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Abstract

In this Bachelor Thesis we are going to put some ground work on the study of
orbits in the system Sun-Earth that could receive a telescope like the James Webb.
The James Webb is the latest launched telescope by NASA and has some different
characteristics than previous telescopes like the Hubble. We are going to search
for the perfect orbit to fulfill the needs these characteristics demand.

In order to do that, we are going to study the restricted three body problem
(rtbp) where the two primaries are the Sun and the Earth and the third body
(which we consider that doesn’t affect the two primaries) is our telescope. This
problem, using a carefully selected rotational coordinate system, is going to get
us some differential equations that will define the movement of the third body.
This equations have 5 fixed points and we are interested in seeing the stability
and position with respect to the two primaries of this points, there is also a family
of periodic orbits that we are going to find integrating the equations using the
Taylor’s method and also numerically find the stability of these orbits.

2020 Mathematics Subject Classification. 34A12, 34C25, 34D20, 37J12, 37J25, 37N05, 65L05,
65L07, 70F07, 70F10, 70H12.





Contents

Introduction 1

1 Taylor method 3
1.1 Introduction to the Taylor method . . . . . . . . . . . . . . . . . . . . 3
1.2 Implementation of the method . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Automatic differentiation . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Step size and degree selection . . . . . . . . . . . . . . . . . . 9

2 Equations of the Restricted three-body problem 13
2.1 The n-body problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Constants and conditions . . . . . . . . . . . . . . . . . . . . . 14

2.2 The three-body problem . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The restricted three-body problem . . . . . . . . . . . . . . . . . . . . 19
2.4 Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Study of the equilibrium points 27
3.1 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Stability of the points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Periodic orbits 35
4.1 Existence of periodic orbits near equilibrium points . . . . . . . . . . 35
4.2 Finding the family of periodic orbits . . . . . . . . . . . . . . . . . . . 36

4.2.1 Finding a periodic orbit going through (ξ0, 0) . . . . . . . . . 36
4.2.2 Extending to other periodic orbits . . . . . . . . . . . . . . . . 39
4.2.3 Stability of periodic orbits . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Extending to the third dimension . . . . . . . . . . . . . . . . 41

i



ii CONTENTS

5 The James-Webb telescope 43
5.1 Characteristics needed . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Calculating the orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 The L2 point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Periodic orbits 2D . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Stability of these periodic orbits . . . . . . . . . . . . . . . . . 48

5.3 Other factors we didn’t take into account . . . . . . . . . . . . . . . . 50
5.4 Short explanation on the final orbit . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

Appendices 55

Codes 57



Introduction 1

Introduction

The James Webb telescope is a space telescope that uses infrared radiation
technology, this technology allows it to view objects further and older than any
previous telescope. It was launched on September 25th, 2021, and was traveling for
30 days until reaching its desired orbit on January 24th, 2022. After commissioning
it was ready to begin full scientific operations on July 11th, 2022, and since then it
has been collecting data and taking impressive images as for example the deepest
and more detailed image of the universe taken to date (Figure 1):

Figure 1: (Image credit: NASA, ESA, CSA, and STScI)

An image of the "Phantom Galaxy" that is around 32 million light-years from
earth (Figure 2):

Figure 2: (Image credit: ESA/Webb, NASA, CSA, J. Lee and the PHANGS-JWST
Team; ESA/Hubble, NASA, R. Chandar. Acknowledgement: J. Schmidt)

Also images of the faintest galaxy ever seen, at about 13.3 billion light-years
from earth. And the first image inside of a black hole.

But this arises the question, which is the desired orbit of a telescope like the
James Webb? This question is what inspired this work.

We are going to be studying possible orbits of an object on the system Sun-
Earth, this means we are going to be studying the motion of three bodies, (the
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three-body problem). But we are going to consider the telescope mass doesn’t
affect the motion of the other two bodies which are called primaries, (the restricted
three-body problem), since, as we are going to see, the mass of the telescope is
minuscule compared to the masses of Earth ans Sun.

We will start explaining and understanding the Taylor method to numerically
integrate differential equations since it’s the one used in the Taylor 2.1 software
developed by Àngel Jorba and Maorong Zou, that we are going to use in order
to find orbits. We will do a short introduction on automatic differentiation while
explaining why it is the chosen way of evaluating derivatives, and then study
how the software chooses the step size and degree to maximize efficiency while
keeping the desired tolerance.

Then, we will focus on study of the equations and basic properties of the n-
body problem, with the respective conservations; then we will see the particular
case of the three-body problem with the Jacobi coordinates and finally we will con-
sider the restricted three-body problem, here we will see a rotational coordinate
system so that the primaries are fixed. With that we will have a basic understand-
ing on the properties, difficulties and type of behavior we are expecting on our
problem.

We are going to do short parenthesis to do a brief introduction to Hamiltonian
systems since this notation will be useful for the next part and to find a symmetry
in the system that will help use find periodic orbits later on.

Once the bases are set we are going to find fixed points of the system (Libra-
tion points) that include both the collinear and the equilateral points, arguing the
existence of exactly 5 equilibrium points, discussing the general location, and do-
ing a study on the stability of these points, focusing on L2, since it is the one we
are interested for a number of reasons that are also discussed in the last chapter.

Then we are going to focus on periodic orbits around the point L2, we will
study the existence of a one-parameter family of periodic orbits around a equilib-
rium point using y the Lyapunov center theorem. Then, we will see a method to
find a periodic orbit that uses both the Newton-Raphson and the secant methods,
how to extend this solution to the other orbits of the family and finally how to
study the stability of these orbits using the Poincaré map.

With all the theory we just mentioned we are going to do some numerical to
explicitly find the fixed points, the orbits and the stability of these, while explain-
ing why the point L2 and the Lyapunov orbits around it are intteresting for our
problem. To do that some programs where developed, which are included in the
appendices and use the previously mentioned Taylor software. Finally we will see
some factors we did not take into account and a short explanation on how the final
orbit of the James-Webb ended up looking like.



Chapter 1

Numerical integration of ODEs:
Taylor method

To study the restricted three body problem, more specifically to study the
orbits of the third body, we will need to integrate some differential equations,
so we will need to solve the following problem:

Given a function f (t, x(t)) that is analytic in its domain of definition, we con-
sider the equation: {

∂x
∂t (t) = f (t, x(t)),
x(t0) = x0.

(1.1)

We want an approximation of the function x(t) solution of this problem where
it is defined: t ∈ [a, b], (a = t0). This is a Cauchy problem and as we know if f is
analytic the problem has a unique analytic solution.

To approximate the solution to this problem we are going to use software from
Àngel Jorba and Maorong Zou that uses the Taylor method to integrate differential
equations, let’s see how the method works:

1.1 Introduction to the Taylor method

The Taylor method is a method to integrate ODEs that given the initial condi-
tion x(t0), approximates x(t0 + h) with the order p Taylor polynomial of x(t) at
t = t0:

x(t0 + h) = x(t0) + x′(t0)h +
x′′(t0)

2!
h2 + ... +

x(p)(t0)

p!
hp. (1.2)

Then we can define new values of the function recursively, using in each step

3



4 Taylor method

the previous value of x(tm) to center the Taylor series. If we denote tm = t0 + mh,

x1 = x0 + x′(t0)h + x′′(t0)
2! h2 + · · ·+ x(p)(t0)

p! hp,
...

x(m+1) = xm + x′(tm)h + x′′(tm)
2! h2 + · · ·+ x(p)(tm)

p! hp,
...

xM = x(M−1) + x′(tM−1)h + x′′(tM−1)
2! h2 + · · ·+ x(p)(tM−1)

p! hp.

(1.3)

Note that we are supposing h fixed so if we wanted to cover all the interval
[a, b] we would choose h = (b − a)/M where M + 1 is the number of points we
want to calculate. We are also supposing the degree p is fixed but in section 1.2.2
we are going to see it’s better to choose both h and p independently for each step.
As we know when using the Taylor polynomial the error is given by the following
theorem that we have seen in different subjects:

Theorem 1.1. (Taylor) Let f (x) ∈ Cp+1 be a (p + 1)-times differentiable function in

x = a; h = y − a and g(y) = f (a) + f ′(a)h + f ′′(a)
2! h2 + ... + f (p)(a)

p! hp, the Taylor
polynomial of order p.

Then Rp(x) = f (x)− g(x) =
f (p+1)(θ)

(p + 1)!
hp+1, where θ ∈ [a, x]. So the error is O(hp+1).

1.2 Implementation of the method

To implement the method we need to compute the values of x(i)(tm) for i ∈
[0, p] and a given tm. We can have that by using the differential equation (1.1) so:

x′(tm) = f (tm, x(tm)),
x′′(tm) = ft(tm, x(tm)) + fx(tm, x(tm))x′(tm),
...

where ft =
∂ f
∂t , fx = ∂ f

∂x .

In order to apply this method we need to compute the derivatives of f and then
evaluate them for different tm. If we try to do that computing all the derivative
functions using differentiation rules and then evaluating all the functions, it would
be a very complicated, high time and computational resources consuming process.
Numerical differentiation has the problem that when wanting a high precision in
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a wide range of functions and orders, the error could be getting uncontrollable.
That’s why we need to use automatic differentiation.

1.2.1 Automatic differentiation

Automatic differentiation is a technique to evaluate the derivative of a function
in a point that is fast and works for large orders without loosing efficiency or
precision.

Definition 1.2. A function g is called a elementary function if it is defined as taking
sums, products, quotients and composition of finitely many functions that include:
polynomial, trigonometric, hyperbolic, real power, exponential, and logarithmic
functions.

For automatic differentiation to work we need f to be elementary.

Definition 1.3. Let g : I ⊆ R → R be a smooth function (C∞ or differentiable
enough). The Normalized n-th derivative is defined as:

g[n](t) =
g(n)(t)

n!
. (1.4)

We are going to focus on computing the Normalized derivatives.

Proposition 1.4. Let a : I ⊆ R → R be a smooth function (C∞ or differentiable enough)
and i ∈ R\{0} then a′[i−1] = a[i]i.

Proof. a′[i−1] = a′(i−1)

(i−1)! =
a(i)

(i−1)! =
a(i)i

(i−1)!i = a[i]i.

Proposition 1.5 (Leibniz product rule). If f and g are n-times differentiable functions,
then the product f · g is also n-times differentiable and its n-th derivative is given by

( f · g)(n) =
n

∑
k=0

(
n
k

)
f (n−k)g(k),

where (n
k) =

n!
k!(n−k)! .

The proof is easy using the definition of derivative and it is seen in differential
calculus.
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Proposition 1.6. Let a, b be smooth functions, and α ∈ R\{0}:

(a) If g(t) = a(t)± b(t), then g[n](t) = a[n](t)± b[n](t)).

Proof. g[n](t) = g(n)(t)
n! = a(n)(t)

n! ± b(n)(t)
n! = a[n](t)± b[n](t)).

(b) If g(t) = a(t)b(t), then g[n](t) =
n

∑
i=0

a[n−i](t)b[i](t).

Proof. g[n](t) = g(n)(t)
n! = (a(t)b(t))n

n! = (∗) 1
n!

n

∑
i=0

(
n
i

)
a(n−i)(t)b(i)(t) =

1
n!

n

∑
i=0

n!
i!(n − i)!

a(n−i)(t)b(i)(t) =
n

∑
i=0

a(n−i)(t)
(n − i)!

b(i)(t)
i!

=
n

∑
i=0

a[n−i](t)b[i](t).

(*)Using Leibniz product rule (Proposition 1.5).

(c) If g(t) =
a(t)
b(t)

, then g[n](t) =
1

b[0](t)

[
a[n](t)−

n

∑
i=1

b[i](t)g[n−i](t)

]
.

Proof. If g(t) =
a(t)
b(t)

, then a(t) = g(t)b(t) so using b),

a[n](t) =
n

∑
i=0

g[n−i](t)b[i](t) = g[n](t)b[0] +
n

∑
i=1

g[n−i](t)b[i](t), then,

a[n](t)− g[n](t)b[0] =
n

∑
i=1

g[n−i](t)b[i](t) ⇒

⇒ g[n](t) =
1

b[0](t)

[
a[n](t)−

n

∑
i=1

b[i](t)g[n−i](t)

]
.

(d) If g(t) = a(t)α, then g[n](t) =
1

na[0](t)

n−1

∑
i=0

(nα − i(α + 1))g[i](t)a[n−i](t).

Proof. If g(t) = a(t)α, applying log on both sides, log(g(t)) = α log(a(t)),

then if we differentiate,
g′(t)
g(t)

= α
a′(t)
a(t)

⇒ g′(t)a(t) = αa′(t)g(t) ⇒

(g′(t)a(t))[n−1] = α(a′(t)g(t))[n−1] , applying b) on both sides:

n−1

∑
i=0

g′[n−1−i](t)a[i](t) = α
n−1

∑
i=0

a′[i](t)g[n−1−i](t)

Now using Proposition 1.4 on both sides:

n−1

∑
i=0

g[n−i](t)(n − i)a[i](t) = α
n−1

∑
i=0

a[n−i](t)(n − i)g[i](t) ⇒
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⇒ a[0](t)g[n](t)n +
n−1

∑
i=1

g[n−i](t)(n − i)a[i](t) = α
n−1

∑
i=0

a[n−i](vst)(n − i)g[i](t) ⇒

(If we change the order of the sum we will see better how to merge the
summations):

a[0](t)g[n](t)n = −
n−1

∑
i=1

g[i](t)(i)a[n−i](t) + α
n−1

∑
i=0

a[n−i](t)(n − i)g[i](t)

= −
n−1

∑
i=0

g[i](t)(i)a[n−i](t) + α
n−1

∑
i=0

a[n−i](t)(n − i)g[i](t)

=
n−1

∑
i=0

(g[i](t)a[n−i](t))(α(n − i)− i) ⇒

⇒ g[n](t) =
1

na[0](t)

n−1

∑
i=0

(nα − i(α + 1))g[i](t)a[n−i](t).

(e) If g(t) = ea(t), then g[n](t) =
1
n

n−1

∑
i=0

(n − i)g[i](t)a[n−i](t).

Proof. If g(t) = ea(t), log(g(t)) = a(t) ⇒ g′(t)
g(t)

= a′(t) ⇒ g′(t) = g(t)a′(t) ⇒

(using b)) ⇒ g′[n−1](t) =
n−1

∑
i=0

a′[n−i−1](t)g[i](t).

Using Proposition 1.4 we see that g′[n−1](t) = g[n](t)n and a′[n−i−1](t) =

a[n−i](t)(n − i). Then,

g[n](t)n =
n−1

∑
i=0

a[n−i](t)(n − i)g[i](t) ⇒ g[n](t) =
1
n

n−1

∑
i=0

(n − i)g[i](t)a[n−i](t).

(f) If g(t) = log(a(t)), then g[n](t) =
1

a[0](t)

[
a[n](t)− 1

n

n−1

∑
i=1

(n − i)a[i](t)g[n−i](t)

]
.

Proof. g(t) = log(a(t)) we differentiate both sides: g′(t) =
a′(t)
a(t)

⇒ (using

c))⇒ g′[n−1](t) =
1

a[0](t)

[
a′[n−1](t)−

n−1

∑
i=1

a[i](t)g′[n−1−i](t)

]
.

Using Proposition 1.4 we see that g′[n−1] = g[n]n , a′[n−1] = a[n]n and g′[n−1−i] =

g[n−i](n − i) so:
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g[n](t) =
1

a[0](t)n

[
a[n](t)n −

n−1

∑
i=1

a[i](t)g[n−i](t)(n − i)

]
⇒

g[n](t) =
1

a[0](t)

[
a[n](t)− 1

n

n−1

∑
i=1

(n − i)a[i](t)g[n−i](t)

]
.

(g) If g(t) = cos (a(t)) and b(t) = sin a(t), then

g[n](t) = − 1
n

n

∑
i=1

ia[i](t)b[n−i](t) and

b[n](t) =
1
n

n

∑
i=1

ia[i](t)g[n−i](t).

Note that to get g[n] it’s necessary to know the previous normalized derivatives of
b(t), not of g(t), and the other way around. That is why we need to use both in the
recursive method.

Proof. g′(t) = − sin a(t)a′(t) = −b(t)a′(t) and b′(t) = − cos a(t)a′(t) =

g(t)a′(t) . Applying b): g′[n−1](t) =
n−1

∑
i=0

a′[i](t)− b[n−1−i](t) ⇒(using 1.4) ⇒

g[n](t)n = −
n−1

∑
i=0

a[i+1](t)(i+ 1)b[n−1−i](t) = −
n

∑
i=1

a[i](t)(i)b[n−i](t) ⇒ g[n](t) =

− 1
n

n

∑
i=1

ia[i](t)b[n−i](t).

The other equation can be proven the same way.

Formulas similar to these ones for other functions like inverse trigonometrics,
hiperbolics,... can be obtained using these same procedures.

We observe that if g(t) = F(a(t), b(t)) and we know a[i](t), b[i](t) for i = 0, ..., n
and g[i](t) for i = 0, ..., n − 1 we can compute g[n] with a number of arithmetic
operations that is O(n). Recursively we see that for every g that is elementary we
can evaluate all normalized derivatives up to order n with a number of arithmetic
operations that is O(n2). This procedure is called automatic differentiation.

We saw that automatic differentiation is a way to evaluate arbitrarily high
order derivatives that is exact (all the error comes from the precision when doing
the arithmetic operations), and requires a relatively low computational effort. It’s
worse than the usual differentiation when we want to plot the derivative function
because it only evaluates in one point, but in this case that is exactly what is
needed.
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1.2.2 Step size and degree selection

The other problem that we already introduced in section 1.1 is that the solu-
tion x(tm) will have different radii of convergence at each tm so if we use a fixed
h, p at some steps the computational effort would be greater than needed and at
some other steps we are not going to get the required/desired precision. For that
reason, for each m, we want to choose hm, pm that give the desired precision min-
imizing the number of arithmetic operations required to compute x(tm). In this
case tm+1 = tm + hm and we want to compute x(tm) for m = 0, ..., M where t0 = a
and tM = b.

Let’s suppose we got to the step m, and we denote the jet of normalized
derivatives of x(tm) as {x[i](tm)}i. Then if h = t − tm is small enough, using

Taylor, x(t) =
∞

∑
i=0

x[i](tm)hi. We want to choose hm and pm such that if we denote

xm+1 =
pm

∑
i=0

x[i](tm)hi
m and tm+1 = tm + hm,

∥∥x(tm+1)− xm+1
∥∥ < ε. (1.5)

Proposition 1.7. Let g be a analytic function on a disc of radius δm such that g(z) =

x(tm + z), and Am ∈ R>0 such that:∥∥∥x[i](tm)
∥∥∥ ≤ Am

δi
m

, ∀i ∈ N. (1.6)

If ε tends to 0, Am can’t be reduced while meeting the condition (1.6) and x(t) is not entire
(otherwise the bound makes no sense). Then the optimal values that minimize arithmetic
operations while keeping the tolerance (1.5) tend to:

hm =
δm

e2 pm = −1
2

log
(

ε

Am

)
− 1. (1.7)

Proof. We are going to start proving that hm is optimal: Let ε be the tolerance. If

we go to degree pm, by theorem 1.1 the error is
xpm+1(θ)

(pm + 1)!
hpm+1

m = x[pm+1](θ)hpm+1
m

and using (1.6): x[pm+1](θ)hpm+1
m ≤ Am

δ
pm+1
m

hpm+1
m .

Let h′m =
hm

δm
. Then it’s enough to take:

Am(h′m)
pm+1 = ε ⇒ pm + 1 =

log( ε
Am

)

log(h′m)
. (1.8)
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Now the computational cost of automatic differentiation is O(p2
m) as we saw in

subsection 1.2.1. So the cost per unit of t is C ≃ p2
m

hm
B where B is constant, C ≃

p2
m

h′m
D where D = B/δm. Now using (1.8):

C ≃

(
log2( ε

Am )

log2(h′m)

)
h′m

D.

Then to minimize C we need to maximize g(h′m) = log2(h′m)h′m:
g′(h′m) = log2(h′m) + 2 log(h′m); g′(h′m) = 0 ⇒ h′m1 = e−2 (maximum); h′m2 = 1
(minimum).

Then hm = h′m1δm =
δm

e2 .
Now using equation (1.8):

pm + 1 =
log( ε

Am
)

log e−2 = −1
2

log
ε

Am
⇒ pm = −1

2
log
( ε

Am

)
− 1.

The problem using this proposition is that some information needed to get the
optimal values is difficult to obtain like δm, Am.
That’s why we are going to approximate pm without using Am and approximate
δm using pm.
If εr is the relative tolerance for error and εa is the absolute tolerance for error, we
want to control the absolute tolerance by max(εa, εr∥xm∥∞) to do that, we define:

εm =

{
εa if εr∥xm∥∞ ≤ εa,
εr otherwise.

(1.9)

Now we define
pm =

⌈
− 1

2
log εm + 1

⌉
. (1.10)

where ⌈.⌉ is the ceiling function. Now we are going to define δm:

δ(i) =



(
1∥∥∥x[i]m

∥∥∥
∞

) 1
i

if εr∥xm∥∞ ≤ εa,(
∥xm∥∞∥∥∥x[i]m

∥∥∥
∞

) 1
i

otherwise.

i ∈ [0, p] (1.11)

Then we define the estimated δm:

δm = min{δ(p−1), δ(p)}, (1.12)
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and the step size hm we define it as in equation (1.7):

hm =
δm

e2 . (1.13)

Proposition 1.8. Keeping the notation and definitions in 1.9 to 1.13:

(a) If εr∥xm∥∞ ≤ εa,∥∥∥x[pm−1]
m hpm−1

m

∥∥∥
∞
≤ εa, and

∥∥∥x[pm]
m hpm

m

∥∥∥
∞
≤ εa

e2 .

Proof. From equation (1.10), pm ≥ −1
2

log εm + 1 ⇒ −2(pm − 1) ≤ log εm ⇒
e−2(pm−1) ≤ εm;

(i)
∥∥∥x[pm−1]

m hpm−1
m

∥∥∥
∞
≤ (using (1.13)) ≤

∥∥∥∥∥x[pm−1]
m

(
δm

e2

)pm−1
∥∥∥∥∥

∞

=

∥∥∥x[pm−1]
m δ

pm−1
m

∥∥∥
∞

e2(pm−1)
≤

(using (1.11) and (1.12))

≤

∥∥∥x[pm−1]
m

∥∥∥
∞

 1∥∥∥x[pm−1]
m

∥∥∥
∞


1

pm−1 ·(pm−1)

e2(pm−1)
≤ 1

e2(pm−1)
≤ εm = εa.

(ii)
∥∥∥x[pm]

m hpm
m

∥∥∥
∞
≤ (using (1.7))

∥∥∥∥∥x[pm]
m

(
δm

e2

)pm
∥∥∥∥∥

∞

=

∥∥∥x[pm]
m δ

pm
m

∥∥∥
∞

e2(pm)
≤

(using (1.11) and (1.12))

∥∥∥x[pm]
m

∥∥∥
∞

 1∥∥∥x[pm]
m

∥∥∥
∞


1

pm ·pm

e2(pm)
≤ 1

e2(pm−1)+2
≤ εm

e2 =
εa

e2 .

(b) If εr∥xm∥∞ > εa,∥∥∥x[pm−1]
m hpm−1

m

∥∥∥
∞

∥xm∥∞
≤ εr, and

∥∥∥x[pm]
m hpm

m

∥∥∥
∞

∥xm∥∞
≤ εr

e2 .

Proof. Is the same as (a) with the other definition of δ(i).
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This proposition tells us that the term of order pm − 1 has a contribution of

order εm and the term of order pm has a contribution of order
εm

e2 .
Observe that the error of Taylor is determined by the first derivative we do not
calculate in a random point and we use the last terms we calculate to control the
error of the orders we are omitting, then it is important to note that we are not
limiting the error but approximating it. Though we can observe via numerical test
that it is a very good approximation since we used the optimal values as a starting
point.
These results are the ones implemented by the program with a safety factor and
a correction to avoid large step sizes added. These are always added to make
sure we are within the tolerance we need since as we already mentioned we are
approximating the error, the safety factor used is exp

(
−0.7
pm−1

)
.

Notice that in both the optimal and the approximate selection we first choose
a fixed hm (it doesn’t depend on ε ) and then we select the order that guarantees
the required precision given the selected step size. That could be done the other
way around. Let’s explain why choose pm once hm fixed:
Suppose we have pm, hm that guarantees us a precision ε and we want to increase
it to a precision εi. There are two ways this precision can be achieved:

(a) Increase the order to ipm which would increase the cost by a factor of i2.

(C ≃ p2
m

hm
B ⇒ Ci ≃ (ipm)2

hm
B ≃ C · i2).

(b) Decrease the step size to hi
m which would increase the cost by a factor of

1
hi−1

m
.

(C ≃ p2
m

hm
B ⇒ Ci ≃ p2

m
hi

m
B =

p2
m

hm
B · 1

h(i−1)
m

≃ C · 1

h(i−1)
m

).

Usually
1

hi−1
m

>> i2 and that is why is much more efficient to get the precision

from modifying pm while the optimal value of hm is fixed.

With this we have an idea on how the program we are using implements the
Taylor method to differentiate ODEs by doing the steps described in (1.3) and in
each step (m) it computes the step size and order using the method described in
subsection 1.2.2 and then use automatic differentiation (subsection 1.2.1) to get
x(m+1).



Chapter 2

Equations of the Restricted
three-body problem

2.1 The n-body problem

In this problem we are studying the motion of n particles (bodies) with mass
mi, and vector position ri ∈ R3 i ∈ [1, n].

2.1.1 Basic equations

We denote rjk the distance between particle j and k: rjk = |rj − rk|, and suppose
n ≥ 2. We also denote ṙ = ∂r

∂t and r̈ = ∂2r
∂t2 . We know, by Newton’s law of universal

gravitation, that the module of the force between two particles is Fjk =
Gmjmk

r2
jk

,

where G is the gravitational constant: G ≈ 6.67430 · 1011Nm2/kg2 (supposing all
in SI units).

The total force exerted on the k-th particle is Fk =
n

∑
j=1,j ̸=k

Gmjmk

r2
jk

rj − rk

rjk
. Then

by Newton’s second law Fk = mk r̈k. So we get:

mk r̈k =
n

∑
j=1,j ̸=k

Gmjmk

r2
jk

rj − rk

rjk
. (2.1)

Theorem 2.1. If we have initial vectors for t = 0 : ri0, ṙi0 for i ∈ [1, n] such that
∀j, k : rjk0 > 0.
We define r(t) as the smallest rjk at time t. Then there exists a unique sets of functions
ri(t) : U ⊆ R → R3 and a largest interval (−t2, t1), t2, t1 > 0 such that ∀i ∈ [1, n]:

(i) ri(t) satisfies equation (2.1) for t ∈ (−t2, t1).

13
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(ii) ri(0) = ri0 and ṙi(0) = ṙi0.

(iii) r(t) → 0 as t → t1 if t1 is finite;
r(t) → 0 as t → −t2 if t2 is finite.

The proof can be found in Sec. 409 of the book by Aurel Wintner, [1] in the
bibliography.

We have n vector equations, so 3n scalar equations, each of them of order 2 so
in total the order of the system is 6n.

2.1.2 Constants and conditions

Definition 2.2. The linear momentum is the product of the mass and velocity of an
object: mk ṙk

Proposition 2.3. (Conservation of linear momentum)
n

∑
k=1

mk r̈k = 0 ⇒
n

∑
k=1

mk ṙk = constant.

Proof.
n

∑
k=1

mk r̈k =
n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r2
jk

rj − rk

rjk
= 0, since ∀i1 ̸= i2 we have the term

Gmi1 mi2

r2
i1i2

ri1 − ri2
ri1i2

canceled by the term
Gmi2 mi1

r2
i2i1

ri2 − ri1
ri2i1

.

Definition 2.4. We define the center of mass as rc =
n

∑
k=1

mkrk

M
, where M =

n

∑
k=1

mk.

Corollary 2.5. The center of mass moves uniformly in a straight line.

Proof. r̈c =
n

∑
k=1

mk r̈k

M
, but by Proposition 2.3:

n

∑
k=1

mk r̈k = 0.

We get r̈c =
0
M

= 0. Then, r̈c = 0 ⇒ rc = at+ b where a, b are constant vectors.

We want to move the origin of coordinates to the center of mass and to do so
we replace rk for rk − rc but this won’t change equations (2.1) because r̈c = 0, so
r̈k − r̈c = r̈k.
With this change of coordinates we have the condition:

n

∑
k=1

mkrk = 0, t ∈ (−t2, t1) and
n

∑
k=1

mk ṙk = 0, t ∈ (−t2, t1). (2.2)

This gives us 2 vector conditions so 6 scalar condition and reduces the order of
system (2.1) to 6n − 6.
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Definition 2.6. The negative of the potential energy is defined by:

U =
n

∑
k=1

k−1

∑
j=1

Gmjmk

rjk
(2.3)

Proposition 2.7. 1
2

∂
∂t

( n

∑
k=1

mk ṙ2
k

)
= U̇.

Proof. U depends on rk = (xk, yk, zk) k = 1, ..., n; so it depends of 3n real vari-
ables, and can be seen as a function of those variables.
We denote the gradient of U by ∂U

∂rk
=
[

∂U
∂xk

, ∂U
∂yk

, ∂U
∂zk

]
.

∂U
∂ri

=
n

∑
k=1

∂

∂ri

(
Gmimk

|ri − rj|

)
, since the ones that don’t include ri go to 0.

Then, ∂U
∂ri

=
n

∑
k=1

Gmimk

|ri − rj|2
= r̈imi, (using (2.1)). Multiplying both sides by ṙk and

making the summation for k = 1, ..., n we get to:

n

∑
k=1

mk ṙk · r̈k =
n

∑
k=1

∂U
∂rk

· ṙk. (2.4)

.

Now the right side is:
n

∑
k=1

∂U
∂rk

· ṙk =
n

∑
k=1

[
∂U
∂xk

∂xk

∂t
+

∂U
∂yk

∂yk

∂t
+

∂U
∂zk

∂zk

∂t

]
= U̇,

(using the chain rule to differentiate).

And using ∂
∂t (ṙk · ṙk) = (r̈k · ṙk) + (ṙk · r̈k) = 2(r̈k · ṙk), the left side is:

n

∑
k=1

mk ṙk ·

r̈k =
1
2

∂

∂t

n

∑
k=1

mk ṙk · ṙk =
1
2

∂

∂t

n

∑
k=1

mk ṙ2
k .

So equation (2.4) can be written: 1
2

∂
∂t

( n

∑
k=1

mk ṙ2
k

)
= U̇.

Definition 2.8. The kinetic energy is defined as: T =
1
2

n

∑
k=1

mk ṙ2
k .

Theorem 2.9. Law of conservation of energy Ṫ = U̇, so T = U + h where h is a
constant (the total energy).

Proof is immediate using proposition 2.7 and definition 2.8.

The law of conservation of energy and is a new condition, this is a scalar
condition so reduces the order of (2.1) to 6n − 7.
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Definition 2.10. The moment of inertia is 2I =
n

∑
k=1

mkr2
k .

A very important form of this law of conservation of energy is:

Theorem 2.11. Lagrange-Jacobi Ï = T + h = U + 2h.

Proof. I =
1
2

n

∑
k=1

mkr2
k . We differentiate twice with respect to t:

İ =
1
2

n

∑
k=1

2mk(ṙk · rk);

Ï =
1
2

n

∑
k=1

2mk(r̈k · rk + ṙk · ṙk) =
n

∑
k=1

mk ṙ2
k +

n

∑
k=1

mk(r̈k · rk) = 2T +
n

∑
k=1

mk(r̈k · rk).

We are now focusing on
n

∑
k=1

mk(r̈k · rk). Using equation (2.1),

n

∑
k=1

mk(r̈k · rk) =
n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

(rj − rk) · rk =
n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

[
(rj · rk)− r2

k

]
.

We use the identity:

r2
jk = r2

j − (rj · rk) + r2
k ⇒ (rj · rk) =

1
2

(
r2

j + r2
k − r2

jk

)
,

and the expression becomes:

n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

[
(rj · rk)− r2

k

]
=

n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

[
1
2
(r2

j + r2
k − r2

jk)− r2
k

]

=
n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

[
1
2

r2
j +

1
2

r2
k −

1
2

r2
jk − r2

k

]

=
n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

· 1
2

r2
j −

n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

· 1
2

r2
k −

n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

· 1
2

r2
jk.

The first two terms cancel out, leaving us with:

−1
2

n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

r2
jk

This is exactly the gravitational potential energy −U, since all the terms are
repeated but multiplied by 1

2 . Therefore, we have:

n

∑
k=1

mk(r̈k · rk) = −U.
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Finally, using the relationship for the time derivative of the angular momentum
I, we obtain:

Ï = 2T − U ⇒ Ï = 2T − T + h = T + h = U + 2h.

Theorem 2.12. The angular momentum C =
n

∑
k=1

mk(rk × ṙk) is constant.

Proof. Take equation (2.1), cross product by rk and sum on k each side:

n

∑
k=1

mk(rk × r̈k) =
n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

[rk × (rj − rk)]

=
n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

(rk × rj)− (rk × rk)

=
n

∑
k=1

n

∑
j=1,j ̸=k

Gmjmk

r3
jk

(rk × rj) (since rk × rk = 0 ∀k).

This is 0 because for each term
Gmjmk

r3
jk

(rk × rj) there is a term
Gmjmk

r3
jk

(rj × rk) =

Gmjmk

r3
jk

(−rk × rj) that cancels it. Then
n

∑
k=1

mk(rk × r̈k) = 0.

Now, ∂
∂t (rk × ṙk) = (rk × r̈k) + (ṙk × ṙk) = (rk × r̈k) so integrating,

n

∑
k=1

mk(rk × ṙk) =

c where c is constant.

This is a vector condition, so 3 scalar conditions that reduce the order of our
system to 6n − 10.

With that we saw an introduction to the n-body problem that will help us
understand the three body problem, of course this is a very interesting problem in
itself which we could study in depth, studying a variety of things like collision of
particles, growth of minimum and maximum distance between particles,... Both
[1] and [2] are great references to expand on these topics.
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2.2 The three-body problem

The equations (2.1) if n = 3 are:

m1r̈1 =
Gm1m2

r3
12

(r2 − r1) +
Gm1m3

r3
13

(r3 − r1),

m2r̈2 =
Gm1m2

r3
12

(r1 − r2) +
Gm2m3

r3
23

(r3 − r2),

m3r̈3 =
Gm1m3

r3
13

(r1 − r3) +
Gm2m3

r3
23

(r2 − r3).

(2.5)

We could use (2.2) to eliminate one of the ri but we are going to do it a bit different:
Consider r = r2 − r1 and ρ = r3 − O′ where O′ = m1r1+m2r2

m1+m2
, so ρ is the position

of m3 in relation to the center of mass of m1, m2. Then ρ = r3 − m1r1+m2r2
m1+m2

=

(since m1r1 + m2r2 + m3r3 = 0, because we have our origin in the center of mass)
= r3 − −m3r3

m1+m2
= r3 +

m3r3
m1+m2

= Mr3
m1+m2

. We denote µ = m1 + m2, so ρ = Mr3/µ.
Note that r12 = |r| ⇒ r2 = r2

12 but we are going to use r for the vector, r2 for r · r
and r12 for |r|. these vectors r, ρ are called the Jacobi coordinates.

Proposition 2.13. With the previous notation:

(i) r2 − r1 = r.

Proof. Definition.

(ii) r3 − r1 = ρ +
m2r

µ
.

Proof. ρ = r3 −
m1r1 + m2r2

m1 + m2
= r3 − r1 −

m1r1 + m2r2 − r1(m1 + m2)

m1 + m2
=

r3 − r1 −
m2r2 − r1m2

m1 + m2
= r3 − r1 − m2

r
µ
⇒ r3 − r1 = ρ +

m2r
µ

.

(iii) r3 − r2 = ρ − m1r
µ

.

Proof. ρ = r3 −
m1r1 + m2r2

m1 + m2
= r3 − r2 −

m1r1 + m2r2 − r2(m1 + m2)

m1 + m2
=

r3 − r2 −
m1r1 − r2m1

m1 + m2
= r3 − r2 − m1

−r
µ

⇒ r3 − r2 = ρ − m1r
µ

.
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Now if we use this proposition in (2.5) and we divide the first equation by m1,
the second by m2 and subtract them we get :

r̈ = −Gµ

r3 r + Gm3

[
ρ − m1rµ−1

r3
23

− ρ + m2rµ−1

r3
23

]
. (2.6)

And multiplying the third equation by
M

µm3
:

ρ̈ = −Gm1M
r3

13µ
(ρ + m2rµ−1)− Gm2M

r3
23µ

(ρ − m1rµ−1). (2.7)

With this we reduced the system to order 12 We could reduce it even further (to
order 8) using conservation of angular momentum and conservation of energy.
It’s easy to verify that in terms of the Jacobi coordinates:

c =
m1m2

µ
(r × ṙ) +

m3µ

M
(ρ × ρ̇),

2I =
m1m2

µ
r2 +

m3µ

M
ρ2,

2T =
m1m2

µ
ṙ2 +

m3µ

M
ρ̇2.

(2.8)

Although we could reduce it to 8 equations and then to 6 using some other meth-
ods, that’s still a very complicated problem that have been studied for years and
different solutions for particular cases have been found, like the Lagrange solu-
tions (particles moving uniformly in circles and in the same plane and with the
same angular velocity but they are not in a straight line for any t), or the Euler
solutions if they are in a straight line for some t, but no general solution have been
found. We are going to make an extra assumption to simplify the problem.

2.3 The restricted three-body problem

If we assume the mass m3 is so small in relation to m1, m2 that it does not affect
the motion of m1, m2, we can suppose that m3 = 0 which means M = µ then
equations (2.6) and (2.2) become:

r̈ =
−Gµ

r3 r, (2.9)

and

ρ̈ = −Gm1

r3
13

(ρ + m2rµ−1)− Gm2

r3
23

(ρ − m1rµ−1). (2.10)
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The equation (2.9) is the two-body problem (m3 does not appear) and as we know
it can be solved in multiple ways. So take r as the solution of the two-body prob-
lem.
Then equation (2.10) describes the motion of m3 and it is called the restricted-three
body problem. It has order 6 but since we made the assumption m3 = 0 we can
not use conservation laws to reduce the order.
We will suppose that the motion occurs in one plane and that the primaries
(m1, m2) rotate uniformly in a circle around their center of mass (O′) with a an-
gular velocity ω. Now consider a coordinate system (ξ, η) with center in (O′) and
rotating at an angular velocity ω. In this coordinate system, the primaries are at
rest and we can place them on the ξ axis. We denote (ξ1, 0); (ξ2, 0)) the position of
m1, m2 in these coordinates. As: m1ξ1 + m2ξ2 = 0, m1 + m2 = µ, and ξ2 − ξ1 = r12:

(µ − m2)ξ1 + m2(r12 + ξ1) = 0 ⇒ ξ1 =
−m2r12

µ
.

And: ξ2 = r12 −
m2r12

µ
=

r12(µ − m2)

µ
=

m1r12

µ
.

We illustrate this coordinate system in Figure 2.1.

Figure 2.1: Rotating coordinate system.

Now we want to know the angular velocity ω. Observe that r = r2 − r1 so it is
the movement of r2 with respect to r1 and equation (2.9) tells us this is a central
force problem.
Reminder: The central force problem describes the motion of a particle attracted to
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a fix center with force m f (r). In this case f (r) =
Gµ

r2 .
This equation is the same if we change r for −r = r1 − r2; This tells us that both
masses move as if they were a particle of mass attracted to a fixed center located
in the other mass. Then is enough to take one of those movements to find ω.
As we are supposing a circular motion, to obtain the ω of the orbit we need the

force of attraction: (F =
mGµ

r2 ) to be the same as the centrifugal force: (Fc = mω2r).

Then,
mGµ

r2 = mω2r, this means the angular velocity is:

ω =

√
Gµ

r3 . (2.11)

If we add a third coordinate which is perpendicular to ξ, η , which we call ν

we have a completed three dimension coordinate system in which m1 is fixed at(−m2r12

µ
, 0, 0

)
; m2 is fixed at

(m1r12

µ
, 0, 0

)
and we want to study the motion of

m3.
Going back to (2.5) for r3 with the original coordinate system (x,y,z) we have:

m3r̈3 =
Gm1m3

r3
13

(r1 − r3) +
Gm2m3

r3
23

(r2 − r3).

If we separate in three scalar equations and divide by m3:

ẍ3 =
Gm1

r3
13

(x1 − x3) +
Gm2

r3
23

(x2 − x3),

ÿ3 =
Gm1

r3
13

(y1 − y3) +
Gm2

r3
23

(y2 − y3),

z̈3 =
Gm1

r3
13

(z1 − z3) +
Gm2

r3
23

(z2 − z3).

(2.12)

We are going to transfer this to the new coordinate system using:

xk = ξkcos(ωt)− ηksin(ωt),
yk = ξksin(ωt) + ηkcos(ωt).

(2.13)

We differentiate twice:

ẍk = cos(ωt)(ξ̈k − ξkω2 − 2η̇kω)− sin(ωt)(η̈k − ηkω2 + 2ξ̇kω),
ÿk = cos(ωt)(η̈k − ηkω2 + 2ξ̇kω) + sin(ωt)(ξ̈k − ξkω2 − 2η̇kω)

(2.14)

also,
xj − xk = cos(ωt)(ξ j − ξk)− sin(ωt)(ηj − ηk),
yj − yk = cos(ωt)(ηj − ηk) + sin(ωt)(ξ j − ξk).

(2.15)
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And finally we observe that in the 3rd dimension the equation does not change.
So, rewriting (2.12) using all this information:

cos(ωt)(ξ̈3 − ξ3ω2 − 2η̇3ω)− sin(ωt)(η̈3 − η3ω2 + 2ξ̇3ω) =
Gm1
r3

13
(cos(ωt)(ξ1 − ξ3)− sin(ωt)(η1 − η3))+

+Gm2
r3

23
(cos(ωt)(ξ2 − ξ3)− sin(ωt)(η2 − η3)),

cos(ωt)(η̈3 − η3ω2 + 2ξ̇3ω) + sin(ωt)(ξ̈3 − ξ3ω2 − 2η̇3ω) =
Gm1
r3

13
cos(ωt)(η1 − η3) + sin(ωt)(ξ1 − ξ3)+

+Gm2
r3

23
cos(ωt)(η2 − η3) + sin(ωt)(ξ2 − ξ3),

ν̈3 = Gm1
r3

13
(ν1 − ν3) +

Gm2
r3

23
(ν2 − ν3).

(2.16)

This implies that :

ξ̈3 − ξ3ω2 − 2η̇3ω =
Gm1

r3
13

(ξ1 − ξ3) +
Gm2

r3
23

(ξ2 − ξ3),

η̈3 − η3ω2 + 2ξ̇3ω =
Gm1

r3
13

(η1 − η3) +
Gm2

r3
23

(η2 − η3),

ν̈3 =
Gm1

r3
13

(ν1 − ν3) +
Gm2

r3
23

(ν2 − ν3).

(2.17)

Now we use the known (ξ1, η1, ν1) =
(
−m2r12

µ , 0, 0
)

and (ξ2, η2, ν2) =
(

m1r12
µ , 0, 0

)
:

ξ̈3 − ξ3ω2 − 2η̇3ω = −Gm1

r3
13

(
m2r12

µ
+ ξ3) +

Gm2

r3
23

(
m1r12

µ
− ξ3),

η̈3 − η3ω2 + 2ξ̇3ω = −Gm1

r3
13

(η3)−
Gm2

r3
23

(η3),

ν̈3 = −Gm1

r3
13

(ν3)−
Gm2

r3
23

(ν3),

(2.18)

where ω =

√
Gµ

r3 and µ = m1 + m2.

Note that ξ3 depends on η3 and the other way around, but in the last equation
we see that ν3 only depends on itself, this means the movement in the axis ν is
independent of the planar motion of the plane (ξ, η) so for example if the motion
begins being planar it will remain planar.

Definition 2.14. The Jacobi’s integral is defined as: CJ = 2(
Gm1

r13
+

Gm2

r23
) + ω2(ξ2 +

η2)− (ξ̇2 + η̇2 + ν̇2).
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Proposition 2.15. Jacobi’s integral is a constant value for the restricted three body prob-
lem.

Proof. It is easy to see that if we define U =
n2

2
(ξ2 + η2) +

Gm1

r13
+

Gm2

r23
. Then

system (2.18) can be seen as:



ξ̈ − 2ωη̇ =
∂U
∂ξ

,

η̈ + 2ωξ̇ =
∂U
∂η

,

ν̈ =
∂U
∂ν

.

(2.19)

Now multiplying both sides of each equation by ξ̇, η̇, ν̇ respectively and adding
all three equations we get: ξ̇ ξ̈ − 2ωξ̇η̇ + η̇η̈ + 2ωη̇ξ̇ + ν̇ν̈ = ξ̇ ∂U

∂ξ + η̇ ∂U
∂η + ν̇ ∂U

∂ν ⇒
ξ̇ ξ̈ + η̇η̈ + ν̇ν̈ = ∂U

∂t .

Integrating we get:
1
2
(ξ̇2 + η̇2 + ν̇2) = U − C where C is the integration constant.

This means that C = −1
2
(ξ̇2 + η̇2 + ν̇2) + U is constant, and since CJ = 2C; CJ is

constant.

Notation: From now on we are going to refer (ξ3, η3, ν3) as (ξ, η, ν) to simplify
notation since we are just going to be studying the particle m3.
Also, we are going to change units of mass so that µ = 1, of distance so that r = 1,
and of time so that G = 1. With these units if we denote the mass of the first
particle α we can easily see that α =

m1
µ

, the mass of the second particle is 1 − α,

ξ1 = −1 + α , and ξ2 = α, also ω = 1. With this (2.18) converts to:



ξ̈ − ξ − 2η̇ = − α

r3
13
(1 − α + ξ) +

1 − α

r3
23

(α − ξ),

η̈ − η + 2ξ̇ = − α

r3
13

η − 1 − α

r3
23

η,

ν̈ = − α

r3
13

ν − 1 − α

r3
23

ν,

(2.20)

where r2
13 = (ξ + 1 − α)2 + η2 + ν2 and r23 = (ξ − α)2 + η2 + ν2.
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2.4 Hamiltonian systems

Definition 2.16. A dynamical system is called Hamiltonian if there exists a smooth func-
tion H : Rℓ × Rℓ × R → R, such that the flow satisfies:

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, (2.21)

where q ∈ Rℓ is called the position and p ∈ Rℓ is called the momentum.

The function H(p, q, t) is called the Hamiltonian of the system (2.21).

We define J :

(
0 I
−I 0

)
, where I is the identity ℓ× ℓ.

Then we can write the system (2.21) as

ż = J∇H(z), z = (q, p). (2.22)

A function f : Rℓ × Rℓ → R is a first integral of the system if it takes a constant
value in each orbit of the system.

Proposition 2.17. If the function H doesn’t depend on the time t, H is always a first
integral of the system (2.21).

Proof. If H does not depend on t, H = H(p, q), to see it is constant we are going
to consider Ḣ, using the chain rule, Ḣ = ∂H

∂p · ṗ + ∂H
∂q · q̇. But now if we are in a

orbit of the system, q̇ = ∂H
∂p , ṗ = − ∂H

∂q . Multiplying the first equation by ṗ and

the second one by q̇, we get q̇ · ṗ = ∂H
∂p · ṗ, q̇ · ṗ = − ∂H

∂q · q̇. Going back we get
Ḣ = q̇ · ṗ − q̇ · ṗ = 0. Then H is constant on the orbits.

Going back to our problem, if we define the momentum as: (Pξ = ξ̇ − η, Pη =

η̇ + ξ, Pν = ν̇), then we have the next Proposition:

Proposition 2.18. The system (2.20) is Hamiltonian with:

H =
1
2
(P2

ξ + P2
η + P2

ν ) + ηPξ − ξPη −
α

r13
− 1 − α

r23
, (2.23)

where r2
13 = (ξ + 1 − α)2 + η2 + ν2 and r23 = (ξ − α)2 + η2 + ν2



2.4 Hamiltonian systems 25

Proof. In this case, p = (Pξ , Pη , Pν) and q = (ξ, η, ν).
∂H
∂p = (Pξ + η, Pη − ξ, Pν);

∂H
∂q =

(
[−Pη +

α

2r3
13

· 2(ξ + 1 − α) +
1 − α

2r3
23

· 2(ξ − α)], [Pξ +
α

2r3
13

· 2η +
1 − α

2r3
23

· 2η],

[
α

2r3
13

· 2ν +
1 − α

2r3
23

· 2ν]
)

.

Now: q̇ = ∂H
∂p ⇒ (Pξ = ξ̇ − η, Pη = η̇ + ξ, Pν = ν̇) and ṗ = − ∂H

∂q ⇒

−Ṗξ = −Pη +
α

2r3
13

· 2(ξ + 1 − α) +
1 − α

2r3
23

· 2(ξ − α),

−Ṗη = Pξ +
α

2r3
13

· 2η +
1 − α

2r3
23

· 2η,

−Ṗν =
α

2r3
13

· 2ν +
1 − α

2r3
23

· 2ν.

⇒

(Using (Pξ = ξ̇ − η, Pη = η̇ + ξ, Pν = ν̇) ⇒ (Ṗξ = ξ̈ − η̇, Ṗη = η̈ + ξ̇, Ṗν =

ν̈))

⇒



−ξ̈ + η̇ = −η̇ − ξ +
α

r3
13

· (ξ + 1 − α) +
1 − α

r3
23

· (ξ − α),

−η̈ − ξ̇ = ξ̇ − η +
α

r3
13

· η +
1 − α

r3
23

· η,

−ν̈ =
α

r3
13

· ν +
1 − α

r3
23

· ν.

⇒



ξ̈ − 2η̇ − ξ = − α

r3
13

· (ξ + 1 − α)− 1 − α

r3
23

· (ξ − α),

η̈ + 2ξ̇ − η = − α

r3
13

· η − 1 − α

r3
23

· η,

ν̈ = − α

r3
13

· ν − 1 − α

r3
23

· ν.

As we already saw the Hamiltonian of a system defines it .We are going to
use the Hamiltonian because it simplifies everything by having one equation to
study instead of 6 in our case. We could have used the Hamiltonian to study the
problem from the beginning as shown in bibliography [2] but we choose to keep
standard notation until this point.

Definition 2.19. We define the Hessian matrix of a Hamiltonian as :

JHess(H) =

 ∂H
∂pq

∂H
∂p2

− ∂H
∂q2 − ∂H

∂pp

 . (2.24)
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Proposition 2.20. The Hessian matrix is the same as the Jacobian matrix of (2.22).

Proof. If we call F = (F1(p, q), F2(p, q)) = J∇H(p, q) so that (2.22) is

{
q̇ = F1(p, q)
ṗ = F2(p, q)

.

In this case F1(p, q) = ∂H
∂p ; F2(p, q) = − ∂H

∂q .

JHess(H) =

 ∂2 H
∂p ∂q

∂H
∂p2

− ∂H
∂q2 − ∂2 H

∂q ∂p

 =

 ∂ ∂H
∂p

∂q
∂ ∂H

∂p
∂p

∂(− ∂H
∂q )

∂q
∂(− ∂H

∂q )

∂p

 =

 ∂ ∂H
∂p

∂q
∂ ∂H

∂p
∂p

∂(− ∂H
∂q )

∂q
∂(− ∂H

∂q )

∂p

 =

 ∂F1
∂q

∂F1
∂p

∂F2
∂q

∂F2
∂p

 = J(F).

2.5 Symmetry

We see that H(ξ,−η,−Pξ , Pη) can be written as:

1
2
(P2

ξ + P2
η + P2

ν )+ (−η)(−Pξ)− ξPη −
α

(ξ + 1 − α)2 + (−η)2 + ν2 −
1 − α

(ξ − α)2 + (−η)2 + ν2

=
1
2
(P2

ξ + P2
η + P2

ν ) + ηPξ − ξPη −
α

(ξ + 1 − α)2 + η2 + ν2 − 1 − α

(ξ − α)2 + η2 + ν2

= H(ξ, η, Pξ , Pη).

If H(ξ,−η,−Pξ , Pη) = H(ξ, η, Pξ , Pη), then ∂H(ξ,−η,−Pξ ,Pη)
∂p =

∂H(ξ,η,Pξ ,Pη)
∂p , and ∂H(ξ,−η,−Pξ ,Pη)

∂q =
∂H(ξ,η,Pξ ,Pη)

∂q .
So q̇(ξ,−η,−Pξ , Pη) = q̇(ξ, η, Pξ , Pη), and ṗ(ξ,−η,−Pξ , Pη) = ṗ(ξ, η, Pξ , Pη). This

means we have a symmetry with axis η = 0. Then, we know that for any solution
(ξ(t), η(t), Pξ(t), Pη(t)), there is a solution (ξ(t),−η(t),−Pξ(t), Pη(t)).



Chapter 3

Study of the equilibrium points

In this chapter we are going to study the equilibrium points of the system 2.20
and the stability of these points.

3.1 Equilibrium points

We want to find the equilibrium points (ξ, η, ν) so that ξ̇ = 0; η̇ = 0; ν̇ =

0; ξ̈ = 0; η̈ = 0; ν̈ = 0. Using all this information in (2.18) we get:

−ξ = − α

r3
13
(1 − α + ξ) +

1 − α

r3
23

(α − ξ),

−η = − α

r3
13

η − 1 − α

r3
23

η,

0 = − α

r3
13

ν − 1 − α

r3
23

ν.

(3.1)

We are going to start studying the third equation:

0 = ν
(
− α

r3
13

− 1 − α

r3
23

)
. We can see that

α

r3
13

> 0, and
1 − α

r3
23

> 0.

This means − α

r3
13

− 1 − α

r3
23

< 0. So ν = 0.

In other words, any equilibrium point should be in the plane of motion of the two
primaries. To study the first two equations we need to separate some cases:

a) η ̸= 0:

The second equation tells us η
(
− 1 +

α

r3
13

+
1 − α

r3
23

)
= 0. So if η ̸= 0, then

−1 +
α

r3
13

+
1 − α

r3
23

= 0. (3.2)

27
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But now if we go to the first equation we get ξ
(
− 1 +

α

r3
13

+
1 − α

r3
23

)
=

−α − α2

r2
13

+
α − α2

r2
23

.

So using (3.2), −α − α2

r2
13

+
α − α2

r2
23

= 0 ⇒
(α − α2)(r3

13 − r3
23)

r3
13r3

23
= 0 ⇒ r13 = r23,

and going back to (3.2):
(
− 1+

α

r3
13

+
1 − α

r3
13

)
= 0 ⇒ −r13 + α + 1 − α

r3
13

= 0 ⇒

r13 = 1 = r23. There are two points that are at distance 1 of (−1+ α, 0, 0) and
(α, 0, 0) that have the third coordinate = 0:{ √

(ξ + 1 − α)2 + η2 = 1√
(ξ − α)2 + η2 = 1

⇒
{

ξ2 − 2αξ + α2 + 2ξ − 2α + 1 + η2 = 1
ξ2 − 2αξ + α2 + η2 = 1

⇒ (using the second equation) : η = ±
√

1 − ξ2 + 2αξ − α2.

Then going back to the first equation:

⇒ ξ2 − 2αξ + α2 + 2ξ − 2α + 1 + 1 − ξ2 + 2αξ − α2 = 1.

So, simplifying:

2ξ − 2α = −1 ⇒ ξ =
−1 + 2α

2
.

Next, substitute this value of ξ into the expression for η:

η = ±

√
1 −

(
−1 + 2α

2

)2

+ 2α
−1 + 2α

2
− α2

= ±
√

1 − α2 + α − 1
4
− α + 2α2 − α2 = ±

√
3
4

.

So we got two equilibrium points. The one with η > 0 is going to be called
L4 and the one with η < 0, L5.

b) η = 0:
If η = 0 we only need to determine ξ and we are going to separate three
cases:

i) ξ < ξ1: This means also ξ < ξ2. In this case, r13 = ξ1 − ξ = −1 + α − ξ

and r23 = ξ2 − ξ = α − ξ = r13 + 1. Using this in (3.1), −ξ =
α

r3
13
(r13) +

1 − α

(r13 + 1)3 (r13 + 1) ⇒ −ξ =
α

r2
13

+
1 − α

(r13 + 1)2 ⇒ (using −ξ = r13 + 1 −

α) ⇒ 1 − α =
α

r2
13

+
1 − α

(r13 + 1)2 − r13.
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Then if we define f (r13) =
α

r2
13

+
1 − α

(r13 + 1)2 − r13, we have that:

1. f ′(r13) =
−2α

r3
13

+
−2(1 − α)

(r13 + 1)3 − 1. f ′(r13) < 0 ∀r13 > 0,

2. limr13→0 f (r13) = ∞,

3. limr13→∞ f (r13) = −∞.

If the function is strictly decreasing, continuous and it goes form ∞
to −∞, this means it takes the value f (r13) = 1 − α in some point
r13 ∈ (0, ∞). This means we have a equilibrium point that is unique
for this case, to calculate it explicitly we would need to solve a degree
5 polynomial function which we know there is no formula for. We are
going to call this point L3.

ii) ξ > ξ2: This means also ξ > ξ1. In this case, r13 = ξ − ξ1 = 1 − α + ξ

and r23 = ξ − ξ2 = −α + ξ = r13 − 1 ⇒ r13 = r23 + 1. Using this in (3.1),

−ξ = − α

(r23 + 1)3 (r23+1) −
1 − α

(r23)3 (r23) ⇒ ξ =
α

(r23 + 1)2 +
1 − α

(r23)2 ⇒

(using ξ = r23 + α) ⇒ α =
α

(r23 + 1)2 +
1 − α

(r23)2 − r23.

Then if we define f (r23) =
α

(r23 + 1)2 +
1 − α

(r23)2 − r23, we have that:

1. f ′(r23) =
−2α

(r23 + 1)3 +
−2(1 − α)

(r23)3 − 1, so f ′(r23) < 0 ∀r23 > 0,

2. limr23→0 f (r23) = ∞,

3. limr23→∞ f (r23) = −∞.

With the same argument we have another equilibrium point that is
unique for this case, we are going to call this point L2, that would need
solving another degree 5 polynomial function to get. For this point

we are going to give a result on where it is : f (1 − α) =
α

(2 − α)2 +

1 − α

(1 − α)2 − 1 + α =
α

(2 − α)2 +
1

(1 − α)
− 1 + α, and since

1
(1 − α)

> 1;

f (1 − α) >
α

(2 − α)2 + α > α. This means r23 > 1 − α ⇒ ξ > 1.

And also let’s see what polynomial function we need to find the roots

of: α =
α

(r23 + 1)2 +
1 − α

(r23)2 − r23 ⇒

0 =
αr2

23 + (1 − α)(r23 + 1)2 + (−r23 − α)(r23 + 1)2r2
23

(r23 + 1)2r2
23

⇒

0 = αr2
23 + (1 − α)(r2

23 + 2r23 + 1) + (−r23 − α)(r4
23 + 2r3

23 + r2
23) ⇒

0 = −r5
23 +(−α− 2)r4

23 +(−2α− 1)r3
23 +(1− α)r2

23 +(2− 2α)r23 + 1− α.
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iii) ξ1 < ξ < ξ2. In this case r13 = ξ − ξ1 = 1− α+ ξ and r23 = ξ2 − ξ = α−
ξ = −r13 + 1. Using this in (3.1), −ξ = − α

r3
13
(r13) +

1 − α

(−r13 + 1)3 (−r13 +

1) ⇒(using −ξ = 1 − α − r13)⇒ 1 − α = − α

r2
13

+
1 − α

(−r13 + 1)2 + r13.

We define f (r13) = − α

r2
13

+
1 − α

(−r13 + 1)2 + r13, and we have that:

1. f ′(r13) =
2α

r3
13

+
2(1 − α)

(−r13 + 1)3 + 1. In this case r13 ∈ (0, 1), because

otherwise it would not be between the two primaries. Let’s suppose
that α > 0.5. This means that the first particle is heavier than the
second one, then f ′(r13) > 0 ∀r13 ∈ (0, 1),

2. limr13→1 f (r13) = ∞,

3. f (0.5) < 1 − α, for α > 0.5.

This means we have a new equilibrium point that is unique for this case
and it’s between the two primaries but closer to the lighter one. We are
going to call this point L1.

We saw that there are 5 equilibrium points called Li (Libration points). For
Li i = 1, 2, 3 these are called the collinear points and where discovered and
studied by Euler, and Li i = 4, 5 are called the equilateral points and where
discovered and studied by Lagrange.

As an example we are going to see the equilibrium points that for α = 0.9 in
Figure 3.1.

Figure 3.1: Libration points (α = 0.9).
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To study the stability of these points we are going to use the previously intro-
duced Hamiltonian notation.

3.2 Stability of the points

To study the stability of the fixed points we need to use the Jacobian matrix
of the system, and as we have just seen on the previous section, we can use the

Hessian matrix of H. If we differentiate H =
1
2
(P2

ξ + P2
η + P2

ν ) + ηPξ − ξPη −
α

r13
−

1 − α

r23
:

JHess(H(ξ0, η0, ν0, Pξ0, Pη0, Pν0)) =



0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1

− ∂2 H
∂ξ ∂ξ − ∂2 H

∂η ∂ξ 0 0 1 0

− ∂2 H
∂η ∂ξ − ∂2 H

∂η ∂η 0 −1 0 0

0 0 − ∂2 H
∂ν ∂ν 0 0 0


(ξ0,η0,ν0,Pξ0,Pη0,Pν0).

Rearranging we have the following matrix:

0 1 1 0 0 0
−1 0 0 1 0 0

− ∂2 H
∂ξ ∂ξ − ∂2 H

∂η ∂ξ 0 1 0 0

− ∂2 H
∂η ∂ξ − ∂2 H

∂η ∂η −1 0 0 0

0 0 0 0 0 − ∂2 H
∂ν ∂ν

0 0 0 0 1 0


.

Since we clearly see we have two blocks, we are going to study them separately,
so we are going to study the planar stability (ξ, η) and then the stability in the
coordinate ν. We will start studying the matrix for the first two coordinates. We
will call that Hamiltonian H2:

H2(ξ, η, Pξ , Pη) =
1
2
(P2

ξ + P2
η ) + ηPξ − ξPη −

α

r13
− 1 − α

r23
, (3.3)

where r2
13 = (ξ + 1 − α)2 + η2 and r2

23 = (ξ − α)2 + η2. We define:
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∂2 H
∂ξ ∂ξ (ξ0, η0) = U1, ; ∂2 H

∂ξ ∂η (ξ0, η0) = U12; ∂2 H
∂η ∂η (ξ0, η0) = U2, and we get:

JHess(H2(ξ0, η0, Pξ0, Pη0)) =


0 1 1 0
−1 0 0 1
−U1 −U12 0 1
−U12 −U2 −1 0


.

(3.4)

We are going to calculate the characteristic polynomial:

det(JHess(H2(ξ0, η0, Pξ0, Pη0)− λId) =

∣∣∣∣∣∣∣∣∣∣
−λ 1 1 0
−1 −λ 0 1
−U1 −U12 −λ 1
−U12 −U2 −1 −λ

∣∣∣∣∣∣∣∣∣∣
=

= −λ

∣∣∣∣∣∣∣
−λ 0 1
−U12 −λ 1
−U2 −1 −λ

∣∣∣∣∣∣∣− 1

∣∣∣∣∣∣∣
−1 0 1
−U1 −λ 1
−U12 −1 −λ

∣∣∣∣∣∣∣+ 1

∣∣∣∣∣∣∣
−1 −λ 1
−U1 −U12 1
−U12 −U2 −λ

∣∣∣∣∣∣∣
= λ4 − λU12 + U2λ2 + λ2 + λ2 − U1 + U12λ + 1 − U12λ + U1U2 + U12λ − U2

12 +

U1λ2 −U2 = λ4 +(2+U1 +U2)λ2 + 1−U1 −U2 +U1U2 −U2
12 = PJHess(H2)(ξ0,η0)(λ).

Now let’s use the point L2 as the fixed point. We are going to use from section
3.1, that if L2 = (ξL2 , 0), then r23 = −α + ξL2 , r13 = 1 − α + ξL2 = r23 + 1.

• U12 = ∂2 H2
∂ξ ∂η (ξL2 , 0, 0, 0) =

∂

(
−Pη+

α

2r3
13
·2(ξ+1−α)+ 1−α

2r3
23
·2(ξ−α)

)
∂η (ξL2 , 0, 0, 0) = f (ξL2 , 0),

where f (ξ, η) =
−3α

r4
13

1
2
√
(ξ + 1 − α)2 + η2

· 2η(ξ + 1 − α) +

+
−3(1 − α)

r4
23

1
2
√
(ξ − α)2 + η2

· 2η(ξ − α);

So: U12 =
−3α

r4
13

1
2
√
(ξL2 + 1 − α)2 + 0

· 2(0)(ξL2 + 1 − α) +

+
−3(1 − α)

r4
23

1
2
√
(ξL2 − α)2 + 0

· 2(0)(ξL2 − α) = 0.

• U1 = ∂2 H2
∂ξ ∂ξ (ξL2 , 0, 0, 0) =

∂

(
−Pη+

α

2r3
13
·2(ξ+1−α)+ 1−α

2r3
23
·2(ξ−α)

)
∂ξ (ξL2 , 0, 0, 0) = f (ξL2 , 0),

where f (ξ, η) =
−3α

r4
13

1
2
√
(ξ + 1 − α)2 + η2

· 2(ξ + 1 − α)(ξ + 1 − α) +

+
α

r3
13

+
−3(1 − α)

r4
23

1
2
√
(ξ − α)2 + η2

· 2(ξ − α)(ξ − α) +
1 − α

r3
23

;

So: U1 =
−3α

r4
13

1
2
√
(ξL2 + 1 − α)2 + 0

· 2(ξL2 + 1 − α)(ξL2 + 1 − α) +
α

r3
13

+
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+
−3(1 − α)

r4
23

1
2
√
(ξL2 − α)2 + 0

· 2(ξL2 − α)(ξ − α2) +
1 − α

r3
23

.

Using r23 = −α + ξL2 , r13 = 1 − α + ξL2 = r23 + 1:

U1 = −2 ·
( α

r3
13

+
1 − α

r3
23

)
= −2c2, where c2 = (

α

r3
13

+
1 − α

r3
23

).

• U2 = ∂2 H2
∂η ∂η (ξL2 , 0, 0, 0) =

∂

(
Pξ+

α

2r3
13

·2η+
1 − α

2r3
23

·2η

)
∂η (ξL2 , 0, 0, 0) = f (ξL2 , 0),

where f (ξ, η) =
−3α

r4
13

1
2
√
(ξ + 1 − α)2 + η2

· 2ηη +

+
α

r3
13

+
−3(1 − α)

r4
23

1
2
√
(ξ − α)2 + η2

· 2ηη +
1 − α

r3
23

;

So: U2 =
−3α

r4
13

1
2r13

· 2(0)(0) +
α

r3
13

+
−3(1 − α)

r4
23

1
2r23

· 2(0)(0) +
1 − α

r3
23

=

=
α

r3
13

+
1 − α

r3
23

= c2. Using the same definition of c2 = (
α

r3
13

+
1 − α

r3
23

).

Going back to the characteristic polynomial: PJHess(H2(ξL2 ,0,0,0))(λ) = λ4 + (2 −
2c2 + c2)λ2 + 1 + 2c2 − c2 +−2c2

2 = λ4 + (2 − c2)λ2 + 1 + c2 − 2c2
2.

Now we search the eigenvalues: PJHess(H2(ξL2 ,0,0,0))(λ) = 0 ⇒ λ2 =
c2 − 2 ±

√
9c2

2 − 8c2

2
.

Using c2 > 1,
c2 − 2 +

√
9c2

2 − 8c2

2
> 0 and

c2 − 2 −
√

9c2
2 − 8c2

2
< 0.

This means there are two real eigenvalues (λ1, λ2 ∈ R) (one positive and one neg-
ative), and two pure imaginary eigenvalues (λ3, λ4 ∈ C \ R). This as we know
means L2 is unstable, and it is a (centre × centre × saddle). Let’s see the eigenvec-
tors associated with these eigenvalues.
To do that, we first examine the matrix:

M =


−λ 1 1 0
−1 −λ 0 1
2c2 0 −λ 1
0 −c2 −1 −λ

 =

(
Aλ I2

B Aλ

)
, where:

Aλ =

(
−λ 1
−1 −λ

)
, B =

(
2c2 0
0 −c2

)
.

Next, we want to solve the system:

M · (ξ, η, Pξ , Pη)
T = 0,

which corresponds to finding the kernel of M. To do this, we can solve:
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(B − A2
λ)

(
ξ

η

)
= 0 and then

(
Pξ

Pη

)
= −Aλ

(
ξ

η

)
.

Now, solving the equation (B − A2
λ) · (ξ, η)T = 0, we get:(

2c2 − λ2 + 1 2λ

−2λ −c2 − λ2 + 1

)(
ξ

η

)
= 0,

which leads to the system:{
(2c2 − λ2 + 1)ξ = −2λη

−2λξ = (c2 + λ2 − 1)η
.

If we set ξ = 2λ, then η = −2c2 + λ2 − 1. Solving for Pξ and Pη , we have:(
λ −1
1 λ

)(
2λ

−2c2 + λ2 − 1

)
=

(
Pξ

Pη

)

which results in: Pξ = 2c2 + λ2 + 1, Pη = (−2c2 + 1)λ + λ3. Therefore, the kernel
of M is:

Ker(M) =

〈(
2λ,−2c2 + λ2 − 1, 2c2 + λ2 + 1, (−2c2 + 1)λ + λ3

)〉
.

And this is the eigenvector related to the eigenvalue λ.
In the third direction, we need to study the matrix:

JHess(H3(ν0, Pν0)) =

(
0 − ∂2 H

∂ν ∂ν

1 0

)
.

PJHess(H3(ν0,Pν0)) = λ2 + ∂2 H
∂ν ∂ν . Now, if we search the roots to find the eigenvalues

we get: λ = ±
√
− ∂2 H

∂ν ∂ν , meaning we have two purely imaginary eigenvalues and
since the real part is 0 this behaves as an undamped oscillator.

With this we have studied the stability for L2.
In a similar way we could see the other collinear points also have two real and

two purely imaginary eigenvalues and a similar stability.
To look at the stability of the equilateral points we use that we know them

as a function of α and finding the characteristic polynomial for the two cases we

get they are stable if (1 − α) ≤ α1, and unstable if α1 < (1 − α) ≥ 1
2

. Where

α1 =
1
2
(1 −

√
69/9), this is called Routh’s critical mass ratio.



Chapter 4

Periodic orbits

We are going to search periodic orbits of the system (2.20) near the equilibrium
points found in the previous chapter.

4.1 Existence of periodic orbits near equilibrium points

Definition 4.1. (Continuation of a periodic solution)
Assume that the differential equations depend on some parameters, so consider

ẋ = f (x, ν, t), (4.1)

where f : O × Q × R → Rm is smooth, O (the domain) is open in Rm, and Q (the
parameter space) is open in Rk. The general solution φ(t, ξ, ν) is smooth in the parameter
ν as well.

Now let the solution φ(t, ξ ′, ν′) be T-periodic. A continuation of this periodic solution
is a pair of smooth functions u(ν), τ(ν), defined for ν near ν′ such that u(ν′) = ξ ′,
τ(ν′) = T, and φ(t, u(ν), ν) is τ(ν)-periodic.

Definition 4.2. A periodic solution is elementary if +1 is an eigenvalue of the monodromy
matrix ∂φ(T,ξ,ν)

∂ξ with multiplicity one for a general autonomous differential equation and
with multiplicity two for a system with a nondegenerate integral.

Proposition 4.3. An elementary periodic solution in a system with a nondegenerate inte-
gral can be continued.

We are not going to prove it because it requires the use of topics not relevant
to this work, the proof can be found in (Reference [2] page 226.)
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Theorem 4.4. (Lyapunov center theorem)
Let the system ẋ = f (x) admit a nondegenerate integral and let xe be an equilibrium point
of the system with eigenvalues ±θi, λ3, ..., λm where θi ̸= 0 and is a pure imaginary.
If λj

θi j = 2, ..., m is never an integer, then there exists a one parameter family of peri-
odic orbits emanating from the equilibrium point and where approaching the equilibrium
point the periods of the periodic orbits tend to 2π

θ and the nontrivial multipliers tend to

exp( 2πλj
θ ) j = 3, ..., m.

Proof. We consider, without loss of generality, that xe = 0 is the equilibrium point
and that f (x) = Ax + g(x). Then f (0) = 0 ⇒ g(0) = 0 and if we scale the
problem to y = ϵx the equation becomes: ẏ = Ay + g(ϵx) and since we consider ϵ

a small parameter, we get ẏ = Ay+ = (ϵ). When ϵ = 0, the system is linear with
eigenvalues ±θi, so it has a periodic solution of period 2π

θ of the form exp(At)a
where a is a fixed nonzero vector. The multipliers of this periodic solution are the
eigenvalues of exp

(
A 2π

ω

)
: 1, 1, exp

(
2πλj

ω

)
.

This means the periodic solution is elementary and using Proposition 4.3 it can be
continued. So since ϵ is near 0, we have u(ϵ), τ(ϵ), such that u(0) = exp(At)a,
τ(0) = 2π

θ , and φ(t, u(ϵ), ϵ) is τ(ϵ)-periodic. We have a periodic orbit of the form
u(ϵ) = exp(At)a+O(ϵ). If we undo the scaling we get u(ϵ) = ϵ exp(At)a+O(ϵ2).
And this is our one parameter family of periodic orbits.

4.2 Finding the family of periodic orbits

We are going to start searching the orbit in two dimensions, so we consider the
system with H2(ξ, η, Pξ , Pη).
First we are going to see a method to find a periodic orbit that goes through a
point in the η = 0 axis near L2:

4.2.1 Finding a periodic orbit going through (ξ0, 0)

Definition 4.5. We define the map P : R4 × R → R4 such that P(ξ0, η0, Pξ0, Pη0, T) =
(ξ(T), η(T), Pξ(T), Pη(T)), where (ξ(t), η(t), Pξ(t), Pη(t)) is the solution to the system

with H2 =
1
2
(P2

ξ + P2
η ) + ηPξ − ξPη −

α

r13
− 1 − α

r23
(Equation (3.3)), and initial condi-

tions (ξ0, η0, Pξ0, Pη0) at time t.

Proposition 4.6. If we have a periodic orbit (ξ(t), η(t), Pξ(t), Pη(t)) near L2, if it crosses
the η axis at time ti (η(ti) = 0), at that moment, Pξ(ti) = 0.
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Proof. We are going to prove it by contradiction: Let’s suppose we have a orbit
(ξ(t), η(t), Pξ(t), Pη(t)) such that at time ti is (ξi, 0, Pξi, Pηi), Pξi ̸= 0. Using the sym-
metry described in section 2.5, we would have a orbit (ξ(t),−η(t),−Pξ(t), Pη(t)),
that at time ti : would be(ξi, 0,−Pξi, Pηi). This would mean we have two periodic
solutions (see Figure 4.1) that go through the same point but are different and this
is contradictory with Theorem 4.4 that states there is a one parameter family of
periodic orbits.

Figure 4.1: Case Pξ(ti) ̸= 0 / CasePξ(ti) = 0.

Corollary 4.7. If we have a periodic orbit (ξ(t), η(t), ξ̇(t), η̇(t)) near L2, if it crosses the
η axis at time ti (η(ti) = 0), at that moment, ξ̇(ti) = 0.

Proof. If η(ti) = 0 and Pξ(ti) = 0, then ξ̇(ti) = Pξ(ti) + η(ti) = 0.

We are going to use the system with (ξ, η, ξ̇, η̇) to simplify things, this means
we are going to be working with the system 2.20 in two dimensions:

ξ̈ − ξ − 2η̇ = − α

r3
13
(1 − α + ξ) +

1 − α

r3
23

(α − ξ),

η̈ − η + 2ξ̇ = − α

r3
13

η − 1 − α

r3
23

η.
(4.2)

Using the symmetry we are going to search half orbits, so we want as initial
conditions ξ0 = ξ0, η0 = 0, ξ̇0 = 0 (using Corollary 4.7), η̇0 = η̇0. And consider
(ξ(t), η(t), ξ̇(t), η̇(t)) the solution of the system (4.2) with these initial conditions.
So, considering we have a fixed ξ0, we have all of the initial conditions except for
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η̇0. We also have T as a variable. And to find a half periodic orbit we want a T, η̇0

such that η(T) = 0 ⇒ ξ̇(T) = 0.
For each η̇0 we are going to find Tm such that η(Tm) = 0 (**).
Then we see we have T fixed so we can put ξ̇(Tm) as a function of η̇0 so f (η̇0) =

ξ̇(Tm). So, (ξ0, 0, 0, η̇0) → Tm → (ξ(Tm), 0, f (η̇0), η̇(Tm)). If we find a 0 of this
function (*) we have found all the initial conditions of a half periodic orbit and we
have found the initial conditions of a periodic orbit of period 2Tm.

(*) To find a 0, since we would have a difficult time finding f ′(η̇0), we are going
to use the secant method. So, if we have η̇00, η̇01 near the root of f using the
secant method we get an approximation of η̇0 such that f (η̇0) = 0.
Reminder: The secant method is an iterative numerical method for finding a
zero of a function f . Given two initial values x0 and x1, the method recurs
in the following way: xn = xn−1 − f (xn−1) · xn−1−xn−2

f (xn−1)− f (xn−2)
. This method has

order of convergence φ = 1+
√

5
2 ≈ 1.618 if the initial values are close enough

to the root and the root is simple.

(**) Let’s suppose now we have everything except for Tm fixed and we want
to find Tm such that η(Tm) = 0. So we want a 0 of the function η(Tm).
We are going to use the Newton-Raphson method. So given an initial Tm0,

Tm1 = Tm0 −
η(Tm0)

η̇(Tm0)
, ... until η(Tmi) < ϵ where ϵ is the desired precision.

Reminder: The Newton-Raphson method is an iterative numerical method
for finding a zero of a differentiable function. Given an initial value x0 the
method recurs in the following way: xn+1 = xn − f (xn)

f ′(xn)
.

The method will usually converge, provided x0 is close enough to the un-
known zero, and that f ′(x0) ̸= 0. Furthermore, for a zero of multiplicity 1,
the convergence is at least quadratic.

We see that this gives us a method (we are going to call it method 1) to find
a periodic orbit going through (ξ0, 0) (given we have η̇00, η̇01 close enough to the
root of f):

1. Using the Taylor method compute the orbit of the system with initial condi-
tions (ξ0, 0, 0, η̇00) until the first time step in which η is negative and take that
as T00. With this Taylor you also get η(T00), η̇(T00), (that will be needed to
do the step of the Newton-Raphson method). Then compute T01 using (**).
Use Taylor to integrate from T00 until T01 to get (η(T01), η̇(T01)) and repeat
until you have a good approximation of T0 and ξ̇(T0).

2. Repeat step 1. with initial conditions (ξ0, 0, 0, η̇01) to get a T1 and ξ̇(T1).

3. Do a step of the secant method (*) defining η̇02 = η̇01 − ξ̇(T1) ·
η̇01 − η̇00

ξ̇(T1)− ξ̇(T0)
.
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4. Repeat step 1. with initial conditions (ξ0, 0, 0, η̇02) to get a T2 and ξ̇(T0).

5. Repeat 3. and 4. until ξ̇(Ti) < ϵ Then we got this η̇0 .

4.2.2 Extending to other periodic orbits

Let’s suppose we have a periodic orbit with initial condition (ξ0, 0, 0, η̇0) and we
want to find a periodic orbit going through (ξ1, 0) ξ1 = ξ0 + h1 where h1 is small
enough. We are going to take as the two initial conditions for the value ξ1: η̇10 = η̇0

and η̇11 = η̇0 + h2 where h2 is small enough. If h1, h2 are small enough, using that
the system is continuous with respect to all initial conditions this would be good
approximations to η̇1 (such that the system with initial conditions (ξ1, 0, 0, η̇1) is a
periodic orbit.
Using method 1 with these initial conditions:η̇10 = η̇0 and η̇11η̇0 + h2 we can get
η̇1. Iterate to get all the periodic orbits needed.

4.2.3 Stability of periodic orbits

Consider the system ẋ = f (x, t) (in our case x ∈ R4) . If we know a periodic
orbit with period T we can consider the Poincare map: P(x0) = x(T; x0) (solution
to the system with initial condition x0 at time T).
We know x0 gives a periodic orbit if P(x0) = x0 so the stability of this orbit is
given by ∂P(x0)

∂x0
= ∂

∂x0
x(T; x0). Now we see that the system can be written as

∂
∂t x(t; x0) = f (x(t; x0), t).
Differentiating by x0 at both sides: ∂

∂x0
( ∂

∂t x(t; x0)) = ∂
∂x0

f (x(t; x0), t), using that

t, x0 are independent variables: ∂
∂t

[
∂

∂x0
x(t; x0)

]
= ∂

∂x0
f (x(t; x0), t), differentiating

the right side: ∂
∂t

[
∂

∂x0
x(t; x0)

]
= ∂

∂x ( f (x(t; x0), t))
[

∂
∂x0

x(t; x0)
]
.

If we call
[

∂
∂x0

x(t; x0)
]
= V we get the system V̇ = ∂

∂x ( f (x(t; x0), t))V. This is what
is called the variational system.
At t=0: ∂

∂x0
x(0; x0) = ∂

∂x0
x0 so V0 = Id. We need to solve both of the systems

together since ∂
∂x ( f (x(t; x0), t)) depends on x.

So we need to integrate:

ẋ = f (x, t),

V̇ =
∂

∂x
( f (x(t; x0), t))V,

x(0) = x0,

V(0) = Id,

, from t = 0 to t = T.

and then we found V(T) = ∂
∂x0

x(T; x0).
Note that in this case V is a 4 × 4 matrix. Also ∂

∂x ( f (x(t; x0), t)) = JHess(H2)
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defined in equation(3.4). So the system is:

ξ̈ − ξ − 2η̇ = − α

r3
13
(1 − α + ξ) +

1 − α

r3
23

(α − ξ),

η̈ − η + 2ξ̇ = − α

r3
13

η − 1 − α

r3
23

η,

V̇ = JHess(H2)V.

Then we need to get the eigenvalues of V and if the module of all eigenvalues is
less than 1 then it is a stable orbit, if its greater than 1 is unstable.

There are some theorems about these eigenvalues that are going to help us
better understand the stability of these orbits. The next result has already been
seen and proved in the degree of mathematics:

Theorem 4.8 (Liouville’s formula). Consider the n-dimensional first-order homoge-
neous linear differential equation

Ṁ = A(t)M,

on an interval I of the real line, where A(t) for t ∈ I denotes a square matrix of dimension
n with real or complex entries:A = {aij}i,j∈[1,n]. Then if we consider the solution M(t),

det(M(t)) = det(M(t0)) · exp
( ∫ t

t0

trA(s)ds
)

∀t, t0 ∈ I.

Where trA(s) = ∑n
i=1 aii(s).

Theorem 4.9. The product of all the eigenvalues of the variational equations V is 1.

Proof. The system V̇ = ∂
∂x ( f (x(t; x0), t))V is of the type Ṁ = A · M where A, M

are matrices, (in this case 4 × 4). Using Liouville’s formula (Theorem 4.8) we get:
det(V(T)) = det(V(0)) · exp

( ∫ T
0 tr f (x(s; x0), s)ds

)
.

In this case tr f (x(s; x0)) = 0 ∀s. Then det(V(T)) = det(V(0)) · exp(0) = det(V(0)) =
det(Id) = 1. Then we now λ1 · ... · λ4 = det(V(T)) = 1.

Theorem 4.10. Two of the eigenvalues are exactly 1, so without loss of generality λ1 =

λ2 = 1.

Proof. This was part of the proof of Theorem 4.4, when seeing the periodic solution
is elementary.
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4.2.4 Extending to the third dimension

If we know consider (ξ, η, ν, ξ̇, η̇, ν̇) and the system (2.20):

ξ̈ − ξ − 2η̇ = − α

r3
13
(1 − α + ξ) +

1 − α

r3
23

(α − ξ),

η̈ − η + 2ξ̇ = − α

r3
13

η − 1 − α

r3
23

η,

ν̈ = − α

r3
13

ν − 1 − α

r3
23

ν.

we can use everything we have done with added initial conditions ν0 = 0,
ν̇0 = 0.

Note that we are still searching for planar orbits and that’s why all the work
done still holds, we are just adding the influence of this third dimension since
we are interested in a 3D problem. Then the only thing we need to take an extra
attention is to the stability and the eigenvalues of V since in this case we will have
6. It is easy to see that we are just adding to extra eigenvalues with module = 1:
|λ5| = |λ6| = 1. This is due to the stable nature of the ν coordinate discussed in
section 3.2.

To put it in a different way the orbits are going to be the same with ν(t) =

Pν = 0 ∀t, and the stability is going to be the same.
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Chapter 5

The James-Webb telescope

We want to apply this knowledge to the system Sun-Earth to find the points
and orbits we discussed previously, using the Taylor method, and approximate
the orbit of the James Webb telescope.

5.1 Characteristics needed

There are several conditions that would be needed for a telescope like the
James Webb, we are going to mention some of them:

1. First you want it to be relatively close to the earth so that it can transfer
information faster and easier. But also we don’t want it to be that close to the
earth because then it could be in a zone with a lot of spacial rests and also have
interferences with electromagnetic waves.

2. As mentioned in the introduction the James Webb telescope uses infrared
technology unlike the previous telescopes and some of its components need to
be close to 0 Kelvin (−273◦C) to work correctly, this is why the James Webb is
equipped with a giant sun shell that protects it from the heat of the sun. This
means the chosen orbit needs to be stable from respect to the sun otherwise the
sun shell would need to change position very often.

3. It needs to have a clear vision of the space to be as useful as possible and
also be directed to all kinds of directions to gather information.

4. It should need the least amount of corrections possible to be in the chosen
orbit (ideally a stable orbit but we will see that is not possible).
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5.2 Calculating the orbit

Mostly conditions 2 and 3 make it impossible for the James Webb to orbit
around the earth as the Hubble or other previous telescopes. Then we will con-
sider the point L2 which we already discussed on the previous chapter and is
the closest stability point to the earth. This would mean the telescope is orbiting
around the sun together with the earth at a distance that will be discussed in the
following section, during the year it would get to every direction and the sun shell
wouldn’t need that many movement to always protect the telescope.
With this we have that L2 is a good point for conditions 1, 2 and 3.

5.2.1 The L2 point

In this case we are going to use the Sun as our m1 and the Earth as m2.

So: m1 ≈ 1.988416 · 1030 kg, and m2 ≈ 5.9722 · 1024 kg.

Then α =
m1

m1 + m2
≈ 1.988416 · 1030

1.988416 · 1030 + 5.9722 · 1024 ≈ 0.9999969966,

and 1 − α ≈ 3.0034 · 10−6.

Using section 3.1, the distance r23 can be obtained by solving the equation:
0 = −r5

23 + (−α − 2)r4
23 + (−2α − 1)r3

23 + (1 − α)r2
23 + (2 − 2α)r23 + 1 − α,

in this case:
0 = −r5

23 +(−0.9999969966− 2)r4
23 +(−2 · 0.9999969966− 1)r3

23 + 3.0034 · 10−6r2
23 +

2 · 3.0034 · 10−6r23 + 3.0034 · 10−6.
Using a Newton-Raphson method we get r23 ≈ 0.01003.
Obviously this distance to the earth is in units such that r = 1. If we want the

distance km, we use the conversion of units: 0.01003 · rTS

1
where rTS is the distance

Earth-Sun in km, this distance is variable but we are going to take as an average
rTS = 1.496 · 108km = 1AU. So r23 = 0.01003 · 1.496 · 108 = 15004679 ≈ 1.5 · 106km.
Now we know that ξ ≈ 0.01003 + α ≈ 0.01003 + 0.9999969966 ≈ 1.010027. So
L2 ≈ (1.010027, 0, 0

)
.

As discussed we could also get L1, L3 solving a similar equation but since those
points are not interesting for us, we will not do that.

The equilateral points we will give since they are easy to find:

L4 ≈
(−1 + 2α

2
,

√
3
4

, 0
)
≈
(−1 + 2 · 0.9999969966

2
,

√
3
4

, 0
)
≈
(

0.4999969966,

√
3
4

, 0
)

.

L5 ≈
(

0.4999969966,−
√

3
4

, 0
)

.
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Figure 5.1: Libration points Sun-Earth.

Figure 5.2: Close up L2 to earth.

We also can calculate c2 = (
α

r3
13
+

1 − α

r3
23

) = (
0.9999969966
(1 + 0.01003)3 +

1 − 0.9999969966
0.010033 ) =

3.947032. With this we can get the eigenvalues of the Hessian on the first two di-
rections:

λ2 =
3.947032 − 2 ±

√
9 · 3.9470322 − 8 · 3.947032

2
.

So: λ1 ≈ i2.0586 λ2 ≈ −i2.0586 λ3 ≈ 2.48695 λ4 ≈ −2.48695.
As we already saw in the previous chapter this point is very unstable and

would not be easy to maintain (condition 4), but as we said this would be a great
point to have our telescope, that’s why we are going to search for periodic orbits
near this point:
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5.2.2 Periodic orbits 2D

We are going to find periodic orbits in 2 dimensions. First some important
comments on the programs:

• 1. We see that in "equations" the variables are called (x, y, px, py) instead of
(ξ, η, ξ̇, η̇) but it is just notation, px doesn’t mean Pξ .

• 2. In some places the programs calculate r1, r2 and check r1 > 4.65 · 10−3; r2 >

2.57 · 10−3. This is because the radii of the sun is 695500km and we are using
UA since 1UA is the distance from earth to de sun. 1UA = 1.496 · 108km.
Then rS = 695500/1.496 · 108 ≈ 4.65 · 10−3UA. Using the same, the dis-
tance from earth to the moon is 384400km so rEM = 384400/1.496 · 108 ≈
2.57 · 10−3UA. Of course it makes no physical sense for the telescope to go
inside the sun or the orbit of the moon around the earth and that is why we
stop in these cases.

We are going to start by searching a periodic orbit with ξ0 = 1.0101, so approx.
7, 3 · 10−5 units to the right of L2. We use "Main 1" that using the method described
in [**] in subsection 4.2.1 that asks for a Pη0 and returns P(1.0101, 0, 0, Pη0, T) such
that η(T) = 0, specifically we are interested in Pξ(T), we manually try to find two
values of Pη0 such that Pξ(T) changes its sign and is near 0. We found:
If Pη0 = −0.00045, then Pξ(T) = −1.52117 · 10−4,
If Pη0 = −0.00042, then Pξ(T) = 2.33900 · 10−4.

With the given two initial values we proceed to run "Main 2" that does method
1 in subsection 4.2.1 to find a better approximation of Pξ0. This program gives us
the approximation: Pξ0 = −4.35008 · 10−4 → Pξ(T) = 4.87519 · 10−13. If we plot
the orbit with these initial conditions using gnuplot we get Figure 5.3.

Figure 5.3: Half Periodic orbit with ξ0 = 1.0101.
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Observe that L2 is in the middle so as we wanted this is a periodic orbit around
L2. We also see that the Taylor software returned us a polygonal shape since it
only calculated 5 points of the orbit, these shows how efficient are the step size
choices described in subsection 1.2.2. We can manually make it give a smoother
orbit.

Let’s see what happens if we do a Taylor with this initial conditions and period
2T. At the end of "Main 2" it calculates this orbit with more smoothness and the
result is Figure 5.4:

Figure 5.4: Periodic orbit with ξ0 = 1.0101.

Now we are going to find other orbits of the family as described in subsection
4.2.2 to do that we use "Main 3". We choose h1 = 10−6 and h2 = 10−5 because with
a bit of testing we saw these values where small enough. The program (starting
with x0 = 1.0101), first goes away from L2 finding orbits until r2 < 2.57 · 10−3

since as mentioned it makes no sense to be close to the orbit of the Moon around
the Earth.

Then we find orbits closer to L2 until r3 < 2.57 · 10−5 (distance to L2) . Since,
though theoretically we have orbits as close as we want to L2, with the error we
accumulate we get weird behavior when trying to go closer. Also later we will see
those orbits are not interesting either.
This program outputs a list of (ξ0, η̇0, t) where (ξ0, 0, 0, η̇0) are the initial conditions
of a periodic orbit of period T = 2t for ξ0 ∈ [1.010063, 1.014307] every 0.000001.

By modifying this program we plotted some of the orbits and in Figure 5.5 we
can see them:



48 The James-Webb telescope

Figure 5.5: Family of orbits near L2

In this case the earth would be situated at (0.9999969966, 0), slightly at the
left of where the plot ends. When the orbits get closer to the earth the shape of
these seems to be modified, being clearly influenced by the proximity to one of
the primaries.

Let’s do a test on these results. We can see that when getting near the L2 the
last orbit has period 2 · 1.527224451 = 3.054448902, and by the Lyapunov center

theorem (Theorem 4.4) the period tends to
2 · π

θ
, where λ1 = θi ⇒ θ = 2.0586. So:

2 · π

3.054448902
= 3.0521. This means the results of "Main 3" are consistent with the

theory so we are sure they work as intended.

5.2.3 Stability of these periodic orbits

To study the stability of the periodic orbits we are going to use "Main 4" to
apply what we saw on subsection 4.2.3.

Here is a short explanation of what it does:
It reads each line of the output of "Main 3":(ξ0, η̇0, t) from a file and then it uses

the jets option of the Taylor software to compute the system :

ξ̈ − ξ − 2η̇ = − α

r3
13
(1 − α + ξ) +

1 − α

r3
23

(α − ξ),

η̈ − η + 2ξ̇ = − α

r3
13

η − 1 − α

r3
23

η,

V̇ = JHess(H2)V.
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with initial conditions (ξ(0) = ξ0, η(0) = 0, ξ̇(0) = 0, η̇(0) = η̇0, V(0) = Id) until
time T = 2t.
(Note that using this option "jets" in the 4 variable system is the same as using the
normal Taylor for the 20 variables system that includes the V).
Then the program uses a library called lapack that we used to calculate the eigen-
values and eigenvectors of a matrix.

Once we have the eigenvalues of V(T), we are going to get 4 of them, and
two of them are exacly 1 (Theorem 4.10). Then "Main 4" gets the module of each
eigenvalue and finds the maximum for each orbit (expressed with ξ0). Then doing
a graph of these maximum values of |λ| we get the following:

Figure 5.6: Highest module of the eigenvalue for each x0.

We are going to do another test: The module of the greatest eigenvalue of the
closest orbit to L2 we calculated is |λ| = 1975.15634. The unstable eigenvalue
on the point L2 is λ3 = 2.48695. So when the orbits tend to L2 the module of
the eigenvalue should increase by λ3 propagated during the period. To know the
module of the eigenvalue of V(t) we should solve the system ẋ = λ3x. if |λ|(t) =
exp(λ3t) is a solution to the system, |λ|(T) = exp(λ3T) = exp(2.48695 · 3.0521) =
1979.1448 (since T tends to 3.0521 using Theorem 4.4). This means the results of
"Main 4" are consistent with the theory so we are sure they work as intended.

With this we also saw that the instability is propagated during the period and
to know the value of instability we are more interested in what we called λ3 than
|λ|. Now |λ| = exp(λ3T) so λ3 = log(|λ|)

T . Modifying a bit the program we are
going to plot these values. In Figure 5.7 we can see the results:
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Figure 5.7: log(|λ|)
T for each x0

We want a minimum of these numbers because the higher this relation is,
greater is the instability. But we see that it is strictly decreasing the more we get
away from L2, (so the closest to earth). But in condition 1 we mentioned we don’t
want to be so close to earth. This arises the question: Where is the optimal x0? We
are going to answer in section 5.4. As said in section 4.2.3 neither the orbits or the

stability of these are going to change when we take the third dimension (ν) into
account, that’s why we studied the orbits in 2D.

5.3 Other factors we didn’t take into account

The mass o f the James-Webb telescope is approx 6200kg that relative to our
primaries is: mT/mJ = 9.6326 · 1020; mS/mJ = 3.2072 · 1026. This means the
assumption we made of the problem being a restricted three body problem instead
of normal three body problem is very reasonable.

On the other hand we also did not take into account other astronomical objects
like the Moon that might influence the system especially on the orbits that are
near the orbit of the moon.

Also we supposed for the earth to have a circular orbit around the sun but in
reality we know it has an eccentricity of approx 0.0167086. This is a low eccentric-
ity so the assumption of the orbit being rounded is not that far-fetched but is not
precise either.

There is one last factor we omitted, as we already said the James Webb has
a big sun shell to protect it from the heat. This sun shell is constantly receiving
photons that, although they have no mass, they apply a force that is not negligible
due to the size of the sun shell.
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5.4 Short explanation on the final orbit

We previously asked the question: Where is the optimal x0?.
To answer that we need to understand how instability affects a mission like

this, if a orbit is unstable you need to do correction movements to maintain the
orbit. The more instability you have, you need more frequent and bigger correc-
tions.

These movements need for weight to be propelled out of the satellite since
there is no friction in space, which means the only way to move is by Newton’s
third law.

Since you have a limited amount of mass (combustible), when you are out of
combustible the mission will end. This means if you have a desired lifetime and a
desired mass carried you can evaluate how unstable of a orbit you can be in.

The instability together with other factors made the NASA scientists realize
the orbits we studied where not good enough.

To solve this problem, they used the third dimension so (ν, ν̇). In this third
dimension there is also periodic orbits that are also not good enough. The solution
they came up with is what is called a Lissajous orbit that is a superposition of two
perpendicular oscillations with different periods. This is what is called a semi-
periodic orbit.

To better understand this we need to imagine that in the plane we studied:
(ξ, η) it keeps the periodic orbit we studied with period T and in the ν direction it
keeps another periodic orbit of period T′ ̸= T that makes so that it does not match
but is contained in a kind of Torus. These orbits are not stable but require a low
effort to maintain.
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Codes

Equations:

1 extern alpha ;
2

3 r1= s q r t ( ( x+1−alpha ) * ( x+1−alpha ) +y * y ) ;
4 r2= s q r t ( ( x−alpha ) * ( x−alpha ) +y * y ) ;
5

6 x ’=px ;
7 y ’=py ;
8 px ’=x+2*py−( alpha * ( x+1−alpha ) ) /( r1 * r1 * r1 ) −((1 − alpha ) * ( x−alpha ) ) /( r2 * r2 * r2

) ;
9 py ’=y−2*px −y * ( alpha /( r1 * r1 * r1 ) +(1− alpha ) /( r2 * r2 * r2 ) ) ;

57
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Main 1:

1 # include <math . h>
2 # include < s t d i o . h>
3

4 # include " t a y l o r . h"
5

6 double alpha ;
7

8 i n t main ( void )
9 {

10 double t , t f , x [ 4 ] , r1 , r2 , CJ , x0 , h , yn1 , xn1 , yn2 , xn2 , x3 , yn ;
11 i n t j , i , v , d i r ;
12

13 scanf ( "%l e " , &x0 ) ;
14 scanf ( "%l e " , &x3 ) ;
15 alpha =0 .9999969966 ;
16 d ir =1;
17 t =0 ;
18 t f =1000000000;
19 x [0 ]= x0 ;
20 x [ 1 ] = 0 ;
21 x [ 2 ] = 0 ;
22 x [3 ]= x3 ;
23

24 do {
25 p r i n t f ( " %20.15 f %20.15 f %20.15 f \n" , t , x [ 0 ] , x [ 1 ] ) ;
26 v= t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) ;
27 i f ( v==1) {
28 p r i n t f ( " e r r o r tay lor , t f no prou gran " ) ;
29 break ;
30 }
31 } while ( x [1] <=0) ;
32

33 /* Taylor per r e f i n a r t */
34 do {
35 h=−x [1 ]/ x [ 3 ] ;
36 i f ( h<0) {
37 d i r = −1;
38 }
39 e l s e { d i r = 1 ; }
40 t f = t +h ;
41 while ( t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) != 1) ;
42 } while ( fabs ( x [ 1 ] ) >1e −15) ;
43 p r i n t f ( " %20.15 f %20.15 f %20.15 f \n" , t , x [ 0 ] , x [ 1 ] ) ;
44 p r i n t f ( "%l e \n" , x [ 2 ] ) ;
45 re turn 0 ;
46 }
47
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Main 2:

1 # include <math . h>
2 # include < s t d i o . h>
3

4 # include " t a y l o r . h"
5

6 double alpha ;
7

8 i n t main ( void )
9 {

10 double t , t f , x [ 4 ] , r1 , r2 , CJ , x0 , h , yn1 , xn1 , yn2 , xn2 , x3 , yn ;
11 i n t j , i , k , v , d i r ;
12

13 p r i n t f ( " x0?\n" ) ;
14 yn1 =0;
15 yn2 =0;
16 scanf ( "%l e " , &x0 ) ;
17 alpha =0 .9999969966 ;
18 t =0 ;
19 yn1 = −0.00045;
20 xn1 = −0.000152117256106;
21 yn2 = −0.00042;
22 xn2 =0.000233900252735 ;
23

24

25 /*metode secant */
26

27 k =0;
28 do {
29 t f =1000;
30 d i r =1;
31 k++;
32 yn=yn1−xn1 * ( ( yn1−yn2 ) /( xn1−xn2 ) ) ;
33 p r i n t f ( " yn=%l e \n" , yn ) ;
34 t =0 ;
35 x [0 ]= x0 ;
36 x [ 1 ] = 0 ;
37 x [ 2 ] = 0 ;
38 x [3 ]= yn ;
39 /* pas per t r o b a r un primer t */
40 do {
41 p r i n t f ( " %20.15 f %20.15 f %20.15 f %20.15 f \n" , t , x [ 0 ] , x [ 1 ] , x [ 2 ] ) ;
42 v= t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) ;
43 r1= s q r t ( ( x [0]+1 − alpha ) * ( x [0]+1 − alpha ) +x [ 1 ] * x [ 1 ] ) ;
44 r2= s q r t ( ( x [0] − alpha ) * ( x [0] − alpha ) +x [ 1 ] * x [ 1 ] ) ;
45 i f ( r1 <4.65 e−3 || r2 <4.25 e −5) {
46 p r i n t f ( " c o l i s i o \n" ) ;
47 }
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48 i f ( v==1) {
49 p r i n t f ( " e r r o r tay lor , t f no prou gran " ) ;
50 break ;
51 }
52 } while ( x [1] <=0) ;
53

54 /* Taylor per r e f i n a r t */
55 do {
56 h=−x [1 ]/ x [ 3 ] ;
57 i f ( h>0) {
58 d i r = −1;
59 }
60 e l s e { d i r = 1 ; }
61 t f = t +h ;
62 while ( t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) != 1) ;
63 } while ( fabs ( x [ 1 ] ) >1e −15) ;
64 p r i n t f ( " %20.15 f %20.15 f %20.15 f %20.15 f %20.15 f \n" , t , x [ 0 ] , x [ 1 ] , x [ 2 ] ,

x [ 3 ] ) ;
65 xn2=xn1 ;
66 yn2=yn1 ;
67 xn1=x [ 2 ] ;
68 yn1=yn ;
69 i f ( k==6) e x i t ( 0 ) ;
70 } while ( fabs ( x [ 2 ] ) >1e −12) ;
71 /* Ja he t r o b a t l a y ’ 0 : */
72 p r i n t f ( " y ’ _0= %.16 le , x ’ f=%l e , T= %.16 l e \n" , yn , xn1 , t ) ;
73

74 x [0 ]= x0 ;
75 x [ 1 ] = 0 ;
76 x [ 2 ] = 0 ;
77 x [3 ]= yn ;
78 t f =2* t ;
79 t =0 ;
80 d ir =1;
81 p r i n t f ( " %20.15 f %20.15 f %20.15 f %20.15 f %20.15 f \n" , t , x [ 0 ] , x [ 1 ] , x [ 2 ] ,

x [ 3 ] ) ;
82 do {
83 v= t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) ;
84 p r i n t f ( " %20.15 f %20.15 f %20.15 f %20.15 f %20.15 f \n" , t , x [ 0 ] , x [ 1 ] , x

[ 2 ] , x [ 3 ] ) ;
85 } while ( v ! = 1 ) ;
86 re turn 0 ;
87 }
88
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Main 3:

1 # include <math . h>
2 # include < s t d i o . h>
3

4 # include " t a y l o r . h"
5

6 double alpha ;
7

8 i n t main ( void )
9 {

10 double t , t f , x [ 4 ] , r1 , r2 , r3 , CJ , x0 , h , yn [ 2 ] , xn [ 2 ] , x3 , ym;
11 i n t j , i , k , v , d i r ;
12

13 x0 =1 .0101 −0 .000001 ;
14 alpha =0 .9999969966 ;
15 ym= −0.00043;
16

17 k =0;
18 do {
19 x0=x0 + 0 . 0 0 0 0 0 1 ;
20 yn [ 0 ] =ym;
21 yn [ 1 ] =ym+ 0 . 0 0 0 0 1 ;
22 f o r ( i =0 ; i <2 ; i ++) {
23 t =0 ;
24 t f =10000;
25 d i r =1;
26 x [0 ]= x0 ;
27 x [ 1 ] = 0 ;
28 x [ 2 ] = 0 ;
29 x [3 ]= yn [ i ] ;
30 do {
31 v= t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) ;
32 i f ( v==1) {
33 p r i n t f ( " e r r o r tay lor , t f no prou gran " ) ;
34 break ;
35 }
36 } while ( x [1] <=0) ;
37

38 /* Taylor per r e f i n a r t */
39 do {
40 h=−x [1 ]/ x [ 3 ] ;
41 i f ( h<0) {
42 d i r = −1;
43 }
44 e l s e { d i r = 1 ; }
45 t f = t +h ;
46 while ( t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) != 1) ;
47 } while ( fabs ( x [ 1 ] ) >1e −15) ;
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48 xn [ i ]= x [ 2 ] ;
49 }
50

51 /*metode secant */
52 do {
53 t f =1000;
54 d i r =1;
55 ym=yn[0] − xn [ 0 ] * ( ( yn [0] − yn [ 1 ] ) /(xn [0] − xn [ 1 ] ) ) ;
56 t =0 ;
57 x [0 ]= x0 ;
58 x [ 1 ] = 0 ;
59 x [ 2 ] = 0 ;
60 x [3 ]=ym;
61 /* pas per t r o b a r un primer t */
62 do {
63 v= t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) ;
64 r1= s q r t ( ( x [0]+1 − alpha ) * ( x [0]+1 − alpha ) +x [ 1 ] * x [ 1 ] ) ;
65 r2= s q r t ( ( x [0] − alpha ) * ( x [0] − alpha ) +x [ 1 ] * x [ 1 ] ) ;
66 i f ( r1 <4.65 e−3 || r2 <2.57 e −3) {
67 p r i n t f ( " c o l i s i o \n" ) ;
68 }
69 i f ( v==1) {
70 p r i n t f ( " e r r o r tay lor , t f no prou gran " ) ;
71 break ;
72 }
73 } while ( x [1] <=0) ;
74

75 /* Taylor per r e f i n a r t */
76 do {
77 h=−x [1 ]/ x [ 3 ] ;
78 i f ( h<0) {
79 d ir = −1;
80 }
81 e l s e { d i r = 1 ; }
82 t f = t +h ;
83 while ( t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) !=

1) ;
84 } while ( fabs ( x [ 1 ] ) >1e −15) ;
85 xn [1 ]= xn [ 0 ] ;
86 yn [ 1 ] = yn [ 0 ] ;
87 xn [0 ]= x [ 2 ] ;
88 yn [ 0 ] =ym;
89 } while ( fabs ( x [ 2 ] ) >1e −12) ;
90 /* Ja he t r o b a t l a y ’ 0 : */
91 p r i n t f ( " x_0=%.16 l e y ’ _0= %.16 le , x ’ f=%l e , T= %.16 l e \n" , x0 , ym, xn

[ 0 ] , t ) ;
92 r2 =( x [0] − alpha ) ;
93 p r i n t f ( " %.16 l e \n" , r2 ) ;
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94 k++;
95 p r i n t f ( "%d \n" , k ) ;
96 } while ( r2 >2.57 e −3) ;
97

98

99

100 j =0 ;
101 ym= −0.00043;
102 x0 =1 .0101+0 .000001 ;
103 do {
104 x0=x0 − 0 . 0 0 0 0 0 1 ;
105 yn [ 0 ] =ym;
106 yn [ 1 ] =ym+ 0 . 0 0 0 0 1 ;
107 f o r ( i =0 ; i <2 ; i ++) {
108 t =0 ;
109 t f =10000;
110 d i r =1;
111 x [0 ]= x0 ;
112 x [ 1 ] = 0 ;
113 x [ 2 ] = 0 ;
114 x [3 ]= yn [ i ] ;
115 do {
116 v= t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) ;
117 i f ( v==1) {
118 p r i n t f ( " e r r o r tay lor , t f no prou gran " ) ;
119 break ;
120 }
121 } while ( x [1] <=0) ;
122

123 /* Taylor per r e f i n a r t */
124 do {
125 h=−x [1 ]/ x [ 3 ] ;
126 i f ( h<0) {
127 d i r = −1;
128 }
129 e l s e { d i r = 1 ; }
130 t f = t +h ;
131 while ( t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) != 1) ;
132 } while ( fabs ( x [ 1 ] ) >1e −15) ;
133 xn [ i ]= x [ 2 ] ;
134 }
135

136 /*metode secant */
137 do {
138 t f =1000;
139 d i r =1;
140 ym=yn[0] − xn [ 0 ] * ( ( yn [0] − yn [ 1 ] ) /(xn [0] − xn [ 1 ] ) ) ;
141 t =0 ;
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142 x [0 ]= x0 ;
143 x [ 1 ] = 0 ;
144 x [ 2 ] = 0 ;
145 x [3 ]=ym;
146 /* pas per t r o b a r un primer t */
147 do {
148 v= t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) ;
149 r1= s q r t ( ( x [0]+1 − alpha ) * ( x [0]+1 − alpha ) +x [ 1 ] * x [ 1 ] ) ;
150 r2= s q r t ( ( x [0] − alpha ) * ( x [0] − alpha ) +x [ 1 ] * x [ 1 ] ) ;
151 i f ( r1 <4.65 e−3 || r2 <2.57 e −3) {
152 p r i n t f ( " c o l i s i o \n" ) ;
153 }
154 i f ( v==1) {
155 p r i n t f ( " e r r o r tay lor , t f no prou gran " ) ;
156 break ;
157 }
158 } while ( x [1] <=0) ;
159

160 /* Taylor per r e f i n a r t */
161 do {
162 h=−x [1 ]/ x [ 3 ] ;
163 i f ( h<0) {
164 d ir = −1;
165 }
166 e l s e { d i r = 1 ; }
167 t f = t +h ;
168 while ( t a y l o r _ s t e p _ r t b p 2 (&t , x , dir ,1 , −16 , −16 ,& t f ,NULL,NULL,NULL) !=

1) ;
169 } while ( fabs ( x [ 1 ] ) >1e −15) ;
170 xn [1 ]= xn [ 0 ] ;
171 yn [ 1 ] = yn [ 0 ] ;
172 xn [0 ]= x [ 2 ] ;
173 yn [ 0 ] =ym;
174 } while ( fabs ( x [ 2 ] ) >1e −12) ;
175 /* Ja he t r o b a t l a y ’ 0 : */
176 p r i n t f ( " x_0=%.16 l e y ’ _0= %.16 le , x ’ f=%l e , T= %.16 l e \n" , x0 , ym, xn

[ 0 ] , t ) ;
177 r3 =(−x [ 0 ] + 1 . 0 1 0 0 2 7 ) ;
178 p r i n t f ( " %.16 l e \n" , r3 ) ;
179 j ++;
180 p r i n t f ( "%d \n" , j ) ;
181 // i f ( k==2) e x i t ( 0 ) ;
182 } while ( r3 >2.3 e −5) ;
183

184 re turn 0 ;
185 }
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Main 4:

1 # include <complex . h>
2 # include <math . h>
3 # include < s t r i n g . h>
4 # include < s t d i o . h>
5 # include " t a y l o r . h"
6 # include " vaive . h"
7 double alpha =0 .9999969966 ;
8

9 i n t main ( void ) {
10 MY_JET j e t s [ 4 ] ;
11 double complex * vap , * * veps , * u ;
12 double t , t f , x [ 4 ] , * df [ 4 ] , s , r , max , mod;
13 i n t i , j , k , n , l ;
14 FILE * f i l e ;
15 char l i n e [ 5 0 0 0 ] ;
16 char * token ;
17 n=4;
18

19 f i l e =fopen ( " z . t x t " , " r " ) ;
20 i f ( f i l e ==NULL) {
21 p r i n t f ( " e r r o r opening f i l e \n" ) ;
22 re turn 1 ;
23 }
24 f o r ( i =0 ; i <n ; i ++)
25 {
26 df [ i ] = ( double * ) malloc ( n* s i z e o f ( double ) ) ;
27 i f ( df [ i ] == NULL) { puts ( " e r r o r 4 . " ) ; e x i t ( 1 ) ; }
28 }
29 vap=( double complex * ) malloc ( n* s i z e o f ( double complex ) ) ;
30 i f ( vap == NULL) { puts ( " e r r o r 0 . " ) ; e x i t ( 1 ) ; }
31 u=( double complex * ) malloc ( n* s i z e o f ( double complex ) ) ;
32 i f ( u == NULL) { puts ( " e r r o r 0 . " ) ; e x i t ( 1 ) ; }
33 veps =( double complex * * ) malloc ( n* s i z e o f ( double complex * ) ) ;
34 i f ( veps == NULL) { puts ( " e r r o r 3 . " ) ; e x i t ( 1 ) ; }
35 f o r ( i =0 ; i <n ; i ++)
36 {
37 veps [ i ] = ( double complex * ) malloc ( n* s i z e o f ( double complex ) ) ;
38 i f ( veps [ i ] == NULL) { puts ( " e r r o r 4 . " ) ; e x i t ( 1 ) ; }
39 }
40

41 t a y l o r _ i n i t i a l i z e _ j e t _ l i b r a r y ( ) ;
42 f o r ( j =0 ; j <4 ; j ++) I n i t J e t ( j e t s [ j ] ) ;
43

44 while ( f g e t s ( l i n e , s i z e o f ( l i n e ) , f i l e ) ) {
45 //remove \n
46 l i n e [ s t r cs pn ( l i n e , "\n" ) ] = 0 ;
47 //get f i r s t column by ,
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48 token= s t r t o k ( l i n e , " , " ) ;
49 x [0 ]= a t o f ( token ) ;
50 token= s t r t o k (NULL, " , " ) ;
51 x [3 ]= a t o f ( token ) ;
52 token= s t r t o k (NULL, " , " ) ;
53 t f =2* a t o f ( token ) ;
54 t =0 ;
55 // p r i n t f ("% l e %l e %l e \n " , x [ 0 ] , x [ 3 ] , t f ) ;
56 x [ 1 ] = 0 ;
57 x [ 2 ] = 0 ;
58 max=0;
59 p r i n t f ( " %.16 l e " , x [ 0 ] ) ;
60

61 t a y l o r _ m a k e _ i d e n t i t y _ j e t s ( j e t s , x , NULL,NULL) ;
62 while ( t a y l o r _ s t e p _ r t b p j e t (&t , x ,1 ,2 , −16 , −16 ,& t f ,NULL,NULL, j e t s ) != 1) ;
63

64 f o r ( i =0 ; i <4 ; i ++) {
65 f o r ( j =0 ; j <4 ; j ++) {
66 df [ i ] [ j ]= j e t s [ i ] [ j + 1 ] ;
67 // p r i n t f ( "%20.15 f " , df [ i ] [ j ] ) ;
68 }
69 // p r i n t f ( "\ n " ) ;
70 }
71 l =vaive ( df , n , vap , veps , ’ f ’ ) ;
72 f o r ( i =0 ; i <n ; i ++) {
73 mod=cabs ( vap [ i ] ) ;
74 i f (mod>max) {
75 max=mod;
76 }
77 }
78 p r i n t f ( " %.16 l e \n" , max) ;
79 }
80 re turn 0 ;
81 }


