
GRAU DE MATEMÀTIQUES

Treball final de grau

The role of poorly connected
layers in multiplex networks:
suitability and impact for the

study of human past

Autor: Clara Galceran Puig

Director: Dr. Xavier Jarque Ribera
Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, 15 de gener de 2025





Contents

Introduction iii

1 Networks 1
1.1 Matrix representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Algebraic connectivity . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Network quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Regular quotients . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Multilayer networks 13
2.1 Tensor representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Tensor flattening . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Matrix representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Network of layers . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Aggregate network . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Multiplex networks 23
3.1 Matrix representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Structural transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Coupling edges . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 The value of poorly connected layers . . . . . . . . . . . . . . 32
3.2.3 Convenience of adding a poorly connected layer . . . . . . . 35

3.3 Supra-walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Possible definitions for the Laplacian matrix . . . . . . . . . . 41

4 Multiplex approach in ancient regional transport infrastructures 43
4.1 Road and river networks . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Network quantification . . . . . . . . . . . . . . . . . . . . . . 44

i



4.1.2 Convenience of adding the river network . . . . . . . . . . . . 46

Bibliography 51



Abstract
This work explores the theoretical and practical implications of poorly con-

nected layers in multiplex networks, advancing their mathematical formalization
and application in historical research. Graph theory concepts are extended to
the multilayer network framework, focusing on structural transitions in two-layer
multiplex networks and the role of poorly connected layers in enhancing overall
connectivity. This framework is applied to analyze the evolution of ancient road
and river networks in Southern Etruria and Latium Vetus, showcasing the value
of the multiplex formalism in interpreting complex historical phenomena.

Key contributions include new proofs related to the algebraic connectivity of
two-layer multiplex networks and a new proposition of the definition of the Lapla-
cian matrix for supra walks, providing a basis for further research into these type
of networks.

Resum
Aquest treball explora les implicacions teòriques i pràctiques de la presència de capes

pobrament connectades en xarxes multiplex, avançant en la seva formalització matemàtica
i aplicació en la recerca històrica. Conceptes de teoria de grafs són estesos al marc de
les xarxes multicapa, centrant-se en transicions estructurals en xarxes multiplex de dues
capes i el rol de capes mal connectades en millorar la connectivitat total de la xarxa. Aquest
marc de treball és aplicat per analitzar l’evolució d’antigues xarxes de camins i rius del
Sud d’Etrúria i el Laci, mostrant així el valor del formalisme de les xarxes multiplex en
interpretar fenòmens històrics complexos.

S’aporten noves proves relacionades amb la connectivitat algebraica de xarxes mul-
tiplex de dues capes i una nova proposta per la definició de la matriu Laplaciana per
supra-camins, obrint la porta a futura recerca relacionada amb aquesta tipologia de xarxes.
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iv Introduction

Introduction

The natural and man-made world exhibit numerous of dynamics and phenom-
ena rooted on the relationships among individuals that conform them. In order
to analyze these relationships, a network framework serves as a powerful tool, of-
fering a comprehensive understanding of the complexity of the relationships and
providing insights into phenomena that may be challenging to understand if other
methods are used. This approach offers us an unified methodology for examining
vastly different types of relationships [1], ranging from communication networks
[2] to biological processes [3].

The mathematical study of networks began in 1736 with Leonhard Euler’s
work on the Seven Bridges of Köningsberg problem, which marked the bases of
graph theory. However, the application of these mathematical models to analyze
the dynamics and relationships of the world around us originated in the early 20th
century within sociology, through the works of Émile Durkheim and Georg Sim-
mel [4]. While these initial studies adopted a largely theoretical approach on the
matter, further developments made throughout the 20th century provided enough
analytical methods to enable a systematic use of social network analysis. This
field experienced significant growth in the 1990s with the involvement of physi-
cists, computer scientists, economists and political scientists, the contributions of
whom introduced new models and data analysis techniques, expanding the appli-
cability of network studies beyond theoretical mathematics to a broader range of
disciplines.

One of the advancements that contributed to the growth of the field is the de-
velopment of the multilayer network framework [5]. This approach extends the
traditional framework, which typically considers only a single type of relationship
among the components of a system, by incorporating multiple types of relation-
ships through distinct layers. In this way, each layer captures a specific type of
interaction among the system’s components, allowing for the study of both intra-
layer connections (within a single layer) and inter-layer connections (across differ-
ent layers). This framework enables a more comprehensive analysis of systems
influenced by diverse aspects and relationships, such as the network of differ-
ent modes of communications (considering relationships via e-mail or in-person)
within different social groups (considering familial, friendship or professional re-
lationships).

The specific constraints placed on intra-layer and inter-layer connections lead
to various types of multilayer networks. Among these, a particularly valuable
type is the multiplex network, which focuses on a single aspect while restricting
inter-layer connections to objects that represent the same entity across different
layers. These constraints make multiplex networks especially suitable for studying
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systems such as transport networks [6] or the dynamics of disease spread [7].

Within multiplex networks, the inclusion of a poorly connected layer alongside
a layer with stronger connection properties presents an interesting area of study.
While the addition of a weakly connected layer might initially appear to reduce
the robustness of the system, it can, in fact, enhance the overall network function-
ality in cases where the weaker layer captures connections that provide significant
benefits to the overall network. The theoretical analysis of this phenomenon is
specially valuable when studying dynamics related to the maintenance of infras-
tructures that facilitate communication and movement. This work aims to explore
the suitability and impact of maintaining poorly connected layers within multi-
plex networks, with a final specific focus in their application to the viability and
likelihood of maintaining both road and river transportation networks in ancient
regional transport infrastructures.

To achieve this, Chapter 1 introduces the basic concepts of graph theory nec-
essary for analyzing single-layer networks, with a particular focus on their matrix
representation, including the adjacency matrix and Laplacian matrix, and their role
in studying connectivity. Connectivity is presented as a metric to quantify the
network’s robustness, with a focus on algebraic connectivity as a lower bound of
the network’s connectivity and as an indicator of the behavior of diffusion models
within the network, derived from its Laplacian matrix. Moreover, the chapter in-
troduces the concept of network quotient as a method for simplifying a network by
coarsening it according to a node partition. The resulting quotient network pre-
serves spectral properties of the original network, a feature that will later prove
essential for deriving results related to the maintenance of poorly connected lay-
ers.

Chapter 2 extends the framework to multilayer networks, generalizing con-
cepts and results from Chapter 1 to systems that operate across different types of
relationships. The set of layers is introduced to encapsulate the various type of as-
pects the network operates on, along with potential constraints that can be applied
to multilayer networks. The quotient results from the previous chapter are then
applied to this framework by considering natural node partitions that arise from
considering either individual layers or the entities that represent nodes across lay-
ers. These different approaches result in the derivation of the network of layers and
the aggregate network, respectively.

From the constraints discussed in the previous chapter, Chapter 3 introduces
multiplex networks, a specific type of multilayer network where inter-layer con-
nections are restricted to objects that represent the same entity across different
layers. This chapter examines structural transitions in two-layer multiplex net-
works, using algebraic connectivity as an indicator. By varying the inter-layer



vi Introduction

weight p, two main behavior regions are identified: one where the layers act as
disconnected networks and another where the system behaves as an unified net-
work, with algebraic connectivity bounded above by 2p and by that of the average
network. The analysis highlights how the poorer connected layer determines the
multiplex’s overall behavior and connectivity. To account for the potential value
of the poorly connected layer, a weighting factor a is introduced to scale the im-
portance of its connections, studying how algebraic connectivity changes with a

and characterizing the regions in the parameter space (a, p) where the multiplex
outperforms the well-connected layer. Lastly, the chapter introduces supra-walks,
which impose restrictions on inter-layer steps, thus bringing the need for a redefi-
nition of the Laplacian matrix that defines the system.

The theoretical results obtained in Chapter 3 are applied in Chapter 4, where
the multiplex framework is used to study the transportation infrastructures of
archaeological sites with different connectivity characteristics in Southern Etruria
and Latium Vetus. This analysis examines how the viability of maintaining both
road and river networks evolves over time and across regions, providing insights
into how the development of a robust road infrastructure gradually detrimentally
affects the importance placed on the river infrastructures in the articulation of the
territory.

This work extends the understanding of multiplex network dynamics in the
presence of poorly connected layers by formalizing and presenting new proofs for
the algebraic connectivity of a two-layer multiplex network as a function of its
inter-layer weight p and weighting factor a associated with the poorly connected
layer. Additionally, it proposes how to calculate the bound for a to characterize
the region in the (a, p) space where the multiplex outperforms the well-connected
layer. Furthermore, the work proposes a new definition of the Laplacian matrix
that accounts for the constraints introduced by supra-walks.

On the practical side, this study shows that the multiplex network formalism
can serve as an effective tool for analyzing ancient transport infrastructures, high-
lighting the broader applicability of the multiplex framework to fields such as ar-
chaeology, history and anthropology, where understanding the interplay between
different types of connections is essential.

Natural directions for future work include a deeper analysis of the suitabil-
ity of the proposed Laplacian matrix for supra-walks in multiplex networks, and
the replication the algebraic connectivity results derived in this study using the
new Laplacian definition. Moreover, it would be valuable to extend the multi-
plex formalism to additional network metrics, such as global efficiency, to further
characterize these networks.



Chapter 1

Networks

To stablish a solid mathematical foundation for studying phenomena and sys-
tems characterized by the relationships among its constituents, this first chapter
provides a brief introduction to the main definitions and results of complex net-
work theory. These definitions and results will serve as an essential tool in the fol-
lowing chapters for obtaining significant insights when examining specific types
of real-world networks.

Accordingly, it is important to begin by defining the primary mathematical
object from which we will work on: the graph, as this object allows us to easily
study the relationships among the different elements of a system. A graph is often
physically represented by a network, where its components correspond to tangible
entities. In this work, the terms "graph" and "network" are used interchangeably
to refer to the same object, as a matter of language convenience.

Definition 1.1. A network (or graph) G = (V, E) is a mathematical object consisting
of a set of nodes (or vertices) V = {vi}i and a set of edges E ✓ {(vi, vj)|vi, vj 2 V},
where (vi, vj) represents a connection between nodes vi and vj.

If there exists an edge in G between two nodes u and v, i.e., (u, v) 2 E, the two
nodes are said to be adjacent. Likewise, an edge is said to be incident to a node if it
starts or ends at that node.

Various type of networks arise from this basic definition, depending on the
characteristics of their edges and connections.

• A network is called directed if the edges are ordered pairs: (vi, vj) denotes an
edge from vi to vj.

• A network is called undirected if the edges are unordered pairs: (vi, vj) =
(vj, vi).

1



2 Networks

• A weighted network is a network in which each edge is assigned a weight, that
is, each edge is mapped to a real number by a function w : E ! R.

Note that two nodes can be connected by more than one edge; in this case,
the collection of these edges is referred to as a multiedge. Furthermore, an edge
may connect a node to itself, in which case it is called self-edge or self-loop. When a
network has neither self-edges nor mutiedges, it is called a simple network.

Unless otherwise stated, this work will only consider simple networks.

Example 1.2. Consider the following network.

11 2

2

3

3

4 4

It is a simple undirected unweighted network with a node set V = {1, 2, 3, 4} and
an edge set E = {(1, 2), (1, 3), (2, 3), (2, 4)}.

To characterize certain structural properties of a network related to its robust-
ness, it is helpful to introduce two main concepts regarding the structure’s ability
to link its different components.

Definition 1.3. Let G = (V, E) be a network. A path is a sequence of non-repeated
nodes P = {v1, v2, . . . , vk} where vi 2 V and (vi, vi+1) 2 E for i = 1 . . . k � 1. If the
sequence allows repeated nodes, it is called a walk. The elementary component of
a walk is an edge, also referred to as a step, which connects two adjacent nodes.

This definition allows us to classify networks based on wether there exists a
path between every pair of nodes. This distinction motivates the following defini-
tion.

Definition 1.4. Let G = (V, E) be a network. G is connected if, for all u, v 2 V, there
exists a path from u to v. If G is not connected, it is called a disconnected network.

Note that the network in Example 1.2 is a connected network, and a possible
path from u = 1 to v = 4 is P = {1, 3, 2, 4}.

1.1 Matrix representation

When studying the structural properties of a network, working solely with
edge and node sets can be somewhat cumbersome. A more effective way to ana-
lyze networks is to represent the set of nodes and edges in a matrix format using
the adjacency matrix as a way to encapsulate the entire structure of the network.
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Definition 1.5. The adjacency matrix of a network G on n nodes is an n ⇥ n matrix,
AG = (aij), where

• aij 6= 0 if there is an edge between vi and vj of weight aij.

• aij = 0 if there is no edge between vi and vj.

For an unweighted network, the entries of the matrix are binary: aij = 1 indicating
the presence of an edge between vi and vj and aij = 0 the absence of an edge.

Note that for undirected networks the adjacency matrix is symmetrical, and
for networks without self-loops all the diagonal elements on the adjacency matrix
are zero.

Example 1.6. The adjacency matrix of the network used in Example 1.2 is

AG =

2

6664

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

3

7775

While the adjacency matrix contains all the structural information about a net-
work, a new matrix called the Laplacian matrix is also convenient for describing
undirected networks.

Definition 1.7. For an undirected network, G with n nodes, that satisfies aij � 0,
the Laplacian matrix is defined as LG = D � AG . Where D = diag(d1, . . . , dn) is the
diagonal matrix of the node degrees, with di = Âj aij.

The Laplacian matrix arises naturally in the study of diffusion processes (i.e.,
simple models of spread across a network) on undirected networks [8, Section
6.13].

Consider a condition of some kind affecting the nodes of a network G = (V, E),
where each node vi is assigned an amount fi. Suppose this condition spreads
along the edges, flowing from node j to an adjacent node i at a rate proportional
to C(fj � fi), where C is a constant known as the diffusion constant. The rate of
change of fi is given by

dfi
dt

= C Â
j

aij(fj � fi). (1.1)

Here aij are the elements of the adjacency matrix AG , ensuring that only terms
corresponding to node pairs that are actually connected by an edge appear in the
sum.
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By splitting the terms in (1.1), we obtain

dfi
dt

= C Â
j

aijfj � Cfi Â
j

aij = C Â
j

aijfj � Cfidi = C Â
j
(aij � dijdi)fj (1.2)

where di is the node degree of vi, and dij is the Kronecker delta (which is 1 if i = j
and 0 otherwise).

Equation (1.2) can be written in matrix form as:

df

dt
= C(AG � D)f (1.3)

with D = diag(d1, ..., dn) being the diagonal matrix of the node degrees.
Using Definition 1.7, Equation (1.3) takes the form:

df

dt
+ CLGf = 0 (1.4)

which has the same form as the ordinary diffusion equation for a gas*, where the
Laplacian operator r2 is replaced by the matrix LG , which can be viewed as a
discretized version of the Laplacian operator.

Example 1.8. The Laplacian of the network used in Example 1.2 is

LG =

2

6664

2 �1 �1 0
�1 3 �1 �1
�1 �1 2 0
0 �1 0 1

3

7775

The set of eigenvalues of LG provides crucial information on the stationary
behavior of the system. Taking into account that all eigenvalues of LG are positive,
except the smallest, which is 0 [9]:

The diffusion equation 1.4 can be solved by expressing the vector f as a linear
combination of the Laplacian matrix’s eigenvectors vi

f(t) = Â
i

ai(t)vi (1.5)

with the coefficients ai evolve over time. Substituting (1.5) in (1.4) and using Lvi =
livi (with li as the eigenvalue corresponding to the eigenvector vi) we get:

Â
i

✓
dai
dt

+ Cliai

◆
vi = 0. (1.6)

*The ordinary diffusion equation of a gas with a density f(r, t) is df(r,t)
dt � Cr2f(r, t)=0, note

that in (1.4) there is a plus sign instead of a minus (due to standardized notation).
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Since the eigenvectors of a symmetric matrix, such as the Laplacian, are orthogo-
nal, this equation holds for each i independently:

dai
dt

+ Cliai = 0. (1.7)

Which has as the solution:
ai(t) = ai(0)e�Cli t. (1.8)

Thus,
f(t) = Â

i
ai(0)e�Cli t. (1.9)

Since LG always has a null eigenvalue†, l1 = 0 associated with the eigenvector
v1 = (1, . . . , 1), and all other eigenvalues are positive, it follows that as t ! •,
f(t) ! a1(0). This represents the stationary solution, reached over a characteristic
timescale t = 1

l2
, where l2 is the smallest nonzero eigenvalue.

1.2 Connectivity

One of the main aspects of interest when analyzing a connected network is
assessing how well connected the nodes of the network are. A way to quantify
this is by measuring how many edge or node eliminations a connected network
can withstand before becoming disconnected.

Definition 1.9. The node connectivity of a connected network G, denoted k(G) is
the minimum number of nodes whose removal results in a disconnected graph or
a trivial graph (i.e. a graph with a single node).

In general, a network G with a larger node connectivity k(G) is more robust, as
it indicates greater resistance to node failures and, therefore, a stronger network.

Definition 1.10. The edge connectivity of a connected network G, denoted l(G) is
the minimum number of edges whose removal results in a disconnected graph or
a trivial graph.

Example 1.11. The node and edge connectivity of

11

22

3

3 4 4

5 5

are k(G) = 1, l(G) = 2.
†Following convention, the n different eigenvalues of the Laplacian are numbered in ascending

order: l1  l2  . . .  ln.
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Remark 1.12. For a network G = (V, E), if there exists a set of edges of size l(G)
whose removal disconnects the network, then by selecting one endpoint of each of
these edges, we can form a set of nodes whose removal also disconnects the graph.
Since this node set has a size less than or equal to l(G), the following inequality
holds: k(G)  l(G).

The value of both edge and node connectivity provide important insights into
the characteristics of the studied network. Generally, we aim to achieve high val-
ues for these parameters, as they indicate greater resilience in the network. How-
ever, calculating the exact values of edge and node connectivity can be computa-
tionally challenging. Therefore, it is beneficial to find alternative values that can
serve as a lower bound for the edge or node connectivity.

1.2.1 Algebraic connectivity

A valuable lower bound for the edge connectivity of a network G can be ob-
tained by analyzing the Laplacian spectrum of the network. Additionally, im-
portant connectivity insights are obtained by studying this spectrum [8, section
6.13.3].

• The network G is connected if and only if the second smallest eigenvalue of
LG , l2(G), is positive.

• The number of zero eigenvalues of LG corresponds to the number of con-
nected components in the network G.

The second smallest eigenvalue of the Laplacian matrix, l2(G), is known as the al-
gebraic connectivity or Fiedler value of G. This value serves as a good indicator of the
network’s connectedness, as it provides a lower bound for the edge connectivity.

For any eigenvector v of LG corresponding to a non-zero eigenvalue l we have
vT LG = lvT. Multiplying both sides by the all-ones n-dimensional vector 1n we
get

vT LG1n = lvT1n.

Using the fact that LG1n = 0, we get lvT1n = 0. Since l 6= 0, it follows that
vT1n = 0.

This condition allows us to express the algebraic connectivity of a network G
on n nodes as the following optimization problem

l2(G) = min
vT1n=0

v 6=0

vT LGv
kvk2 . (1.10)
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Lemma 1.13. For a network G = (V, E), if G1 is obtained by removing n nodes
(and their incident edges), then l2(G1) � l2(G)� n

Proof. See [9, Theorem 3.2].

Proposition 1.14. The node connectivity k(G), edge connectivity l(G), and al-
gebraic connectivity l2(G) of a non-complete network ‡ G = (V, E) satisfy the
following inequality

l2(G)  l(G)  k(G). (1.11)

Proof. Consider V1 as a node cut of size l(G), such that removing V1 and
its incident edges from G results in a disconnected network G1. Since G is not
complete, G1 is non-empty and disconnected, so l2(G1) = 0. Applying Lemma
1.13 we get

0 � l2(G)� l(G).

The second inequality is obtained from Remark 1.12.

⇤

1.3 Network quotients

In network analysis, there are various situations in which it is useful to work
with a subnetwork formed by coarsening the original network according to a node
partition. The resulting network, known as the quotient network, preserves impor-
tant spectral relationships of the initial network, which will be crucial for the
developments that follow in this work. The main concepts we will explore in
this section are interlacing and the quotient of a network, based on the approach
outlined in [10].

Definition 1.15. Given integers m, n 2 N with m < n, consider two ordered sets
of numbers µ1  . . .  µm and l1  . . .  ln. The first set is said to interlace the
second if:

li  µi  li+(n�m) for i = 1, . . . , m.

Example 1.16. The set A1 = {�4,�2,�1, 0, 1, 2, 4} interlaces A2 = {�3, 0, 3} since
�4  3  1, �2  0  2 and �1  3  4.

To define the quotient of a network, we first introduce the concepts of partition
of the node set and its associated characteristic matrix.

‡A network in which at least two distinct nodes are not connected by an edge.
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Definition 1.17. A partition of a set X is a set of non-empty subsets of {X1, . . . , Xm}
such that every element x 2 X belongs to exactly one subset Xi. For a network
G = (V, E), and a partition {V1, . . . , Vm} of the node set V, the characteristic matrix
of the partition, S = (sij) is a |V|⇥ m matrix with sij = 1 if i 2 Vj and 0 otherwise.

Definition 1.18. Let G = (V, E) be a network with adjacency matrix A = (aij),
and let {V1, . . . , Vm} be a partition of the node set V, where |Vi| = ni. The quotient
network Q of G is defined as the network coarsened according to this partition. In
Q, each partiton Vi is represented as a single node, and an edge from Vi to Vj is
weighted by the average connectivity between nodes in Vi and Vj:

bij =
1
s Â

k2Vi
l2Vj

akl , (1.12)

where various choices can be made for the size parameter s: si = ni, sj = nj or
sij =

pninj. The resulting network is referred to as the left quotient, right quotient
or symmetric quotient, respectively.

Note that the remaining quotient network can have self-edges and, while the
symmetric quotient is undirected, the left and right quotients are generally di-
rected unless all clusters have the same size (ni = nj for all i and j).

Let S = (sij) be the characteristic matrix of the partition, L = diag(n1, . . . , nm)
and A the adjacency matrix of the original network. The adjacency matrix of the
quotient network, denoted Q(A) = (bij)§, can be expressed as:

Ql(A) = L�1ST AS, Qr(A) = ST ASL�1 and Qs(A) = L�1/2ST ASL�1/2.

Proposition 1.19. Let G = (V, E) be a network with adjacency matrix A, and let
{V1, . . . , Vm} be a partition of the node set V. The adjacency matrices of the left,
right and symmetric quotients with respect to the partition, Ql(A), Qr(A), Qs(A),
share the same eigenvalues.

Proof. Let B = ST AS. Then we have Ql(A) = L�1B, Qr(A) = BL�1, and
Qs(A) = L�1/2BL�1/2. Using the Weinstein-Aronszajn identity [13, Appendix
B.1]

det(lId � L�1B) = det(lId � BL�1) = det(lId � L�1/2BL�1/2).

Thus, all three matrices Ql(A), Qr(A) and Qs(A) share the same characteristic
polynomial, implying they have the same eigenvalues.

⇤
§When specifying the type of quotient, we write Ql , Qr and Qs for the left, right, or symmetric

quotient, respectively.
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Moreover, the main spectral result is that the adjacency eigenvalues of a quo-
tient interlace the adjacency eigenvalues of the initial network. This result is a
direct consequence of the following theorem.

Theorem 1.20 ([11, Theorem 2.1]). Let A be a symmetric matrix of order n, and
let U be an n ⇥ m matrix such that UTU = Id. Then the eigenvalues of UT AU
interlace those of A.

Using this theorem, we obtain the following result.

Corollary 1.21 ([11, Corollary 2.3]). Let B be the quotient matrix of A with respect
to a given partition. Then, the eigenvalues of B interlace the eigenvalues of A.

Example 1.22. A possible quotient of the following network G:

1

2

3

4

5

6

7

can be obtained by considering the partition set V1 = {1, 2, 3}, V2 = {4, 5, 6},
V3 = {7}. The left and symmetric quotients are:

1

1

1

3
1

p
3

left quotient symmetric quotient

The spectrum of the adjacency matrix for the initial network is L(AG) =
{�2,�1,�1, 0, 1, 1, 2} while the spectrum for the quotient network is L(Q) =
{�2, 0, 2}. Thus, the eigenvalues of the adjacency matrix of the quotient network
interlace those of the original network.

As the quotient network is generally not represented by an undirected matrix,
a proper definition of the Laplacian for quotient networks is necessary to derive
analogous interlacing results. The following definition of the quotient Laplacian
allows us to obtain the same interlacing results that we have previously mentioned
¶.

¶See [10, Appendix 4 a] for a broad discussion of the choice of this Laplacian.
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Definition 1.23. For a network G = (V, E) with adjacency matrix AG = (aij),
consider the left quotient Ql(A) with respect to a partition {V1, . . . , Vm} of the
node set. Define the row sums of Ql(A) as di =

1
ni

Âk2Vi
dk, which represent the

average degree of nodes in Vi. Let D denote the diagonal matrix of these average
degrees. The quotient Laplacian LQ is defined by:

LQ = D �Ql(A). (1.13)

An equivalent definition is valid considering the left or symmetric quotients,
independently of the type of quotient considered, as the spectrum of the quotient
Laplacian remains consistent across these types.

Using this definition, the eigenvalues of the quotient Laplacian interlace with
those of the Laplacian of the original network [10, Appendix 4 a. Theorem 1].

Note that, as this definition of the Laplacian matrix ignores self-loops, since the
diagonal values of the adjacency matrix are also counted in the diagonal values
of D), we have that for Q̃, the loopless quotient of G (i.e., the quotient network
of G with all the self-loops removed), the quotient laplacian remains unchanged:
LQ̃ = LQ.

This observation is helpful when analyzing quotient networks where self-loops
may or may not be present, as it ensures that removing self-loops form Q does not
affect the interlacing properties of the quotient Laplacian’s spectrum.

1.3.1 Regular quotients

If additional conditions on the node partition are imposed, a stronger relation-
ship between the quotient network and the original network can be obtained.

Definition 1.24. For a network G = (V, E), a partition of the node set {V1, . . . , Vm}
is called equitable if the number of edges (accounting for edge weights) from a
node Vi to any node in Vj is independent of the choice of node in Vi. Formally,
this means:

Â
l2Vj

akl = Â
l2Vj

ak0 l for all k, k0 2 Vi,

for all i and j. When a partition is equitable, the resulting quotient is called a
regular quotient.

For networks with equitable partitions, the spectral connection between the
quotient and the original network is particularly strong.

Specifically, the eigenvalues of the adjacency matrix of the regular quotient
are a subset of the eigenvalues of the adjacency matrix of G. Furthermore, an
eigenbasis of G can be constructed with m eigenvectors derived from lifting the
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eigenvectors of the quotient to G (by repeating the coordinates on each cluster).
The remaining n�m eigenvectors are orthogonal to the partition, meaning that the
sum of their coordinates within each layer is zero [10, Appendix 3]. This spectral
phenomenon is known as lifting.

Example 1.25. The network used in example 1.22 is an equitable partition. Note
that the spectrum of the quotient is a subset of the spectrum of the original net-
work.

A similar spectral relationship can be obtained for the Laplacian matrix when
slightly relaxed conditions on the partition are used:

Definition 1.26. For a network G = (V, E), a partition of the node set {V1, . . . , Vm}
is called almost equitable if the condition specified in Definition 1.24 is satisfied for
all i 6= j but not necessarily for i = j. In other words, the regularity condition
is satisfied when ignoring the intra-cluster edges. When a partition is almost
equitable, the resulting quotient is called an almost regular quotient.

Note that the quotient Q being almost regular is equivalent to the loopless
quotient Q̃ being regular.

For networks with almost equitable partitions, the Laplacian eigenvalues of
Q are a subset of the Laplacian eigenvalues of G. Moreover, we can construct a
Laplacian eigenbasis of G consisting of m Laplacian eigenvectors of the quotient
(either Q or Q̃) lifted to G, with the remaining n � m eigenvectors orthogonal to
the partition [10, Appendix 4 a].
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Chapter 2

Multilayer networks

When working with networks G = (V, E) whose components operate across
different levels or when different types of nodes and edges are present (i.e., when
considering different aspects in the network connections), it is often useful to in-
troduce an additional structural element: a set of layers. Following the approach
presented in [5], a first general view of this multilayer network framework is ob-
tained by allowing each node to belong to any subset of layers and permitting
edges to form pairwise connections across all possible combination of nodes and
layers. For instance, consider a network representing communications among in-
dividuals that considers two aspects: the type of relationship (e.g., family, friends
or colleagues) and the mode of communication (e.g., letters, online or in-person).
This layered perspective allows us to clearly differentiate the diverse interactions
more comprehensively than using a traditional single-layer network.

In a multilayer network associated with d aspects, each aspect a has associ-
ated a set of elementary layers La. This new multilayer structure is defined by the
sequence of the set of elementary layers L = {La}d

a=1, with the set of layers repre-
sented as the Cartesian product L1 ⇥ . . . ⇥ Ld, describing all possible combinations
of aspects.

To indicate whether a node in V is present in a given layer, the Cartesian prod-
uct V ⇥ L1 ⇥ . . . ⇥ Ld is used, defining a subset VM ✓ V ⇥ L1 . . . Ld to represent all
valid node-layer tuple combinations among the different layers, requiring that each
node must appear in at least one layer. Thus, the node-layer tuple (v, a1, . . . , ad)*

represents the node v on layer (a1, . . . , ad).
When defining connections between pairs of node-layer tuples in this multi-

layer framework, the starting and ending layers of each edge must be specified,
apart from the starting and ending node. Therefore, the edge set in a multilayer net-

*Usually the array of elementary layers (v, a1, . . . , ad) is simply denoted by a.

13
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work is defined as the set of all possible pairs node-layer tuples: EM ✓ VM ⇥ VM.
For instance, the edge ((v, a), (u, b)) connects node v in layer a with node u in
layer b.

Definition 2.1. The quadruplet M = (VM, EM, V, L) defines a multilayer network.

Note that we have two different entities representing the components of a mul-
tilayer network: nodes and node-layer tuples. The first one corresponds to a "phys-
ical object" (e.g., an individual), while the node-layer tuples are different instances
of the same object (e.g., the same individual under a specific type of relationship
and communication mode).

If no aspects are considered, the number of aspects d is formally zero, as there
are no elementary layers. In this case, the multilayer network reduces to a monoplex
(i.e., a single-layer network), where VM = V, making the set of node-layer tuples
VM redundant.

A multilayer network is said to be node-aligned (or "fully interconnected") if all of
the layers contain all nodes, i.e., VM = V ⇥ L1 ⇥ . . . ⇥ Ld.

As with monoplex networks, the term adjacency is used to describe a direct
connection via an edge between a pair of node-layers and the term incidence is
used to describe the connection between a node-layer and an edge.

Example 2.2. An example of this general type of multilayer network M is illus-
trated below

1

2

4

2

3

4

5

2

35

2

4

A

B

X Y

This multilayer network has a total of five nodes V = {1, 2, 3, 4, 5} and two aspects,
corresponding to the elementary layer sets L1 = {A, B} and L2 = {X, Y}, resulting
in four distinct layers: (A, X), (A, Y), (B, X), (B, Y). Examples of elements in the
set of node-layer tuples VM include (1, A, X) and (5, B, Y). Similarly, examples of
elements in the edge set EM include ((2, B, X), (4, B, X)) and ((5, B, Y), (3, A, Y)).
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This network could model a system that considers d = 2 aspects: a social media
platform (e.g. A = Twitter, B = Facebook) and interaction types (e.g. X = Like
and Y = Share). For instance, user 3 has shared posts in Twitter from their own
Facebook account and user 5’s Facebook account.

The first two components of the multilayer network M form an underlying
graph GM = (VM, EM), allowing us to interpret a multilayer network as a network
with nodes that are labeled in a specific way. This interpretation allows us to
generalize some basic concepts from monoplex networks to multilayer networks.

• A multilayer network is directed (or undirected) if the underlying graph GM =
(VM, EM) is directed (or undirected).

• A weighted multilayer network is one in which weights are assigned to the
edges of the underlying graph GM.

• The multilayer network includes self-edges or self-loops if they are present in
GM.

Example 2.3. The underlying graph GM of the multilayer network from Example
2.2 is

(1,A,X)

(2,A,X)

(4,A,X)

(2,A,Y)

(3,A,Y)

(4,A,Y)

(5,A,Y)

(2,B,Y)

(3,B,Y)(5,B,Y)

(2,B,X)

(4,B,X)

Moreover, it is convenient to distinguish edges that connect nodes within the
same layer from those that connect nodes across different layers. To do so, we can
partition the edge set into two categories, intra-layer edges EA = {((u, a), (v, b)) 2
EM|a = b} and inter-layer edges EL = EM \ EA. A subset of the intra-layer edge set
can also be defined for edges connecting the same entity in different layers. These
are known as coupling edges EC = {((u, a), (v, b)) 2 EL|u = v}.

This categorization allows us to define three distinct graphs associated with
the multilayer network, the intra-layer graph GA = (VM, EA), the inter-layer graph
GL = (VM, EL) and the coupling graph GC = (VM, EC).
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Further inherent graphs can be obtained from the original multilayer by con-
sidering subsets of the intra-layer edge set for edges within the same layer a.
These subsets are denoted as Ea = {((u, a), (v, a)) 2 EA}. Using the node-layer
tuple set from the layer a, we can obtain the corresponding layer-graph, denoted as
Ga = (Va, Ea).

2.1 Tensor representation

When working with multilayer networks and different channels of interaction
within a system, tensor notation provides a robust framework for handling these
multidimensional problems. This formalism generalizes concepts such as scalars,
vectors and matrices, which naturally arose when modeling interactions within
simple networks (e.g, the use of adjacency matrices) into a structure that can ef-
fectively represent the additional complexity of interactions within multilayer net-
works. Thus, for multilayer networks, the equivalent of the adjacency matrix in
simple networks is the adjacency tensor.

Definition 2.4. For a node-aligned multilayer network M = (VM, EM, V, L) on d
aspects, the adjacency tensor is a rank-2(d + 1) tensor,

A 2 {0, 1}|V|⇥|V|⇥|L1|⇥|L1|⇥...⇥|Ld|⇥|L|d

where the tensor element Auvab := Auva1b1...adbd has a value of 1 if and only if
((u, a), (v, b)) 2 EM; otherwise, Auvab is 0.

Similarly, a weighted adjacency tensor, W can be defined, where each element
Wuvab corresponds to the weight of the edge ((u, a), (v, b)) 2 EM, and 0 if no
edge exists.

Since this tensor representation relies on the existence of each node in every
layer, it is technically only appropriate for node-aligned networks. However, many
of the tensor-based methods for multilayer network analysis can be adapted to
work with non-node-aligned networks by introducing extraneous nodes in each
layer (that are called empty nodes)†. These nodes do not participate in any con-
nections of the layer but enable a consistent tensor structure across layers. This
approach allows the tensor formalism to be extended to networks where certain
nodes may not be present in every layer by effectively "projecting" each node into
every layer.

This projection creates a structure that is node-aligned from a mathematical
perspective. However, the resulting tensors must be interpreted carefully, as they

†A discussion of the employment of tensors to represent non-node-aligned networks can be
found in [5] and [12].
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can lead to misleading characterizations of network properties. For example, com-
puting the mean node degree or connectivity of the network may yield inaccurate
results unless empty nodes are properly accounted for.

2.1.1 Constraints

In node-aligned multilayer networks, certain constraints can simplify the ten-
sor representation by setting to zero, allowing the network to be represented with
a tensor of lower rank than would otherwise be required.

An important case of a constrained network is found when the multilayer net-
work has diagonal couplings, meaning that inter-layer edges are permitted only
between two representations of the same node across different layers. In this case
the adjacency-tensor element Auvab is forced to be zero whenever u 6= v and a 6= b

(i.e., when the nodes and layers differ at the same time).
Under this restriction, the multilayer network can be expressed as a com-

bination of an intra-layer adjacency tensor with elements Auva := Auvab (encap-
sulating the connections in the same layer) and a coupling tensor with elements
Cuab := Auvab (encapsulating the connections across layers).

Further constraints can be obtained by disallowing inter-aspect couplings, as
the adjacency tensor has null elements when the layer indices differ in more than
one aspect. We will not delve further into these possible constraints as they will
not be used later on this work.

2.1.2 Tensor flattening

As outlined in [5, Section 2.2.2], the number of aspects in an adjacency tensor
can be reduced by combining two aspects i and j into a single new aspect h.

This transformation, known as flattening, allows a node-aligned multilayer net-
work M = (VM, EM, V, L) with d aspects to be mapped into a new node-aligned
multilayer network M0 = (V 0

M, E0
M, V, L0) with d � 1 aspects. In this new configu-

ration, the new aspect h is defined by L0
h = Li ⇥ Lj, ensuring the total number of

elements remains consistent, as |L0
h| = |Li||Lj|. This process establishes a bijection

between the elements of the original and flattened tensors, preserving the original
network structure.

Consider a node-aligned multilayer network M = (VM, EM, V, L) with d as-
pects, where the layers are denoted using integers starting from one. Without loss
of generality, suppose we flatten aspects d � 1 and d of the adjacency tensor A
of M to obtain a new flattened tensor A0. The elements of the corresponding
mapping are given by

Auva1b1...ad�1bd�aad bd = A0
uva1b1...((ad�1�1)|Ld|+ad)((bd�1�1)|Ld|+bd)

.
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This flattening can be repeatedly iteratively to further reduce the number of
aspects, as it can be useful both conceptually and when implementing software
algorithms to analyze multilayer networks.

2.2 Matrix representation

An extreme case of tensor flattening occurs when the multilayer network is
reduced to d = 0 aspects by combining all aspect layers and node indices into a
single dimension. This process produces a rank-2 adjacency tensor, which corre-
sponds to a matrix known as the supra-adjacency matrix of the multilayer network.

Definition 2.5. For a multilayer network M = (VM, EM, V, L), the supra-adjacency
matrix corresponds to the adjacency matrix of its underlying graph GM = (VM, EM).
Other "supra-matrices" are defined in an analogous way.

An advantage of using supra-adjacency matrices over adjacency tensors is that
they provide a natural way to represent multilayer networks that are not necessar-
ily node-aligned without having to add empty nodes. However, by flattening the
multilayer network to obtain the supra-adjacency matrix, some information of the
aspects is lost.

Some of this information can be retained by considering the partition of the
edge set of the multilayer network into intra-layer edges, inter-layer edges and
coupling edges and working with the intra-layer supra-adjacency matrix, inter-layer
supra-adjacency matrix and couping supra-adjacency matrix (obtained respectively
from the graphs GA, GL and GC), along with the supra-adjacency matrix.

A supra-Laplacian matrix can be derived from the supra-adjacency matrix in
a manner analogous to how the Laplacian matrix is constructed for monoplex
networks, providing insights into the network’s connectivity, dynamics, diffusion
processes and other structural and functional properites.

Different definitions of the Laplacian matrix can be considered depending on
special constraints and characteristics of the considered multilayer network. Still,
an example of a general definition of a supra-Laplacian matrix suitable to any type
of multilayer network is LM = DM � AM, where DM is the diagonal supra-matrix
containing the weighted degrees of the graph GM and AM the adjacency matrix of
GM.

Since this definition is analogous to that used for monoplex networks, the
eigenvectors and eigenvalues of the supra-Laplacian matrix are important indi-
cators of several structural features of the network, providing important insights
into dynamical processes that evolve on top of it. Analogously, the second small-
est eigenvalue of the supra-Laplacian matrix is known as the algebraic connectivity
(or Fiedler value) of M.
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Depending on the nature of the inter-layer couplings of the network, one can
differentiate distinct behaviors based on the relative strengths of the inter-layer and
intra-layer edges. For instance, in a node-aligned multilayer network with diago-
nal couplings, two regimes emerge, separated by a discontinuous phase transition
known as a "structural transition". In one regime, the algebraic connectivity is in-
dependent of the intra-layer structure and is instead determined by the inter-layer
edges. In the other regime, the algebraic connectivity of the multilayer network
is bounded above by a constant multiple of the algebraic connectivity of the un-
weighted superposition of the layers (see Subsection 3.2 for broader details on
structural transition in the case of multiplex networks, a special case of multilayer
networks).

2.3 Dimensionality reduction

The multilayer framework formalism induces two naturally occurring quo-
tients: the network of layers and the aggregate network, which simplify the analysis of
a multilayer network with d aspects by reducing it to a simple network structure.

Using the results discussed in Section 1.3, strong relationships between the
multilayer network and the structure of its layers can be established, allowing us
to work with simple networks to analyze the original multilayer structure. This di-
mensionality reduction facilitates the application of the tools introduced in Chap-
ter 1 to obtain meaningful results of the original network.

2.3.1 Network of layers

Consider a multilayer network M = (VM, EM, V, L) with d aspects and let
its underlying graph be GM = (VM, EM). Each layer of the multilayer network
can be viewed as a subgraph Ga = (Va, Ea), where Va = {(u, a) 2 VM} and
Ea = {((u, a), (v, a)) 2 EM}. Note how the layers of the multilayer network
partition the node set, making it natural to consider the quotient induced by this
partition. Let {Va}a2L1⇥...⇥Ld be the partition of the multilayer node-layer set by
the layers with na = |Va|.

Definition 2.6. The average inter-layer degree from a to b is defined as

dab =
1

na
Â

i2Va
j2Vb

aij, (2.1)

where AGM = (aij) is the adjacency matrix of GM.
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This metric represents the average connectivity from a node in Ga to any node
in Gb. When a = b we write da instead of daa and refer to it as the average intra-
layer degree.

The quotient with respect to the partition {Va}a2L1⇥...⇥Ld forms a weighted
directed network, with adjacency matrix (dab). This resulting network is called
the network of layers, a directed network where each node corresponds to a layer
of M, with a self-loop on layer a weighted by the average intra-layer degree da,
and a directed edge from layer a to layer b is weighted by the average inter-layer
degree dab. Note that the network of layers is undirected if all layers contain the
same number of nodes and that if weights and self-loops are ignored, this network
simply represents the layer connection configuration.

As described in Section 1.3, one can construct a spectrally equivalent symmet-
ric quotient by replacing 1

na
by 1pnanb

in Equation (2.1).

Example 2.7. The undirected network of layers of the multilayer network from
Example 2.2 is

(A,X) (A,Y)

(B,X) (B,Y)

p
3
6

p
3
3

p
6
6

1

1
2

3
4

1

Applying the spectral results of Section 1.3, the eigenvalues of both the adja-
cency and Laplacian matrices of the network of layers interlace those of the supra-
adjacency and supra-Laplacian matrices of the multilayer network. That is, for a
multilayer network with n node-layer tuples and m layers, if µ1  . . .  µm are the
adjacency (resp. Laplacian) matrix eigenvalues of the network of layers, then

li  µi  li+(n�m) for i = 1, . . . , m, (2.2)

where l1  . . .  ln are the supra-adjacency (resp. supra-Laplacian) eigenvalues
of the multilayer network.

It is particularly convenient to explore whether the layer partition is equitable,
as this condition provides stronger relationships between the eigenvalues of the
network of layers and those of the multilayer network. For this condition to hold,
each layer must be a da-regular graph, a very strong requirement that is unlikely
satisfied in real-world multilayer networks and is the reason why this condition is
relaxed.
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Definition 2.8. A multilayer network M = (VM, EM, V, L) with d aspects is regular
if the layer partition {Va}a2L1⇥...⇥Ld is almost equitable. That is, the inter-layer
connections are independent of the chosen vertices.

This is a more natural condition that can be found in multilayer networks with
all-to-all (all nodes are connected), empty or one-to-one (each node connects to only
one node) connections with homogeneous weights.

If the multilayer network is regular, then in addition to the interlacing property
of eigenvalues, the Laplacian eigenvalues of the network of layers form a subset of
the Laplacian eigenvalues of the multilayer network. Moreover, a Laplacian eigen-
basis of the network of layers can be lifted to form a supra-Laplacian eigenbasis of
the multilayer network, as shown in Subsection 1.3.1.

2.3.2 Aggregate network

Consider a multilayer network M = (VM, EM, V, L) with d aspects, and let
GM = (VM, EM) be its underlying graph. For a node u 2 V, the corresponding
node-layer tuples represent the same entity in several layers, i.e., (u, a), (u, b)
2 VM with a 6= b. Note how one can consider a partition of VM into subsets of
node-layer tuples that represent the same object across layers. This identification
is particularly meaningful for multilayer networks where the behavior of a node
in one layer critically depends on its behavior in another layer and vice versa.

Definition 2.9. For a multilayer network M = (VM, EM, V, L) with d aspects a
supra-node of a node u 2 V is defined as ũ = {(u, a) 2 VM|a 2 L1 ⇥ . . . ⇥ Ld}.

Note that the collection of supra-nodes {ũ}u2V forms a partition of the multi-
layer node-layer set. We define kũ = |ũ| as the multiplexity degree of the supra-node
ũ, representing the number of layers in which the same object u is present.

Definition 2.10. The average connectivity between supra-nodes ũ and ṽ is defined
as

dũṽ =
1
kũ

Â
i2ũ
j2ṽ

aij, (2.3)

where AGM = (aij) is the adjacency matrix of GM.

This metric represents the average connectivity between the node-layer tuples
aggregated into their corresponding supra-nodes. When ũ = ṽ we write dũ instead
of dũũ.

The quotient with respect to the partition {ũ}u2V forms a weighted directed
network, with adjacency matrix (dũṽ). This resulting network is called the aggre-
gate network, a directed network where each node corresponds to a supra-node,
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with a self-loop on supra-node ũ weighted by dũ and a directed edge from ũ to
ṽ weighted by dũṽ. Note that the aggregate network will be undirected if every
supra-node has the same multiplexity degree.

As described in Section 1.3, one can construct a spectrally equivalent symmet-
ric quotient by replacing 1

kũ
by 1p

kũkṽ
in Equation (2.3).

Example 2.11. The undirected aggregate network of the multilayer network from
Example 2.2 is

1 5 3

2

4

1
2

p
3
3

p
2
4

p
3
6

p
2
4

p
6
6

3
2

1
2

p
2
2

p
3
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Applying the spectral results of Section 1.3, the eigenvalues of both the ad-
jacency and Laplacian matrices of the aggregate network interlace those of the
supra-adjacency and supra-Laplacian matrices of the multilayer network. That
is, for a multilayer network with n node-layer tuples and ñ supra-nodes, if µ1 
. . .  µñ are the adjacency (resp. Laplacian) matrix eigenvalues of the aggregate
network, then

li  µi  li+(n�ñ) for i = 1, . . . , ñ, (2.4)

where l1  . . .  ln are the supra-adjacency (resp. supra-Laplacian) eigenvalues
of the multilayer network.

Note that in this type of quotient, it is not usual to obtain stronger relationships
between the eigenvalues of the aggregate network and those of the multilayer
network. This is because having a regular or almost regular partition in this case is
very restrictive, as every pair of nodes would need to connect in the same uniform
way on every layer, which is unlikely to happen in real-world multilayer networks.



Chapter 3

Multiplex networks

In real-world scenarios, networks often exhibit inherent constraints that sim-
plify their representation, as discussed in Section 2.1.1. These constraints not only
lead to a more intuitive matrix representation of the network, but also reveal in-
teresting properties unique to such constrained networks.

A usual constraint that arises naturally when considering communication net-
works, such as public transportation systems, is having only diagonal couplings.
For instance, consider a multilayer network with a single aspect (d = 1) corre-
sponding to the type of transportation mode (e.g., tram, bus or metro). Then, each
layer in the multilayer network represents the connections between stops for a
specific transportation mode, while the inter-layer connections indicate stops that
serve as transfer points, where passengers can switch from one mode of transport
to another. This specific type of multilayer network is an example of a multiplex
network. The properties and concepts of multiplex networks have been compre-
hensively introduced in [14], whose notation and terminology are followed in this
chapter.

Definition 3.1. A multiplex network is a multilayer network M = (VM, EM, V, L),
where inter-layer edges between two node-layer tuples (u, a) and (v, b) exist if and
only if u = v.

Even though there is not a restriction on the number of aspects d in the multi-
plex formalism, due to the nature of its connections, usually only one aspect d = 1
is considered. This work will only consider multiplex networks on one aspect,
therefore the sequence of elementary layers consists of only one element, L = L.
If |L| = m, we say that the multiplex network has m layers.

Moreover, as only diagonal couplings are allowed, the inter-layer edges EC

coincide with the coupling edges EC̃. Consequently, the underlying graph GM can
be expressed as GM = GA [ GC̃, which is known as the supra-graph of the multiplex

23
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network.

Example 3.2. An example of a node-aligned multiplex network M = (VM, EM, V, L)
with V = {1, 2, 3} and L = {A, B} is illustrated below

(1, A)

(2, A)

(3, A)

(1, B)

(2, B)

(3, B)

A

B

3.1 Matrix representation

Given a multiplex network M = (VM, EM, V, L) with m layers, consider the
adjacency matrix of the layer-graph Ga = (Va, Ea) of layer a, where |Va| = na. This
matrix, denoted as A(a) := AGa is an na ⇥ na matrix.

The matrix obtained from the direct sum of the different adjacency matrices of
the layer-graphs is defined as

A =

0

BBBB@

A(1) 0 . . . 0
0 A(2) . . . 0
...

... . . . ...
0 0 . . . A(m)

1

CCCCA
=
M

a2L
A(a) (3.1)

and is called the intra-layer adjacency matrix. Note that the A is also the adjacency
matrix of the intra-layer graph GA, i.e., A = AGA .

If we consider the adjacency matrix of the coupling graph GC, denoted by
C := AGC , the supra-adjacency matrix of the multiplex M is defined as

A =
M

a2L
A(a) + C = A+ C. (3.2)

For an unweighted node-aligned multiplex network with m layers and n nodes,
the supra-adjacency matrix takes a simpler form

A = A+ Km ⌦ In (3.3)

where ⌦ denotes the Kronecker product, Km is the adjacency matrix of a complete
graph* on m nodes and In the n ⇥ n identity matrix.

*A graph where every two distinct nodes are connected by an edge.
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As discussed in Subsection 2.1, we can always work with a node-aligned mul-
tiplex network by introducing empty nodes. Still, it is important to account for
the presence of such empty nodes when analyzing the properties of their matrix
representations.

Example 3.3. The supra-adjacency matrix of the multiplex used in Example 3.2 is

A =

0

BBBBBBBB@

0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0

1

CCCCCCCCA

To study the diffusion and movement across the multiplex, the Laplacian ma-
trix also arises naturally, in an analogous than for simple networks (see Subsection
1.1).

For a multiplex network M = (VM, EM, V, L) with m layers, a supra-adjacency
matrix A = (aij) with diagonal blocks A(a) and a total number of node-layer tuples
|VM| = N, a first definition of the supra-Laplacian matrix is defined as

L = D �A (3.4)

where D = diag(D1, . . . , DN), and Di is the degree of a node-layer tuple i†, given by

Di = Â
j

aij, (3.5)

which counts the number of node-layer tuples connected to i in GM.
Due to the clear distinction between intra-layer edges and inter-layer edges,

the degree of a node-layer tuple can be expressed as

Di(a) = Â
j

aij = di(a) + ci(a) (3.6)

where di(a) is the layer-degree and ci(a) is the coupling-degree of the node-layer tuple
i(a), defined as

di(a) = Â
j

aa
ij =

na+ea

Â
j=1+ea

aij, (3.7)

ci(a) = Â
j

cij = Â
j<ea

j>na+ea

aij, (3.8)

†Sometimes i(a) is used instead of i to indicate that the node-layer tuple i is in layer a.
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where A(a) = (aa
ij) is the adjacency matrix of Ga, C = (cij) is the adjacency matrix

of GC and ea = Âb<a nb is the excess index of layer a.
Since Di(a) = di(a) + ci(a), we can rewrite D as

D = diag(d1 + c1, . . . , dN + cN) =
M

a2L
D(a) + D, (3.9)

where D(a) is the diagonal matrix of node degrees in the layer-graph Ga and D =
diag(c1, . . . , cN). From this, it follows that

L =
M

a2L
D(a) + D �

M

a2L
A(a) � C =

M

a2L
L(a) + D � C (3.10)

where L(a) = D(a) � A(a) is the Laplacian matrix of the layer-graph Ga. This
naturally leads to the decomposition of the supra-Laplacian matrix

L = LL + LC, (3.11)

where LL =
L

a2L L(a) is the supra-Laplacian of the independent layers and LC =
D � C is the inter-layer supra-Laplacian.

For an unweighted node-aligned multiplex network with m layers and n nodes,
the supra-Laplacian matrix takes a simpler form

L =
M

a2L
(L(a) + (m � 1)IN)� Km ⌦ In. (3.12)

This decomposition will be particularly useful in the following section, as it
allows us to analyze different structural properties of the multiplex network in
terms of the properties of both the layer-graphs Ga and coupling graph GC.

3.2 Structural transitions

One of the main interests in the research of complex networks is focused in
comprehending the relationships between the multiplex’s topology and the be-
havior of the processes occurring within it. These behaviors can often be quanti-
fied through the network’s connectivity, which is strongly related to its Laplacian
through the algebraic connectivity, i.e., the smallest non-zero eigenvalue of the
supra-Laplacian matrix. Abrupt changes in the algebraic connectivity leading to
the distinction of different operational phases for multiplex networks that have
no counterpart for traditional single-layer networks have been studied in previous
works such as [15] and [16].

In this section, we examine the structural behavior of multiplex networks as a
function of different variables that define them, deriving and examining various
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upper bounds for the algebraic connectivity of a two-layer multiplex network.
This enables us to identify and characterize distinct behavioral regions: in some,
the multiplex system behaves as one interconnected system, while in others, the
layers effectively decouple and behave as independent networks.

3.2.1 Coupling edges

Consider an unweighted multiplex network M = (VM, EM, V, L) with m layers.
We study its behavior as a function of the importance of inter-layer edges. To do
so, following the approach made in [17], we introduce a weight parameter p that
adjusts the relative strength of the inter-layer coupling compared to the intra-layer
connectivity. By incorporating this weight parameter p into the coupling edges,
Equation 3.11 takes the following form

L =
M

a2L
L(a) + pLC (3.13)

where La represents the Laplacian of the intra-layer graph Ga and LC is the inter-
layer supra-Laplacian.

To study the different behavioral regions in a two-layer, node-aligned multiplex
network with n nodes on each layer as a function of the relative strength of the
inter-layer coupling, we explicitly write the matrix form of Equation 3.13

L(p) =

 
L(1) + pIn �pIn

�pIn L(2) + pIn

!
. (3.14)

Lemma 3.4. For a connected two-layer, node-aligned multiplex network M =
(VM, EM, V, L) with n nodes on each layer and inter-layer weight p, the algebraic
connectivity l2 of the multiplex satisfies l2  2p.

Proof. The Laplacian matrix of the network of layers of the multiplex M is

L(L) =

 
p �p
�p p

!
. (3.15)

The eigenvalues of this Laplacian are µ1 = 0, µ2 = 2p. From (2.2) we get

l2  2p.

⇤
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Lemma 3.5. For a connected two-layer, node-aligned multiplex network M =

(VM, EM, V, L) with n nodes on each layer and inter-layer weight p, if l(i)
2 is the

algebraic connectivity of the intra-layer graph Gi, then the algebraic connectivity
l2 of the multiplex satisfies l2  l(i)

2 + p for i = 1, 2.

Proof. Using Equation 1.10 and the fact that for a connected network its alge-
braic connectivity is positive, we know that for any non-zero eigenvector v of the
supra-Laplacian matrix of the multiplex, the condition

vTL(p)v � l2kvk2 � 0 (3.16)

holds.
Let us write vT = (vT

1 , vT
2 ), where v1 and v2 are n-dimensional vectors. Con-

sider the normalized eigenvector u1 of L(1) corresponding to l(1)
2 , that is, L(1)u1 =

l(1)
2 u1 with ku1k = 1.

Expanding the expression for vTL(p)v we have

vTL(p)v = vT
1 (L(1) + pIn)v1 + vT

2 (L(2) + pIn)� 2pvT
1 v2. (3.17)

Consider the following decomposition of v1

v1 = bu1 + y1 (3.18)

where b 2 R and uT
1 y1 = 0.

Using this decomposition, we compute

vT
1 (L(1) + pIn)v1 = b2(l(1)

2 + p) + yT
1 (L(1) + pIn)y1. (3.19)

Additionally, from the norm of v and Equation 3.18, we have

kvk2 = kv1k2 + kv2k2 = b2 + yT
1 y1 + kv2k2. (3.20)

Substituting Equations 3.19 and 3.20 into Inequality 3.16, we obtain

b2(l(1)
2 + p) + . . . � l2(b2 + yT

1 y1 + kv2k2) � 0. (3.21)

Since this inequality must hold for all b 2 R, the coefficient of b2 must be
non-negative. Therefore we obtain:

l2  l(1)
2 + p.

The inequality for l(2)
2 is obtained analogously.

⇤
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Lemma 3.6. For a connected two-layer, node aligned multiplex network M =
(VM, EM, V, L) with n nodes on each layer and inter-layer weight p, let L(1) and L(2)

be the Laplacian matrices of the intra-layer graphs G1 and G2, respectively. If lA is
the algebraic connectivity of the average graph 1

2 (G1 + G2), then the connectivity
of the multiplex l2 satisfies l2  lA

Proof. The Laplacian matrix of the aggregate network of the multiplex M is

L(A) =
1
2
(L(1) + L(2)), (3.22)

which corresponds to the Laplacian matrix of the average graph 1
2 (G1 + G2).

If l(A)
2 is the smallest non-zero eigenvalue of L(A), from (2.4) we get

l2  l(A)
2 = lA.

⇤

These upper bounds for the algebraic connectivity of the multiplex network
reveal different behaviors of the multiplex depending on the value of the inter-
layer coupling p, the algebraic connectivity of each layer (l(1)

2 and l(2)
2 ), and the

algebraic connectivity of the average graph (lA):

• Weak coupling (p  min(l(1)
2 , l(1)

2 , lA)): the layers behave in a disconnected
way, and the algebraic connectivity of the multiplex increases linearly as 2p.
The easiest way to disconnect the multiplex is by separating the multiplex
into its two individual layers (deleting the inter-layer couplings).

• Intermediate coupling (min(l(1)
2 , l(2)

2 ) < p < lA): if min(l(1)
2 , l(2)

2 ) < lA/2,
the system enters a transitional phase where the algebraic connectivity of
the multiplex will be roughly given by p + min(l(1)

2 , l(2)
2 ). The easiest way

to disconnect the multiplex is no longer by separating the layers, but by
splitting the least connected layer (i.e., the layer with the smallest algebraic
connectivity) and cutting off the inter-layer connections between one of those
parts and the other layer.

• Strong coupling (p > lA): the algebraic connectivity of the multiplex is
approximately that of the aggregate network of both layers. The system be-
haves as a single unified network, with no distinction between the individual
layers.

Finally, note that if min(l(1)
2 , l(2)

2 ) is sufficiently small, the first regime (weak
coupling) does not effectively exist.
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Example 3.7. The following graphs illustrate three different scenarios on the be-
havior regions of a two-layer, node-aligned multiplex M = (VM, EM, V, L) with
n = 50 nodes and different connectivity properties of the intra-layer graph struc-
tures, formed by Erdös-Renyi networks [18] with 50 nodes and different edge
probabilities.

• The three behavioral phases are present. The second layer of the multiplex

has a significantly lower connectivity than the first, satisfying l(2)
2  lA/2.

However, l(2)
2 is sufficiently large to distinguish the region where l2 ⇡ 2p.

To visualize this behavior on a randomly generated multiplex, the first layer
is constructed as an Erdös-Renyi network with 50 nodes and an edge proba-
bility of 0.5, while the second layer is an Erdös-Renyi network with 50 nodes
and an edge probability of 0.2.

The resulting multiplex has l(1)
2 ⇡ 12.288, l(2)

2 ⇡ 3.519 and lA ⇡ 10.195.

Figure 3.1 shows one transition point at p = l(2)
2 ⇡ 3.519. Up from this point

l2 gradually converges to lA.

Figure 3.1: Plot of the second smallest eigenvalue for a two-layer multiplex as a
function of the inter-layer weight p.

• There is no weak coupling. The second layer of the multiplex has a signifi-

cantly lower connectivity than the first, also satisfying l(2)
2  lA/2. How-

ever, l(2)
2 is so small that the region where l2 ⇡ 2p is not distinguishable.
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To visualize this behavior on a randomly generated multiplex, the first layer
is constructed as an Erdös-Renyi network with 50 nodes and an edge proba-
bility of 0.5, while the second layer is an Erdös-Renyi network with 50 nodes
and an edge probability of 0.005.

The resulting multiplex has l(1)
2 ⇡ 16.043, l(2)

2 = 0.212 and lA = 8.359.

Figure 3.2 shows no appreciable transition point. Instead, l2 smoothly con-
verges to lA.

Figure 3.2: Plot of the second smallest eigenvalue for a two-layer multiplex as a
function of the inter-layer weight p.

• There is no intermediate coupling. The second layer of the multiplex has a

connectivity comparable to that of the first, satisfying l(2)
2 > lA/2. There-

fore, there is an abrupt change in the behavior of l2 with no transitional
phase.

To visualize this on a randomly generated multiplex, the first layer is con-
structed as an Erdös-Renyi network with 50 nodes and an edge probabil-
ity of 0.5, while the second layer is an Erdös-Renyi network with 50 nodes
and an edge probability of 0.4. The resulting multiplex has l(1)

2 ⇡ 13.807,
l(2)

2 = 10.137 and lA = 13.498.

Figure 3.3 shows a sharp transition point at p = lA/2 ⇡ 6.749.
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Figure 3.3: Plot of the second smallest eigenvalue for a two-layer multiplex as a
function of the inter-layer weight p.

3.2.2 The value of poorly connected layers

The results from Example 3.7 show that when adding a significantly less con-
nected network (L(2)) to a well-connected one (L(1)), the behavior of the multiplex
depends on the less connected layer (for this reason, we will refer to it as the dom-
inant layer) and the algebraic connectivity of the multiplex is, at best, as resilient
as the aggregated network. However, the algebraic connectivity of the multiplex
will not surpass the algebraic connectivity of the better-connected layer.

Nonetheless, there are situations where including a less connected network
brings significant benefits to the overall multiplex. This is because the less con-
nected network may possess traits that compensate for its low algebraic connec-
tivity, hence enhancing the functionality of the multiplex. For example, consider a
transportation multiplex network, where one layer consists of walking paths and
the other of boat routes. While the boat routes layer may be less connected, it pro-
vides value to the general transportation multiplex by enabling faster movement,
making it a crucial addition to the system.

To account for this added value provided by the less connected layer, we intro-
duce a weighting factor a, which is applied to the edges of the poorer-connected
layer, allowing us to adjust the relative importance of this layer, ranging form
a = 1, where both layers are treated as equal, to a > 1, where the dominant layer
is considered more advantageous or influential than the better-connected layer.
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To study how this weighting factor influences the behavior of a two-layer mul-
tiplex, consider a multiplex network M = (VM, EM, V, L) with m = 2 layers, L(1)

and L(2) with l(1)
2 > l(2)

2 . We study its behavior as a function of the importance
of the dominant layer by introducing the weighting factor a to L(2). By doing so,
Equation 3.11 takes the following form

L =

 
L(1) 0

0 aL(2)

!
+ LC. (3.23)

If we consider that the multiplex is node-aligned and that the coupling-edges
have a weight p, Equation 3.23 is explicitly written as

L(a) =
 

L(1) + pIn �pIn

�pIn aL(2) + pIn

!
. (3.24)

Lemma 3.8. For a connected two-layer, node-aligned multiplex network M =
(VM, EM, V, L) with n nodes on each layer, if the intra-layer graph G2 has a weight-
ing factor a, each inter-layer edge has a weight p and l(2)

2 is the algebraic con-
nectivity of the intra-layer graph G2, then the algebraic connectivity l2 of the
multiplex satisfies l2  al(2)

2 + p.

Proof. Using the same reasoning as in the proof of Lemma 3.5, Inequality 3.16
holds.

Let us write vT = (vT
1 , vT

2 ), where v1 and v2 are n-dimensional vectors. Con-
sider the normalized eigenvector u2 of L(2) corresponding to l(2)

2 , that is, L(2)u2 =

l(2)
2 , with ku2k = 1.

Expanding the expression for vTL(a)v we have

vTL(a)v = vT
1 L(1)v1 � 2pvT

1 v2 + pkv1k2 + avT
2 L(2)v2 + pkv2k2. (3.25)

Consider the following decomposition of v2

v2 = bu2 + y2 (3.26)

where b 2 R and uT
2 y2 = 0.

Using this decomposition, we compute

avT
2 L(2)v2 = ab2l(2)

2 + ayT
2 L(2)y2. (3.27)

Additionally, from the norm of v and Equation 3.26, we have

kvk2 = kv1k2 + kv2k2 = kv1k2 + b2 + yT
2 y2. (3.28)
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Substituting Equations 3.27 and 3.28 into Inequality 3.16, we obtain

b2(al(2)
2 + p) + . . . � l2(b2 + yT

2 y2 + kv1k2) � 0. (3.29)

Since this inequality must hold for all b 2 R, the coefficient of b2 must be
non-negative. Therefore we obtain:

l2  al(2)
2 + p.

⇤

To study the different behavioral phases of the multiplex as a function of the
weighting factor a, note that Lemma 3.4 also serves as an upper bound and, so the
algebraic connectivity of the multiplex is upper bounded by l2  2p. Therefore,
we can distinguish two different behaviors with a transition point

a =
p

l(2)
2

.

If p/l2
2 > 1, for 1  a < p/l(2)

2 , the algebraic connectivity of the multiplex will
be upper-bounded by al(2)

2 + p, and the best way to disconnect the multiplex is
by splitting the dominant layer and cutting off the inter-layer connections between
one of those parts and the other layer.

For l(2)
2 � p/l(2)

2 , the algebraic connectivity of the multiplex will be the same
no matter the relative importance of the dominant layer, and the best way to dis-
connect the multiplex is by separating it into its two individual layers.

Note that, as a � 1, if p/l(2)
2 < 1 the multiplex will only show the second

behavior.

Example 3.9. For a two-layer node-aligned multiplex M = (VM, EM, V, L) with
n = 50 nodes and no inter-layer weights (i.e., p = 1) formed by an Erdös-Renyi
network with an edge probability of 0.5 in the first layer and an Erdös-Renyi
network with an edge probability of 0.1 in the second one. The resulting multiplex
has l(1)

2 ⇡ 15.109 and l(2)
2 ⇡ 0.498. The behavior of its algebraic connectivity as a

function of the weight factor a is plotted below. Since l(2)
2 < 1, Figure 3.4 shows a

sharp transition point at a = 1/l(2)
2 ⇡ 2.008, as expected.
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Figure 3.4: Plot of the second smallest eigenvalue for a two-layer multiplex as a
function of the weighting factor a of the intra-layer graph G2.

3.2.3 Convenience of adding a poorly connected layer

As shown, whether the dominant layer enhances the algebraic connectivity
of the multiplex depends on two key factors: the inter-layer weight, p, and the
weighting factor a. To evaluate the conditions under which the algebraic connec-
tivity of the multiplex, l2, exceeds that of the well-connected layer, l(1)

2 , it is useful
to plot the region in the parameter space of p and a where l2 > l(1)

2 .
This visualization facilitates the comparison of different scenarios, each defined

by distinct characteristics of the layers that conform the multiplex network, and
evaluating when maintaining the entire multiplex network is more advantageous
than preserving only the well-connected layer.

To understand the frontier of this region for a two-layer multiplex network, it
is convenient to use the bounds previously derived in Subsections 3.2.1 and 3.2.2:

• Limit for p. Since l2  2p is always an upper bound for the algebraic con-
nectivity of the multiplex, on the boundary of the region (i.e. the values of p
and a where l2 = l(1)

2 ) we get

p � l(1)
2
2

. (3.30)

• Limit for a. Using Lemma 3.6, l2  l(A)
2 , where l(A)

2 is the algebraic connec-
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tivity of the aggregate network. Considering that the supra-Laplacian matrix
has the form given in Equation 3.24, the Laplacian matrix of the aggregate
network is

L(A) =
1
2
(L(1) + aL(2)), (3.31)

where L(1) and L(2) are the Laplacian matrices of the layers that conform the
multiplex. Since a � 1, we can rewrite

L(A) =
1
2
(L(1) + L(2)) +

a � 1
2

L(2). (3.32)

The first component of the sum corresponds to the Laplacian matrix of the
average graph 1

2 (G1 + G2), where G1 and G2 are the intra-layer graphs asso-
ciated with L(1) and L(2), respectively.

Therefore, the eigenvalues of L(A) are those of the Laplacian matrix of the
average graph, with an added perturbation that depends only on a. Since
obtaining the explicit expression of the algebraic connectivity of L(A), l(A)

2 ,
can be cumbersome, approximations for values of a close to one and its
asymptotic behavior can be derived using perturbation theory or approaches
similar to those in [19] and [15].

Since the boundary region l2 = l(1)
2 is often achieved for intermediate values

of a (i.e., neither a ⇡ 1 nor a � 1), these analytical approximations are not
usually useful enough and numerical approximations can provide a more
accurate characterization of the bound for a.

Example 3.10. To visualize the different types of region shapes obtained for a two-
layer node-aligned multiplex network M = (VM, EM, V, L) on n = 20 nodes, the
following cases, randomly generated using Erdös-Renyi networks on each layer,
are analyzed and plotted in Figure 3.5.

• 1. Similar values for l(1)
2 , l(2)

2 and lA: both layers have similar connectivity
properties (edge probability: 0.5). The obtained layers have the following
algebraic connectivities: l(1)

2 ⇡ 2.4909, l(2)
2 ⇡ 3.4894, and the algebraic con-

nectivity of the average graph is lA ⇡ 3.3942.

• 2. l(2)
2 < lA / l(1)

2 : the second layer is less connected than the first one, but
the average graph has a similar connectivity to the first one (edge probability
of layer 1: 0.5, edge probability of layer 2: 0.3). The obtained layers have
the following algebraic connectivities: l(1)

2 ⇡ 5.1765, l(2)
2 ⇡ 1.5933, and

lA ⇡ 4.7554.
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• 3. l(2)
2 < lA < l(1)

2 : the second layer is significantly less connected than
the first one, so the average graph has a smaller connectivity than the first
layer (edge probability of layer 1: 0.5, edge probability of layer 2: 0.15). The
layers of the represented regions have the following algebraic connectivities:
l(1)

2 ⇡ 5.8873, l(2)
2 ⇡ 0.5067, and lA ⇡ 3.9830.

1. Similar values for l(1)
2 , l(2)

2 and lA 2. l(2)
2 < lA / l(1)

2

3. l(2)
2 < lA < l(1)

2

Figure 3.5: Algebraic connectivity figures of two-layer multiplexes with different
connectivity properties. The colored region means an improvement in algebraic
connectivity when adding a poorly connected layer as a function of the weighting
factor a of the poorly connected layer and the inter-layer weight p.
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The regions where it is beneficial to maintain the entire multiplex (i.e., where
l2 > l(1)

2 ) are shown in blue. The plots also include the bounds of the regions
p = l(1)

2 /2 and a = amin, where amin is numerically computed from the eigen-
values of Equation 3.32.
As one would expect, the shaded region is increasingly smaller as the second layer
becomes comparatively poorly connected.

3.3 Supra-walks

In a similar manner to the definition for simple networks (see Definition 1.3),
we can define a walk in a node-aligned multiplex network M = (VM, EM, V, L)
with n nodes on each layer, and call it a supra-walk. A supra-walk is an ordered
list of nodes in which either before of after each intra-layer step, a walk can either
continue on the same layer or switch to an adjacent layer. The choice of wether to
stay on the same layer or change layers is represented by the matrix

Ĉ(b, g) = bIn + gC (3.33)

where In is the n ⇥ n identity matrix, C is the adjacency matrix of the coupling
graph, b > 0 is a weight that accounts for the walk staying within the current
layer, and g > 0 is a weight that accounts for the walk stepping to another layer.

In a supra-walk, a supra-step consists either of a single intra-layer step or of a
step that includes both an intra-layer step and changing from one layer to another
(either before or after having an intra-layer step), disallowing two consecutive
inter-layer steps. In other words, supra-walks are walks on the supra-graph GM

with the restriction that there cannot be two consecutive inter-layer steps.
To encode the permissible steps in a multiplex network, a multiplex walk matrix

is used. Depending on the order of the inter-layer and intra-layer steps, different
multiplex walk matrices are defined:

• The matrix AĈ represents steps where either only an intra-layer step is per-
formed (represented by the matrix A) or an inter-layer step is made first,
followed by an intra-layer step (represented by the matrices CA).

• The matrix ĈA represents steps where either only an intra-layer step is per-
formed (represented by the matrix A) or an intra-layer step is made first,
followed by an inter-layer step (represented by the matrices AC).

Note that, by definition, the supra-adjacency matrix A is also a walk matrix, with
no restriction on the type of steps that are performed in the multiplex. Still, it is
often of interest to treat intra and inter-layer edges differently, as changing a layer
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is an action of different nature with respect to moving between nodes in the same
layer.

Example 3.11. A sketch of the possible allowed elementary cycles (i.e., the mini-
mum possible paths where only the first and last nodes are equal) for the multiplex
walk matrix AĈ, going from black - grey - white - black nodes, is the following
one:

AAA ACAAC ACACA ACACACAACAC

The intra-layer edges are represented by solid lines and the inter-layer edges are
represented by dotted lines.

Note that both matrices AĈ and ĈA can be interpreted as adjacency matrices of
directed (and possibly weighted, if b 6= 1 or g 6= 1) graphs GM that correspond to
the underlying graph of directed multilayer networks. The asymmetry introduced
by the directed edges and potentially different weights (b 6= g) may result in
complex eigenvalues for these matrices.

Example 3.12. Consider the multiplex network used in Example 3.2. If the multi-
plex walk matrix AĈ is used with b = g = 1, we obtain the following multiplex
walk matrix (left) and a representation of its corresponding directed multilayer
network (right)

AĈ =

0

BBBBBBBB@

0 1 1 0 1 1
1 0 0 1 0 0
1 0 0 1 0 0

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0

1

CCCCCCCCA

(1, A)

(2, A)

(1, B)

(2, B)

(3, B)

A

B

(3, A)
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If instead b = 1 and g = 2 are used, the resulting multiplex walk matrix becomes

AĈ =

0

BBBBBBBB@

0 1 1 0 2 2
1 0 0 2 0 0
1 0 0 2 0 0

0 0 0 0 0 0
0 0 2 0 0 1
0 2 0 0 1 0

1

CCCCCCCCA

.

The eigenvalues of this matrix are: l1 = �1, l2 ⇡ �0.814� 1.272 i, l3 ⇡ �0.814+
1.272 i, l4 = l5 = 0, l6 ⇡ 2.629.

For directed networks, the previous definition of node degree used for an undi-
rected network G = (V, E), which emerged in Equation 1.2 (di = Âj aij for a node
vi 2 V), is insufficient as it does not distinguish between edges entering and leav-
ing a node. To address this issue, two measures are defined: the indegree of a node,
which counts the sum of the weights of the edges pointing to it, and the outdegree,
which counts the sum of the weights of the edges originating from it.

Definition 3.13. Let G = (V, E) be a directed network with adjacency matrix A =
(aij). For a node vi 2 V, its indegree and outdegree are given by di(i) = Âj aji and
do(i) = Âj aij, respectively. Moreover, the degree of a node vi 2 V, d(i), is the sum
of its indegree and outdegree: d(i) = di(i) + do(i).

If the Laplacian matrix is defined as LM = DM � AM (as in Section 2.2), where
AM is the adjacency matrix of GM and DM = diag(d(1), . . . , d(n)) is the diago-
nal supra-matrix containing the weighted directed degrees of GM, the resulting
Laplacian matrix is generally asymmetric. This asymmetry can lead to complex
eigenvalues, making this definition of Laplacian matrix unsuitable for defining
algebraic connectivity in the context of multiplex-walk matrices.

Example 3.14. Consider the multiplex network used in Example 3.2. Using the
Laplacian definition LM = DM � AM for the multilayer network derived from the
multiplex walk matrix AĈ with b = 1 and g = 2, we obtain

LM =

0

BBBBBBBB@

8 �1 �1 0 �2 �2
�1 6 0 �2 0 0
�1 0 6 �2 0 0

0 0 0 4 0 0
0 0 �2 0 6 �1
0 �2 0 0 �1 6

1

CCCCCCCCA

.

The eigenvalues of this matrix are: l1 ⇡ 3.847, l2 = 4, l3 = 6, l4 = 7, l5 ⇡
7.576 � 0.549 i, l6 ⇡ 7.576 + 0.549 i.
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This example illustrates how the current Laplacian definition is inadequate
for multiplex networks with constraints on inter-layer transitions in supra-walks,
motivating the development of a new Laplacian matrix definition that accounts
for these constraints.

3.3.1 Possible definitions for the Laplacian matrix

A natural first approach to define the Laplacian matrix of the multiplex net-
work derived from the multiplex walk matrices is to consider the outdegrees of its
underlying graph GM, obtaining with it the outdegree Laplacian matrix.

Definition 3.15. For a directed multilayer network M = (VM, EM, V, L) with un-
derlying graph GM, its outdegree Laplacian matrix, Lo, is given by

Lo = Do � AM,

where AM is the adjacency matrix of GM and Dodiag(do(1), . . . , do(n)) is the diag-
onal supra-matrix containing the weighted outdegrees of GM.

Using this definition, the algebraic connectivity of a directed graph is defined as
the following real number

l2(GM) = min
vT1n=0

v2Rn,v 6=0

vT Lov
kvk2 . (3.34)

As extensively discussed in [20], this definition generalizes the algebraic con-
nectivity to directed graphs, preserving several of the properties previously men-
tioned in Subsection 1.2.1.

Example 3.16. Consider the multiplex network used in Example 3.2. Using the
Laplacian definition Lo = Do � AM, with the multilayer network derived from the
multiplex walk matrix AĈ with b = 1 and g = 2, we obtain

Lo =

0

BBBBBBBB@

6 �1 �1 0 �2 �2
�1 3 0 �2 0 0
�1 0 3 �2 0 0

0 0 0 0 0 0
0 0 �2 0 3 �1
0 �2 0 0 �1 3

1

CCCCCCCCA

.

The eigenvalues of this matrix are: l1 = 0, l2 = 1, l3 = 3, l4 = l5 = 4,
l6 = 6. Thus, the algebraic connectivity of the multiplex network derived from
the multiplex walk matrix AĈ is l2 = 1.
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Still, this definition may fail to completely capture the dynamics occurring in
the multiplex walk matrix, as only the outdegrees are considered.

To overcome the possible limitations of Lo, we propose a Laplacian matrix
derived from the symmetrization of GM, denoted as GS. The graph GS is obtained
by replacing each directed edge in GM with an undirected edge of half the weight.

If AM is the adjacency matrix of GM = (VM, EM), then the adjacency matrix
of GS = (VS, ES) (where VS = VM) is defined as AS = 1/2(AM + AT

M). Since
GS is undirected, we can use the usual Laplacian matrix definition to define its
Laplacian.

Definition 3.17. For a directed multilayer network M = (VM, EM, V, L) with un-
derlying graph GM and a symmetrized graph GS, its symmetrized Laplacian matrix,
LS is given by

LS = DS � AS,

where DS = diag(d1, . . . , dn), and di is the node degree of vi 2 VS.
This definition ensures that all eigenvalues of LS are real, so the original defi-

nition of algebraic connectivity (Equation 1.10) still applies.
Example 3.18. Consider the multiplex network used in Example 3.2. Using the
Laplacian definition LS = DS � AS for the multilayer network derived from the
multiplex walk matrix AĈ with b = 1 and g = 2, we obtain

LS =

0

BBBBBBBB@

4 �1 �1 0 �1 �1
�1 3 0 �1 0 �1
�1 0 3 �1 �1 0

0 �1 �1 2 0 0
�1 0 �1 0 3 �1
�1 �1 0 0 �1 3

1

CCCCCCCCA

.

The eigenvalues of this matrix are l1 = 0, l2 = 1
2 (7 �

p
13), l3 = 1

2 (7 �
p

5),
l4 = 4, l5 = 1

2 (7 +
p

5), l6 = 1
2 (7 +

p
13). Thus, the algebraic connectivity

of the multiplex network derived from the multiplex walk matrix AĈ is l2 =
1
2 (7 �

p
13) ⇡ 1.697.

This definition of the Laplacian matrix using the symmetric part of GM has the
advantage of accounting for both indegree and outdegree contributions, offering a
more balanced view of the dynamics of the supra-walks in the multiplex network.
However, some problems may arise as it also reduces the directed multilayer net-
work to an undirected one, loosing part of the supra-walk constraints, potentially
influencing the computation of the algebraic connectivity. For this reason, further
investigation is needed to correctly evaluate its advantages and drawbacks and
to assess its suitability for analyzing the dynamics of supra-walks in multiplex
networks.



Chapter 4

Multiplex approach in ancient
regional transport infrastructures

The goal of this chapter is to apply the algebraic connectivity results for mul-
tiplex networks obtained in Chapter 3 to study the structural properties of trans-
portation networks in the Iron Age archaeological settlements of Latium Vetus and
Southern Etruria located in the Italian peninsula. Using the multiplex formalism
introduced in this work, we aim to analyze the viability and maintenance of road
and river networks in these regions.

The use of network science in archaeology can be a powerful tool when em-
ployed correctly, but one must be aware of the inherent incompleteness of the data
and the simplifications required when analyzing large time spans and tackling the
complexity of human interaction, as discussed in [21]. Still, by following a cor-
rect approach to data processing, we can apply the theoretical results obtained in
Section 3.2. The work started in [22] and [23], along with the multiplex approach
made in [24] and [25] provide the foundations for this analysis.

4.1 Road and river networks

As with any aspect related to the complexity of human interactions, the dis-
tribution of settlements and the various relationships between them are dynamic
and evolve over time. For example, new settlements are established, new roads are
built, old ones are neglected, and the use and navigation of rivers change. Since
obtaining precise information on these matters is difficult and a discretization of
the time periods is necessary for a meaningful analysis of regional dynamics and
change, [22] identifies five major periods during which settlements and connec-
tions remain stable without major changes:
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• Early Iron Age 1 Early (EIA1E): 950/925-900 BC.

• Early Iron Age 1 Late (EIA1L): 900-850/825 BC.

• Early Iron Age 2 (EIA2): 850/825-730/720 BC.

• Orientalizing Age (OA): 730/720-580 BC.

• Archaic Period (AA): 580-500 BC.

This simplification allows us to focus on five time stamps during which the set of
settlements and the different connections among them can be considered constant,
reducing the analysis from a continuously evolving network of settlements to five
static networks [22].

For the road networks in Latium Vetus (LV) we used the data presented in [23],
and for the the road networks in Southen Etruria (SE) we used the data presented
in [22]. Regarding the river networks, we used the data presented in [26].

In both the road and river networks, each node represents a settlement, and
its location corresponds to the settlement’s geographic coordinates. For the road
network, an edge exists between two nodes if there is archaeological evidence of a
road directly connecting their corresponding settlements without passing through
another settlement. For the river network, a settlement is included if it was located
near a river, and an edge exists between two nodes if geological evidence allows
inferring the navigability of the river between those two settlements without pass-
ing through another settlement, even if there is no direct evidence of its use for
transportation purposes, making this model an upper bound of the real river net-
work [24]. Short navigable distances between coastal settlements have also been
included as edges in the river network. Figure 4.1 illustrates the resulting road
and river networks using this criteria for the EIA1L period.

4.1.1 Network quantification

Both the road and river networks are treated as weighted networks, where the
weight is proportional to the reliance of each road or river connecting a settle-
ment. The unit of quantifying the cost of the maintenance of the infrastructure is
calculated based on the cost of maintaining one kilometer of road, thus the cost
of a road is proportional to its length (in kilometers) and the reliance* of a road
between two settlements is inversely proportional to the distance between them.
In estimating the distances of road or river routes, the geodesic distance between
the nodes they connect has been considered.

*We understand as reliance of a road or river the "probability" of the connection not failing: the
shorter the connection the more secure it is.
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Figure 4.1: Road networks (left) and river networks (right) of Southern Etruria
(upper region, green nodes) and Latium Vetus (lower region, red nodes) for EIA1L
period.

While this approach may lack precision, it is suitable for our analysis, as it
avoids introducing biases toward less-studied areas, while aligning with the fo-
cus of this study, which is to understand the general structural properties of the
system, rather than focusing on the specific details of individual paths [22].

As introduced in Section 1.2, both the node and edge connectivity of a network
serve as indicators of its robustness: the greater the connectivity, the more resistant
the network is to node or edge failures. Moreover, the algebraic connectivity of
the network provides a lower bound for both of these values, as well as setting
the time scale for diffusion processes in the network, representing the connection
between the structural and dynamical robustness of a network [16].

To quantify the characteristics of each network, we calculated the algebraic
connectivity of the greatest connected component† for each transportation mode
and period. Table 4.1 shows how the river networks, as one would expect given
that new rivers generally cannot be created, have poorer connectivity properties
compared to the road networks, as the algebraic connectivity of the river networks
are generally one order of magnitude smaller than those of the road networks.

†We work with the greatest connected component to satisfy the premises of the results discussed
in Section 1.2.
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Road EIA1E EIA1L EIA2 OA AA

SE l⇤
2 8.06 · 10�3 8.25 · 10�3 7.17 · 10�3 5.31 · 10�3 5.23 · 10�3

LV l2 1.16 · 10�2 1.03 · 10�2 1.44 · 10�2 2.29 · 10�2 2.99 · 10�2

River EIA1E EIA1L EIA2 OA AA

SE l⇤
2 3.1 · 10�4 4.8 · 10�4 1.15 · 10�3 2.6 · 10�4 2.2 · 10�4

LV l⇤
2 2.3 · 10�3 1.9 · 10�3 1.0 · 10�3 2.1 · 10�3 1.6 · 10�3

Table 4.1: Algebraic connectivity for empirical road and river networks of Latium
Vetus (LV) and Southern Etruria (SE). ⇤ accounts for the algebraic connectivity of
the giant connected component.

4.1.2 Convenience of adding the river network

These poor connectivity characteristics of the river networks compared to the
road networks motivate the study of the viability and likelihood of maintaining
the river network, following the same approach detailed in Subsections 3.2.2 and
3.2.3.

We model these networks using a two-layer multiplex network where, using
the same notation as in Chapter 3, G1 corresponds to the intra-layer graph of the
road network and G2 corresponds to the intra-layer graph of the river network.
Each inter-layer edge of the multiplex M, which physically can be conceived as
a port, i.e. a connection linking the road and the river, is assigned a weight p.
As shown in Table 4.1, the river layer is the dominant layer (lriver

2 < lroad
2 ).

However, since the archaeological record provides evidence of the existence of the
river network, we introduce the weighting factor a for the river intra-layer network
G2, which we will call the river convenience factor, which scales the maintenance of
waterways relative to the unitary cost of road maintenance: the higher the value
of a, the lower the maintenance cost of rivers compared to roads [25]. A high river
convenience factor increases the weights of river connections, effectively increasing
the algebraic connectivity of G2 as alriver

2 . Thus lmin
2 (a) = min(alriver

2 , lroad
2 ),

giving us a transition marked by

a =
lroad

2

lriver
2

(4.1)

at which the river network can be considered more resilient than the road network.
Beyond this value of a, the addition of the river layer no longer contributes to the
system’s connectivity as a weaker layer. Lower values of a indicate more similar-
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ity in the quality of both road and river networks, thus a high value of a would
suggest the need of a highly efficient maintenance of ports and rivers, as the con-
nectivity of the river layer is significantly smaller than that of the road. As Table
4.1.2 shows, the values of a are generally higher for the Etruscan region, indicating
that the fluvial infrastructure could hinder terrestrial transportation [25].

Region EIA1E EIA1L EIA2 OA AA

SE a 26.0 17.2 6.2 21.2 23.8

LV a 5.0 5.4 14.4 10.9 18.7

Table 4.2: a values derived form the empirical road and river networks of Latium
Vetus (LV) and Southern Etruria (SE).

Furthermore, from Subsection 3.2.3, the following bound for p of the frontier
of the region holds

p � lroad
2
2

(4.2)

Note that the inter-layer edge weight p accounts for the relative strength of
the inter-layer coupling, and, following the reasoning made in Subsection 4.1.1 we
consider that 1/p is a parameter which quantifies the expense of maintaining port
infrastructures relative to the cost of maintaining one kilometer of road [25].

Considering that the algebraic connectivity of the multiplex network formed
by the road and river layers (l2) depends on lroad

2 , lriver
2 , a and p, and that the

maintenance of the joint network is advantageous only if the algebraic connectivity
of the multiplex exceeds that of the road network alone, since lroad

2 and lriver
2 are

constant for each period, the relevance of maintaining the river network depends
entirely on the factors a and p.

Although the exact values of a and p are unknown and likely varied across
different regions and periods, our analysis aims to evaluate under what specific
circumstances the addition of the river routes, as an auxiliary mode, enhances the
overall transportation system effectiveness beyond what terrestrial routes could
achieve on their own, using a and 1/p as indicative factors.

Figure 4.2 illustrates the regions in the parameter space of 1/p and a where
l2 > lroad

2 for Southern Etruria and Latium Vetus during the five different peri-
ods considered. A larger colored area means good interplay between layers.
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Southern Etruria Latium Vetus

Figure 4.2: Algebraic connectivity figures of road and river multiplexes for periods
EIA1E, EIA1L, EIA2, OA and AA from top to bottom. The colored region means an
improvement in algebraic connectivity when adding the river layer as a function of the
river convenience factor, a, and the port cost, 1/p (with p the inter-layer weight).
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The y-axis represents the port maintenance costs, 1/p, with values plotted in
the range [0.5, 20]. This interval ensures visibility of the most relevant dynamics,
as the smallest theoretical upper bound 1/p  2/lroad

2 , derived from Table 4.1 is
much higher (1/p ⇡ 60 for LV AA).

In Latium Vetus, Figure 4.2 reveals that good interplay between rivers and
roads was most beneficial during the initial stages of Iron Age (EIA1E and EIA1L).
Over time, as terrestrial infrastructure improved, reliance on fluvial connections
decreased and, by the Archaic Period (AA), the terrestrial infrastructure had be-
come sufficiently resilient by itself, greatly reducing the critical role that the fluvial
network had had in the past. In contrast for the Soutern Etruria region, while the
river networks consistently show poor connection qualities, the terrestrial connec-
tions were also never strong enough on their own, thus the river networks con-
sistently contributed to the overall network connectivity (in a variable way) across
the years.

Since river infrastructure cannot be constructed, its impact greatly depends
on natural geography. In Latium Vetus, where rivers naturally provided better
connections, the fluvial network played a key role in early stages when road in-
frastructure was not yet properly developed. However, as the Latin articulation
of the territory became stronger, partly by developing a robust road network, the
importance of rivers diminished significantly. In contrast, the Southern Etruria
region had weaker river connections, so it never depended as heavily on fluvial
connections. Nonetheless, the river network remained relevant because the road
infrastructure did not develop as rapidly or effectively as in Latium Vetus, due to
geographical and political factors beyond the scope of this work.

These results are consistent with previous studies were the multiplex formal-
ism was not used [22] [23], confirming archaeological theories regarding the im-
portance of road and river infrastructure in vertebrating these Italian regions and
open the door to applying the multiplex framework to other historical or archae-
ological contexts with more limited material evidence.
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