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�
 ABSTRACT 

Background: Current evidence suggests higher physical ac-
tivity (PA) levels are associated with a reduced risk of colorectal 
cancer. However, the mediating role of the circulating metab-
olome in this relationship remains unclear. 

Methods: Targeted metabolomics data from 6,055 partici-
pants in the European Prospective Investigation into Cancer 
and Nutrition cohort were used to identify metabolites as-
sociated with PA and derive a metabolomic signature of PA 
levels. PA levels were estimated using the validated Cam-
bridge PA index based on baseline questionnaires. Mediation 
analyses were conducted in a nested case–control study 
(1,585 cases, 1,585 controls) to examine whether individual 
metabolites and the metabolomic signature mediated the PA– 
colorectal cancer association. 

Results: PA was inversely associated with colorectal cancer 
risk (OR per category change: 0.90, 95% confidence interval, 
0.83–0.97; P value ¼ 0.009). PA levels were associated with 

24 circulating metabolites after FDR correction, with the 
strongest associations observed for phosphatidylcholine acyl- 
alkyl (PC ae) C34:3 (FDR-adjusted P value ¼ 1.18 � 10�10) 
and lysophosphatidylcholine acyl C18:2 (FDR-adjusted P 
value ¼ 1.35 � 10�6). PC ae C34:3 partially mediated the PA– 
colorectal cancer association (natural indirect effect: 0.991, 
95% confidence interval, 0.982–0.999; P value ¼ 0.04), 
explaining 7.4% of the association. No mediation effects were 
observed for the remaining metabolites or the overall PA 
metabolite signature. 

Conclusions: PC ae C34:3 mediates part of the PA– 
colorectal cancer inverse association, but further studies with 
improved PA measures and extended metabolomic panels are 
needed. 

Impact: These findings provide insights into PA-related bio-
logical mechanisms influencing colorectal cancer risk and suggest 
potential targets for cancer prevention interventions. 
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Introduction 
Colorectal cancer is one of the most common cancer types 

globally, responsible for almost 2 million new cancer cases and over 
900,000 related deaths in 2020 (1). Prospective cohort studies and 
Mendelian randomization analyses have consistently found that 
higher levels of physical activity (PA) are associated with reduced 
risk of colorectal cancer and especially colon cancer (2–4). More 
specifically, World Cancer Research Fund (WCRF) in its last report 
ranked the evidence regarding the protective role of PA on colon 
cancer risk as convincing, whereas no conclusion was drawn for 
rectal cancer (2). Similarly, an umbrella review of the literature 
concluded that the protective association of recreational PA with 
colon cancer was supported by strong evidence (3). A recent 
Mendelian randomization study further reported that an increase in 
accelerometer-measured PA levels was associated with lower risk of 
overall colorectal cancer and colon cancer but not with rectal cancer 
(4). Potential mechanisms underlying this relationship are incom-
pletely understood but are believed to include a reduction in insulin 
resistance and inflammation through direct effects of exercise as 
well as the lowering of body weight (2). However, it is possible that 
currently unidentified, biological pathways mediate the PA and 
colorectal cancer relationship. 

Metabolomics involves the systematic identification and quanti-
fication of multiple metabolites in an organism or biological sample 
to explore associations with disease (5). The metabolome directly 
reflects the physiologic and pathologic state of an individual, and 
these measurements can be used to provide insights into potential 
mechanistic pathways involved in carcinogenesis (6–8). 

Several prior studies, both cross-sectional and prospective, 
have investigated associations between different levels of PA and 
metabolite levels (9, 10). PA-related metabolomic alterations 
identified have included changes in fatty acid metabolism, mo-
bilization and lipolysis, the tricarboxylic acid cycle, glycolysis, 
amino acid metabolism, carnitine metabolism, purine meta-
bolism, cholesterol metabolism and insulin sensitivity (10). Al-
though there have been some studies investigating the role of 
metabolites associated with PA and other cancer types such as 
breast cancer (11), there have been no similar studies for colo-
rectal cancer. 

In the current analysis, we used targeted blood metabolomics 
data from the European Prospective Investigation into Cancer and 
Nutrition (EPIC) study to identify individual metabolites associated 
with PA and derive a metabolomic signature of PA levels by com-
bining data from all identified metabolites. We then examined the 
extent to which the identified metabolomic signature and individual 
metabolites mediated the inverse association observed between PA 
levels and colorectal cancer risk in a case–control study nested 
in EPIC. 

Materials and Methods 
EPIC 

EPIC is a multicenter cohort of 521,330 participants from the 
general populations of 10 European countries (Denmark, France, 
Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden, 
and the UK) who were recruited between 1991 and 2000 (12, 13). 
The participants were followed up for an average of 15.2 years. The 
current study used data from all EPIC countries apart from Greece, 
Sweden, and Norway for which biosamples and/or data were un-
available due to administrative constraints. 

Outcome assessment 
Incident cancer cases were identified using cancer registries in 

UK, Spain, Italy (except the center in Naples), the Netherlands, and 
Denmark. For France, Germany, and Naples, incident cancer cases 
were identified during follow-up from a combination of sources 
including cancer and pathology centers, health insurance records, 
and active follow-up of study participants. Colorectal cancer cases 
were defined using the 10th revision of the International Classifi-
cation of Diseases and the third revision of the International Clas-
sification of Diseases for Oncology codes C18–C20 corresponding to 
cancers occurring between the cecum and rectum. 

Exposure assessment 
PA levels were estimated using questionnaire data collected at 

baseline, focusing on past-year PA in occupational, leisure, and 
household domains, and classified according to the validated 
Cambridge PA index into four categories: inactive, moderately in-
active, moderately active, and active (14). The index was based on 
four EPIC questions on habitual PA during the past year (Supple-
mentary Methods S1) and was validated in 173 participants from a 
continuing population-based cohort study in Ely (15), Cambridge-
shire, where four measures of cardiorespiratory fitness and four 
measures of 4-day energy expenditure by heart-rate monitoring 
were completed across 1 year. At the final visit, participants com-
pleted the PA questionnaire that refers to activity in the past 
12 months (14). Its repeatability was further assessed in a sample of 
2,271 participants from the EPIC–Norfolk cohort (weighted κ ¼ 0.6; 
P < 0.0001; ref. 14). More details regarding what each level of PA 
index represents can be found in the Supplementary Table S1. 

Confounder assessment 
At baseline, questionnaires were used to collect information on 

demographics, medical conditions, and behavioral factors, including 
smoking status, alcohol consumption, level of education, and dia-
betes status. Anthropometric measurements were collected using 
standardized methods (13). Validated country- and center-specific 
dietary questionnaires were used to collect information on diet. 

Blood collection and laboratory analysis 
Blood samples were collected at baseline following a standardized 

protocol in France, Germany, Italy, the Netherlands, Spain, and the 
UK (13). Serum, plasma, erythrocytes, and buffy coat aliquots were 
stored in liquid nitrogen (�196°C) in a centralized biobank at the 
International Agency for Research on Cancer (IARC). In Denmark, 
blood fractions were stored locally in the vapor phase of liquid 
nitrogen containers (�150°C). Sample analyses were performed at 
the IARC and the Helmholtz Zentrum, München, Germany, using 
the targeted AbsoluteIDQ p150 or p180 Kits (BIOCRATES Life 
Sciences AG) to measure concentrations of 171 metabolites in se-
rum or plasma (depending on sample’s availability; ref. 16). Samples 
were assayed on different LC and MS instruments across the dif-
ferent studies, but each study used one single pair of LC-MS in-
struments for all samples (17). A previous analysis examining data 
quality for the Biocrates kit showed that for typical biological 
samples (serum and plasma from healthy individuals) the median 
interlaboratory coefficient of variation was 7.6%, with 85% of me-
tabolites exhibiting a median interlaboratory coefficient of variation 
of <20%, demonstrating the reproducibility of the method (18). 
Additionally, previous targeted metabolomics studies in different 
EPIC centers further confirmed that by reporting equally low 
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coefficients of variation (19, 20) or high intraclass correlation 
coefficients (21). 

Data normalization 
To derive the metabolomic signature of PA levels, a recently 

developed analytical pipeline was applied to a dataset of 15,428 partic-
ipants from seven distinct (breast, colorectal, endometrial, gall-
bladder, kidney, liver, and prostate cancer) case–control studies 
nested within EPIC with available metabolomics data from pre-
diagnostic blood samples (17). This pipeline involved three steps to 
pool together and normalize the participant data across the six 
separate nested case–control studies to increase the statistical power 
while correcting for several preanalytical and analytical factors that 
might induce artificial differences (17): Step (i) exclusions of the 
least informative observations and metabolites and imputation of 
missing data; Step (ii) identification of the main components of 
variability; Step (iii) application of linear mixed models to remove 
unwanted variability. Metabolites and samples with >20% missing 
data and samples assayed in batches with less than 10 samples were 
excluded (17 samples and 54 metabolites). For the remaining me-
tabolites, measurements below the limit of detection or lower limit 
of quantification were set to half the batch-specific limit of detection 
or lower limit of quantification, respectively. Metabolite measure-
ments above the upper limit of quantification were set to values 
equal to the upper limit of quantification. Fully missing values were 
set to the batch-specific median of non-missing values if less than 
50% of the measurements in the batch were missing and to the 
study-specific median of the batch specific medians otherwise (17). 
The current study included 117 metabolites (15 acylcarnitines, 
13 amino acids, 76 glycerophospholipids, 1 monosaccharide, and 
12 sphingolipids). The principal component partial R-square 
method was used to calculate the total variation in the metab-
olomics data and its source (22). Based on the principal component 
partial R-square results, the main sources of variation were pre-
analytical and analytical variables, including the individual cancer 
nested case–control study, batch effects, and EPIC center, which 
collectively explained 40% of the total variation of the metabolomics 
measurements (Supplementary Fig. S1A). The final step included 
the normalization of the log-transformed metabolite data by 
implementing a linear mixed model to correct for variation due to 
these factors, which were included as random effects in the model 
(Supplementary Fig. S1B). 

Statistical analysis 
Metabolites of PA 

Adjusted linear regression models to investigate the associations 
between the normalized metabolite data (dependent variables) with 
the levels of PA were applied to the controls only after excluding the 
participants from the colorectal cancer nested case–control study 
(n ¼ 6,055). The PA index was entered into the model as a con-
tinuous variable, and all the metabolite-associated coefficients cor-
responded to a category change in the PA levels. The model was 
adjusted for several a priori defined covariates, including sex, age 
at blood collection (continuous), fasting status at blood collection 
(<3, 3–6, >6 hours, or unknown), education (none, primary school, 
technical/professional school, secondary school, longer education 
including university degree, or unknown/unspecified), smoking 
status at recruitment (current, former, never, or unknown), body 
mass index (BMI; continuous, kg/m2), alcohol consumption (con-
tinuous, g/day), diabetes status (yes, no, or unknown), and daily 

intakes of total energy, red and processed meat, and fruits and 
vegetables (quartiles). The FDR was calculated to correct for mul-
tiple comparisons (FDR-adjusted P values <0.05 denoted statistical 
significance, corresponding to a nominal P value of 0.01). We also 
calculated the effects of PA on the identified metabolites among 
the controls in the colorectal cancer dataset to examine their 
concordance. 

Metabolomic signature of PA 
The metabolomic signature of the PA index for the metabolites 

associated with PA in the previous step was derived through a 
partial least squares (PLS) regression (23). Briefly, PLS extracted 
linear combinations, referred to as PLS factors, of the PA index and 
the identified metabolites, allowing a simultaneous decomposition 
of both sets of variables with the aim of maximizing their covari-
ance. The metabolomic signature was then correlated with the PA 
index by applying Spearman correlation coefficient. 

Metabolomic signature of PA and colorectal cancer risk 
Using the PLS factors derived in the previous step, the metab-

olomic signature was then derived and investigated in relation to 
colorectal cancer risk in a new dataset of 1,585 colorectal cancer 
cases and 1,585 controls from a case–control study nested within 
EPIC in which cases and controls were matched by recruitment 
center, sex, age at blood collection (±3 to ±5 years in subsequent 
rounds), date (±1 to ±6 months) and time of day of blood sampling 
(±1 to ±3 hours), and fasting status. Multivariable conditional lo-
gistic regression models were used to assess the associations between 
the metabolomic signature of PA, as well as individual metabolites, 
and colorectal cancer risk. The models were adjusted for the same 
variables as those used to identify the metabolomic signature of PA. 

Mediating role of metabolites on PA and colorectal cancer risk 
We investigated the possible mediating role of the PA metab-

olomic signature and each metabolite separately on the association 
between PA and colorectal cancer. Estimates of the natural direct 
effect (NDE), the natural indirect effect (NIE), and the total effect 
(TE) of PA index were calculated using a counterfactual approach 
adapted to dichotomous outcomes (24). The term NDE refers to the 
effect of PA index that is not mediated by the potential mediating 
metabolites, and the NIE is that part of the effect of PA index that is 
mediated. Formulae from VanderWeele and Vansteelandt were 
adapted to accommodate continuous exposures and use of condi-
tional logistic regression models (25). In summary, two main 
models were applied to obtain NDE, NIE, and the mediator effect of 
metabolite adjusted for the PA effect. In the outcome model, PA and 
the mediator variables (one at a time) were both included as inde-
pendent variables in a conditional logistic regression for colorectal 
cancer risk. In models for each mediator of interest, the mediator 
was linearly regressed on PA only on the subset of controls to 
account for the nested case–control design (26). The TE was ob-
tained from a conditional logistic regression of PA with colorectal 
cancer risk. Assuming that the outcome was rare, we calculated the 
proportion mediated that captures the importance of the mediating 
pathway and is defined on the risk difference scale, and it is cal-
culated based on the following formula NDE∗ ðNIE�1Þ

ðNDE∗NIE�1Þ (26) which ranges 
from 0% to 100%, and it is meaningful when NDE and NIE have 
the same direction of association. All models were adjusted for 
the same potential confounders as listed above. Further details 
on how the estimates were obtained can be found on previously 
published work within EPIC (27, 28). After additional testing, no 
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exposure–mediator interactions were observed and therefore were 
not included in the final mediation analyses. We also conducted the 
mediation analysis including colon cancer cases only as existing 
literature suggests that the PA inverse association is stronger for 
colon cancer than for rectal cancer (2). 

Sensitivity analyses 
We repeated our mediation analyses excluding cancer cases that 

were diagnosed within 2 and 5 years of follow-up following blood 
draw (lag analysis) to account for potential bias due to underlying 
subclinical cancer. 

A previous analysis in EPIC showed that obesity, measured by 
waist circumference, mediated the inverse association between high 
PA levels and colon cancer risk (29), indicating that obesity may be 
on the causal pathway between PA and colon cancer risk rather than 
a confounder. Therefore, we reran the models to calculate the 
metabolomic signature of PA and its mediating effect on the asso-
ciation between PA and colorectal cancer without BMI adjustment 
to investigate the potential impact of adjusting for the BMI in our 
initial results. 

All analyses were conducted in R (version 4.3.3, http://www.r-project.org). 
The R package plsgenomics was used to conduct the PLS regression, 
and the pls.regression.cv function was applied to determine the best 
number of latent components to be used for PLS regression. A flow-
chart recapping the different steps of the analysis and a directed acyclic 
graph for the mediation analysis are presented in Fig. 1 and Supple-
mentary Fig. S2, respectively. 

All participants provided written informed consent to participate 
in the EPIC study. This study was approved by the ethics committee 
of the IARC and all centers. This study complies with the Decla-
ration of Helsinki. 

Data availability 
Data from EPIC are not publicly available, but access requests can be 

made to the to the EPIC Steering Committee (https://epic.iarc.fr/access/). 
The code to perform the metabolite normalization is available in the 
relevant publication (17). 

Results 
Table 1 shows the baseline characteristics of the study partici-

pants. For participants in the metabolomic signature discovery 
phase, the average age at blood collection was 57 years of age, 56% 
of the participants were men, and 48% of the controls were controls 
in a study of prostate cancer. Overall, 59% of participants were 
categorized as inactive or moderately inactive, 62% of participants 
were classified as overweight or obese (Table 1). Comparison of the 
cancer cases with the controls in the colorectal cancer study revealed 
that the controls tended to be more physically active, smoked less, 
were less obese, and consumed more fruits and vegetables than 
colorectal cancer cases (Table 1). 

Metabolomic signature of PA 
After FDR correction, a higher level of PA was associated with 

increased circulating levels of 14 metabolites (all glycer-
ophospholipids) and decreased levels of 10 metabolites (3 sphingo-
lipids, 2 acylcarnitines, 2 amino acids, 2 glycerophospholipids, and 
sum of hexoses; Fig. 2; Supplementary Table S2). The most sig-
nificant associations were observed for phosphatidylcholine acyl- 
alkyl (PC ae) C34:3 (FDR-adjusted P value ¼ 1.18 � 10�10) and 
lysophosphatidylcholine acyl (lysoPC a) C18:2 (FDR-adjusted 

P value ¼ 1.35 � 10�6; both positively associated with the PA 
index). Out of the 24 identified metabolites, 19 showed concor-
dant effect estimates in our smaller colorectal cancer control 
dataset (Supplementary Table S3). 

Based on the PLS regression and the pls.regression.cv function, 
the metabolic signature of PA was derived as the loadings on the 
first latent variable. The metabolites with the largest contribution to 
the signature were lysoPC a C18:2 (loading ¼ 0.40), lysoPC a C18:1 
(loading ¼ 0.38), PC ae C34:3 (loading ¼ 0.33), and PC ae C36:3 
(loading ¼ 0.31; Supplementary Fig. S3). There were some corre-
lations among the metabolites, mostly clustered around three main 
classes of metabolites (phosphatidylcholines, lysophosphatidylcho-
lines, and sphingomyelins; Supplementary Fig. S4). The metab-
olomic signature of PA was correlated with the PA index (Spearman 
index ¼ 0.18; P value < 2.2 � 10�16). 

Examining the mediating role of metabolites in the PA and 
colorectal cancer association 

Overall, PA was inversely associated with colorectal cancer risk 
[TE OR per category change: 0.90; 95% confidence interval (CI), 
0.83–0.97; P value ¼ 0.009; Table 2)]. After FDR correction among 
the 24 identified metabolites, none was significantly associated with 
colorectal cancer risk, although three metabolites; C3 (OR per 1-SD 
change: 0.69; 95% CI, 0.53–0.89; P value ¼ 0.005), PC ae C34:3 
(OR per 1-SD change: 0.66; 95% CI, 0.50–0.88; P value ¼ 0.005), 
and PC ae C36:3 (OR per 1-SD change: 0.70; 95% CI, 0.49–0.99; 
P value ¼ 0.04) showed nominally significant associations. The NDE 
estimates for the direct association of PA with colorectal cancer risk 
were almost identical to the TE estimates. There was some evidence 
of mediation for PC ae C34:3 (NIE: 0.991; 95% CI, 0.982–0.999; 
P value ¼ 0.04) suggestive of a mediating effect of 7.4% (Table 2). 
For the overall metabolomic signature of PA, the NIE showed no 
to weak mediation effect (NIE: 0.994; 95% CI, 0.987–1.002; 
P value ¼ 0.21; Table 2). 

A similar pattern of results was observed for colon cancer, with 
an inverse association observed with higher levels of PA and colon 
cancer risk (TE OR per category change: 0.92, 95% CI, 0.84–1.00; 
P value ¼ 0.05). The results from the mediation analysis were 
in general similar to the overall colorectal cancer analysis 

Metabolomic signature
(mediator)

Mediation
analysis

Physical activity
(exposure)

Colorectal cancer
(outcome)

Figure 1. 
A directed acyclic graph for the mediation analysis. The direct arrow from the 
exposure (PA) to the outcome (colorectal cancer) corresponds to the NDE of 
PA that is not mediated by the potential mediating metabolites. The second 
arrow that connects PA to colorectal cancer through the metabolomic sig-
nature corresponds to the NIE that is part of the effect of PA that is mediated 
by the metabolomic signature. 
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(Supplementary Table S4). PC ae C34:3 again had the strongest 
proportion of effect mediated at 7.4%, as in the overall colorectal 
cancer analysis, but the evidence for the NIE estimate was weak 
(NIE: 0.994; 95% CI, 0.987–1.001; P value ¼ 0.10). There was little 
evidence of mediation for the overall metabolomic signature of PA 
(NIE: 0.995; 95% CI, 0.987–1.005; P value ¼ 0.34). 

The 2-year lag analysis showed an attenuated mediating effect of 
4.1% for PC ae C34:3 (NIE: 0.994; 95% CI, 0.987–1.001; 
P value ¼ 0.09) which was further reduced to 2.8% (NIE: 0.996; 95% CI, 

0.989–1.002; P value ¼ 0.23) in the 5-year lag analysis (Supplementary 
Table S4). Again, little evidence of mediation for the overall metab-
olomic signature was found regardless of the lag period (Supplementary 
Table S4). 

Finally, after repeating our analysis without BMI adjustment, 
30 metabolites were associated with PA, but most of them were the 
same as in our initial analysis (Supplementary Table S5). The me-
diation analysis without BMI adjustment moreover showed some 
mediating effects for the overall metabolomic signature, as well as 

Table 1. Sociodemographic, lifestyle, dietary, and blood-sampling related characteristics of participants included in the analyses. 

EPIC 

Metabolomic signature 
discovery phase 
(n = 6,055) 

Colorectal cancer nested 
case–control dataset 

(n = 1,585 pairs) 

Cases Control 
Age, mean (SD) 57 (7.9) 57 (7.5) 57 (7.5) 
Sex, n (%) 

Men 3,367 (56) 868 (55) 868 (55) 
Women 2,688 (44) 717 (45) 717 (45) 

Educational level, n (%) 
None 377 (6) 140 (9) 127 (8) 
Primary school 2,021 (33) 548 (35) 603 (39) 
Technical/professional 1,397 (23) 351 (22) 352 (22) 
Secondary 770 (13) 246 (15) 205 (13) 
University or higher 1,280 (21) 250 (16) 259 (16) 
Not specified 210 (4) 210 (4) 39 (2) 

BMI (kg/m2), mean (SD) 26 (3.9) 27 (4.4) 26 (3.9) 
Categories of BMI, n (%) 

<18.5 39 (1) 10 (1) 15 (1) 
18.5–25 2,267 (37) 539 (34) 586 (37) 
25–30 2,786 (46) 700 (44) 727 (46) 
30+ 963 (16) 336 (21) 257 (16) 

PA, n (%) 
Inactive 1,445 (24) 464 (29) 406 (25) 
Moderately inactive 2,145 (35) 542 (34) 551 (35) 
Moderately active 1,337 (22) 309 (20) 312 (20) 
Active 1,128 (19) 270 (17) 316 (20) 

Smoking status, n (%) 
Never 2,632 (43) 679 (43) 751 (47) 
Former 2,029 (34) 515 (32) 474 (30) 
Smoker 1,353 (22) 385 (24) 352 (22) 
Unknown 41 (1) 6 (1) 8 (1) 

Red and processed meat intake (g/day), mean (SD) 84 (55) 85 (64) 86 (52) 
Fruits and vegetables intake (g/day), mean (SD) 443 (262) 452 (268) 473 (272) 
Energy intake (kcal), mean (SD) 2,258 (647) 2,212 (633) 2,229 (631) 
Alcohol intake (g/day), mean (SD) 16 (20) 17 (21) 15 (19) 
Substudy controls, n (%) 

Breast 1,516 (25) 
Endometrial 765 (12) 
Gallbladder 47 (1) 
Kidney 587 (10) 
Liver 221 (4) 
Prostate 2,919 (48) 

Participants by country, n (%) 
France 197 (3) 52 (3) 52 (3) 
Italy 1,262 (21) 391 (25) 391 (25) 
Spain 1,105 (18) 317 (20) 317 (20) 
United Kingdom 1,156 (19) 228 (14) 228 (14) 
the Netherlands 490 (8) 126 (8) 126 (8) 
Germany 1,582 (26) 164 (10) 164 (10) 
Denmark 263 (4) 307 (19) 307 (19) 
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for PC ae C34:3. PC ae C34:3 mediated 9.7% (NIE: 0.988; 95% CI, 
0.979–0.997; P value ¼ 0.01), whereas the proportion mediated for 
the metabolomic signature was 10.5% (NIE: 0.987; 95% CI, 0.978–0.997; 
P value ¼ 0.02; Supplementary Table S6). Similar results were observed 
in the analysis of colon cancer (proportions mediated: 9.3% and 13.4%, 
respectively), whereas the estimates were attenuated in the lag analyses 
(Supplementary Table S6). 

Discussion 
In this analysis, we identified a novel circulating metabolomic 

signature of PA that comprised several phosphatidylcholines and 
lysophosphatidylcholines. Overall, we found little evidence of any 
mediating role of the overall PA-related metabolomic signature in 
the inverse association of PA with colorectal cancer risk. However, 
among the individual PA-related metabolites, we found some 
evidence of PC ae C34:3 as a possible mediator, although this 
effect was attenuated when we introduced a lag time into our 
analysis. 

Prior metabolomic studies for PA have focused mostly on the 
effect of different training regimes on the metabolome (10, 30). 
Currently, there are relatively few population-based cohort studies 
focusing on habitual PA (31–34). A targeted metabolomics anal-
ysis of 5,197 participants in Nurses’ Health Study I and II and the 
Health Professionals Follow-up Study identified 20 metabolites 
significantly associated with higher levels of habitual PA mea-
sured as metabolomic equivalent of task-hours per week based 
on leisure time activities (31), with most of the identified metab-
olites showing positive associations with PA including several 

phosphatidylcholines and lysophosphatidylcholines including 
lysoPCs a C18:1 and a C18:2 that were also identified in our study. 
However, PC ae C34:3 was not in the panel of metabolites in-
vestigated in that study (31). An untargeted metabolomics study of 
7,271 Finnish men without diabetes at baseline from the Metabolic 
Syndrome in Men cohort identified 198 metabolites associated 
with greater leisure time PA (active vs. non-active; ref. 32). Again, 
PC ae C34:3 was not reported in the results, but in general inverse 
associations were observed for most phosphatidylcholines and PA, 
which is not in agreement with our analysis. However, the Finnish 
study applied the one-way ANOVA test to assess whether the 
levels of the metabolites differ by PA without any further adjust-
ment for potential confounders, and additionally only men were 
included in that study, which taken together could have an impact 
on the results (32). A targeted metabolomics analysis in EPIC- 
Potsdam (N ¼ 100 participants) reported that PC ae C34:3 was 
positively associated with cardiorespiratory fitness (0.06, 95% CI, 
0.01–0.12; mL/kg/minutes), although the association was slightly 
attenuated when the models were further adjusted for PA energy 
expenditure, time spent sedentarily, and time spent in engaging in 
vigorous activity (0.05, 95% CI, �0.01 to 0.12; mL/kg/minutes; ref. 
33). Additionally, a PC-derived factor of 19 metabolites mostly 
consisting of acyl-alkyl-phosphatidylcholines including PC ae 
C34:3 was also positively associated with cardiorespiratory fitness 
(0.074, 95% CI, 0.01–0.14; P value ¼ 0.03; ref. 33). Finally, a more 
recent serum metabolite network analysis in 2,380 participants, 
again in EPIC-Potsdam, reported that PC ae C34:3 along with 
other acyl-alkyl-phosphatidylcholines comprised a group of metabo-
lites that was positively associated with cardiorespiratory fitness (34). 

Strength of metabolite–PA Index associations
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Figure 2. 
Volcano plot with associations between metabolites with levels of PA as measured by PA index. The metabolites above the horizontal line showed a significant 
association with PA after correcting for multiple comparisons. 
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Previous metabolomics studies have also linked PC ae C34:3 with 
obesity-related traits (35–37). A previous study in EPIC reported 
that higher body size was associated with lower levels of PC ae C34:3 
(35). Additionally, PC ae C34:3 levels were also lower in participants 
with metabolic syndrome in the KORA F4 (beta ¼ �0.76, 
P ¼ 4.06 � 10�82) and SHIP-TREND-0 (beta ¼ �0.73, 
P ¼ 1.08 � 10�20) studies (N ¼ 3,803 participants, 31% with 
metabolic syndrome in the combined dataset; ref. 36). Another 
targeted metabolomics study in EPIC-Potsdam (N ¼ 2,282) found 
that increased levels of PC ae C34:3 and other acyl-alkyl- 
phosphatidylcholines were associated with lower risk of type 2 dia-
betes (37). Finally, data from the Tübingen Family study further 
reported that PC ae C34:3 was positively correlated with insulin 
sensitivity (spearman correlation ¼ 0.15) and negatively with in-
sulin secretion (spearman correlation ¼ �0.24; ref. 37). Overall, 
evidence suggests that circulating concentrations of PC ae C34:3 and 
other acyl-alkyl-phosphatidylcholines are higher with greater levels 
of PA and lower with adiposity and in those with type 2 diabetes 
and metabolic syndrome. 

The possible PA-related mediating role of PC ae C34:3 was driven by 
the inverse association between this metabolite and colorectal cancer 
risk that was observed in the colorectal cancer nested case–control 
study. Apart from our study in EPIC, there is currently lack of evidence 
regarding the role of PC ae C34:3 on colorectal cancer risk. However, a 
small untargeted metabolomics study of 50 colorectal cancer–control 
pairs found that the concentration levels of PC O-34:3, a potential 
isobar of PC ae C34:3, were lower in patients with colorectal cancer 
than in controls, which is in agreement with our results (38). 

Currently, there is a lack of evidence regarding the pathways 
through which PC ae C34:3 could be associated with decreased 

colorectal cancer risk, although several studies have consistently 
reported inverse associations between phosphatidylcholines in-
cluding PC ae C34:3 and other cancer sites (6, 39–41). It has been 
suggested that potential mechanisms could be their anti- 
inflammatory role in the colorectum as well as their antioxidant 
effects (42, 43). Chronic inflammation is a hallmark of cancer (44) 
and an important driver of colorectal cancer development (45), 
while oxidative stress has also been linked with an increased risk of 
colorectal cancer (46). On the other hand, it has been shown in-
creased levels of PA reduce chronic inflammation and increase 
adaptive response to oxidative stress (47, 48). We could therefore 
postulate that PC ae C34:3 could be a link mediating at least par-
tially the effects of PA on colorectal cancer risk. 

Removing the BMI from the models lead to increased evidence of 
mediating effect of the metabolomic signature in our analysis. A pre-
vious study in EPIC has found that waist circumference and not the 
BMI has a mediating role in the association between PA and colon 
cancer (29). Although the BMI and waist circumference are highly 
correlated, they represent different obesity phenotypes in which waist 
circumference represents better abdominal obesity that is closely asso-
ciated with insulin resistance. Therefore, PA has been suggested to 
reduce waist circumference and induce insulin sensitivity, independent 
of changes in body weight (29). Our findings support the hypothesis 
that general obesity could lie on the pathway linking PA to colorectal 
cancer or that obesity is a crude biomarker of the metabolic changes 
that occur in an obesogenic environment that lead to colorectal cancer 
and therefore caution is needed when adjusting for the BMI. 

The main strength of our study is the large sample size due to the 
pooling of multiple metabolomic datasets from six substudies within 
EPIC. We used a novel recently developed analytical pipeline to 

Table 2. Results from the mediation analyses, with ORs and their associated 95% CIs for the NDE, NIE, TE, and proportion mediated. 

NDE (95% CI) NIE (95% CI) TE (95% CI) % mediated 

PA 0.90 (0.83–0.97) 
Metabolites 

Glyceroph lysoPC a C16:0 0.90 (0.83–0.98) 0.999 (0.995–1.002) 0.9 
Glyceroph lysoPC a C18:1 0.90 (0.84–0.98) 0.997 (0.991–1.002) 2.0 
Glyceroph lysoPC a C18:2 0.91 (0.84–0.98) 0.994 (0.986–1.002) 3.2 
Glyceroph lysoPC a C20:3 0.90 (0.83–0.97) 1.000 (0.997–1.002) 0.4 
Glyceroph lysoPC a C20:4 0.90 (0.83–0.97) 1.001 (0.996–1.005) 0 
Glyceroph PC aa C38:3 0.90 (0.84–0.98) 0.999 (0.995–1.004) 0.6 
Glyceroph PC aa C40:6 0.90 (0.83–0.97) 1.000 (0.999–1.002) 0 
Glyceroph PC ae C34:2 0.90 (0.83–0.98) 0.998 (0.994–1.002) 1.7 
Glyceroph PC ae C34:3 0.91 (0.84–0.98) 0.991 (0.982–0.999) 7.4 
Glyceroph PC ae C36:3 0.90 (0.83–0.98) 0.999 (0.995–1.004) 0.6 
Glyceroph PC ae C40:1 0.90 (0.84–0.98) 0.997 (0.992–1.002) 1.8 
Glyceroph PC ae C40:4 0.90 (0.83–0.97) 1.001 (0.998–1.005) 0 
Glyceroph PC ae C42:1 0.90 (0.83–0.97) 1.000 (0.997–1.002) 0.2 
Glyceroph PC ae C42:2 0.90 (0.83–0.97) 1.000 (0.998–1.002) 0 
Glyceroph PC ae C42:3 0.90 (0.83–0.98) 0.998 (0.995–1.002) 1.0 
Glyceroph PC ae C42:4 0.90 (0.83–0.97) 1.002 (0.998–1.007) 0 
Sphingo Sm C18:0 0.90 (0.83–0.97) 1.000 (0.999–1.002) 0 
Sphingo Sm C18:1 0.90 (0.83–0.97) 1.002 (0.998–1.002) 0 
Sphingo Sm Oh C16:1 0.90 (0.83–0.97) 0.999 (0.995–1.002) 1.0 
Acylcarn C0 0.90 (0.83–0.97) 1.002 (0.998–1.006) 0 
Acylcarn C3 0.90 (0.83–0.97) 1.007 (1.000–1.015) 0 
Amino acid proline 0.90 (0.83–0.97) 0.999 (0.996–1.003) 0.6 
Amino acid valine 0.90 (0.83–0.97) 1.001 (0.998–1.003) 0 
H1 (overall hexose) 0.90 (0.83–0.98) 0.997 (0.993–1.002) 1.8 

Overall signature 0.91 (0.84–0.98) 0.994 (0.987–1.002) 0.96 (0.92–1.01) 4.1 

Abbreviations: Acylcarn, acylcarnitine; Sphingo Sm Oh, sphingolipid sphingomyelin (OH). 
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increase statistical power while correcting for several preanalytical 
and analytical factors that might have induced artificial differences 
in the data (17). Also, no participants from the colorectal cancer 
nested case–control study were used in the metabolite identification 
phase, thus avoiding sample overlap that could bias our results. 
Nevertheless, our study has also some limitations. Information on 
PA levels was assessed once from baseline questionnaires that are 
prone to measurement error due to misreporting of the PA levels. 
The conduct of a clinical trial perhaps would be a more efficient 
study design to investigate the metabolomic signature of PA, given 
the greater control over the definition and measurement of PA; 
however, using data from a large scale study like EPIC allows us to 
gain a better insight into the longer-term metabolomic effects (10). 
A validation study within EPIC has reported only a moderate cor-
relation between the Cambridge PA index and objectively mea-
sured PA (Pearson correlation index with PA energy expenditure: 
r2 ¼ 0.33; 95% CI, 0.28–0.38; ref. 49). Therefore, we know that 
the PA index is an imperfect measure of PA. However, of the three 
indices evaluated in the validation study (total PA index and rec-
reational index are the other two), the Cambridge PA index showed 
the stronger associations with objectively measured PA (49). Under 
nondifferential measurement error with a normally distributed 
mediator, the NIE will be biased toward the null, and if direct and 
indirect effects are in the same direction, the bias of the NDE is 
away from the null (50). In the current analysis, this may have led to 
an underestimation of the indirect effects, and an overestimation of 
the direct effects, resulting in a lower mediated proportion. Also, 
even though we adjusted for several confounders, these may not 
have been captured well in the measurement, and residual con-
founding could still occur. Additionally, Biocrates’ lipid metabolites 
are not specific, so one name could match several lipids that can 
have different biological roles. Our study was also limited by the 
relatively small number of measured metabolites. In addition, we 
cannot exclude the possibility that larger sample size was needed to 
identify mediating effects of a smaller magnitude. Moreover, 19 out 
of the 24 metabolites that were identified at the first stage of our 
analysis showed concordant results in the smaller colorectal cancer 
dataset; however, additional replications in external datasets would 
be required in order to assess the robustness of the associations. 
Finally, a crucial key assumption of our approach was the temporal 
ordering between exposure, mediator, and outcome. In our study, 
the PA index that estimates participants’ PA levels over the 
12 months preceding enrolment was assessed at baseline at the same 
time as blood sample collection. Temporality was better ensured in 
our analyses with incident colorectal cancer owing to the prospec-
tive study design. However, we cannot exclude potential reverse 
causality in our results, especially given the attenuation of the me-
diating effect observed in the lag analysis. 

We identified a novel metabolomic signature of PA levels but 
found little evidence of this signature mediating the associations 
between PA and colorectal cancer except in the analysis that was not 
adjusted for the BMI. We found novel evidence of one metabolite, 
PC ae C34:3, as having a possible mediating role in the PA and 
colorectal cancer relationship. However, additional high-quality 
epidemiologic and experimental studies are needed to validate our 
results. 
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33. Wientzek A, Floegel A, Knüppel S, Vigl M, Drogan D, Adamski J, et al. Serum 
metabolites related to cardiorespiratory fitness, physical activity energy ex-
penditure, sedentary time and vigorous activity. Int J Sport Nutr Exerc Metab 
2014;24:215–26. 

34. Floegel A, Wientzek A, Bachlechner U, Jacobs S, Drogan D, Prehn C, et al. 
Linking diet, physical activity, cardiorespiratory fitness and obesity to serum 
metabolite networks: findings from a population-based study. Int J Obes 
(Lond) 2014;38:1388–96. 

35. Kliemann N, Viallon V, Murphy N, Beeken RJ, Rothwell JA, Rinaldi S, et al. 
Metabolic signatures of greater body size and their associations with risk of 
colorectal and endometrial cancers in the European Prospective Investigation 
into Cancer and Nutrition. BMC Med 2021;19:101. 

36. Shi M, Han S, Klier K, Fobo G, Montrone C, Yu S, et al. Identification 
of candidate metabolite biomarkers for metabolic syndrome and its five 
components in population-based human cohorts. Cardiovasc Diabetol 2023; 
22:141. 

37. Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, et al. 
Identification of serum metabolites associated with risk of type 2 diabetes 
using a targeted metabolomic approach. Diabetes 2013;62:639–48. 

38. Fernandes A, Messias MCF, Duarte GHB, de Santis GKD, Mecatti GC, Porcari 
AM, et al. Plasma lipid profile reveals plasmalogens as potential biomarkers for 
colon cancer screening. Metabolites 2020;10:262. 

39. Breeur M, Ferrari P, Dossus L, Jenab M, Johansson M, Rinaldi S, et al. Pan- 
cancer analysis of pre-diagnostic blood metabolite concentrations in the Eu-
ropean Prospective Investigation into Cancer and Nutrition. BMC Med 2022; 
20:351. 

40. Schmidt JA, Fensom GK, Rinaldi S, Scalbert A, Appleby PN, Achaintre D, et al. 
Patterns in metabolite profile are associated with risk of more aggressive 
prostate cancer: a prospective study of 3,057 matched case-control sets from 
EPIC. Int J Cancer 2020;146:720–30. 

41. Guida F, Tan VY, Corbin LJ, Smith-Byrne K, Alcala K, Langenberg C, et al. 
The blood metabolome of incident kidney cancer: a case-control study nested 
within the MetKid consortium. PLoS Med 2021;18:e1003786. 

42. Treede I, Braun A, Sparla R, Kühnel M, Giese T, Turner JR, et al. Anti- 
inflammatory effects of phosphatidylcholine. J Biol Chem 2007;282:27155–64. 

43. Wallner S, Schmitz G. Plasmalogens the neglected regulatory and scavenging 
lipid species. Chem Phys Lipids 2011;164:573–89. 

586 Cancer Epidemiol Biomarkers Prev; 34(4) April 2025 CANCER EPIDEMIOLOGY, BIOMARKERS & PREVENTION 

Papadimitriou et al. 

https://www.wcrf.org/wp-content/uploads/2024/10/Colorectal-cancer-report.pdf
https://www.wcrf.org/wp-content/uploads/2024/10/Colorectal-cancer-report.pdf


44. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12: 
31–46. 

45. Schmitt M, Greten FR. The inflammatory pathogenesis of colorectal cancer. 
Nat Rev Immunol 2021;21:653–67. 

46. Dash C, Bostick RM, Goodman M, Flanders WD, Patel R, Shah R, et al. 
Oxidative balance scores and risk of incident colorectal cancer in a US Pro-
spective Cohort Study. Am J Epidemiol 2015;181:584–94. 

47. Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular 
antioxidant signaling pathway. Ann N Y Acad Sci 2006;1067:425–35. 

48. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The 
anti-inflammatory effects of exercise: mechanisms and implications for the 
prevention and treatment of disease. Nat Rev Immunol 2011;11:607–15. 

49. The InterAct Consortium; Peters T, Brage S, Westgate K, Franks PW, 
Gradmark A, et al. Validity of a short questionnaire to assess physical activity 
in 10 European countries. Eur J Epidemiol 2012;27:15–25. 

50. VanderWeele TJ, Valeri L, Ogburn EL. The role of measurement error and 
misclassification in mediation analysis: mediation and measurement error. 
Epidemiology 2012;23:561–4. 

AACRJournals.org Cancer Epidemiol Biomarkers Prev; 34(4) April 2025 587 

Metabolomic Mediators of the Physical Activity and Colorectal Cancer 

https://aacrjournals.org/

