(F)− 1

]
= ∑

q ̸=∞
p∈F−1(q)

[
multp(F)− 1

]
+

+ ∑
p∈F−1(∞)

(
multp(F)− 1

)
= ∑

p∈X

[
multp(F)− 1

]
− ∑

p∈F−1(∞)

2 multp(F) = 2g − 2.

By linear equivalence (Remark 3.14) we have the following:

Corollary 3.26. Let X be a compact Riemann surface of genus g. If K a canonical divisor on
X, then K has degree 2g − 2.

1This assumption is highly nontrivial and it is always satisfied. We will discuss this later.



Chapter 4

Separability of points and tangents

If only I had the Theorems! Then, I
should find the proofs easily enough.

Bernhard Riemann

We are almost about to prove one of the strongest theorems in algebraic geometry. How-
ever, we need extra tools to operate.

4.1 Riemann Existence Theorem

We will proceed from a deep theorem1 that uses tools of analysis and functional analysis
that says that every compact Riemann surface X has two properties. Firstly, it separates
points: for every pair of distinct points p and q in X there is a meromorphic function f ∈ S
such that f (p) ̸= f (q). Secondly, it separates tangents: for every point p ∈ X there is a
meromorphic function f ∈ S which has multiplicity one at p. The content of this theorem is
that there are enough meromorphic functions on a compact Riemann surface. This is hard
to prove, as considerable work is needed to even prove the existence of one meromorphic
function.

Once we have this, we can construct meromorphic functions with a specific order at one
point given this property. For example, if we need a meromorphic function g such that
ordp(g) = 1 we can take a function f exhibiting the separation of tangents at p and use
g = f − f (p) if f is holomorphic at p, or g = 1/ f if f has a simple pole at p. Then, we can
construct meromorphic functions with order n at p by simply defining h = gn.

Given any two points p and q, with the separation of points we can construct a mero-
morphic function on X with a zero at p and a pole at q. Use a function g exhibiting the
separation of points at p and q. By replacing g by 1/g we can assume that p is not a pole
of g. By replacing by g − g(p) we may assume that g(p) = 0. If q is not a pole of g then
f = g/(g(q)− g)

Using an inductive method based on these ideas, we have the following result:

Proposition 4.1. Let X be a compact Riemann surface. Given a finite number of points
p1, . . . , pn in X, and a finite number of integers mi, there exists a global meromorphic function
f on X such that ordpi( f ) = mi for each i.

1Some authors refer to this theorem as the Riemann Existence Theorem (see [For81]).
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The bound for L(D) gives a bound on the transcendence degree for M(X).

Proposition 4.2. Let X be a compact Riemann surface. M(X) is a finitely generated extension
field of C of transcendence degree one.

Proof. (Transcendence degree). The transcendence degree must be at least one. Suppose that
it is at least two and let f and g be independent elements of M(X). Let D be an effective
divisor such that f and g are in L(D). Note that f igj ∈ L(nD) if i + j ≤ n. Since f and g are
algebraically independent then dim L(nD) ≥ (n2 + 3n + 2)/2. On the other hand, we have
that dim L(nD) ≤ 1 + n deg(D). Then, we have a contradiction for large n.

Let f be a nonconstant meromorphic function. Consider the chain of fields C ⊂ C( f ) ⊆
M(X). We will prove that M(X) is a finite algebraic extension of C( f ). We need a lemma.

Lemma 4.3. Let A be a divisor on a compact Riemann surface X, and let D be the divisor of
poles of some nonconstant meromorphic function f on X. Then, there is an integer m > 0 and
a meromorphic function g on X such that A − div(g) ≤ mD.

Proof. Let p1, . . . , pn be the points in the support of A which are not poles of f , and which
have A(pi) ≥ 1.Then, ( f − f (pi))

A(pi) has a zero at pi of at least order A(pi), and no other
poles than the poles of f . Taking the product over all these points pi of these factors gives a
meromorphic function g which is a polynomial in f such that A − div(g) is positive only at
the poles of f . Therefore, for some integer m, A − div(g) ≤ mD, where D is the divisor of
poles of f .

If we apply the previous lemma with A = −div(h) for h meromorphic on X, we have:

Corollary 4.4. Let X be a compact Riemann surface, and let f and h be nonconstant meromor-
phic functions on X. Then, there is a polynomial r(t) ∈ C[t] such that the function r( f )h has
no poles outside of the poles of f . In this case, there is an integer m such that r( f )h ∈ L(mD),
where D is the divisor of poles of f .

This corollary leads to the following lemma.

Lemma 4.5. Let f be a meromorphic function on a compact Riemann surface, and let D be the
divisor of poles of some nonconstant meromorphic function f on X. Suppose that [M(X) :
C( f )] ≥ k. Then, there is a constant m0 such that for all m ≥ m0, dim L(mD) ≥ (m − mp + 1)k.

Proof. Suppose that g1, . . . , gk are elements of M(X) which are linearly independent over
C( f ). By the previous corollary, for each i, there is a nonzero polynomial ri(t) such that the
poles of hi = ri( f )gi occur only at the poles of f . Note that the functions h1, . . . , hk are also
linearly independent over C( f ), and there is an integer m0 such that hi ∈ L(m0D). Now for
any integer m ≥ m0, the functions f ihj are in L(mD) as long as i ≤ m − m0, since f ∈ L(D).
These are all linearly independent over C, so dim L(mD) ≥ (m − m0 + 1)k for m ≥ m0.

We can now finish the proof of Proposition 4.2.

Proof. (Finite generation). In fact, it is the case that [M(X) : C( f )] ≤ deg(D), where D =

div∞( f ) (the divisor of the poles of f ). Suppose that [M(X) : C( f )] > deg(D). We have
that there is an integer m0 such that for all m ≥ m0, dim L(mD) ≥ (m − m0 + 1)(1 + deg(D)).
However, the usual bound for L(mD) gives that dim L(mD) ≤ 1 + m deg(D), which gives a
contradiction for large m.
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Remark 4.6. We can be more precise and claim that [M(X) : C( f )] = deg(D), for D the
divisor of the poles of f . The idea to prove the other inequality consists in writing the divisor
of the poles of f as D = ∑i ni pi and considering functions gij, where gij has a pole at pi to
order j and no other pole at the other pk’s. These functions exist due to Corollary 4.4. Showing
that {gij | 1 ≤ j ≤ ni} are linearly independent over C( f ) by using a contradiction suffices the
proof (for a more detailed proof see [Mir95]).

4.2 Laurent Tail Divisors

Let X be a compact Riemann surface. For each point p in X choose a local coordinate zp

centered at p.

Definition 4.7. A Laurent tail divisor on X is a finite formal sum

∑
p

rp(zp) · p

where rp(z) is a Laurent polynomial in the coordinate zp. The set of Laurent tail divisors
T (X) on X forms a group under formal addition.

Given a divisor D on X consider the subgroup T [D](X) of the elements of ∑p rp · p such
that for all p with rp ̸= 0, the top term of rp has degree strictly less than −D(p). As an
example, consider the divisor D = 0. Then, T [0](X) is the group of Laurent tail divisors
∑p rp · p such that every term of each rp has strictly negative degree.

If D1 and D2 are two divisors with D1 ≤ D2, then there is a natural truncation map, t:

t = tD1
D2

: T [D1](X) → T [D2](X).

Given a meromorphic function f , we can also define a multiplication operator:

µ f = µD
f : T [D](X) → T [D − div( f )](X)

that sends ∑p rp · p to ∑p( f rp) · p. If we fix a divisor D on X we have the map

αD : M(X) → T [D](X)

sending a meromorphic function f to the sum ∑p rp · p where rp is the truncation of the
Laurent series f (zp) of f in terms of zp removing all terms of order −D(p) and higher. αD

commutes with the truncation maps and is compatible with the multiplication operators µ: if
f and g are meromorphic functions on X then, for any divisor D

µ f (αD(g)) = αD−div( f )( f g).

Let Q(D) be the cokernel2of αD, that is to say, Q(D) = T [D](X)/ Im(αD). We will use exact
sequences. A sequence is a C-linear map

G0
f1−→ G1

f2−→ G2 · · ·
fn−→ Gn

between complex vector spaces and it is exact if Im( fi) = Ker( fi+1).

2Implicitly, the theory we are presenting here can be developed using sheaf cohomology, a highly powerful
tool. For convenience, we will not delve into its details here, but it is important to highlight its relevance. For a
derivation of the Riemann-Roch theorem from this perspective, one can refer to [Alv93].
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With all of the maps previously mentioned, we have the following exact sequence:

0 −→ M(X)/L(D)
αD−→ T [D](X) −→ Q(D) −→ 0.

Suppose now that D1 ≤ D2 so the truncation map t = tD1
D2

is defined. In this case we have
L(D1) ⊆ L(D2). Since the truncation commutes with the α maps, we obtain an induced map
between exact sequences

0 −→ M(X)/L(D1)
αD1−−→ T [D1](X) −→ Q(D1) → 0

↓ t ↓ ↓
0 −→ M(X)/L(D2)

αD2−−→ T [D2](X) −→ Q(D2) → 0

where the squares of the diagram commute. All vertical maps are surjective, so we can obtain
an exact sequence for the kernels of these maps3.

The kernel of the map from M(X)/L(D1) to M(X)/L(D2) is simply L(D2)/L(D1), there-
fore the dimension of this kernel is dim L(D2)− dim L(D1), and its finite because of Proposi-
tion 3.23.

The kernel of the truncation map is the space of Laurent tail divisors ∑ rp · p where each
divisor rp satisfies that the highest-order term of rp has order less than −D1(p), and the
lowest-order term of rp has order at least −D2(p). Thus, for each point p, there are exactly
D2(p) − D1(p) possible monomials zk

p in the kernel, where −D2(p) ≤ k < −D1(p). These
conditions at each p are independent, so the total dimension of the kernel of t is:

dim Ker(t) = ∑
p
(D2(p)− D1(p)) = deg(D2)− deg(D1).

Finally, let us denote by Q(D1/D2) the kernel of the induced map on the right from Q(D1) to
Q(D2). We have the mentioned exact sequence

0 → L(D2)/L(D1) → Ker(t) → Q(D1/D2) → 0

with dimension

dim Q(D1/D2) = [deg(D2)− dim L(D2)]− [deg(D1)− dim L(D1)], (4.1)

and we have finite-dimensionality. Note how we have transitioned from exact sequences
involving infinite-dimensional spaces (where the exponents of the monomials are integers
and therefore countable) to finite-dimensional vector spaces by taking appropriate quotients.
This is the main idea behind using Laurent tail divisors. Now we want to prove the finite
dimensionality of Q(D) for a given divisor. We begin with some lemmas.

Lemma 4.8. Let f be a nonconstant global meromorphic function on a compact Riemann
surface X, and let D be its divisor of poles so that D = div∞( f ). Then, for large m, the
dimension of Q(0/mD) is constant, independent of m.

Proof. Using the previous equation with D1 = 0 and D2 = mD we obtain

dim Q(0/mD) = m · deg(D)− dim L(mD) + 1,

3We satisfy the requirements to apply a result called the Snake Lemma (see [Mir95]), which leads to the exact
sequence in terms of the kernels.
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recall that by Remark 4.6, [M(X) : C( f )] = deg(D). Using Lemma 4.5, there is an integer
m0 such that dim L(mD) ≥ (m − m0 + 1) · deg(D) for m ≥ m0. Therefore, using the above
formula, dim Q(0/mD) ≤ 1 + deg(D)(m0 − 1) which is independent of m. Now if 0 < m1 <

m2, we have 0 < m1D < m2D and, therefore we have that Q(0/m1D) ⊆ Q(0/m2D). We see
that the dim Q(0/mD) is non-decreasing as m increases. Because the dimension is uniformly
bounded, it must stabilize.

Lemma 4.9. For a compact Riemann surface X, there is an integer M such that for every
divisor A on X

deg(A)− dim L(A) ≤ M

Proof. Fix a meromorphic function f on X and let D = div∞( f ). If A = mD such M exists,
since it is simply dim Q(0/mD)− 1. Now let A be any divisor on X. By Lemma 4.3, there is a
meromorphic function g on X and an integer m such that B = A − div(g) ≤ mD. Therefore,
deg(A) − dim L(A) = deg(B) − dim L(B) = [deg(mD)− dim L(mD)] − dim Q(B/mD) ≤
deg(mD)− dim L(mD) ≤ M

Hence, there is a divisor A0 on X such that deg(A0)− dim L(A0) is maximal.

Lemma 4.10. For the divisor A0 we have that Q(A0) = 0

Proof. Suppose the opposite. Then, there exists a Z ∈ T [A0](X) which is not of the form
αA0( f ) for any meromorphic function f on X. By increasing A0 to a divisor B, we may truncate
Z to zero, i.e, t(Z) = 0 in T [B](X). Thus, the class of t(Z) in Q(B) is zero. Consequently, the
class of Z in Q(A0) is in the kernel Q(A0/B), implying that this kernel is nonzero. However,
by (4.1),

1 ≤ dim Q(A0/B) = [deg(B)− dim L(B)]− [deg(A0)− dim L(A0)],

which is a contradiction because of the maximality of deg(A0)− dim L(A0).

Now we are ready to prove our desired property.

Proposition 4.11. For any divisor D on a compact Riemann surface X, Q(D) is a finite-
dimensional vector space.

Proof. Let A0 be as above, and write D − A0 = P − N, where P and N are effective divi-
sors. Then, Q(A0) surjects Q(A0 + P), so that Q(A0 + P) = 0 as well. Therefore, Q(D) ∼=
Q(D/A0 + P), which is finite-dimensional.

4.3 The Riemann-Roch Theorem and Serre Duality

Recall that Q(D1/D2) is the kernel of the induced map from Q(D1) to Q(D2). The finite
dimensionality of Q(D) allows us to split the dimension of this kernel:

dim Q(D1/D2) = dim Q(D1)− dim Q(D2).

Using (4.1) and rearranging terms, we have the following equality:

dim L(D1)− deg(D1)− dim Q(D1) = dim L(D2)− deg(D2)− dim Q(D2),



26 Separability of points and tangents

if D1 ≤ D2. Noting that any two divisors have a common maximum, we conclude that
the quantity dim L(D)− deg(D)− dim Q(D) is constant. When D = 0 this quantity is 1 −
dim Q(D). Therefore, given a divisor D on a compact Riemann surface X, then

dim L(D)− dim Q(D) = deg(D) + 1 − dim Q(0). (4.2)

The idea of this section is simple. Starting from the above equation which, in the literature,
can be considered as the first version of the Riemann-Roch theorem we want to identify what
exactly is Q(D). The key is the Serre Duality Theorem.

Suppose that D is a divisor on X and ω a meromorphic 1-form on X in the space L(1)(−D).
Therefore div(ω) ≥ D. Thus, we may write

ω =




∞

∑
n=D(p)

cnzn
p


 dzp

in the local coordinate zp at p, for every p. Suppose that f is a meromorphic function on X.
Write f = ∑k akzk

p near p. Computing the residue of f ω at p, we find that

Resp( f ω) =
∞

∑
n=D(p)

cna1−n,

so the residue only depends on the coefficients ai of f with i < −D(p). Therefore, it only
depends on the Laurent tail divisor αD( f ).

Let us define the residue map

Resω : T [D](X) → C for w ∈ L(1)(−D)

such that

Resω

(
∑

p
rp · p

)
= ∑

p
Resp(rpω).

We have seen above that ∑p Resp( f ω) = Resω(αD( f )) for ω ∈ L(1)(−D). From the Residue
Theorem we have that Resω(αD( f )) = 0 for all ω ∈ L(1)(−D). Therefore, we obtain a lineal
functional Resω : Q(D) → C. Thus we have a linear map, also called the residue map

Res : L(1)(−D) → Q(D)∗

sending ω ∈ L(1)(−D) to the linear functional Resω on Q(D).

Theorem 4.12. (Serre Duality). For any divisor D on a compact Riemann surface X, the map

Res : L(1)(−D) → Q(D)∗

is an isomorphism of complex vector spaces.

Proof. (Injectivity of Res). Let ω ∈ L(1)(−D), ω ̸= 0, such that Res(ω) is the zero map, i.e.,

∑
p

Resp(rpω) = 0

for every ∑ rp p ∈ T [D]. Fix a point p with local coordinate zp. Since ω ∈ L(1)(−D), we must
have ordp(ω) ≥ D(p). Write k = ordp(ω); hence, −1 − k < −D(p), so the Laurent tail divisor
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z−1−k · p is in T [D](X). But if we write ω = ∑∞
n=k cnzndz, where the lowest coefficient ck ̸= 0,

then

Resω(z−1−k · p) = Resp

(
z−1−k

∞

∑
n=k

cnzn dz

)
= ck,

which is not zero. Therefore, the residue map is injective.

We need two lemmas to prove the surjectivity.
First, note that if ϕ : T [D](X) → C is linear, vanishing on αp(M(X)), and f is any

meromorphic function, then ϕ ◦ µ f : T [D + div( f )](X) → C is also linear, vanishing on
αD+div( f )(M(X)), since

ϕ ◦ µ f

(
αD+div( f )(g)

)
= ϕ(αD( f g)) = 0.

Lemma 4.13. Let ϕ1 and ϕ2 be two linear functionals on Q(A) for some divisor A. Then, there
is a positive divisor C and nonzero meromorphic functions f1, f2 in L(C) such that

ϕ1 ◦ tA−C−div( f1)
A ◦ µ f1 = ϕ2 ◦ tA−C−div( f2)

A ◦ µ f2

as functionals on Q(A − C).

Proof. Let us prove by contradiction. Suppose no such divisor C and functions fi exist. Then,
for every divisor C, the C-linear map

L(C)× L(C) → Q(A − C)∗,

defined by sending a pair ( f1, f2) to ϕ1 ◦ tA−C−div( f1)
A ◦ µ f1 − ϕ2 ◦ tA−C−div( f2)

A ◦ µ f1 is injective.
Therefore, for every C, we must have

dim Q(A − C) ≥ 2 dim L(C) (4.3)

Now for C large and positive, (4.2) applied to the divisor A − C gives dim Q(A − C) =

dim L(A − C)− deg(A − C)− 1 + dim Q(0) ≤ dim L(A)− deg(A)− 1 + dim Q(0) + deg(C)
which for fixed A grows at most like a + deg(C) for some constant a. On the other hand, (4.2)
for the divisor C implies that dim L(C) ≥ deg(C) + 1 − dim Q(0) so 2 dim L(C) grows at least
like b + 2 deg(C) for a constant b. These two growth rates are incompatible with (4.3).

Lemma 4.14. Suppose that D1 is a divisor on X with ω ∈ L(1)(−D1), so Resω : T [D1](X) → C

is well-defined. Suppose that D2 ≥ D1 and that Resω vanishes on the kernel of t : T [D1](X) →
T [D2](X). Then, ω ∈ L(1)(−D2).

Proof. Suppose that ω is not in L(1)(−D2); this means that there is a point p ∈ X with k =

ordp(ω) < D2(p). Consider the Laurent tail divisor Z = z−k−1
p · p. Then, Z ∈ Ker(t), but

Resω(Z) ̸= 0. Which is a contradiction.

Now we have the tools to prove the surjectivity. Before we begin, note that if ω ∈ L(1)(−D)

then, if f is a meromorphic function on X, f ω ∈ L(1)(−D − div( f )) and Resω ◦µ f = Res f ω as
functionals on T [D + div( f )]

Proof. (Surjectivity of Res). Fix a divisor D on X and a linear functional ϕ : Q(D) → C, which
we consider as a functional on T [D](X), zero on αD(M(X)). Let ω be nonzero meromorphic
1-form, and let K = div(ω). Let A be a divisor such that A ≤ D and A ≤ K. Note then that
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Resω is well defined on T [A](X). Consider ϕA = ϕ ◦ tA
D : T [A](X) → C . Thus, ϕA and Resω

are both linear functionals on T [A](X). Hence, by Lemma 4.13, there is a positive divisor C
and meromorphic functions f1, f2 ∈ L(C) such that

ϕA ◦ tA−C−div( f1)
A ◦ µ f1 = Resω ◦tA−C−div( f2)

A ◦ µ f2

as functionals on Q(A − C). Simplifying, we have that

ϕA ◦ tA−C−div( f1)
A ◦ µ f1 = Res f2ω

as functionals on T [A − C](X). Composing with µ1/ f1 , which is the inverse of µ f1 , we find
that

ϕA ◦ tA−C−div( f1)
A = Res( f2/ f1)ω

as functionals on T [A − C − div( f1)](X). Note that ( f2/ f1)ω ∈ L(1)(−A + C + div( f1)), and
the above shows that Res( f2/ f1)ω vanishes on the kernel of t = tA−C−div( f1)

A . Therefore, by
Lemma 4.14, we see that ( f2/ f1)ω ∈ L(1)(−A), and so ϕA = Res( f2/ f1)ω. Noting that ϕA =

ϕ ◦ tA
D, we see that Res( f2/ f1)ω vanishes on the kernel of tA

D, so that in fact ( f2/ f1)ω ∈ L(1)(−D),
and ϕ = Res( f2/ f1)ω = Res(( f2/ f1)ω).

Remark 4.15. Recall from Section 3.3. that the degree of a canonical divisor K on a compact
Riemann surface of genus g is 2g − 2. Applying the Serre Duality to a canonical divisor we
see that dim Q(K) = 1. Moreover, we have that dim Q(0) = dim L(1)(0) = dim L(K). Using
all equalities above and (4.2) we have that

2 dim Q(0) = deg(K) + 1 dim Q(K) = (2g − 2) + 1 + 1 = 2g

Note how the topological genus g is exactly the mystery term dim Q(0). This mystery
term is sometimes referred to as the arithmetic genus of X. Moreover, since the space L(1)(0)
is exactly the space Ω1(X) of global holomorphic 1-forms on X, we see that the dimension
of this space is also exactly g. The dimension of this space is a priori an analytic invariant,
depending very much on the complex structure. Some authors call dim Ω1(X) the analytic
genus of X. Therefore, we see that the topological genus g, the arithmetic genus dim Q(0),
and the analytic genus dim Ω1(X) are all equal.

Finally, we have our desired theorem.

Theorem 4.16. (The Riemann-Roch Theorem). Let X be a compact Riemann surface of genus
g. Then, for any divisor D and any canonical divisor K, we have

dim L(D)− dim L(K − D) = deg(D) + 1 − g.

4.4 Applications of The Riemann-Roch Theorem

We will use the Riemann-Roch in the following chapter. However, in order to state its
importance, we give some of its applications.

First of all, the Riemann-Roch theorem implies separability in the sense of Section 4.1. To
see that, we need a lemma.

Lemma 4.17. Let X be a compact Riemann surface. If D is a divisor with deg(D) < 0, then
L(D) = {0}.
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Proof. Suppose that f ∈ L(D) is not identically zero. Consider the divisor E = div( f ) + D.
Since f ∈ L(D), then E ≥ 0, so deg(E) ≥ 0. However, we have that the degree of div( f ) is 0.
Thus, deg(E) = deg(D) < 0, which is a contradiction.

Once we have Riemann-Roch we can ensure that we have enough meromorphic functions
on a compact Riemann surface, this is a crucial result.

Proposition 4.18. If X is a compact Riemann surface, which satisfies the Riemann-Roch theo-
rem for every divisor D, then X satisfies the separability of points and tangents property.

Proof. Fix two points p and q on X and consider the divisor D = (g + 1) · p. We have that
dim L(D) ≥ deg(D) + 1 − g = 2, therefore we have a nonconstant function f ∈ L(D). f must
have a pole, and the only poles allowed are at p. In particular, f does not have a pole at q and
we have the point separation property.

Now, fix a p on X and consider divisors Dn = n · p. For large n, dim L(Dn) = n + 1 − g by
the previous lemma. Hence, there are functions in L(Dn+1) which are not in L(Dn). Therefore,
for large n there are functions fn with a pole of order n exactly n at p and no other poles. The
ratio fn/ fn+1 then has a simple zero at p.

We can even prove that every compact Riemann surface X is projective, which is beneficial
because that enables the usage of several tools from algebraic geometry. To do so, we start
with some definitions and a lemma that we will not prove (see [Mir95] for further details).

Definition 4.19. Let X be a compact Riemann surface and D a divisor. A point p is a base
point of the complete linear system |D| if every divisor E ∈ |D| contains p (i.e, E ≥ p). |D| is
said to be base-point-free if it has no base points.

We require the following lemma:

Lemma 4.20. Let X be a compact Riemann surface, and let D be a divisor on X such that the
linear system |D| has no base points. Then, there exists an injective holomorphic map from X
to Pn that is an isomorphism onto its image (a holomorphically embedded Riemann surface
in Pn) if and only if, for every pair of points p and q in X, the condition dim L(D − p − q) =
dim L(D)− 2 holds. This condition must also explicitly include the case when p = q.

A divisor D satisfying the above lemma is called a very ample divisor. Now we can prove
our desired result.

Proposition 4.21. Every compact Riemann surface X can be holomorphically embedded into
projective space.

Proof. First of all, we prove that any divisor D with deg(D) ≥ 2g + 1 is very ample. To do so,
we need to check that dim L(D − p − q) = dim L(D)− 2 for every p, q ∈ X. Since both D and
D − p − q have degree at least 2g − 1, and the degree of a canonical divisor is 2g − 2, we have
that L(K − (D − p − q)) = L(K − D) = {0} by Lemma 4.17. Now, by Riemann-Roch we have
our desired result.

Now, we only have to construct a very ample divisor of degree at least 2g + 1. Pick any
point p ∈ X and define the divisor (2g + 1) · p.

Allow us to introduce a theorem that we will not prove (see [GriHar78] and [Ara65] for
further details) but shows how strong is Riemann-Roch.
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Theorem 4.22. (Chow’s Theorem). Every complex submanifold of Pn is defined by the locus
of a finite system of homogeneous polynomials in the homogeneous coordinates of Pn.

This theorem tells us that we can see a compact Riemann surface as the locus of a finite
system of homogeneous polynomials in the homogeneous coordinates of Pn, which is crucial
in order to apply certain tools of algebraic geometry4.

Finally, the Riemann-Roch theorem is a tool that allows the characterization of compact
Riemann surfaces of low genus. For genus 0, we begin with a lemma.

Lemma 4.23. Let X be a compact Riemann surface. Suppose that for some point p ∈ X, L(p)
has dimension greater than one. Then, X is isomorphic to the Riemann sphere.

Proof. The hypothesis implies that there is a nonconstant meromorphic function f ∈ L(p).
This function must have poles, but the only pole that is allowed is a simple pole at p. There-
fore, f has a simple pole at p and no other poles, which means that is an isomorphism by
Corollary 1.32.

Proposition 4.24. Every compact Riemann surface of genus 0 is isomorphic to the Riemann
sphere.

Proof. Fix a general point p ∈ X. Since the canonical divisor K on X has degree −2, then
the divisor K − p has degree −3. This is strictly negative, so dim L(K − p) = 0. Applying
Riemann-Roch to the divisor p, we find that

dim L(p) = deg(p) + 1 − g + dim L(K − p) = 2.

Now, using the previous lemma, X is isomorphic to the Riemann sphere.

That is an interesting result because, using the genus formula from Proposition 3.11, we
have that smooth projective plane curves of degrees 1 and 2 are isomorphic to the Riemann
sphere.

4In fact, every compact Riemann surface can be embedded into P3 if one is careful enough. Take X ⊂ Pn and
consider projecting down to Pn−1 from some point O. This map to Pn−1 is an embedding if it separates points
and tangents: this means that O must not be on any line passing through two (possibly the same) points of X.
If we try to go further to P2, then we may get singularities, concretely, ordinary double points, points where the
curve intersects itself. Essentially, what we aim to convey with this is that every compact Riemann surface is a
projective plane curve. This observation offers a significant justification for the importance of studying projective
plane curves, as we have done in the Algebraic Curves course, and justifies why projective plane curves serve as
a suitable starting point. (For further details see [For81] and [Nar92].)



Chapter 5

Jacobians

In this chapter, we introduce a fundamental tool that helps us to characterize Riemann
surfaces and their properties.

5.1 Homology, Periods and the Jacobian

Let X be a compact Riemann surface. As in real manifolds, let us define the concept of
path and chain.

Definition 5.1. A path on X is a continuous and piecewise C∞ function γ : [a, b] → X from
a closed interval in R to X. A chain on X is a finite formal sum of paths, with integer
coefficients: ∑i niγi.

The set of chains, CH(X), forms a free abelian group. Now, to each chain, we can associate
a finite formal sum of points on X, by mapping each path γi to the formal difference of its
endpoints and extending by linearity. This gives a group homomorphism from the group
of all chains CH(X) to the free abelian group on the set of points of X. The kernel of this
homomorphism is the set of chains that has every endpoint of a path γi canceled by an initial
point of another. We denote this kernel by CLCH(X), the set of closed chains on X. If D is
a triangulable1 closed set in X, then the chain ∂D is a closed chain; this follows because the
boundary ∂T of any triangle is closed. Such a closed chain is called a boundary chain on X.
The subgroup of CLCH(X) generated by all boundary chains ∂D is denoted by BCH(X).

Definition 5.2. The quotient group CLCH(X)/ BCH(X) is called the first homology group2

of X, and is denoted by H1(X, Z).

For a compact Riemann surface X of genus g, the first homology group is a free abelian
group of rank 2g. A standard set of generators for this group can be obtained using the
standard identified polygon representation of X, ∆, as a polygon with 4g sides, appropriately
identified in pairs 3. As an example see Figure 5.1.

1A compact Riemann surface is always triangulable. We can see this by viewing it as a real 2-manifold and
applying the results that we know from the course of Topology.

2Sometimes in the literature instead of this approach, H1(X, Z) is presented as the abelianitzation of the fun-
damental group with an arbitrary base point. Is important to remark that both approaches are isomorphic.

3Again, as it is done in the Topology course for real 2-manifolds.

31



32 Jacobians

a1

b1

a1a2

b2

a2

b1b2

Figure 5.1: Example of the representation of the standard identified polygon for a compact Riemann
surface of genus 2. The polygon ∆ is depicted with 4g = 8 sides identified with the generators
a1, b1, a2, b2 of the first homology group.

Let ω be a holomorphic 1-form on X. If D is any triangulated subset of X, then using
Stoke’s theorem (as done in the proof of Theorem 2.8) we have that:

∫

∂D
ω =

∫∫

D
dω = 0.

Therefore, the integrals of ω around any closed chain only depend on the homology class
of the chain. Thus, if [c] ∈ H1(X, Z), then the integral

∫
[c] ω =

∫
c ω is well-defined. Hence,

for every homology class [c] we obtain a well-defined functional on the space of holomorphic
1-forms, Ω1(X): ∫

[c]
: Ω1(X) → C

a linear functional of this form is called period. Take a basis of Ω1(X), ω1, . . . , ωg. And take
a basis γ1, . . . , γ2g of H1(X, Z). For each i = 1, . . . , 2g define the vector

πi =

(∫

γi

ω1, . . . ,
∫

γi

ωg

)
∈ Cg.

Consider

Λ =

{
2g

∑
i=1

miπi

∣∣∣∣∣mi ∈ Z

}
⊂ Cg.

Λ is what we call a lattice because the πi’s give us a R-basis of Cg (see [Gri89]).

Definition 5.3. Let X be a compact Riemann surface. The Jacobian of X, J(X), is the quotient
space Cg/Λ. The matrix, Π = (π1, . . . , π2g), is called the period matrix of X.

We can understand the Jacobian like the quotient of a real 2g-dimensional vector space
with a 2g-dimensional lattice. Hence, by analogy with the complex torus, J(X) is a g dimen-
sional complex torus, i.e, over the reals Cg/Λ ∼= R2g/Λ ∼= (S1xS1)g.

5.2 The Period Matrix

Consider a basis of H1(X, Z), {a1, . . . , ag, b1, . . . , bg}. There exists what we call a normal-
ized basis4 for Ω1(X). That is to say,

∫

ai

ωj = δij, i, j = 1, 2, . . . , g

4We do not want to go deep on these results, but they can easily be found in [Gri89] or [Nar92], for example.
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With this basis, the period matrix has the form

Π = (Ig, B),

where Ig is the identity matrix of order g and B is a square matrix of order g. With respect to
such matrix, the Riemann bilinear relations tell us that B = Bt, and that the matrix Im Z is a
real and positive definite matrix.

The space of squared matrices B of order g satisfying the above conditions is called the
Siegel upper half-space, Hg, and is an open set in Cg(g+1)/2. A deep result is that for g ≥ 2
the set of all mutually non-isomorphic compact Riemann surfaces of genus g depends on
only 3g − 3 parameters (see [GriHar78]). Distinguishing the period matrices from arbitrary
elements of Hg is the Schottky Problem.

If ω is C∞ 1-form defined in a neighborhood of the ai’s and bi’s, we set

Ai(ω) =
∫

ai

ω, Bi(ω) =
∫

bi

ω.

5.3 The Abel-Jacobi Map

We need to relate the Jacobian of X to X itself. Choose a base point q on the compact
surface X. Let ω ∈ Ω1(X) be a holomorphic 1-form. For a point p on X consider the integral∫ p

q ω. The integral is well-defined modulo Λ. Therefore, we obtain a well-defined map

A : X → J(X)

by sending p to
(∫ p

q ω1, . . . ,
∫ p

q ωg

)
mod Λ.

Definition 5.4. The above map is called the Abel-Jacobi map for X. It depends on the base
point q.

We can extend the Abel-Jacobi map to the group of Div(X) by defining A
(
∑ np p

)
:=

∑ np A(p). This gives a group homomorphism A : Div(X) → J(X) also called the Abel-Jacobi
map. If we restrict this map to divisors of degree 0 on X, A0 : Div0(X) → J(X), we obtain:

Proposition 5.5. The Abel-Jacobi map A0 is independent of the choice of base point on X.

Proof. Suppose q′ is another base point. Let γ be the path from q to q′. Then, the image for
A(p) changes by α =

(∫
γ ω1, . . . ,

∫
γ ωg

)
mod Λ. This element is independent of p. A(∑ np p)

changes by ∑ npα = α ∑ np = 0.

The Abel’s theorem classifies divisors by their images in the Jacobian.

Theorem 5.6. (Abel Theorem). Let X be a compact Riemann surface. Let D be a divisor of
degree 0 on X. Then, D is the divisor of a meromorphic function if, and only if, A(D) = 0 in
the Jacobian J(X).

To prove this theorem we require some lemmas.

Lemma 5.7. (Existence of differentials of the third kind). Let X be a compact Riemann
surface. For two points p and q in X, there exists a 1-form ω which has a simple pole at
both points, is holomorphic everywhere else in X, and has a residue of 1 at p and −1 at q.
We can add to ω a holomorphic 1-form ω′ on X such that for all i = 1, . . . , g, the integrals∫

ai
ω + ω′ are zero (we assume the cycles ai, bj are chosen so as not to contain p or q). The

form ωpq = ω + ω′ is then uniquely determined.



34 Jacobians

Proof. Consider the divisor D = p + q, such that p ̸= q, on X and let K be a canonical divisor.
Using Riemann-Roch we obtain that

dim L(K + p + q)− dim L(−p − q) = deg(K + p + q) + 1 − g

L(−p− q) is the space of holomorphic functions with zeros at p and q, but since X is a compact
Riemann surface, the dimension of this space is 0. As we know, the degree of a canonical
divisor is exactly 2g − 2, therefore, deg(K + p + q) = 2g. Thus, dim L(K + p + q) = 1 + g.
Since the degree of the divisor p is exactly 1, analogously we obtain that dim L(K + p) = g,
which is the same that than dim L(K). Using the isomorphism between L(1)(D) and L(D + K)
we can conclude that this increase in the dimension means that there exists a meromorphic
1-form, ω, with simple poles at p and q. By multiplying by a constant and using the Residue
Theorem we ensure that the residues at p and q are 1 and -1 respectively.

The existence of a normalized basis ω1, . . . , ωg allows us to consider a linear combination
of its elements, ω′, in order to obtain ωpq = ω +ω′ such that the ai-periods are 0. We basically
consider ω′ = ∑

g
i=1 −ciωi where ci =

∫
ai

ω, for i = 1, . . . , g.

Lemma 5.8. Let α be a closed C∞ 1-form on X, and ω a C∞ closed 1-form defined in a neigh-
borhood of

⋃
i ai ∪

⋃
j bj. We identify them with 1-forms on ∆(= ∆) and on a neighborhood of

∂∆, respectively. Fix p0 ∈ ∆̊ and, for p ∈ ∆, set u(p) =
∫ p

p0
α and we have

∫

∂∆
uω =

g

∑
i=1

(Ai(α)Bi(ω)− Bi(α)Ai(ω)) .

Proof. Let p ∈ ai and let p′ be the corresponding point in a−1
i . Let γ be the curve joining p and

p′ as shown in Figure 5.2.

ai a−1
i

b−1
i

bi

p p′
q

q′
γ

γ′

Figure 5.2: Representation of the elements used in the proof of Lemma 5.8 in ∆. Points p and p′

correspond to pairs located on the curves ai and a−1
i , respectively, while points q and q′ are on bi and

b−1
i . The curves γ and γ′ represent the curves joining p′ and p, and q′ and q respectively.

Then u(p)− u(p′) =
∫

γ α. Now the image of γ is a closed curve homologous to b−1
i , then

u(p)− u(p′) =
∫

b−1
i

α = −Bi(α). Analogously, u(q)− u(q′) = Ai(α). Now,

∫

∂∆
uω =

g

∑
i=1

(∫

ai

+
∫

a−1
i

+
∫

bi

+
∫

b−1
i

)
uω

=
g

∑
i=1

∫

ai

(u(P)− u(P′))ω(P) +
g

∑
k=i

∫

bi

(u(Q)− u(Q′))ω(Q)

=
g

∑
i=1

(
−Bi(α)

∫

ai

ω + Ai(α)
∫

bi

ω

)

as we wanted.
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Lemma 5.9. (Reciprocity Theorem). Let ω1, . . . , ωg be a normalized basis for Ω1(X) as before.
Then, for any j = 1, . . . , g, ∫

bj

ωpq = 2πi
∫ p

q
ωj.

To ensure that the integral is well-defined, we have to specify that it be taken along a curve
from q to p that lies within X depicted as a planar polygon with 4g sides before identifications,
∆.

Proof. Identify X \
(⋃

i ai ∪
⋃

j bj

)
with the standard identified polygon, ∆, and set uj(x) =

∫ x
p0

ωj. Using the previous lemma we have

∫

∂∆
ujωpq =

g

∑
i=1

(
Ai(ωj)Bi(ωpq)− Bi(ωj)Ai(ωpq)

)
=
∫

bj

ωpq

since our basis is normalized and Ai(ωpq) = 0. Now, taking into account that ωpq has residue
1 at p and −1 at q, the Residue Theorem tells us that

∫

∂∆
ujωpq = 2πi(uj(p)− uj(q)) = 2πi

∫ p

q
ωj

Now we are ready to prove our theorem.

Proof. (Abel Theorem). We can write the divisor D as ∑r
i=1(pi − qi) with no points pi and qi

in common.
Suppose that D is the divisor of a meromorphic function f . Consider the 1-form d f

f . It has
a simple pole at every point where f has a zero or a pole. The residue of the pole of this 1-
form is the degree of the zero or pole f . We can write then d f

f = ∑r
i=1 ωpiqi + ∑

g
j=1 cjωj, where

the cj’s are complex coefficients. Let γ be a closed curve not containing any points pi and qi

then
∫

γ
d f
f equals 2πim for some m ∈ Z. The idea is that for any sufficiently small segment

of γ with endpoints a and b, we can choose a branch of the natural logarithm function. Once
this choice is made, the form d f

f = d(log f ) becomes exact, and the integral from one endpoint
to the other evaluates to log b − log a. For the next segment from b to c, we add log c − log b,
potentially using a different choice of the logarithmic branch. Thus, as we go through the
curve γ, the value of the integral becomes the sum of the successive differences given by the
distinct branch choices at each segment’s endpoints. Thus, a multiple of 2π.

What we have found is that if D is the divisor of a meromorphic function f , then we can
find cj’s such that the integrals

∫

aj

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

) ∫

bj

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

)

are elements of 2πiZ. Now we want to prove the converse statement. Assume we can find
such elements cj. Define Ci and C′

i to be small circles around pi and qi respectively. The
homology class of any closed curve γ in X \ ∪i{pi, qi} is a linear combination of ai, bi, Ci, C′

i .
Since the residue of ωpiqi is 1 at pi and −1 at qi, we have that.

∫

Ci

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

)
= 2πi

∫

C′
i

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

)
= −2πi
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So ∫

γ

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

)
∈ 2πiZ

for every closed curve γ in X \ ∪i{pi, qi}. Using this equation we can define a meromorphic
function whose divisor is D. By choosing a base point p0 we can consider

f (p) = exp

(∫ p

p0

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

))
.

It is well defined because a different path would result in adding an integer multiple of 2πi.
Hence, we have seen that D is a divisor of a meromorphic function f if, and only if, there

exist complex numbers, ci’s, such that

∫

aj

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

) ∫

bj

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

)

are all elements of 2πiZ. The normalization condition on the 1-forms ωpiqi and the properties
of the basis ωi allow us to simplify

∫

aj

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

)
= cj.

Now, using the Reciprocity Theorem we obtain that

∫

bj

(
r

∑
i=1

ωpiqi +
g

∑
j=1

cjωj

)
=

r

∑
k=1

2πi
∫ pk

qk

ωj +
g

∑
k=1

ckBj(ωk).

The "aj integrals" are elements of 2πiZ if, and only if, there exist integers n1, . . . , ng such that
cj = 2πinj. If we substitute, we obtain that the bj integrals are elements of 2πiZ if, and only
if, there exist integers m1, ..., mg such that

r

∑
k=1

∫ pk

qk

ωj +
g

∑
k=1

nkBj(ωk) = mj.

Since this last equation holds for all j, we combine all the equations to get a vector equality

r

∑
k=1

∫ pk

qk

ω⃗ = −
g

∑
i=1

ni B⃗i +
g

∑
i=1

mi e⃗i,

where e⃗i is the vector with 1 in the jth place and 0 elsewhere, B⃗i =
(∫

bi
ω1, . . . ,

∫
bi

ωg

)
, and

ω⃗ =
(
ω1, . . . , ωg

)
. The right side of this equation is an element of the lattice Λ and the left

side is the image of the divisor D under the Abel-Jacobi map. Hence, the image of D is zero
if, and only if, D is the divisor of a meromorphic function.

5.4 The Jacobi Inversion Theorem

Abel’s theorem establishes a correspondence between principal divisors and points in the
kernel of the Abel-Jacobi map. The Jacobi inversion problem asks whether, given an arbitrary
point in the Jacobian, one can find a divisor that maps to this point.

Let X be a compact Riemann surface of genus g ≥ 1.
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Definition 5.10. The set of all effective divisors D = p1 + · · ·+ pd (the pi’s can be equal) of
degree d of X is called the dth symmetric product of X, and is denoted Sd(X).

Sd(X) can be identified with the set of all unordered d-tuples {p1, . . . , pd} where the pi’s
are arbitrary elements of X.

Recall from Chapter 1 that a complex manifold is simply the generalization of Riemann
surfaces to a higher dimension.

Proposition 5.11. Sd(X) is a compact complex manifold of dimension d.

Idea of the proof. Suppose Xd = X × · · · × X is the d-fold direct product of X with itself. It is
a complex manifold. If we denote Sd the symmetric group of order d, as a topological space,
Sd(X) is just Xd/Sd with the quotient topology. Thus, Sd(X) is a second countable connected
compact Hausdorff space. Now suppose D = k1 p1 + . . . + kl pl ∈ Sd(X) where the pi are
mutually distinct. Around each pi we choose a local holomorphic coordinate (Wi, zi) in X. Let
σji(z

(1)
i , · · · , z(ki)

i ) the jth elementary symmetric function with respect to these ki variables on
Wi × · · · × Wi (ki times). Then,

(σ11, · · · , σk11, · · · , σ1l , · · · , σk1l)

yields a set of local holomorphic coordinates near D ∈ Sd(X). The details of this last verifica-
tion are nontrivial (see [GriHar78]). □

Let us introduce a lemma.

Lemma 5.12. A holomorphic map f : M → N between compact connected complex manifolds
of the same dimension is surjective if the Jacobian matrix of the map has nonzero determinant
at some point of M.

Idea of the Proof. The Jacobian is nonsingular at some point, then Im f contains an open
set in N. But it is known that Im f is a subvariety of N, that is, that it has dimension equal
to or lower than the manifold N. Since Im f contains an open set in N, it cannot have lower
dimension; hence, the map is surjective. □

Now we can prove that the Abel-Jacobi map is surjective.

Theorem 5.13. (Jacobi Inversion Theorem). A0 : Div0(X) → J(X) is a surjective mapping.

Proof. Let us define the map Ag : Sg(X) → J(X) such that

Ag

(
g

∑
i=1

pi

)
= A0

(
g

∑
i=1

(pi − q)

)
.

We can view this map as the composition of A0 with ∑
g
i=1 pi → ∑

g
i=1(pi − q). Therefore, under

this reformulation, we will have to prove that the map Ag is surjective. Then, we will only have
to use the map ∑

g
i=1 pi → ∑

g
i=1(pi − q) and our result will be satisfied. Consider D = ∑

g
i=1 pi, a

point of Sg(X), with all pi distinct. Consider the local coordinate (z1, . . . , zg) of X(g) centered
at D. Now we compute the Jacobian matrix of Ag near the divisor D (the standard Jacobian
of a function from vector calculus). If D′ is a divisor close to D, we can write it as the sum
of local coordinates ∑

g
i=1 zi. We write the map in terms of the integrals explicitly and take the

partial derivatives of the function with respect to the coordinate system.

∂

∂zi

(
Ag(D′)

)
=

∂

∂zi

(∫ zi

q
ω1, . . . ,

∫ zi

q
ωg

)
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Therefore the Jacobian matrix is

J(Ag) =




ω1
dz1

· · · ω1
dzg

...
. . .

...
ωg
dz1

· · · ωg
dzg




Choose p1 to be some point where ω1 is nonzero. Then, subtract some scalar multiple of ω1

from each of the forms ω2, . . . , ωg, so that these forms are all 0 at p1. With this process, the
ωi’s are still a basis. Now repeat this method, choosing a point p2 where ω2 is nonzero and
subtracting a multiple of ω2 from ω3, . . . , ωg to make them 0 at p2; continuing, we finally find
a set of points p1, . . . , pg ∈ X and a modified basis ω1, . . . , ωg such that the Jacobian matrix is
upper triangular with nonzero diagonal.

The Abel’s theorem states that the kernel of A0 is exactly PDiv(X). With the Jacobi Inver-
sion Theorem, we have the following isomorphism:

Div0(X)

PDiv(X)
∼= J(X).

The quotient Div0(X)/ PDiv(X) is called the Picard group of X, and it is denoted by Pic(X).
The Picard group can be defined, in general, for every complex manifold, regardless of the
dimension, and it is a fundamental invariant.

Similarly to the Riemann-Roch theorem, the Abel theorem has many important applica-
tions. In particular, it allows us to characterize compact Riemann surfaces of genus 1.

Proposition 5.14. Let X be a compact Riemann surface of genus g ≥ 1. Then, Abel-Jacobi map
A : X → J(X) is injective.

Proof. Suppose that A(p) = A(q) with p ̸= q. On a divisor level, A(p − q) = 0, then p − q
is a principal divisor. Hence, there is a meromorphic function with a simple zero at p and a
simple pole at q and no other poles. Then, by Corollary 1.32, X is isomorphic to the Riemann
sphere, but this is a contradiction because g > 0.

Now we can prove the following:

Proposition 5.15. Every compact Riemann surface of genus 1 is isomorphic to a complex
torus.

Proof. Suppose now that X has genus 1. Then, J(X) is a complex torus of dimension one, and
therefore, a Riemann surface. Moreover, the Abel-Jacobi map is holomorphic. This follows
from the local definition of the map as integration: locally A sends p to

∫ p
q ω where ω is a

holomorphic 1-form, and this is a holomorphic function of p. Thus, the Abel-Jacobi map for a
curve of genus 1 is an injective holomorphic map between compact Riemann surfaces. Hence,
it is an isomorphism.

From the genus formula (Proposition 3.11) we see that every smooth projective cubic curve
is isomorphic to a complex torus. Now, this is truly interesting because this gives us a justifi-
cation for the existence of a group structure on smooth projective cubic curves 5.

5As we have given, explicitly, in the course of Algebraic Curves.



Chapter 6

Torelli’s Theorem

In this last chapter, we will prove a deep theorem that states that compact Riemann sur-
faces can be determined by their Jacobian and their period matrix. There are several proofs of
this theorem, we will focus on the one given by Henrik Martens (see [Mar63]) and its adapta-
tions in [FarKra80] and [Nar92]. This result is proved by a combination of the Riemann-Roch
theorem and the Abel-Jacobi map, effectively serving as a culmination of the purpose of this
work.

In this chapter, unless stated otherwise, we will assume that X is a compact Riemann
surface of genus g ≥ 2. If the surface is of genus 0, there is of course nothing to prove since
we only have the Riemann sphere, as we have seen in Chapter 4. For surfaces of genus 1, the
result is a consequence of Abel’s theorem, which shows that each torus is its own Jacobian as
proved in Chapter 5.

In this section, we will provide more detailed proofs than those presented in the previous
sections, as the aim is to give a thorough demonstration of this theorem.

6.1 The Riemann Theta Function

Let X be a compact Riemann surface of genus at least 2, let {a1, . . . , ag, b1, . . . , bg} be a basis
of H1(X, Z). Let {ω1, . . . , ωg} a normalized basis for Ω1(X), so that the period matrix has the
form (Ig, B); ek are the vectors corresponding to the first g columns and Bk are the vectors of
the corresponding to the columns of B. We will begin with a definition.

Definition 6.1. A theta function of order r is a function θ holomorphic on Cg such that

θ(z + ek) = θ(z), θ(z + Bk) = e−2πir(zk+1/2Bkk)θ(z),

for all k = 1, . . . , g.

As we can see this type of function is not well-defined over J(X) since it is not Bk-periodic.
Moreover, as in the case of Riemann surfaces, the compactness of J(X) implies that there are
no nonconstant holomorphic functions on J(X).

A particular theta function is of interest to us.

Definition 6.2. The Riemann theta function is the function defined as

θ(z) = θ(z, B) = ∑
n∈Zg

exp {πi⟨n, Bn⟩+ 2πi⟨n, z⟩}

where ⟨z, w⟩ = ∑i ziwi for z, w ∈ Cg.

39
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We have to prove that this is a theta function.

Lemma 6.3. θ(z) is uniformly convergent on compact subsets of Cg and is a theta function of
order 1. Furthermore, θ ̸≡ 0 and θ(z) = θ(−z).

Proof. We have ∣∣∣eπi⟨n,Bn⟩
∣∣∣ = e−π⟨n,Im(B)n⟩.

Now, Im(B) is positive definite, therefore, there is δ > 0 such that ⟨u, Im(B)u⟩ ≥ δ|u|2 for
u ∈ Rn. Thus, ∣∣∣eπi⟨n,Bn⟩

∣∣∣ ≤ e−πδ|n|2 , n ∈ Zg.

If K is compact in Cg, there is a constant C > 0 such that
∣∣∣e2πi⟨n,z⟩

∣∣∣ ≤ C|n|, z ∈ K,

and the convergence stems from the above two inequalities.
Clearly, θ(z + ek) = θ(z). Now,

θ(z + Bk) = ∑
n∈Zg

exp {πi⟨n, Bn⟩+ 2πi⟨n, z⟩+ 2πi⟨n, Bk⟩}

= ∑
n∈Zg

exp {πi⟨n + ek, B(n + ek)⟩+ 2πi⟨n + ek, z⟩

−πi⟨ek, Bek⟩ − 2πi⟨ek, z⟩}
= e−2πizk−πiBkk θ(z).

The fact that θ ̸≡ 0 is because Fourier series whose coefficients are not all zero cannot
vanish identically. That θ(z) = θ(−z) is obvious if we replace n by −n in the series defining
θ.

6.2 The Theta Divisor

We need to find a concept that allows us to use the Riemann theta function in a way that
is well-defined on the Jacobian of X.

Definition 6.4. Over J(X) we define the theta divisor, Θ, which is the locus of the zeros of
the theta function.

Contrary to θ, the theta divisor is well-defined on J(X) since the factor e−2πizk−πiBkk can
be ignored when computing the zeros. Let A : X → J(X) be the Abel-Jacobi map attached
to a given point p0 ∈ X. Denote by Θζ = Θ + ζ the translation by ζ ∈ J(X). The following
theorem will be crucial.

Theorem 6.5. Consider the function that sends p ∈ X to θ(A(p)− ζ). If this function does not
vanish identically on X, it has g zeros p1(ζ), . . . , pg(ζ). Furthermore,

g

∑
i=1

A(pi(ζ)) = ζ − κ

where κ ∈ J(X) is independent of ζ (it depends only on the base point for J(X)).
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Proof. We split the proof into two parts.
(Existence of g zeros). Consider the vector ω⃗ = (ω1, . . . , ωg) associated with our normal-

ized basis for H1(X, Z). Let ∆ be the standard identified polygon. On ∆, the Abel-Jacobi map
is given modulo Λ, by

A(p) = (A1(p), . . . , Ag(p)) =
∫ p

p0

ω⃗

where we denote p0 as our base point, for convenience. If φ is a function on ∂∆, we define
functions φ± on the edges ai, bi of ∂∆ by φ+ := φ and φ−(p) := φ(p′) if p ∈ ai or p ∈ bi and
p′ is the corresponding point of a−1

i or b−1
i , respectively (see Figure 5.2).

If p ∈ ai, we have A+
k (p)− A−

k (p) =
∫ p

p′ ωk = −
∫

bi
ωk = −Bik, while if q ∈ bi, we have

A+
k (q)− A−

k (q) =
∫ q

q′ ωk =
∫

ai
ωk = δik. Thus, if A± = (A±

1 , . . . , A±
g ), we have

A+ − A− = ei on bi, A+ − A− = −Bi on ai.

We may assume that θ(A(p)− ζ) ̸= 0 if p ∈ ∂∆, if not, we choose another basis of H1(X, Z).
The number of zeros of F(p) = θ(A(p)− ζ) in ∆ is given by

1
2πi

∫

∂∆
d log F(p) =

1
2πi

g

∑
i=1

(∫

ai

+
∫

bi

)
d log

F+(p)
F−(p)

.

Now, if p ∈ bi, F+(p) = θ(A+(p) − ζ) = θ(A−(p) − ζ + ei) = F−(p), while, if p ∈ ai,
F+(p) = θ(A−(p)− ζ − Bi) = e2πi(Ai(p)−ζi)+πiBii θ(A−(p)− ζ), so that

log
F+(p)
F−(p)

= 2πiAi(p)− 2πiζi + πiBii,

and we have d log F+

F− = 2πiωi on ai. Hence, the number of zeros of F in ∆ equals ∑
g
i=1

∫
ai

ωi =

g. This is the first part of the theorem.
(Proof of the Summation Formula). Now, let p1(ζ), . . . , pg(ζ) be the zeros of θ(A(p)− ζ)

in ∆. We shall denote by const a term that is independent of ζ. We have

g

∑
i=1

Ak(pi(ζ)) =
1

2πi

∫

∂∆
Ak(p)d log F(p) =

1
2πi

g

∑
i=1

(∫

ai

+
∫

bi

) (
A+

k d log F+ − A−
k d log F−) .

Consider the integral over ai. We have A−
k = A+

k + Bik, while d log F+ = d log F− + 2πiωi;
hence ∫

ai

(
A+

k d log F+ − A−
k d log F−) = −Bik

∫

ai

d log F+ + const.

If α, β are the ordered extremities of ai, we have A+(β)− A+(α) =
∫

ai
ω⃗ = ei. Hence

1
2πi

∫

ai

d log F+ ≡ 1
2πi

log
θ(A+(α)− ζ + ei)

θ(A+(α)− ζ)
≡ 0 mod Z.

Since the integral depends continuously on ζ, we conclude that
∫

ai

(
A+

k d log F+ − A−
k d log F−) = const for i = 1, . . . , g.

Consider the integral over bi. We have A+ = A− + ei, F+ = F− on bi, so that
∫

bi

(
A+

k d log F+ − A−
k d log F−) = δki

∫

bi

d log F+.
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If x, y denote the ordered endpoints of bi, we have A(y) = A(x) + Bi, so that

θ(A(x)− ζ + Bi)

θ(A(x)− ζ)
= exp(−2πiAi(x) + 2πiζi − πiBii),

and therefore
1

2πi

∫

bi

d log F+ ≡ ζi − Ai(x)− 1
2

Bii mod Z.

We conclude that
1

2πi

∫

bi

d log F+ = ζi + const.

This gives
g

∑
i=1

Ak(pi(ζ)) ≡
g

∑
i=1

δkiζi + const ≡ ζk + const mod Z

which proves the theorem.

The above theorem has a geometric interpretation. Θ can be interpreted as a subvariety
that intersects the curve X in g points.

To continue with the next results, we need to introduce some notation.

Definition 6.6. If Sk(X) denotes the kth symmetric product of X, the Brill-Noether locus of
degree k, Wk, is defined as the image in J(X) of the map Ak : Sk(X) → J(X). This map is
given by Ak(p1 + · · ·+ pk) = ∑k

i=1 A(pi), as utilized in the proof of Theorem 5.13.

Since we will work, in general, with Sk(X) for 0 < k ≤ g, we will simply use A instead of
Ak and say that A(p1 + · · ·+ pk) = ∑k

i=1 A(pi), which simplifies the notation in case there is
no confusion. Therefore, Wk = {A(D) | D is an effective divisor on X of degree k}.

The following theorem is crucial as it relates Θ, the zero locus of the Riemann theta func-
tion (analytic origin), and Wg−1, which is the image of Sg−1 in X under the Abel-Jacobi map
(geometric origin).

Theorem 6.7. (Riemann Parametrization Theorem). We have that

Θ = Wg−1 + κ

where κ is the constant of Theorem 6.5.

Proof. We begin by proving that Wg−1 + κ ⊂ Θ. Let D = p1 + · · ·+ pg be a divisor of degree g
with distinct pi in general position so that D is the unique point of Sg(X) mapping onto A(D)

in J(X). We have two possibilities: A(X) ⊂ Θζ , where ζ = A(D) + κ or A(X) ̸⊂ Θζ .
If A(X) ̸⊂ Θζ , we have that for all pi

θ(A(pi)− (A(D) + κ)) = θ(A(p1 + · · ·+ p̂i + · · · pg) + κ) = 0.

If we assume A(X) ⊂ Θζ , let q1, . . . , qg be the zeros of p 7→ θ(A(p)− ζ). By Theorem 6.5, we
have ∑ A(qi) = ζ − κ = A(D), so that, by choice of D, we have D = ∑ qi = ∑ pi. In particular
θ
(

A(pi)− ζ
)
= 0, so again

θ(A(p1 + · · ·+ p̂i + · · · pg) + κ) = 0.

Since D can be chosen to satisfy the above conditions arbitrarily in a non-empty open set in
Sg(X), it follows that θ(A(D′) + κ) = 0 for all D′ in a non-empty open set in Sg−1(X), so that
θ
∣∣
Wg−1+κ

= 0.
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To prove that Θ ⊆ Wg−1 + κ, let ζ ∈ Θ, and suppose first that there is p ∈ X such that
θ
(

A(x)− A(p)− ζ
)
̸≡ 0 in x. In this case, if D = div

(
θ(A(x)− A(p)− ζ)

)
, then D = p + D′,

where D′ ≥ 0 has degree g − 1 (Theorem 6.5). Furthermore, A(D) = A(p) + A(D′) =

(ζ + A(p))− κ, so that ζ = A(D′) + κ ∈ Wg−1 + κ. Now, if θ
(

A(x)− A(p)− ζ
)
≡ 0 for all p,

let k be the largest integer such that θ
(

A(D0)− A(D1)− ζ
)
= 0 for all effective divisors D0, D1

of degree k. We have k < g since Sg(X) → J(X) is surjective and we have by Lemma 6.3 that
θ ̸≡ 0.

Let E0, E1 be effective divisors of degree k + 1 with θ
(

A(E0)− A(E1)− ζ
)
̸= 0. We may

suppose that the support of E0 + E1 consists of 2k + 2 distinct points. Let E1 = p + D0,
where D0 ≥ 0 has degree k. Then, x 7→ θ

(
A(x) + A(D0) − A(E1) − ζ

)
̸≡ 0; let D be the

divisor of this function. Then, D ≥ 0 has degree g. Furthermore, if x ∈ E1 (in its support),
θ
(

A(x) + A(D0)− A(E1)− ζ
)
= θ

(
A(D0)− A(E1 − x)− ζ

)
= 0, since E1 − x ≥ 0 has degree

k. Hence,D ≥ E1, and we can write D = E1 + E2 with deg(E2) = g − k − 1.
Now, by Theorem 6.5, A(E1) + A(E2) = A(D) = ζ + A(E1)− A(D0)− κ, so that ζ − κ =

A(E2 + D0) with deg(E2 + D0) = g − k − 1 + k = g − 1. Hence, Θ ⊆ Wg−1 + κ, as we
wanted.

Before continuing with the next theorem, let us state a lemma.

Lemma 6.8. If w is such that θ(w+z)
θ(z) is holomorphic and nowhere 0 on Cg, then w ∈ Λ.

Equivalently, let ζ ∈ J(X). If Θ is left invariant by translation by ζ, then ζ = 0 in J(X).

Proof. A basic theorem of complex analysis that tells us that if a function satisfies that is
holomorphic and nowhere 0 on Cg, it is basically the exponential of a holomorphic function
(see [Rud87]). Therefore, there exists a holomorphic function g on Cg such that

θ(w + z)
θ(z)

= eg(z), z ∈ Cg.

Since θ is periodic with period 1 in each variable, there exist integers nk, with 1 ≤ k ≤ g, such
that g(z + ek)− g(z) = 2πink. Furthermore,

exp(g(z + Bk)) =
e−2πi(zk+wk)−πiBkk θ(w + z)

e−2πizk−πiBkk θ(z)
= e−2πiwk exp(g(z)).

Hence, there exist integers mk such that g(z + Bk)− g(z) = −2πiwk + 2πimk.
For any 1 ≤ i ≤ g, it follows that

∂g
∂zi

(z + λ) =
∂g
∂zi

(z)

if λ = ek or λ = Bk. Thus, for all λ ∈ Λ,

∂g
∂zi

(z + λ) =
∂g
∂zi

(z)

It follows that ∂g
∂zi

defines a holomorphic function on the compact connected manifold J(X)

and is therefore constant. Thus, there exist constants c0, c1, . . . , cg such that g(z) = c0 + c1z1 +

· · ·+ cgzg. Hence, g(z+ ek)− g(z) = 2πink = ck, and 2πiwk = −
(

g(z+ Bk)− g(z)
)
+ 2πimk =

−∑
g
i=1 ciBik + 2πimk = −2πi ∑

g
i=1 niBik + 2πimk. Thus, w = − 1

2πi ∑
g
i=1 ciBik + mk ∈ Λ.

With this theorem, we can relate κ to a concept we are already very familiar with.
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Theorem 6.9. If K is a canonical divisor on X, we have that

A(K) = −2κ

where κ is the constant in Theorems 6.5 and 6.6.

Before we begin with a remark which we will use later too.

Remark 6.10. Let D ≥ 0 be a divisor of degree g − 1, then, by Proposition 4.1. we have that
L(D) ≥ 1. By Riemann-Roch we have that L(K − D) = L(D) ≥ 1, which means that using the
projectivitzation to the complete linear system |D| we have that K − D is linearly equivalent
to a divisor D′ ≥ 0 which must have degree g − 1. Therefore, A(K − D) ∈ Wg−1. Hence,
A(K)− Wg−1 ⊂ Wg−1. Moreover, A(D) = A(K)− A(D′) ∈ A(K)− Wg−1. Thus,

A(K)− Wg−1 = Wg−1.

Proof. (Theorem 6.8). Using Theorem 6.5 and the previous remark we have, since θ(z) =

θ(−z),
Θ = Wg−1 + κ = −Wg−1 − κ = Wg−1 − A(K)− κ = Θ − (A(K) + 2κ).

Now, because of Lemma 6.7, we have that A(K) + 2κ = 0.

6.3 Torelli’s Theorem

Torelli’s theorem basically shows that W1 ⊂ J(X) is determined up to translation by Wg−1.
Now, because for Riemann surfaces of genus g ≥ 1 we have that the Abel-Jacobi map is an
embedding (Proposition 5.14), so W1 is isomorphic to X.

With no further hesitation, let us state the theorem.

Theorem 6.11. (Torelli’s Theorem). Let X be a compact Riemann surface with genus g ≥ 2.
The pair (J(X), Θ) determines X up to isomorphism.

From what we have seen, Θ has the information of the period matrix. So we could also
say that the Jacobian and the period matrix determine the compact Riemann surface up to
isomorphism.

Remark 6.12. Theorem 6.5 establishes an explicit relationship between Wg−1 and Θ. To avoid
any confusion, let us denote AX : X → J(X), with Wk as the image in J(X) of Sk(X) for
1 ≤ k ≤ g, and similarly AY : Y → J(Y), with Vk as the image in J(Y) of Sk(Y) for 1 ≤ k ≤ g.

We will prove that if Wg−1 is a translation of Vg−1, then V1 must be a translation of either
W1 or −W1. This result directly implies Torelli’s theorem.

Let us introduce more notation. If E is a subset of J(X), we define the dual of E as
E∗ = A(K)− E where K is a canonical divisor. Using theorem 6.8 we have

W∗
g−1 = Wg−1.

For any E ⊂ J(X) and a ∈ J(X), we denote Ea = E + a, the translation of E by a. Thus,

(Wg−1,a)
∗ = Wg−1,−a.

Finally, we denote an arbitrary effective divisor of degree k on X by Dk, D′
k, ∆k, etc. The

subscripts on the divisor will indicate the degree, for simplicity.
To prove our theorem, we will need the following three lemmas. They are essentially

equalities and inclusions between the spaces Wk.
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Lemma 6.13. Let 0 ≤ r ≤ g − 1 and a, b ∈ J(X). Then, Wr,a ⊂ Wg−1,b if, and only if, a ∈
Wg−1−r,b.

Proof. First, suppose that a = A(Dg−1−r) + b, then A(Dr) + a = A(Dr + Dg−1−r) + b ∈ Wg−1,b.
Conversely, we may assume b = 0 (the case b ̸= 0 is the same, but we would have to drag
the constant b). By assumption, for all Dr ≥ 0, there is ∆g−1 such that A(Dr) + a = A(∆g−1).
Now, if p0 is the base point in X defining the Abel-Jacobi map, we have A(rp0) = 0, so, from
the surjectivity of the Abel-Jacobi map, a = A(δ), where δ ≥ 0 has degree g − 1. We now have
A(Dr + δ) = A(∆g−1 + rp0), so that, by Abel’s theorem, Dr + δ ∼ ∆g−1 + rp0, where ∼ denotes
the linear equivalence. Hence, if K is a canonical divisor, Dr + K − ∆g−1 ∼ (K − δ) + rp0;
furthermore, K − ∆g−1 and K − δ are linearly equivalent to effective divisors by Remark 6.9.
Thus, K − δ + rp0 is linearly equivalent to a divisor of the form Dr + D′

g−1 for all Dr; hence,
dim |K − δ + rp0| ≥ r. Hence, by the Riemann-Roch, dim L(δ − rp0) = dim L(K − δ + rp0) +

1 − g + (g − 1 − r) ≥ 1, so that δ − rp0 ∼ D0
g−1−r, and we have A(D0

g−1−r) = A(δ − rp0) =

A(δ) = a, and a ∈ Wg−1−r.

Lemma 6.14. Let 0 ≤ r ≤ g − 1. We have

Wg−1−r =
⋂

a∈Wr

Wg−1,−a,

and
W∗

g−1−r =
⋂

a∈Wr

Wg−1,a =
⋂

a∈Wr

(Wg−1,−a)
∗.

Proof. If a ∈ Wr, we have a = A(Dr) and Wg−1−r + A(Dr) ⊂ Wg−1, so that Wg−1−r ⊂⋂
a∈Wr

Wg−1,−a.
Now, let ζ ∈ ⋂

a∈Wr
Wg−1,−a, so that ζ + Wr ⊂ Wg−1. By Lemma 6.12, this implies that

ζ ∈ Wg−1−r. The second statement follows from the first by taking duals.

Lemma 6.15. Let 0 ≤ r ≤ g − 2, let a ∈ J(X), x ∈ W1 and y ∈ Wg−1−r. Set b = a + x − y. Then,
we have either

Wr+1,a ⊂ Wg−1,b

or
Wg−1,b ∩ Wr+1,a = Wr,a+x ∪ S,

where S = Wr+1,a ∩ (Wg−2,y−b)
∗.

Proof. By definition, there is p ∈ X with A(p) = x, and D0
g−1−r such that A(D0

g−1−r) = y.
First, suppose that p ∈ D0

g−1−r (referring to its support). Then, x − y = −A(D′) where
deg D′ = g − 2 − r and D′ ≥ 0. We have

a = b + A(D′).

Thus, a + Wr+1 = b + (A(D′) + Wr+1) ⊂ b + Wg−1, which is our first case.
Now, suppose that p /∈ D0

g−1−r, and let

u ∈ Wr+1,a ∩ Wg−1,b.

Then
u = A(Dr+1) + a = A(∆g−1) + b = A(∆g−1) + a + A(p)− A(D0

g−1),
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so that, since Dr+1 + D0
g−1−r and ∆g−1 + p both have degree g, Abel’s theorem implies that

Dr+1 + D0
g−1−r ∼ ∆g−1 + p.

Case 1. Dr+1 + D0
g−1−r = ∆g−1 + p.

Since p /∈ D0
g−1−r, we have p ∈ Dr+1, and we have

D′
r + D0

g−1−r = ∆g−1,

where D′
r = Dr+1 − p, so

A(D′
r) + y = u − b,

and u ∈ Wr + b + y = Wr,a+x.
Case 2. Dr+1 + D0

g−1−r ̸= ∆g−1 + p.
Here, the complete linear system |∆g−1 + p| contains two distinct effective divisors, so that

dim |∆g−1 + p| ≥ 1. Hence, for any q ∈ X, we can find ∆′
g−1 ≥ 0 so that ∆g−1 + p ∼ ∆′

g−1 + q.
This gives, if we fix w = A(q), (u − b) + x = A(∆g−1) + A(p) = A(∆′

g−1) + w ∈ Wg−1,w,
since q ∈ X is arbitrary, u − b + x ∈ ⋂

w∈Wr
Wg−1,w = W∗

g−2 by Lemma 6.13. Therefore,
u ∈ (W∗

g−2)b−x = (W∗
g−2)a−y = (Wg−2,y−a)∗. Of course, u ∈ Wr+1,a by assumption. Thus, we

have
Wr+1,a ∩ Wg−1,b ⊂ Wr,a+x ∪ S.

which finishes the proof on Case 2.
Now we need to prove the opposite inclusion. We have

Wr + a + x = Wr + a + A(p) ⊂ Wr+1,a.

Since a + x = b + y ∈ b +Wg−1−r, we have Wr + a + x ⊂ b +Wg−1−r +Wr = b +Wg−1. Finally,

(Wg−2,y−a)
∗ = W∗

g−2 + b − x = A(K)− Wg−2 − x + b ⊂ A(K)− Wg−1 + b = Wg−1 + b.

This proves that Wr,a+x ⊂ Wr+1,a ∩Wg−1,b, and that S ⊂ Wr+1,a ∩Wg−1,b. The lemma is proved.

Before we begin with the proof of the main theorem of this chapter, we need two results.
The first is a remark.

Remark 6.16. Notice that a change in the canonical homology basis

{a1, . . . , ag, b1, . . . , bg} → {−a1, . . . ,−ag,−b1, . . . ,−bg}

changes Wk into −Wk, while leaving unaltered both the period matrix and the Jacobian.

At the end of the proof we will need to use one lemma that requires some knowledge
about algebraic geometry, but in another direction. Hence, we will not prove it, because that
would require introducing more theory. For further details, one can use [Ful08]. As we have
seen in Theorem 4.22, X can be defined by the locus of a finite system of homogeneous poly-
nomials, that is to say, X is an algebraic variety. We will not prove that, but X is concretely
a irreducible algebraic variety of dimension one: an irreducible algebraic curve. The dimen-
sion here indicates that, locally, the algebraic variety only depends on a single variable. The
irreducibility means that the algebraic variety cannot be written as the union of nontrivial
algebraic varieties.
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Lemma 6.17. If X and Y are two irreducible algebraic curves intersecting in an infinite number
of points, then they must be equal.

The idea of the proof is that the intersection of irreducible algebraic curves is the empty
set, the total set, or a union of finite points. Therefore, we must be in the second case.

Now, we are finally ready.

Proof. (Torelli’s theorem). We have identified J(X) with J(Y) and that Vk is the image of Sk(Y)
in J(Y) under AY.

Let r ≥ 0 be the smallest integer such that V1 is contained in some translation of either
Wr+1 or W∗

r+1; since V1 ⊂ Vg−1, and Vg−1 is a translation of Wg−1 by hypothesis, there is such
an integer (for example g − 2).

The theorem asserts that r = 0. Assume, on the contrary, that r ≥ 1, and that V1 ⊂ Wr+1,a

(taking into account Remark 6.15 the case V1 ⊂ −Wr+1,a is just a change of basis).
Let x ∈ W1, y ∈ Wg−1−r and set b = a + x − y. Unless Wr+1,a ⊂ Wg−1,b we have the

following:
V1 ∩ Wg−1 = V1 ∩ (Wg−1,b ∩ Wr+1,a).

By Lemma 6.14
V1 ∩ Wg−1 = (V1 ∩ Wr,a+x) ∪ (V1 ∩ S).

where Wr,a+x depends only on the choice of x, and S = Wr+1,a ∩ (Wg−2,y−a)∗ only on the choice
of y.

We show first that for a fixed x, V1 ̸⊂ Wg−1,b for almost all choices of y, therefore Wr+1,a ̸⊂
Wg−1,b. As y varies over Wg−1−r, −b varies over Wg−1−r,−a−x. By assumption, there exists a
k ∈ J(Y) such that Vg−1,k = Wg−1. Therefore V1 ⊂ Wg−1,b if, and only if, V1 ⊂ Vg−1,b+k, which
happens if, and only if, −b ∈ Vg−2,k using Lemma 6.12. The set of b for which V1 ⊂ Wg−1 + b
is precisely the set of b with −b ∈ Vg−2,k ∩ Wg−1−r,−a−x. Now, if V1 ⊂ Wg−1,b for all −b ∈
Wg−1−r,−a−x, we have

V1,−x−a ∈
⋂

y∈Wg−1−r

Wg−1,−y = Wr

by Lemma 6.13. This contradicts the minimality assumption on r. Thus, Wg−1−r,−a−x ̸⊂ Vg−2,k

and Wg−1−r,−a−x ∩ Vg−2,k has lower dimension than Wg−1−r,−a−x.
Again consider

V1 ∩ Wg−1 = (V1 ∩ Wr,a+x) ∪ (V1 ∩ S).

Since V1 ̸⊂ Wg−1,b and Wg−1 is a translation of Vg−1, using Theorem 6.5, there is a divisor D(b)
of degree g on Y such that

AY(D(b)) = b + c,

where c ∈ J(Y) is a constant independent of the points of D(b), and the points in D(b) are
mapped by AY to the intersection V1 ∩ Wg−1,b

We show that V1 ∩Wr,a+x contains at most one point. If not, then, as −b varies over almost
all points of Wg−1−r,−a−x for a fixed x, the divisor D(b) contains at least two fixed points.
Hence, AY(D(b)) varies over a translation of Vg−2. Adding a canonical divisor K adequately,
we have that

W∗
g−1−r ∈ Vg−2,d

for some d ∈ J(Y). Now, ⋂

−v∈Vg−2,d

Vg−1,v ⊂
⋂

−v∈W∗
g−1−r

Wg−1,v+e
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where e is the constant such that Vg−1 = Wg−1 + e. By Lemma 6.13, the left term is a translation
of V1 and the right term is a translation of W∗

r again, contradicting the definition of r.
Keeping y fixed and varying x, we see from the equation AY(D(b)) = b+ c that V1 ∩Wr,a+x

must contain at least one point because we need dependence on x. Hence, by the above
argument, this point occurs in the divisor D(b) with degree one.

Now, we can find x and x′ in W1, and a certain y ∈ Wg−1−r such that D(a + x − y) =

q + ∆g−1 and D(a + x′ − y) = q′ + ∆g−1, as divisors; where q and q′ are points of J(Y), and
∆g−1 is a divisor of degree g − 1 not containing either q or q′. We have that:

AY(q′)− AY(q) = x′ − x

If we fix x, we have that AY(q′)− AY(q) ∈ V1,−AY(q) and x′ − x ∈ W1,−x. Thus the algebraic
varieties V1,−AY(q) and W1,−X intersect in infinitely many points, and, because of Lemma 6.16,
we have that they must be equal, which contradicts our assumption. Therefore, r = 0, and
our theorem is proved.



Conclusions

In this work, we have successfully achieved most of the outlined objectives. We have
extended beyond the scope of the Algebraic Curves course, formalizing and proving concepts
that were previously assumed. Key accomplishments include: A detailed exploration of the
fundamental aspects of Riemann surfaces, holomorphic maps, and their global properties; a
comprehensive understanding of the Riemann-Roch theorem along with its applications; a
proof of a relatively modern theorem, Torelli’s theorem, which illustrates how the Jacobian
uniquely determines the curve up to isomorphism.

However, we have also observed that the vast domain of algebraic geometry and its con-
nections with topology and complex analysis cannot be fully comprehended within 50 pages.
Certain theorems were necessarily assumed to make some progress. For instance, the separa-
bility of points and tangents property was indispensable. Its proof, reliant on advanced func-
tional analysis, diverges significantly from the trajectory of this work. Notably, our approach
to Riemann-Roch implicitly or explicitly presumes the existence of at least one nonconstant
meromorphic function on a compact Riemann surface, which is highly nontrivial to prove.

In the second block, we accepted, without details, the existence of a normalized basis for
Ω1(X) given a basis of H1(X, Z). Proving this would require multiple pages and such depth
was omitted to prevent making this work too analytical.

Similarly, in the third block, we introduced Lemma 6.16, which encapsulates a wide theory
that was not fully detailed for brevity. While we briefly addressed the equivalence between
Riemann surfaces and projective curves, a more extensive discussion lies beyond the scope of
this study. Consequently, rather than beginning with curves and proving theorems, we found
it more suitable to adopt the more general framework of compact Riemann surfaces.

Initially, we wanted to focus on the paper presented in the Appendix, A Torelli-like The-
orem for Smooth Plane Curves by James S. Wolper. Despite its relevance to algebraic geome-
try, the central result, Rauch’s theorem, is heavily rooted in differential geometry and analysis
and uses tools that are beyond the scope of this work. Assuming this theorem without a deep
study would have led to superficial proofs. Nevertheless, the paper provided a structural
guideline that significantly influenced the development of this work and facilitated learning
from diverse perspectives. In this paper, we learned that, for smooth plane curves, instead
of utilizing the entire period matrix, which requires knowledge of O(g2) complex numbers
(where g denotes the genus), one can instead rely on just four columns of the period matrix
to fully characterize the curve. This approach reduces the study to O(g) parameters. Viewing
the period matrix as a signal from the perspective of Information Theory makes this theorem
especially appealing, as it proves a considerable compression of information.

In conclusion, this work has not only achieved its primary objectives but has also opened
options for further study, emphasizing the depth and richness of the interplay between alge-
braic geometry, topology, and complex analysis.
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Appendix: A Torelli-Like Theorem For
Smooth Plane Curves

The following pages include the paper that served as a guide during this work. Although
its content was not finally included in our work, it has been a valuable source for shaping
the approach to the research and provided some references applied throughout the work. It
is left for the reader to examine, as it presents a theorem similar to Torelli’s theorem for the
characterization of smooth projective plane curves, which, as we have seen, are an essential
object of study in the field of algebraic geometry.
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A TORELLI–LIKE THEOREM FOR SMOOTH PLANE CURVES

JAMES S. WOLPER

Abstract. The Information-Theoretic Schottky Problem treats the period
matrix of a compact Riemann Surface as a compressible signal. In this case,
the period matrix of a smooth plane curve is characterized by only 4 of its
columns, a significant compression.

1. Introduction

Begin by fixing notation; consult [5] as a general reference.
Let X be a compact Riemann Surface of genus g > 1; equivalently, X is a non-

singular complex algebraic curve. Choose a basis ω1, . . . , ωg for the space H1,0(X)
of holomorphic differentials on X , and a symplectic basis α1, . . . , αg, β1, . . . , βg for
the singular homology H1(X,Z), normalized so

∫
αi

ωj = δij , the Dirac delta. The

matrix Ωij :=
∫
βi
ωj is the period matrix; Riemann proved that it is symmetric

with positive definite imaginary part. The torus Cg/[I|Ω] is the Jacobian of X .
Torelli’s Theorem asserts that the Jacobian determines all of the properties of X .
In practice deciding which properties apply is seldom successful (but see [7]).

The period matrix is symmetric with positive-definite imaginary part, and the
space of such matrices forms the Siegel upper half-space Hg. Its dimension is
g(g + 1)/2, while the dimension of the moduli space of curves of degree g has
dimension 3g − 3. Distinguishing the period matrices from arbitrary elements of
Hg is the Schottky Problem. See [3] for details on the problem and some of its
previous solutions.

Now, recast the problem in terms of communication. Suppose that Alice wants
to tell Bob about a curve. By Torelli’s Theorem, she can do so by telling him the
period matrix, but this means transmitting O(g2) complex numbers in order to
describe something that depends on O(g) parameters. In other words, the period
matrix is sparse in the sense of [2], and should therefore be compressible.

The perspective that the period matrix is a compressible signal is the central
idea of the Information–Theoretic Schottky Problem. The attempt to apply ideas
from Compressed Sensing [2] to the Schottky problem has led to many interesting
experiments, conjectures, and theorems [8].

The result described here is purely mathematical, rather than computational;
however, it was inspired by an attempt to implement ideas in blind Compressed
Sensing, as described in [4].

Date: 17 December, 2012.
2010 Mathematics Subject Classification. 94A15, 65D32.

1



2 JAMES S. WOLPER

2. Plane Curves

Shift the focus to a smooth plane curve whose affine equation f(x, y) = 0 has

degree d > 4. Its genus is g = (d−1)(d−2)
2 , and its holomorphic differentials are

given by h(x, y) dx
∂f/∂y , where h is a so–called adjoint polynomial of degree d − 3.

Fix an order for the monomials of degree d − 3, eg the usual lexicographic order
x0y0 < x1y0 < x0y1 < · · · < x0yd−3, thus forming a proxy basis for H(1,0)(X).

The main result is

Theorem 2.1. There is a set of 4 columns of the period matrix of a smooth plane
curve that characterize the curve; in other words, if X ′ is another plane curve whose
period matrix includes these four columns, then X and X ′ are holomorphically
equivalent.

The four columns involved have 4g entries, so constitute a rather small superset
of “moduli.” Thus, this is a significant loss–less compression of the period matrix.

The number 4 seems rather arbitrary, but the condition that a curve have a
smooth planar representation is strong; one would not expect such a strong result
from weaker hypotheses.

3. Period Matrices and Moduli

The primary tool relating period matrices to moduli is the following theorem of
Rauch. Let K denote the canonical divisor on X .

Theorem 3.1. [Rauch] Let {ζ1, . . . ζg} be a normalized basis for H(1,0)(X) of a
non-hyperelliptic Riemann surface X, and suppose that {ζiζj : (i, j) ∈ (I, J)} form
a basis for the quadratic differentials H0(X, 2K). If another Riemann surface X ′

has the same entries as X in the (I, J) positions of its period matrix then X and
X ′ are holomorphically equivalent.

The proof, while not strictly relevant here, may be of interest for further ITSP
investigations. It chooses the minimal member of the homotopy class of maps from
the underlying surface of X to the underlying surface of X ′ with respect to the
Douglas–Dirichlet energy, and proceeds by a delicate argument using infinitessimal
quadratic differentials to show that this map is holomorphic.

In principle, then, Alice can send Bob 3g−3 entries of the period matrix, and he
can then verify that his period matrix is the same. However, there is no canonical
way to choose which 3g− 3 elements to send, and there are many choices of 3g− 3
elements that do not form moduli. The point of Theorem A, then, is that in the
case of a smooth plane curve Alice can canonically choose a slightly larger set of
periods to send.

Returning to plane curves, the strategy is to choose a basis for H0(2K) carefully;
in the end, this will involve only 4 columns of the period matrix.

4. Proof of the Theorem

Recall the theorem of Noether (quoted in [6]; also see [1]) that every quadratic
differential is a product of ordinary differentials.

To determine (I, J), define a g×g matrix Q whose rows and columns are indexed

by the adjoint monomials. In writing the matrix the factor dx/∂f
∂y is omitted,
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and in considering quadratic differentials one only need to look at products of the
monomials. In the case of degree d = 6, the curve has genus g = 10 and, filling
only the top row and leftmost column,

Q =




1 x y x2 xy y2 x3 x2y xy2 y3

x
y
x2

xy . . .
y2

x3

x2y
xy2

y3




In this case, the columns beginning with 1, x3, and y3 must be included to
form a basis for H0(X, 2K). More generally, the xd−3 and yd−3 columns must be
included in order to get all of the monomials with x–degree (resp. y–degree) greater
than d − 3. Note that these three columns contain duplicate entries, for example,
xd−3yd−3 appears in both the xd−3– and yd−3–columns.

The entries in these three columns do not constitute a basis, since they omit the
monomials of degree greater than d − 3 but of x– or y–degree ≤ d − 4, but all of
these monomials are in the x2y2 column. To see this, let xryd−2−r be a monomial
of degree d − 2; here r ≤ d − 4. This monomial factors as x2y2 · xr−2yd−4−r, and
xr−2yd−4−r is a monomial in the first column. Thus, xryd−2−r appears in the x2y2

column; the same applies to xd−2−ryr.
Similarly, monomials of degree d− 1 can be written xryd−1−r, which factors as

x2y2 ·xr−2yd−3−r. Clearly d− 3− r ≤ d− 3, so again such a monomial is a product
of x2y2 and a monomial from the first column.

The largest–degree monomial satisfying the conditions is xd−4yd−4 = x2y2 ·
xd−6yd−6.

Thus, every “missing” monomial appears in the x2y2 column.
Now consider the corresponding entries in the period matrix. Since the differ-

entials of the chosen basis are not normalized, multiply the right half of the period
matrix by the inverse of the left half. Each entry from (I, J) in the normalized pe-
riod matrix is a thus linear combination of entries from the corresponding column
in the matrix associated with Q. But these entries still correspond to a (superset)
of a basis for H0(2K), and thus by the Rauch Theorem determine the curve up to
isomorphism.

5. Complements

• The four columns contain no more than 4g entries, which is a substantial
compression of the period matrix.

Even removing the duplicates, there are other relations among the quadratic
differentials and thus more relations between the periods. This is easiest to see in
degree 6, where removing duplicate entries leaves 28 positions, while the number of
moduli is 27. The missing relation occurs in degree 6, and is, in fact, the equation
of the curve. In other words, some of the redundancy from the superset of periods
used to determine the curve come from the equation itself.
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In higher degrees, many of the redundancies are in the ideal generated by the
equation.

• Since the columns of the normalized period matrix each correspond to integrals
over a cycle, it appears that only four of the generators of the first singular homology
group determine the whole topology of the curve, but this is not the case because
of the symmetry of the normalized period matrix.

• It is neither true nor claimed that every set of four columns determines the
curve; using the Alice–Bob scenario, Alice, knowing that she has a plane curve,
chooses the columns used in the proof and sends them to Bob. Bob also has a
curve, or perhaps a period matrix, but may or may not know a priori whether
his period matrix is a plane curve, but if it contains the four columns then he
has determined that the curve that Alice sent is the one he has. In this sense the
theorem provides more of a verification than an actual communication.

• D. Litt points out that it may not be possible to transmit periods in a fi-
nite message, although many complex numbers do have compact descriptions (eg
Gaussian rationals, surds). In other cases it may only be possible to transmit an
approximation of the periods. If this is so, then Bob knows that his curve is close
(in an analytic sense) to the plane curve locus, which is already significant.
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