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Abstract

This work investigates the classification of Zp-manifolds, compact (path-
connected) Riemannian manifolds whose holonomy group is isomorphic to Zp,
up to affine equivalence. It uses the foundational results of Bieberbach groups
and cohomological methods to achieve two primary objectives: classifying affine
equivalence classes of Zp-manifolds and analyzing the case where non-homotopic
Zp-manifolds become affinely equivalent when taking the product by S1. This
work also provides a way to find pairs of such non-homotopic Zp-manifolds that
become isomorphic after taking Cartesian product by S1.

Notation: In this work, Zp refers to Z/pZ, where p ∈ Z, p ̸= 0.

2020 Mathematics Subject Classification. 53C29, 20H15, 20J06
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Introduction

The study of compact Riemannian manifolds is of great importance in several
fields of study such as topology, algebraic structures, and mathematical physics.
In particular, manifolds whose geometry is governed by torsionfree crystallo-
graphic groups, commonly referred to as Bieberbach groups, play a fundamen-
tal role in understanding flat geometries. This work focuses on a subclass of
these spaces, namely Zp-manifolds, which are compact path-connected Rieman-
nian manifolds whose holonomy group is isomorphic to Zp, where p is a prime
number.

Bieberbach, with his three theorems, succeeded in describing elegantly the
intrinsic properties of crystallographic groups, proving, among other things, that
the number of distinct equivalence classes of such groups is finite. Extending
these results to Zp-manifolds and investigating their behavior when forming the
product with the circle, forms the core motivation of this work.

The motivation for studying Zp-manifolds arises from their ability to pro-
vide concrete examples of how algebraic and topological properties interact
in geometric settings. Specifically, the phenomenon where non-homotopic Zp-
manifolds can become affine equivalent upon taking their product with S1 raises
intriguing questions about the role of additional symmetries in affine classifica-
tions.

This project is guided by two primary objectives: the classification of Zp-
manifolds up to affine equivalence and the exploration of the specific case where
non-homotopic Zp-manifolds become affine equivalent when taking the product
with S1.

To achive these objectives, this work is structured as follows:
Chapter 1 lays the theoretical foundation for the entire work by introduc-

ing the concept of Bieberbach groups. It begins with a detailed explanation of
crystallographic groups and their fundamental properties, such as discreteness,
torsion-freeness, and the lattice-like structure of their translational parts, and it
states Bieberbach’s three theorems. It introduces the notions of group extensions
and cohomology, which are used in following sections and in the proof of Bieber-
bach’s third theorem, which states that, up to an affine change of basis, there are
only finitely many crystallographic subgroups of Mn.

Chapter 2 explores the geometric aspects of Riemannian manifolds and gives

v



vi Introduction

the tools needed to relate them with Bieberbach groups. It adapts the three
Bieberbach theorems to the context of compact flat Riemannian manifolds and
relates these manifolds with Bieberbach groups through their holonomy group
by Theorem 2.47, which states that if Φ is a finite group, then there is a Bieber-
bach group π such that r(π) (the rotational part of π) is isomorphic to Φ and a
flat (path-connected) manifold such that its holonomy group is also isomorphic
to Φ.

Chapter 3 is the goal of this work. It details the classification of Zp-manifolds
up to affine equivalence. The chapter also investigates the specific case of the
product with S1, where non-homotopic Zp-manifolds can become affine equiv-
alent. A path one can follow to find such Zp-manifolds is developed, which
culminates in Theorem 3.19.

Throughout this work, certain results are taken as given, particularly those
concepts and results seen in the degree. These include results on group theory,
topology and geometry, which are assumed to be familiar to the reader. This
work also builds upon key ideas and methods from established literature. No-
tably, Leonard S. Charlap’s Bieberbach Groups and Flat Manifolds [1] serves as a
significant reference, providing a rigorous framework for the theory of Bieber-
bach groups and their applications in the classification of flat manifolds.



Chapter 1

Bieberbach groups

This chapter will give all the general ideas about Bieberbach groups, exten-
sions and cohomology, which will pave the way for the more general results that
we will be using in the following sections. To not make this work excessively
long, some results will just be stated as results, and references of their proofs
will be provided (since a lot of proofs, such as those of Bieberbach’s first and
second theorems, are quite long).

1.1 Some definitions

Definition 1.1. An ordered pair (a, z) ∈ On × Rn (where On is the orthogonal group of
dimension n) with an action over Rn defined as

(a, z) · x = ax + z (1.1)

for x ∈ Rn is a rigid motion. Rigid motions define a group denoted as Mn with the
operation

(a, z)(ã, z̃) = (aã, az̃ + z). (1.2)

The inverse of (a, z) is (a, z)−1 = (a−1,−a−1z). Analogously, we can define an affine
motion as a pair (a, z) ∈ GLn × Rn (where GLn is the real general linear group of
dimension n) with the action over Rn defined by (1.1). Affine motions also form a group,
An, with the operation (1.2). Clearly, Mn is a subgroup of An.

Definition 1.2. The rotational part of κ for κ ∈ Mn is the image of κ of the homomor-
phism r : Mn → On defined by

r(a, z) = a.

The translational part of κ is the image of κ of the map t : Mn → Rn defined by

t(a, z) = z.

However, in this case the map t does not define a homomorphism.

1



2 Bieberbach groups

Definition 1.3. An element (a, z) ∈ Mn is a pure translation if a = Id. For any
subgroup π of Mn, we can define the subgroup of pure translations of π, denoted by
π ∩ Rn.

If we restrict the domain of r to π, we have r : π → On and Ker(r) = {κ ∈ π |
κ = (Id, z), z ∈ Rn} = π ∩ Rn, so π/(π ∩ Rn) is isomorphic to r(π).

Definition 1.4. A subgroup π of Mn is torsionfree if given any q ∈ Z different from
0 and κ ∈ π, if κq = (Id, 0) then κ = (Id, 0).

Looking at equation (1.2), we can see that since the elements κ ∈ π ∩ Rn

are κ = (Id, x) for any x ∈ Rn, we have that (Id, x)q = (Id, 2x) · (Id, x)q−2 =

(Id, 3x) · (Id, x)q−3 = ... = (Id, qx) ̸= (Id, 0), so the group of pure translations
of π is torsionfree. Furthermore, it is trivial to see it is abelian, and we can
also see that it is normal, since (a, z)(Id, x)(a, z)−1 = (a, ax + z)(a−1,−a−1z) =

(Id,−z + ax + z) = (Id, ax) ∈ π ∩ Rn.

Definition 1.5. Let κ ∈ Mn and x ∈ Rn. The orbit of x for a subgorup π of Mn is
π · x = {κ · x | κ ∈ π}. A subgroup of Mn (or An) is discontinuous if all its orbits
are discrete.

Definition 1.6. Let π be a subgroup of Mn (or An). The orbit space Rn/π is the
set of orbits with the identification topology. π is uniform if Rn/π is compact. π is
reducible if t(κπκ−1) does not span Rn for some κ ∈ An (i.e., π does not span Rn after
some affine change of basis). π is irreducible if it is not reducible.

Definition 1.7. Let π be a subgroup of Mn (or An). π acts freely on Rn if the only
element of π that leaves any point in Rn fixed is (Id, 0).

Definition 1.8. Let π be a subgroup of An.

• π is isotropic if π ∩ Rn spans Rn.

• π is crystallographic if it is discrete and uniform (discrete means that if we have
a sequence yn → y, where yn ∈ π for all n and y ∈ π, then the sequence of yn is
eventually constant).

• π is a Bieberbach subgroup of Mn if it is crystallographic and torsionfree in
Mn.

Remark 1.9. The difference between isotropic and irreducible is that isotropic
needs that π ∩ Rn spans Rn, while irreducible only needs that the translational
parts of the elements of π span Rn(after any affine change of coordinates).
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1.2 Bieberbach’s theorems

Now we will state the three Bieberbach’s theorems. We won’t provide proof
of the first one (because it is too long to add it in this work), but references will
be provided. The other two theorems will come naturally from the previous ones
and some additional results.

Theorem 1.10. Bieberbach’s first theorem. Let π be a crystallographic subgroup of
Mn. Then r(π) is finite and π∩Rnis a finitely generated free abelian group that spans
Rn (i.e., π ∩ Rn is a lattice).

A detailed proof can be found in Section 3 of Chapter 1 of [1].

Remark 1.11. We can see that Bieberbach’s first theorem implies that if π is a
crystallographic subgroup of Mn, then π is isotropic.

For the proof of Bieberbach’s second theorem, we will need the following
lemma (which is Lemma 3.7 in page 18 of [1]):

Lemma 1.12. If (a, z) ∈ Mn, we can assume a · z = z (by conjugating (a, z) by (Id, z),
i.e. by "moving the origin").

Proposition 1.13. If π is a crystallographic subgroup of Mn, then π∩Rnis the unique,
maximal abelian subgroup of π.

Proof. We only need to see that if η ⊂ π is a normal abelian subgroup, then r(η)
is the identity. If (a, z) ∈ η, by Lemma 1.12 we can assume a · z = z. Let γ be any
element of π∩Rn, so γ = (Id, x). Since η is normal, we have

γ(a, z)γ−1 = (Id, x)(a, z)(Id,−x) = (a, x − ax + z) ∈ η.

Since η is abelian, the commutator is

[(a, z), (a, x − ax + z)] = (a, z)−1(a, x − ax + z)−1(a, z)(a, x − ax + z)

= (a−1,−a−1z)(a−1,−a−1x + x − a−1z)(a, z)(a, x − ax + z)

= (a−2,−a−2x + a−1x − a−2z − a−1z)(a2, ax − a2x + az + z)

= (Id, a−1x − x + a−1z + a−2z − a−2x + a−1x − a−2z − a−1z)

= (Id, 2a−1x − x − a−2x) = (Id, 0),

or what is the same, since the commutator must be the identity element, (Id, 2ax−
x − a2x) = (Id, 0) which, in turn, implies that 2ax − x − a2x = 0. Now we have

(a − Id) · (x − ax + z) = 2ax − x − a2x + az − z = az − z = (a − Id) · z = 0,
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where we have used that we can assume az = z.
We can also see that

(a − Id)2x = (a2 − 2a + Id)x = a2x − 2ax + x = 0.

Now, let U = {u ∈ Rn | au = u}. We can find V such that Rn=U ⊕ V (so they
are orthogonal). We can decompose x = xu + xv, where xu ∈ U, xv ∈ V. From
the previous equation and using this fact

(a − Id)2x = (a − Id)2(xu + xv) = (a − Id)2xv = 0,

but a ∈ On implies that (a − Id) is not a singular matrix, so xv = 0. Now, we
see that ax = x for all (Id, x) ∈ π∩Rnand, since π∩Rnspans Rn, ay = y for all
y ∈Rn, which means that a = Id.

Theorem 1.14. Bieberbach’s second theorem. Let π and π′ be two crystallographic
subgroups of Mn and f : π → π′ be an isomorphism. Then there exists γ ∈ An

such that f (α) = γαγ−1 for all α ∈ π, i.e. any isomorphism between crystallographic
subgroups of Mn can be realized by an affine change of coordinates.

Proof. We will only give a sketch of this proof.
By Proposition 1.13, π∩Rnand π′∩Rnare the unique normal maximal abelian
subgroups of π and π′ respectively, which implies that f (π ∩ Rn) = π′ ∩ Rn and
thus the restriction on π∩Rnis an isomorphism of lattices, which induces a linear
map g ∈ GLn. Then, we can define f (a, z) = ( f1(a), f2(a, z)) where f1 : r(π) →
On is defined by f1(a) = r ◦ f (m, s) and, analogously, f2 : π →Rnis the other
coordinate map. Afterwards, G : F(π) → π′ defined by G = f ◦ F−1 must be
studied, where F : π → Mn is defined by F(γ) = (g, 0)γ(g, 0)−1. It can be proved
that G can be written as G(a, z) = (a, G2(a, z)). Finally, x ∈ Rn will be found such
that G(θ) = (Id, x)θ(Id,−x) for all θ ∈ F(π). It can be proved that f1(a) = gmg−1,
which will imply that f (α) = (g, x)α(g, x)−1 for all α ∈ π.

The detailed proof can be found in Section 4 of Chapter 1 of [1].

Theorem 1.15. Bieberbach’s third theorem. Up to an affine change of coordinates,
there are only finitely many crystallografic subgroups of Mn.

The proof of this theorem will be done in the end of Section 1.5, since some
further results are needed in order to reach it.
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1.3 Integral representation

In this section we will give the definition of module, integral group ring and
integral representation, which then can be worked on to yield some important
results for the proof of Bieberbach’s third theorem.

Definition 1.16. Let Φ be a group. An abelian group K is a Φ-module if Φ acts on K.

Definition 1.17. Let Φ be a group. The integral group ring of Φ, Z[Φ], is the set
formed by the elements

∑
ϕ∈Φ

aϕϕ,

where aϕ ∈ Z and the number of coefficients aϕ different from zero is finite (i.e., the
elements are finite linear combinations). This set has an addition operation defined by

∑
ϕ∈Φ

aϕϕ + ∑
γ∈Φ

bγγ = ∑
σ∈Φ

(aσ + bσ)σ

and a multiplication operation defined byÇ
∑

σ∈Φ
aσσ

å(
∑

ρ∈Φ
bρρ

)
= ∑

ϕ∈Φ

(
∑

σρ=ϕ

aσbρ

)
ϕ.

One can see that it is a ring, because its operations work analogously to
the ones of the polynomials. Furthermore, a Φ-module can be thought of as a
module over the ring Z[Φ], which has the following definition:

Definition 1.18. Let R be a ring. An abelian group A is a left module over the ring
R (analogous for right modules) if it has an operation · : R × A → A which satisfies

1 · a = a,

(r1r2) · a = r1 · (r2 · a),

(r1 + r2) · a = r1a + r2a

and
r · (a1 + a2) = ra1 + ra2.

Some very general properties of modules will be given for granted, and they
will not be proven.

From now on, in this section all Φ-modules will be finitely generated free
abelian groups.

If we have a Φ-module M (as said before, as a group it is finitely generated,
free and abelian), we can choose a basis {m1, ..., mn} for it. For ϕ ∈ Φ, ϕ corre-
sponds to a matrix in this basis, whose coefficients will be integers. Now, if we
perform a change of basis, this matrix will change by conjugation with a matrix
with integer coefficients and determinant ±1 (as seen in page 35 of [1]). Since
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for any matrix L we have det(L−1) = 1/det(L), the matrices corresponding to el-
ements of Φ have determinant ±1: indeed, since all elements of Φ have inverse,
the matrix corresponding to any element of Φ and the matrix corresponding to
the inverse of that element will be conjugate by a matrix of determinant ±1 (and
integer coefficients), which implies that the matrices that correspond to elements
of Φ have determinant ±1.

Definition 1.19. The set of n× n matrices with integer coefficients and determinant ±1
form a group called the unimodular group Jn.

This means that the matrices corresponding to elements of Φ are elements of
the unimodular group. This gives us a way to relate these two groups:

Definition 1.20. Following the previous discussion, a homomorphism IR : Φ → Jn

than assigns a matrix of Jn to each element of Φ is an integral representation of Φ of
rank n. Two integral representations are equivalent if their images are conjugated in
Jn. An integral representation is faithful (or effective) if it is injective.

Therefore, the notion of Φ-module is equivalent to the notion of integral
representation.

Definition 1.21. Let M be a Φ-module (following the previous notation of this section).
M is effective if

{ϕ ∈ Φ | ϕ · m = m for all m ∈ M} = {1}. (1.3)

Effective integral representations correspond to effective modules, since if
the representation is injecive, it means that there is just one ϕ ∈ Φ such that
ϕ · m = m for all m ∈ M, which is 1 ∈ Φ. If a module is effective, then its cor-
responding representation must be injective, since if an integral representation
is not injective, then one can choose an element ϕ ∈ Ker(IR) such that ϕ ̸= 1,
which means that IR(ϕ) = Id, i.e. we have that ϕ · m = m for all m ∈ M, thus M
is not effective.

One can also see that if π is a crystallographic subgroup of Mn, then the
action of r(π) on π ∩ Rn is effective (by Proposition 6.1 of Chapter 1 of [1]),
which is what we would expect when we are thinking about crystallographic
groups, as for example, the possible rotations in a crystal structure arrangement
of atoms.

Now, we are well set on the way to get to a theorem which will have a
very important corollary about conjugacy classes of Jn (as one would expect,
the definition of conjugacy classes is that two matrices of Jn are in the same
conjugacy class if and only if they are conjugated by some matrix of Jn), which
is needed for the proof of Bieberbach’s third theorem. But first, we need some
preliminary definitions and results.
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Definition 1.22. Let M be a finitely generated free abelian group (so, a Z-module). A
symmetric positive definite inner product (usually we will just call it inner prod-
uct) on M is a map ip : M × M → Z such that:

• ip is bilinear.

• ip is symmetric.

• If f : M → Z is a homomorphism, then there exists a unique n ∈ M such that
f (m) = ip(m, n) for all m ∈ M.

• ip(m, m) > 0 for all m ∈ M.

Definition 1.23. Two inner product spaces (M, ip) and (M′, ip′) (i.e. ip : M× M → Z

and ip′ : M′ × M′ → Z are inner products, where M and M′ are two finitely generated
free abelian groups) are isomorphic if there is an isomorphism φ : M → M′ such that

ip′(φ(m1, m2)) = ip(m1, m2) (1.4)

for all m1, m2 ∈ M. Sometimes, by an abuse of language, it is said that two inner
products are isomorphic.

One can see that if a basis {a1, ..., an} for M is chosen, then an inner product ip
can be expressed as a matrix Ai,j = ip(ai, aj), which will be symmetric, invertible
and positive definite, so this matrix will be in the unimodular group. Further-
more, if (M, ip) and (M′, ip′) are two inner product spaces with basis {a1, ..., an}
and {a′1, ..., a′n} respectively, whose inner products are expressed as the matrices
A and A′ in these basis (respectively), and L ∈ Jn is the matrix of an isomorphism
φ : M → M′ (expressed in these two basis), then the condition of equation (1.4)
for the two inner product spaces to be isomorphic is equivalent to A′ = LALT.

The following definition will be very useful, as it will let us relate inner
product spaces and conjugacy classes of Jn:

Definition 1.24. Let L ∈ Jn, (M, ip) be an inner product space, {a1, ..., an} be a basis for
M and A be the matrix of ip in this basis. L is an automorphism of ip if A = LALT,
i.e. ip(L · m1, L · m2) = ip(m1, m2) for all m1, m2 ∈ M (here, L · m for m ∈ M is the
usual automorphism of M induced by L respect to this basis). Φip is the subgroup of Jn

of all automorphisms of ip.

The following statement can be found in page 36 of [1].

Proposition 1.25. If ip1 and ip2 are two inner products on M, then ip1 is isomorphic
to ip2 if and only if Φip1 is conjugate to Φip2 in Jn.

We are now near the end of the path that leads us to the promised theorem,
but first we need some definitions and results:
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Proposition 1.26. If Φ is a subgroup of Jn, then there exists an inner product ip on Zn

such that Φ is a subgroup of Φip if and only if Φ is finite.

Proof. Let A be the matrix of ip in a basis. Since A ∈ Jn, by conjugation with a
matrix of GLn (i.e., by a change of basis) we can assume that A = Id. If B ∈ Φip,
then BBT = Id (so B ∈ On). We know that On is compact, and since Jn is discrete
so it is Φip, which means that Φip is finite.

Now let Φ be finite. We can define an inner product of Zn by

ip(x, y) = ∑
B∈Φ

(Bx) · (By),

where "·" is the usual inner product. It is clear that if C ∈ Φ, then ∑B∈Φ(CBx) ·
(CBy) = ∑B∈Φ(Bx) · (By), which means that Φ is a subgroup of Φip.

Definition 1.27. Let L be a lattice in Rnand a1, ..., an be a basis for this lattice. A
fundamental domain for L is D = {∑ riai : 0 ≤ ri ≤ 1}. The volume of L is the
volume of a fundamental domain for L, i.e. vol(L) = vol(D) =

∫
D dx1...dxn, which does

not depend on the choice of basis.

Lemma 1.28. There is yn ∈ Z such that any lattice L in Rnwith vol(L) = 1 contains a
point x such that

0 < x · x ≤ yn,

where "·" denotes the usual inner product.

The previous lemma is, in fact, a corollary of Minkowski’s theorem, which
can be found in section 5 of [2].

Theorem 1.29. There are only finitely many isomorphism classes of symmetric positive
definite inner products on Zn.

Proof. This proof is rather long, so only a sketch of it will be provided. The full
detailed proof can be found in pages 37-38 of [1].

We will do induction on n. First of all, given an inner product ip on Zn, it
can be proved that one can embed Zn as a lattice in Rnsuch that id(x, y) = x · y.
Also, as a lattice it has volume 1, so we just have to see that there are finitely
many isomorphism classes of lattices in Rnof volume 1.

For Z, there is only one inner product, which is the usual product of integers.
Now, we suppose that this theorem holds for k = 1, . . . , n− 1. Let L be any lattice
in Rnof volume 1. We define a sub-lattice of L by

L0 = {y ∈ L | y · x ≡ 0 mod(x · x)},

where x is the point of Lemma 1.28. It can be proved that the index of L0 in L is
less than x · x.
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If y ∈ L0, then (y · x)/(x · x) ∈ Z and y − ((y · x)/(x · x))x ∈ L0, but [y −
((y · x)/(x · x))x] · x = 0. This means that L0 is the orthogonal direct sum of two
lattices, one being the lattice generated by x, ⟨x⟩, and the other one being its
orthogonal complement, ⟨x⟩⊥.

Since we have assumed that the theorem holds for k < n, there are only
finitely many isomorphism classes of inner products for ⟨x⟩ and ⟨x⟩⊥, so there
are only finitely many isomorphism classes of inner products of L0. Now, again
by Lemma 1.28, since the index of L0 in L is less than x · x, it is also less than yn,
so there are only finitely many isomorphism classes of inner products for L.

Corollary 1.30. • There are only finitely many conjugacy classes of finite subgroups
of Jn.

• Let Φ be any finite group. Then there are only finitely many effective Φ-modules
of rank n.

The corollary follows from the previous theorem and the discussion of this
section (particularly, Proposition 1.26 is needed).

1.4 Cohomology

In this section we will give the general definitions and properties of coho-
mology. These results will help us classify Bieberbach groups and, in further
sections, classify manifolds.

Definition 1.31. Let Φ be any group. A Φ-module is free if it has a basis.

From now on, in this section we will refer to Φ-modules as modules (i.e., we
will fix Φ, which can be any group).

Definition 1.32. A sequence of homomorphisms and groups (analogously for modules)

G0
f1−→ G1

f2−→ ...
fn−→ Gn

is exact if Im( fi) = Ker( fi+1) for all i ∈ {1, ..., n − 1}. The sequence can be either finite
or infinite.

Definition 1.33. Let L be a module, and M and N be groups. If whenever there is a
homomorphism f : L → N and an epimorphism p : M → N, there is also a homomor-
phism f̄ : L → M such that p ◦ f̄ = f , then the module L is projective. Another way
to think this is that there will always exist f̄ such that the following diagram commutes:
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M N

L

0

f̄

p

f

Proposition 1.34. L is projective if and only if L is a direct summand of a free module.

Proof. It is trivial to see that a free module is projective, since if {e1, ..., en} is a
basis for L, then (as p is an epimorphism) there is an element of M such that
p(mi) = f (ei) for each ei. Now, we just have to define f̄ (ei) = mi for every ei, and
we have found f̄ such that the diagram commutes. It is also trivial to see that a
direct summand of a projective module is projective. Thus, a direct summand of
a free module is projective.

Now, the other implication. We can write L = F/R, where F is a free module
and R is an appropriate submodule of F. The projection p : F → L is surjective,
and since L is projective, if we consider the identity map on L we know that there
exists a homomorphism f̄ : L → F such that p ◦ f̄ is the identity, so L is a direct
summand of F.

F L

L

0

f̄

p

Id

Definition 1.35. If M is a module, a sequence of modules and homomorphisms X

. . . Xn Xn−1 Xn−2 . . . X1 X0 M
dn dn−1 d1 ϵ

with the properties:

• ϵ is surjective,

• ϵ ◦ d1 = 0 and

• dn−1 ◦ dn = 0 for all n ≥ 2

is a complex over M. ϵ is the augmentation of X and dn is the nth differential of X.
A resolution of M for Φ is a complex over M such that the above sequence is exact. X
is free (respectively projective) if every Xn is free (respectively projective).
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By Proposition 1.34, every free complex is projective.

Proposition 1.36. For any group Φ and any Φ-module M, there is a free resolution of
M for Φ.

Proof. We will only give a sketch for this proof.
Let X0 be any free module such that there exists an empimorphism ϵ : X0 →

M. Let X1 be any free module that maps onto Ker(ϵ) by the epimorphism p :
X1 → Ker(ϵ). If we use the inclusion i : Ker(ϵ) ↪→ X0 we can define d1 = i ◦ p,
which means that we have the following diagram:

X1 X0 M 0

Ker(ϵ)

d1 ϵ

ip

where the first row defines an exact sequence, because d1 = i ◦ p, where i is
the inclusion of Ker(ϵ). Now, this argument can be continued using induction.
The proof can be found in page 84 of [1].

Definition 1.37. Let X and Y be complexes with the differentials dn and ∂n respectively.
A sequence { fi} with fi ∈ Hom(Xi, Yi) for i = 0, 1, 2, . . . such that ∂i ◦ fi = fi−1 ◦ di

for i = 1, 2, . . . is a chain map, which is denoted by f : X → Y. The group of all chain
maps from X to Y is Hom(X, Y).

Definition 1.38. Let f , g ∈ Hom(X, Y). If there exists a sequence {si}, where si ∈
Hom(Xi, Yi+1) for i = 1, 2, ... such that

∂i+1 ◦ si + si−1 ◦ di = fi − gi

for i = 1, 2, . . . and
∂1 ◦ s0 = f0 − g0,

then f and g are homotopic or chain homotopic.

Definition 1.39. Let X be a complex. The nth homology of X is the module

Hn(X) = Ker(dn)/Im(dn+1)

for n = 1, 2, . . . and
H0(X) = X0/Im(d1)

for n = 0.
Let f ∈ Hom(X, Y). We can define the map f∗ : Hn(X) → Hn(Y) by f∗(γ) = [ f (x)]

for any x ∈ γ, where [a] denotes the class of a in Hn(Y).

The following statement can be found in page 85 of [1].
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Proposition 1.40. f∗ is well defined, and if f , g ∈ Hom(X, Y) are homotopic, then
f∗ = g∗.

Now we will state a definition and a lemma, which will help us prove a
theorem that has some important results.

Definition 1.41. Let M and N be modules, F ∈ Hom(M, N), X be a projective com-
plex over M and Y be a resolution of N for Φ. A lift of F is f ∈ Hom(X, Y) such that
ϵY ◦ f0 = F ◦ ϵX and the following diagram commutes:

. . . X2 X1 X0 M 0

. . . Y2 Y1 Y0 N 0

d2 d1 ϵX

∂2 ∂1 ϵY

f2 f1 f0 F

A somewhat more general definition of lift could have been given being laxer
on the conditions of X and Y.

Lemma 1.42. Following the notation of Definition 1.41, suppose that f : X → Y lifts F :
M → N. Let T : M → Y0 such that ϵY ◦ T = F. Then there exist si ∈ Hom(Xi, Yi+1)
for i = 0, 1, 2, . . . such that

∂1 ◦ s0 + T ◦ ϵX = f0

and
∂i+2 ◦ si+1 + si ◦ di+1 = fi+1

for i = 0, 1, 2, . . .

The previous lemma is Lemma 3.1 of Chapter 3 of [1].

Theorem 1.43. Let M and N be modules, F ∈ Hom(M, N), X be a projective complex
over M and Y be a resolution of N for Φ. Then there exists a lift of F, f ∈ Hom(X, Y),
and any other lift of F is homotopic to f .

Proof. We are going to use induction. We know that ϵY is surjective, so there
exists f0 : X0 → Y0 such that F ◦ ϵX = ϵY ◦ f0 (because X is projective). Now,
we suppose that there are fn−1, fn−2, ..., f1, f0 such that the diagram of Definition
1.41 commutes: we have

∂n−1 ◦ fn−1 ◦ dn = fn−2 ◦ dn−1 ◦ dn = 0,

since dn−1 ◦ dn = 0. This means that Im( fn−1 ◦ dn) ⊂ Ker(∂n−1) = Im(∂n), where
the last equality comes from the fact that Y is a resolution of N for Φ. Now, we
have the diagram
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Yn Im(∂n)

Xn

0
∂n

fn−1 ◦ dn

and since ∂n : Yn → Im(∂n) is obviously an epimorphism and X is projective,
we know there exists fn : Xn → Yn such that fn−1 ◦ dn = ∂n ◦ fn, so we have
proven that there is a lift of F.

Now, we want to see that any two lifts of F are homotopic. Let f , f ′ be
two lifts of F. We see that f − f ′ lifts the zero map 0F : M → N, because
ϵY ◦ ( f0 − f ′0) = 0. Using Lemma 1.42, if we set (using the notation of the lemma)
T ≡ 0, we see that ϵY ◦ T = 0F, and thus the lemma tells us that there exists
si ∈ Hom(Xi, Yi) for i = 0, 1, 2, . . . such that

∂1 ◦ s0 = f0 − f ′0 and

∂i+2 ◦ si+1 + si ◦ di+1 = fi+1 − f ′i+1 for i = 0, 1, 2, . . .

which is the homotopy for f and f ′.

Now we can define what is cohomology:

Definition 1.44. Let X be a complex over M and A be a module. Let Hom(X, A) be a
sequence of modules and homomorphisms

Hom(M, A) Hom(X0, A) Hom(X1, A) Hom(X2, A) . . .ϵ∗ δ0 δ1 δ2

defined by
[ϵ∗(c)](x0) = c(ϵ(x0))

and
[δn(a)](xn+1) = a(dn+1(xn+1))

for c ∈ Hom(M, A), a ∈ Hom(Xn, A), x0 ∈ X0, and xn+1 ∈ Xn+1. The cohomol-
ogy of Hom(X, A) is

H0(Hom(X, A)) := Ker(δ0)

and
Hn(Hom(X, A)) := Ker(δn)/Im(δn−1) for n = 1, 2, 3, . . .

If Y is another complex and f ∈ Hom(X, Y), we can define f̄ : Hom(Y, A) →
Hom(X, A) by [ f̄ (b)](xn) = b( f (xn)) for xn ∈ Xn and b ∈ Hom(Yn, A).

The following proposition will give us some ways to work with cohomologies
from different complexes, but we will just state them as results, since they are a
bit long to prove and not the focus of this work. They can be found in page 88
of [1].
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Proposition 1.45. Following the notation of Definition 1.44:

• ϵ∗ is injective.

• f ◦ g = ḡ ◦ f̄ .

• f̄ induces a map f ∗ : Hn(Hom(Y, A)) → Hn(Hom(X, A)) and ( f ◦ g)∗ = g∗ ◦ f ∗.

• If f and g are homotopic, then f ∗ = g∗.

• A map of modules F : A → B induces two maps, F : Hom(X, A) → Hom(X, B)
and Fβ : Hn(Hom(X, A)) → Hn(Hom(X, B)).

Now, we will state a corollary of Theorem 1.43 which will help us in com-
puting cohomology, since it shows that the cohomology of projective resolutions
doesn’t depend on the chosen resolution.

Corollary 1.46. Let X and Y be projective resolutions of M and let A be any module.
Then

Hn(Hom(X, A)) ∼= Hn(Hom(Y, A)).

Proof. Let f : X → Y and g : Y → X be two lifts of the identity map of M. f ◦ g
and g ◦ f are homotopic to their respective identities, where here identity of X
means Idi ∈ Hom(Xi, Xi) for i = 0, 1, 2, . . . where Idi is the identity map of Xi

and IdM : M → M is the identity map of M (and analogously for the identity of
Y), i.e. it is all the identities of the modules of X, IdX : X → X.

Now, by Proposition 1.45, g∗ ◦ f ∗ and f ∗ ◦ g∗ are the respective identities on
cohomology, because the identities of cohomology can be induced form the iden-
tities of Hom(Y, A) and Hom(X, A), which for Hom(X, A) is defined by (following
the notation of Definition 1.44) [Id(b)](xn) = b(xn), so we can see that, indeed,
the identity of X induces the identity of the cohomology (and analogously for
Y). Since g∗ ◦ f ∗ and f ∗ ◦ g∗ are identities, f ∗ and g∗ are isomorphisms.

The following definition will be very useful in the following sections, because
it will enable us to study the cohomology of Bieberbach groups.

Definition 1.47. Let Φ be a group, A a Φ-module and X any projective resolution of Z

(where it is regarded as a trivial Φ-module) for Φ. The nth cohomology group of Φ
with coefficients in A is

Hn(Φ; A) := Hn(Hom(X, A)).
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1.5 Group extensions

In this section we will define the homomorphisms needed for the second
cohomology group of an exact sequence of groups, and will end by providing
the proof of Bieberbach’s third theorem.

Definition 1.48. An exact sequence of groups

0 K G Q 1
i p

where K is isomorphic to a normal (this, in fact, is not needed, as it comes from the
exactness of the sequence) abelian subgroup of G is a group extension. Sometimes it is
said that G is a group extension of Q by K.

In the previous definition, we see that we have changed 0 by 1 at the extremes
of the group extension. This is done because it will be used to describe Bieber-
bach subgroups, which are subgroups of rigid motions, and usually translations
are described additively and rotations multiplicatively. It is simply a notational
change that will help us when working with Bieberbach subgroups.

We have added the requirement that K must be abelian in the definition of
group extensions because it will be needed in the future.

The following discussion is based on [4] and Chapter 1 of [3], where one can
find the full detailed results that are not proven here.

Definition 1.49. Let Q be a group and K a Q-module. A map f : Q × Q → K is called
a 2-cochain on Q with coefficients in K.

Since the codomain of 2-cochains is an abelian group, the set of 2-cochains
forms an abelian group, C2(Q; K).

In general, j-cochains can be defined analogously to 2-cochains. For example,
1-cochains are maps f1 : Q → K and 3-cochains are maps f3 : Q × Q × Q → K.
As before, we have the abelian groups C3(Q; K) and C1(Q; K) for 3-cochains and
1-cochains respectively.

Now, we can start defining the homomorphisms needed for the second coho-
mology of Q with coefficients in K.

Definition 1.50. Following the notation of the previous paragraphs. The coboundary
homomorphisms are homomorphisms δn : Cn(Q; K) → Cn+1(Q; K) definded by

(δnγ)(q1, ..., qn+1) = q1γ(q2, ...qn+1) +
n

∑
i=1

(−1)iγ(q1, ..., qi−1, qiqi+1, qi+2, ..., qn+1)

(1.5)
+(−1)n−1γ(q1, ..., qn)

for γ ∈ Cn(Q; K), q1, ..., qn+1 ∈ Q and n ≥ 0.
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We can see that for the case n = 2 we get δ2 : C2(Q; K) → C3(Q; K) by

(δ2 f )(q1, q2, q3) = q1 f (q2, q3) − f (q1q2, q3) + f (q1, q2q3) − f (q1, q2) (1.6)

for f ∈ C2(Q; K) and q1, q2, q3 ∈ Q. For the case n = 1 we get δ1 : C1(Q; K) →
C2(Q; K) by

(δ1g)(q1, q2) = q1g(q2) − g(q1q2) + g(q1) (1.7)

for g ∈ C1(Q; K) and q1, q2 ∈ Q.

Definition 1.51. The elements of Ker(δ2) are called 2-cocycles, and the elements of
Im(δ1) are called 2-coboundaries.

What we have done is set the homomorphisms needed for (second) cohomol-
ogy, but first we need to have a complex and see that these functions are indeed
the same ones as the ones from Definition 1.44.

First, we define F−1 = Z with trivial Q action, F0 = Z[Q] and Fn =
⊕

q∈Qn Z[Q](q)
for n > 0, i.e. Fn is a left free Z[Q]-module (where Qn is the product of Q n times
and Q0 is {∅}, i.e. the one point set). Since the elements of Z[Q] are the finite
sums ∑q∈Q cq[q], finding the homomorphisms dn : Fn → Fn−1 is the same as find-
ing appropriate maps ηn : Qn → Fn−1 for n ≥ 0, so dn(∑i ai(qi)) = ∑i aiηn(qi) for
(finitely many) ai ∈ Z[Q] and qi ∈ Qi.

These maps will be defined as follows:

η0(q) = 1,

η1(q) = [q] − [1]

and

ηn(q1, ..., qn) = [q1](q2, ..., qn)+
n−1

∑
i=1

(−1)i(q1, ..., qi−1, qiqi+1, qi+2, ..., qn)+ (−1)n(q1, ..., qn−1)

for n ≥ 2. One can see that d0 (which would be equivalent to ϵ in Definition 1.35)
is surjective.

To see that it is a complex, one would have to see that dn−1 ◦ dn = 0 for all n.
For n = 0, 1, 2 we will compute it directly. It is trivial to see that d0 ◦ d1 = 0. For
d1 ◦ d2 we have

η2(q1, q2) = [q1](q2) − (q1q2) + (q1),

so
(η1 ◦ η2)(q1, q2) = [q1]([q2] − [1]) − [q1q2] + [1] + [q1] − [1] = 0

since [q1][q2] = [q1q2], because they are both elements of Z[Q].
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For n > 2, it gets a lot messier. To solve this problem, we will find isomor-
phisms ϕn : Fn → Z[Qn+1] defined by

ϕn(q1, ..., qn) = (1, q1, q1q2, ..., q1...qn),

where (1, q1, q1q2, . . . , q1 . . . qn) will be denoted by (1, q1, q2, . . . , qn)θ . Z[Qn+1] is
a complex (and, in fact, it is the standard homogeneous resolution with a Z[Q]
action defined by [q] · (q1, . . . , qn) = (qq1, . . . , qqn)) and it is far more easy to prove,
since now d′n : Z[Qn+1] → Z[Qn] are defined by

d′n(q0, ..., qn) =
n

∑
i=0

(−1)i(q0, ..., q̂i, ..., qn),

where q̂i means that the position i is missing (there is no qi), i.e. (q0, ..., q̂i, ..., qn) =
(q0, ..., qi−1, qi+1, ..., qn).

The sequence of Z[Qn+1] with the differentials given above is, as mentioned
before, a complex (it can be proved that if one writes d′n−1 ◦ d′n explicitly, by just
some cancellations of terms one gets to d′n−1 ◦ d′n = 0). The only missing part
now is to see that, indeed, the given differentials of Z[Qn+1] correspond to those
of Fn, i.e. d′n ◦ ϕn = ϕn−1 ◦ dn. This can be seen because

(d′n ◦ ϕn)(q1, . . . , qn) = d′n(1, q1, ..., qn)θ =
n

∑
i=0

(−1)i(1, q1, . . . , q̂i, . . . , qn)θ ,

which is the same as
(ϕn−1 ◦ ηn)(q1, . . . , qn)

= [q1]ϕn−1(q2, ..., qn) +
n−1

∑
i=1

(−1)iϕn−1(q1, ..., qiqi+1, ..., qn) + (−1)nϕn−1(q1, ..., qn−1)

= [q1](1, q2, . . . , qn)θ +
n−1

∑
i=1

(−1)i(1, q1, ..., q̂i, ..., qn)θ + (−1)n(1, q1, ..., qn−1)θ

= (q1, . . . , qn)θ +
n−1

∑
i=1

(−1)i(1, q1, . . . , q̂i, . . . , qn)θ + (−1)n(1, q1, . . . , qn−1)θ

=
n

∑
i=0

(−1)i(1, q1, . . . , q̂i, . . . , qn)θ .

One can also see that it is, as mentioned before, a resolution. The proof can
be found in Section 2 of [4], but we will not do it since it is a bit long. We just
wanted to set the idea that to prove that the sequence of Fn and homomorphisms
dn is a resolution, it is far easier to do using the resolution given by the sequence
of Z[Qn+1] and homomorphisms d′n.

So, indeed, the sequence of Fn is a resolution with the differentials dn defined
in this section. In fact, one can see that the coboundary homomorphisms δn
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correspond to the homomorphisms of Definition 1.44, since any f ∈ Hom(Fn, K)
is determined by the image of a Φ-basis of Fn (similar to how we can define dn

from just ηn), so it can be proved that any f : Fn → K is equivalent to a map
f : Qn → K (it can be found in pages 91-92 of [1]).

Now, we can compute the second cohomology group as H2(Q; K) = Ker(δ2)/Im(δ1).
This group is related with the extensions G of Q (by K), but not directly. Instead,
it is related with the equivalence classes of extension, which we will define now:

Definition 1.52. Two extensions

0 K G Q 1
iG pG

and

0 K G′ Q 1
iG′ pG′

are equivalent if there exists a homomorphism γ : G → G′ such that the diagram

0 K G Q 1

0 K G′ Q 1

iG pG

iG′ pG′

IdK γ IdQ

commutes (where IdK is the identity on K and IdQ is the identity on Q).

Proposition 1.53. The homomorphism γ : G → G′ from Definition 1.52 is an isomor-
phism.

Proof. To see that it is injective, consider g ∈ Ker(γ). Since the diagram com-
mutes, pG(g) = (pG′ ◦ γ)(g) = 1 (remember that 1 is just a notational change,
one can think of it as 0). Now, as the sequence is exact, we have g ∈ Ker(pG) =
Im(iG), which implies that there exists k ∈ K such that iG(k) = g. This yields
iG′(k) = (γ ◦ iG)(k) = 0, which means that k = 0 (and γ(k) = γ(0) = 0) because
iG′ is injective (it is injective because the image of any homomorphism that goes
from 0 to K will have image 0, and thus Ker(iG′) = {0} because the sequence is
exact).

To prove that it is surjective, since pG = γ ◦ pG′ is surjective, then γ must
be surjective (here again, pG is surjective because any homomorphism that goes
from Q to 1 will have its kernel equal to Q, and thus Im(pG) = Q because the
sequence is exact).

The following theorem is the one that gives us the relationship between the
second cohomology group and equivalence classes of extensions. However, as
usual, before that we need some preliminary results and definitions.
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Definition 1.54. Following the discussion (and notation) of this section, a 2-cocyle f is
normalized if f (1, q) = f (q, 1) = 0 for all q ∈ Q.

Proposition 1.55. If K = K1 ⊕ K2, then H2(Q; K) ∼= H2(Q; K1) ⊕ H2(Q; K2).

Lemma 1.56. If f : Q × Q → K is a 2-cocycle, then there is a normalized 2-cocylce f ′

in the same cohomology class as f .

The previous proposition and lemma correspond to Proposition 5.2 and Lemma
5.1 of Chapter 1 of [1] respectively.

Theorem 1.57. Let Q be a group and K a Q-module. Then, the set of equivalence classes
of extensions

0 K G Q 1

is in one-to-one correspondence with the elements of the abelian group H2(Q; K).

Proof. We will only give a sketch of this proof. The full detailed proof can be
found in pages 27-32 of [1].

First, suppose that we have an extension

0 K G Q 1.
i p

Choose a map s : Q → G such that (p ◦ s)(q) = q for all q ∈ Q (this type of maps
are called sections). Now, define a map f : Q × Q → G by

f (q, q′) = s(qq′)s(q′)−1s(q)−1 (1.8)

for q, q′ ∈ Q. We see that, since p is a homomorphism, p( f (q, q′)) = qq′(q′)−1q−1 =

1, i.e. f maps into Ker(p) ∼= K, which means that f can be thought as a 2-cochain
f : Q×Q → K. The next step is to see that it is a 2-cocycle. It can be done writing
down the formula of (δ2 f )(q1, q2, q3) and playing around with the different terms.
This means that f defines a cohomology class in H2(Q; K).

Now, we want to see that if we choose a different section s′, this new 2-cocycle
f ′ (which is built analogously to f ) is in the same cohomology class as f . This
is done by seeing that f − f ′ is a 2-coboundary, i.e. f − f ′ = δ1φ, where φ is a
1-cochain φ : Q → K defined by φ(q) = s(q)s(q)−1.

For the next step, suppose we have a group Q, a Q-module K and a cohomol-
ogy class ρ ∈ H2(Q; K). Then, we want to find a group extension G. By Lemma
1.56, we can pick a normalized 2-cocycle f ∈ ρ. Let G = Q × K be a group with
a product defined by

(q1, k1)(q2, k2) = (q1q2, q1 · k2 + k1 + f (q1, q2)), (1.9)
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which is associative. The identity element is (1, 0), and the inverse elements are
(q, k)−1 = (q−1,−q−1 · k − f (q−1, q)) (the proof of this is just a direct cancellation
of terms using the fact that f is a 2-cocycle).

Using this, we need to see that if we choose g ∈ ρ different from f , its
corresponding group extension is equivalent to the extension generated with f .
We know that since f and g are both in the same cohomology class, then there
exists a 1-cochain φ : Q → K such that δ1φ = f − g. Let U = Q × K be the group
with the product defined analogously to equation (1.9) using g. It can be proved
that F : G → U defined by F(q, k) = (q, k + φ(q)) is an equivalence of extensions.

Now, we have two correspondences, one in each direction, and we want to
see that they are inverse to one another. First, let Q be a group, K a Q-module
and ρ ∈ H2(Q; K). Take a normalized 2-cocyle f ∈ ρ and build a group extension
G as discussed. Define a section s : Q → G by s(q) = (q, 0). Then, the 2-cocycle
defined by ν(q, q′) = s(qq′)s(q′)−1s(q)−1 (following the discussion of the first part
of this proof) is the same as f (this is done writing explicitly s, working with the
obtained terms and using the fact that f is a 2-cocycle), i.e. ν(q, q′) = (1, f (q, q′))
and, identifying (1, k) with k, we get ν(q, q′) = f (q, q′).

We just have to prove the other way around now. Starting with G, build f
using equation (1.8) and U = Q × K with the product of equation (1.9). Then,
define ϑ : G → U by

ϑ(g) = (p(g), g · (s ◦ p(g))−1)

where s is the section used in the definition of f and p is the homomorphism p :
G → Q of the group extension G. The proof ends seeing that ϑ is an equivalence
of extensions (so, an isomorphism).

We have already done the biggest part of this section. The following results
will be used in the proof of Bieberbach’s third theorem.

If π is a crystallographic subgroup of Mn, then r(π) must be finite, since π is
discrete and On is compact. By Bieberbach’s first theorem, we know that π ∩ Rn

is a lattice (i.e., it is a finitely generated free abelian group). It is not difficult to
see that they satisfy the exact sequence

0 → π ∩ Rn → π → r(π) → 1,

so we will focus on this type of extensions.
The following statement can be found in page 33 of [1].

Proposition 1.58. If Q is a finite group and K is a finitely generated Q-module, then
H2(Q; K) is a finitely generated abelian group.

Proposition 1.59. Following the notation of this section, suppose that the group Q is
finite of order λ and that K is a Q-module which is finitely generated, free and abelian as
a group. Then λρ = 0 for all ρ ∈ H2(Q; K).
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Proof. Let f be a 2-cocycle. Define a 1-cochain φ : Q → K by

φ(γ) = ∑
σ∈Q

f (γ, σ).

Now, we will use the facts

f (γµ, σ) = γ f (µ, σ) + f (γ, µσ) − f (γ, µ),

which comes from δ2 f = 0, and

∑
σ∈Q

f (γ, µσ) = ∑
σ∈Q

f (γ, σ),

since we are summing over all the elements of Q. Taking this into account,

(δ1φ)(γ, µ) = γ ∑
σ∈Q

f (µ, σ) − ∑
σ∈Q

f (γµ, σ) + ∑
σ∈Q

f (γ, σ)

= γ ∑
σ∈Q

f (µ, σ) −
[

γ ∑
σ∈Q

f (µ, σ) + ∑
σ∈Q

f (γ, µσ) − ∑
σ∈Q

f (γ, µ)

]
+ ∑

σ∈Q
f (γ, σ)

= λ f (γ, µ).

Hence, if f is a 2-cocycle, then f ∈ Im(δ1), which means that [ f ] = [0] in H2(Q; K).

Corollary 1.60. • If Q is finite and K is a Q-module which is finitely generated,
free and abelian as a group, then H2(Q; K) is also finite.

• If Q is finite of order λ and K is a Q-module which is finitely generated, free and
abelian as a group, and for all k ∈ K there exists k′ ∈ K such that λk′ = k, then
H2(Q; K) = 0.

Now, we can give the proof of Bieberbach’s third theorem:

Proof. By Bieberbach’s second theorem, Theorem 1.14, it is sufficient to show that
there are only finitely many isomorphism classes of crystallographic subgroups
of Mn. By Bieberbach’s first theorem, Theorem 1.10, every crystallographic sub-
group of π satisfies an exact sequence

0 → M → π → Φ → 1,

where M = π ∩ Rn is a finitely generated free abelian group of rank n and
Φ = r(π) is a finite group that acts effectively on M (by the discussion of Sec-
tion 1.3). Combining Theorem 1.57 and Corollaries 1.30 and 1.60, one can see
that there are only finitely many equivalence classes of this type of extensions.
Now, since the condition for two extensions to be equivalent implies that the two
groups (corresponding to π in the extension written above in this proof) must
be isomorphic and there are more equivalence classes of extensions than isomor-
phism classes of groups π, there are only finitely many isomorphism classes of
crystallographic subgroups of Mn.
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1.6 Bieberbach groups

In Definition 1.8 we saw what it means for a subgroup of Mn to be "Bieber-
bach". Now, we will give a more abstract definition for these ideas, and we will
see how these definitions are related with the previous ones.

Definition 1.61. A group is crystallographic if it has a finitely generated maximal
abelian torsionfree subgroup of finite index. A torsionfree crystallographic group is called
a Bieberbach group.

The following statement can be found in page 74 of [1].

Proposition 1.62. The finitely generated maximal abelian torsionfree subgroup of finite
index of a crystallographic group is normal and unique.

It is trivial to see that a Bieberbach subgroup of Mn is a Bieberbach group.
The next theorem will show us that every Bieberbach group can be identified
with a Bieberbach subgroup of Mn.

Theorem 1.63. Auslander and Kuranishi Let π be a crystallographic group of dimen-
sion n. Then there is a monomorphism F : π → Mn such that F(π) is a crystallographic
subgroup of Mn.

Proof. A full and detailed proof of this theorem can be found in pages 75-77 of
[1], but to avoid overextending this work out of its scope, some particular parts
will not be done explicitly.

By Proposition 1.62, let M be the normal finitely generated maximal abelian
torsionfree subgroup of finite index of π. Since π has dimension n, M is free
of rank n. If b1, ..., bn is a basis for M and e1, ..., en is the usual basis for Rn, we
definie F̃ : M →Rnby F̃(bi) = ei for all i ∈ {1, ..., n}.

For ϕ ∈ Φ = π/M, since Φ acts on M (by conjugation by the cosets of π/M,
i.e. if a ∈ π such that [a] ̸= [0] in Φ, then [a] · m = ama−1), one can write
ϕ · bi = ∑j cijbj, where cij ∈ Z. Then, the matrix defined by the coefficients
cij will be an element of GLn, so one can define F′ : Φ → GLn (where here,
obviously, the image of ϕ will be the matrix generated by cij, i.e. the matrix of
the coefficients of the action of ϕ on the basis of M). Here, it can be proved that
Φ is finite, which implies that F′(Φ) is finite, so using Proposition 1.26 and a
change of basis, we can assume that F′(Φ) is in On.

Take a 2-cocycle f : Φ × Φ → M corresponding to the extension

0 → M → π → Φ → 1,

where we are considering π = Φ × M with the product operation

(ϕ1, m1)(ϕ2, m2) = (ϕ1ϕ2, ϕ1 · m2 + m1 + f (ϕ1, ϕ2)).
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F̃ ◦ f : Φ × Φ → Rn is a 2-cocycle (in H2(Φ; Rn)). By the second part of Corollary
1.60 H2(Φ, Rn) = 0, which implies that there is a 1-cochain φ such that δ1φ =

F̃ ◦ f .
Now, we define F : π → Mn by

F(ϕ, m) = (F′(ϕ), F̃(m) + φ(ϕ)), (1.10)

which is a homomorphism. Indeed, using its definition and the fact that φ is
a 1-cochain (and, as in previous sections, assuming it is a normalized one), the
proof follows. The full proof of this can be found in the reference provided at
the beginning of this proof.

Since F′ is injective (because M is maximally abelian and the images of F′

are the matrices given by the action of ϕ ∈ Φ on the basis of M, so if there was
some 0 ̸= ϕ ∈ Φ such that F′(ϕ) = 0, then M would not be maximally abelian),
if F(ϕ, m) = (Id, 0) then ϕ = 1. We have that φ(1) = 0 (as we are assuming that
φ is normalized) which, by equation (1.10), yields that if F(1, m) = (Id, 0), then
F̃(m) = 0. As F̃ is injective, this means that m = 0. With this, one can see that F
is injective.

Now, we need to see that F(π) is discrete in Mn. F(M) (i.e., F(1, m) for all
m ∈ M) is discrete, since F(M) = Zn (after a change of basis). We also see that
F(π)/F(M) is isomorphic to Φ, which is finite, so it can be proved that F(π) must
be discrete.

Lastly, we need to see that Rn/F(π) is compact. We know that if e1, ..., en is
the usual basis for Rnand A is the group generated by (Id, e1), ..., (Id, en), then
Rn/A is the n-dimensional torus. Hence, one can see that Rn/F(M) is a torus,
which is compact. Since one can see that Rn/F(π) is the continuous image of
Rn/F(M), Rn/F(π) must also be compact.

With this, we have proven that F(π) is a crystallographic subgroup of Mn.
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Chapter 2

Riemannian Manifolds

2.1 Introduction

In this section we will describe the main features that help us understand
Riemannian manifolds and, most importantly, define the holonomy group of a
manifold (some of the introductory results will be only stated as a reminder and
will not be developed in detail). Furthermore, in the following sections we will
see how Bieberbach groups relate to manifolds, and more precisely, to flat mani-
folds: we will see that if π is a Bieberbach group, then r(π) is isomorphic to the
holonomy group of such a flat Riemannian manifold. Not only this, but we will
also see that all finite groups are isomorphic to the rotational part of a Bieberbach
group, and therefore, are the holonomy group of a flat path-connected Rieman-
nian manifold. This will enable us to use Bieberbach groups to classify these flat
Riemannian manifolds in next chapter.

Definition 2.1. A separable Hausdorff topological space X with a maximal collection
{Ui} of open subsets and homeomorphisms φ : Ui → Vi (where Vi are open in Rn) such
that X =

⋃
i Ui and

(φi | Ui ∩ Uj) ◦ φ−1
j : Vj → Vi

is smooth (which means infinitely differentiable) for all i and j is a differential n-
manifold (or sometimes called smooth manifold).

Definition 2.2. Following the notation of the previous definition, if A is an open set in
X, a function f : A → R is smooth if

( f | A ∩ Ui) ◦ φ−1
i : Vi → R

is smooth (so, infinitely differentiable) for all i. The vector space of smooth functions on
A is denoted by C∞(A).

Definition 2.3. A tangent vector at x (for x ∈ X) is a map Vx that assigns a real
number to each smooth function F : U → R (where U is a neighborhood of x) and must
satisfy

Vx(a f + bg) = aVx( f ) + bVx(g)

25
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and
Vx( f g) = f (x)Vx(g) + Vx( f )g(x)

for all a, b ∈ R and f and g smooth functions defined near x (so if f is defined on U and
g in U′, f + g and f g are defined on any open subset of U ∩ U′).

Definition 2.4. Following the notation of previous definitions, the derivative of f in
the direction Vx is Vx( f ). The tangent space of X at x is the vector space formed by
the set of all tangent vectors at x, denoted by Tx(X).

As usual, if (Ui, φi) is a coordinate system at x (i.e., φi(x) = (φ1
i (x), ..., φn

i (x)) =
(x1(x), ..., xn(x))) and f is a smooth function, the map ∂

∂xk
defined by

î
∂

∂xk
(x)
ó

( f ) =î
∂

∂xk
( f ◦ φi)

ó
(φi(x)) is a tangent vector at x, and ∂

∂x1
(x), ..., ∂

∂xn
(x) is a basis for Tx(X)

(which, obviously, has dimension n).

Definition 2.5. Following the notation of this section, a smooth curve on X is a map
γ : [0, 1] → X such that for each i, φi ◦ γ can be extended to an open interval that
contains [0, 1] in which it is smooth. A broken curve on X is a continuous map γ :
[0, 1] → X such that for each i, there is a finite decomposition of [0, 1] into subintervals
in which φi ◦ γ, when restricted to each subinterval, can be extended to an open interval
(that contains this subinterval) in which it is smooth.

Definition 2.6. Following the previous definitions, the tangent vector along a smooth
curve γ at t ∈ [0, 1] (or γ(t) = x) for a smooth function f is

γ̇t( f ) =
ï

d
dt

( f ◦ γ)
ò

(t).

Two curves γ and γ′ are said to be equivalent at x if γ(t) = γ′(t′) = x and γ̇t = γ̇′
t′

for all smooth f defined near x.

Following the previous definition and looking again at Definition 2.3, one can
see that an equivalent definition for tangent vectors is that they are equivalence
classes of curves.

Definition 2.7. If A is an open set in X, a smooth vector field V (on A) is a map that
assigns a tangent vector Vx ∈ Tx(X) to each x ∈ A such that for all f ∈ C∞(A), the
map that assigns Vx( f ) to x is smooth. A (smooth) vector field v along a (smooth)
curve γ is a map that assigns a vector vt ∈ Tγ(t)(X) to each t ∈ [0, 1] such that for all f
smooth near γ(t), the map that assigns vt( f ) to t is smooth near t.

Definition 2.8. A connection ∇ at x ∈ X is a map that assigns to a pair (Ux, V)
(where Ux ∈ Tx(X) and V is a vector field near x) a vector ∇Ux V ∈ Tx(X) such that

∇Ux+U′
x
V = ∇Ux V +∇U′

x
V,

∇ f Ux V = f (x) · ∇Ux V,

∇Ux (V + V ′) = ∇Ux V +∇Ux V ′
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and
∇Ux ( f · V) = Ux( f ) · Vx + f (x) · ∇Ux V,

for all f smooth defined near x, all Ux, U′
x ∈ Tx(X) and all vector fields V, V ′ defined

near x. A connection on X is a map that assigns to each x ∈ X a connection at x such
that if U and V are smooth vector fields, then the map that assigns ∇Ux V to each x ∈ X
is a smooth vector field.

The connection is a way to measure "how much" a vector field V differs from
the parallel at x, along a curve in the direction of Ux.

If one has a coordinate system (Uρ, φρ), then

∇ ∂
∂xi

∂

∂xj
= ∑

k
Γk

i,j
∂

∂xk

and the connection is completely determined in Uρ by the functions Γk
i,j (which

are defined in Uρ). These functions are the Christoffel symbols of ∇.

Definition 2.9. Let X and Y be two differential n-manifolds. A map F : X → Y is
smooth if f ◦ F ∈ C∞(X) for all f ∈ C∞(Y). The differential dFx : Tx(X) → TF(x)(Y)
of F at x is defined by

[dFx(Vx)]( f ) = Vx( f ◦ F)

for f ∈ C∞(Y), and is linear. An homeomorphism F : X → Y is a diffeomorphism if
F and F−1 are smooth.

Definition 2.10. Let ∇ be a connection on Y and F : X → Y be locally a diffeomor-
phism. The induced connection ∇∗ = F∗(∇) on X (by F) is defined by

∇∗
U(V) = ∇dF(U)(dF(V)),

where U and V are vector fields on X, and dF(U) is the vector field (on F(X) ⊂ Y) that
assigns dFx(Ux) to each x ∈ X such that the map that assigns [dFx(Ux)]( f ) to each x
is smooth for all f smooth near F(x). A diffeomorphism F is an affine equivalence if
∇̃ is the connection in X and ∇̃ = ∇∗ (here, the induced connection is induced by the
diffeomorphism F).

If V is a vector field along γ, one can define the (covariant) derivative of V
along γ (where this curve must be smooth and inside the set where V is defined)
by

DV
dt

(t′) = ∇γ̇(t′)Vt′ (2.1)

for t′ ∈ [0, 1]. It satisfies the following properties:

D
dt

(V + W) =
DV
dt

+
DW
dt

and
D
dt

( f · V) = γ̇( f )V + f
DV
dt
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for all smooth f defined near γ. The idea behind this is that V is parallel along
γ if DV

dt = 0.
It can be proved that (by Lemma 3.2 of Chapter 2 of [1]) if V0 ∈ Tγ(0)X, there

is a unique vector field V along γ such that Vγ(0) = V0 and DV
dt = 0, which means

that there is a unique way to transport a vector in a "parallel" way along γ. This
is how parallel transport is defined. If we have a vector field V defined near γ,
this can be thought as moving Vγ(0) ∈ Tγ(0)X to γ(ϵ) for a very small ϵ, keeping it
parallel in Rn, and then projecting it perpendicularly to Tγ(ϵ)X (and then doing
this process over and over). This is why it is called parallel transport. Having
this in mind, one can see that parallel transport is an isomorphism of tangent
spaces (as stated in page 4 of [5]).

Definition 2.11. If x ∈ X and γ is a broken curve such that γ(0) = γ(1) = x, we say
that γ is a loop at x.

The breaks don’t have any impact on the possibility of defining parallel trans-
port, because we can simply concatenate the parallel transports of the subinter-
vals. We can see that if we have a loop at x, parallel transport along this loop
gives us a linear transformation ϕ : TxX → TxX. All this linear transformations
given by parallel transport along loops at x form a subgroup of GL(TxX) (they
are automorphisms of TxX). Recall that GL(TxX) is the general linear group of
TxX.

Definition 2.12. The subgroup of GL(TxX) of all linear transformations ϕ : TxX →
TxX defined by parallel transport along loops at x is the holonomy group of X at x,
Φ(X, x).

Definition 2.13. Two loops at x ∈ X are holonomous if parallel transport along both
loops is the same, i.e. the linear transformations of TxX onto itself defined by parallel
transport along each loop are the same.

There is an analogous definition for the holonomy group, which is the group
formed by all the equivalence classes of holonomous loops.

Recall that, regarding topological homotopy, if x and x′ are connected by a
(smooth) curve, then π1(X, x) and π1(X, x′) are isomorphic. This is also true for
holonomy groups: we can write the elements of Φ(X, x) and Φ(X, x′) as matrices
of GLn (with respect to some basis of TxX and Tx′X respectively), which means
that if these two holonomy groups are connected by a (smooth or broken) curve
(so the parallel transport along this curve is an element of GL(TxX)), then these
two groups, thought as subgroups of GLn, are conjugated by some matrix of
GLn, which means that Φ(X, x) ∼= Φ(X, x′). A more intuitive way to think this is
that if we can connect x and x′ with a (smooth or broken) curve γ (so we have
γ(0) = x and γ(1) = x′), if α is a loop at x, then γ ◦ α ◦ γ̄ (where γ̄(t) = γ(1 − t))
is a loop at x′, so all loops at x define loops at x′, and vice versa, if β is a loop
at x′, then γ̄ ◦ β ◦ γ is a loop at x, so all loops at x′ also define loops at x (and
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parallel transport along γ is the inverse of parallel transport along γ̄). This is
why we will sometimes (when we can) write Φ(X) instead of Φ(X, x).

Now, we will state a theorem and a corollary, which are a bit deep and long
to prove, so we will not do it in this work. A detailed proof of both can be found
in Section 3 of Chapter 2 of [6].

Theorem 2.14. Borel-Lichnerowicz If X is a (connected) manifold with a connection,
then the identity component of Φ(X, x), Φ0(X, x), consists of the holonomy classes of
loops that are homotopic to the constant loop (at x).

Corollary 2.15. There is a surjective homomorphism g : π1(X, x) → Φ(X, x)/Φ0(X, x).

2.2 Bieberbach subgroups of Mn and holonomy groups

Let π be a subgroup of An such that X = Rn/π is an n-manifold (for example,
a Bieberbach group). If p : Rn → X is the projection map that maps each point
to its orbit, then p is a local homeomorphism (as seen in page 50 of [1]). So,
appropriately defining the differential structure of X, we get that p is a local
diffeomorphism (also seen in the reference previously mentioned). This means
that if x ∈ X, Ux ∈ TxX and y ∈ Rn such that p(y) = x, then there is a unique
U′

y ∈ TyRn (which is, Rn) such that dpy(U′
y) = Ux. Also, if V is a vector field

defined near x, then there is a unique vector field V ′ defined near y such that
dp(V ′) = V.

The full computation will not be given, but if one considers an open ball
centered at y small enough such that B does not contain other points in the
orbit of y (by π), then if we define a coordinate system in B, (p | B)−1 will be a
coordinate map valid in a small enough neighborhood of x. By last paragraph, if
y1, ..., yn are the usual coordinates for Rnand x1, ...., xn is the said new coordinate
system of X (in reality, defined near x), then dpy( ∂

∂yi
(y)) = ∂

∂xi
(x). The tangent

vectors of both manifolds in y and x can be written as a linear combination of ∂
∂yi

and ∂
∂xi

respectively.
With this, if ∇′ is the usual connection on Rn, one can define a connection on

X by
∇Ux (V) = dpy(∇′

U′
y
(V ′)).

Using previously said basis, it can be proved that this connection is indepen-
dent of the choice of y ∈ Rn. Furthermore, ∇ is the induced connection on X by
p. All this can be found in pages 50-51 of [1].

If γ is a loop at x, there is a unique curve η in Rnsuch that η(0) = y and
p ◦ η = γ (by Theorem 3.3 of Chapter 3 of [7]). We don’t know if η is closed or
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not, so let η(1) = y′. We know that p(y) = p(y′) = x because γ(0) = γ(1) = x,
which implies that there exists κ ∈ An such that κ(y) = y′.

The parallel transport of Ux ∈ TxX along γ corresponds to moving U′
y parallel

to itself along η (recall that η is a curve in Rn), so the parallel transport of Ux

along γ is dpy′(U′
y′), where U′

y′ is the vector parallel to U′
y at y′ (again, because η is

a curve in Rn). So, we just have to look at dpy′ , which is dpy′ = dpy ◦ dκy = dpy ◦ a
for κ = (a, z). So what we have is that the parallel transport of Ux along γ is just
a · Ux.

If one takes all the elements in the same class as p(y) ∈ X (so, these elements
are in Rn, and are in the same orbit of y for some element of π) and connects
them with y using a (smooth or broken) curve, then these curves will become
loops at x when projected onto X. This means that parallel transport along these
loops is defined by the elements of r(π), so, from now on, when we say "the
holonomy group of a Bieberbach group" we will be referring to r(π), because, in
fact, r(π) is isomorphic to Φ(X) (for a deeper discussion, see page 52 of [1]).

It will not be proved here, but using covering space theory (all the needed
results and concepts are developed in Chapter 3 of [7]) and using the fact that
Rnis the universal covering space of X (by Theorem 8.4 of Chapter 3 of [7] and
its proof), one can prove that π1(X) ∼= π, since Rn/π1(X) ∼= X (this can be seen
using Theorems 8.1 and 8.4 of Chapter 3 of [7]).

2.3 Curvature and Riemannian manifolds

This section consists on definitions and general results needed for the last
section of this chapter. In fact, we will see that a complete flat n-manifold with
a torsionfree connection is affinely equivalent to R/π, where π is a subgroup of
An. We will also give definitions of Riemannian manifolds and "isometries" as
well as some results about them, which are needed for the following sections.

Definition 2.16. If X is an n-manifold and U and V are vector fields on X, the Lie
bracket of U and V is the vector field defined by

[U, V]( f ) = U(V( f )) − V(U( f ))

for all f ∈ C∞(X).

If one takes coordinates x1, ..., xn (with U = ∑ ui
∂

∂xi
and V = ∑ vi

∂
∂xi

), then the
Lie bracket can be expressed as

[U, V] = ∑
i,j

ï
ui

∂

∂xi
(vj) − vi

∂

∂xi
(uj)
ò

∂

∂xj
.

Definition 2.17. If X is a manifold, U and V are vector fields on X and ∇ is the
connection of X, then the curvature of X, R(U, V), is a transformation of vector fields
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to vector fields defined by

R(U, V) · W = −∇U(∇VW) −∇V(∇UW) +∇[U,V]W

for any vector field W. The connection ∇ is flat if the curvature is identically zero (it is
usually said that the manifold is flat).

The next part of this section will give us the relationship between curvature
and holonomy. First, we have to consider (as in the previous section) the holon-
omy group as a subgroup of GLn.

Definition 2.18. Let A ∈ Matn (Matn is the algebra of all square n × n real matrices).
Then, the exponential map exp : Matn → GLn is defined by

exp(A) =
∞

∑
i=0

Ai

i!
.

In the previous definition, recall that A0 = Id for any real matrix A. The
exponential map has the following properties:

• The series of exp(A) converges for any real matrix A.

• det(exp(A)) = exp(det(A)), so det(exp(A)) ̸= 0 for any real matrix A (i.e. it
really maps to GLn).

• exp(A) ∈ On if and only if A is skew-symmetric.

Definition 2.19. Consider a subspace L of Matn as a real vector space. Then L is a Lie
subalgebra of Matn if AB − BA ∈ L for all A, B ∈ L. Analogously to Definition 2.16,
[A, B] = AB − BA is the Lie Bracket of A and B.

Lemma 2.20. If N is a subset of Matn, there is a unique smallest Lie subalgebra of Matn

that contains N.

This statement can be found in page 54 of [1]. This unique subalgebra is
called the Lie algebra generated by N.

Now consider x ∈ X and Ux, Vx ∈ TxX. Doing this, R(Ux, Vx) can be consid-
ered as a linear map from TxX to itself (using Lemma 9.1 of [8]), and choosing
a basis e for TxX, one can identify R(Ux, Vx) with a member of Matn, which we
will denote by R(Ux, Vx)e. With this in mind, we are now able to enunciate next
theorem.

Theorem 2.21. If X is an n-manifold with connection ∇, x ∈ X, b is a basis for TxX,
y is in the same component of X as x and L is the Lie subalgebra of Matn generated
by {R(Uy, Vy)e | Uy, Vy ∈ TyX and e is a parallel translate of the basis b to y}, then
exp(L) = Φ(X, x).
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Corollary 2.22. X is flat if and only if Φ(X) is totally disconnected (i.e., Φ0(X) =

{Id}).

Both theorem and corollary can be found in page 55 of [1], and their proof in
Section 7 of Chapter 2 of [6].

Definition 2.23. If U and V are vector fields on a manifold X with connection ∇, the
torsion of ∇ is a vector field defined by

T(U, V) = ∇UV −∇VU − [U, V].

For x ∈ X, T(U, V)x only depends on Ux and Vx, so one can consider torsion as a map
T : Tx(X) × Tx(X) → Tx(X), which is bilinear. In fact, if x1, . . . , xn are coordinates at
x, T

(
∂

∂xi
, ∂

∂xj

)
= ∑ Tk

i,j
∂

∂xk
and Tk

i,j = Γk
i,j − Γk

j,i. If T ≡ 0, ∇ is torsionfree (sometimes
we say that X is torsionfree).

It is not difficult to imagine that, since Bieberbach groups are torsionfree, we
will only be interested in torsionfree manifolds. This is why, from now on, we
will consider all manifolds to be torsionfree.

Recall that a geodesic is a curve γ (on X) such that ∇γ̇γ̇ = 0 (which is
equivalent to going straight in Rn). Since, given a connection, parallel transport
along a given curve is unique, one can see that the geodesic (if one can define it)
in the direction of a vector Ux ∈ TxX that passes by x is unique. The key here
is to be able to define such geodesic, which is what the following definition is
about.

Definition 2.24. If X is an n-manifold with connection ∇ and for all x ∈ X and
Ux ∈ TxX the unique geodesic γ that satisfies γ(0) = x and γ̇0 = Ux (i.e., the geodesic
in the direction of Ux that passes by x) can be defined in all the interval [0, 1], then X
(with ∇) is complete.

The following theorem and corollary correspond to Theorem 3.3 and Corol-
lary 3.3 of Chapter 2 of [1] respectively.

Theorem 2.25. If X is a simply connected n-manifold with a complete, flat, torsionfree
connection, then X is affinely equivalent to Rn(with the usual connection).

Corollary 2.26. If X is a connected n-manifold with a complete, flat, torsionfree connec-
tion, then there exists a subgroup π of An such that X is affinely equivalent to Rn/π.

Now, we can define what a Riemannian structure is, which is just a "metric"
on a manifold.

Definition 2.27. If X is a manifold, a Riemannian structure on X is a map that
assigns to each x ∈ X a positive definite inner product ⟨ , ⟩x on TxX such that for all
smooth vector fields U, V on X, the function that assigns ⟨Uy, Vy⟩y to y ∈ X is smooth.
A manifold with a Riemannian structure is a Riemannian manifold.
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Now, we will define isometries, which will help us in classifying which man-
ifolds are complete.

Definition 2.28. An isometry can be three different things (when we say "isometry",
the definition to which we are referring to will be inferred from the context):

• A linear transformation between inner product spaces that preserves the inner
product (i.e., F : A → B such that ⟨ f (a), f (a′)⟩B = ⟨a, a′⟩A for all a, a′ ∈ A).

• A diffeomorphism f : X → Y of Riemannian manifolds such that d fx : TxX →
Tf (x)Y is an isometry as defined in the previous point.

• A map between metric spaces that preserves distance.

Definition 2.29. If X is a Riemannian manifold and γ is a curve on X, the length of γ

is

l(γ) =
∫ 1

0

»
⟨γ̇t, γ̇t⟩γ(t) dt.

For x, y ∈ X, the distance between x and y is

d(x, y) = inf{l(γ) | γ(0) = x and γ(1) = y}.

A geodesic from x to y is said to be minimal if it is the curve from x to y with
minimum distance. It can be proved that, for Riemannian manifolds, the second
and third definitions of isometry are equivalent.

Theorem 2.30. Hopf-Rinow A Riemannian manifold X with a connection ∇ is com-
plete if and only if either X together with d is a complete metric space, or there is a
minimal geodesic between any two points of X.

Corollary 2.31. Any compact Riemannian manifold is complete.

The proof of both theorem and corollary can be found in pages 62-64 of [8].

2.4 Flat Riemannian manifolds

This section will help us relate flat manifolds with Bieberbach groups, mainly
by adapting the three Bieberbach theorems so their results can be used for flat
Riemannian manifolds. To achieve so, in this section we will consider that all
manifolds are path-connected (unless the contrary is stated).

Lemma 2.32. If X is a Riemannian manifold, x0 ∈ X and the curvature R(Ux, Vx) is
the zero map for all Ux, Vx ∈ TxX and for all x near x0, then for any Ux0 ∈ Tx0 X there
exists a vector field U near x0 such that it is Ux0 at x0 and ∇VU = 0 near x0 for any
vector field V (so, they are "parallel").
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The proof of the previous lemma can be found in pages 60-61 of [1].
It can be proved that every smooth manifold has some Riemannian structure

(as stated in page 59 of [1]). This is why we will sometimes not explicitly say
that a manifold is Riemannian.

Next theorem is one of the three parts of the Clifford-Klein Theorem, that
tells us what properties have flat "well-behaved" Riemannian manifolds. The
other two parts of this theorem are about manifolds with constant positive and
negative curvature, but we will not deepen into those.

Theorem 2.33. Clifford-Klein If X is a simply connected, complete, flat Riemannian
n-manifold, then X is isometric to Rn(where Rnhas the usual Riemannian structure).

Corollary 2.34. If X is a connected, complete, flat Riemannian n-manifold, then there
exists a discrete torsionfree subgroup of Mn, π, such that X is isometric to Rn/π. If X
satisfies the first premises and is also compact, then π is a Bieberbach subgroup.

The proof of the previous theorem and its corresponding corollary can be
found in pages 63-65 of [1].

Now, we will adapt the three Bieberbach theorems to the context of flat Rie-
mannian manifolds.

Theorem 2.35. Bieberbach’s first for manifolds. If X is a compact, path-connected
flat manifold, then it is covered by a flat Riemannian torus and the covering map is a
local isometry. Furthermore, the holonomy gorup Φ(X) is finite.

Proof. From the previous corollary, X is isometric to Rn/π (because it is compact,
which by Corollary 2.31 implies that it is complete), which is covered by Rn/(π ∩
Rn) (by theorem 8.1 of Chapter 3 of [7]). As seen in the last part of Theorem 1.63,
Rn/(π ∩Rn) is a torus. By the discussion of Section 2.2, Φ(X) ∼= r(π), and r(π) is
finite by Bieberbach’s first theorem.

Theorem 2.36. Bieberbach’s second for manifolds. If X and Y are two compact,
path-connected flat manifolds and π1(X) ∼= π1(Y), then X and Y are affinely equivalent.

Proof. By Corollary 2.31, these two manifolds are complete. By the discussion
of Section 2.2 and Corollary 2.34, we consider π1(X) and π1(Y) as Bieberbach
subgroups of Mn, X as Rn/π1(X) and Y as Rn/π1(Y). By Bieberbach’s second
theorem, if f : π1(X) → π1(Y) is an isomorphism, then there exists κ ∈ An such
that f (α) = κακ−1 for all α ∈ π1(X).

If pX : Rn → X and pY : Rn → Y are the projection maps, we can define
g : X → Y by

g(x) = (pY ◦ κ ◦ p−1
X )(x),
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which is well defined. Indeed, if x̃ ∈ p−1
X (x) and α ∈ π1(X), since κακ−1 = η ∈

π1(Y), we have that κα = ηκ, which implies that

pY(κα · x̃) = pY(ηκ · x̃) = pY(κ · x̃),

where the last equality comes from the consideration of Y as Rn/π1(Y). With
this, we have proved that pY ◦ κ(α · x̃) = pY ◦ κ(x̃), i.e. g is well defined.

It can be proved that g is an affine equivalence (see page 65 of [1]), so X and
Y are affinely equivalent.

Theorem 2.37. Bieberbach’s third for manifolds. There are only finitely many affine
equivalence classes of compact, path-connected flat manifolds in any dimension.

Proof. It is direct if one uses Bieberbach’s third theorem and the two previous
adapted Bieberbach theorems for manifolds, since we can consider the funda-
mental group of this manifold to be a Bieberbach subgroup of Mn (again, by the
discussion of Section 2.2 and Corollary 2.34).

From now on, we will consider all manifolds to be path-connected.

2.5 Bieberbach groups and holonomy groups

In this section, we will see that any finite group is the holonomy group of
a Bieberbach group and, by the discussion of prevoius sections, the holonomy
group of a flat manifold. To do so, we will look at Φ-modules where Φ is a finite
group.

First, consider G and G′ to be groups, M a G′-module and f : G → G′ a
homomorphism. One can give M a structure of G-module simply by the action
g ·m = f (g) ·m (where g ∈ G and m ∈ M). This G-module is denoted by f−1(M).

Definition 2.38. Following the previous discussion, f−1(M) is called the G-module
induced by f .

Intuitively, one can define a homomorphism between 2-cochains f∼ : C2(G′; M) →
C2(G; f−1(M)) by [ f∼(φ)](g1, g2) = φ( f (g1), f (g2)). In a similar fashion, if M′ is a
different G′-module and there is a homomorphism of G′-modules ν : M → M′,
we can define a homomorphism ν∼ : C2(G′; M) → C2(G′; M′) by [ν∼(φ)](g′1, g′2) =
ν(φ(g′1g′2)). It can be proved that the image of f∼ of a 2-cocyle is a 2-cocycle and
that the image of f∼ of a 2-coboundary is a 2-coboundary (the analog of this for
ν∼ is also true). This means that f induces a homomorphism f ∗ : H2(G′; M) →
H2(G; f−1(M)) and that ν also induces a homomorphism ν∗ : H2(G′; M) →
H2(G′; M′) (the proof of all this can be found in page 78 of [1]).
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Definition 2.39. Let I : G ↪→ G′ be an inclusion (or just a monomorphism). Then,
I∗ : H2(G′; M) → H2(G; I−1(M)) is a restriction. We can identify I−1(M) with M.

Following the discussion of this section, we will now give a theorem that will
help us in distinguishing which crystallographic groups π are torsionfree (so,
which crystallographic groups are Bieberbach groups).

Theorem 2.40. Let π be the extension corresponding to α ∈ H2(Φ; M). Then π is
torsionfree if and only if for each injection I : Zp ↪→ Φ of a group of prime order into Φ,
I∗(α) ̸= 0.

The proof of the previous theorem is a bit long, so we will not include it in
this work. For the interested reader, it can be found in pages 79-80 of [1].

Definition 2.41. If M and M′ are Φ-modules, then a pair (ν, µ), where ν ∈ HomZ(M, M′)
(so, ν(m + m′) = ν(m) + ν(m′)) and µ ∈ Aut(Φ) such that ν(ϕ · m) = µ(ϕ) · ν(m) for
all ϕ ∈ Φ and m ∈ M is called a semi-linear homomorphism from M to M′. The
set of all semi-linear homomorphisms (from M to M′) is denoted by HomS(M, M′).

For (ν, µ) ∈ HomS(M, M′) and α ∈ H2(Φ; M), we can still define ν∼(φ) :
Φ × Φ → M′ by [ν∼(φ)](ϕ1, ϕ2) = ν[φ(ϕ1, ϕ2)] for φ ∈ α (recall that the elements
φ ∈ α are 2-cocyles). Again, it can be proved that ν∼(φ) is a 2-cocycle, so from
(ν, µ) we get a homomorphism ν∗ : H2(Φ; M) → H2(Φ; µ−1(M′)) (as can be seen,
the notation is the same as before, but they will be differentiated by the context
in which they appear). The proof of all this can be found in page 81 of [1].

Theorem 2.42. If M and M′ are faithful Φ-modules, α ∈ H2(Φ; M), β ∈ H2(Φ; M′)
and π (respectively π′) is the extension corresponding to α (respectively β), then π ∼= π′

if and only if there exists (ν, µ) ∈ Homs(M, M′) such that ν is bijective and ν∗(α) =

µ∗(β).

The previous definition and theorem (its proof can be found in pages 81-82 of
[1]) are not strictly needed in this section, but they are in the following chapter,
and due to the similarity to the previous results and discussion, they have been
included here.

From now on, Φ will be any finite group.

Definition 2.43. Let Φ be any finite group, κ be a subgroup of Φ and A and B be Φ-
modules. The transfer from κ to Φ is the map t : Homκ(B, A) → HomΦ(B, A) defined
by

(t( f ))(b) = ∑
i

xi f (x−1
i b)

for f ∈ Homκ(B, A) and b ∈ B, where {x1κ, ..., xrκ} is the set of all distinct cosets of
κ in Φ (so r = |Φ/κ|).
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The remaining part of this section is quite long and deep, so we will not prove
everything in detail. However, the general ideas will be provided and the most
important results will be proved. All results can be found explained in detail in
Section 5 of Chapter 3 of [1].

If X is a projective resolution of Z for Φ, it can be proved that it is also a
resolution for κ, and that the transfer map ti : Homκ(Xi, A) → HomΦ(Xi, A)
satisfies δi ◦ ti = ti+1 ◦ δi. With this, the transfer induces a map t′ : Hi(κ; A) →
Hi(Φ; A) (which is called, again, "transfer"). Since HomΦ(Xi, A) ⊂ Homκ(Xi, A),
one can define a map R : Hi(Φ; A) → Hi(κ; A), which is called "restriction".

The proof of the following proposition can be found in page 100 of [1].

Proposition 2.44. If α ∈ Hi(Φ; A), then t ◦ R(α) = rα = |Φ/κ|α.

Definition 2.45. Let M be a κ-module and consider Z[Φ] as a right κ-module. The
induced module is defined by J Φ(M) = Z[Φ]⊗κ M, which is a left Φ-module where
Φ acts only on Z[Φ] (i.e. ϕ · (a ⊗ m) = (ϕa ⊗ m)).

If one considers a coset decomposition of κ, Φ = x1κ ∪ · · · ∪ xrκ, (consider-
ing x1 = 1), one can see that any ϕ ∈ Φ can be uniquely written as ϕ = xiκ for
some κ ∈ κ. This means that, for any a ∈ Z[Φ], one can write a = ∑i xibi where,
bi ∈ Z[κ] for i = 1, ..., r, so Z[Φ] is the free κ-module

Z[Φ] = x1Z[κ] ⊕ · · · ⊕ xrZ[κ],

which has basis {x1, ..., xr}. Using this decomposition, one can express the in-
duced module as

J Φ(M) = (x1Z[κ] ⊗κ M) ⊕ · · · ⊕ (xrZ[κ] ⊗κ M).

This is just a decomposition as free abelian groups, but not necessarily as Φ-
modules nor κ-modules. However, we see that the rank of the induced module
as a Φ-module is r times the rank of M as a κ-module, so if {m1, ..., mk} is a
Z-basis for M, then {xi ⊗ mj | 1 ≤ i ≤ r, 1 ≤ j ≤ k} is a Z-basis for J Φ(M).

As said, the decomposition of J Φ(M) is not a decomposition as κ-modules,
as in general, κxiZ[κ] ̸= xiZ[κ] for κ ∈ κ. But for i = 1, since we have chosen
that x1 = 1, κx1Z[κ] = x1κZ[κ] = x1Z[κ], so x1Z[κ] ⊗κ M is a κ-submodule
of the induced module. This means that we can define a κ-homomorphism
f : J Φ(M) → M by f (xi ⊗ m) = m if i = 1, and f (xi ⊗ m) = 0 otherwise.

Further discussion and more details on all this can be found in the previously
mentioned reference.

The proof of the following lemma can be found in pages 102-103 of [1].

Lemma 2.46. If γ ∈ H j(κ; M), then there is λ ∈ H j(Φ; J Φ(M)) such that f∗ ◦
R(λ) = γ.
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The following theorem is another one from Auslander and Kuranishi, which
states that if Φ is any finite group, then there exists a Bieberbach group such
that Φ is isomorphic to its rotational part, and therefore Φ is isomorphic to the
holonomy group of a flat manifold.

Theorem 2.47. Auslander-Kuranishi If Φ is a finite group, then there is a Bieberbach
group π such that r(π) ∼= Φ and a flat manifold X such that Φ(X) ∼= Φ.

Proof. A far more detailed proof of this theorem can be found in page 103 of [1],
here we will only give the general ideas about it. It is worth mentioning that
the detailed proof of this theorem is out of the scope of this work, which is the
reason why only a sketch is provided.

We start by finding a Φ-module L such that there is κ ∈ H2(Φ; L) such that
Rκ(κ) ̸= 0 (Rκ is the restriction to any cyclic subgroup κ of Φ). We do this by
finding a Φ-module Lκ for each κ such that there is κκ ∈ H2(Φ; Lκ) that satisfies
Rκ(κκ) ̸= 0. With this, we can define the finite sum (since Φ is finite)

L = Z[Φ] ⊕ (⊕κ⊂ΦLκ),

which is faithful (it can be proved that it is ensured by the term Z[Φ]). Using
Proposition 1.55 and the fact that H2(Φ; Z[Φ]) = 0 (which comes from the second
part of Corollary 1.60), we get that H2(Φ; L) = ⊕κ∈ΦH2(Φ; Lκ).

To find these Lκ , we use Lemma 2.46: first, we take κ ∈ H2(Φ; Z)\{0} (what
we are doing here is, following the notation of the lemma, taking M = Z with
trivial κ-action). Now, the lemma tells us that there is λ ∈ H2(Φ; J Φ(Z)) such
that f∗ ◦ R(λ) = κ. We take κκ as this λ and Lκ as J Φ(Z). This ensures that
Rκ(κκ) ̸= 0, since if it were, then f∗ ◦ R(κκ) would be zero too, but it cannot,
since f∗ ◦ R(κκ) = κ ∈ H2(Φ; Z)\{0}.

Now, using Theorem 2.40, it can be proved that Φ is, indeed, the rotational
part of a Bieberbach group. Combining this with the discussion of this chapter,
(specially the discussion of Sections 2.2, 2.3 and most importantly Section 2.4) it
can be proved that, indeed, the theorem holds.

This is why we will sometimes refer to r(π) as the "holonomy group of π".
Notice that, by Corollary 2.22, it is not needed to say that the manifold is

flat, because Φ is finite, which implies that Φ is disconnected. This is why, from
now on, as we are going to consider that Φ is finite, we will not say directly
that manifolds are flat, since it will be a consequence of the finiteness of their
holonomy group.



Chapter 3

The classification theorems

This chapter is the end goal of this work: here, we will classify flat (path-
connected) Riemannian manifolds whose holonomy group is isomorphic to Zp.
Furthermore, in the last section of this chapter we will provide a way to find
pairs of non-homotopic manifolds whose holonomy group is isomorphic to Zp,
based on ambiguous ideal classes.

3.1 Introduction

We will use some results of modules over groups of prime order and over
the cyclotomic ring. These results are rather long and could even be considered
a work on their own. One of the most important results that will be used is
Diederichsen-Riener Theorem. The detailed proof of this theorem is out of the
scope of this work, but we will give some general ideas here to guide the reader.
A detailed proof of it can be found in Section 4 of Chapter 4 of [1].

First, consider the ring Z[ζ], where ζ is a primitive root of unity of order p
prime, and M any Zp-module finitely generated and torsionfree as an abelian
group. Then, consider Σ ∈ Z[Zp] as Σ = 1 + g + g2 + · · ·+ gp−1, where g is a
generator of Zp. Taking MΣ = {m ∈ M | Σ · m = 0} (which is a Zp-submodule
of M), M can be written as M = MΣ ⊕ X for some Z-submodule X of M (as
seen in page 127 of [1]). It can be proved that Z[Zp]/(Σ) is isomorphic, as a ring,
to Z[ζ] (again, as seen in page 127 of [1]), which means that MΣ is a finitely
generated Z[ζ] module with action ζ · m = gm.

By Theorems A.8 and A.9, MΣ is isomorphic to a direct sum of ideals of
Z[ζ] determined by the ideal class (for the not familiarized reader, the definition
of equivalent ideals and a brief discussion on them can be found in Section
A.1 of the appendix) of their product (and the number of ideals). Thus, using
Corollary A.10, it can be proved that MΣ

∼= b1Z[ζ]⊕ · · · ⊕ bn−1Z[ζ]⊕ bnq, where
b1, . . . , bn ∈ MΣ and q is an ideal of Z[ζ].

39
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One can choose a basis x1, . . . , xk for X such that

(g − 1)xi ≡ c̄ibi (mod(ζ − 1)MΣ) for i = 1, . . . , r

and
(g − 1)xi ≡ 0 (mod(ζ − 1)MΣ) for i = r + 1, . . . , k,

where c̄i ∈ Z reduces modulo p to ci ̸= 0 for i = 1, . . . , r and r < n, and
when r = n then c̄n ∈ q reduces modulo (ζ − 1)q to cn ̸= 0 (this basis can
indeed be found, as seen in page 129 of [1]). This means that one can choose
u1, . . . , uk ∈ MΣ such that

(g − 1)xi = c̄ibi + (ζ − 1)ui for i = 1, . . . , r

and
(g − 1)xi = (ζ − 1)ui for i = r + 1, . . . , k.

Choosing y1, . . . , yk ∈ M as yi = xi − ui for i = 1, . . . , k, one can write M =

MΣ ⊕ y1Z ⊕ · · · ⊕ ykZ, since it can be proved that the Z-module generated by
the yi’s is a complement of MΣ in M (there is a discussion on this between pages
130 and 131 of [1]).

The action is now defined by

g · yi = c̄ibi + yi for i = 1, . . . , r

and
g · yi = yi for i = r + 1, . . . , k.

Working with all this and recalling the decomposition of MΣ, one can now
write

M = (b1Z[ζ] ⊕ y1Z) ⊕ · · · ⊕ (brZ[ζ] ⊕ yrZ) ⊕ br+1Z[ζ] ⊕ · · · ⊕ bn−1Z[ζ] ⊕ bnq

⊕yr+1Z ⊕ · · · ⊕ ykZ

if r < n, and

M = (b1Z[ζ]⊕ y1Z)⊕· · ·⊕ (bn−1Z[ζ]⊕ yn−1Z)⊕ (bnq⊕ ynZ)⊕ yn+1Z⊕· · ·⊕ ykZ

if r = n. It can be proved that (biZ[ζ] ⊕ yiZ) and (bnq⊕ ynZ) are Zp-modules
following the next sketch: take an ideal q of Z[ζ] and fix q0 ∈ q. Then, define a
Zp-action on q⊕Z by g · (q, m) = (ζq+mq0, m). It is indeed an action of Zp, since
gp · (q, m) = (q + m(1 + ζ + · · ·+ ζ p−1)q0, m) and, recalling that Z[ζ] is a direct
summand of MΣ, (1 + ζ + · · · + ζ p−1)q0 = 0, which means that gp acts as the
identity. This means that if we denote q⊕Z by β(q, q0), we can see that β(Z[ζ], ci)
and β(q, cn) are Zp-modules. It can be proved that (biZ[ζ] ⊕ yiZ) is isomorphic
to β(Z[ζ], ci) and that (bnq⊕ ynZ) is isomorphic to β(q, cn) (a discussion on this
can be found on page 131 of [1]), and therefore the previous two decompositions
of M can be written as
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M ∼= β(Z[ζ], c1) ⊕ · · · ⊕ β(Z[ζ], cr) ⊕ br+1Z[ζ] ⊕ · · · ⊕ bn−1Z[ζ] ⊕ bnq

⊕yr+1Z ⊕ · · · ⊕ ykZ

if r < n, and

M ∼= β(Z[ζ], c1) ⊕ · · · ⊕ β(Z[ζ], cn−1) ⊕ β(q, cn) ⊕ yn+1Z ⊕ · · · ⊕ ykZ

if r = n.

Proposition 3.1. If c ∈ Z such that p ∤ c, then β(q, q0) ∼= β(q, cq0).

Proposition 3.2. β(Z[ζ], c) ∼= β(Z[ζ], 1) if c ∈ Z and p ∤ c. Furthermore, β(Z[ζ], 1) ∼=
Z[Zp].

This means that we can replace β(Z[ζ], ci) with Z[Zp] in the decomposition
of M. The proof of the previous two propositions can be found in pages 132-133
of [1].

Now, let us look at β(q, cn). We know that cn ̸= 0, which is the reduction
modulo (ζ − 1)q of c̄n, so c̄n /∈ (ζ − 1)q. If we take an element q0 ∈ q such
that q0 /∈ (ζ − 1)q, then there is some λ ∈ Z with p ∤ λ which satisfies c̄n ≡
λq0 (mod(ζ − 1)q). In fact, since c̄n is only determined modulo (ζ − 1)q, we can
assume that c̄n = λq0 (all this can be seen following the discussion on page 133
of [1]). Using Proposition 3.1 we get that β(q, cn) ∼= β(q, q0), so from now on we
will fix an element q0 ∈ q such that q0 /∈ (ζ − 1)q and we will just refer to β(q, q0).

Using all this, it can be proved that we can write

M ∼=
r︷ ︸︸ ︷

Z[Zp] ⊕ . . . Z[Zp]⊕
n−r−1︷ ︸︸ ︷

Z[ζ] ⊕ . . . Z[ζ]⊕q⊕
k−r︷ ︸︸ ︷

Z ⊕ · · · ⊕ Z

for the case in which r < n (where Zp acts trivially on the k − r modules Z) and

M ∼=
n−1︷ ︸︸ ︷

Z[Zp] ⊕ · · · ⊕ Z[Zp]⊕β(q, q0) ⊕
k−n︷ ︸︸ ︷

Z ⊕ · · · ⊕ Z

for the case r = n.
With all this, one gets a general idea for Diederichsen-Riener Theorem:

Theorem 3.3. Let M be a Zp-module which, as an abelian group, is finitely generated
and torsionfree. Let us define a submodule of M by MΣ = {m ∈ M | Σ · m = 0}. Let n
be the rank of MΣ as a Z[ζ]-submodule, k be the rank of M/MΣ as a free abelian group
and r be the dimension of (g − 1)M/(ζ − 1)MΣ as a vector space over Zp. Write MΣ as
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Z[ζ] ⊕ · · · ⊕ Z[ζ] ⊕ q, where q is an ideal of Z[ζ]. Then the isomorphism class of M as
a Zp-module is determined by the integers n, k, r and the ideal class of q.

Conversely, if n, k and r are integers that satisfy k ≥ r ≥ 0 and n ≥ r ≥ 0, and [q]
is some ideal class, then M constructed by

M = β(Z[ζ], c1) ⊕ · · · ⊕ β(Z[ζ], cr) ⊕ br+1Z[ζ] ⊕ · · · ⊕ bn−1Z[ζ] ⊕ bnq

⊕yr+1Z ⊕ · · · ⊕ ykZ

for r < n and by

M = β(Z[ζ], c1) ⊕ · · · ⊕ β(Z[ζ], cn−1) ⊕ (bnq⊕ ynZ) ⊕ yn+1Z ⊕ · · · ⊕ ykZ

for r = n is a Φ-module with the invariants n, k, r and [q].

The following definition will be very helpful for the computation of the sec-
ond cohomology group, which will be done in next section:

Definition 3.4. A module M over a ring R is indecomposable if it cannot be written
as a non-trivial direct sum of modules over R.

3.2 Cohomology for the classificatoin theorem

From now on we will take Φ ∼= Zp, where p is prime. This section has the
purpose of finding all classes in the second cohomology H2(Φ; M) which corre-
spond to torsionfree extensions. To do so, by Theorem 2.40 we see that the classes
that give us torsionfree extensions are those which are not zero, i.e. we need to
find all elements of H2(Φ; M). By Proposition 1.55 and the discussion of the
previous section, we only need to study the cases where M is indecomposable.

Proposition 3.5. Let G be any cyclic group of order n, and let M be any G-module. Let
g be a generator of G, ∆ = g − 1 and Σ = 1 + g + · · ·+ gn−1. If ΣM and ∆M are the
maps induced on M by the multiplication of Σ and ∆ respectively, then

H0(G; M) ∼= Ker(∆M),

Hn(G; M) ∼= Ker(∆M)/Im(ΣM) if n is even and

Hn(G; M) ∼= Ker(ΣM)/Im(∆M) if n is odd.

This proposition (which can be found in page 94 of [1]) is very useful, since
we just have to compute Ker(∆M) and Im(ΣM) for the different indecomposable
Φ-modules.

By Proposition A.12, we know that the only indecomposable Φ-modules are
Z, q and β(q, q0).
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First, let M = Z. Since it has trivial Φ-action, Ker(∆M) = Z and Im(ΣM) =
pZ, which implies that H2(Φ; Z) ∼= Zp.

Now, let M = q. If ∆q = 0 for some q ∈ q, then ζq = q, and since q is an ideal
of Z[ζ], this implies that q = 0, so Ker(∆M) = {0}. For Im(ΣM), since we are
considering q to be an ideal of Z[ζ] and Z[ζ] is a direct summand of MΣ, we get
that (1 + ζ + · · ·+ ζ p−1)q = 0 for all q ∈ q, so Im(ΣM) = 0. Thus, H2(Φ; q) = {0}.

The last case is when M = β(q, q0), i.e. M = q⊕ Z. Recall that the action of g
on q⊕ Z is defined by g · (q, n) = (ζq + nq0, n), where q0 is a fixed element of q
such that q0 /∈ (ζ − 1)q.

Lemma 3.6. If M = q ⊕ Z, then Ker(∆M) ∼= Z, where k ∈ Z corresponds to the
element ((ζ − 1)−1(kpq0), kp) ∈ q⊕ Z.

Proof. If (q, n) ∈ Ker(∆M), then (q, n) = (ζq + nq0, n), so (ζ − 1)q = −nq0. This
means that nq0 ∈ (ζ − 1)q. If we consider the projection p : q → q/(ζ − 1)q, by
Proposition A.13 we know that q/(ζ − 1)q ∼= Zp, so p(q0) is a generator of q/(ζ −
1)q (because q0 /∈ (ζ − 1)q). Now, since nq0 ∈ (ζ − 1)q, p(nq0) = 0 = p(n)p(q0),
which implies that p(n) = 0, i.e. n ∈ (ζ − 1)q. This means that n ∈ (ζ − 1)Z[ζ] ∩
Z, and using Lemma A.2 and Theorem A.3 we get that (ζ − 1)Z[ζ] ∩ Z = pZ,
which implies that n = kp for some k ∈ Z.

All this yields that if (q, n) ∈ Ker(∆M), then n = kp and (ζ − 1)q = −kpq0,
thus

Ker(∆M) = {(q, n) ∈ q⊕ Z | (ζ − 1)q = −kpq, where k ∈ Z}.

The map that assigns (ζ − 1)q to each q ∈ q is injective, so if one knows k ∈ Z,
one also knows −kpq0 = (ζ − 1)q, and thus knows q too.

Theorem 3.7. If M is a Φ-module defined by the direct sum of A copies of Z (with
trivial Φ-action), B ideals of Z[ζ] and C copies of the form q⊕ Z, then

H2(Φ; M) ∼=
A︷ ︸︸ ︷

Zp ⊕ · · · ⊕ Zp .

Sometimes, it will be denoted by (Zp)A.

Proof. Following the discussion in this section, let’s consider the only missing
case, q⊕ Z. First, Σ · (q, n) = Σ · (q, 0) + Σ · (0, n) = Σ · (0, n), since we know that
Σ · (q, 0) = ((1 + ζ + · · ·+ ζ p−1)q, 0) = (0, 0). From a direct computation we get
that gj · (0, 1) =

Ä
∑

j−1
i=0 ζ iq0, 1

ä
for j < p, thus

Σ · (0, 1) =

(
p−1

∑
j=0

j−1

∑
i=0

ζ iq0, p

)
=

(
p−1

∑
j=0

(p − j)ζ jq0, p

)
.
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This means that (q, n) ∈ Im(ΣM) if and only if n = kp and q = k ∑
p−1
j=0 (p − j)ζ jq0.

We can see that

(ζ − 1)
p−1

∑
j=0

(p − j)ζ j =
p−1

∑
j=0

(p − j)ζ j+1 −
p−1

∑
j=0

(p − j)ζ j = (1 + ζ + · · ·+ ζ p−1) − p,

thus (ζ − 1)q = −kpq0 (recall that Σ · q0 = 0), i.e. q = −(ζ − 1)−1 pkq0. With
this, using the previous lemma we can see that Ker(∆M) ∼= Im(ΣM), so the only
contribution to the cohomology comes from the modules Z.

After all this, we can see that, to describe a Φ-module as in Theorem 3.3, we
can use the numbers A, B and C (which are A = k − r, B = n − r and C = r) with
the conditions A, B, C ≥ 0.

3.3 The classification theorems

The aim of this section is to give a theorem which will help us classify Bieber-
bach groups whose holonomy group is Φ ∼= Zp (where p is prime).

The path followed to do so is the following: first, we choose a group Φ ∼= Zp,
which is the holonomy group of a Bieberbach group (as seen in Theorem 2.47).
Then, we will take a faithful representation of Φ on a free abelian group M.
After this, we will find a cohomology class such that the associated extension
π is torsionfree. Finally, we check for isomorphisms of π to π′, where π′ is a
torsionfree extension that corresponds to any equivalence class of H2(Φ; M′) (M′

is any other Φ-module).
The first step has already been done, as said before, in Chapter 2 (we choose

Φ to be finite an of prime order).
The second step is the most difficult part, choosing a faithful representation,

and we usually just take groups whose integral representations are known.
To choose a cohomology class the associated extension of which is torsionfree

(and thus corresponds to a Bieberbach group), we use Theorem 2.40, which tells
us that we must choose α ∈ H2(Φ; M) such that α ̸= 0.

For the final step, we will use Theorem 2.42: to check for isomorphisms be-
tween such Bieberbach groups, we just have to consider pairs (M, α) and (M′, α′)
(where M and M′ are Φ-modules, α ∈ H2(Φ; M) and α′ ∈ H2(Φ, M′)) and see if
there is (ν, µ) ∈ HomS(M, M′) such that ν is bijective and ν∗(α) = µ∗(α′).

To check these pairs, we will first find an isomorphism ν : M → M′ such
that ν∗(α) = α′ and we will try to find the relationship between M′ and ν−1(M′)
afterwards. To do so, we will need the inverse of ν, ν−1, so we will change the
notation for the module ν−1(M) to M∗

ν .
The cases in which the order of Φ is 2 and 3 (i.e., p = 2 and p = 3) must be

studied separately (and are trivial). We are not interested in them and the fol-
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lowing theorem is not true for these cases, so we exclude them and just consider
the order of Φ to be finite, prime and greater than three.

Theorem 3.8. If M is a Φ-module and α, α′ ∈ H2(Φ; M) are not the zero class, then
there is a Φ-automorphism ν : M → M such that ν∗(α) = α′ if and only if either

M ̸= Z ⊕ BZ[ζ]

or
M = Z ⊕ BZ[ζ] and α = ±α′

(where we are following the notation of the previous section, so B ∈ Z such that B ≥ 0).

Proof. The detailed proof can be found in pages 140-143 of [1]. Here, we will
only give the general ideas one can follow to prove this theorem.

If we have α ̸= 0, clearly H2(Φ; M) ̸= 0, which, by Theorem 3.7, yields
that A ̸= 0 which, in turn, means that we can write M = M1 ⊕ M2, where
M1 = AZ (so M1 is the largest direct summand on which Φ acts trivially).
All this gives us that H2(Φ; M) = H2(Φ; M1) ∼= (Zp)A, so we just have to
check for Z-automorphisms of M1, since they are also Φ-automorphisms of M1

and can be extended trivially to Φ-automorphisms of M. However, not all Φ-
automorphisms of M may be obtained by this, since one can map Z to the sub-
module (Σ) ⊂ Z[Φ].

Now, considering the case A > 1. Since H2(Φ; M1) ∼= (Zp)A (so it is a vector
space of dimension A over Zp, which means that M1/pM1

∼= (Zp)A), its corre-
sponding linear group can be thought as matrices with ones and minus ones in
the diagonal and zeros elsewhere except in one entry, which will be a one (by
Proposition A.14). Any two elements of this vector space will be related by one
of this matrices, i.e. given any two elements, one will be the image of the other
by some matrix of this kind (again, by Proposition A.14). Since any elementary
matrix over Z can be thought as an elementary matrix over Zp, if A > 1 we
can map any non-zero element of H2(Φ; M1) to any other non-zero element of
H2(Φ; M1), and the theorem holds.

If A = 1, the only non-trivial Z-automorphism of M1 (in this case, M1 = Z)
is the negation (i.e., 1 7→ −1). For p > 3, we cannot relate all elements of
Zp\{0} with this automorphism. However, if we are in the second case (i.e. M =

Z ⊕ BZ[ζ]), there are not any Z[Φ]’s, so every Φ-automorphism of M preserves
M1 (since the case explained before that maps Z to the submodule (Σ) ⊂ Z[Φ]
is not possible) and thus induces a Z-automorphism of M1 (which is the only
possible non-trivial Z-automorphism, the negation), i.e. for α ∈ H2(Φ; M1) we
have α 7→ α or α 7→ −α (which is the second case of this theorem).

Now, we just have to check what happens for M = Z ⊕ BZ[ζ] ⊕ CZ[Φ] for
C > 0. Recall that Z[Φ] can be identified with a module of the type q⊕Z (where
q is an ideal of Z[ζ]). Hence one can consider the exact sequence (over Z)

0 −→ q −→ q⊕ Z
ρ−→ Z −→ 1,
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where it can be proved that the invariant elements of q ⊕ Z under Φ are the
elements of Ker(∆Σ). By Lemma 3.6, Ker(∆Σ) ∼= Z and λ = ±((ζ − 1)−1 pq0, p)
are its generators, so ρ(λ) = ±p. We can choose λ such that ρ(λ) = p.

We know that M has a direct summand (q⊕ Z) ⊕ Z (because A = 1), so we
will define the Φ-automorphism of M, ν, that satisfies ν∗(α) = α′ by defining it
on (q⊕ Z) ⊕ Z and letting it be the identity on the rest of M.

Let us define F : (q⊕Z)⊕Z → (q⊕Z)⊕Z by F(x; n) = (ηx+ anλ; bρ(x)+ cn)
for x ∈ q⊕Z and n ∈ Z. The elements a, b, c ∈ Z and η ∈ Z[Φ] will be chosen to
ensure that F is a Φ-automorphism such that the induced map maps any chosen
element of H2(Φ; M)\{0} to any other such element. It can be proved that if c is
prime to p, then F is indeed a Φ-automorphism.

As seen in the previous section, H2(Φ; q⊕Z) = {0}, so H2(Φ; (q⊕Z)⊕Z) =
H2(Φ; Z) ∼= Zp. This means that to see how F∗ acts on cohomology, we just have
to look at the restriction of F to Z. As F(0; n) = (anλ; cn), the map induced by F
on Zp is the map that multiplies every element by c (recall that c is prime to p).
Choosing c as needed (it only has to satisfy that it si prime to p), F∗ will map any
element different from 0 of H2(Φ; Z) ∼= Zp to any other element different from 0
of H2(Φ; Z) ∼= Zp.

The next corollary is direct if one looks at the proof of the previous theorem.

Corollary 3.9. Let M and M′ be Φ-modules such that M ∼= M′.

• If M ≇ Z ⊕ Bq, α ∈ H2(Φ; M)\{0} and α′ ∈ H2(Φ; M′)\{0}, then there exists
a Φ-isomorphism F : M → M′ such that F∗(α) = α′.

• If M ∼= Z ⊕ Bq (i.e. A = 1 and C = 0), α ∈ H2(Φ; M)\{0} and f , g : M → M′

are Φ-isomorphisms, then f∗(α) = ±g∗(α).

It is not difficult to see that Aut(Φ) ∼= Zp−1, so there exists ν1/2 ∈ Aut(Φ)
such that (ν1/2)2 = Id (the identity). We define an action of Aut(Φ) on Z[ζ]
by ν(ζ) = ζk if ν is the element of Aut(Φ) such that ν(g) = gk. In fact, this is
the Galois group of Q(ζ) over Q, and ν1/2 acts as the complex conjugation (as
seen in the discussion of page 144 of [1]). If q and m are two equivalent ideals
of Z[ζ] (this concepts are rather general and thus the definitions of equivalent
ideals, ideal class group and ideal class number have been included in Section
A.1 of the appendix), then ν(q) and ν(m) are also equivalent (as expected). We
will denote Aut(Φ) with this defined action on Z[ζ] by G. This means that G
acts on the ideal class group Cp, and by an abuse of notation, we will denote the
action of ν on [q] by ν([q]).

If [q] is the ideal class of the ideal q of Z[ζ], then we can denote the unique
(up to isomorphism) Φ-module with invariants A, B, C and [q] by N(A, B, C; [q]),
i.e. for B > 0

N = AZ ⊕ (B − 1)Z[ζ] ⊕ q⊕ CZ[Φ]
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and for B = 0
N = AZ ⊕ (C − 1)Z[Φ] ⊕ (q⊕ Z).

Theorem 3.10. With the previous notation, N(A, B, C; [q]) is semi-linearly isomorphic
to N(A′, B′, C′; [q′]) if and only if A = A′, B = B′, C = C′ and there exists ν ∈ G such
that ν([q]) = [q′].

Proof. The proof of this theorem is rather long, so we will only give the first part.
If we denote N(A, B, C; [q]) by M and N(A′, B′, C′; [q′]) by M′, it can be proved

that they are semi-linearly isomorphic to each other if and only if M is iso-
morphic to M′∗

ν for some ν ∈ G. This means that we only need to see that
N(A, B, C; [q]))∗ν = N(A, B, C; ν−1([q])) (we have already seen that G acts on the
ideal class group). Here, as stated in the beginning of this section, ν−1 now
denotes the inverse of ν.

To see this, we only need that q∗ν ∼= ν−1(q) and ν∗(q⊕ Z) ∼= ν−1(q) ⊕ Z.
We can suppose that there is k ∈ Z (where 0 < k < p) such that ν(g) = gk.

If one denotes the Φ-action on q∗ν by • and considers the map ν−1 : q∗ν → ν−1(q)
defined by the inverse of ν, then (for q ∈ q∗ν)

ν−1(g • q) = ν−1(ν(g) · q) = ν−1(ζkq) = ν−1(ζk)ν−1(q) = ζν−1(q) = g · ν−1(q),

so ν−1 is a Φ-module isomorphism, and we have that q∗ν ∼= ν−1(q).
The second part of this proof is done in a similar fashion (also considering

the action •), and can be found in pages 144-146 of [1].

Combining Corollary 3.9 and the previous theorem, we can see that the "most
difficult" case is when we have N(1, B, 0; [q]) (with B > 0). This is why we will
study this case separately from the rest.

Definition 3.11. Exceptional Φ-modules are the ones of the form N(1, B, 0; [q]) (with
B > 0). All other Φ-modules are non-exceptional. A Bieberbach group is exceptional
if its unique maximal abelian subgroup is exceptional as a Φ-module. Analogously, a
Bieberbach group is non-exceptional if its unique maximal abelian subgroup is non-
exceptional as a Φ-module.

Definition 3.12. The set of all the orbits of the action of G (the Galois group) on Cp is
denoted by C̃p. The orbit set of the action of ν1/2 on Cp is denoted by C̃2

p.

Now, we have all the needed results to announce the so awaited classification
theorem for non-exceptional Φ-modules:

Theorem 3.13. There is a one-to-one correspondence between isomorphism classes of
non-exceptional Bieberback groups whose holonomy group has prime order p and 4-
tuples (A, B, C; σ) where A, B, C ∈ Z with A > 0, B ≥ 0, C ≥ 0, (A, C) ̸= (1, 0),
(B, C) ̸= (0, 0) and σ ∈ C̃p.
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Proof. We already have all the needed parts to prove it, we just have to put them
together.

The Bieberback group π satisfies the exact sequence

0 −→ M −→ π −→ Φ −→ 1,

where Φ ∼= Zp. By Theorem 3.3 and the work of this chapter, M can be expressed
as a direct sum characterized by A, B, C ∈ Z, A, B, C ≥ 0 and [q] ∈ Cp (the
ideal class group). Theorem 3.7 tells us that if A > 0, then H2(Φ; M) ̸= 0,
and Theorem 2.40 tells us that every class in H2(Φ; M)\{0} corresponds to a
torsionfee extension (so, to a Bieberback group). It can be proved that for M to
be a faithful Φ-module we need that (B, C) ̸= (0, 0) (as stated in page 147 of [1]),
and for it to be non-exceptional we need that (A, C) ̸= (1, 0).

By Theorem 2.42, to check for isomorphisms between such Bieberback groups
we just have to check for semi-linear isomorphisms between their associated Φ-
modules M. As seen in Theorem 3.10, two such Φ-modules N(A, B, C; [q]) and
N(A′, B′, C′; [q′]) are semi-linearly isomorphic if and only if (A, B, C) = (A′, B′, C′)
and there exists ν ∈ G such that ν([q]) = [q′]. This means that semi-linear iso-
morphism classes with (A, B, C) = (A′, B′, C′) are in one-to-one correspondence
with the elements of C̃p. Using the first part of Corollary 3.9, we can compose
a semi-linear isomorphism with an appropriate isomorphism to map any class
of H2(Φ; M)\{0} to any other class of H2(Φ; M)\{0}, so the cohomology class of
the extension can be ignored, and we have the desired theorem.

There is also a version of this theorem for non-exceptional Bieberbach groups,
but we will just state it as a result and will not prove it. The detailed proof can
be found in pages 148-151 of [1].

Theorem 3.14. There is a one-to-one correspondence between isomorphism classes of
exceptional Bieberback groups whose holonomy group has prime order p and pairs (B, ρ)
where B ∈ Z, B > 0 and ρ ∈ C̃2

p.

Now, we will see how to apply these two classification theorems to manifolds.

Definition 3.15. If τ is any group, a τ-manifold is a compact (path-connected) Rie-
mannian manifold such that its holonomy group is isomorphic to τ.

As one could expect, we will use them on Zp-manifolds: combining Theo-
rems 2.47, 3.13, 3.14, Bieberbach’s second theorem (the version for manifolds)
and the discussion of the previous chapter, one can see that:

Theorem 3.16. There is a one-to-one correspondence between affine equivalence classes
of Zp-manifolds (with p prime) and 4-tuples (A, B, C; ρ) with A, B, C ∈ Z, A > 0,
B ≥ 0, C ≥ 0, BC ̸= 0, and ρ ∈ C̃p if (A, C) ̸= (1, 0) (i.e., the non-exceptional case) or
ρ ∈ C̃2

p if (A, C) = (1, 0) (i.e., the exceptional case).
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Notice that we can denote Zp-manifolds by X = X(A, B, C; [q]), and two
such manifolds X(A, B, C; [q]) and X(A, B, C; [q′]) are affinely equivalent if there
is ν ∈ G such that ν([q]) = [q′] if (A, C) ̸= (1, 0), or ν1/2([q]) = [q′] if (A, C) = (1, 0).

3.4 Product by S1

In this section we will see how to find Zp-manifolds X = X(A, B, C; [q]) and
X′ = X(A, B, C; [q′]) of different homotopy type such that X × S1 and X′ × S1 are
affinely equivalent. To do so, we will use Theorem 3.16.

First of all, since all 1-dimensional manifolds are flat, S1 is flat. We know
that π1(X × S1) ∼= π1(X) × S1 and π1(X′ × S1) ∼= π1(X′) × S1 (since π1(S1) ∼= Z)
for the fundamental groups. Following the discussion of last chapter, we know
that π1(X) and π1(X′) are Bieberbach groups. This means that X × S1 = X(A +

1, B, C; [q]) and X′ × S1 = X(A + 1, B, C; [q′]), because if M is the unique maximal
abelian torsionfree subgroup of finite index of π1(X) (respectively M′ of π1(X′)),
we must have that M ⊕Z is the unique maximal abelian torsionfree subgroup of
finite index of π1(X) × Z (respectively M′ ⊕ Z of π1(X′) × Z) and the holonomy
group is still Φ ∼= (π1(X) × Z)/(M ⊕ Z) ∼= π1(X)/M ∼= Zp (analogously for the
holonomy group of π1(X′) × S1).

We see then that even for X = X(1, B, 0; [q]) (with B > 0), X × S1 does not
correspond to an exceptional case, and thus we have to project [q] from C̃2

p to C̃p

to get the "new [q]" to describe X × S1. This is why, in the previous section, we
didn’t prove the classification theorem for the exceptional case.

The primary idea that will be used here is the following: first, suppose that
we have X = X(1, B, 0; [q]) and X′ = X(1, B, 0; [q′]) (with B ≥ 1), where [q], [q′] ∈
Cp such that ν1/2([q]) ̸= [q′], but that there is ν ∈ G such that ν([q]) = [q′].
This means that X and X′ are not affinely equivalent (in fact, they are not even
homotopically equivalent) because [q] ̸= [q′] in C̃2

p. However since [q] and [q′]
determine the same element in C̃p, X × S1 and X′ × S1 are affinely equivalent.

To find ideals that satisfy the supposition of the previous paragraph, we need
some definitions first.

Definition 3.17. An ideal q is ambiguous if q = q̄. An ideal class [q] is ambiguous if
[q] = [q̄]. An ideal class [q] is strongly ambiguous if it contains an ambiguous ideal.

Clearly, a strongly ambiguous ideal class is ambiguous.

Definition 3.18. Let R be a ring and R0 a subring of R. An ideal q of R comes from
R0 if q = R · I, where I is some ideal of R0.

We need to see that there is some ideal class with the properties stated earlier.
To do so we do the following:

First, we take a non-trivial ambiguous ideal class [q] and check ν([q]) for all
ν ∈ G. It is not possible to have ν([q]) = [q] for all ν ∈ G, because if it happened,
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then [q] would contain an ideal that comes from Z (this is seen using Proposition
A.15 thanks to Dr. Xavier Guitart Morales, and a full discussion on this topic can
be found in Section A.3 of the appendix). Since all ideals of Z are principal, the
ideals that come from Z are also princiapl, so their ideal class is the trivial one.
As we have taken [q] to be non-trivial, there must be some ν ∈ G that satisfies
ν([q]) ̸= [q]. Since we have taken [q] ambiguous, ν1/2([q]) = [q]. This means that
we have ν([q]) ̸= [q] = ν1/2([q]) (for some ν ∈ G), so the ideal classes [q] and
ν([q]) satisfy the desired properties.

But first we need to see that there is a prime p such that Cp contains a non-
trivial ambiguous ideal class. We only need to see that hp (the ideal class number,
i.e. the order of Cp) is even, since if it is, there will be hp − 1 non-trivial ideal
classes, and there cannot be an odd number of non-ambiguous ideal classes,
because if [q] is a non-ambiguous ideal class, then [q̄] is also a non-ambiguous
ideal class different from [q] (recall that the trivial ideal class is ambiguous).

Computing hp is very difficult and tedious, so it will not be done here, but
there are various easily available references of computations of hp for different
values of p. As an example of the existence of such a prime number, in the
discussion of page 187 of [9] we find that h29 = 8, so for p = 29 we have at least
one non-trivial ambiguous ideal class.

Now, we can announce the following theorem:

Theorem 3.19. If p is a prime such that hp is even, then there exist two Zp-manifolds
(where p is prime) X and X′ such that π1(X) ≇ π1(X′), and X × S1 and X′ × S1 are
affinely equivalent.



Chapter 4

Conclusions

This work has successfully achieved its two main objectives. First, it provides
a classification of Zp-manifolds up to affine equivalence, building on the founda-
tional results of Bieberbach groups. Second, it explores the phenomenon where
non-homotopic Zp-manifolds become affine equivalent upon taking the product
with S1, providing a way to find pairs of such manifolds.

While the results presented here address significant questions in the classifi-
cation of Zp-manifolds, several avenues for future research remain. One poten-
tial direction is to study the ideal class number so one can give a concrete condi-
tion or set of conditions to the prime number p under which such non-homtopic
Zp-manifolds exist (one way to do so could be to study the decomposition of hp

into two factors, as seen in Section 4 of Chapter 3 of [10]). Additionally, proving
the classification theorem for the exceptional case, which was not done in this
work, could further solidify the arguments used in the last section of this work.
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Appendix A

Appendix: Auxiliary results

A.1 Prime cyclotomic rings

These results are extracted directly from Sections 2 and 3 of Chapter 4 of [1].

Definition A.1. An algebraic number field K is an extension field of Q such that
K/Q has finite degree. An element of K is integral if it is the root of a monic polynomial
in Z[X].

The set of all integral elements of K forms a subring of K denoted by OK. We
are interested in finding this subring for K = Q(ζ), where ζ is a primitive root of
unity of order p prime.

Lemma A.2. For Q(ζ), (1 − ζ)OK ∩ Z = p · Z.

Theorem A.3. The ring of integral elements in Q(ζ) is Z[ζ].

Now, we will give the notion of equivalence of ideals of Z[ζ].

Definition A.4. Two ideals q and m of Z[ζ] are equivalent if there are x, y ∈ Z[ζ]
such that xq = ym. The set of all equivalence classes of ideals forms the ideal class
group Cp. This group has order hp, which is called the class number of Z[ζ].

All principal ideals are equivalent and their ideal class is the trivial element of
Cp. One can give a similar definition for two ideals q,m of Q(ζ) to be equivalent,
which is that they are equivalent if there exists x ∈ Q(ζ) such that q = xm. An
intuitive interpretation of hp is that it measures "how much" unique factorization
fails in Z[ζ].

To finish this section, we will give some results that will be used in this work.

Proposition A.5. The roots of the minimal polynomial of (1− ζ) are 1− ζ, 1− ζ2, . . . , 1−
ζ p−1. Furthermore, p = (1 − ζ)(1 − ζ2) . . . (1 − ζ p−1) (all this in the ring Z[ζ]).
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Lemma A.6. Z[ζ + ζ−1] is the maximal real subring of Z[ζ].

Theorem A.7. Fundamental theorem of arithmetic for Z[ζ]. Every proper ideal q
of Z[ζ] is a product of prime ideals. Furthermore, this decomposition is unique up to
rearrangement.

Theorem A.8. Let M be a finitely generated torsionfree Z[ζ]-module of rank n. Then
there are n ideals q1, . . . , qn of Z[ζ] such that

M ∼= q1 ⊕ · · · ⊕ qn.

Theorem A.9. Suppose M = q1 ⊕ · · · ⊕ qk and N = m1 ⊕ · · · ⊕mn, where qi and mj

are ideals of Z[ζ] for i = 1, . . . , k and j = 1, . . . , n. Then M ∼= N if and only if n = k
and the products q1q2 . . . qk and m1m2 . . .mn are in the same ideal class.

Corollary A.10. Suppose that q1, . . . qn are ideals of Z[ζ]. Then

q1 ⊕ · · · ⊕ qn ∼=
n−1︷ ︸︸ ︷

Z[ζ] ⊕ · · · ⊕ Z[ζ]⊕q1 . . . qn.

A.2 Indecomposable modules and auxiliary results

Definition A.11. A module M over a ring R is indecomposable if it cannot be written
as a non-trivial direct sum of modules over R.

The following statement can be found in page 134 of [1].

Proposition A.12. Following the notation of the previous section, the only indecompos-
able Zp-modules are Z, q (also considering the possibility q = Z[ζ]) and β(q, q0).

Proposition A.13. Following the notation of the previous section, Z[ζ]/(ζ − 1)Z[ζ] ∼=
Zp and q/(ζ − 1)q ∼= Zp.

Proposition A.14. If V is a finite-dimensional vector space, then GL(V) is generated by
elementary matrices (elementary matrices are matrices with ±1 along the main diagonal
and zero’s elsewhere except for one entry, which is a 1). Furthermore, if the dimension of
V is greater than 1, then given any v1, v2 ∈ V\{0} there exists U ∈ GL(V) such that
U · v1 = v2.

The previous two statements can be found in pages 129 and 140 of [1] respec-
tively.
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A.3 Fixed ambiguous ideal class by the Galois group

The objective of this section is proving that if [q] is a non-trivial ambiguous
ideal class (where q is an ideal of Z[ζ]), then there exists some σ ∈ G (where G
is the Galois group) such that σ([q]) ̸= [q].

To do so, Proposition A.15 will be used, which was provided by Dr. Xavier
Guitart Morales (to whom I am very grateful). The proof involves deeper con-
cepts than those used in this work. These concepts will not be introduced here,
since we are only interested in the result, but the proof has been included for the
interested reader.

Proposition A.15. Let K = Q(ζp), G = Gal(K/Q), and σ be a generator of G. If q is a
fractional ideal of K such that σ([q]) = [q], then there exists an ideal m ∈ [q] such that
σ(m) = m.

Proof. The condition σ([q]) = [q] implies the existence of λσ ∈ K× such that

σ([q])
[q]

= (λσ).

Therefore,

∏
τ∈G

τ

Å
σ([q])

[q]

ã
= (NmK/Q(λσ)).

The ideal on the left-hand side is (1), that is, we have (1) = (NmK/Q(λσ)). This
implies that NmK/Q(λσ) is a unit in the ring of integers of K; moreover, it is in
Q, and the only units of K that are also in Q are ±1. Hence, NmK/Q(λσ) = ±1.
However, for p ≥ 3, the norm of an element of K is positive1, which necessarily
implies NmK/Q(λσ) = 1.

By Hilbert’s Theorem 90, there exists β ∈ K such that λσ = σ(β)
β . Now, define

m = q · β−1. It is easy to verify that σ(m) = m.

Now we are able to prove the objective of this section: let [q] be a non-trivial
ambiguous ideal class and suppose that ν([q]) = [q] for all ν ∈ G. This means
that if σ is a generator of G, then σ([q]) = [q]. Now we can use Proposition A.15,
which tells us that there is an ideal in the same ideal class which is fixed by the
Galois group. Thus, as it is fixed by the Galois group, this means that there is
an ideal m ∈ [q] such that m comes from Z. Since all ideals of Z are principal,
m must also be principal, so [q] is the trivial element of Cp. This contradicts the
original supposition that [q] is non-trivial. Hence, there must be ν ∈ G such that
ν([q]) ̸= [q].

1If τ denotes the complex conjugation viewed as an element of Gal(K/Q), then G = H ∪ τH,
where H is a set of representatives for G/⟨τ⟩. Thus,

NmK/Q(α) = ∏
ρ∈H

ρ(α) · ∏
ρ∈H

τρ(α) = ∏
ρ∈H

ρ(α) · ∏
ρ∈H

ρ(α) ∈ R≥0.
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