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Abstract

Vaught’s Conjecture states that, even without the use of the continuum hy-
pothesis, if the number of non-isomorphic countable models of a complete theory
in first-order logic is uncountable, then it is the cardinality of the continuum. In
this work, we prove Morley’s Theorem on the number of countable models, which
states that if the number of non-isomorphic countable models of a complete the-
ory is greater than the first uncountable cardinal, then it is equal to the cardinality
of the continuum. In the first chapter, we present the results in topology that show
that uncountable analytic sets have the cardinality of the continuum. In the second
chapter, we explore some results in extensions of first-order logic that will allow
us to prove Morley’s Theorem.

Resum

La conjectura de Vaught afirma que, inclús sense l’ús de la hipòtesi del continu,
si el nombre de models numerables no isomorfs d’una teoria completa en lògica
de primer ordre és no numerable, llavors és la cardinalitat del continu. En aquest
treball demostrem el teorema de Morley sobre el nombre de models numerables,
que afirma que si el nombre de models numerables no isomorfs d’una teoria com-
pleta és superior al primer cardinal no numerable, llavors és igual al cardinal del
continu. En el primer capítol, presentem els resultats de topologia que mostren
que els conjunts analítics no numerables tenen la cardinalitat del continu. En el
segon capítol, explorem alguns resultats en extensions de la lògica de primer ordre
que ens permetran demostrar el teorema de Morley.

Notation: We will denote the set of natural numbers, as well as its cardinality,
by ω. ω1 = ω+ will denote the first uncountable cardinal, ω2 = (ω1)

+, etc., and
2ω will denote the cardinality of the continuum as well as the set of functions from
ω to the set 2 = {0, 1}.

2020 Mathematics Subject Classification. 03C15, 03C75, 03E15, 54H05, 28A05
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Introduction

In 1961, R. L. Vaught [19] formulated the following problem: "Can it be proved,
without the use of the continuum hypothesis, that there is a complete theory having exactly
ℵ1 non-isomorphic denumerable models?". A negative answer to this question is what
is known as Vaught’s Conjecture. If we denote the set of isomorphism types of
models of cardinal κ of a complete theory T by I(T, κ), Vaught’s Conjecture states
that if I(T, ω) > ω then I(T, ω) = 2ω.

It is easy to see (2.19) that I(T, ω) ≤ 2ω for any countable T. Vaught ([19])
proved that for n ∈ ω, there is a theory T such that I(T, ω) = n if and only if
n ̸= 2. It is also known that there are theories T such that I(T, ω) = ω, like
the theory of rational vector fields or the theory of algebraically closed fields of
characteristic 0, and also such that I(T, ω) = 2ω, like the theories of (Z,+) or
(R,<). But, since we are not assuming the continuum hypothesis (which states
that ω1 = 2ω), we could ask ourselves if there could still be some κ ∈ {ω1, ω2, . . . },
κ < 2ω such that I(T, ω) = κ.

Someone might also wonder what is the point of studying the number of
countable models, since the problem disappears if we assume the continuum hy-
pothesis. The answer to this question is that, if we were able to provide a theory
with exactly ω1 countable models, that would mean that we would have found a
way to "enumerate" those ω1 models without the help of the continuum hypoth-
esis; or, in the case that Vaught’s Conjecture held, to prove that there is no way
to do such a thing, which would be in both cases an important advance in model
theory.

It has been proved for some particular cases, (theories of trees ([18]), theories
with one unary operator ([14]), theories of linear order ([16]), ω-stable theories
([17]), O-minimal theories ([13]) and superstable theories of finite U-rank ([2]))
that if I(T, ω) > ω, then I(T, ω) = 2ω, but the general case remains unproved. (In
2002, R. Knight announced a counterexample to the conjecture, but, as of January
2025, that work appears to not be available anymore nor has it been verified.)

However, M. Morley ([15]) vastly reduced the possible values for I(T, ω) with
the following theorem, which is the main subject of this work. It states the follow-
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2 CONTENTS

ing:
If I(T, ω) > ω1, then I(T, ω) = 2ω.
This leaves the set of possible values for I(T, ω) as (ω \ {2}) ∪ {ω, ω1, 2ω},

with ω1 being the only one for which there has not been found a theory T. In this
work we shall prove this theorem.

It is divided in two chapters; in the first one, we show the topological results
that will allow us to narrow down the possible cardinals of the separable complete
metric spaces and some subsets of them, specifically the analytic sets, which have
the nice property that they can only be either countable or of cardinality 2ω.

In the second chapter, we explore some logic systems that extend first-order
logic, and we present some theorems that establish strong relationships between
sentences and the isomorphism types of the structures that satisfy those sentences.
Then, we prove that a certain subset of 2Φ is a Borel set, where Φ is a set of
formulas with some regularity properties, and, using the results from the first
chapter, we show that another set, which is a continuous image of this Borel set,
is analytic, and thus it can only be countable or of cardinality 2ω. After this
we prove that theories for which this analytic set can have cardinality 2ω have
2ω isomorphism types, and then we conclude by proving that theories such that
this set is always countable (scattered theories) can have at most ω1 isomorphism
types. And thus, combining these two last results, we obtain Morley’s Theorem.



Chapter 1

Notions of topology

In this chapter we will show some results that we will use later to prove Mor-
ley’s Theorem. We will start with Polish spaces, in particular the Cantor and Baire
spaces, which will be the ones that will appear the most along the chapter. We
will see some useful topological properties and results regarding their cardinal-
ities and how to find subsets of a space that are homeomorphic to them, and a
method to prove that a space is a continuous image of them. Finally we will intro-
duce the concept of analytic sets, which generalize in some aspects the Borel sets,
and we will prove that these kind of sets in a Polish space are either countable or
of cardinality 2ω.

1.1 Preliminaries

We will be working on topological spaces, which we will denote by (X, τ),
where X is a set and τ is topology that X is endowed with. In case our space
is also a metric space, we will use the notation (X, d), where d : X × X → X is a
distance on X.

In a metric space (X, d):

• for a set A ⊆ X, we denote its diameter by Diam(A);

• for p ∈ X and r ∈ R+ we denote

– Br(p) = {x ∈ X | d(x, p) < r},

– Br(p) = {x ∈ X | d(x, p) ≤ r}.

Given set A in a topological space, we denote its closure by A.

3



4 Notions of topology

1.1.1 Basic concepts and results

We shall list some initial definitions and results that we will use along the
chapter witout proving them. These results can be found in [10].

Definition 1.1. Let H = (Hi | i ∈ ω) be a sequence of sets such that Hi ̸= ∅ for
all i ∈ ω. The elements of×i∈ω Hi are called H-sequences. Consider the set of
finite sequences S = {s ∈×i<n Hi | n ∈ ω}, and, for each s ∈ S, let Bs = {t ∈
×i∈ω Hi | ti = si, i < n}. The natural topology of the H-sequences is the topology
on×i∈ω Hi generated by the base {Bs | s ∈ S}.

Definition 1.2. Given an indexed family of topological spaces ((Xi, τi) | i ∈ I), the
product of the spaces ((Xi, τi) | i ∈ I) is the topological space (×i∈I Xi, τ′), where τ′

is generated by the base consisting of the sets×i∈I Ai, where Ai ∈ τi for all i ∈ I
and Ai = Xi for all i ∈ I except for finitely many.

Definition 1.3. We say that two topological spaces (X, τ) and (Y, τ′) are homeo-
morphic if there is a continuous bijection f : X → Y such that f−1 : Y → X is also
continuous. We say that such an f is a homeomorphism.

Definition 1.4. Given a set X, a σ-algebra on X is a non-empty family of subsets
Σ ⊆ X satisfying the following properties:

1. X ∈ Σ,

2. Σ is closed under countable unions,

3. Σ is closed under complement.

Remark 1.5. By 2 and 3, we have that a σ-algebra is also closed by countable
intersections.

Definition 1.6. Given a topological space (X, τ), we define the Borel σ-algebra on
X as the smallest σ-algebra that contains all the open sets. The elements of this
σ-algebra are called Borel sets.

Proposition 1.7. Let (X, τ), (Y, τ′) be topological spaces and let f : X → Y. The follow-
ing conditions are equivalent:

• f is continuous,

• f−1(U) ⊆ X is open for every open set U ⊆ Y,

• f−1(C) ⊆ X is closed for every closed set C ⊆ Y.



1.1 Preliminaries 5

Proposition 1.8. Let (X, τ), (Y, τ′) be topological spaces, let (Z, τ′′) be a subspace of
(Y, τ) and f : X → Z. Then f is continuous as a function into (Y, τ′) if and only if it is
continuous as a function into (Z, τ′′).

Proposition 1.9. Let (X, τ), (Y, τ′) be topological spaces, let (Z, τ′′) be a subspace of
(X, τ) and f : X → Y. If f is continuous, then f |Z is also continuous.

Proposition 1.10. Let (X, τ), (Y, τ′), (Z, τ′′) be topological spaces and let f : X → Y,
g : Y → Z continuous functions. Then g ◦ f : X → Z is also continuous.

Proposition 1.11. Let (X, τ), (Y, τ′) be topological spaces, and let W be a set of functions,
such that, for each f ∈ W, f : Z f → Y, with Z f ⊆ X and Z f ∩

⋃{Zg | g ∈ W, g ̸= f } =

∅. If f is continuous for all f ∈ W, then
⋃

W is a continuous function.

Proposition 1.12. If f is a continuous bijection between compact space and a Hausdorff
space, then it is a homeomorphism.

Proposition 1.13. Let κ and µ be cardinals and let (X, τ) be a topological space. Then
the space (Xκ)µ is homeomorphic to the space Xκ·µ, where each space is endowed with its
respective product topology.

Proposition 1.14. The product of a family of topological spaces is Hausdorff if and only
if all the factors are Hausdorff.

Proposition 1.15. A metric space is separable if and only if its topology has a countable
base.

Proposition 1.16. A product of countably many separable spaces is separable.
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Proposition 1.17. Let X =×n∈ω Hn ̸= ∅ and let d : X × X → X with

d( f , g) = ∑
n<ω

f (n) ̸=g(n)

2−n.

Then (X, d) is a complete metric space.

Proposition 1.18. If a set A in a metric space is bounded then A is also bounded and
Diam(A) = Diam(A).

Proposition 1.19. Let B be a base of a metric space (X, d) and r ∈ R+. Then the set
Br = {A ∈ B |Diam(A) < r} is also a base of (X, d).

Proposition 1.20. Given a metric space (X, d), let (An | n ∈ ω) be a descending sequence
of sets such that Am is bounded for some m ∈ ω and limn→∞(Diam(An)) = 0. Then⋂

n∈ω An contains at most one point. If the space is complete and An is a non-void closed
set for each n ∈ ω, then

⋂
n∈ω An is a non-void closed set and it contains exactly one

point.

Proposition 1.21. In a metric space, any open set can be expressed as a countable union
of closed sets.

1.2 Polish Spaces

Definition 1.22. A Polish space is a separable complete metric space; that is, a
complete metric space containing a countable dense set.

The following result will be useful for obtaining an initial upper bound of the
cardinality of a Polish space.

Lemma 1.23. Let (X, τ) be a Hausdorff space with a countable base. Then |X| ≤ 2ω.

Proof. Let B be a countable base of (X, d). Let F : X → P(B) be such that F(x) =
{Y ∈ B | x ∈ Y}. It is sufficient to see that F is an injection.

Let x, y ∈ X, with x ̸= y. (X, τ) being Hausdorff implies that there exist
disjoint basic open sets A, B ⊆ X such that x ∈ A and y ∈ B. Therefore, we have
A ∈ F(x), but A /∈ F(y), which implies that F(x) ̸= F(y).
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1.2.1 Cantor and Baire spaces

Definition 1.24. The Cantor space is the topological space whose set is 2ω (i.e. the
set of functions on the natural numbers (ω) into the set 2 = {0, 1}, which can also
be interpreted as the set of countably infinite sequences of 0’s and 1’s) and whose
topology is the ω-th power of the space 2, where 2 is endowed with the discrete
topology.

Definition 1.25. The Baire space is the topological space whose set is ωω (i.e. the
set of functions on ω into ω, or the set of countably infinite sequences of natu-
ral numbers) and whose topology is the ω-th power of the space ω, where ω is
endowed with the discrete topology.

Definition 1.26. A set A in a topological space (X, τ) is a perfect set if it contains
no isolated points, i.e. if no singleton {x} is an open set in the topology on A
induced by τ. A perfect space is a topological space (X, τ) where X is a perfect set.

Proposition 1.27. The Cantor space and the Baire space have the following properties:

(i) 2ω and ωω are both Hausdorff spaces.

(ii) 2ω and ωω are both separable.

(iii) Both 2ω and ωω can be given the metric defined on sequences of length ω by

d( f , g) = ∑
n<ω

f (n) ̸=g(n)

2−n.

(iv) Both 2ω and ωω are perfect Polish spaces.

Proof.

(i) It follows from 1.14, since both 2ω and ωω are products of discrete spaces.

(ii) It follows from 1.16, since 2 and ω are trivially separable.

(iii) It follows immediately from 1.17.

(iv) By 1.17, and (ii) both spaces are Polish spaces, and since the bases given by
their respective product topologies do not contain singletons, none of them
have isolated points.
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Proposition 1.28. The natural topology of the H-sequences (1.1), the topology induced
by the metric defined in 1.27 (iii) and the product topology (1.2) are equal to each other in
2ω and ωω.

Proof. Let τd, τ× and τseq be the topologies induced by the metric d from (iii), the
product topology and the natural topology on the H-sequences, respectively. Let
e ∈ {2, ω}.

• τd ⊆ τseq:

Let t ∈ eω, r ∈ R+ and Br(t) ⊆ eω. To see that Br(t) is an open set in τseq, it
is sufficient to show that for all p ∈ Br(t) there is a basic open set B ∈ Bseq

such that p ∈ B ⊆ Br(t). We have that

p ∈ Br(t) ⇐⇒ d(p, t) = ∑
n<ω

p(n) ̸=t(n)

2−n < r.

Let s = p|n0 ∈ e<ω, where n0 is such that 2−n0+1 < r − d(p, t). Let B = Bs.
Given an arbitrary q ∈ Bs,

d(p, q) = ∑
n<ω

p(n) ̸=q(n)

2−n = ∑
n0≤n<ω

p(n) ̸=q(n)

2−n ≤ ∑
n0≤n<ω

2−n = 2−n0+1 < r − d(p, t).

Now, using the triangle inequality, we obtain that

d(t, q) ≤ d(t, p) + d(p, q) < d(t, p) + r − d(t, p) = r.

Which implies that q ∈ Br(t).

• τseq ⊆ τd:

Let s ∈ e<ω, Bs ⊆ eω. We need to see that for each t ∈ Bs there are some
p ∈ eω, r ∈ R+ such that t ∈ Br(p) ⊆ Bs. Let p = t and n0 ∈ ω such that
p|n0 = s. Let r = 2−n0 . Given an arbitrary q ∈ Br(p),

d(p, q) = ∑
n<ω

p(n) ̸=q(n)

2−n < 2−n0 .

Which implies that p(n) = q(n) for n < n0, i.e. q|n0 = p|n0 = s.

• τseq ⊆ τ×:

Let s ∈ e<ω, then

Bs =×
n<ω

An, where An =

{
{s(n)} if n < n0

e if n ≥ n0
.

Therefore, Bseq ⊆ B×.
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• τ× ⊆ τseq:

Let B =×n∈ω An ∈ B×. We need to see that for every t ∈ B there a basic
open set Bs ∈ Bseq, with s ∈ e<ω such that Bs ⊆ B. Let n0 = min{n ∈
ω | if m ≥ n, then Am = e}, and s = t|n0 . Then, given an arbitrary q ∈ Bs, we
have that q(n) ∈ An for all n ∈ ω. Therefore, q ∈×n∈ω An = B.

1.2.2 Souslin’s operation (A)

We will now present Souslin’s operation (A). It is a tool that will allow us to
find continuous mappings from the the space eω to a given metric space (X, d),
where e denotes a set endowed with the discrete topology. By the use of this op-
eration we will also be able to prove whether these mappings are injective and/or
surjective; and this will lead us to some important results, like proving that every
perfect complete metric space has cardinality greater than or equal to 2ω, or that
every Polish space is a continuous image of the Baire space.

We want to obtain a continuous mapping F : eω → X. We will do this by giving
a mapping on the finite sequences A : e<ω → P(X) as follows. Given an element
t ∈ eω, for each n ∈ ω, consider its restriction to a finite sequence t|n ∈ e<ω.
Given such a finite sequence, we cannot give the exact value of F(t), but we can
give instead a subset At|n ⊆ X such that F(t) ∈ At|n based on the information
contained in t|n (and hence {F(t′) | t′ ∈ eω ∧ t′|n = t|n} ⊆ At|n ). This mapping
should narrow down the possible values for F(t) as the value of n grows, since we
are obtaining more information about t. Thus, for r, s ∈ e<ω we will impose that
if r ⊆ s, then As ⊆ Ar. This will be achieved by requiring the condition (1) in the
definition below.

We also want to ensure that
⋂

n∈ω At|n is not empty, since we need F(t) to be-
long to this intersection. Since (X, d) is a complete space, by Proposition 1.20, if we
add the requirements (2) and (3) below, not only will we obtain that

⋂
n∈ω At|n ̸= ∅,

but also
⋂

n∈ω At|n will contain exactly one element. Thus, we can define F(t) as
this one element. In Theorem 1.29 we will see that this function F is continuous
and we will also give conditions on A to determine its injectivity and surjectivity.

Theorem 1.29. Let (X, d) be a complete metric space, e a set endowed with the discrete
topology, and

A : e<ω −→ P(X)

s 7−→ As

such that it satisfies the following conditions:
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(1) For all s ∈ e<ω and w ∈ e, As⌢(w) ⊆ As;

(2) for all s ∈ e<ω, As is a non-void closed set;

(3) for all t ∈ eω, limn→∞(Diam(At|n)) = 0.

Then there is a unique continuous mapping F : eω → X such that for every t ∈ eω,⋂
n∈ω At|n = {F(t)}. If A also satisfies that

(4) for all t, t′ ∈ eω, if t ̸= t′, then there is an n ∈ ω such that At|n ∩ At′|n = ∅,

then F is injective. If A satisfies (1)–(3) and

(5) A∅ = X and, for every s ∈ e<ω, As =
⋃

w∈e As⌢(w),

then F is surjective.

Proof. We already saw that, by Proposition 1.20, F is well-defined. We shall now
prove that it is continuous. We need to see that for t ∈ eω and ε ∈ R+, t has a
neighbourhood D such that F[D] ⊆ Bε(F(t)). By (3), there exists n ∈ ω such that
Diam(At|n) < ε. Consider the basic open set Bt|n . We have

F[Bt|n ] = {F(t′) | t′ ∈ eω ∧ t′ ⊇ t|n} =
⋃

t′⊇t|n

⋂
m∈ω

At′|m ⊆
⋂
{At|n} = At|n ⊆ Bε(F(t)).

Let us now prove that if A satisfies (4), then F is injective. Let t, t′ ∈ eω such
that t ̸= t′. Then, by (4) there is n ∈ ω such that F(t) ∈ At|n and F(t′) ∈ At′|n , but
At|n ∩ At′|n = ∅. Therefore, F(t) ̸= F(t′).

Finally, we will prove that if A satisfies (5) then F is surjective. Given x ∈ X,
we define a sequence (sn | n ∈ ω) such that for each n ∈ ω, sn ∈ en, sn ⊆ sn+1, and
x ∈ sn by recursion,

• s0 = ∅, which implies x ∈ As0 = A∅ = X.

• Given sn such that x ∈ Asn we have, by hypothesis, that Asn =
⋃

w∈e As⌢n (w)
,

which implies that there is some w ∈ e such that x ∈ As⌢n (w)
. Let sn+1 =

s⌢n (w) for such a (w).

Now if we take t =
⋃

n∈ω sn, we have that

x ∈
⋂

n∈ω

Asn =
⋂

n∈ω

At|n = {F(t)},

and hence x = F(t).
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Theorem 1.30. Every perfect complete metric space (X, d) includes a Cantor set. There-
fore, |X| ≥ 2ω.

Proof. We will use Theorem 1.29, with the set e = 2 and for each finite sequence
s ∈ 2<ω of length n, As will be a closed sphere of radius ≤ 2n.

By recursion, let A0 be some closed sphere of radius 1. Now, given s ∈ 2<ω of
length n, As = Br(p). By induction hypothesis, 0 < r ≤ 2−n. Since (X, d) is perfect,
we have that p is not an isolated point, and thus there are at least two different
points q, q′ ∈ Br(p). Let l > 0 be such that l ≤ min{2−(n+1), 1

4 d(q, q′)}. Then,
Bl(q)∩Bl(q′) = ∅. We can also choose l small enough so that Bl(q), Bl(q′) ⊆ Br(p).
Now, we define As⌢(0) = Bl(q), As⌢(1) = Bl(q′). It follows from this definition of
A that conditions (1)–(4) hold. Therefore, F is a continuous injection. Since 2ω is
a compact space, by 1.12 and 1.8, we obtain that F is a homeomorphism into a
subspace of X.

Corollary 1.31. Every perfect Polish space has cardinality equal to 2ω.

Proof. This follows immediately from Theorem 1.30 and Lemma 1.23.

Our immediate aim is to prove, without assuming the continuum hypothesis,
that any closed set in a Polish space is either countable or of cardinality 2ω. We
shall later see that this result also holds for the Borel sets and the analytic sets. Let
us see a definition and some properties first.

Definition 1.32. Let (X, τ) be a topological space. Let A ⊆ X. A point x ∈ X
is called a condensation point of A if for every neighbourhood U of x, U ∩ A is
uncountable. We will denote the set of condensation points of A by Cond(A).

Proposition 1.33. Cond(A) has the following properties:

(i) Cond(A) ⊆ A (Where A is the closure of A).

(ii) Cond(A) is a closed set.

(iii) A \ Cond(A) is countable.

(iv) Cond(A) ∩ A is a perfect set.

Proof.

(i) For any neighbourhood U of a point x ∈ Cond(A), U ∩ A being uncountable
implies U ∩ A ̸= ∅ which is equivalent to x ∈ A.
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(ii) It is sufficient to prove that Cond(A) ⊆ Cond(A). Let x ∈ Cond(A) and
let U be a neighbourhood of x. We have that U ∩ Cond(A) ̸= ∅, and thus
there is y ∈ Cond(A) such that U is a neighbourhood of y. Hence, U ∩ A is
uncountable and x ∈ Cond(A).

(iii) Let B be a base countable base for τ. By definition, for every x ∈ X \
Cond(A) there is some Ux ∈ B such that Ux ∩ A is countable. Let

V =
⋃

x∈X\Cond(A)

Ux ⊇ X \ Cond(A),

then, we have that

V ∩ A =
⋃

x∈X\Cond(A)

(Ux ∩ A) ⊇ A \ Cond(A).

V ∩ A is countable since it is a countable union of countable sets, and hence
A \ Cond(A) is also a countable set.

(iv) Let x ∈ Cond(A). We shall prove that for every neighbourhood U of x
|U ∩ (Cond(A) ∩ A)| > 1. Since x ∈ Cond(A), we have that |U ∩ A| > ω,
and we can express

U ∩ A = (U ∩ (A \ Cond(A))) ∪ (U ∩ (Cond(A) ∩ A)).

but |A \ Cond(A)| ≤ ω by (iii). Hence, |U ∩ (Cond(A) ∩ A)| > ω.

Theorem 1.34. (Cantor-Bendixson) Let (X.τ) be a topological space with countable
base. Let A ⊆ X be an uncountable closed subset. Then A is the union of a perfect closed
set and a countable set.

Proof. By 1.33 (i), Cond(A) ⊆ A = A. By 1.33 (ii) and 1.33 (iv) Cond(A) is a
perfect closed set, and by 1.33 (iii), A \ Cond(A) is countable. Thus, we can write
it as A = Cond(A) ∪ (A \ Cond(A)).

Proposition 1.35. For every continuous function G on a Polish space (X, d) into a Haus-
dorff space (Y, τ), if Rng(G) is uncountable, then there is a Cantor set W ⊆ X such that
G|W is a homeomorphism between W and G[W].
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Proof. By the axiom of choice, there is some C ⊆ X such that G[C] = Rng(G) and
G|C is injective. Since G[C] is uncountable, we have that C is uncountable too;
thus, by 1.33 (iv), C has a perfect subset D.

Now, we can use the operation (A) from 1.29 as follows. By recursion; let
x0 ∈ D, A0 = B1(x0) ⊆ X. For s ∈ 2<ω of length n, we define As = Br(x), with
x ∈ D and r ≤ 2−n. Since x ∈ D and D is perfect, we have that Br(x) ∩ D contains
at least 2 different points p, q, and since G is injective, we obtain that G(p) ̸= G(q).
Since Y is a Hausdorff space, G(p) and G(q) have disjoint open neighbourhoods
P and Q, respectively; and, by the continuity of G, there exists ε > 0 such that
G[Bε(p)] ⊆ P and G[Bε(q)] ⊆ Q. Since P and Q are disjoint, Bε(p) and Bε(q) are
also disjoint. We can also choose ε small enough such that ε ≤ 2−(n+1) and Bε(p),
Bε(q) ⊆ Br(x). Let As⌢(0) = Bε(p), As⌢(1) = Bε(q). The function A : 2<ω → P(X)

thus defined satisfies the conditions (1)–(4) of 1.29. Hence, there is a continuous
function F : 2ω → X given by {F(t)} =

⋂
n∈ω At|n . Since 2ω is a compact set

and F is injective, by Proposition 1.12, F is a homeomorphism. We denote W =

Rng(F) = F[2ω].
We will now prove that G is injective on W. Let t, t′ ∈ 2ω, t ̸= t′, and

n = min{m ∈ ω | t(m) ̸= t′(m)}. We can assume without loss of generality
that t(n) = 0, t′(n) = 1. Let s = t|n = t′|n. By the definition of As⌢(0) and
As⌢(1), we have G[As⌢(0)] ∩ G[As⌢(1)] = ∅, and {F(t)} =

⋂
n∈ω At|n ⊆ As⌢(0),

{F(t′)} =
⋂

n∈ω At′|n ⊆ As⌢(1), which implies that G(F(t)) ̸= G(F(t′)). W is com-
pact since it is homeomorphic to 2ω. Therefore, by Proposition 1.12, the injection
G|W (which is continuous by 1.9) is a homeomorphism.

Theorem 1.36. Every Polish space (X, d) is a continuous image of the Baire space ωω.

Proof. We use the operation (A) from 1.29, with e = ω as follows. By recursion,
we set A0 = X, and for s ∈ ω<ω of length n assume As to be given. Since (X, d) is
separable, by 1.15 we have that it has a countable base B. By 1.19 we can assume
that all members B ∈ B have diameter Diam(B) ≤ 2−(n+1). As ̸= ∅ implies that
{U ∈ B |U ∩ As ̸= ∅} is a non-void countable set. Therefore, we can write it as
{Uk | k ∈ ω}, where (Uk | k ∈ ω) may contain repetitions. Thus, (Uk ∩ As | k ∈ ω)

is a sequence of non-void closed sets. Since
⋃

B = X we have that⋃
k∈ω

Uk ⊇
⋃

k∈ω

Uk ⊇ As,

and hence, the sequence (Uk ∩ As | k ∈ ω) covers As. Let As⌢(k) = Uk ∩ As. Then,
using 1.18, we obtain that

Diam(As) ≤ Diam(Uk) = Diam(Uk) ≤ 2−(n+1).
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Thus, conditions (1)–(3) and (5) of Theorem 1.29 are satisfied and the function
F : ωω → X given by {F(t)} =

⋂
n∈ω At|n is a continuous surjection.

Theorem 1.37. In a Polish space (X, d) every non-void Borel set C is a continuous image
of the Baire space.

Proof. If C is a closed set, then the subspace (C, d|C×C) is a Polish space, and
therefore, by 1.36, C is a continuous image of the Baire space.

In a metric space the open sets are countable unions of closed sets (Proposi-
tion 1.21); and because all Borel sets are obtained from repeated applications of
countable unions and intersections of the open and closed sets, all Borel sets can be
obtained from repeated application of countable union and intersection of closed
sets. Therefore, we just need to prove that if the sets Cn, n ∈ ω are continuous
images of the Baire space, then so are also

⋃
n∈ω Cn and

⋂
n∈ω Cn (if

⋂
n∈ω Cn ̸= ∅).

Let ( fn | n ∈ ω) be such that fn is a continuous surjection of the Baire space on
Cn. Let h : ωω → ωω be such that h(t) = (t(i + 1) | i ∈ ω) (i.e. h(t) is t without
its first term). h is clearly continuous; and for every basic open set of the form
B(k) = {t ∈ ωω | t(0) = k}, k ∈ ω we have that h[B(k)] = ωω. Let g = ft(0)(h(t)).
Then,

Rng(g) =
⋃

n∈ω

g[B(n)] =
⋃

n∈ω

( fn ◦ h)[Bn] =
⋃

n∈ω

fn[ω
ω] =

⋃
n∈ω

Cn

On each set B(n) the function g|B(n)
is continuous, by 1.9 and 1.10; and since B(n) is

a clopen set, by 1.11, g =
⋃

n∈ω g|B(n)
is continuous too.

Now, assume that
⋂

n∈ω Cn ̸= ∅ and redefine

h : ×
n∈ω

ωω −→ ×
n∈ω

Cn

s 7→ ( fs(sn) | n ∈ ω)

(since s ∈×n∈ω ωω, we have sn ∈ ωω). fn is continuous for n ∈ ω, and therefore
so is h. Let j be a homeomorphism of ωω on×n∈ω ωω (which exists by 1.13).
Then, h ◦ j is a continuous surjection of ωω on×n∈ω Cn. Let W = {r ∈ Xω | (∀n ∈
ω)(rn = r0)}. Since each factor X of Xω is a Hausdorff space, one can easily
see that W is a closed set. It is also clear that W ∩×n∈ω Cn consists exactly of
the constant sequences (u | n ∈ ω), with u ∈ ⋂

n∈ω Cn. The projection function
π0 : Xω → X given by π0(r) = r0 is clearly continuous. Now, since

W ∩×
n∈ω

Cn = {(u | n ∈ ω) | u ∈
⋂

n∈ω

Cn},

we have that
π0[W ∩×

n∈ω

Cn] =
⋂

n∈ω

Cn.
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h ◦ j is continuous and W is closed, which implies, by Proposition 1.7, that

(h ◦ j)−1[W] = (h ◦ j)−1[W ∩×
n∈ω

Cn]

is a closed subset of ωω, and

(π0 ◦ h ◦ j) : (h ◦ j)−1[W] −→
⋂

n∈ω

Cn

is a continuous function.
⋂

n∈ω Cn ̸= ∅ implies that (h ◦ j)[W] ̸= ∅. Therefore,
(h ◦ j)[W] is a non-void closed set of ωω and, by the first part of the proof, there
exists a continuous mapping g : ωω → (h ◦ j)(−1)[W]. Hence, (π0 ◦ h ◦ j ◦ g) is a
continuous function mapping ωω onto

⋂
n∈ω Cn.

Theorem 1.38. (Alexandrov-Hausdorff) In a Polish space every uncountable Borel set
includes a Cantor set, and is hence, of cardinality 2ω.

Proof. It follows from 1.37 and 1.35.

1.2.3 Analytic sets

Definition 1.39. A subset A of a Polish space is analytic if it is the null-set or a
continuous image of the Baire space (or, by Theorem 1.36, of any Polish space).

Corollary 1.40. In a Polish space we have:

(i) Every Borel set is analytic.

(ii) A continuous image of an analytic set is analytic.

(iii) The union and intersection of countably many analytic sets are analytic.

(iv) Every uncountable analytic set includes a Cantor set, and is therefore of cardinality
2ω.

Proof.

(i) It follows from Theorem 1.37.

(ii) It follows from Proposition 1.10.

(iii) This result is shown in the proof of Theorem 1.37.

(iv) It follows from Proposition 1.35.
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Let X be a countably infinite set and consider the set 2X endowed with the
topology generated by the base BX, where B ∈ BX if and only if B = {t ∈
2X | t|X0 = s} for some finite X0 ⊆ X, and s ∈ 2X0 . For a countable set Y ⊇ X,
where 2Y is endowed with the topology generated by BY, we define the function

πYX : 2Y −→ 2X

t 7−→ t|X.

Lemma 1.41. The function πYX defined above is continuous.

Proof. To prove that πYX is continuous, it is sufficient to show that for any element
t ∈ 2Y and B ∈ BX such that πYX(t) ∈ B, there is an open set U ⊆ Y such that
πYX[U] ⊆ B. Let t ∈ 2Y and B ∈ BX such that πYX(t) ∈ B. Then, we have that
B = {t′ ∈ 2X | t′|X0 = t|X|X0 = t|X0} for some finite X0 ⊆ X. Consider the open set
U = {t′ ∈ 2Y | t′|X0 = t|X0} ∈ BY. We have that πYX[U] = {t′|X | t′|X0 = t|X0} =

B.

Since X and Y are countably infinite, it is easy to see that both 2X and 2Y

are homeomorphic to the Cantor space. We will use the above result in the next
chapter, where X and Y will be some specific sets of formulas, and by taking the
image of a Borel subset of 2Y we will be able to prove that this image is an analytic
subset of 2X.



Chapter 2

Notions of logic

In this chapter we will be working with some extensions of first-order logic,
specifically the systems Lω1ω and L∞ω, and we will present some tools and im-
portant results in those extensions, some of which will apply directly in first-order
logic, such as Morley’s Theorem for Lω1ω.

2.1 Preliminaries

Definition 2.1. A language is a set L of non-logical symbols. These non-logical
symbols can be either constants, function symbols or relation symbols. These last ones
are also called predicates. We will sometimes also use the word language to refer to
the class of formulas constructed using L.

We will be working on structures of a countable language L (also called L-
structures or L-models), which we will denote by M = (M, ξM)ξ∈L where M is a
non-empty set called the universe of the structure, and for each symbol ξ ∈ L, ξM

denotes its interpretation in M:

1. For each constant c ∈ L, cM ∈ M.

2. For each n-ary function symbol F ∈ L, FM : Mn → M.

3. For each n-ary relation symbol R ∈ L, RM ⊆ Mn.

We will denote the set of variables by VAR = {xi | i ∈ ω}.
Terms, whose set we will denote by TERM(L), are constructed by applying the

following rules:

x
(if x ∈ VAR);

c
(if c ∈ L is a constant);

17
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r1
...

rn

Fr1 . . . rn

(if F ∈ L is an n-ary function symbol).

Definition 2.2. Let M be an assignation in M is a mapping s whose domain is a
subset of VAR and whose range is a subset of M.

Remark 2.3. If a is a sequence of elements of M whose domain is a subset of ω, and
x is a sequence of variables such that Dom(x) ⊆ Dom(a), we can implicitly define
an assignation s such that for each i ∈ Dom(x), s(xi) = ai. This will allow us to
work with assignations by using the sequence a without mentioning s explicitly,
as we will see below.

Definition 2.4. An assignation s is defined for a term r if all the variables in r are
in the domain of s.

Definition 2.5. The denotation of a term r under an assignation s defined for r is
an element rM[a] ∈ M. It is defined recursively as follows:

1. xMi [a] = ai if xi ∈ Dom(s),

2. cM[a] = cM if c ∈ L is a constant,

3. (FMr1 . . . rn)M[a] = FM(rM1 [a], . . . , rMn [a]) if r1 . . . rn are terms and F ∈ L is
an n-ary function symbol.

If we have an assignation s that corresponds to a sequence a, we use the nota-
tion [a, xi/b] to refer to the assignation whose domain is Dom(s) ∪ {xi}, and the
image of an element xj under it is aj if j ∈ Dom(a) \ {i}, or b if j = i.

In first-order logic (also denoted as Lωω), we have the logical connectors ¬ and
∧, the equality symbol .

=, and the quantifier ∃. We will also derive the connectors
∨, →, and ↔, and the quantifier ∀ from ¬, ∧ and ∃.

Definition 2.6. Equations of language L are expressions of the form r1
.
= r2 con-

structed with the terms r1 and r2.

Definition 2.7. Atomic formulas of language L are equations and formulas of the
form Rr1 . . . rn, where R is an n-ary predicate and r1, . . . , rn are terms.

Formulas, whose set we will denote by Lωω, are constructed by applying the
following rules:
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φ
(if φ is an atomic formula);

φ

¬φ
;

φ

ψ

(φ ∧ ψ)
;

φ

∃xi φ
(if xi ∈ VAR).

Remark 2.8. The connectors ∨, →, ↔ and ∀ can be derived from ∧, ¬ and ∃ as
follows. Given φ, ψ ∈ Lωω and xi ∈ VAR, we denote:

• (φ ∨ ψ) = ¬(¬φ ∧ ¬ψ),

• (φ → ψ) = ¬(φ ∧ ¬ψ),

• (φ ↔ ψ) = ((φ → ψ) ∧ (ψ → φ)),

• ∀xi φ = ¬∃xi¬φ.

Definition 2.9. Given a formula φ ∈ Lωω we denote the set of its subformulas by
Sub(φ). It is defined by recursion as follows:

1. Sub(φ) = {φ} if φ is atomic,

2. Sub(¬φ) = Sub(φ) ∪ {¬φ},

3. Sub((φ ∧ ψ)) = Sub(φ) ∪ Sub(ψ) ∪ {(φ ∧ ψ)},

4. Sub(∃xi φ) = Sub(φ) ∪ {∃xi φ}.

Definition 2.10. Given a formula φ ∈ Lωω, we denote the set of its free variables
by Free(φ). It is the set of non-quantified variables in φ. It is defined by recursion
as follows:

1. Free(φ) is the set of variables of φ if φ is atomic,

2. Free(¬φ) = Free(φ),

3. Free((φ ∧ ψ)) = Free(φ) ∪ Free(ψ),

4. Free(∃xi φ) = Free(φ) \ {xi}.

Definition 2.11. A sentence is a formula with no free variables.

Given a term r ∈ TERM(L), we use the notation r(x0, . . . , xn−1) to indicate that
its variables are among {x0, . . . , xn−1}. Similarly, for a formula φ ∈ Lωω, we use
the notation φ(x0, . . . , xn−1) to indicate that Free(φ) ⊆ {x0, . . . xn−1}.

Definition 2.12. The relation of satisfaction M |= φ[a] between formulas φ and
assignations defined for φ is defined by recursion as follows:
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1. M |= r1
.
= r2[a] if and only if rM1 [a] = rM2 [a].

2. M |= Rr1 . . . rn[a] if and only if (rM1 [a], . . . , rM1 [a]) ∈ RM.

3. M |= ¬φ[a] if and only if M ̸|= φ[a].

4. M |= (φ ∧ ψ)[a] if and only if M |= φ[a] and M |= ψ[a].

5. M |= ∃xi φ[a] if and only if there is some a ∈ M, M |= φ[a, xi/a].

Remark 2.13. By applying these definitions on the formulas that use the derived
connectors ∨, →, ↔ and the quantifier ∀; we obtain the following clauses:

6. M |= (φ ∨ ψ)[a] if and only if M |= φ[a] or M |= ψ[a].

7. M |= (φ → ψ)[a] if and only if M |= φ[a] implies that M |= ψ[a].

8. M |= (φ ↔ ψ)[a] if and only if "M |= φ[a] if and only if M |= ψ[a]".

9. M |= ∀xi φ[a] if and only if for all a ∈ M, M |= φ[a, xi/a].

Given a set of formulas Σ, and an assignation defined for all formulas in Σ, we
use M |= Σ[a] to abbreviate that M |= φ for all φ ∈ Σ.

Definition 2.14. We say that a set of formulas Σ is satisfiable if there is a model M
and an assignation defined for all formulas in Σ by a sequence a in M such that
M |= Σ[a].

Definition 2.15. Given a set of formulas Σ ⊆ Lωω and φ ∈ Lωω, we say that φ

is a consequence of Σ and we write Σ |= φ if for each L-structure M and each
assignation defined for all formulas in Σ and for φ by a sequence a in M, if M |=
Σ[a], then M |= φ[a].

Definition 2.16. Given a set of sentences Σ ⊆ Lωω, we say that M is a model of Σ
if M |= Σ.

Definition 2.17. A theory of language L is a set of sentences in Lωω closed by
consequence; that is, a set of sentences T ⊆ Lωω such that if φ is a sentence with
T |= φ, then φ ∈ T.

Definition 2.18. A theory T is complete if for each sentence φ ∈ Lωω either φ ∈ T
or ¬φ ∈ T.

Recall the notation of writing I(T, κ) for the number of isomorphism types of
cardinal κ of a theory T.
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Proposition 2.19. Let T be a theory of language L. Then, I(T, ω) ≤ 2ω.

Proof. It is sufficient to consider the models whose universe is ω. Thus, each model
will characterized by the interpretation of its symbols.

• Each constant symbol can be interpreted as ω different elements from the
universe.

• Each n-ary function symbol can be interpreted as ωωn
= ωω = 2ω mappings

from ωn to ω.

• Each n-ary relation symbol can be interpreted as |P(ω)| = 2ω different sub-
sets of ω.

Thus, any symbol in L can have, at most, 2ω different interpretations. Therefore,
since |L| ≤ ω, we have that

I(T, ω) ≤ |(2ω)L| ≤ 2ω·ω = 2ω.

Given a term r ∈ TERM(L), r (xir0) denotes the term obtained by substituting
each occurrence of the variable xi in r by the term r0. It is defined by recursion as
follows:

1. xj (
xir ) =

{
r if i = j

xj if i ̸= j
.

2. c (xir ) = c for each constant c ∈ L.

3. (Fr0 . . . rn−1) (
xir ) = Fr0 (

xir ) . . . rn−1 (
xir ) for each n-ary function symbol F ∈ L.

Similarly, given a formula φ ∈ Lωω, we use φ (xir ) to denote the formula obtained
by substituting each free occurrence of the variable xi by the term r, and renaming
quantified variables to prevent clashes. A formal definition for it can be found in
[7]. Thus, we can assume there is a substitution formula φ (xir ) such that it satisfies
the following lemma, which we will not prove here.

Lemma 2.20 (Substitution). Let M be an L-structure and let a = (ai ∈ M | i ∈ I ⊆ ω)

be a sequence.

1. If the assignation defined by a is defined for the terms r, r0 ∈ TERM(L), then
r (xir0)

M [a] = rM[a, xi/rM0 [a]].
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2. If the assignation is defined for the term r ∈ TERM(L) and the formula φ ∈ Lωω,
then M |= φ (xir ) [a] if and only if M |= φ[a, xi/rM[a]].

Definition 2.21. We say that two L-structures M and N are isomorphic and we
write M ∼= N if there exists a bijection f : M → N such that it satisfies the
following conditions:

1. f (cM) = cN for each constant c ∈ L,

2. f (FM(a0, . . . , an−1)) = FM( f (a0), . . . , f (an−1)) for each n-ary function sym-
bol F ∈ L and a0, . . . , an−1 ∈ M.

3. RM(a0, . . . , an−1) holds if and only if RN ( f (a0), . . . , f (an−1)) holds for each
n-ary relation symbol and a0, . . . an−1 ∈ M,

We say that such an f is an isomorphism between M and N and we denote it as
f : M ∼= N .

2.2 Back and forth

We will now introduce the back and forth method through partial isomor-
phisms, which will allow us to prove some important results, like Scott’s iso-
morphism Theorem, an elaboration of whose proof will be used in the proof of
Morley’s Theorem.

2.2.1 Partial isomorphisms

Definition 2.22. Let M, N models of language L. A partial isomorphism on M
into N is an injective mapping f with Dom( f ) ⊆ M and Rng( f ) ⊆ N such that it
satisfies the following conditions:

1. if R ∈ L is an n-ary relation symbol and a0, . . . , an−1 ∈ Dom( f ), then
(a0, . . . , an−1) ∈ RM if and only if ( f (a0), . . . , f (an−1)) ∈ RN ;

2. if F ∈ L is an n-ary function symbol and a0, . . . , an−1, b ∈ Dom( f ), then
FM(a0, . . . , an−1) = b if and only if FN ( f (a0), . . . , f (an−1)) = f (b);

3. if c is a constant and a ∈ Dom( f ), then cM = a if and only if cN = f (a).

.

Definition 2.23. Two models M and N are partially isomorphic, and we denote it
as M ∼=p N , if there is a non-empty set I of partial isomorphisms between M
and N such that it satisfies:
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1. (Forth property) if f ∈ I and a ∈ M, then there exists g ∈ I such that
a ∈ Dom(g) and f ⊆ g,

2. (Back property) if f ∈ I and b ∈ N, then there exists g ∈ I such that b ∈
Rng(g) and f ⊆ g.

We write I : M ∼=p N for such a set I.

Proposition 2.24. Let M, N be models of language L. If M ∼= N , then M ∼=p N . The
converse holds if M and N are countable.

Proof. Assume M ∼= N . Let f : M ∼= N be an isomorphism. Then for I = { f } we
have I : M ∼=p N .

Assume now that M and N are countable and I : M ∼=p N . We can write
M = {ai | i ∈ ω}, N = {bi | i ∈ ω}. We will recursively define an ascending
sequence ( fi | i ∈ ω) such that fi ∈ I, fi ⊆ fi+1, ai ∈ Dom( fi+1) and bi ∈ Rng( fi+1)

for all i ∈ ω. Let f0 ∈ I. Assume we have obtained fi ∈ I. Then by the forth
property there is g ∈ I such that ai ∈ Dom(g), and fi ⊆ g, and by the back
property there is also fi+1 such that bi ∈ Rng( fi+1) and g ⊆ fi+1. The union⋃

i∈ω fi is thus an isomorphism between M and N .

2.3 The System Lω1ω

The logic Lω1ω is an extension of first-order logic that is obtained by allowing
conjunctions, (and therefore disjunctions) of countably many formulas. Given a
language L we will denote by Lω1ω the set of formulas constructed in Lω1ω with
L.

The language Lω1ω is obtained from Lωω by adding:

(1) the symbol
∧

, for countable conjunctions;

(2) the formation rule:
Σ∧
Σ

,

where Σ is a countable set of formulas;

(3) to the definition the notion of satisfaction, the clause:

M |=
∧

Σ[a] if and only if M |= φ[a] for all φ ∈ Σ.
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Remark 2.25. Whenever we are considering substitutions in Lω1ω, we will add to
(2) the condition that the set VAR \ {xi ∈ VAR | xi occurs in φ, φ ∈ Σ} is infinite,
to ensure that Lemma 2.20 is still valid in Lω1ω.

Remark 2.26. The disjunction (
∨

) of countably many formulas can be derived
in a natural way from the conjunction and the negation symbols similarly to the
disjunction of two formulas in first-order logic by denoting

∨
Σ = ¬∧{¬φ | φ ∈

Σ}. And then we have

M |=
∨

Σ[a] if and only if M |= φ[a] for some φ ∈ Σ.

Remark 2.27. The connector ∧ can be derived from
∧

by denoting (φ ∧ ψ) =∧{φ, ψ}, and thus, from now on we can omit its formation rule use it only as a
notation similarly to what we did with

∨
, ∨, →, ↔, and ∀.

Remark 2.28. We can also extend the notions of subformulas and free variables to
formulas in Lω1ω by adding the clauses

Sub(
∧

Σ) =
⋃

φ∈Σ

Sub(φ) ∪ {
∧

Σ}

Free(
∧

Σ) =
⋃

φ∈Σ

Free(φ).

Theorem 2.29. (Scott, countable version) Let M be a countable model of a language
L, |L| ≤ ω. There is a sentence φM ∈ Lω1ω such that for every countable L-model N ,

N |= φM ⇐⇒ M ∼= N .

Proof. Let x = (x0, . . . , xn−1). For a = (a0, . . . , an−1) ∈ Mn and β < ω1 we define
the formula φ

β
a = φ

β
a (x0, . . . , xn−1) by recursion as follows:

φ0
a(x) =

∧{θ(x) |M |= θ[a] and θ is either atomic or the
negation of an atomic formula}.

(Note that there are countably many atomic formulas, since L is countable.)

φ
β+1
a (x) = φ

β
a ∧

∧
an∈M

∃xn φ
β

a⌢(an)
∧ ∀xn

∨
an∈M

φ
β

a⌢(an)
.

For a limit ordinal δ,
φδ

a(x) =
∧
β<δ

φ
β
a .
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We have, for all a ∈ Mn and β < ω1,

M |= φ
β
a [a].

Also, if γ < β < ω1, then
M |= ∀x(φ

β
a → φ

γ
a ).

We will now see, by contradiction, that for each a ∈ Mn there exists α < ω1

such that for all β ≥ α,
M |= ∀x(φα

a ↔ φ
β
a ).

Assume, on the contrary, that for all α there exists β > α such that

M |= ∃x(φα
a(x) ∧ ¬φ

β
a (x)).

Then, we can obtain an increasing sequence of ordinals (αi | i < ω1) such that

M |= ∃x(φαi
a (x) ∧ ¬φ

αi+1
a (x)).

Let ai ∈ Mn be such that

M |= φαi
a [ai] ∧ ¬φ

αi+1
a [ai].

We then have that for all i < j, ai ̸= aj, because{
M |= ¬φ

αj
a [ai]

M |= φ
αj
a [aj]

.

This implies that there are ω1 distinct ai, which contradicts the fact that |M| = ω.
Let αa < ω1 be such an ordinal.

Now, if we take α = sup{αa | a ∈ Mn, n ∈ ω} < ω1 we have that for all a ∈ Mn

and β ≥ α,
M |= ∀x(φα

a ↔ φ
β
a ).

We define the sentence

φM = φα
∅ ∧

∧
n∈ω

a∈Mn

∀x(φα
a → φα+1

a ).

Then M |= φM.
Assume now that N is a countable model and N |= φM. We shall see that

M ∼=p N by a back and forth argument (and hence M ∼= N by 2.24).
Let I = {{(ai, bi) | i < n} | a = (a0, . . . , an−1) ∈ Mn, b = (b0, . . . , bn−1) ∈ Nn,

N |= φα
a [b], n ∈ ω}.
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It is clear that I is a set of partial isomorphisms between M and N , and we
have that I ̸= ∅, since ∅ ∈ I because N |= φM. We shall see that it satisfies the
back and forth properties.

Let a ∈ Mn and b ∈ Nn such that N |= φα
a [b], and let f ∈ I with Dom( f ) =

{a0, . . . , an−1}, Rng( f ) = {b0, . . . , bn−1}, f (ai) = f (bi), for all i < n.

• Forth:

We need to see that for all an ∈ M there is some bn ∈ N such that

N |= φα
a⌢an

[b
⌢

bn].

Since, N |= φM, we have that

N |= φα+1
a [b],

and this implies that
N |= ∃xn φα

a⌢an
[b].

Hence, there exists some bn such that

N |= φα
a⌢an

[b
⌢

bn].

Therefore g = f ∪ {(an, bn)} ∈ I.

• Back:

We need to see now that for all bn ∈ N there is some an ∈ M such that

N |= φα
a⌢an

[b
⌢

bn].

Let bn ∈ N. We have again that N |= φα+1
a [b], and this implies that

N |= ∀xn
∨

an∈M

φα
a⌢an

[b],

hence
N |=

∨
an∈M

φα
a⌢an

[b
⌢

bn].

Therefore, for some an ∈ M,

N |= φα
a⌢an

[b
⌢

bn].

Thus, g = f ∪ {(an, bn)} ∈ I.



2.4 The System L∞ω 27

2.4 The System L∞ω

Similarly to the System Lω1ω, the System L∞ω is an extension of first-order
logic that is obtained by allowing conjunctions of infinitely many formulas, but
this time it can be from any set of formulas, not only countable ones. Given a
language L we will denote by L∞ω the (proper) class of formulas constructed in
L∞ω with L.

The language L∞ω is obtained from Lωω by adding:

(1) the symbol
∧

, for infinite conjunctions;

(2) the formation rule:
Σ∧
Σ

,

where Σ is an arbitrary set of formulas;

(3) to the definition of the notion of satisfaction, the clause:

M |=
∧

Σ[a] if and only if M |= φ[a] for all φ ∈ Σ.

Remark 2.30. Again, similarly to the System Lω1ω, one can obtain disjunctions of
arbitrarily many formulas by denoting

∨
Σ = ¬∧{¬φ | φ ∈ Σ}.

Remark 2.31. Similarly to what we saw for formulas in Lω1ω, to define the notions
of subformulas and free variables in L∞ω we add the clauses

Sub(
∧

Σ) =
⋃

φ∈Σ

Sub(φ) ∪ {
∧

Σ}

Free(
∧

Σ) =
⋃

φ∈Σ

Free(φ).

Theorem 2.32. (Scott, general version) Let M be a model of language L. There is a
sentence φM ∈ L∞ω such that for every model N ,

N |= φM ⇐⇒ M ∼=p N .

Proof. One can prove this theorem by following the steps of Scott’s theorem’s proof
for countable models (2.29) and changing the appearances of ω or "countable" by
κ or "of cardinality κ" and ω1 by κ+ if κ > ω, where κ = |M|+ |L|.
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Remark 2.33. If we wanted to be more precise on where is the Scott sentence
φM from Theorem 2.32, we can define for a given infinite cardinal κ the System
Lκω, which generalizes Lωω and Lω1ω. It is defined similarly to Lω1ω and L∞ω,
with the difference that, for a language L, the set Lκω is constructed such that the
conjunction

∧
Σ (and hence the disjunction

∨
Σ) is defined for a set of formulas

Σ ⊆ Lκω with |Σ| < κ.
Now, if M is a model of language L, by following the steps of the construction

of the Scott sentence φM, we find that it has conjunctions of sets of formulas up to
cardinality κ = |M|+ |L|+ω, and hence, φM ∈ Lµω, where µ = (|M|+ |L|)+ +ω.

Definition 2.34. We say that two models M and N are L∞ω-equivalent , and we
write M ≡∞ω N , if they satisfy the same sentences in L∞ω.

Lemma 2.35. Let I : M ∼=p N . If f ∈ I, a0, . . . , an−1 ∈ Dom( f ) and r(x) =

r(x0, . . . , xn−1) is a term, then there is g ∈ I such that f ⊆ g, rM[a0, . . . , an−1] ∈
Dom(g) and g(rM[a0, . . . , an−1]) = rN [g(a0), . . . , g(an−1)].

Proof. We will denote a = (a0, . . . , an−1). By induction on the construction of r(x):

• If r(x) is a variable, then r(x) = xi for some i < n; therefore, we can take
g = f since rM[a] = ai ∈ Dom( f ). Thus, we have that

g(rM[a]) = g(ai) = rN [g(a0), . . . , g(an−1)].

• If r(x) = c is a constant, then, by the forth property of I applied to f and
cM ∈ M, there is g ∈ I such that f ⊆ g and cM ∈ Dom(g). Also, since g is a
partial isomorphism, we have g(cM) = cN . Therefore, we have that

g(rM[a]) = g(cM) = cN = rN [g(a0), . . . , g(an−1)].

• Assume now that r(x) = Fr0 . . . rn−1(x), where r0 . . . rn−1 are terms and F is
an n-ary function symbol, and, for each i < n, ri(x) satisfies that if f ∈ I and
a0, . . . , an−1 ∈ Dom( f ), then there is g ∈ I such that f ⊆ g, rMi [a] ∈ Dom(g)
and g(rMi [a]) = rNi [g(a0), . . . , g(an−1)]. We shall see that r(x) also satisfies
this property.

First, we will recursively construct a sequence of functions gi ∈ I, i ≤ n as
follows. Let g0 = f . We have that a0, . . . , an−1 ∈ Dom(g0). For each i < n,
we apply the induction hypothesis to ri and gi, and we obtain that there is
gi+1 ∈ I such that gi ⊆ gi+1 and gi+1(rMk [a]) = rNk [gi+1(a0), . . . , gi+1(an−1)]

for k ≤ i. The function gn ∈ I obtained from this iteration satisfies the
equality simultaneously for all i < n.
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Now, if we apply the forth property of I to gn and rM[a], we obtain that
there is g ∈ I such that rM[a] ∈ Dom(g) and gn ⊆ g. Thus, using that g is a
partial isomorphism and that g(rMi [a]) = rNi [g(a0), . . . , g(an−1)] for all i < n,
we have that

g(rM[a]) = g(FM(rM0 [a], . . . , rMn−1[a]))

= FN (g(rM0 [a]), . . . , rMn−1[a])

= FN (rN0 [g(a0), . . . , g(an−1)], . . . , rNn−1[g(a0), . . . , g(an−1)]

= rN [g(a0), . . . , g(an−1)].

Theorem 2.36. (Karp) M ∼=p N if and only if M ≡∞ω N .

Proof. ⇒. Let I : M ∼=p N , f ∈ I and a0, . . . , an−1 ∈ Dom( f ). We denote x =

(x0, . . . , xn−1), a = (a0, . . . , an−1) and f (a) = ( f (a0), . . . , f (an−1)).
It is sufficient to prove that if φ(x) ∈ L∞ω, then

M |= φ[a] if and only N |= φ[ f (a)],

By induction on the construction of φ = φ(x):

• If φ is atomic, it is either an equation or a formula of the form Rr0 . . . rn−1

where R is a predicate and r0, . . . , rn−1 are terms.

– If φ = r0
.
= r1(x), we can apply Lemma 2.35 twice to obtain that there

is a partial isomorphism g ∈ I such that f ⊆ g, rMi [a] ∈ Dom(g) and
g(rMi [a]) = rNi [g(a)] = rNi [ f (a)], i ∈ {0, 1}, and using this equality and
the fact that g is injective, we have that

M |= φ[a] ⇐⇒ rM0 [a] = rM1 [a]

⇐⇒ g(rM0 [a]) = g(rM1 [a])

⇐⇒ rN0 [ f (a)] = rN1 [ f (a)]

⇐⇒ N |= φ[ f (a)].

– If φ = Rr0 . . . rn−1(x), similarly to the case where we had an equation,
we can apply Lemma 2.35 n times to obtain that there is g ∈ I such that
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f ⊆ g, rMi [a] ∈ Dom(g) and g(rMi [a]) = rNi [g(a)] = rNi [ f (a)], i < n.
Hence, we have that

M |= φ[a] ⇐⇒ RM(rM0 [a], . . . , rMn−1[a])

⇐⇒ RN (g(rN0 [a]), . . . , g(rNn−1[a]))

⇐⇒ RN (rN0 [ f (a)], . . . , rNn−1[ f (a)])

⇐⇒ N |= φ[ f (a)].

• (¬ step). Assume now that

M |= φ[a] if and only if N |= φ[ f (a)].

We shall prove that then this holds for ¬φ. We have that

M |= ¬φ[a] ⇐⇒ M ̸|= φ[a] ⇐⇒ N ̸|= φ[ f (a)] ⇐⇒ N |= ¬φ[ f (a)].

• (
∧

step). Let Σ be an arbitrary set of formulas satisfying that Free(φ) ⊆
{x0, . . . , xn−1} for all φ ∈ Σ and assume that the induction hypothesis holds
for all φ ∈ Σ. Then

M |=
∧

Σ[a] ⇐⇒ M |= φ[a] for all φ ∈ Σ

⇐⇒ N |= φ[ f (a)] for all φ ∈ Σ

⇐⇒ N |=
∧

Σ[ f (a)].

• (∃ step). Assume that the induction hypothesis holds for φ. Then

M |= ∃xi φ[a] ⇐⇒ there is a ∈ M such that

M |= φ[a, xi/a]

⇐⇒ there is g ∈ I with a ∈ Dom(g) such that

N |= φ[ f (a), xi/g(a)]

⇐⇒ N |= ∃xi φ[ f (a)].

⇐. Since M ≡∞ω N , we have that N |= φM, where φM ∈ L∞ω denotes the
Scott sentence of M, and thus, by the generalized Scott’s theorem (2.32), we have
that M ∼=p N
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2.5 Morley’s Theorem

In this section we will be working on the System Lω1ω. However, since the set
Lω1ω is uncountable, we will study certain countable subsets of it, defined below.

Definition 2.37. A set Φ of formulas is a regular set or regular fragment if

1. it contains all atomic formulas,

2. it is closed under first-order logic operations,

3. if φ ∈ Φ then every subformula of φ is in Φ,

4. if φ ∈ Φ then φ (xir ) ∈ Φ for all i ∈ ω, r ∈ TERM(L),

5. Φ is countable.

Remark 2.38. Every countable set of formulas in Lω1ω is contained in a smallest
regular subset, since

1. for a countable language L, there is a countable amount of atomic formulas;

2. first logic operations applied to a countable set generate a countable amount
of formulas;

3. a formula φ ∈ Lω1ω has at most ω subformulas, since the countable union of
countable sets is countable;

4. there is a countable amount of terms. Thus, there is a countable amount of
formulas of the form φ (xir ), for a given φ ∈ Lω1ω.

Theorem 2.39. (Löwenheim–Skolem, for Lω1ω) Let Φ be a regular fragment such
that |Free(φ)| < ω for all φ ∈ Φ, and let Σ ⊆ Φ be a set of formulas satisfiable in a
L-model M. Then there is a countable substructure N ⊆ M such that Σ is satisfiable in
N .

Proof. We will start by defining an ascending sequence of sets (Ai | i ∈ ω) with
Ai ⊆ M for all i ∈ ω as follows. By recursion:

• Let A0 ⊆ M be an arbitrary countable set.

• Given Ai ⊆ M, a ∈ An
i and ∃xj φ ∈ Φ such that M |= ∃xj φ[a], we have that

there is some aa∃xj φ ∈ M such that

M |= φ[a, xj/aa∃xj φ].

Let

Ai+1 = Ai ∪ {aa∃xj φ ∈ M | a ∈ An
i , ∃xj φ ∈ Σ, M |= ∃xj φ[a], n ∈ ω}.
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Let N =
⋃

i∈ω Ai. We have that N is countable since it is a countable union of
countable sets. Now, given a constant symbol c ∈ L, we have that

M |= ∃xjxj
.
= c.

Thus, there is some a ∈ A1 such that a = cM, and hence cM ∈ N.
If F ∈ L is an n-ary function and b ∈ Nn, then there is some k ∈ ω such that

b ∈ An
k . Hence, for j ≥ n, we have that

M |= ∃xjxj
.
= Fx0 . . . xn−1[b].

Therefore, we have that there is some a ∈ Ak+1 such that a = FM(b), and thus
FM(b) ∈ Ak+1 ⊆ N. We have then that N = (N, ξN )ξ∈L is a substructure of M,
with

• cN = cM, for each constant c ∈ L,

• RN = RM ∩ Nn for each n-ary relation symbol R ∈ L,

• FN = FM|Nn for each n-ary function symbol F ∈ L.

Let us now see that, for φ ∈ Φ and a ∈ Nn,

M |= φ[a] ⇐⇒ N |= φ[a].

Denote x = (x0, . . . , xn−1). It is easy too check by induction on the construction of
the terms that if r(x) ∈ TERM(L), then rM[a] = rN [a]. Now, by induction on the
construction of the formulas:

• if φ is atomic, then the result follows immediately from the definition of RN

and from the fact that rM[a] = rN [a].

• (¬ step). Assume the induction hipothesis holds for φ ∈ Σ. Then, we have
that

M |= ¬φ[a] ⇐⇒ M ̸|= φ[a] ⇐⇒ N ̸|= φ[a] ⇐⇒ N |= ¬φ[a].

• (
∧

step). Let ∆ ⊆ Φ such that
∧

∆ ∈ Φ and assume the induction hypothesis
holds for all φ ∈ ∆. Then,

M |=
∧

∆[a] ⇐⇒ M |= ∆[a] ⇐⇒ N |= ∆[a] ⇐⇒ N |=
∧

∆[a].

(∃ step). Assume the induction hypothesis holds for φ ∈ Σ. Since a ∈ Nn,
we have that there is some k ∈ ω such that a ∈ An

k . Thus, for ∃xj φ ∈ Σ we
have that there is some aa∃xj φ ∈ Ak+1 ⊆ N such that

M |= ∃xj φ[a] ⇐⇒ M |= φ[a, xj/a∃xj φ]

⇐⇒ N |= φ[a, xj/a∃xj φ]

⇐⇒ N |= ∃xj φ[a].



2.5 Morley’s Theorem 33

Hence, we have that N ⊆ M is a countable structure such that Σ is satisfiable in
N .

2.5.1 Enumerated models

Definition 2.40. An enumerated structure of language L is a countable structure M
together with an enumeration a = (ai | i ∈ ω) of M (i.e. M = {ai | i ∈ ω}).

A given countable structure M corresponds to continuum many enumerated
structures. Let Φ be a regular subset of Lω1ω. With each enumerated structure
we can associate the subset of Φ consisting of the formulas of Φ satisfied by the
sequence (a0, . . . , an, . . . ). This subset corresponds to a point t ∈ 2Φ, with

t(φ) =

{
1 if M |= φ[a]

0 if M ̸|= φ[a]
for φ ∈ Φ,

and
Σt = {φ ∈ Φ | t(φ) = 1}.

Theorem 2.41. Let Φ be a regular set. The set Γ = {t ∈ 2Φ | t corresponds to an
enumerated model} is a Borel subset of 2Φ.

Proof. Consider the following conditions on an element t ∈ 2Φ:

C1 For each φ ∈ Φ, exactly one of φ, ¬φ belongs to Σt.

C2 For
∧

Σ ∈ Φ,
∧

Σ ∈ Σt if and only if Σ ⊆ Σt.

C3 For each φ ∈ Φ, ∃xi φ ∈ Σt if and only if there is some j ∈ ω such that
φ
(xixj

)
∈ Σt.

C4 For each r0, r1 ∈ TERM(L) and φ ∈ Φ; if r0
.
= r1 ∈ Σt and φ (xir0) ∈ Σt, then

φ (xir1) ∈ Σt.

C5 r .
= r ∈ Σt for all r ∈ TERM(L).

We shall see that these conditions are equivalent to t belonging to the set Γ defined
above. First, assume that t corresponds to an enumerated L-model Mt, with
Mt = {ai | i < ω} (and thus, for φ ∈ Φ, t(φ) = 1 if and only if Mt |= φ[a], with
a = (ai | i ∈ ω)). Let us see that t satisfies C1–C5.

C1: Let φ ∈ Φ. If φ ∈ Σt, then Mt |= φ[a], which implies that Mt ̸|= ¬φ[a], and
therefore ¬φ /∈ Σt. Similarly, if φ /∈ Σt, then Mt ̸|= φ[a], Mt |= ¬φ[a], and
thus ¬φ ∈ Σt.
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C2: Let
∧

Σ ∈ Φ (which implies that Σ ⊆ Φ). Then,
∧

Σ ∈ Σt if and only if
Mt |= Σ[a], which is equivalent to Σ ⊆ Σt.

C3: Let φ ∈ Φ. Then ∃xi φ ∈ Σt if and only if there is some j ∈ ω such that
Mt |= φ[a, xi/aj]. By 2.20, This will happen if and only if Mt |= φ

(xixj

)
[a],

which is equivalent to φ
(xixj

)
∈ Σt.

C4: Let r0, r1 ∈ TERM(L), φ ∈ Φ and r0
.
= r1, φ (xir0) ∈ Σt. Then Mt |= φ (xir0) [a],

which is equivalent to Mt |= φ[a, xi/rMt
0 [a]]; and, since rMt

0 [a] = rMt
1 [a], we

obtain that Mt |= φ[a, xi/rMt
1 [a]], which is equivalent to Mt |= φ (xir1) [a] (by

2.20).

C5: Since r .
= r is atomic, it belongs to Φ. Now, |= r .

= r, and therefore r .
= r ∈ Σt.

Assume now that t satisfies C1–C5. We will now construct an enumerated
structure M such that t corresponds to M.

Note that, by C4 and C5, we have that

(1) if r0
.
= r1 ∈ Σt, then r1

.
= r0 ∈ Σt;

(2) if r0
.
= r1 ∈ Σt and r1

.
= r2 ∈ Σt, then r0

.
= r2 ∈ Σt;

(3) if F ∈ L is an n-ary function symbol and ri
.
= r′i ∈ Σt for each i < n, then

Fr0 . . . rn−1
.
= Fr′0 . . . r′n−1 ∈ Σt;

(4) if R ∈ L is an n-ary function symbol, Rr0 . . . rn−1 ∈ Σt and ri
.
= r′i ∈ Σt for

each i < n, then Rr′0 . . . r′n−1 ∈ Σt.

We define a relation ∼ on TERM(L) such that r0 ∼ r1 if and only if r0
.
= r1 ∈ Σt.

By C5, (1) and (2), this is an equivalence relation on TERM(L).
Now, let M = TERM(L)/∼ = {[r] | r ∈ TERM(L)}.

• For each constant c ∈ L, let cM = [c].

• For each n-ary function symbol F ∈ L, we define FM : Mn → M such that
FM([r0], . . . , [rn−1]) = [Fr0 . . . rn−1]. By (3), this definition does not depend
on the chosen representatives.

• For each n-ary relation R ∈ L, let RM = {([r0], . . . , [rn−1]) | R(r0, . . . , rn−1) ∈
Σt}. Note that if ([r0], . . . , [rn−1]) ∈ RM, then there are r′0, . . . , r′n−1 such that
([r0], . . . , [rn−1]) = ([r′0], . . . , [r′n−1]) and Rr′0 . . . r′n−1 ∈ Σt. Thus, by (4), we
obtain that Rr0 . . . rn−1 ∈ Σt. Therefore, we have that RM([r0], . . . , [rn−1])

holds if and only if R(r0, . . . , rn−1) ∈ Σt.

Let a = (ai | i ∈ ω) such that ai = [xi] for i ∈ ω. Let us see by induction on the
construction of the terms that rM[a] = [r] for all r ∈ TERM(L).
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• The cases where r is a variable or a constant follow immediately from the
definition.

• If r = Fr0 . . . rn−1 and rMi [a] = [ri] for i < n, then we have that

rM[a] = FM(rM0 [a], . . . , rMn−1[a]) = FM([r0], . . . , [rn−1]) = [Fr0 . . . rn−1] = [r].

We shall now see that t corresponds to M with the assignation defined by a.
We will prove that for φ ∈ Φ, φ ∈ Σt if and only if M |= φ[a] by induction on the
construction of the formulas in Φ:

• If φ ∈ Φ is atomic, then it is either an equation or a formula of the form
Rr0 . . . rn−1.

– If φ = r1
.
= r2, then

φ ∈ Σt ⇐⇒ rM1 [a] = [r1] = [r2] = rM2 [a] ⇐⇒ M |= φ[a].

– If φ = Rr0 . . . rn−1, then

φ ∈ Σt ⇐⇒ RM([r0], . . . , [rn−1]) holds ⇐⇒ M |= φ[a].

• (¬ step). Assume φ ∈ Σt if and only if M |= φ[a]. Then,

¬φ ∈ Σt ⇐⇒ φ /∈ Σt ⇐⇒ M ̸|= φ[a] ⇐⇒ M |= ¬φ[a].

• (
∧

step). Let Σ ⊆ Σt such that
∧

Σ ∈ Φ and assume the induction hypothesis
holds for all φ ∈ Σ. Then,∧

Σ ∈ Σt ⇐⇒ Σ ⊆ Σt ⇐⇒ M |= Σ[a] ⇐⇒ M |=
∧

Σ[a].

• (∃ step). Assume the induction hypothesis holds for φ. Then,

∃xi φ ∈ Σt ⇐⇒ φ
(xixj

)
∈ Σt for some j ∈ ω

⇐⇒ M |= φ[a, xi/aj] for some j ∈ ω

⇐⇒ M |= ∃xi φ.

Now, using this correspondence and the fact that |= ∃xixi
.
= r for all r ∈

TERM(L), by C3 we have that for all r ∈ TERM(L) there is some j ∈ ω such that
[r] = [xj]. Thus, a is an enumeration of M.

Now, we shall see that the set of t’s satisfying each one of the conditions C1–C5
is a Borel set and hence the set that satisfies all six of them is also a Borel set. Let
Γi be the set of t’s that satisfies the condition Ci, i ∈ {1, . . . , 5}.

Since t(φ) = 1 if and only if φ ∈ Σt we have that the set

{t ∈ 2Φ | φ ∈ Σt}

is an open set for all φ ∈ Φ.
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C1: We have that

Γ1 =
⋂

φ∈Φ

((
{t ∈ 2Φ | φ ∈ Σt} ∪ {t ∈ 2Φ | ¬φ ∈ Σt}

)
∩

(
{t ∈ 2Φ | φ ∈ Σt} ∩ {t ∈ 2Φ | ¬φ ∈ Σt}

)c)
,

and hence it is a Borel set.

C2: We have that

Γ2 =
⋂

∧
Σ∈Φ

{t ∈ 2Φ |
∧

Σ ∈ Σt} ∩
⋂

φ∈Σ

{t ∈ 2Φ | φ ∈ Σt}

 ∪

{t ∈ 2Φ |
∧

Σ ∈ Σt}c ∩

 ⋂
φ∈Σ

{t ∈ 2Φ | φ ∈ Σt}

c ,

and hence it is a Borel set.

C3: We have that

Γ3 =
⋂

φ∈Φ
i∈ω

{t ∈ 2Φ | ∃xi φ ∈ Σt} ∩
⋃
j∈ω

{t ∈ 2Φ | φ
(xixj

)
∈ Σt}

 ∪

{t ∈ 2Φ | ∃xi φ ∈ Σt}c ∩

⋃
j∈ω

{t ∈ 2Φ | φ
(xixj

)
∈ Σt}

c ,

and hence it is a Borel set.

C4: We have that

Γ4 =
⋂

r0,r1∈TERM(L)
φ∈Φ

(
{t ∈ 2Φ | r0

.
= r1 ∈ Σt}c ∪ {t ∈ 2Φ | φ (xir0) ∈ Σt}c ∪

{t ∈ 2Φ | φ (xir1) ∈ Σt}
)

,

and hence it is a Borel set.

C5: Finally, we have that

Γ5 =
⋂

r∈TERM(L)

{t ∈ 2Φ | r .
= r ∈ Σt},

which is a Borel set.
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Therefore,

Γ =
5⋂

i=1

Γi

is a Borel set.

Corollary 2.42. Let T ⊆ Φ be a countable set of sentences. The set ∆ = {t | t represents
an enumerated model which satisfies all sentences of T} is a Borel set.

Proof. We can write this set as

∆ = Γ ∩
⋂

φ∈T

{t ∈ 2Φ | φ ∈ Σt},

and therefore it is a Borel set.

Definition 2.43. Given a regular set Φ ⊆ Lω1ω, we define Φn = {φ ∈ Φ | Free(φ) ⊆
{x0, . . . , xn−1}}.

Definition 2.44. Given a model M of language L and a sequence a = (a0, . . . , an−1)

of elements in M, we define the Φ-type of a (denoted tpMΦ(a)) as the element of
2Φn

such that ΣtpMΦ(a) is the subset of formulas in Φn satisfied by a in M. We
define the the Φ-type of M as the type of the empty sequence.

We will denote the set of Φ-types of n-tuples which occur in the class of models
M such that M |= T for a countable set of sentences T by Sn(Φ, T) ⊆ 2Φn

. By
Remark 2.38, we can assume that Φ is such that T ⊆ Φ.

Theorem 2.45. If T is a countable set of sentences, then Sn(Φ, T) is an analytic subset of
2Φn

.

Proof. We saw in Theorem 2.42 that the set B = {t ∈ 2Φ | t corresponds to an
enumerated model of T} is a Borel subset of 2Φ. Also, by Theorem 2.39, if there
is an infinite model satisfying T, then there is a countable M such that M |= T.
Now, using the notation from Lemma 1.41, we have that

πΦΦn [B] = {t|Φn | φ ∈ Σt ⇐⇒ M |= φ[a], φ ∈ Φ, M = {ai | i ∈ ω}, M |= T}
= {t′ ∈ 2Φn | φ ∈ Σt ⇐⇒ M |= φ[a|n], M = {ai | i ∈ ω}, M |= T}
= Sn(Φ, T).

Thus, by 1.40 (i), (ii), since Sn(Φ, T) is a continuous image of a Borel set, we obtain
that it is analytic.
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Corollary 2.46. If T is a countable set of sentences, then Sn(Φ, T) is either countable or
of cardinality 2ω.

Proof. This result follows from Theorem 2.45 and Property 1.40 (iv).

Definition 2.47. A theory T is scattered if Sn(Φ, T) is countable for every regular
Φ ⊇ T.

Theorem 2.48. If a theory T has less than 2ω isomorphism types of countable models then
T is scattered.

Proof. By contrapositive, assume T to not be scattered. Then there is a regular set
Φ ⊆ Lω1ω and n ∈ ω such that |Sn(Φ, T)| = 2ω.

For each countable M such that M |= T, let

AM = {t ∈ Sn(Φ, T) | t = tpMΦ(a), a ∈ Mn}.

Then, if M is countable, AM is a countable set. We shall now see that if N ∼= M,
then AM = AN . Let f : M ∼= N . Then, for φ ∈ Φn, we have that

t ∈ AM ⇐⇒ there is a ∈ Mn such that t = tpMΦn(a)

⇐⇒ there is a ∈ Mn such that t = tpNΦn( f (a))

⇐⇒ there is b ∈ Nn such that t = tpNΦn(b)

⇐⇒ t ∈ AN .

We used that tpMΦn(a) = tpNΦn( f (a)) since M |= φ[a] if and only if N |=
φ[ f (a)]; with f (a) = ( f (a0), . . . , f (an−1)) ∈ Nn.

Let {Mi | i ∈ I} be a set of representatives of the isomorphism types of count-
able models of T (and hence |I| is the number of isomorphism types of countable
models of T). Then, we have that Mi ̸∼= Mj for i ̸= j; and if there is a countable
M such that M |= T, then M ∼= Mi for some i ∈ I.

We shall now prove that Sn(Φ, T) =
⋃

i∈I AMi . It is obvious by the definition of
AM that Sn(Φ, T) ⊇ ⋃

i∈I AMi . Let us see that Sn(Φ, T) ⊆ ⋃
i∈I AMi . If t ∈ Sn(Φ, t),

then there is some M such that t ∈ AM; and, by Theorem 2.39, there is a countable
M′ such that t ∈ AM′ Hence there is some i ∈ I such that t ∈ AMi , which implies
that t ∈ ⋃

i∈I AMi .
Now, we have that

2ω = |Sn(Φ, T)| = |
⋃
i∈I

AMi | ≤ |I| · ω = max{|I|, ω} ≤ 2ω,

and therefore |I| = 2ω.
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2.5.2 Scattered Theories

Let T be a fixed scattered theory. We define an increasing sequence of regular
sets {Φα | α < ω1} recursively as follows: Φα is the smallest regular set such that
for each β < α:

• Φβ ⊆ Φα;

• for each n ∈ ω and t ∈ Sn(T, Φβ),
∧

Σt ∈ Φα (where we are using the
correspondence Σt = {φ ∈ Dom(t) | t(φ) = 1}).

Lemma 2.49. Let M and N be models of T, and a = (a0, . . . , an−1) ∈ Mn, b =

(b0, . . . , bn−1) ∈ Nn, with tpMΦα+1(a) = tpNΦα+1(b). Then, for every an ∈ M there is

some bn ∈ N such that a⌢an and b
⌢

bn have the same Φα-type.

Proof. Let an ∈ M and t = tpMΦα
(a⌢an) ∈ Sn+1(T, Φα). We want to prove that

there is some bn ∈ N such that t = t′, with t′ = tpNΦα
(b

⌢
bn) ∈ Sn+1(T, Φα). We

have
M |=

∧
Σt[a⌢an].

Thus the formula ∃xn
∧

Σt ∈ Φα+1 is such that

M |= ∃xn
∧

Σt[a],

which implies
N |= ∃xn

∧
Σt[b].

Hence, there exists bn ∈ N such that

N |=
∧

Σt[b
⌢

bn].

Therefore, Σt ⊆ Σt′ .
Now, assume φ ∈ Φn

α+1 \ Σt. Then, we have that

M ̸|= φ[a⌢an] ⇐⇒ M |= ¬φ[a⌢an] ⇐⇒ ¬φ ∈ Σt.

Which implies that

N |= ¬φ[b
⌢

b],

and thus
N ̸|= φ[b

⌢
b].

Therefore, φ /∈ Σt′ and hence Σt = Σt′ and t = t′.
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Theorem 2.50. Let M be a countable model of T. Then there is an ordinal α0 < ω1 and
a sentence φM ∈ Φα0 such that for every countable structure N ,

N |= φM ⇐⇒ M ∼= N .

Proof. Consider, for β < ω1 and a ∈ Mn, the formula

φ
β
a (x) =

∧
ΣtpMΦβ

(a) ∈ Φβ+1,

We have, for all a ∈ Mn and β < ω1, that

M |= φ
β
a [a].

Also, if γ < β < ω1, then
M |= ∀x(φ

β
a → φ

γ
a ).

Now, by the same argument that we used in the proof of Scott’s Theorem (2.29),
there exists α < ω1 such that for all a ∈ Mn and β ≥ α,

M |= ∀x(φα
a ↔ φ

β
a ).

Let
φM = φα+2

∅ ∈ ΣtpMΦα+3 (∅) ⊆ Φα+3.

We shall now see that if N is a countable structure such that N |= φM, then
M ∼= N . By 2.24, it is sufficient to prove that M ∼=p N .

Note that for a ∈ Mn, b ∈ Nn and β < ω1 we have that tpMΦβ
(a) = tpNΦβ

(b)

if and only if N |= φ
β
a (x).

Let I = {{(ai, bi) | i < n} | a = (a0, . . . , an−1) ∈ Mn, b = (b0, . . . , bn−1) ∈ Nn,
N |= φα

a [b], n ∈ ω}. It is clear that I is a set of partial isomorphisms, and I ̸= ∅,
since ∅ ∈ I because N |= φM. We shall now see that I satisfies the back and forth
properties.

Let a ∈ Mn and b ∈ Nn such that N |= φ
β
a [b], and let f ∈ I with Dom( f ) =

{a0, . . . , an−1}, Rng( f ) = {b0, . . . , bn−1}, f (ai) = f (bi), for all i < n.

• Forth:

We need to see that for all an ∈ M there is some bn ∈ N such that

N |= φα
a⌢an

[b
⌢

bn].

Let an ∈ M and x = (x0, . . . , xn−1). We define the sentence

ψ = ∀x(φα
a → φα+1

a ) ∈ ΣtpMΦα+2 (∅).
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Since N |= φM we have that N |= ψ, and hence N |= φα+1
a [b], which is

equivalent to a and b having the same Φα+1-type. Now, by Lemma 2.49, we
can then take bn ∈ N such that

N |= φα
a⌢an

[b
⌢

bn].

Hence, g = f ∪ {(an, bn)} ∈ I.

• Back:

We need to see now that for all bn ∈ N there is some an ∈ M such that

N |= φα
a⌢an

[b
⌢

bn].

Let bn ∈ N. Using again the fact that N |= φα+1
a [b] and applying Lemma 2.49,

we obtain that there is some an ∈ M such that

N |= φα
a⌢an

[b
⌢

bn].

Hence, g = f ∪ {(an, bn)} ∈ I.

Therefore, we have that I : M ∼=p N , and thus M ∼= N .

Theorem 2.51. A scattered theory can have at most ω1 non-isomorphic countable models.

Proof. By Theorem 2.50, each isomorphism type is characterized by a sentence
in some regular fragment Φα, α < ω1, and each of these regular fragments are
countable. Therefore, there cannot be more than ω1 isomorphism types.

Theorem 2.52. If a theory T has more than ω1 non-isomorphic countable models, then it
has 2ω non-isomorphic countable models.

Proof. It follows from Theorems 2.48 and 2.51.
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