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Thesis summary (in Spanish) 

Explorando la heterogeneidad neural en los trastornos mentales: el 

papel de la genética, la cognición y las comorbilidades 

1. Introducción 

Los trastornos mentales son una de las principales causas de discapacidad a nivel mundial, 

afectando significativamente la calidad de vida de las personas afectadas y generando una 

considerable carga económica y social. A pesar de los avances en diagnóstico y tratamiento, 

los mecanismos neurobiológicos subyacentes a estas afecciones siguen siendo poco 

comprendidos, dificultando su detección temprana, la estimación de su pronóstico y el diseño 

de intervenciones efectivas. Estudios de resonancia magnética (RM) han identificado 

alteraciones cerebrales asociadas a trastornos mentales, lo que ofrece un gran potencial para 

mejorar su comprensión y facilitar diagnósticos más precisos y tratamientos personalizados. 

Sin embargo, la heterogeneidad de estos hallazgos, derivada, entre otros, de la variabilidad 

clínica, predisposiciones genéticas, deterioros cognitivos y comorbilidades, representa un 

desafío significativo para la identificación de biomarcadores estables y robustos. Abordar esta 

heterogeneidad es, por tanto, esencial para mejorar la comprensión de los trastornos mentales 

y avanzar en el campo de la psiquiatría personalizada.  

Esta tesis estudia como diversos factores, específicamente haplotipos genéticos, deterioro 

cognitivo y comorbilidades, contribuyen a la heterogeneidad en los estudios de neuroimagen, 

con el fin último de aumentar el conocimiento sobre las bases biológicas de los trastornos y así 

poder ofrecer una mejor cura a las personas afectadas. 

2. Hipótesis 

H1. Los correlatos neurales de los trastornos mentales dependen de la presencia de haplotipos 

genéticos. 

H2. Los correlatos neurales de los trastornos mentales dependen de la presencia de deterioro 

cognitivo comórbido. 
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H3. Los correlatos neurales de los trastornos mentales dependen de la presencia de otros 

trastornos comórbidos. 

H4. Existen haplotipos genéticos asociados a trastornos mentales que presentan correlatos 

neurales relevantes, lo que confunde el análisis de los correlatos neurales de dichos trastornos. 

H5. Hay trastornos mentales comórbidos que confunden el análisis de los correlatos neurales 

de trastornos mentales, provocando resultados más difusos e inespecíficos. 

3. Objetivos 

O1. Evaluar si los correlatos neurales de un trastorno mental pueden depender de la presencia 

de un haplotipo genético. 

O2. Evaluar si los correlatos neurales de un trastorno mental pueden depender de la presencia 

de deterioro cognitivo. 

O3. Evaluar si los correlatos neurales de trastornos mentales dependen de la presencia de otros 

trastornos comórbidos. 

O4. Evaluar si los haplotipos asociados a trastornos mentales pueden tener correlatos neurales 

relevantes cuando se consideran tanto los efectos de los trastornos mentales como de los 

haplotipos genéticos. 

O5. Evaluar si el análisis de los correlatos neurales de trastornos mentales produce resultados 

más focalizados y específicos cuando se covaría por la presencia de comorbilidades. 

O6. Desarrollar un atlas que mapee las alteraciones específicas y transdiagnósticas en el 

volumen de sustancia gris (VSG) asociadas estadísticamente con los principales trastornos 

mentales, teniendo en cuenta el efecto de confusión generado por trastornos comórbidos. 

4. Métodos 

El estudio I exploró los correlatos neurales del trastorno por déficit de atención e hiperactividad 

(TDAH) en adultos y del gen latrofilina 3 (ADGRL3, asociado al TDAH). Pacientes con TDAH 

(n=64) y controles (n=64), clasificados según su haplotipo de ADGRL3 (de riesgo y protector), 

completaron una RM estructural y funcional durante una tarea de memoria de trabajo (n-back). 
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Los datos se analizaron con FSL empleando un modelo lineal ajustado por edad, sexo y 

medicación, para investigar los correlatos neurales de TDAH, los haplotipos y su interacción.   

El estudio II investigó correlatos funcionales en pacientes con trastorno bipolar (TB) asociados 

al deterioro cognitivo. Un total de 144 pacientes con TB en remisión, clasificados en 

cognitivamente deteriorados (n=83) y cognitivamente normales (n=61), y 50 controles 

completaron una RM funcional en estado de reposo. Utilizado FSL se analizó la conectividad 

funcional intra e interredes funcionales de la red por defecto (DMN), ejecutiva central (CEN) 

y de saliencia, ajustando por edad y sexo. 

El estudio III desarrolló y validó una metodología innovadora de meta-análisis con SDM-PSI, 

diseñada para considerar el efecto de las comorbilidades. Se analizaron 433 estudios de VSG, 

incluyendo 19,718 pacientes y 16,441 controles, para identificar alteraciones estructurales 

asociadas a trastornos mentales, y compararla con los métodos estándar.  

5. Resultados 

El estudio I no identificó interacciones diagnóstico X haplotipo. Sin embargo, ambos 

haplotipos mostraron una hipo-activación durante la tarea n-back. Por lo tanto, los haplotipos 

del ADGRL3 pueden confundir los estudios sobre las bases neuronales del TDAH, ya que están 

asociados tanto al trastorno como a la neuroimagen. 

El estudio II reveló que los pacientes con TB cognitivamente deteriorados exhibieron mayor 

hiper-conectividad en regiones de la DMN y menor hipo-conectividad en regiones de la ECN.  

Por lo tanto, los correlatos funcionales del TB están influenciados por la presencia de deterioro 

cognitivo comórbido. 

El estudio III reveló que los correlatos de VSG de un trastorno mental están influenciados por 

la presencia de otros trastornos comórbidos. Además, utilizando la metodología innovadora se 

observó que las alteraciones eran más focalizadas y específicas cuando se covaría por los otros 

trastornos.  

6. Conclusiones 

C1. La presencia de haplotipos de ADGRL3 de protección o riesgo no influye en los correlatos 

estructurales y funcionales del TDAH.  
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C2. El deterioro cognitivo influye en los correlatos funcionales de pacientes con TB.  

C3. Los correlatos estructurales de los trastornos mentales varían según la presencia de 

trastornos comórbidos. 

C4. Los haplotipos de ADGRL3, asociados al TDAH, tienen correlatos funcionales cerebrales 

importantes, por lo que pueden actuar como factores de confusión en el análisis de los 

correlatos cerebrales del TDAH.  

C5. Los trastornos comórbidos actúan como factores de confusión cuando se estudian las 

alteraciones estructurales en los trastornos mentales, generando patrones más amplios e hiper-

correlacionados. 

C6. Los correlatos neurales de los trastornos mentales están influenciados por varios factores, 

como el deterioro cognitivas y las comorbilidades. 

C7. El análisis de los correlatos neurales en trastornos mentales puede estar sesgado por 

diversos factores de confusión, como los haplotipos genéticos y las comorbilidades. 

C8. La presencia de efectos moderadores y de confusión al investigar los correlatos neurales 

de trastornos mentales complica la identificación de biomarcadores robustos y específicos, pero 

también abre nuevas posibilidades para futuras investigaciones. 

7. Palabras clave 

Neuroimagen, trastorno mental, heterogeneidad, haplotipos genéticos, deterioro cognitivo, 

trastornos comórbidos.  
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Thesis summary (in Catalan) 

Explorant la heterogeneïtat neuronal en els trastorns mentals: el 

paper de la genètica, la cognició i les comorbiditats 

1. Introducció 

Els trastorns mentals són una de les principals causes de discapacitat a nivell mundial, 

impactant significativament la qualitat de vida de les persones afectades i generant una 

considerable càrrega econòmica i social. Malgrat els avenços en el diagnòstic i el tractament, 

els mecanismes neurobiològics subjacents a aquestes afeccions continuen sent poc compresos, 

fet que dificulta la seva detecció precoç, l’estimació del seu pronòstic i el disseny 

d’intervencions efectives. Els estudis de ressonància magnètica (RM) han identificat 

alteracions cerebrals associades als trastorns mentals, oferint un gran potencial per millorar-ne 

la comprensió i facilitar diagnòstics més precisos i tractaments personalitzats. No obstant això, 

la heterogeneïtat d’aquests resultats, derivada, entre altres factors, de la variabilitat clínica, les 

predisposicions genètiques, el deteriorament cognitiu i les comorbiditats, representa un repte 

significatiu per a la identificació de biomarcadors estables i robustos. Per tant, abordar aquesta 

heterogeneïtat és essencial per millorar la comprensió dels trastorns mentals i avançar en el 

camp de la psiquiatria personalitzada. 

Aquesta tesi estudia com diversos factors, específicament haplotips genètics, deteriorament 

cognitiu i comorbiditats, contribueixen a la heterogeneïtat en els estudis de neuroimatge, amb 

l’objectiu final d’augmentar el coneixement sobre les bases biològiques dels trastorns i així 

poder oferir una millor cura a les persones afectades. 

2. Hipòtesis 

H1. Els correlats neurals dels trastorns mentals depenen de la presència d’haplotips genètics. 

H2. Els correlats neurals dels trastorns mentals depenen de la presència de deteriorament 

cognitiu comòrbid. 
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H3. Els correlats neurals dels trastorns mentals depenen de la presència d’altres trastorns 

comòrbids. 

H4. Existeixen haplotips genètics associats a trastorns mentals que presenten correlats neurals 

rellevants, fet que confon l’anàlisi dels correlats neurals d’aquests trastorns. 

H5. Hi ha trastorns mentals comòrbids que confonen l’anàlisi dels correlats neurals dels 

trastorns mentals, provocant resultats més difusos i inespecífics. 

3. Objectius 

O1. Avaluar si els correlats neurals d’un trastorn mental poden dependre de la presència d’un 

haplotip genètic. 

O2. Avaluar si els correlats neurals d’un trastorn mental poden dependre de la presència de 

deteriorament cognitiu. 

O3. Avaluar si els correlats neurals dels trastorns mentals depenen de la presència d’altres 

trastorns comòrbids. 

O4. Avaluar si els haplotips associats a trastorns mentals poden tenir correlats neurals rellevants 

quan es consideren tant els efectes dels trastorns mentals com dels haplotips genètics. 

O5. Avaluar si l’anàlisi dels correlats neurals dels trastorns mentals produeix resultats més 

focalitzats i específics quan es covaria per la presència de comorbiditats. 

O6. Desenvolupar un atles que cartografiï les alteracions específiques i transdiagnòstiques en 

el volum de substància grisa (VSG) associades estadísticament amb els principals trastorns 

mentals, tenint en compte l’efecte de confusió generat per trastorns comòrbids. 

4. Mètodes 

L'estudi I va explorar els correlats neurals del trastorn per dèficit d’atenció i hiperactivitat 

(TDAH) en adults i del gen latrofilina 3 (ADGRL3, associat al TDAH). Pacients amb TDAH 

(n=64) i controls (n=64), classificats segons el seu haplotip d’ADGRL3 (de risc i protector), 

van completar una RM estructural i funcional durant una tasca de memòria de treball (n-back). 
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Les dades es van analitzar amb FSL utilitzant un model lineal ajustat per edat, sexe i medicació, 

per investigar els correlats neurals del TDAH, els haplotips i la seva interacció. 

L'estudi II va investigar els correlats funcionals en pacients amb trastorn bipolar (TB) associats 

al deteriorament cognitiu. Un total de 144 pacients amb TB en remissió, classificats en 

cognitivament deteriorats (n=83) i cognitivament normals (n=61), i 50 controls van completar 

una RM funcional en estat de repòs. Utilitzant FSL, es va analitzar la connectivitat funcional 

intra i interxarxes funcionals de la xarxa per defecte (DMN), executiva central (CEN) i de 

saliència, ajustant per edat i sexe. 

L'estudi III va desenvolupar i validar una metodologia innovadora de meta-anàlisi amb SDM-

PSI, dissenyada per considerar l’efecte de les comorbiditats. Es van analitzar 433 estudis de 

VSG, incloent 19.718 pacients i 16.441 controls, per identificar alteracions estructurals 

associades als trastorns mentals i comparar-les amb els mètodes estàndard. 

5. Resultats 

L'estudi I no va identificar interaccions diagnòstic × haplotip. No obstant això, ambdós 

haplotips van mostrar una hipoactivació durant la tasca n-back. Per tant, els haplotips 

d’ADGRL3 poden confondre els estudis sobre les bases neuronals del TDAH, ja que estan 

associats tant al trastorn com a les troballes de neuroimatge. 

L'estudi II va revelar que els pacients amb TB cognitivament deteriorats exhibien una major 

hiperconnectivitat en regions de la DMN i una menor hipoconnectivitat en regions de la CEN. 

Per tant, els correlats funcionals del TB estan influenciats per la presència de deteriorament 

cognitiu comòrbid. 

L'estudi III va mostrar que els correlats de VSG d’un trastorn mental estan influenciats per la 

presència d’altres trastorns comòrbids. A més, mitjançant la metodologia innovadora es va 

observar que les alteracions eren més focalitzades i específiques quan es covariava per la 

presència d’altres trastorns. 
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6. Conclusions 

C1. La presència d’haplotips d’ADGRL3 de protecció o risc no influeix en els correlats 

estructurals i funcionals del TDAH.  

C2. El deteriorament cognitiu influeix en els correlats funcionals dels pacients amb TB. 

C3. Els correlats estructurals dels trastorns mentals varien segons la presència de trastorns 

comòrbids. 

C4. Els haplotips d’ADGRL3, associats al TDAH, tenen correlats funcionals cerebrals 

importants, de manera que poden actuar com a factors de confusió en l’anàlisi dels correlats 

cerebrals del TDAH.  

C5. Els trastorns comòrbids actuen com a factors de confusió quan s’estudien les alteracions 

estructurals en els trastorns mentals, generant patrons més amplis i hiper-correlacionats. 

C6. Els correlats neurals dels trastorns mentals estan influenciats per diversos factors, com el 

deteriorament cognitiu i les comorbiditats. 

C7. L’anàlisi dels correlats neurals en trastorns mentals pot estar esbiaixat per diversos factors 

de confusió, com els haplotips genètics i les comorbiditats. 

C8. La presència d’efectes moderadors i de confusió en la investigació dels correlats neurals 

dels trastorns mentals dificulta la identificació de biomarcadors robustos i específics, però 

també obre noves possibilitats per a futures investigacions. 

7. Paraules clau 

Neuroimatge, trastorn mental, heterogeneïtat, haplotips genètics, deteriorament cognitiu, 

trastorns comòrbids. 
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In the introduction to this thesis, I will begin by reviewing the major mental disorders, followed 

by an overview of the key neuroimaging techniques used to explore their brain correlates. Next, 

I will summarize the main findings of neuroimaging studies that investigate these neural 

correlates. Finally, I will expose the problem of “heterogeneity” —specifically, the variability 

in neural correlates of a given disorder across different studies— and discuss potential reasons 

for this variability. The exploration and potential reduction of this heterogeneity will be the 

central theme of this thesis. 

 

1. Mental disorders 

Mental disorders are a broad range of mental health conditions that significantly impact an 

individual’s mood, thinking, behavior, and overall well-being. These disorders often lead to 

considerable distress and impair the ability to function in everyday life, affecting areas such as 

social interactions, work performance, or other critical areas of functioning. Common 

symptoms associated with mental disorders include mood disturbances (e.g., depression, 

mania, and mood swings), anxiety (excessive worry or fear), cognitive impairments 

(difficulties with memory or concentration), behavioral changes (e.g., agitation or compulsive 

behaviors), and perceptual disturbances (e.g., hallucinations or delusions) (1).  

For practical purposes, these conditions are categorized according to their clinical symptoms. 

Mental health professionals primarily refer to two authoritative classifications: the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-V) (2), published by the American 

Psychiatric Association and the International Classification of Diseases (ICD-11) (3), 

published by the World Health Organization (WHO). These guides categorize mental disorders 

into distinct types, each with unique symptoms and diagnostic criteria. Below is an overview 

of the major categories of mental disorders, also represented in Figure 1. 

1. Anxiety disorders. These disorders are characterized by excessive fear, anxiety, and 

related avoidance and behavioral disturbances. These disorders can significantly impair 

daily functioning and quality of life, often leading to avoidance behaviors that worsen 

over time. Individuals with anxiety disorders may also experience physical symptoms 

such as increased heart rate, trembling, or difficulty breathing, along with mental 

symptoms like racing thoughts or irrational fears. There are several types of anxiety 

disorders, each differing based on the specific triggers or manifestations of fear. For 
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example, social anxiety disorder entails an intense fear of being judged or embarrassed 

in social situations; panic disorder involves recurrent unexpected panic attacks with 

symptoms like chest pain, dizziness, and a sense of impending doom; agoraphobia is 

characterized by the fear of situations or places where escape might be difficult, or help 

might not be available, often leading to avoidance of public places; generalized anxiety 

disorder is characterized by chronic and excessive worry about everyday issues such as 

health, finances, or relationships; and specific phobias involve an irrational and 

excessive fear of particular objects or situations (e.g., spiders, heights), often triggering 

an immediate anxiety response. 

2. Mood disorders. These disorders are categorized by significant disturbances in a 

person’s emotional state, often involving prolonged periods of extreme sadness, 

euphoria, or both. These disorders can lead to significant impairments in daily life, and 

their severity can range from mild to life-threatening. Common symptoms include 

persistent sadness, feelings of hopelessness, irritability, and fluctuations between 

extreme highs (mania) and lows (depression). Specific mood disorders include bipolar 

disorder (BD), characterized by alternating periods of mania (elevated mood, increased 

energy, and impulsive behavior) and depressive episodes (sadness, low energy, and 

feelings of hopelessness), and major depressive disorder (MDD), which involves 

persistent sadness, loss of interest in activities, and feelings of worthlessness, often 

accompanied by physical symptoms like changes in appetite or sleep. 

3. Schizophrenia spectrum and other psychotic disorders. These disorders are 

characterized by a disconnection of reality, marked by distorted thinking, perceptions, 

and behavior. Symptoms often include hallucinations (hearing or seeing things that 

aren’t present, typically voices), delusions (strongly held false beliefs, such as paranoia 

or grandiosity), severely disorganized thinking or speech, and negative symptoms (e.g., 

diminished emotional expression, lack of motivation). These disorders significantly 

impair a person’s ability to function and can be chronic and debilitating. Examples 

include schizophrenia and schizoaffective disorder, which combine symptoms of 

schizophrenia and mood disorders.  

4. Neurodevelopmental disorders. These disorders originate during the developmental 

period, typically before a child enters grade school, and are characterized by 

developmental deficits that cause impairments in personal, social, academic, or 

occupational functioning. These deficits can be intellectual, communicative, motor-

related, or behavioral. Examples include autism spectrum disorder (ASD), 
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characterized by difficulties in understanding social interaction, communication, and 

repetitive behaviors or restricted interests, and attention-deficit/hyperactivity disorder 

(ADHD), which involves persistent patterns of inattention (e.g., difficulty sustaining 

focus), hyperactivity (e.g., excessive movement), or impulsiveness (e.g., interrupting 

others). 

5. Obsessive-compulsive and related disorders. These disorders are defined by the 

presence of obsessions (recurrent, persistent, intrusive thoughts) and/or compulsions 

(repetitive behaviors or mental acts). The behaviors are often time-consuming, cause 

significant distress, and interfere with daily life. Examples include obsessive-

compulsive disorder (OCD), characterized by unwanted thoughts and repetitive 

behaviors, and body dysmorphic disorder, which involves an excessive preoccupation 

with perceived flaws in appearance, often leading to repetitive behaviors like mirror 

checking or skin picking. 

6. Trauma- and stressor-related disorders. These disorders develop after exposure to a 

traumatic or highly stressful event involving death, serious injury, or sexual violence. 

They are characterized by intrusive thoughts, flashbacks, and avoidance behaviors or 

situations related to the trauma. Individuals may also experience heightened arousal and 

negative changes in mood and cognition. Examples include post-traumatic stress 

disorder (PTSD), characterized by persistent distress and functional impairment 

following trauma, with symptoms lasting more than a month, and acute stress disorder, 

which is similar to PTSD but with symptoms resolving within a month. 

7. Eating disorders. These disorders are characterized by persistent and severe disturbance 

in eating behavior and related thoughts and emotions, often driven by an intense 

preoccupation with body image and weight. These disorders can result in serious health 

complications, including malnutrition, heart problems, and, in several cases, death. 

They are often linked to issues with body image, self-esteem, and emotional regulation. 

Examples include anorexia nervosa, characterized by an intense fear of gaining weight, 

leading to extreme food restriction and weight loss, and bulimia nervosa, which 

involves episodes of binge eating followed by compensatory behaviors like vomiting 

or fasting. 
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Figure 1. Classification of major non-substance use mental disorders 

 

Figure created by the doctoral student 

1.1. Epidemiology and risk factors 

Mental disorders are a significant global health concern, affecting individuals across all 

demographics, regardless of age, gender, or socio-economic status. According to the WHO, 

approximately one in four individuals worldwide will experience a mental health disorder at 

some point in their lives, highlighting the widespread nature of these conditions (4). Anxiety 

and depression disorders are amongst the most common mental disorders worldwide (1). 

Surveys have shown that the average lifetime prevalence of anxiety disorders worldwide is 

around 7% (5), and for depression, it is roughly 5% of the global population (6). However, 

these rates may vary significantly depending on the region studied and the methodology used. 

For instance, the National Comorbidity Survey conducted in the United States estimated much 

higher lifetime prevalences (31% for anxiety disorders and 17% for depression) (7,8).  
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Psychiatry disorders arise from a complex interplay of genetic, biological, environmental, and 

psychological factors. Due to this multifactorial etiology, specific populations are more 

vulnerable to developing these conditions. Genetic predisposition plays a significant role as a 

risk factor in developing mental disorders, particularly those with a strong hereditary 

component, such as ADHD and ASD (9). Individuals with a family story of mental illness are 

at significantly higher risk of developing similar or even different mental disorders themselves. 

For instance, a large-scale meta-analysis found that offsprings of affected parents have a 

significantly higher lifetime ratio of developing any mental disorder, as well as the same mental 

disorder diagnosed in the parent (10).  

Gender is another critical factor in the prevalence of mental disorders. Women are nearly twice 

as likely as men to suffer from anxiety and mood disorders (11), while men are more likely to 

suffer from substance use disorders or die from suicide (12,13). This gender disparity may be 

influenced by several factors, including hormonal differences, such as fluctuations in estrogen 

and progesterone levels and the use of different maladaptive coping strategies (e.g., rumination 

in women and substance abuse in men). Social stressors, such as gender-based violence, 

disproportionately affect women, increasing their vulnerability to mental health issues (14). 

Conversely, societal expectations of masculinity often discourage men from seeking help for 

emotional distress, leading to underdiagnosis and greater reliance on unhealthy coping 

mechanisms (15). Cultural norms also shape how men and women perceive and report mental 

health symptoms, influencing both diagnosis and treatment.  

Age also plays a crucial role in the onset and diagnosis of mental disorders. Younger 

individuals, particularly adolescents and young adults, are more frequently diagnosed with 

disorders like anxiety, mood disorders, and first-episode psychotic disorders (11). Adolescence 

is a period of significant neurological and psychological development, during which the brain 

undergoes changes in regions related to emotion regulation and decision-making (16). This 

developmental phase coincides with the increasing stressors associated with modern life, such 

as academic pressures, social media influences, or bullying, which have been suggested as 

contributors to the rising rates of mental health disorders among younger populations (17,18). 

Early identification and intervention in younger populations are critical, as untreated mental 

health conditions during adolescence can lead to long-term functional impairments, substance 

use, and increased risk of suicide. 
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Socio-economic factors further contribute to the risk of developing mental disorders. Poverty, 

unemployment, and limited access to education and healthcare disparities increase 

vulnerability to mental health problems (19). Chronic financial stress and insecurity can lead 

to feelings of hopelessness, anxiety, and depression. Additionally, people living in lower 

socioeconomic conditions also face barriers to accessing mental health care, such as high costs, 

long waiting times, and stigma surrounding treatment (19). The cumulative effect of these 

stressors contributes not only to the onset of mental disorders but also to their persistence and 

severity.  

Additionally, childhood adversity is strongly associated with the development of mental 

disorders throughout different stages of life (20). Experiences of abuse, neglect, or trauma in 

early childhood, particularly within a dysfunctional family environment, significantly elevate 

the risk of developing a range of mental disorders, including depression, anxiety, 

schizophrenia, and PTSD. Adverse childhood experiences may disrupt normal brain 

development and shape an individual’s coping mechanisms, emotional regulation, and stress 

responses, making them more susceptible to mental health issues throughout different stages 

of life (21). 

1.2. Impact of mental disorders 

Mental disorders profoundly impact individuals and society, affecting various aspects of life, 

including work, relationships, and overall well-being. These conditions not only impose a 

significant personal burden on those who suffer from them but also have far-reaching effects 

on families, communities, and societies. Mental disorders are a leading cause of disability 

worldwide, with the WHO identifying depression as the single largest contributor to disability 

globally. Depression significantly impairs an individual’s ability to perform daily activities and 

limits their participation in both social and economic life (22).  

The stigma surrounding mental disorders exacerbates the challenges faced by those affected. 

This stigma leads to discrimination, reduced employment opportunities, and difficulties in 

forming and maintaining social relationships. Stigma not only affects personal well-being but 

also perpetuates a cycle of social and economic marginalization. As a result, individuals with 

mental disorders experience diminishing quality of life, which can exacerbate feelings of 

isolation, hopelessness, and social exclusion (23).  
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One of the most alarming consequences of mental disorders is their strong association with 

suicide. Approximately 90% of suicides are linked to mental health conditions (24). While the 

global suicide rate is estimated to be around 11.1 per 100,000 people (25), the risk of suicide 

among individuals with mental disorders is substantially higher. Depression carries the highest 

suicide rate, with 534.3 per 100,000 person-years, followed by schizophrenia at 352.2 per 

100,000 person-years (26). These statistics underscore the severe risk psychiatric conditions 

pose to life expectancy and mental health. 

Beyond the personal and social impact, mental disorders impose a substantial economic burden 

worldwide. The financial impact associated with mental health includes both direct and indirect 

expenses. Direct costs include healthcare-related expenses such as medication, therapy, and 

hospitalization. Due to the chronic nature of many mental health conditions, these healthcare 

costs can be substantial. For instance, in the United States, the total cost of mental health care 

exceeded $200 billion in 2013, accounting for a significant portion of overall healthcare 

spending (27). Similarly, in Europe, the annual costs of mental disorders are estimated at €798 

billion, making them some of the most expensive health conditions to manage (28).  

However, the indirect costs of mental disorders are often more substantial. These costs include 

lost productivity, absenteeism, and premature mortality. Depression and anxiety disorders alone 

are estimated to cost the global economy $1 trillion annually in lost productivity, as individuals 

affected by these conditions often struggle to work or perform at their full potential (29,30). 

Unemployment rates are also disproportionately high among individuals with mental disorders. 

For instance, individuals with schizophrenia face employment rates as low as 10-20% in many 

countries, influenced by the chronic nature of the illness, as well as barriers such as stigma, 

discrimination, fear of losing benefits, and lack of appropriate professional support (31,32).  

1.3. Challenges on the neurobiology basis  

The neurobiological basis of mental disorders is an area of intense research, yet it remains 

poorly understood. While there has been significant progress in identifying brain regions, 

neurotransmitter systems, and neural circuits involved in mental disorders such as anxiety, 

mood, and psychotic disorders, knowledge about the precise mechanisms underlying these 

conditions is still limited. These challenges are compounded by the complexity of brain 

function, the dynamic interactions between environmental and genetic factors, and the 

influence of developmental and life-course changes on brain structure and function. 
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A significant obstacle in understanding these mechanisms is the heterogeneity among 

individuals diagnosed with the same label. Mental disorders often encompass a wide range of 

symptoms, severities, and underlying etiologies, making it difficult to identify universal 

neurobiological markers. This heterogeneity underscores the need for more refined diagnostic 

tools that can classify psychiatric conditions into biologically meaningful subtypes. Identifying 

specific genetic markers, neuroimaging patterns, or biochemical changes associated with the 

different psychiatric sub-conditions could significantly enhance our knowledge about their 

biological processes, leading to more accurate diagnoses (33). 

The identification of biological markers could not only improve diagnostic accuracy but also 

help predict treatment responses and personalize care. For instance, specific biomarkers might 

allow clinicians to determine which patients will likely respond to particular treatments, 

reducing the current trial-and-error approach in psychiatric care. This would be particularly 

impactful in conditions like bipolar disorder or schizophrenia, where treatment response often 

varies significantly among individuals (34). Advances in neuroimaging can help map 

anatomical and functional disruptions in brain networks associated with these disorders 

(35,36). At the same time, genetic studies may uncover variants that predispose individuals to 

certain conditions or treatment outcomes and reveal neural correlates associated with distinct 

genetic patterns (37). Similarly, biochemical analysis of blood or other biomarkers could 

provide insights into neuroinflammatory or neuroendocrine pathways involved in mental 

disorders (38).  

Addressing the complexity of understanding the neurobiological basis of mental disorders 

requires a multidisciplinary approach, integrating neuroimaging, genetics, biochemical 

analysis, and other advanced methodologies. Leveraging machine learning and big data 

analytics to analyze these diverse data can unravel the intricate interactions between biological, 

environmental, and genetic factors, ultimately paving the way for precision psychiatry and 

improved diagnostic, therapeutic, and preventive strategies. 

 

2. Magnetic resonance imaging 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that provides detailed 

information about the brain’s anatomy, function, and physiological processes without ionizing 

radiation (see Figure 2). This versatile method includes various specialized techniques, 
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including structural MRI, functional MRI (fMRI), diffusion tensor imaging, and magnetic 

resonance spectroscopy, each offering unique insights into brain function and structure. 

Additionally, the development of advanced software for neuroimaging data processing and 

analysis has enabled the implementation of automated procedures and sophisticated statistical 

models with high reliability for each imaging modality.  

Figure 2. Magnetic resonance scanner (A), structural MRI (B), time-series for the 
anterior cingulate cortex (ACC) obtained by fMRI (C) 

 

Figure created by the doctoral student. A) is obtained from Canva and is free from copyright restrictions. 

2.1. Structural MRI 

Structural MRI uses the T1 sequence to generate high-resolution images that distinguish 

between different brain tissues, such as grey matter, white matter, and cerebrospinal fluid. It 

also helps identify specific brain regions like the cerebellum, thalamus, and frontal cortex. 

Structural MRI has been instrumental in uncovering brain anatomical anomalies associated 

with mental disorders (35,39,40), providing valuable insights into the structural brain 

differences often presented across various psychiatric conditions. There are several techniques 

to process and analyze structural MRI data, with voxel-based morphometry (VBM) and 
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surface-based morphometry being the most widely used methods for whole-brain and region-

of-interest analyses, respectively. 

2.1.1. Voxel-based morphometry 

VBM is a straightforward technique that evaluates small-scale differences in gray or white 

matter (41). The most common variable investigated with VBM is gray matter volume (GMV), 

which refers to the amount of gray matter tissue in a specific region or across the whole brain. 

The VBM process involves several steps: (i) segmentation of brain images into gray matter, 

white matter, and cerebrospinal fluid, (ii) creation of a template in a common stereotactic space, 

(iii) spatial normalization of all brain images to align with the template, (iv) modulation of the 

normalized brain images to preserve tissue volume changes, (v) smoothing the modulate 

images using Gaussian kernel to ensure that each voxel represents surroundings voxels and (vi) 

voxel-wise statistical analysis using general linear models to investigate group differences and 

corrected for multiple comparisons if necessary.  

The modulation step preserves the volume of a particular tissue that may grow or shrink after 

normalization. In effect, analyzing modulated data is thought to assess regional differences in 

the absolute grey matter volume. In contrast, unmodulated data to evaluate regional differences 

in grey matter concentration (41), though this idea has been debated (42). The outcome of VBM 

is a statistical parametric map that highlights regions where gray matter concentration or 

volume significantly differs between groups. Software that implements VBM on brain image 

data sequences is Statistical Parametric Mapping (SPM) software 

(https://www.fil.ion.ucl.ac.uk/spm), FSL (https://fsl.fmrib.ox.ac.uk/fsl/docs/#/) or ANTs 

(https://github.com/stnava). Figure 3 presents a graphical representation of a group comparison 

conducted using VBM. 

Figure 3. Brain imaging of  voxel-based differences between groups depicted in green  

 

Figure created by the doctoral student 
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2.1.2. Surface-based morphometry 

Surface-based morphometry is a set of techniques to analyze surfaces representing boundaries 

within the cerebral cortex, providing measures such as cortical thickness, surface area, and 

others (43). The most widely used software for these analyses is FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu). However, this thesis focuses specifically on GMV for 

structural measures, so I will not go into detail on the other surface-based measures. 

2.2. Functional MRI 

fMRI measures differences in brain activity across time by detecting changes associated with 

blood flow, offering real-time insights into the functioning of different brain regions. This 

technique primarily relies on blood-oxygen-level dependent (BOLD) contrast, which detects 

changes in signal intensity caused by variations in oxygenated and deoxygenated blood. When 

neurons are active, they consume glucose and oxygen, increasing local blood flow. This process 

involves two key factors: (i) the over-supply of oxygen to the active area (hyperperfusion) and 

(ii) the differing magnetic properties of oxygenated and deoxygenated blood. This increase in 

oxygenated blood alters the MRI signal, allowing brain activity to increase detection.  

fMRI has been crucial in studying normal brain function and alterations associated with mental 

disorders (36,44). There are two main approaches to detecting BOLD response: task-based 

fMRI, which measures the brain activity changes in response to specific tasks or stimuli, and 

resting-state fMRI, which measures the baseline brain activity fluctuations when the subject is 

not engaged in any task. 

Pre-processing fMRI data, whether for task-based or resting-state analysis, involves several 

common steps: (i) slice time correction to adjust for temporal offsets between slices, (ii) motion 

correction to adjust for subject head motion, (iii) temporal filtering to remove low-frequency 

drifts and high-frequency noise, (iv) nuisance and physiological noise correction (e.g., cardiac 

and respiratory artifacts), (v) co-registration with the subject’s anatomical MRI scan, (vi) 

spatial normalization into a common stereotactic space, and (vii) smoothing the normalized 

images. The specific subject- and group-level analyses differ depending on whether task-based 

or resting-state fMRI data is being processed. Standard software tools for pre-processing fMRI 

data include SPM (https://www.fil.ion.ucl.ac.uk/spm), FSL 

(https://fsl.fmrib.ox.ac.uk/fsl/docs/#/), AFNI (https://afni.nimh.nih.gov/) and FMRIprep 

(https://fmriprep.org/en/stable/).  
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2.2.1. Task-based fMRI 

Task-based fMRI involves scanning the brain while a subject engages in specific tasks or 

sensory activities. This method helps identify which regions are activated during various tasks, 

offering valuable information on the functional specialization of different brain areas. Task-

based MRI is widely used to study cognitive and emotional functions such as working memory, 

attention, emotion recognition, and motor function in healthy individuals and those with mental 

disorders (45,46). 

The analysis of task-based fMRI data typically begins by measuring the BOLD signal as the 

subject performs a designated task, then comparing these brain activation patterns to those 

recorded during baseline or control conditions (e.g., comparing the brain activation when 

observing an angry face versus a neutral face). After pre-processing the fMRI data, a task 

design matrix is created for each subject to run the first-level (subject-level) analysis (47), 

including regressors based on the experimental paradigm. Then, a contrast matrix is created to 

specify the contrast of interest between different conditions. For example, in the previous 

example, the design matrix would include a regression for both types of stimuli (angry faces 

and neutral faces), and the contrast matrix would represent the difference in activation between 

them (e.g., angry faces > neutral faces). Once the first-level analysis is conducted and the 

images representing the contrast of interest are generated for each subject, a second-level 

(group-level) analysis is conducted. This step involves performing voxel-wise statistical 

analysis using general linear models to investigate the average response in a group or the 

differences between two groups and correct for multiple comparisons, if necessary. 

2.2.2. Resting-state fMRI 

Resting-state fMRI examines brain activity while the subject is at rest, not engaged in any 

specific task. This method measures the low frequency (<0.1 Hz) fluctuations in the BOLD 

signal. Resting-state fMRI provides valuable insights into the brain’s intrinsic functional 

architecture by revealing networks of spatially distinct brain regions that show synchronized 

activity, even without external stimuli. These functionally connected areas are known as 

resting-state networks (RSN) and are consistently observed across individuals (48,49).  

One of the most common measures obtained from resting-state fMRI is functional connectivity, 

which assesses the temporal correlation in BOLD signal between different brain regions. 

Several methods exist to analyze functional connectivity, such as seed-based or independent 
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component analyses (ICA) (50). The seed-based analysis involves selecting a specific “seed” 

region and correlating the average BOLD time course of voxels within the seed regions with 

the times courses of all other voxels in the brain. ICA is a data-driven technique that 

decomposes pre-processed resting-state fMRI data into spatially and temporally independent 

components. This approach separates the mixed fMRI signals into underlying source signals 

or noise, allowing researchers to identify distinct RSNs without requiring a priori selection of 

specific brain regions.  

Some of the most extensively studied RSNs in both healthy individuals and those with mental 

disorders include the default mode network (DMN), which is active during introspection and 

mind-wandering; the central executive network (CEN), which is associated with cognitive 

control and decision-making; and the salience network, which is involved in detecting and 

filtering salient stimuli. Recent research is investigating alterations in these networks in mental 

disorders to understand their underlying neurophysiological mechanisms better. For instance, 

alterations in the DMN have been frequently observed in individuals with depression, 

highlighting changes in brain functional connectivity that may underlie some of the symptoms 

of this disorder, such as rumination (44). 

2.3. Meta-analysis of MRI data 

Beyond the individual-level structural and functional brain information acquired through MRI 

techniques, the development of advanced software like SDM-PSI 

(https://www.sdmproject.com) has enabled the integration of the results from multiple studies 

reporting brain MRI results. This meta-analytical software considers sample size and study 

heterogeneity, using mixed-effects models to calculate effect sizes for each voxel across the 

brain and permutations to determine the statistical significance of these effects, correcting for 

multiple comparisons (51,52).  It also includes methods for detecting potential publication bias. 

SDM-PSI mainly relies on statistical maps of brain images or peaks’ coordinates from results 

published by the included studies. This approach is especially useful since neuroimaging 

studies often have relatively small sample sizes due to these procedures’ high costs and 

complexity. By aggregating data across studies, SDM-PSI facilitates more robust and 

comprehensive conclusions in neuroimaging research. 
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3. Brain alterations in mental disorders 

Structural and functional brain alterations play a crucial role in understanding the 

neurobiological basis and pathophysiology of mental disorders. These alterations often 

highlight differences in brain regions and neural circuits implicated in the symptomatology of 

mental health conditions. For instance, differences in the size, shape, and connectivity of areas 

like the prefrontal cortex (PFC), amygdala, hippocampus, and thalamus have been associated 

with disorders such as schizophrenia, MDD, BD, and anxiety disorders (53). Large-scale meta-

analyses and international collaborations, such as the ENIGMA (Enhancing NeuroImaging 

Genetics through Meta-Analysis, https://enigma.ini.usc.edu/) consortium, are crucial in 

advancing this field. By integrating hundreds of datasets from around the globe, these efforts 

aim to uncover reliable biomarkers and elucidate the neurobiological basis of mental disorders, 

providing valuable insights into their development, progression, and potential therapeutic 

targets.  

Figure 4. Cortical gray matter thickness alterations mapped across mental disorders.  

 

Figure adapted from Thompson et al. (53), under the Creative Commons Attribution 4.0 International License 

(CC BY 4.0). Modifications include displaying only six mental disorders from the original image to fit the 

thesis objectives. For details on the license, visit http://creativecommons.org/licenses/by/4.0/. Abbreviations: 

ADHD, attention-deficit/hyperactive disorder; ASD, autism spectrum disorder; BD, bipolar disorder; MDD, 

major depressive disorder; OCD, obsessive-compulsive disorder.  
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3.1. Anxiety disorders 

Anxiety disorders are associated with structural and functional changes in brain regions 

involved in emotion processing, fear regulation, and executive control, such as the amygdala, 

PFC, and hippocampus. These areas play crucial roles in managing anxiety and processing 

memories. Structural neuroimaging studies have commonly reported reductions in GMV in the 

PFC and hippocampus in specific subtypes of anxiety disorders such as generalized anxiety 

disorder (35,54). In this context, the likely main role of the PFC is cognitive control, while the 

likely main role of the hippocampus is contextualizing fear. These structural alterations may 

thus underlie the difficulties in controlling anxiety and regulating fear responses observed in 

these disorders. 

Similarly, functional neuroimaging studies often find hyperactivity in the amygdala and insula 

during fear processing in individuals with anxiety disorders, explaining the heightened 

emotional reactivity and sensitivity to perceived threats (55). This hyperactivity is typically 

accompanied by a hypoactivation of the PFC, which disrupts the connectivity between these 

regions, leading to a failure to inhibit the amygdala when regulating emotional and fear 

responses (56,57). This disruption may contribute to the excessive worry and hypervigilance 

characteristic of anxiety disorders.  

3.2. Mood disorders 

Mood disorders, including MDD and BD, are associated with structural and functional changes 

in several brain regions involved in mood regulation, emotional processing, and cognitive 

functions, such as the PFC, hippocampus, and amygdala (58).  

For MDD, structural neuroimaging studies consistently report reduced volume in the PFC, 

which seems to be involved in cognitive control and decision-making, and the hippocampus, 

likely involved in memory formation (35,53). Similarly, functional neuroimaging studies also 

show decreased activity in these areas and the insula and striatum, which are involved in 

emotional regulation and motivation (44,59). These structural and functional alterations may 

underlie some of the core symptoms of MDD, including impaired cognitive function, memory 

deficits, and difficulties in regulating emotions. 

For BD, structural neuroimaging studies also reported reduced GMV in the PFC and 

hippocampus, but these reductions are generally less pronounced than those seen in MDD 

(60,61). This discrepancy might reflect differences in the neurobiological basis of the two 
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disorders. In contrast with MDD, functional neuroimaging studies often show increased 

functional activity in the PFC, insula, and striatum, which may correspond to the heightened 

emotional reactivity and impulsivity often observed in manic episodes (44,62). Additionally, 

BD is associated with alterations in brain networks involved in emotion processing and reward, 

such as increased activity in the amygdala and altered connectivity within the fronto-limbic 

circuitry (63,64). These differences in brain structure and function may reflect the distinct 

clinical presentations of MDD and BD, such as the persistent low mood and anhedonia seen in 

MDD versus the fluctuating mood states and heightened impulsivity characteristic of BD. 

3.3. Psychotic disorders 

Psychotic disorders, such as schizophrenia, are characterized by widespread structural and 

functional changes, particularly in the PFC, hippocampus, thalamus, and temporal lobes 

(40,65). These regions seem to play a critical role in higher cognitive functions, memory, and 

sensory processing. Structural neuroimaging studies have often reported reduced GMV across 

cortical and subcortical areas, with more pronounced effects in the PFC and temporal lobes. 

These reductions are believed to contribute to the cognitive deficits and hallucinations 

commonly observed in these disorders (40,65).  

Similarly, functional neuroimaging studies have also revealed abnormal brain activity patterns 

in these areas, even in individuals experiencing their first episode of psychosis (66). 

Specifically, they showed hypoactivation in the PFC, particularly in the dorsolateral regions, 

associated with impairments in executive functioning and working memory. In contrast, 

hyperactivity in the thalamus and temporal lobes, including the auditory cortex, has been 

associated with positive symptoms of psychosis, such as auditory hallucinations and delusions 

(67). Additionally, disrupted connectivity between the PFC and other brain regions, particularly 

the hippocampus and thalamus, is often observed, which may lead to difficulties in filtering 

relevant information, disorganized thinking, and maintaining cognitive control, further 

exacerbating the symptoms of psychotic disorders (68).  

3.4. Neurodevelopmental disorders 

Neurodevelopmental disorders, including ADHD and ASD, are often associated with atypical 

brain development and connectivity patterns.  

In ADHD, structural neuroimaging studies have identified reduced GMV in the PFC, 

particularly in the dorsolateral and orbitofrontal regions, amygdala, and hippocampus, which 
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seem to be involved in cognitive functions like attention and impulse control (53,69). 

Interestingly, these structural alterations are predominantly observed in childhood and tend to 

diminish in adulthood, suggesting a delay in cortical maturation rather than permanent 

structural deficits (70). The reduced volume in the PFC and other areas is believed to contribute 

to the attentional deficits and impulsivity observed in individuals with ADHD. Functional 

neuroimaging studies have also revealed altered activation patterns in several regions of the 

fronto-striato-parietal and ventral attention networks. Hypoactivity in the PFC and anterior 

cingulate cortex (ACC) during tasks requiring executive functions and attention is commonly 

reported (69). These functional abnormalities may contribute to the difficulties with attention 

and impulsive control commonly reported in individuals with ADHD. Additionally, 

hyperactivity in the striatum and other subcortical regions has been observed, suggesting a 

compensatory mechanism or heightened sensitivity to reward. This increased activity may be 

associated with impulsive behaviors and difficulty in delaying gratification, often observed in 

ADHD (71).  

In ASD, structural neuroimaging studies had commonly observed GMV alterations in brain 

regions associated with social cognition, including the amygdala, superior temporal sulcus, and 

medial PFC (53,69). Reductions in these regions may contribute to the difficulties with social 

cognition, social interaction, and emotional regulation commonly observed in individuals with 

ASD. Similarly, functional neuroimaging studies also report alterations in these regions 

(69,72). Hypoactivation in the amygdala and PFC is often observed during facial recognition 

and social processing tasks. These alterations may explain the difficulties individuals with ASD 

face in interpreting social cues and recognizing emotions in others (73).  

3.5. Obsessive-compulsive disorder  

OCD is associated with structural and functional changes in several brain regions, particularly 

within the cortico-striato-thalamo-cortical circuitry, which seems crucial for cognitive control, 

emotion regulation, and habit formation. Disruption in this circuit may contribute to the 

repetitive behaviors and cognitive rigidity characteristic of OCD. Structural neuroimaging 

studies have shown both increased and decreased GMV in individuals with OCD (74,75). 

Specifically, reduced GMV has been observed in cortical areas such as the orbitofrontal and 

ACC. At the same time, increased GMV has been found in subcortical areas like the putamen 

or thalamus. These regions are thought to be involved in regulating thoughts and behaviors, 
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which may contribute to the intrusive thoughts and compulsive behaviors characteristic of 

OCD (76).  

Similarly, functional neuroimaging studies frequently report hyperactivity in the orbitofrontal 

cortex, ACC, and striatum, especially during error monitoring and conflict resolution tasks. 

This heightened activity may explain the concern for making mistakes and the repetitive 

checking behaviors associated with OCD (77). Additionally, altered connectivity between these 

regions, particularly between the orbitofrontal cortex and the basal ganglia, is often observed, 

suggesting a disruption in the normal inhibitory control over repetitive thoughts and actions 

(78).  

3.6. Post-traumatic stress disorder  

PTSD is associated with structural and functional changes in brain regions involved in fear 

processing, emotional regulation, and memory formation, including the amygdala, 

hippocampus, and PFC. Disruptions in these regions are thought to contribute to the heightened 

emotional reactivity and difficulties in regulating fear responses that are characteristic of 

PTSD. Structural neuroimaging studies often report reduced GMV in the hippocampus and 

PFC, which seem crucial for memory and executive function (35,59). These reductions may 

contribute to the intrusive memories and impaired emotional regulation commonly observed in 

individuals with PTSD. 

Functional neuroimaging studies frequently show hyperactivity in the amygdala when 

individuals with PTSD are exposed to trauma-related stimuli, reflecting the heightened fear 

response and emotional reactivity (56,79). In contrast, hypoactivity is often observed in the 

PFC, particularly in the medial and dorsolateral regions, likely involved in cognitive control 

and the inhibition of inappropriate emotional responses through their interaction with the 

amygdala (56,79). Additionally, altered connectivity between the PFC and the amygdala is 

frequently observed, suggesting a disruption in the neural pathways that typically modulate 

fear responses and emotional regulation. This disruption may impair the ability to regulate fear 

and process traumatic memories, leading to persistent symptoms such as hypervigilance and 

re-experiencing traumatic events in individuals with PTSD (80,81). 

3.7. Eating disorders 

Eating disorders are associated with structural and functional changes in brain regions involved 

in reward processing, body image perception, and cognitive control, such as the insula, PFC, 
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and parietal lobes. However, the nature of these changes can vary depending on the specific 

subtype of the eating disorder. In anorexia nervosa, structural neuroimaging studies often show 

reduced GMV in these regions, which may reflect the effects of prolonged malnutrition and the 

associated cognitive and emotional symptoms observed in these individuals (82,83). The 

insula, likely involved in processing bodily sensations and self-perception, often exhibits 

significant volume reductions, potentially contributing to the distorted body image and altered 

interoceptive awareness characteristic of anorexia nervosa. 

Functional neuroimaging studies have commonly observed hypoactivation in the insula and 

ACC during tasks involving taste, hunger perception, and emotional processing (84). These 

alterations may explain a diminished response to food-related stimuli and altered reward 

processing in anorexia nervosa. Conversely, hyperactivity in the orbitofrontal cortex and 

parietal lobes is often observed, especially in situations involving body image distortion and 

self-evaluation, which may underlie the obsessive concerns about weight and shape that are 

central features of anorexia nervosa (85). Additionally, there is often disrupted connectivity 

between the frontal regions and the limbic system, including the amygdala, suggesting 

impaired regulation of emotions and reward processing. This disruption may further contribute 

to the persistence of restrictive eating behaviors and anxiety about gaining weight (86).  

3.8. Transdiagnostic brain alterations 

Mental disorders had traditionally been defined by distinct symptoms thought to correlate with 

specific brain alterations. However, they also share common clinical features, suggesting the 

existence of potential transdiagnostic biomarkers (87). Indeed, favoring this view, genetic 

studies have revealed shared genetic polymorphisms across various mental disorders, blurring 

diagnostic boundaries and pointing to common biological pathways (88,89). Growing 

neuroimaging evidence further supports this idea, highlighting shared neural substrates in 

phenotypically related conditions like schizophrenia and BD (90,91). In this regard, several 

studies have identified a transdiagnostic pattern of gray matter loss in key brain regions, such 

as the anterior insula and dorsal ACC, across disorders including schizophrenia, BD, MDD, 

anxiety disorders, and OCD (90,91).  

The anterior insula and dorsal ACC are core regions of the salience network, responsible for 

detecting and filtering relevant stimuli and facilitating the switching between the DMN and the 

CEN (92). The insula plays a significant role in integrating sensory information and emotional 

regulation, while the dorsal ACC is mainly associated with cognitive control and error motoring 
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(93–95). Volumetric reductions in these regions may disrupt cognitive and emotional 

processing integration, leading to attention, decision-making, and emotional regulation 

impairments. Given these associations, the common GMV loss observed in the anterior insula 

and dorsal ACC likely contributes to the emotional and cognitive dysfunctions often observed 

prevalent across psychiatric disorders rather than being diagnosis-specific symptoms (96–98). 

 

4. The problem of heterogeneity 

Despite numerous studies investigating brain features statistically associated with mental 

disorders, there are considerable inconsistencies across reported findings. These discrepancies 

highlight the complexity of unraveling the neurobiological underpinnings of these conditions, 

complicating the efforts to develop targeted and effective treatments or therapies. This 

variability can stem from several factors, including differences in sample size, imaging 

techniques, and study population. For instance, studies with smaller sample sizes often lack the 

statistical power to detect subtle brain alterations associated with mental disorders, while larger 

studies might.  

Meta-analytic approaches and large-scale initiatives, such as the ENIGMA consortium, have 

aggregated data from multiple studies or sites, increasing overall sample size and population 

diversity to enhance the findings’ reliability and generalizability (99). Notably, these large-

scale approaches have confirmed that considerable variability exists between studies or sites, 

suggesting the existence of important sources of heterogeneity such as clinical 

symptomatology, the presence of cognitive impairments or comorbidities, neurobiological 

diversity of the mental disorder (i.e., the disorder is associated to more than one pattern of brain 

differences), medication use, among others (100–102).  

Unfortunately, this heterogeneity may have hampered the finding of specific enough MRI 

biomarkers for individual mental disorders, posing a significant challenge to developing 

reliable machine-learning tools that could estimate risks to assist clinicians in diagnosing and 

distinguishing mental health conditions, ultimately leading to earlier and more effective 

treatments. Machine learning has shown potential in analyzing complex datasets, such as 

neuroimaging data, by uncovering patterns that traditional statistical methods might overlook 

(103). However, the heterogeneity of brain alterations among individuals with the same mental 

disorders, coupled with overlapping features between different disorders, significantly limits 
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the accuracy and reliability of these predictive models (104). Consequently, current machine-

learning applications in psychiatry often struggle to achieve the precision required for clinical 

use (105).  

This limitation underscores the necessity for identifying robust MRI biomarkers that indicate 

specific risks for specific disorders and developing more sophisticated machine learning 

algorithms capable of effectively handling the complex and multifaceted nature of mental 

disorders. Refining these tools has the potential to effectively support clinical decision-making 

and advance personalized medicine in psychiatry, ultimately improving patient outcomes and 

treatments. 

4.1. Potential sources of this heterogeneity 

Several factors may contribute to the observed heterogeneity in neuroimaging findings across 

mental disorders. One common source of variability is demographic differences within the 

study population, such as age or sex. For example, several meta-analyses have found distinct 

patterns of structural brain alterations in individuals with depression depending on the stages 

of life (106,107). Similarly, studies on schizophrenia have reported more extensive GMV 

reductions in male-dominated samples compared to those with a more balanced gender 

distribution (108).  

Another key heterogeneity factor stems from the variability in MRI devices and methodologies. 

Differences in field strength, head coils, or the software used to process the images (e.g., FSL 

or SPM) can significantly influence findings (109). While using harmonized methods to pre-

process the images and mixed/random-effects models helps mitigate these discrepancies, 

certain sources of heterogeneity are more challenging to control.  

Clinical characteristics, such as the age of onset, illness duration, symptom severity, and 

cognitive performance, are often highly variable and can impact neuroimaging findings. For 

example, neuro-progressive models of schizophrenia suggest that brain deterioration occurs 

with the clinical evolution of the disease, with more pronounced brain alterations seen in 

individuals with longer illness duration (110). Additionally, specific brain alterations associated 

with schizophrenia, such as GMV reduction in the PFC, have been found to correlate negatively 

with the severity of negative symptoms (111). Structural and functional brain alterations in the 

dorsolateral PFC and ACC are commonly associated with cognitive deficits across psychiatric 

disorders (112).  
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Differences in genetic haplotypes associated with mental disorders are another source of 

heterogeneity. For example, a systematic review reported that individuals with BD who carry 

the brain-derived neurotrophic factor (BDNF) Val66Met allele may have smaller hippocampi 

volumes (37). Medication use further complicates the picture, as pharmacological treatment 

can significantly alter or normalize the structure and function of brain regions (113). In one 

meta-analysis on patients with ADHD, samples with a higher proportion of medicated patients 

showed a less pronounced GMV reduction in the right caudate compared to non-medicated 

samples (114). Another critical source of heterogeneity is the presence of co-occurring mental 

disorders. For example, patients with PTSD and comorbid MDD exhibit more severe 

hippocampal volume reductions and larger alterations in the DMN connectivity than patients 

with PTSD alone (115). While some of these sources of heterogeneity can be addressed using 

secondary analysis like meta-regression, which assesses the impact of covariates on the 

samples’ group-level results, other factors remain challenging to control entirely. 

Thus, several sources of heterogeneity can influence the neural correlates of mental disorders. 

In this thesis, I will focus on three factors: genetic haplotypes, the presence of comorbid 

cognitive impairments, and the presence of co-occurring mental disorders. Figure 5 illustrates 

the potential influence of these factors on neuroimaging findings. Please note that the image is 

entirely hypothetical. 
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Figure 5. Hypothetical impact of sources of heterogeneity on neuroimaging findings 

Figure created by the doctoral student. Please note that the image is entirely hypothetical and does not 

represent actual observed effects. 

4.1.1. Genetic haplotypes 

Genetic variations play a crucial role in shaping brain structure and function, significantly 

contributing to the heterogeneity observed in neuroimaging findings among individuals with 

mental disorders. Studies have shown that genetic polymorphisms in neurotransmitter systems, 

such as those affecting serotonin and dopamine, can alter brain structure and connectivity. 

These changes contribute to the variability in neuroimaging outcomes among individuals with 

similar psychiatric diagnoses (37,116,117). Furthermore, genetic predispositions can influence 

the expression of psychiatric symptoms and their corresponding neural correlates, resulting in 

a wide range of neurobiological profiles among patients with the same clinical diagnosis (118). 

This means that two patients diagnosed with the same disorder may present very different 

neuroimaging findings due to the underlying genetic differences. For example, higher 

interindividual variability in both functional connectivity and structural patterns has been 

observed in schizophrenia. This variability has been linked to polygenic risk scores, 
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representing the cumulative effect of many genetic variants. Despite similar clinical 

presentations, these scores reflect the diverse underlying neurobiological pathways (119,120). 

Moreover, the impact of genetic variations extends beyond neurotransmitter systems. They also 

involve genes that affect brain development, neural plasticity, and synaptic function, all critical 

for normal brain functioning and resilience to mental disorders. The interaction between these 

genetic factors and environmental influences, such as stress or trauma, can further amplify the 

variability in neuroimaging findings. This complex interplay suggests that the neurobiological 

underpinnings of mental disorders are highly individualized, reflecting a mosaic of genetic, 

environmental, and developmental factors. 

Large-scale genetic studies, such as those conducted by the ENIGMA consortium, have further 

underscored the complexity of the genetic underpinnings of mental disorders and their impact 

on brain imaging results. These collaborative efforts have identified numerous genetic loci 

associated with variations in brain structure and function in conditions such as schizophrenia, 

BD, and MDD (99). These findings suggest that mental disorders are polygenic, involving 

multiple genetic variants that contribute to subtle changes in brain anatomy and connectivity. 

The interplay between these genetic factors and environmental influences likely contributes to 

some of the variability in neuroimaging findings observed in psychiatric research, as 

individuals with similar genetic risk factors may exhibit different brain alterations depending 

on their unique experiences and environmental exposures. Additionally, the complex 

interactions between multiple genetic variants and their cumulative effects on the brain make 

it challenging to identify distinct neuroimaging patterns for specific disorders.  

Importantly, these genetic differences may have two effects on studies investigating the neural 

correlates of mental disorders. First, they may modulate these neural correlates; for example, 

among individuals with polymorphism A, patients may show a pattern of differences from 

controls that is distinct from the pattern observed among individuals with polymorphism B (a 

statistical interaction). Second, these genetic differences may not modulate the neural correlates 

of the disorder directly; however, if they are associated with the disorder, they may act as 

confounding factors. For instance, if patients predominantly have polymorphism A while 

controls predominantly have polymorphism B, a simple comparison between patients and 

controls may show brain differences that are attributable to the genetic polymorphism rather 

than the disorder itself. 
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4.1.2. Comorbid cognitive impairments  

The presence of cognitive impairments within the studied population can significantly 

contribute to the heterogeneity observed in neuroimaging findings for mental disorders. These 

impairments are common across a range of diagnoses, particularly in schizophrenia, BD, and 

MDD, and they often persist during asymptomatic periods (112,121). Increasing evidence 

suggests that these deficits may predispose individuals to develop these disorders, serving as 

an early marker of subsequent illness, helping maintain the disorder, and predicting the 

likelihood of recovery. Indeed, cognitive functioning in some mental disorders predicts long-

term illness course independently of symptoms or diagnosis of the illness (112). Cognitive 

impairments can also vary widely in nature and severity among individuals with the same 

diagnosis, with some patients being globally impaired while others remain relatively spared in 

selective domains (122).  

Both functional and structural neuroimaging research has consistently shown a strong 

association between cognitive impairments and brain alterations in psychiatry (66,123). 

Cognitive impairments are often associated with reduced engagement in stimulating activities, 

which further impacts brain plasticity and contributes to neuroimaging alterations (124). These 

impairments have been connected to structural atrophy in critical regions such as the PFC and 

hippocampus (112), essential for activating task-relevant areas and deactivating those from the 

DMN. Such alterations in the PFC and hippocampus have been associated with slower 

processing speed, reduced concentration, and impaired decision-making, particularly in 

patients with depression and schizophrenia (125,126). Those findings suggest that cognitive 

impairments modulate the neural correlates of mental disorders. This means that patients with 

cognitive impairments may exhibit brain alterations compared with healthy controls that are 

distinct from those observed in patients without such impairments, highlighting the need to 

consider cognitive status in neuroimaging studies (123).  

Although cognitive impairments may influence the neural correlates of mental disorders, they 

should not probably be considered mere confounding factors, as they are often integral 

components of certain mental disorders. For instance, comorbid cognitive impairments are part 

of the clinical symptomatology in conditions like schizophrenia and BD, making it 

questionable to treat them as external variables to be controlled.  
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4.1.3. Co-occurring mental disorders 

Another significant source of heterogeneity in neuroimaging findings in mental disorders is the 

presence of co-occurring mental disorders, which is often overlooked in the studies. The co-

occurrence of two or more disorders in the same individual is common in psychiatric 

populations. Approximately half of the individuals with a mental disorder meet the diagnostic 

criteria for at least one other disorder simultaneously (127). For example, in a meta-analysis of 

OCD, 75% of the studies included patients with co-occurring mental disorders, such as MDD 

(up to 40%) or anxiety disorders (up to 80%) (75). Most of these co-occurring disorders could 

be labeled as ‘comorbid’ (implying a link between the disorders), although not all of them 

necessarily have such a link. For simplicity, this thesis uses the terms ‘co-occurring’ and 

‘comorbid’ interchangeably. This high prevalence of comorbidities, combined with the limited 

methodologies to account for their effects adequately, significantly influences neuroimaging 

outcomes, contributing to the complexity of understanding the neural underpinnings of mental 

disorders (128).  

Comorbid disorders can lead to overlapping yet distinct patterns of brain alterations, 

complicating the interpretation of neuroimaging data and our understanding of the underlying 

neurobiological mechanisms. For instance, individuals with MDD frequently have comorbid 

anxiety disorders, which can lead to a complex combination of brain alterations. MDD is 

typically associated with reduced volume and activity in the PFC and hippocampus, whereas 

anxiety disorders often involve hyperactivity in the amygdala and altered connectivity in fear-

processing circuits (56,58). When these conditions co-occur, the neuroimaging findings can 

reflect a complex amalgamation of both sets of alterations, complicating the identification of 

specific neural mechanisms for each disorder separately. 

Numerous neuroimaging studies have attempted to address the impact of comorbidity in 

different ways. Some studies have decided to exclude patients with comorbid disorders to 

pursue diagnostic purity. However, this approach can lead to non-representative patient groups, 

consequently limiting findings’ generalizability (129). Other studies have decided to include 

these patients, which may provide more representative patient groups but lead to non-disorder-

specific findings influenced by the comorbid disorders. Although some studies that included 

those patients have attempted to assess the impact of the comorbidities through secondary 

analyses, robust methods to adequately account for these effects are still lacking. Given the 

high rates of comorbidity in psychiatric populations, it is crucial to account for these 
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overlapping conditions to identify more precise biomarkers. This challenge highlights the need 

for more personalized approaches in psychiatry, considering the full spectrum of an individual’s 

mental health profile, including not one but several disorders.  

The presence of co-occurring mental disorders can also have two effects when investigating 

the neural correlates of a specific disorder. First, they may modulate these correlates; for 

example, patients with disorder A and co-occurring disorder B may exhibit brain alterations 

that differ from those observed in patients without comorbidities when compared to controls (a 

statistical interaction). Second, co-occurring mental disorders can act as confounding factors; 

when investigating the neural correlates of disorder A, if patients with disorder A also have co-

occurring disorder B, a simple comparison between patients and controls may reveal brain 

differences that are partially attributable to disorder B, potentially leading to less specific 

findings. Therefore, the presence of co-occurring mental disorders complicates both the 

interpretation and the precision of identifying the true neural correlates of the primary disorder 

under investigation. 
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 Hypothesis A: The neural correlates of mental disorders depend on the presence of 

genetic haplotypes, comorbid cognitive impairment, and co-occurring mental disorders: 

o H1. The neural correlates of mental disorders depend on the presence of genetic 

haplotypes. 

o H2. The neural correlates of mental disorders depend on the presence of comorbid 

cognitive impairments. 

o H3. The neural correlates of mental disorders depend on the presence of co-

occurring mental disorders. 

 

 Hypothesis B: There are genetic haplotypes and co-occurring mental disorders that 

confound the analysis of the neural correlates of mental disorders: 

o H4. There are genetic haplotypes associated with mental disorders that have 

relevant neural correlates (thus confounding the analysis of the neural correlates 

of the mental disorders). 

o H5. There are co-occurring mental disorders that confound the analysis of the 

neural correlates of mental disorders, making the results more diffuse and 

unspecific. 

 

Note: There are no hypotheses regarding confounding effects of comorbid cognitive 

impairments because the latter might be considered part of some disorders. 
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 Objective A: To assess whether the neural correlates of mental disorders may depend on 

genetic haplotypes, comorbid cognitive impairment, or co-occurring mental disorders: 

o O1: To assess whether the neural correlates of a mental disorder may depend on the 

presence of a genetic haplotype. 

o O2: To assess whether the neural correlates of a mental disorder may depend on the 

presence of cognitive impairments. 

o O3: To assess whether the neural correlates of mental disorders depend on the presence 

of co-occurring mental disorders. 

 

 Objective B: To control the potential confounding effects of genetic haplotypes and co-

occurring mental disorders in the analysis of the mental correlates of mental disorders: 

o O4: To assess whether haplotypes associated with mental disorders may have relevant 

neural correlates when considering both the effects of the mental disorders and the 

genetic haplotypes. 

o O5: To assess whether the analysis of the neural correlates of mental disorders yields 

more focal and specific results when covarying with co-occurring disorders. 

 

 Objective C: To create an anatomical atlas of mental disorders for future studies: 

o O6. To create an atlas mapping both disorder-specific and transdiagnostic gray matter 

volume alteration statistically associated with major mental disorders, accounting for 

the confounding effect of co-occurring disorders. 
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Attention-deficit/hyperactivity disorder (ADHD) is one of the most frequent behavioral psychiatric disorders in 
childhood; it affects ~ 5–6% of children and adolescents and has impairing symptoms that persist in more than 
50% of  adults1. The disorder is characterized by pervasive inattention and/or hyperactivity and impulsivity, associ-
ated with social and/or educational/occupational  impairments2. Some patients have inattention predominantly 
(e.g., they make careless mistakes, are forgetful, etcetera). Other patients have hyperactivity and impulsivity 
mainly (e.g., they get up often when seated, talk out of turn, etcetera). Still, most patients have a “combined type” 
ADHD involving inattentive and hyperactive-impulsive symptoms.

Previous studies have reported several environmental factors that may increase the risk of ADHD, such as 
maternal pre-pregnancy overweight, preeclampsia, hypertensive disorders, acetaminophen exposure or smoking 
during pregnancy, childhood eczema or asthma, or vitamin D  deficiency3. However, family, twin, and adoption 
studies have repeatedly demonstrated the substantial influence of genetic factors, with heritability estimated to 
be around 76%4,5.

Meta-analyses of candidate genes and genome-wide association studies (GWAS) have identified several genes 
and loci associated with  ADHD6–9. One leading candidate gene is the BAIAP2 (brain-specific angiogenesis 
inhibitor 1-associated protein 2), which has shown a consistent association with ADHD across  studies8 and meta-
analytic statistical significance even after Bonferroni correction. Besides, a recent meta-analysis has highlighted 
another candidate gene repetitively associated with ADHD, the ADGRL3 (adhesion G protein-coupled receptor 
L3; formerly LPHN3, latrophilin 3)9–12.

Magnetic resonance imaging (MRI) studies have described several structural and functional brain abnormali-
ties in patients with ADHD, including decreased gray matter volume in the motor area, prefrontal cortex, and 
age-dependent volume in basal  ganglia13–16. Studies have also identified reduced brain response to cognitive tasks 
in the same brain regions, although the evidence is still weak and needs further  investigation15–20.

Given the association between ADGRL3 haplotype and ADHD, and the consistency of structural and func-
tional brain studies, we aimed to investigate the relationship between ADGRL3 haplotypes and the brain abnor-
malities to characterize the brain structural and functional differences between ADHD patients and controls 
depending on their ADGRL3 haplotype. To this end, we recruited, genotyped, and MRI-scanned 64 patients with 
combined type ADHD and 64 healthy controls, balanced for age, sex, premorbid IQ, and ADGRL3 haplotypes. 
We exploratorily hypothesized that beyond the brain structural and functional effects of ADHD, there could 
be effects of the haplotypes and even effects of the interaction between ADHD and the haplotypes. The latter 
would mean that the brain correlates of ADHD depend on the haplotype. This finding would be interesting to 
understand the disease better and pave the way for a haplotype-based personalization of non-invasive brain 
stimulation  therapy21.

The final sample included 128 participants (64 patients and 64 controls), of which 42 (21 
patients and 21 controls) were homo- or heterozygous for the protective haplotype, and 51 (28 patients and 23 
controls) were homo- or heterozygous for the risk haplotype. As shown in Table 1, there were no substantial 
differences between patients and controls or between haplotype groups on age (mean: patients 36, controls 36, 
protective haplotype 36, risk haplotype 37, and other haplotypes 35 years; SD around 12 years), sex (patients 
66%, controls 48%, protective haplotype 57%, risk haplotype 61%, other haplotypes 51% males), and premorbid 
IQ (TAP score mean: patients 23, controls 23, protective haplotype 23, risk haplotype 23, other haplotypes 23; SD 
around 5). The ratio of homozygosis vs. heterozygosis of the risk haplotype was higher in patients with ADHD 
than in healthy controls (patients 14 homozygous and 14 heterozygous, healthy controls: 2 homozygous and 21 
heterozygous, chi-square p-value = 0.004).

We did not observe any statistically significant ADHD or ADGRL3 haplotype effects 
after correction for multiple comparisons.

However, for the sake of exhaustivity, we report here (but not further discuss) the findings at uncorrected 
p < 0.001 level (Fig. 1 and Table 2). First, individuals (patients or controls) with the protective haplotype showed 
decreased gray matter in the right supramarginal gyrus compared to individuals without the protective haplo-
type (see details in Table 2). Second, individuals (patients or controls) with the risk haplotype showed increased 
gray matter in several frontotemporal regions and decreased gray matter in inferior temporal/fusiform gyrus 
compared to individuals without the risk haplotype. Third, patients with ADHD showed increased gray matter 

Table 1.  Description of the sample. TAP: “Test de Acentuación de Palabras” (an indicator of premorbid IQ).

All participants
ADHD status Haplotype
Patients Healthy controls Protective Risk Other

All haplotypes
Group size 128 64 64 42 51 35
Age (mean ± SD) 36.2 ± 11.9 36.2 ± 12.0 36.2 ± 11.8 36.0 ± 10.8 37.1 ± 12.3 35.3 ± 12.6
Sex (% males) 57.0% 65.6% 48.4% 57.1% 60.8% 51.4%
TAP score (mean ± SD) 22.9 ± 4.9 22.6 ± 5.1 23.1 ± 4.7 22.9 ± 5.0 23.0 ± 5.0 22.7 ± 4.7
Homo/heterozygosis – – – 9/33 16/35 –
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in the left putamen as compared to healthy controls. Finally, we observed interactions between the protective 
haplotype and ADHD status in the left middle frontal gyrus, orbitofrontal, fusiform, parahippocampal gyri, and 
precuneus. The interaction in the left middle frontal gyrus was positive: we observed a trend-level increase in 
individuals with protective haplotype, a trend-level increase in patients, and an extra increase in patients with 
protective haplotype. The interactions in the other regions were negative: we did not observe any overall effect 
of protective haplotype or disorder, but a decrease in patients with protective haplotype. 

The performance of the different groups in the n-back task was mostly similar. We 
only observed a marginal increase of d’ in individuals with the protective haplotype in the 2-back task (t = 2.04, 
uncorrected p-value = 0.043).

Figure 1.  Brain increases and decreases of gray matter volume depending on ADGRL3 haplotypes and the 
attention-deficit/hyperactivity disorder (ADHD) status, using uncorrected p-value < 0.001. Top: Volumetric 
differences in individuals (patients or controls) with the protective haplotype. Middle/top: Volumetric 
differences in individuals (patients or controls) with the risk haplotype. Middle/bottom: Volumetric differences 
in patients with ADHD relative to healthy subjects. Bottom: Volumetric interaction between ADHD status and 
protective haplotype. Areas in red indicate significantly more gray matter in individuals with the haplotype or 
patients or a positive interaction between the disorder and the haplotype; blue areas indicate substantially less 
gray matter in individuals with the haplotype or negative interaction between the disorder and the haplotype. 
Differences were not statistically significant after correction for multiple comparisons.
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The fMRI study’s main finding was a widespread hypo-activation in the 1-back vs. baseline contrast in indi-
viduals (patients or controls) with the protective haplotype (compared to individuals without the protective 
haplotype; Table 3 and Fig. 2). This hypo-activation especially included the inferior, superior, and middle frontal 
gyri, the inferior and middle temporal gyri, the anterior and median cingulate cortices, and to a lesser extent, 
the fusiform gyrus, the cuneus/precuneus, the supplementary motor area, the inferior and middle occipital gyri, 
the cerebellum, the supramarginal gyrus, the insula, the thalamus, the caudate, the parahippocampal gyrus, the 
putamen, and several other regions (see details in Table 3). The 2-back vs. baseline comparison showed hypo-
activation, although this was less statistically significant and more circumscribed to the frontal gyri.

Individuals (patients or controls) with the risk haplotype also showed hypo-activation compared to indi-
viduals without risk haplotype, but it was substantially less extensive in the 1-back vs. baseline contrast. It only 
comprised the caudate, the olfactory and anterior cortices, and the rectus gyri. In the 2-back vs. baseline con-
trast, it was more extensive. It included the middle, superior, and inferior frontal gyri, the middle and superior 
temporal gyri, and to a lesser extent, the supramarginal gyrus, the caudate, the anterior cingulate cortex, and 
several other regions.

Finally, patients with ADHD showed hyper-activation of the inferior parietal, the angular, and the superior 
occipital gyri in the 2-back vs. baseline contrast compared to healthy controls.

We did not find any statistically significant effect for the other contrasts or interactions between ADHD status 
and ADGRL3 haplotypes.

This study explored brain structural and functional differences between ADGRL3 haplotypes, between patients 
with ADHD and controls, and their interactions. The main findings were the widespread strong effects of 
ADGRL3 haplotypes on the brain response to work the memory task. Conversely, contrary to our hypothesis, 
we did not find the brain effects of the interactions between ADGRL3 haplotypes and adult ADHD.

Specifically, individuals (patients or controls) who were homo- or heterozygous for the protective ADGRL3 
haplotype showed extensive hypo-activation compared to individuals without the protective haplotype. Surpris-
ingly, individuals (patients or controls) who were homo- or heterozygous for the risk haplotype also showed 

Table 2.  Effects of ADHD and ADGRL3 haplotypes on gray matter volume (Contrasts Patients < controls, 
Protective > other haplotypes, and Patients with Risk > or < Controls with other haplotypes, did not returned 
significant results). Inf. Inferior, L left, mid. Middle, R right, sup. superior. a In the absence of disorder-
haplotype interactions. b We compared risk and protective haplotype to other haplotypes. c Trend-level increase 
in individuals with protective haplotype, trend-level increase in patients, and extra increase in patients with 
protective haplotype. d No overall effects of protective haplotype or disorder, but decrease in patients with 
protective haplotype.

Peak MNI Peak t-value Cluster size Cluster breakdown
Gray matter decreases in individuals with protective haplotypea,b

Modulated R supramarginal 60, -20, 24 4.116 116 R supramarginal (112)
Gray matter increases in individuals with risk haplotypea,b

Unmodulated
Median cingulate 4, − 2, 32 4.285 99 Median cingulate (67)
L precentral − 30, − 14, 58 4.331 81 L precentral (72)

Modulated

R inf. temporal 52, − 18, − 38 4.668 197 R inf. temporal (123)
R mid. frontal 38, 24, 30 3.563 76 R mid. frontal (15)

L inf. frontal − 42, 30, 28 3.734 72 L inf. frontal (33)
L mid. frontal (29)

Gray matter decreases in individuals with risk haplotypea,b

Modulated
L inf. temporal − 56, − 52, − 12 4.004 269 L inf. temporal (165)

L mid. temporal (89)

R fusiform 40, − 58, − 20 3.549 100 R fusiform (54)
R cerebellum (39)

Gray matter increases in patients
Unmodulated: L putamen − 18, 8, − 4 3.613 61 L putamen (13)
Modulated: L putamen − 18, 6, − 2 3.678 53 L putamen (10)
Interaction: gray matter increases in patients with protective haplotypeb,c

Unmodulated L mid. frontal − 32, 22, 32 4.545 50 L mid. frontal (9)
Interaction: gray matter decreases in patients with protective haplotypeb,d

Unmodulated
L orbitofrontal − 16, 16, − 24 3.787 98

L orbitofrontal (29)
L sup. temporal (22)
L mid. temporal (16)

L fusiform − 34, − 78, − 16 3.956 71 L fusiform (39)
L parahippocampal − 18, − 32, − 10 3.920 54 L parahippocampal (3)

Modulated Precuneus 2, − 50, 50 3.478 90 Precuneus (90)
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Peak MNI Peak z-value Cluster size Cluster p-value Cluster breakdown
Hypo-activation in individuals with protective haplotypea,b

1-back:

Frontal/cingulate − 4, − 20, 18 5.03 10,064 < 0.001

L sup. frontal (1011)
L inf. frontal (798)
R sup. frontal (599)
L mid. frontal (556)
Ant. cingulate (547)
Median cingulate (519)
R mid. frontal (459)
L supplementary motor area 
(294)
R supplementary motor area 
(281)
L insula (248)
R caudate (133)
R precentral (128)
L putamen (124)
L thalamus (100)
R thalamus (97)
L caudate (61)
R putamen (58)
R insula (41)
L sup. temporal (39)
R inf. frontal (27)
L gyrus rectus (16)

R temporal/fusiform 14, − 88, − 18 4.24 4382 < 0.001

R inf. temporal (526)
R fusiform (381)
R mid. temporal (356)
R cerebellum (320)
Cuneus (255)
Precuneus (223)
R mid. occipital (149)
R parahippocampal (129)
R inf. occipital (127)
R lingual (89)
R sup. occipital (87)
R angular (87)
R sup. parietal (70)
L calcarine (44)
L sup. occipital (38)
R calcarine (31)
L sup. parietal (11)

R inf. frontal 58, 16, 14 4.47 1356 < 0.001

R inf. frontal (1100)
R insula (21)
R sup. temporal (13)
R Rolandic operculum (12)
R precentral (10)

L inf. temporal − 52, − 46, − 18 4.53 901 0.007

L inf. temporal (507)
L fusiform (153)
L cerebellum (111)
L mid. temporal (24)
L inf. occipital (19)

L fusiform − 26, − 32, − 20 3.86 871 0.009

L fusiform (164)
L mid. temporal (75)
L parahippocampal (65)
L hippocampus (61)
L inf. temporal (18)
L insula (13)
L cerebellum (13)
L putamen (10)

R supramarginal 60, − 38, 34 4.28 853 0.011
R supramarginal (386)
R inf. parietal (179)
R sup. temporal (62)

2-back:

R inf. frontal 52, 50, 16 3.87 843 0.008
R inf. frontal (567)
R mid. frontal (52)
R sup. frontal (39)
R sup. temporal (39)

L inf. frontal − 8, 2, − 10 3.83 710 0.021
L inf. frontal (150)
L putamen (45)
L insula (27)
L sup. temporal (12)

Hypo-activation in individuals with risk haplotypea,b

1-back: L caudate − 6, 18, 6 3.87 1.063 0.002

L caudate (115)
Ant. cingulate (54)
L olfactory (38)
R caudate (34)
R olfactory (29)
R gyrus rectus (22)
L gyrus rectus (18)

Continued
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hypo-activation compared to individuals without the risk haplotype. We must acknowledge that we do not know 
the functional meaning of these hypo-activations or whether they may relate or not to the protective and risk 
effects of these haplotypes.

Intriguingly, previous meta-analyses have shown widespread hypo-activation in patients with  ADHD17, 
whereas we found them to show hyper-activation. On the other hand, hypoactivation patterns in individuals 
with risk ADGRL3 haplotype compared to individuals with the protective haplotype were significantly higher 
and more extensive in the 2-back versus baseline contrast, that is, when the difficulty of the task increased. 
Hypoactivation patterns have been regularly reported in studies using working memory tasks in children and 
adolescents with ADHD, but not consistently in adult patients with the disorder. Considering the above, a 
potential explanation for these opposite observations could be that the hypo-activation reported in previous 
ADHD studies is indeed due to the more frequency of ADGRL3 risk haplotype in the patients rather than to 
ADHD-related executive cognitive failures. However, other explanations are possible because activation may 
depend on a variety of factors. For example, individuals who do not attend the task will have little or no activation, 
and both the disorder and the ADGRL3 haplotype may probably affect the attention to the task. Besides, some 
authors have associated activation with task accuracy but also longer reaction  time22,23. Even methylphenidate 
may play a  role24, although its involvement in working memory networks is  unclear25. With these considerations 
in mind, one could hypothesize that hypo-activation in individuals with the protective haplotype and hypo-
activation in patients with ADHD have different origins. For example, individuals with the protective haplotype 
might require weaker brain activation to attend, whereas individuals with a “tendency” to ADHD might have 
difficulty to activate. Under these hypotheses, individuals with a tendency to ADHD but protective haplotype 
would seldom develop the disorder because their lower activation requirement would cancel out their difficulty 
to activate. Of course, such speculations are only hypotheses. We encourage future studies to investigate them.

We failed to detect statistically significant interactions between adult ADHD and ADGRL3 haplotypes. We 
found some interactions between the effects of ADGRL3 haplotypes and disorder on brain morphometry. Still, 
readers should take them with caution because they did not survive the correction for multiple testing. In this 
regard, a recent meta-analysis has found that ADGRL3 haplotypes confer a relevant risk in pediatric ADHD, but 
results were less significant in adult  ADHD9. The meta-analysis and our study investigated different phenomena, 

Peak MNI Peak z-value Cluster size Cluster p-value Cluster breakdown

2-back:

R temporal/supramarginal 52, − 32, 6 4.11 3881 < 0.001

R mid. temporal (408)
R supramarginal (303)
R sup. temporal (231)
Ant. cingulate (124)
R inf. frontal (99)
R calcarine (83)
R caudate (76)
L caudate (67)
R postcentral (60)
R sup. frontal (57)
R inf. parietal (47)
R inf. temporal (43)
R lingual (38)
L olfactory (35)
R amygdala (34)
R olfactory (31)
R mid. frontal (24)
R insula (16)
R Heschl (16)
R Rolandic operculum (15)
R hippocampus (12)
Precuneus (10)

L mid. frontal − 18, 24, 50 3.9 837 0.008
L mid. frontal (412)
L sup. frontal (163)
L supplementary motor 
area (15)

R lingual 16, − 32, 0 3.98 646 0.033

R lingual (92)
R hippocampus (66)
R thalamus (57)
R cerebellum (44)
Vermis (10)

Hyper-activation in patients

2-back:

R angular/occipital 38, − 74, 52 4.31 901 0.005
R angular (296)
R sup. occipital (223)
R mid. occipital (27)
R inf. parietal (18)

L inf. parietal − 52, − 52, 46 3.39 708 0.021
L inf. parietal (323)
L angular (93)
L sup. parietal (52)

Table 3.  Effects of ADHD and ADGRL3 haplotypes on the brain response during n-back task (Contrasts 
Patients < controls, Risk > other haplotypes, and interactions, did not returned significant results). Ant. 
Anterior, Inf. Inferior, L left, mid. Middle, R right, sup. superior. a In the absence of disorder-haplotype 
interactions. b We compared risk and protective haplotype to other haplotypes.



Vol.:(0123456789)

 |         (2021) 11:2373  | 

www.nature.com/scientificreports/

as the former reviewed studies of the association between the haplotypes and ADHD, and the latter investigates 
their brain correlates. However, there is a possibility that the weaker association between ADGRL3 haplotypes and 
ADHD in adults may explain why we did not found evidence of any brain effect of the interactions in our study.

Even if we failed to detect interactions between the haplotype and the disorder, we still found an impressive 
result: ADGRL3 protective and risk haplotypes significantly impact the brain response to a working memory 
task. Interestingly, the ADGRL3 haplotype with a larger effect was the protective one, while the risk haplotype 
effect was weaker.

Structural effects were not statistically significant after correction for multiple comparisons. However, this lack 
of statistical significance is not surprising in ADHD literature, where some studies have reported frontostriatal 
abnormalities that may change with age and/or treatment, while others have failed to detect  them13,15,19,20,26,27. 
In agreement with previous literature, we found more robust evidence of functional brain abnormalities than 
structural brain abnormalities in ADHD.

This study has several limitations. First, despite our efforts to achieve a finely balanced sample, the ratio of 
homozygous vs. heterozygous for the protective and risk haplotypes was higher in patients with ADHD than in 
controls. This imbalance means that we might have potentially erroneously attributed differences between the 
haplotypes’ homozygotic and heterozygotic effects to the ADHD status or its interaction with haplotypes. How-
ever, this possibility seems unlikely to have had a significant consequence because our study’s main findings were 
indeed the haplotypes’ effects. Second, even if the global sample is moderately large for a neuroimaging study, 
it may still involve a limited statistical power to detect weaker effects. This little power may have affected, for 
example, the comparison of patients vs. controls, given the weak findings reported in previous meta-analyses13,17. 
It might also be the case for interactions between the haplotypes and the disorder. However, we were still able 
to detect hypo-activations that were very statistically significant, or in other words, very unlikely due to chance. 

Figure 2.  Brain hyper- and hypo-activation depending on ADGRL3 haplotypes and the attention-deficit/
hyperactivity disorder (ADHD) status during the N-back task. Top: Hypo-activation in individuals (patients or 
controls) with the protective haplotype (blue) and with the risk haplotype (green) during the performance of the 
1-back task vs. baseline. The light-blue color shows overlap regions in both groups. Middle: Hypo-activation in 
individuals (patients or controls) with the protective haplotype (blue) and with the risk haplotype (green) during 
the performance of the 2-back task vs. baseline. The light-blue color shows overlap regions in both groups. 
Bottom: Hyper-activation in patients with ADHD relative to healthy control during the 2-back vs. baseline task. 
Color bars indicate z-values from the group-level analysis.
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Third, our sample included adults, and a recent meta-analysis reported that the effects of ADGRL3 haplotypes 
depend on  age9. Finally, we scanned the individuals in a 1.5 T device, and the functional sequence had a thickness 
of 7 mm with a 0.7 mm gap. We started the study with this configuration years ago. When higher resolutions 
were available, we decided not to change them to scan all the study participants with the same parameters. These 
suboptimal MRI settings may also have limited, to some degree, the statistical power of the study. Again, this 
potentially lower statistical power did not prevent us from detecting extensive effects of ADGRL3 haplotypes.

To sum up, in this study, we failed to detect interactions between adult ADHD and ADGRL3 haplotypes. Still, 
we found that both protective and risk of ADGRL3 haplotypes are associated with a critical brain hypo-activation 
during a working memory task, a result that stresses the relevance of this gene in cognitive brain function and 
warrants further study.

We recruited patients with combined type ADHD and healthy controls from Vall d’Hebron 
University Hospital and Benito Menni CASM. We genotyped them to obtain a sample of patients and controls 
balanced for age, sex, premorbid IQ, and the three ADGRL3 haplotype groups (“risk,” “protective,” and “others,” 
see below). Given that haplotype frequencies differed between patients and controls, this approach involved 
genotyping many more individuals than those we finally included in the MRI study.

Experienced psychiatrists established the diagnosis of ADHD based on the Diagnostic and Statistical Manual 
of Mental Diseases, Fourth Edition, Text Revised (DSM-IV-TR)2 and confirmed with the Conners’ Adult ADHD 
Diagnostic Interview for DSM-IV (CAADID)28,29, the Wender Utah Rating Scale (WURS)30, the ADHD Rating 
 Scale31, and the Conners Adult ADHD Rating Scale (CAARS)32. Exclusion criteria were: (a) age younger than 18 
or older than 65 years, (b) left-handedness, (c) history of brain trauma, neurological disease or systemic disease 
with potential brain affection (e.g., congenital hypothyroidism), (d) substance use disorder (abuse/dependence) 
of drugs including cocaine, heroin, synthetic drugs or alcohol, (e) IQ < 70 estimated from WAIS-III vocabulary 
and block design subtests, and (f) comorbid major psychiatric or personality disorders. The psychiatrist assessed 
the latter using the Structured Clinical Interview for Axis I (SCID-I)33 and Axis II (SCID-II)34, respectively.

We recruited the healthy controls from non-medical staff, their relatives and acquaintances, and independent 
sources in the community. They met the same exclusion criteria as the ADHD group. We also excluded them 
if they: (a) took any psychotropic medication other than non-regular use of benzodiazepines or other similar 
drugs for insomnia, or (b) had a first-degree relative who had experienced symptoms consistent with a major 
psychiatric disorder and/or had received in- or outpatient psychiatric care.

The final sample of brain imaging participants was balanced for age, sex, premorbid IQ, and ADGRL3 haplo-
type. We estimated premorbid IQ with the “Test de Acentuación de Palabras” (TAP), a test requiring pronuncia-
tion of Spanish words with accents  removed35, analog to the National Adult Reading Test (NART)36. The reason 
to use this test is that individuals preserve the pronunciation of words learned before the disorder’s onset. Thus a 
pronunciation test may be useful to estimate the premorbid  IQ37. We acknowledge that this estimation is more 
advantageous for cognitive conditions such as dementia than for ADHD. However, we considered it would still 
be helpful here to avoid mixing any effects of the disorder on the IQ.

The Clinical Research Ethics Committees of both Germanes Hospitalàries (for FIDMAG/Hospital Benito 
Menni) and Hospital Universitari Vall d’Hebron (Barcelona, Spain) approved the study. We performed all meth-
ods following the relevant guidelines and the Declaration of Helsinki and regulations, and we obtained written 
informed consent from all subjects before inclusion into the study.

We isolated genomic DNA from peripheral blood lymphocytes using the 
salting-out  procedure38 or saliva using the Oragene DNA Self-Collection Kit (DNA Genotek, Kanata, Ontario, 
Canada). DNA concentrations were determined using the Pico-Green dsDNA Quantitation Kit (Molecular 
Probes, Eugene, OR).

We carried out genotyping using standard PCR methods, and amplification products were tested by electro-
phoresis on a 1.5% agarose gel and ethidium bromide staining. We amplified the SNPs rs1868790, rs6813183, 
and rs12503398 using independent PCR runs. Genomic DNA was amplified for three-marker haplotype with 
primers Fw 5 -CTT CAT TTT GTA CTT TAT TGA AAT GTG-3  and Rv 5 -TTC CAT AGG GCA ACT GAT CATA-3  
for the SNP rs1868790; Fw 5 -CTC AAA CCA TGT TTA TTC TAG ACC T-3  and Rv 5 -CAA ATT ATT TTC TGA CCC 
TCT ATT CTT-3  for the SNP rs6813183; and Fw 5 -GGG TTC CAA ACT TCT GAT GC-3  and Rv 5 -CCC CTC CAT 
GAA ATT CCT TT-3  and the rs12503398. PCR reactions were carried out in a final volume of 25 μl, containing 
50 ng of genomic DNA, 10 pM of each primer, 2.5 μl of PCR amplification Buffer (Invitrogen, Breda, The Neth-
erlands), 2 mM of dNTPs, 0.5 mM MgCl, and 1U of TaqDNA polymerase (Roche). Amplification conditions 
consisted of an initial denaturation at 94 °C for 1 min followed by 35 cycles of denaturation at 94 °C for 1 min, 
annealing at 56 °C for rs1868790 and 60.3 °C for rs6813183 and rs12503398 for 1 min, and extension at 72 °C for 
1 min, with a final extension step at 72 °C for 10 min. After purification of PCR products (EZNA Cycle Pure kit, 
OMEGA), we sequenced both strands using a Big Dye Termination system in a directly determined automated 
sequencing on an ABI 3130XL sequencer according to the protocol of the manufacturer. All sequencing results 
were analyzed using bioinformatics tools from the BioEdit Sequence Alignment Editor. ADGRL3 haplotypes 
were estimated using the PHASE  software39.

In a previous  study40, we had found that the allelic combination with the highest association with ADHD 
combined type was rs1868790-rs6813183-rs12503398. Specifically, there was an over-representation of the com-
bination T-C-A (patients: 22.9%; healthy controls: 12.8%), and thus we considered that individuals with this 
combination had the risk haplotype. Conversely, there was an under-representation of the combination A-G-G 
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(patients: 13.1%; healthy controls: 17.4%), and thus we considered that individuals with this combination had 
the protective haplotype.

We scanned all participants in the same 1.5 T GE Signa scanner (General Electric 
Medical Systems, Milwaukee, WI, USA) at Sant Joan de Déu Hospital in Barcelona (Spain).

Participants underwent structural scanning with the following high-resolution T1 sequence: 180 axial slices, 
1 mm slice thickness with no gap, 512 × 512 matrix size, 0.5 × 0.5 × 1 mm3 voxel resolution, 4 ms echo time, 
2000 ms repetition time, 15° flip angle.

We visually inspected the raw structural images to check motion or other artifacts, removed the non-brain 
matter with the brain extraction tool (BET)41, and segmented the brains into gray matter and other tissues with 
the FMRIB software library (FSL)42. We had to discard twenty scans due to motion artifacts or inaccurate brain 
extractions or segmentations.

Gray matter segments were then normalized to MNI space with FSL as follows: (a) affine registration of the 
native-space gray matter images to a common stereotactic space (Montreal Neurological Institute template, 
MNI); (b) creation of a first template using the registered gray matter images; (c) non-linear registration of 
the native-space gray matter images to the first template; (d) creation of a second template using the registered 
gray matter images; (e) non-linear registration of the native-space gray matter images to the second template. 
Modulated and non-modulated images were Gaussian-smoothed with a σ = 4 mm (FWHM = 9.4 mm) kernel, 
which has shown to yield increased sensitivity as compared to narrower  kernels43.

We used both modulated and non-modulated images because we have previously shown that non-linear 
registration can capture gross differences such as gross brain shape abnormalities, but not more subtle differ-
ences such as fine cortical  thinning43. Thus, unmodulated images may detect the mesoscopic differences not 
captured by non-linear registration better. In such a case, the modulation would only introduce macroscopic 
noise, ultimately reducing statistical  power43. Conversely, modulated images may better detect macroscopic dif-
ferences captured by non-linear registration, as a significant part of these differences might be removed during 
the non-linear registration but re-introduced with  modulation44.

We acquired the functional scans with the following gradient-echo echo-planar 
imaging (EPI) sequence depicting the blood oxygenation level-dependent (BOLD) contrast: 266 volumes, 
TR = 2000  ms, TE = 20  ms, FOV = 20, flip angle = 70°, number of axial planes = 16, thickness = 7  mm, section 
skip = 0.7 mm, in-plane resolution = 3 × 3 mm.

Within the scanner, participants performed a sequential-letter version of the n-back  task45. We chose this 
task, which captures the active part of working memory, because impairment of working memory is one of the 
most robust findings in ADHD, especially in  adulthood46. The computer presented two levels of memory load 
(1-back and 2-back) in a blocked design. Each block consisted of 24 letters shown every 2 s (1 s on, 1 s off), and 
all blocks contained five repetitions (1-back or 2-back depending on the block) located randomly within the 
blocks. Individuals had to indicate repetitions by pressing a button. The software presented four 1-back and four 
2-back blocks in an interleaved way, with a baseline stimulus (an asterisk flashing with the same frequency as 
the letters) presented for 16 s between n-back blocks. The computer showed green characters in 1-back blocks 
and red characters in the 2-back blocks to identify which task the participant should perform. All participants 
first underwent a training session outside the scanner. We measured performance using the signal detection 
theory index of sensitivity, d’47. Higher values of d’ indicate a better ability to discriminate between targets and 
distractors.

We analyzed functional images with FEAT (fMRI Expert Analysis Tool), also included in  FSL48. For each 
participant, we discarded the first ten volumes to avoid T1 saturation effects, corrected for movement using 
 MCFLIRT49, brain-extracted using  BET41, spatially smoothed using a Gaussian kernel of FWHM 5 mm, nor-
malized to the grand-mean intensity, and filtered with a high-pass temporal Gaussian-weighted least-squares 
straight-line fitting (sigma = 65 s). We had to discard fourteen scans due to lack of behavioral performance 
(defined as negative d’ values in the 1-back and/or 2-back tasks), image artifacts, or excessive movement (defined 
as estimated maximum absolute movement > 3.0 mm or average movement > 0.3 mm).

We fitted within-individual general linear models, including the 1- and 2-back blocks, their temporal deriva-
tives, and six motion parameters using FILM with local autocorrelation  correction50. These models generated 
individual activation maps for the 1- and 2-back vs. baseline contrast. Individual statistical images were then 
co-registered to MNI space using  FLIRT49,51.

To assess the effects of the disorder, the impact of the ADGRL3 haplotype and their 
interaction on the gray matter or BOLD response, we created a linear model with the following main binary 
regressors: ADHD status (patient vs. control), protective haplotype (presence vs. absence), risk haplotype (pres-
ence vs. absence), the interaction between ADHD status and protective haplotype, and the interaction between 
ADHD status and risk haplotype.

Beyond these regressors, we also included age, sex, and cumulative stimulant dose, given their brain structure 
and function relationships. With the inclusion of age, sex, and medication in the model, we both prevented their 
potential confounding effects (e.g., in the interactions) and decreased the residuals’ variance, thus increasing 
statistical power.

Structural images were analyzed using ‘threshold-free cluster enhancement’ (TFCE)52,53 due to its increased 
sensitivity compared to voxel- or cluster-based  statistics43. We assessed statistical significance with the permu-
tation test included in FSL and thresholded the maps using a familywise error rate < 0.05 (i.e., p corrected for 
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multiple comparisons). With an exploratory aim, we also report results thresholded using a more liberal uncor-
rected p < 0.001, which has increased false-positive rate but minimizes false-negative  results54.

We analyzed behavioral responses to the n-back task with R, and functional images were analyzed using the 
FMRIB’s Local Analysis of Mixed Effects (FLAME) stage  155,56. Z statistic images were thresholded using clusters 
determined by voxel Z > 2.3 and a cluster parametric p < 0.05 corrected for multiple  comparisons57.

Data are available upon request to the Research Ethics Committee (CEI).
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Abstract

Background: Bipolar disorder (BD) is commonly associated with cognitive

impairments, that directly contribute to patients' functional disability. How-

ever, there is no effective treatment targeting cognition in BD. A key reason for

the lack of pro-cognitive interventions is the limited insight into the brain cor-

relates of cognitive impairments in these patients. This is the first study investi-

gating the resting-state neural underpinnings of cognitive impairments in

different neurocognitive subgroups of patients with BD.

Method: Patients with BD in full or partial remission and healthy controls

(final sample of n = 144 and n = 50, respectively) underwent neuropsychologi-

cal assessment and resting-state functional magnetic resonance imaging. We

classified the patients into cognitively impaired (n = 83) and cognitively nor-

mal (n = 61) subgroups using hierarchical cluster analysis of the four cognitive

domains. We used independent component analysis (ICA) to investigate the
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differences between the neurocognitive subgroups and healthy controls in

resting-state functional connectivity (rsFC) in the default mode network

(DMN), executive central network (ECN), and frontoparietal network (FPN).

Results: Cognitively impaired patients displayed greater positive rsFC within

the DMN and less negative rsFC within the ECN than healthy controls. Across

cognitively impaired patients, lower positive connectivity within DMN and

lower negative rsFC within ECN correlated with worse global cognitive

performance.

Conclusion: Cognitive impairments in BD seem to be associated with a hyper-

connectivity within the DMN, which may explain the failure to suppress

task-irrelevant DMN activity during the cognitive performance, and blunted

anticorrelation in the ECN. Thus, aberrant connectivity within the DMN and

ECN may serve as brain targets for pro-cognitive interventions.

KEYWORD S

bipolar disorder, cognitive impairments, functional connectivity, psychological functioning,
resting-state fMRI

1 | INTRODUCTION

Cognitive impairments are a core feature of bipolar disorder
(BD), mostly affecting verbal memory, working mem-
ory, and executive functions.1,2 These impairments
often prevail during asymptomatic periods, contributing
to functional disability, including socio-occupational dif-
ficulties and poor quality of life.1,3,4 Therefore, there is an
important need to develop novel treatments targeting
cognition to promote functional recovery.5 However,
there is still no effective treatment with enduring effects
on cognitive impairment in BD.6,7 A possible reason for
this lack of pro-cognitive interventions is the limited
knowledge of the neurobiological abnormalities underly-
ing cognitive impairments,8,9 and thus which specific
neurocircuitry dysfunction should be targeted by pro-
cognitive interventions.10

The International Society for Bipolar Disorders
(ISBD) Targeting Cognition Task Force recently highlighted
the need for investigating neural correlates by neuroimag-
ing of potential pro-cognitive efficacy in candidate
treatments.10,11 Converging evidence suggests that cog-
nitive impairments arise from disrupted neuroplasticity
mechanisms and associated functional and structural
changes in cognition-relevant neurocircuits.12 Recent
systematic reviews of functional magnetic resonance
imaging (fMRI) correlates of cognitive impairment in
mood disorders highlighted aberrant working memory-
related activity in the medial and dorsal prefrontal cortex
(dPFC).11,13,14 The dPFC is involved in active maintenance

Significant outcomes

• Cognitively impaired patients displayed greater
positive functional connectivity within the
DMN than healthy controls.

• Cognitively impaired patients displayed less
negative functional connectivity within the
ECN than healthy controls.

• Aberrant functional connectivity within DMN
and ECN was weakly associated with poorer
cognitive performance.

Limitations

• The cross-sectional design limits causal infer-
ences regarding the differences in network
connectivity in the neuronal mechanisms of
cognitive impairments.

• The a priori selection of studied cognitive net-
works may have biased the results.

• The lack of statistical difference between the
neurocognitive groups (CI and CN) may ham-
per the utility of rs-fMRI biomarkers in treat-
ment trials.

• The patients received pharmacological treat-
ment at the time of the scanning, which may
have influenced the differences found in net-
work connectivity.
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and manipulation of working memory-relevant stimuli15,16

and belongs to the executive central network (ECN).
This network is strongly involved in several cognition
processes that require externally directed attention,
including working memory and task-set switching,17

Another consistent finding is hyper-activity within the
default mode network (DMN) in working memory-
related activity.13,14,18 Indeed, the hyper-activity in the
DMN may exacerbate cognitive impairments by dis-
rupting task-relevant activity in prefrontal regions
involved in cortical control during goal-directed behavior.13

Despite the emerging evidence for aberrant activity in
cortical control regions and DMN hyper-activity repre-
senting putative neurocircuitry targets for new pro-
cognitive treatments in mood disorders, no study has
yet investigated the role of DMN resting-state func-
tional connectivity (rsFC) in patients' cognitive im-
pairments. In addition to DMN and ECN, previous
studies reported that the frontoparietal network (FPN)
covers several areas engaged in cognitively challenging
tasks.19 Further, aberrant activity in some core regions
of the FPN during cognitive interference and increased
functional connectivity between FPN and insula had
been reported in BD. Based on this evidence, we chose
a priori to investigate the rsFC abnormalities underly-
ing cognitive impairments within and between these
three neural networks that all seem to play a role in
cognitive impairments in BD.

Studies of rsFC in patients with BD have found that
abnormal communication in large-scale functional
networks, such as DMN, may underlie the pathophysi-
ology of BD.20,21 However, these abnormalities varied
depending on whether mood was controlled or not.22,23

Abnormal rsFC in the DMN has often been reported in
BD patients compared to healthy controls (HC) during
acute episodic states but not in remission,24,25 but with
inconsistent findings.26 To date, no prior study has in-
vestigated rsFC differences in cognitive networks in
subgroups of patients with BD with or without clini-
cally relevant cognitive impairment and HC. Therefore,
the present study aims to investigate the resting-state
neural underpinnings of cognitive impairments of
cognitive-related functional networks in distinct neuro-
cognitive groups of remitted BD. Based on evidence
from task-based fMRI for working memory related to
hypo-activity in the dPFC couple with DMN hyper-
activity,14 we hypothesize that cognitively impaired
(CI) patients display (i) hyper-connectivity within the
DMN and (ii) aberrant connectivity in the ECN and
FPN relative to those who are cognitively normal
(CN) and HC, and (iii) that these abnormalities are
associated with global cognitive impairments and func-
tional disability.

2 | MATERIALS AND METHODS

2.1 | Study design and participants

The study included rs-fMRI, clinical and neurocognitive
data from 153 patients with BD in full or partial remission
and 52 HC. The data were combined from two cohorts:
79 patients from the Prefrontal Target Engagement as a
biomarker model for Cognitive improvement (PRETEC-
EPO: NCT03315897,27 PRETEC-ABC: NCT0329530528);
and 74 patients and 52 HC from the Bipolar Illness Onset
study (BIO: NCT02888262,29). The two studies employed
corresponding inclusion criteria and neurocognitive tests.
They also employed the same MRI scanner, scanner
sequence, and acquisition method and used the same rat-
ings of mood and functioning. The studies were approved
by the Danish Research Ethics Committee for the Capital
Region of Denmark (PRETEC-EPO: NCT03315897,
https://clinicaltrials.gov/ct2/show/NCT03315897; PRETEC-
ABC: NCT03295305, https://clinicaltrials.gov/ct2/show/
NCT03295305 BIO: NCT02888262, https://clinicaltrials.
gov/ct2/show/NCT02888262).

Patients were recruited from the Mental Health Ser-
vices, Capital Region of Denmark, and through consul-
tant psychiatrists in Copenhagen. A total of 10% were
recruited through relevant websites. Eligible patients
were between 18 and 65 years of age and had an ICD-10
diagnosis of BD verified with the Schedules for Clinical
Assessment in Neuropsychiatry (SCAN).30 Furthermore,
patients were in full or partial remission, with full remis-
sion defined as scores of ≤7 on the Hamilton Depression
Rating Scale 17-items (HDRS-17)31 and the Young Mania
Rating Scale (YMRS),32 whereas partial remission was
defined as scores >7 and ≤14 on the same scales. 52 HC,
aged 18 and 65, were recruited from the Blood Bank at
Rigshospitalet, Copenhagen; they had no personal or first-
degree relative history of treatment-required psychiatric
disorder or neurological illness as indicated by SCAN
interviews. Exclusion criteria for all participants included
a history of severe brain injury, alcohol or substance
abuse, diagnosis of dyslexia, pregnancy, or severe somatic
illness. Neurocognitive assessment processing of the par-
ticipants is shown in the Supplement.

We performed a hierarchical cluster analysis (HCA) to
classify homogeneous clusters of patients based on the four
cognitive domains. Squared Euclidean distance and Ward's
method were used as agglomeration procedures to evaluate
case similarities. We visually inspected the dendrogram to
determine the optimal number of subgroups and con-
ducted discriminant function analysis (DFA) to validate
the retained clusters. Finally, we conducted an analysis of
variance (ANOVA) to assess differences between neuro-
cognitive subgroups of patients and HC in neurocognitive
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performance across cognitive domains and Fisher's Least
Significant Difference (LSD) post-hoc test to explore pair-
wise differences between groups.

2.2 | Statistical analysis of clinical,
demographic and neurocognitive data

We used the Statistical Package for the Social Sciences
(SPSS), version 25 (IBM Corporation, Armonk, NY) to
conduct the statistical analysis. Differences in demo-
graphic and clinical characteristics between BD patients'
neurocognitive subgroups and HC were assessed with
independent samples t-test, Pearson's chi-squared (χ2)
and nonparametric Mann–Whitney U. We applied FDR
to correct for multiple comparisons. Threshold for the
level of significance was set at FDR p < 0.05.

2.3 | rs-fMRI acquisition and pre-
processing

Functional MRI data acquisition protocol is shown in the
Supplement. Resting-state-fMRI data were pre-processed
and analyzed using FSL (FMRIB's Software Library v6.0.433)
(www.fsl.fmrib.ox.ac.uk/fsl). Pre-processing involved motion
correction using rigid-body transformations (MCFLIRT,
FSL), high-pass temporal filtering cut-off of 100 s period,
non-brain tissue removal, linear registration to the individ-
ual T1-weighted image, and spatial smoothing using a
5 mm full-width-half-maximum gaussian kernel. We
excluded those participants whose head motion exceeded
an average relative framewise movement of 0.25 obtained
by MCFLIRT. Then, to further denoise the functional data,
we used single-session Independent Component Analysis
(ICA) to decompose it into 20 spatially independent com-
ponents. The resulting components were manually labeled
as signals or noise (i.e., head movement, respiratory, car-
diac, or scanner noise) in 24 participants and validated in
12 independent participants.34 These manually labeled
components were used to train FIX, a tool for automati-
cally classifying artifacts versus signals.35,36 FIX identified
the resting-state network (RSN) activity in the functional
data and regressed the noise from the full dataset. Finally,
we applied non-linear registration to align the cleaned
single-subject data to the standard MNI (Montreal Neuro-
logic Institute) space at 2 mm isotropic voxel size.

2.4 | rs-fMRI statistical analysis

We used Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC)

to conduct group-level ICA by multi-session temporal
concatenation, identifying the common RSNs across the
group. The ICA dimensionality was set to 20 compo-
nents.19,37 For a better interpretation, we validated the
resulting components with the publicly available RSNs
(http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/) derived
from the BrainMap database.38 For that, we used automatic
spatial correlation analysis (FSL's fslcc function) to correlate
our components with the selected RSNs based on our a
priori hypothesis (see Introduction) (DMN, ECN and
FPN).19 In the selected networks template, FPN was sepa-
rated into two different networks belonging to right and left
hemisphere, as it presented a strong lateralization. Therefore,
we decided to study both FPN-right and FPN-left separately.
We chose the component with the highest correlation coeffi-
cient to represent every network. The remaining components
were not considered for further analyses. As an exploratory
analysis, we investigated the group differences in the rest of
the RSNs (visual, auditory, somatomotor and cerebellar).

After the selection of ICA components, we used FSL's
dual regression39 and non-parametric permutation infer-
ence (FSL's randomize,40) to investigate differences in
within-RSN connectivity for all three groups of compari-
son (HC, CI, and CN). Dual regression has two steps;
both are multivariate regressions conducted separately
for each subject. In the first step, the dependent variables
were the fMRI images of the subject (i.e., a 2D matrix of
voxels � time points), the independent variables were
the ICAs images (i.e., a 2D matrix of voxels � ICAs) and
the fitted coefficients were a 2D matrix of ICAs � time
points (i.e., the time series of the different ICAs). In other
words, we modeled the subject fMRI images as the multi-
plication of the ICAs' time series and the ICAs' images.
In the second step, the dependent variables were again
the fMRI images of the subject (though transposed, i.e., a
2D matrix of timepoints � voxels), the independent vari-
ables were the obtained ICAs' time series (again trans-
posed, i.e., a 2D matrix of timepoints � ICAs), and the
fitted coefficients were a 2D matrix of ICAs � voxels
(i.e., a subject-specific set of ICAs maps). The latter
ICAs maps indicated the voxels' connectivity with the
group-level ICA component representing an RSN, simulta-
neously controlling for influence from other ICA compo-
nents.41 Then, we applied voxelwise F-tests to assess
differences in these ICAs maps between groups, using ran-
domize with 5000 permutations to correct for multiple test-
ing. Post hoc pairwise analyses (t-tests) were conducted for
the RSN showing statistically significant effects of groups.
For the post hoc pairwise t-test, we assessed cluster signifi-
cance at p < 0.05 (threshold-free cluster enhancement
(TFCE) corrected42) and a cluster size of k > 100 voxels.
The significance threshold was further corrected by the
number of independent components (IC).
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Between-RSN rsFC was calculated using a partial cor-
relation between each pair of the selected 4 ICA compo-
nents for all three groups using the FSLNETs package
(MATLAB script, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLNets). The partial correlation method aims to esti-
mate more accurately the “direct” connections between
networks than the full correlation method.43 We assessed
significance at p < 0.05, Family Wise Error (FWE)
corrected for multiple comparisons.

2.5 | Correlation analysis with cognition,
functioning, mood and medication

We extracted the mean rsFC strength from the significant
results obtained in the group differences to explore the
associations with the total global cognition score and
FAST total score within CI group only to avoid bias in
the findings due to the differences between subgroups
in cognitive, clinical and demographic variables. Further,
we investigated the association between rsFC and demo-
graphic and clinical variables that differed between
groups and between patients in full or partial remission.
As an exploratory post hoc analysis, we studied the corre-
lation between the cognitive domains (processing speed,
sustained attention, verbal learning, and working mem-
ory and executive functioning). To compute these associ-
ations, we used a partial Pearson's correlation coefficient
controlled for any demographic or clinical variable
shown to be significantly different between the neurocog-
nitive subgroups. Analyses were carried out in SPSS, with
FDR correction for multiple comparisons. Finally, we
also investigated the association between the cognition
scores and the whole voxelwise RSN map, using FSL
across all BD patients.

3 | RESULTS

3.1 | Demographic and clinical
characteristics of participants

Of the initial sample of 205 scanned participants, 11 were
excluded because they did not complete the resting-sate
scan (n = 4), lacked full-brain coverage (n = 11) or dis-
played high head-motion (n = 6), yielding a total of
194 participants for FC analysis. Therefore, the final sam-
ple comprised n = 144 patients and n = 50 age- and sex-
matched HC. Results obtained from HCA and the visual
inspection of the dendrogram (Figure S1) indicated that
patients could be grouped into two neurocognitive sub-
groups with a large enough sample size for each group
for further analysis: cognitively normal (CN), as

compared to HC with 61 patients (42%) and cognitively
impaired (CI) with 83 (58%) patients. As expected, CI
patients showed significant worse performance in global
cognition (p < 0.001) and all individual cognitive
domains compared to CN patients and HC (Table 1), and
CN patients showed no significant difference in cognitive
performance compared to HC. Comparing these two neu-
rocognitive subgroups and HC revealed significant group
differences in age and functioning (Table 1): CI patients
were older than CN patients (page = 0.001, pFAST = 0.001)
and HC (page = 0.039, pFAST <0.001). CN patients also
showed functional impairment compared with HC
(p < 0.001). Finally, CI patients had fewer years of educa-
tion than HC (p < 0.001).

We found no differences in the distribution of BD
type, number of mood episodes, subsyndromal mood
symptoms, or total number of medications in CI versus
CN patients (Table 1). However, CI patients had a signifi-
cantly longer course of illness than CN (p = 0.001) and
received antipsychotic (p = 0.002) and anticonvulsant
(p = 0.028) treatment more frequently than CN patients,
while CN patients more often received treatment with
lithium than CI patients (p = 0.041).

3.2 | rs-fMRI analysis

First, we selected the ICA components with the highest
correlation with our four networks of interest
(Figure S2). The DMN comprised the bilateral anterior
PFC (aPFC) and ventromedial PFC (vmPFC), caudate,
frontal inferior orbital gyrus, precuneus, anterior cingu-
late cortex (ACC), middle cingulate cortex (MDD), poste-
rior cingulate cortex (PCC), temporal pole, precentral
and postcentral gyrus, and angular gyrus (r = 0.53). The
ECN comprised the bilateral dPFC, ACC, MCC, supra-
marginal gyrus, precuneus, putamen, insula, fusiform
gyrus (r = 0.51). The right-FPN comprised the right PFC,
right postcentral and precentral gyrus, right insula right
superior occipital cortex and right middle temporal gyrus
right (r = 0.63). The left-FPN comprised the left PFC, left
precentral gyrus, left caudate, left supramarginal gyrus
and left middle temporal gyrus right (r = 0.71). Note that
some of the regions can overlap with several networks.

Analyses of within-network connectivity showed a
significant difference among groups within the DMN and
ECN (Table 2). Post hoc analyses with Bonferroni cor-
rected for 2 networks, showed a greater positive connec-
tivity within the DMN (Figure 1A) and less negative
connectivity within the ECN in CI patients compared to
HC (Figure 2A). Significant rsFC within the DMN was
localized in seven clusters: (i) bilateral precuneus, (ii) left
ACC and left superior frontal gyrus (SFG), (iii) left
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TABLE 1 Comparison of cognitive performance, demographic and clinical variables in healthy controls and bipolar patient subgroups:

cognitively impaired and cognitively normal.

CI (83) CN (61) HC (50) F or X2 p-value
CI versus
CN

CI versus
HC

CN versus
HC

Demographics

Age M (SD) 36.02 (11.35) 30.51 (7.81) 31.54 (9.96) 6.211 0.002 0.004 0.039 1

Sex n (%) females 53 (64) 45 (74) 32 (63) 2.19 0.333 0.210 1.000 0.226

Years of education M
(SD)a

13.84 (2.85) 14.96 (3.03) 16.10 (2.24) 10.59 < 0.001 0.055 < 0.001 0.097

Verbal IQ M (SD)a 110.80 (6.15) 112.80 (5.40) 112.68 (5.11) 3.10 0.047 0.088 0.155 1

Cognitive domain

Processing speed �1.63 (1.03) 0.78 (0.58) 0 (1) 94.07 < 0.001 < 0.001 < 0.001 1

Sustained attention �1.14 (1.09) �0.01 (0.62) 0 (1) 36.43 < 0.001 < 0.001 < 0.001 1

Verbal learning and
memory

�1.30 (1.28) �0.20 (1.06) 0 (1) 27.60 < 0.001 < 0.001 < 0.001 1

Working memory and
executive function

�0.94 (0.69) �0.01 (0.50) 0 (1) 56.38 < 0.001 < 0.001 < 0.001 1

Global cognition �1.27 (0.72) �0.37 (0.40) 0 (1) 104.29 < 0.001 < 0.001 < 0.001 1

Functioning

FAST total score. M
(SD)

23.11 (12.57) 16.31 (11.30) 1.24 (1.78) 69.01 < 0.001 < 0.001 < 0.001 < 0.001

Clinical characteristics

HDRS-17. M (SD) 5.40 (3.65) 5.16 (4.22) - - - 0.788 - -

YMRS. M (SD) 2.29 (2.78) 2.72 (3.11) - - - 0.360 - -

BD-type II. n (%) 51 (61) 43 (70) - - - 0.295 - -

Illness duration in
years. M (SD) b

15.04 (11.01) 9.57 (7.47) - - - 0.001 - -

Mood episodes categorized

No. of depressive episodes. n (%)b 0.816

0 episodes 1 (1) 0 (0) - - - - -

1–10 episodes 55 (67) 41 (69) - - - - -

11–20 episodes 15 (18) 13 (22) - - - - -

>20 episodes 11 (13) 5 (9) - - - - -

No. of hypomanic episodes. n (%)c 0.407

0 episodes 12 (15) 5 (8) - - - - -

1–10 episodes 53 (66) 35 (59) - - - - -

11–20 episodes 7 (9) 12 (20) - - - - -

>20 episodes 8 (10) 7 (12) - - - - -

No. of manic episodes. n (%)a 0.238

0 episodes 54 (66) 46 (75) - - - - -

1–10 episodes 27 (33) 15 (25) - - - - -

11–20 episodes 0 (0) 0 (0) - - - - -

>20 episodes 1 (1) 0 (0) - - - - -

No. of mixed episodes. n (%)b 0.518

0 episodes 65 (81) 47 (77) - - - - -

1–10 episodes 11 (14) 12 (20) - - - - -

11–20 episodes 2 (2) 1 (2) - - - - -

(Continues)
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caudate, (iv) left superior parietal lobule, (v) right SFG,
(vi) left precentral and postcentral gyrus, and (vii) bilat-
eral cuneal cortex. Significant rsFC within the ECN was
localized in five clusters: (i) left planum temporale and
supramarginal gyrus, (ii) right planum polare and supe-
rior temporal gyrus, (iii) left precuneus, (iv) left planum
polare, and (v) bilateral PCC. We found no significant dif-
ference between the two neurocognitive groups or
between CN patients and HC. Exploratory analysis with
other RSNs did not show any statistically significant
result.

Between-network connectivity analyses showed that
CN patients presented a hyper-connectivity between the
ECN and right FPN compared to HC (p < 0.026) and
between ECN and left FPN compared to CI patients
(p < 0.026). CI patients showed a hyper-connectivity
between DMN and ECN (p = 0.010) compared to
HC. None of the results survived FWE correction for
multiple comparisons.

3.3 | Correlation analysis with cognition,
functioning, mood, and medication

Across the CI patients, higher connectivity in the bilateral
precuneus correlated with poorer global cognitive

performance (p < 0.04, Table 3, Figure 1B). Further,
lower connectivity in an ECN cluster (right planum
polare) also correlated with poorer global cognition
(p < 0.02, Table 3, Figure 2B). However, neither of these
associations survived correction for multiple compari-
sons. Further, higher connectivity in a DMN cluster (left
ACC), correlated with poorer functioning measured with
the FAST (p < 0.03, Table 3, Figure 1B). This association
also did not survive correction for multiple comparisons.
Additional exploratory post hoc analyses showed positive
associations between connectivity in the DMN cluster
located in the precuneus and working memory and exec-
utive functioning (p < 0.02). Further association analyses
with demographic and clinical variables that differed
between groups showed that the hyper-connectivity
observed in a ECN cluster (planum temporale) correlated
positively with higher age (p < 0.001) and longer illness
duration (p < 0.04); and negatively with more severe sub-
syndromal depression (p < 0.03) and with the treatment
with anticonvulsants (p < 0.037). The hyper-connectivity
observed in the right planum polare cluster of the ECN
correlated negatively with higher age (p < 0.045), and
positively with the treatment with anticonvulsants
(p < 0.047). Finally, greater positive connectivity in the
precuneus cluster of the DMN was observed in patients
treated with lithium (p < 0.03) and in partial remission

TABLE 1 (Continued)

CI (83) CN (61) HC (50) F or X2 p-value
CI versus
CN

CI versus
HC

CN versus
HC

>20 episodes 2 (2) 1 (2) - - - - -

Medication status

Any type n (%)a

Antidepressants n
(%)a

20 (24) 17 (28) - - - 0.566 - -

Antipsychotics n (%)a 35 (42) 10 (16) - - - 0.002 - -

Anticonvulsants n
(%)a

51 (61) 25 (41) - - - 0.028 - -

Lithium n (%)a 31 (37) 33 (54) - - - 0.041 - -

Total number of medication classes. n (%) 0.741

0 12 (15) 11 (18) - - - - -

1 1 (39) 23 (38) - - - - -

2 30 (36) 18 (29) - - - - -

3 12 (14) 6 (10) - - - - -

4 5 (5) 2 (3) - - - - -

Note: Significant p-values are formatted in bold.
Abbreviations: BD, bipolar disorder; CI, cognitively impaired; CN, cognitively normal; FAST, functioning assessment short test; HC, healthy controls; HDRS-

17, hamilton depression rating scale 17-item version; M, mean; SD, standard deviation; YMRS, young mania rating scale.
aMissing data for 1 subject.
bMissing data for 3 subjects.
cMissing data for 4 subjects.
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(p < 0.045). Only the association between age and the
planum temporal survived correction for multiple com-
parisons. Results for the cognitive association with each
RSN are presented in the Supplemental Material.

4 | DISCUSSION

This is the first resting-state fMRI study to specifically
investigate the neuronal correlates of cognitive impair-
ments in a large sample of remitted patients with BD. We
used a cluster-analytic approach to classify patients into
subgroups according to the level of their cognitive
impairments rather than by diagnostic group, leading to
two groups: cognitively impaired (CI; 56%, n = 83) and
cognitively normal (CN; 44%, n = 61). In support of our
main hypothesis, CI patients showed greater positive
rsFC within the DMN compared to HC. This
hyper-connectivity was mainly located in the bilateral
precuneus, left ACC, bilateral SFG, left caudate, and left
superior temporal lobule. In support of our secondary
hypothesis, CI patients also showed a less negative rsFC
within the ECN compared to HC, located in the left pla-
num temporale, bilateral planum polare, left precuneus,
and bilateral PCC. In contrast, we found no significant
difference in rsFC between the two neurocognitive
groups or between CN and HC. Notably, lower positive
connectivity in the precuneus cluster of DMN; and lower

negative connectivity in the right planum polare cluster
of ECN were weakly associated with poorer cognitive
performance in CI patients, specifically in the working
memory and executive function domain. Greater posi-
tive connectivity in the left ACC cluster of DMN was
associated with worse psychosocial functioning. Explor-
atory associations with demographic and clinical vari-
ables showed that the connectivity within the ECN
clusters of the right planum polare and planum tempor-
ale correlated with age, illness duration, subsyndromal
depression symptoms and the treatment with anticon-
vulsants. Further, the observed connectivity in the pre-
cuneus cluster of DMN was associated with the
treatment with lithium and partial remission of
patients. However, the correlations between the rsFC
differences and the demographic and clinical variables
did not survive correction for multiple comparisons, so
the differences found in rsFC could not be explained by
these variables.

Our finding that CI patients displayed hyper-connec-
tivity within the DMN relative to HC is consistent with a
previous meta-analysis,26 in which a shift from hypo-
connectivity within the DMN in the acute phase to hyper-
connectivity in remission was observed. However, those
results contrast with a systematic review, in which nor-
malization within DMN connectivity during remission
was observed.25 A plausible explanation for these differ-
ences is that all studies included in this meta-analysis

TABLE 2 Peak cluster showing higher resting-state functional connectivity within the default mode network and executive control

network (p < 0.025, cluster-corrected and IC corrected) between the cognitively impaired patients and healthy controls.

Regions p-value
No. of voxels
(cluster size)

Peak MNI coordinates

X Y Z

DMN

B Precuneus 0.002 1233 �4 �56 62

Left ACC/Left SFG 0.002 803 �8 6 42

Left caudate 0.006 600 �16 �20 20

Left superior parietal lobule 0.008 462 �30 �56 38

Right SFG 0.008 305 22 2 54

Left precentral/postcentral gyrus 0.016 127 �62 �4 16

B cuneal cortex 0.011 124 �2 �84 40

ECN

Left planum temporale/left supramarginal gyrus 0.005 721 �52 �36 14

Right planum polare/Right STG 0.010 311 50 �2 �8

Left precuneus 0.013 252 �8 �54 66

Left planum polare 0.009 118 �44 �14 �4

B PCC 0.015 114 �6 �38 32

Abbreviations: ACC, anterior cingulate cortex; B, bilateral; DMN, default mode network; ECN, executive central network; L, left; MNI, Montreal Neurological
Institute; PCC, posterior cingulate cortex; R, right; SFG, superior frontal gyrus; STG, superior temporal gyrus.
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investigated BD patients as a homogeneous sample inde-
pendent of their cognitive status. Indeed, we found no
difference in between CN patients and HC, suggesting
that depending on the percentage of CI patients in the
whole sample of remitted BD patients, it will be more or
less likely to obtain a significant difference in rsFC,
respectively. Thus, this study strongly supports the need
to investigate neural correlates in BD patients grouped
according to their cognitive profile to investigate neural
correlates of cognitive impairments. These results are in
line with prior studies of task-based fMRI in mood disor-
ders.14,18,44 A hyper-connected DMN during rest may
explain the failure to suppress DMN activity during
working memory processes in CI patients.14,18 In addi-
tion, greater rsFC within the DMN had been suggested as
a potential biomarker for major depressive disorder
(MDD),45 implicated in functions such as self-referential
thinking,46 ruminative thought processing,47 and mem-
ory retrieval.48 A rs-fMRI study of the association
between network rsFC and cognitive performance in
MDD reported an association between greater positive
connectivity within the DMN and worse cognitive

performance,49 especially in working memory and execu-
tive functioning. Aberrant rsFC within the ECN in CI
patients compared to HC may be related to the previous
observation of reduced activity in dlPFC, as region
belonging to the ECN, in patients with BD exhibiting
impaired cognitive task performance relative to CN
patients and HC.14,18 Specifically, dlPFC, as well as ECN,
is involved in active manipulation of working-memory
relevant stimuli.15,16,50 However, the significant ECN
clusters did not contain the dlPFC area. Hence, the role
of dlPFC resting-state connectivity in the ECN underly-
ing cognitive impairments in mood disorders needs to be
further investigated.

The findings have several implications. First, they
suggest that lower positive rsFC within DMN, as well as
a less negative rsFC within ECN, in regions such as pre-
cuneus and right planunm polare, represent neural corre-
lates of cognitive impairments in BD. Thus,
neurocircuitry rsFC abnormalities constitute promising
targets for pro-cognitive interventions, which – if
replicated – may aid go-no/go decisions in treatment
development strategies.51 Emerging evidence indicates

FIGURE 1 Group differences in resting-state functional connectivity (rsFC) within the default mode network (DMN) and their

association with cognitive performance and functioning across all subjects. (A) Statistical map showing a significant greater rsFC in seven

cluster within the DMN in cognitive impaired patients compared to healthy controls (p < 0.025, cluster and component corrected).

(B) Correlation analysis with 95% confidence interval of the linear fit between the within rsFC in the bilateral precuneus and z-standardized

global cognitive scores across CI participants. ACC, anterior cingulate cortex; B, bilateral; Cau, caudate; CN, cognitively normal; CI,

cognitively impaired; Cu, cuneus cortex; HC, healthy controls; L, left; PCu, precuneus; R, right; rsFC, resting-state functional connectivity;

SFG, superior frontal gyrus; SPL, superior parietal lobule.
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that particularly the aberrant connectivity within DMN
may be extended to CI patients with other neuropsychiat-
ric conditions, such as unipolar disorder or schizophre-
nia.13,49 Second, from a theoretical perspective, it is
interesting that rsFC abnormalities were seen both
within and between DMN and ECN in partially overlap-
ping parietal and PCC areas. These rsFC abnormalities
may arise from disruption of structural connectivity due
to white matter deficits that have been observed in CI rel-
ative to CN patients with mood disorders and HC.52,53

Interestingly, an MRI study exploring the corpus callo-
sum (CC) in children and adolescents with BD found a
lower circularity of the splenium of the CC in a sample of
pediatric patients with BD relative to HC, suggesting that
such white matter abnormalities may occur early in the
course of BD.54 Indeed, this lends support to the hypothe-
sis of an abnormal neurodevelopmental trajectory
in BD.55

A strength of this study was the large dataset of clini-
cally well-characterized BD patients (n = 144) investi-
gated with MRI, which enabled a large sample size for
the neurocognitive subgroups (n = 61 and n = 83). Fur-
ther, patients were in full or partial remission, which

enabled the investigation of neural correlates of cognitive
impairments without confounding mood-dependent
effects. However, there are a few limitations. Firstly, the
cross-sectional design impedes causal inferences of neu-
ronal mechanisms of cognitive impairments. We also
acknowledge that the priori selection of cognitive net-
works may lead to a bias in the presented results
since cognitive impairments could also be affected by
other networks that are not directly involved in cogni-
tion. The lack of statistical difference between the neuro-
cognitive groups (CI and CN) was another limitation
because this impedes the utility of rs-fMRI biomarkers in
treatment trials. Nevertheless, the difference between CI
and HC (with the CN exhibiting rsFC in-between the
other groups) still suggests that illness-related alterations
in rsFC are associated with cognitive impairment in
BD. Furthermore, medications may have influenced the
network connectivity differences between groups. How-
ever, the association analyses between the medication with
the observed differences within networks did not survive
correction for multiple comparisons. This suggested that
the medication could not explain the findings. A final limi-
tation was that we did not collect data on psychotic

FIGURE 2 Group differences in resting-state functional connectivity (rsFC) within the executive central network (ECN) and their

association with cognitive performance and functioning. (A) Statistical map showing a significant less negative rsFC in five cluster within

the ECN in cognitive impaired patients compared to healthy controls (p < 0.025, cluster and component corrected). (B) Correlation analysis

with 95% confidence interval of the linear fit between the within rsFC in the right planum polare and z-standardized global cognitive scores

across CI participants. B, bilateral; CN, cognitively normal; CI, cognitively impaired; HC, healthy controls; L, Left; PCC, posterior cingulate

cortex; PCu, precuneus, PP, planum polare; PT, planum temporale; R, right; rsFC, resting-state functional connectivity; STG, superior

temporal gyrus.
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symptom history, which could have influenced the
obtained findings.

The insights from this first rs-fMRI study into the
neurobiological underpinnings of cognitive impair-
ments in BD can have implications for treatment
development strategies targeting cognition and func-
tioning. Based on this evidence and the ISBD Target-
ing Cognition Task Force guidelines, we recommend
that future cognition intervention trials include rs-
fMRI to investigate treatment effects on rsFC
within DMN and ECN as potential efficacy markers,
which may support go/no-go decisions in the develop-
ment of candidate treatments targeting cognition.
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Material & Methods 

Neurocognitive assessment and processing 

Cognition was assessed with a comprehensive test battery which included: Trial Making Test Part A & 

B (TMT-A; TMT-B) (1), Rapid Visual Information Processing (RVP), and Spatial Working Memory (SWM) 

from CANTAB (Cambridge Cognition Ltd.), Rey Auditory Verbal Learning Test (RAVLT) (2), the coding 

and digit span forward subtests from the Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS) (3), Verbal Fluency (letters ‘S’ and ‘D’) (4), and the Letter-Number 

Sequencing subtest from the Wechsler Adult Intelligence Scale (WAIS-III) (5). Verbal intelligence was 

estimated using Danish Adult Reading Task (DART) (6). Participant functioning was assessed in six 

domains (autonomy, occupational functioning, cognitive functioning, financial issues, interpersonal 

relationships, and leisure time) using Functional Assessment Short Test (FAST) (7), which has proven 

useful in measuring its relationship to cognition in clinical and neuroimaging studies (8,9). Most 

participants (n = 201; 98%) underwent MRI scan and neuropsychological testing 0–3 days apart (same 

day = 85; 1 day = 50; 2 days = 34; and 3 days = 32). 

We transformed raw scores from the neuropsychological test to z-scores based on the mean 

and standard deviation from the HC group. These z-scores were then averaged and grouped into four 

cognitive domains: processing speed, sustained attention, verbal learning and memory, and working 

memory and executive functions. Finally, a global composite score was calculated by averaging the z-

scores of the four cognitive domains. We performed a hierarchical cluster analysis (HCA) to classify 

homogeneous clusters of patients based on the four cognitive domains. We used Squared Euclidean 

distance and Ward’s method as agglomeration procedures to evaluate case similarities. We visually 

inspected the dendrogram to determine the optimal number of subgroups and conducted 

discriminant function analysis (DFA) to validate the retained clusters. 

 

rs-fMRI acquisition protocol 
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Functional MRI data were acquired at Copenhagen University Hospital, Rigshospitalet, using a 3 Tesla 

Siemens Prisma scanner (Siemens Trio, Erlangen, Germany) with a 64-channel head-neck coil. We ac-

quired blood-oxygen-level-dependent (BOLD) fMRI during resting-state with a T2*-weighted gradient 

echo spiral echo-planar (EPI) sequence with an echo time (TE) of 30 ms, repetition time (TR) of 2 s, 

and flip angle of 90°. A total of 300 volumes were acquired, each consisting of 32 slices with a slice 

thickness of 3 mm with 25% gaps in-between and a field of view (FOV) of 230 × 230 mm using a 64 × 

64 grid. To register the BOLD images to the MNI standard space (see below), we also acquired T1-

weighted structural images (TR = 1900 ms; TE = 2.58 ms; flip angle = 9°; distance factor = 50%; FOV = 

230 × 230 mm; slice thickness = 0.9 mm). Furthermore, we acquired a standard B0 field map sequence 

with the same FOV and resolution as the fMRI sequence (TR = 400 ms; TE = 7.38 ms; flip angle = 60°) 

and used it for geometric distortions correction of the BOLD images. We ascertained image quality by 

visual inspection of all individual participant images. Here, we excluded 5 participants: four did not 

complete the full resting-state scan, and one lacked full-brain coverage.  

 

Results 

Correlation analysis with cognition 

The exploratory correlation analysis across all BD patients between global cognitive scores and the 

three studied resting state networks (RSNs), i.e., the default mode network (DMN), the executive 

central network (ECN), the right frontoparietal network (FPN), and left FPN revealed no significant 

regions. Additional correlation analysis testing the correlation of distinct cognitive domains revealed a 

positive association between the left frontal medial cortex and left frontal pole within the DMN and 

verbal learning and memory. In addition, the right supramarginal gyrus within the right FPN showed a 

negative association with processing speed. Finally, the left middle frontal gyrus and left frontal pole 

within the FPN showed a positive association with verbal learning and memory. However, neither of 

those associations survived correction for multiple comparisons. 
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Figure S1. Dendrogram obtained by the Hierarchical Cluster Analysis of 144 patients with bipolar 

disorder 
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Figure S2. Selected component from ICA analysis with all subjects representing the four resting state 

networks (RSN) in interest.  
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Background: In mental health, comorbidities are the norm rather than the exception.

However, current meta-analytic methods for summarizing the neural correlates of mental

disorders do not consider comorbidities, reducing them to a source of noise and bias

rather than benefitting from their valuable information.

Objectives: We describe and validate a novel neuroimaging meta-analytic approach

that focuses on comorbidities. In addition, we present the protocol for a meta-analysis

of all major mental disorders and their comorbidities.

Methods: The novel approach consists of a modification of Seed-based d

Mapping—with Permutation of Subject Images (SDM-PSI) in which the linear models

have no intercept. As in previous SDM meta-analyses, the dependent variable is the

brain anatomical difference between patients and controls in a voxel. However, there is

no primary disorder, and the independent variables are the percentages of patients with

each disorder and each pair of potentially comorbid disorders. We use simulations to

validate and provide an example of this novel approach, which correctly disentangled

the abnormalities associated with each disorder and comorbidity. We then describe a

protocol for conducting the new meta-analysis of all major mental disorders and their

comorbidities. Specifically, we will include all voxel-based morphometry (VBM) studies

of mental disorders for which a meta-analysis has already been published, including at

least 10 studies. We will use the novel approach to analyze all included studies in two

separate single linear models, one for children/adolescents and one for adults.

Discussion: The novel approach is a valid method to focus on comorbidities. The

meta-analysis will yield a comprehensive atlas of the neuroanatomy of all major mental

disorders and their comorbidities, which we hopemight help develop potential diagnostic

and therapeutic tools.

Keywords: meta-analysis, magnetic resonance imaging (MRI), seed-based d mapping (SDM), gray matter (GM),

mental disorder, comorbidity, medication

INTRODUCTION

Authors have reported potential brain anatomical abnormalities
for different mental disorders since the 1980s (1). At present,
the neuroscientific community has enough data (thousands of

studies) to create an atlas of these abnormalities, but this is
not yet a reality due to the heterogeneity in the findings across
studies investigating the same disorder. For instance, a meta-
analysis of structural brain alterations of social anxiety disorder
(SAD) found that studies presented contradictory findings,
such as increases and decreases in gray matter (GM) volume
in the hippocampus and other brain regions (2). Similarly,
whereas several meta-analyses had reported significant SAD-
related abnormalities in GM in the amygdala-hippocampal,
prefrontal, and parietal regions (3–5), an ENIGMA study only
found a significant larger GM volume in the right putamen
(6). Another example could be the case of obsessive-compulsive

disorder (OCD) neuroanatomical findings, where although the
abnormalities of the corticostriatal-thalamocortical circuits have
been consistently reported (7–9), recent evidence has been
accumulating to other regions outside these circuits with less
agreement among meta- and mega-analysis reports (7, 10, 11).
Moreover, the exact direction of increases and decreases in
GM volume in certain areas, such as the orbitofrontal cortex
(OFC), has been unclear (12). For example, some reports show
reduced GM in bilateral (13) or right (14) OFC, whereas
there are also studies reporting increased bilateral (15) or left
(16) OFC.

The found heterogeneity may be partly related to the use
of magnetic resonance imaging (MRI) devices with varying
field strengths (17) and head coils (18) or to the techniques
or software used to process the images (18, 19). In addition,
several clinical parameters might moderate the findings, such
as the age at disease onset and the duration of disease (20, 21),
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the current age (22), symptom heterogeneity (23), the gender
distribution (24), the medication status (25, 26), or clinical
stage (27). For example, in a meta-analysis of attention-deficit
hyperactivity disorder (ADHD) (28), we found that samples with
more medicated patients showed less decreased GM volume in
the right caudate.

Another relevant but little explored source of heterogeneity
may be the varying presence of comorbidities, which are the rule
in psychiatry (29). About half of people with mental disorders
have more than one comorbid mental disorder (30, 31). Some
authors claim that “there are no patients without comorbidity”
(32).Wemust acknowledge that some studies exclude individuals
with specific comorbid mental disorders. Still, this exclusion
is frequently limited to very few entities such as psychosis
and substance use disorders. Similarly, we must acknowledge
that some comorbidities are conceptually impossible, e.g., a
patient with bipolar disorder (BD) cannot be diagnosed with
comorbid major depressive disorder (MDD), but again, the list
of impossible comorbidities is limited. Therefore, most patients
included in a study of a given mental disorder might also
have other mental disorders. For example, in a meta-analysis of
neuroimaging studies in OCD, patients had comorbid depression
or anxiety disorders in 65% of the studies. The percentage of
patients with comorbid disorders reached 50% (for depression)
and 85% (for anxiety disorders) in some included studies (33).
This common presence of abnormalities from other mental
disorders might thus confound the results of case-control studies.

Relevantly, previous studies have found that some brain
abnormalities associated with different mental disorders are non-
specific. For example, in several meta-analyses, we observed
similar decreases of GM volume in the anterior cingulate/medial
frontal cortex in disorders as different as psychosis, anxiety
disorders (AD), ADHD, and autism spectrum disorders (ASD)
(33–37). Similarly, an ENIGMA study reported a high similarity
of brain structural abnormalities between MDD, BD, OCD,
and schizophrenia (38, 39). We fully acknowledge that some
of these non-specific abnormalities may be transdiagnostic,
i.e., associated with two or more mental disorders. However,
there is also the possibility that some others are related to the
confounding effects of comorbidities.

This study aims to describe and validate a novel neuroimaging
meta-analytic approach that focuses on comorbidities and
presents the protocol for a meta-analysis of all major mental
disorders and their potential comorbidities. We exemplify
this protocol for voxel-based morphometry (VBM) studies
investigating GM volume differences between patients with
mental disorders and healthy controls. However, it could be
similarly applied to any neuroimaging modality compatible
with SDM (e.g., functional MRI or diffusion tensor imaging).
Specifically, we will meta-analyze brain abnormalities from
different disorders with different comorbidities, with a single
meta-linear model (though separately for children/adolescents
and adults). This analysis will yield an MRI-based atlas that
dissects the specific brain anatomical abnormalities of each
mental disorder and comorbidity. In complementary analyses
and depending on data availability reported in the studies, we
will explore the potentially confounding or moderating effects

of age, sex, medication, age of onset, duration of illness, and
symptom severity.

METHODS AND ANALYSIS

The Novel Approach
The new approach is conceptually novel, but it involves only a
minor modification of the “seed-based d mapping-permutation
of subject images” (SDM-PSI) (www.sdmproject.com) (11, 40–
42), an already validated and widely used brain imaging meta-
analytic method (43–51). The main advantage of this method
is that it directly tests whether there are differences between
patients and controls, rather than conducting indirect tests such
as whether peaks tend to converge in some regions more than in
others (52).

It first creates maps of the lower and upper bounds of
possible effect sizes for each study based on the available
statistical information and the anisotropic covariance between
adjacent voxels (53). Second, it uses maximum likelihood
estimation techniques to impute several effect sizes maps for
each study, assuming that the effect size follows a truncated
normal distribution within the lower and upper bounds. Third,
it fits a random-effects meta-analytic linear model separately
for each voxel. Fourth, it combines the meta-analytic maps
resulting from the different imputations using Rubin’s rules.
Finally, it conducts a permutation test to yield threshold-free
cluster enhancement (TFCE)-based (54) familywise error rates
(FWER, i.e., corrected p-values).

In this paper, we will first describe the new concept, then
report the small methodological changes, and finally report a
validation of the approach using simulations.

Description
Commonly, the primary (random-effects meta-analytic) linear
model of a meta-analysis is just a (weighted) mean:

Yi = β + εi

where Yi is the effect size of the ith study, β is the meta-analytic
effect size, and εi is the residual for the i

th study. It is important to
remember that this model is conducted separately for each voxel.

In some previous meta-analyses, we attempted to control for
comorbidity via meta-regression (covariation) by the percentage
of patients with a comorbid disorder:

Yi = βA + βAB−AXi,AB + εi

where the intercept βA is the effect size for patients with only
disorder A, the coefficient βAB−A is the difference between
patients with both disorders and patients with only the disorder
A, and Xi,AB is the proportion of patients with both disorders in
the ith study.

However, these attempts had two relevant limitations. First,
βAB−A (the difference between patients with both disorder A and
disorder B and patients with only disorder A) mixed the effects
of disorder B and the effects of the comorbidity AB. Thus, we
could not know which part of βAB−A was shared by any patient
with disorder B (with or without disorder A) and which part
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of βAB−A was specific to those patients with both disorder A
and disorder B. For instance, imagine that patients with only
disorder A show decreased amygdala, patients with only disorder
B show decreased cerebellum, and patients with both disorder
A and disorder B show decreased amygdala, cerebellum, and
prefrontal cortex. The decrease in the cerebellum is shared by
any patient with disorder B, and the reduction in the prefrontal
cortex is specific to those with both disorder A and disorder B,
but βAB−A would mix both abnormalities. Second, we could only
include studies on disorder A in which a variable proportion of
patients had disorder B. Conversely, we could not include studies
on disorder B in which a variable proportion of patients had the
disorder A, with the subsequent loss in precision.

Here, we propose to use the following model to study two
disorders A and B:

Yi = βAXiA + βBXiB + βABXiAB + εi

where βA is the effect size for patients with only disorder A, XiA

is the proportion of patients with disorder A in the ith study,
βB is the effect size for patients with only disorder B, XiB is the
proportion of patients with disorder B in the ith study, βAB is the
effect size of the comorbidity AB, and XiAB is the proportion of
patients with both disorders in the ith study.

This model overcomes the limitations of the previous attempts
because it separates the effects of disorder B and the effects of
the comorbidity AB and can accept both studies on disorder
A and studies on disorder B because it treats all disorders
equally. Indeed, we can extend the model to as many disorders
and comorbidities as wished. Still, considering the complexity
of the analysis and the likely poor reporting of co-occurring
comorbidities, we will only consider pairs of comorbid mental
disorders that are possible (e.g., anxiety andMDD) and have been
studied by at least ten studies.

Validation
To validate the novel approach, we simulated 64 studies on
disorder A, 64 on disorder B, and 64 on disorder C, with
varying levels of comorbidity, and then meta-analyzed them
using the novel approach. The reason to simulate 64 studies for
each disorder is that we simulated eight levels of comorbidity
(including no comorbidity) for each of the two comorbid
disorders, e.g., for disorder A, we simulated eight levels of
comorbid disorder B X 8 levels of comorbid disorder C.

Specifically, we first simulated for each study that a varying
proportion of the patients had one of the other disorders or both.
We then created the subjects’ gray matter maps as white noise
following a standard normal distribution. Still, for each patient,
we added or subtracted 0.5 in four brain regions depending
on the disorders he/she had and the rules in Figure 1. We
thus created abnormalities with a medium effect size (Cohen’s d
around 0.5). Finally, we conducted the voxelwise t-test between
patients and controls to derive the study t-map.

To meta-analyze the studies’ t-maps with the novel SDM-PSI
approach (with default values and defining statistical significance
as TFCE permutation-based FWER < 0.05), we modeled:

Yi = βAXiA + βBXiB + βCXiC + βABXiAB + βACXiAC + βBCXiBC

FIGURE 1 | Rules for creating the gray matter maps of a simulated patient.

After creating a map using white noise, we added or subtracted 0.5 in the

colored brain regions of interest (ROI) depending on the disorders he/she had.

For example, imagine that disorder A was OCD, disorder B was
MDD, and disorder C referred to anxiety disorders. Studies on
OCD would be coded as XiA = 1, XiAB = [proportion of patients
with comorbid MDD], and XiAC = [proportion of patients with
comorbid anxiety disorders]. Studies on MDD would be coded
as XiB = 1, XiAB = [proportion of patients with comorbid
OCD], andXiBC = [proportion of patients with comorbid anxiety
disorders]. Finally, studies on anxiety disorders would be coded
as XiC = 1, XiAC = [proportion of patients with comorbid
OCD], andXiBC = [proportion of patients with comorbidMDD].
Although studies seldom report the proportion of patients with
multiple comorbidities (e.g., in studies on OCD, the proportion
of patients with both comorbid MDD and anxiety disorders), our
new approach could easily account for them if reported. Meta-
analysts should add a regressor for each reported combination of
comorbid mental disorders.

For comparison purposes, we also conducted three meta-
regressions using the previous SDM-PSI approach (again, with
default values and defining statistical significance as TFCE
permutation-based FWER < 0.05):

Yi = βA + βAB−AXiAB + βAC−AXiAC

Yi = βB + βAB−BXiAB + βBC−BXiBC

Yi = βC + βAC−CXiAC + βBC−CXiBC

Results of the Validation
The novel SDM-PSI approach detected all the simulated
abnormalities with the correct effect size and did not yield any
falsely positive findings (Table 1, left column; and Figure 2).

The previous SDM-PSI reported a list of findings very similar
to the simulated factual data (Table 1, right columns; and
Figure 3). However, the results showed the two main limitations
we had expected. First, they mixed the abnormalities of the
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TABLE 1 | Results of the novel approach validation.

Simulated

factual data

Novel SDM-PSI

approach

Previous SDM-PSI approach

Main disorder is A Main disorder is B Main disorder is C

Disorder A ROI 1, g +0.5 βA = ROI 1, g +0.5 βA = ROI 1, g +0.5

ROI 2, g +0.4

ROI 4, g +0.2

βAB−B = ROI 1, +0.5

ROI 4, +0.5

βAC−C = ROI 1, g +0.5

Comorbidity AB ROI 4, g +0.5 βAB = ROI 4, g +0.5 βAB−A = ROI 4, g +0.5

ROI 2, g +0.4

ROI 3, g +0.5

(Not studied)

Disorder B ROI 2, g +0.5

ROI 3, g +0.5

βB = ROI 2, g +0.5

ROI 3, g +0.5

βB = ROI 2, g +0.7

ROI 3, g +0.3

βBC−C = ROI 2, g +0.4

ROI 3, g +0.5

Comorbidity BC (None) βBC = (None) (Not studied) βBC−B = ROI 2, g +0.5

ROI 3, g −0.5

Disorder C ROI 2, g +0.5

ROI 3, g −0.5

βC = ROI 2, g +0.5

ROI 3, g −0.5

βAC−A = ROI 2, g +0.5

ROI 3, g −0.5

βC = ROI 2, g +0.7

ROI 3, g −0.3

Comorbidity AC (None) βAC = (None) (Not studied) (See Disorder A)

“g”, average Hedges’ g of the voxels within the cluster of statistical significance; ROI, region of interest.

FIGURE 2 | Regions showing statistically significant effects using the novel SDM-PSI approach. ROI, region of interest.

comorbid disorder and the comorbidity. For instance, in the
meta-regression using studies on disorder A, the coefficient
βAB−A mixes the anomalies simulated for disorder B and
comorbidity AB. We acknowledge that this limitation could
be potentially overcome by looking at the meta-regression
using studies on disorder B. However, this strategy would be

confusing in this example because we would still not know
whether abnormality in the region of interest (ROI) 4 is due
to disorder A or comorbidity AB. The second limitation was
a slight loss of accuracy, as shown by that some Hedges’ g are
slightly different from 0.5, and there are a few falsely positive
results.
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FIGURE 3 | Regions showing statistically significant effects using the previous SDM-PSI approach (separate results for meta-analysis of studies on disorder A,

meta-analysis of studies on disorder B, and meta-analysis of studies on disorder C). ROI, region of interest.

Therefore, while the novel SDM-PSI approach does not
invalidate the previous version, it better disentangles the specific
abnormalities of comorbid disorders.

Results were similar when we created the simulated data with
double error, thus expecting Cohen’s d around 0.25 (Table 2).
That said, one can expect poorer estimations with smaller effect
sizes or in meta-analyses with few studies. Thus, we would not
recommend the new approach when the number of studies for
each regressor is too small for the expected effect sizes.

Protocol for the -Meta-Analysis
We pre-registered this protocol to
PROSPERO (CRD42021245098).

Design
Meta-regression of case-control VBM studies of GM volume
abnormalities in all major mental disorders. The dependent
variable will be the brain anatomical differences between patients
and controls in a voxel. The independent variables will be the
percentages of patients with each mental disorder and each pair
of potentially comorbid mental disorders.

Systematic Search
With few exceptions (see below), we will include all whole-
brain VBM studies in any mental disorder listed in the mental,
behavioral, or neurodevelopmental disorders classification of
ICD-11 (International Classification of Diseases 11th Revision).
Note that we will use ICD-11 to select the major disorders to
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TABLE 2 | Results of the novel approach validation after creating the simulated data with double error.

Simulated

factual data

Novel SDM-PSI

approach

Previous SDM-PSI approach

Main disorder is A Main disorder is B Main disorder is C

Disorder A ROI 1, g +0.25 βA = ROI 1, g +0.25 βA = ROI 1, g +0.26

ROI 2, g +0.23

ROI 4, g +0.11

βAB−B = ROI 1, +0.23

ROI 4, +0.27

βAC−C = ROI 1, g

+0.25

Comorbidity AB ROI 4, g +0.25 βAB = ROI 4, g +0.25 βAB−A = ROI 4,

g +0.23

ROI 2, g +0.22

ROI 3, g +0.24

(not studied)

Disorder B ROI 2, g +0.25

ROI 3, g +0.25

βB = ROI 2, g +0.23

ROI 3, g +0.26

βB = ROI 2, g +0.35

ROI 3, g +0.15

βBC−C = ROI 2,

g +0.29

ROI 3, g +0.25

Comorbidity BC (None) βBC = (None) (Not studied) βBC−B = ROI 2, g

+0.25

ROI 3, g −0.26

Disorder C ROI 2, g +0.25

ROI 3, g −0.25

βC = ROI 2, g +0.24

ROI 3, g −0.24

βAC−A = ROI 2,

g +0.20

ROI 3, g −0.31

βC = ROI 2, g +0.37

ROI 3, g −0.15

Comorbidity AC (None) βAC = (None) (not studied) (see Disorder A)

“g”, average Hedges’ g of the voxels within the cluster of statistical significance; ROI, region of interest.

investigate. Still, as we clarify later, we will include studies using
any standard clinical assessment beyond ICD (e.g., DSM). Our
search will have two steps.

First Step: Search and Inclusion of Meta-Analyses
In the first step, we will search for the most recent SDM
meta-analysis (if any) in the PubMed and Scopus databases for
each mental disorder listed in ICD-11 classification (excluding
nicotine use disorder, substance-induced specific disorders,
neurocognitive disorders, and mental or behavioral disorders
associated with pregnancy, childbirth, or the puerperium). The
keywords will be the mental disorder (e.g., “major depression,”
“anxiety disorders,” “bipolar disorders,” etc.) AND (“meta-
analysis”) AND (“voxel-based morphometry” OR “VBM” OR
“gray matter” OR “grey matter”). We will first screen all the
results by the title/abstract and afterward by full-text reading.

The inclusion criterion will be meta-analyses of studies
that employed VBM to investigate whole-brain GM volume
differences between patients with the above disorders and healthy
controls. The exclusion criterion will be meta-analyses from
which we can include <10 studies even after adding new studies
as described in the second step. We will select the most recent
meta-analysis conducted with SDM if more than one meta-
analysis meets our inclusion/exclusion criteria. Suppose the
inclusion/exclusion criteria of ameta-analysis led to the exclusion
of studies that we would include according to our second-step
study inclusion/exclusion criteria (see next). In that case, we will
look for these potentially includable studies (e.g., a meta-analysis
may have excluded studies in children/adolescents while we
will include them). Conversely, suppose the inclusion/exclusion
criteria of a meta-analysis led to the inclusion of studies that we
would exclude according to our second-step inclusion/exclusion
criteria. In that case, we would exclude these studies (e.g., a

meta-analysis may have included studies with fewer than 10
participants per group while we will exclude them). Suppose
during our search, a new meta-analysis is published after we
have included a meta-analysis for the same mental disorder. In
that case, we will include both analyses (but we will include the
duplicated studies only once.

Second Step: Search and Inclusion of

Individual Studies
In the second step, we will search in PubMed and Scopus
databases for the studies published since the search date of
the selected meta-analysis. The keywords used in this search
will be [Title/Abstract]: (selected mental disorder) and (“VBM”
OR “morphometry” OR “voxel-based” OR “voxelwise” OR “gray
matter” OR “grey matter”). We will first screen all the results by
the title/abstract and then by full-text reading.

Inclusion criteria will be: (1) studies reporting whole-brain
regional GM volume differences between individuals with
the included mental disorders, diagnosed by standard clinical
assessments (DSM or ICD), and matched healthy controls; (2)
employing VBM to conduct the comparisons, (3) reporting the
peaks of the clusters of statistically significant voxels or null
findings, or availability of statistical parametric map; (4) using a
constant statistical threshold throughout the whole gray matter;
(5) published as peer-reviewed original articles in English in
indexed journals. Exclusion criteria will be: (1) sample size
smaller than 10 participants in either the patient or the control
group; (2) no case-control comparisons; (3) disorders’ subtypes
with a known organic origin (e.g., pediatric autoimmune
neuropsychiatric disorders associated with streptococci); (4)
coordinates of the peaks of the clusters cannot be obtained after
contacting the authors (unless maps are available, in which case
we will not need the coordinates); (5) ROI or small volume
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correction (SVC) analyses; (6) ANOVA analysis without whole-
brain t-test post hoc analyses; (7) case reports, conferences
abstracts, editorials, non-scientific letters, and research protocols;
(8) duplicated datasets (we will only include the largest sample
size); (9) studies that only analyze the correlation of GM volume
with any othermeasure or that use GMvolume features to predict
diagnosis unless they specify an additional VBM case-control
comparison in the abstract. Special cases will be: (1) longitudinal
studies: we will only include the baseline comparison; (2)
studies reporting different subgroup analyses: we will include
the combined analysis of all subgroups if available. Otherwise,
we will include them as different studies if they use different
control groups and provide demographic and clinical data for
both subgroups separately. If they share the control group, we will
divide the control sample size between the number of subgroups.

Two researchers will conduct the systematic search
independently, and we will resolve any discrepancies by
consensus with a third researcher.

Data Collection
For each study separately, we will extract the sample sizes,
demographic and clinical data, methodologic details, and the
original statistical parametric map (when available) or the
coordinates and t-values (or equivalent statistics when available)
of the peaks of the clusters of statistically significant voxels (or
null findings).

Demographic data will include age distribution (mean and
standard deviation) and percentage of males and females.

Clinical data will consist of the percentages of patients with
different mental disorders, the percentage of patients receiving
each medication group (antipsychotics, antidepressants,
anxiolytics -other than hypnotic-, mood stabilizers, and
stimulants), the severity of the primary disorder assessed by
standard measures [e.g., Hamilton Depression Rating Scale
(HDRS) (55)], the age of onset or illness duration of the primary
disorder (mean and standard deviation), and the different
subtypes for the primary disorder as reported in the included
meta-analyses (e.g., inattentive, hyperactive, or combined type
for ADHD, type I or II for BD, etc.).

Methodological details will include the pre-processing
analysis software (e.g., FSL, SPM) and their version, stereotactic
space (e.g., MNI, Talairach space, or MNI coordinates converted
to Talairach using the old Brett transform), and the statistical
significance threshold (e.g., FWER < 0.05). For studies reporting
peaks obtained using two or more whole-brain statistical
significance levels (e.g., uncorrected p < 0.001 and corrected
FWER p < 0.05), we will include all peaks obtained using the
less conservative threshold. We will also record the information
required for the quality assessment (see below).

Given the magnitude of data, we will store them in a database
and a well-organized file system with automatic daily backups.

Quality Assessment
We will use the Newcastle-Ottawa Scale (NOS) for case-control
studies to assess each study’s quality (56). The NOS assesses three
characteristics of the studies: the selection of the study groups,
the comparability of the groups, and the ascertainment of the

exposure for case-control studies. The “selection of the study
groups” evaluates the adequate definition of case and control,
as well as the representativity of the cases (e.g., selection of all
eligible cases with the outcome of interest over a defined period,
in a defined catchment area or hospital, etc.), and the controls
(community controls or hospital controls). The “comparability of
the groups” evaluates if researchers matched cases and controls
and/or adjusted for confounders (e.g., age, sex, handedness).
Here, statements of no differences between groups or non-
statistically significant differences are insufficient for establishing
comparability. Finally, we will not evaluate the “ascertainment
of the exposure for case-control studies” because both groups
underwent a structural MRI in our studies.

We will also assess how much demographic or clinical data
each independent study reports.

Imputation of Missing Comorbidity Data
Not all studies report the percentage of patients with specific
comorbid disorders. For instance, in the meta-analysis of OCD
mentioned earlier, 12% of studies had not excluded comorbid
MDD but did not report how many patients had this diagnosis.
To impute these unreported data, we will assume they aremissing
at random. In other words, the proportion of patients with
no information about comorbid MDD should follow a similar
distribution than in studies reporting this information.

The proportion of patients with a comorbid disorder likely
follows a zero-inflated distribution. For example, the percentage
of patients with MDD might follow some statistical distribution,
but this distribution probably has excess zeroes due to the studies
that excluded patients with MDD. However, as fitting zero-
inflated distributions with the small data available would be
unfeasible, we will use a more straightforward, distribution-free
approach. Specifically, the imputation will consist of assigning
to each study not reporting the proportion of patients with
comorbid MDD, the proportion from another random OCD
study. Thus, for example, we may estimate that the missing
proportion in a given study is the same as in the study by van
den Heuvel et al. (57), or the same as in the study by Pujol et al.
(58), or the same as in any other random study (including studies
that excluded MDD).

We will repeat these imputations 50 times.We want to remark
that his number is commonly considered more than adequate for
multiple imputation (Rubin recommended 3 to 10 imputations
(59). Additionally, we have checked that the histogram of the
imputed proportions of patients with MDD is similar to the
histogram of known proportions of patients withMDD after only
ten imputations and nearly identical after twenty imputations.

These imputations will be conducted separately for each
comorbid disorder. Thus, for instance, in studies with
OCD, we will impute comorbid MDD and comorbid anxiety
disorders separately.

Statistical Analyses
We will carry out the data pre-processing and the statistical
analysis with the SDM-PSI 6.21 software (https://www.
sdmproject.com/) (11, 40–42). We will conduct two independent
analyses, one for adults and one for children/adolescents.
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The pre-processing of statistical parametric maps is the
straightforward conversion into images of effect sizes. For studies
with only peak information available, the pre-processing consists
of estimating the 3D images of the lower and higher bounds of
potential effect sizes. The software will later impute the effect sizes
multiple times within these bounds.

We will include all major mental disorders in one single linear
model described earlier. Then, we will estimate the effects related
to each disorder and comorbidity by testing different contrasts
within the model. The steps will be those of standard SDM-PSI
(11, 40–42) unless otherwise specified:

1. Estimation of the 3D images of maximum likely effect sizes for
each model coefficient.

2. Multiple imputation of the study 3D images of effect size
adding spatially realistic noise to the expected effect size
according to the estimated distribution within the bounds.
Following SDM-PSI default parameters, we will conduct this
process 50 times, resulting in 50 imputed datasets covering the
imputations’ uncertainty.

3. Separately for each imputation dataset, random-effects meta-
linear model. The dependent variable will be the effect size of
the voxel. The independent variables will be the percentages
of patients with each mental disorder and the percentages
of patients with each pair of potentially comorbid disorders
(as far as they involve at least ten studies). In case that at
least studies reported the percentage of patients with more
than three or more comorbid disorders (e.g., OCD, MDD,
and anxiety), we will also include these percentages as an
independent variable in the model.

4. Using Rubin’s rules, combination of the meta-analytic 3D
images of effect size from the different imputation datasets.

To assess the statistical significance, the software converts
the 3D image of z-values into a 3D image of threshold-
free cluster enhancement (TFCE) statistics and finds the
p-value of the TFCE statistics using a Freedman-Lane-
based permutation test (60). We will consider statistically
significant those voxels with family-wise error-rate (FWER,
i.e., corrected p-values) <0.05. For comprehensive reporting,
we will also publish supplementary results using significance
thresholds of FWER < 0.01, uncorrected p < 0.001, and
uncorrected p < 0.005.

In the complementary analyses, we will add additional
independent variables to the linear model to explore potential
interactions with mean sample age and percentage of males and
control themedication’s possible confounding effects. Depending
on our final dataset, we will try to assess the effects of the age
of onset or illness duration and the severity of the primary
disorder, as reported in the original studies. Furthermore, we will
perform a subgroup analysis excluding those disorders for which
we cannot safely collect whether they are comorbidities for other
disorders (e.g., we expect that we will not have information on
comorbid personality disorders in many studies).

We will use the I2 statistic to quantify heterogeneity
and conduct meta-regression by the standard error [similar
to an Egger-test (41)] to detect potential publication bias.

Conventionally, I2 values above 50% are interpreted as an
indication of significant heterogeneity (61).

DISCUSSION

This paper first presents and validates a neuroimaging meta-
analytic approach that focuses on comorbidities in mental
disorders. Then, using simulations, we show that the newmethod
may detect all GM volume differences with the correct effect
size and without falsely positive findings. Finally, we describe the
protocol for a meta-analysis of all major mental disorders and
their comorbidities, separately for adult and pediatric groups.We
will also assess the potentially confounding effects of medication,
age of onset or illness duration and the symptom severity
of the primary disorder, and the moderator effects of sex on
GM volume.

We broadly expect some findings according to previous
literature, though a significant part of these findings might
change due to the improvements of the new approach. For
example, for chronic schizophrenia, previous meta-analyses have
detected reduced GM volume in the bilateral insula/ superior
temporal gyrus, dorsal, and rostral anterior cingulate cortex
(ACC) / medial frontal gyrus, and the thalamus (62, 63).
Similarly, for the first episode of psychosis, we expect a reduced
GM volume in the right dorsal ACC and the right posterior
insula/superior temporal gyrus (35, 62, 63). In OCD, previous
meta-analyses have detected both increased GM volumes, mainly
located in subcortical regions (e.g., bilateral putamen, left
cerebellum, and left hippocampus), and decreased GM volumes,
located primarily on prefrontal and cingulate areas (e.g., bilateral
ACC/ventromedial prefrontal cortex, bilateral inferior frontal
gyrus) (9, 33, 34). For BD and MDD, previous meta-analyses
have detected a commonly reduced GM volume in the medial
prefrontal system and ACC, regions strongly implicated in
mood regulation (64). However, smaller hippocampus and
parahippocampal gyrus volumes have been more reported in
MDD (26, 37, 65–69). For ADHD, previous meta-analyses have
reported a reduced GM volume in ventromedial orbitofrontal
cortex/ventromedial prefrontal cortex/rostral ACC, and the right
basal ganglia/anterior and posterior insula (34, 70). For ASD,
previous meta-analyses have reported reduced GM volume in
dorsal ACC/dorsomedial prefrontal cortex, left cerebellum, and
increased GM volume in the left middle superior anterior lobe
and middle frontal gyrus (33, 70). For anxiety disorders, previous
meta-analyses have reported a reduced GM volume in the right
ventral ACC and inferior frontal gyrus (71). These areas have
been primarily reported in panic disorder, together with the
prefrontal cortex (72, 73). However, some of these findings may
have been influenced by comorbidity. Thus, we need to conduct
the new meta-analysis to know which results remain, which do
not, and which had not been detected due to the confounding
effects of comorbidities.

We hope that this improved atlas of the anatomical
localization of the brain abnormalities associated with each
mental disorder will help improve our understanding of their
physio-pathological processes. In addition, we hope that this atlas
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could be the base for developing MRI-based diagnostic tools that
help earlier diagnoses and, therefore, more targeted treatments.
For instance, when complex psychotic symptoms hamper the
assessment of other symptoms needed for the diagnosis, the
“opinion” of an MRI-based diagnostic tool could provide timely
extra information to establish an affective vs. non-affective
diagnosis and thus a more focused treatment earlier. Or similarly,
in depressed individuals at risk of manic shift, the “opinion” of an
MRI-based diagnostic tool may help the clinician better evaluate
the probability of bipolar vs. unipolar disorder and thus design
a more personalized preventive strategy. Indeed, we have found
elsewhere that diagnostic labels are among the variables that best
predict the future recurrence of an episodic disorder.

Better knowledge about the disorder-specific abnormalities
could also increase the efficacy of therapies to modify specific
brain regions’ activity [e.g., deep brain stimulation or non-
invasive brain stimulations such as repetitive transcranial
magnetic stimulation (74)]. Improved knowledge about the
spatial distribution of these abnormalities may help localize the
brain targets better. Indeed, previous studies have already shown
how the efficacy of such therapies depends on the exact position
of the brain target (75).

We acknowledge that the novel approach has several
limitations. The first relates to the debatable nosology of current
mental disorders, based on clinical consensus rather than known
biological underpinnings. We know, for example, that major
psychiatric disorders share some genetic risk factors, and there
are high percentages of comorbidity and diagnostic change.
However, this does not mean that there are no disorder-specific
brain correlates. As noted above, diagnostic labels are among
the best predictors of future outcomes, highlighting their clinical
relevance. The second relates to the commonly poor reporting of
some comorbid disorders in the literature and the subthreshold
disorder-specific symptoms that we will not consider due to the
complexity of the analysis and the expected large amount of
missing data. For instance, studies may check for schizophrenia
but not for personality disorders. For this reason, we will conduct
subgroup analyses excluding the disorders under-reported as
comorbidities. A third limitation is that, as stated earlier, some
studies may not report the proportion of patients with specific
comorbidities. Thus, we will have to use multiple imputation.We
will use a simplistic imputation algorithm without considering
whether the proportion of patients with a given comorbid
disorder may depend on the age or symptom severity of the
sample.We preferred this simple algorithm because we anticipate
that we would not be able to collect the necessary data for
robustly using more complex imputation algorithms. Another
limitation is that, as in any other meta-analysis, a potential

drawback may be the heterogeneity across studies. Considering
comorbidity, age, sex, and medication, we aim to explain
the heterogeneity more than previous meta-analyses, but we
anticipate that there will still be unexplained heterogeneity. A
significant source of heterogeneity may be due to differences
in the MRI equipment (e.g., varying field strength or head
coils) and acquisition parameters (76) and the VBM processing
method employed by the different studies, such as software and
version, normalization, statistical correction, or the size of the
smoothing kernel (19). Another relevant source of heterogeneity
may be different subject-specific artifacts such as head motion
(77), body mass index (78), drops in signal-to-noise ratio due to
susceptibility artifacts, the symptom severity of the disorders, or
the different phases present in some disorders (e.g., the various
episodes in BD) (79, 80). Also, we will only study those mental
disorders for which a meta-analysis has already been published
and examined by at least ten studies. Last but not least, we
must highlight that even when, for simplicity, we talk about GM
volume abnormalities, we should more appropriately refer to
differences in T1-MRI signal, given that the acquired MRI data
are not a direct measure of brain structure (81).
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ABSTRACT

Background:

Regional gray matter volume (GMV) differences between individuals with mental disorders and comparison 

subjects may be confounded by co-occurring disorders. To disentangle the disorder-specific GMV correlates, 

we conducted a large-scale multi-disorder meta-analysis using a novel approach that explicitly models co-

occurring disorders.

Methods:

We systematically reviewed voxel-based morphometry studies indexed in PubMed and Scopus up to January 

2023 comparing adults with major mental disorders (anorexia nervosa, schizophrenia-spectrum, anxiety, 

bipolar, major depressive, obsessive-compulsive, and post-traumatic stress disorders, plus attention-

deficit/hyperactivity, autism spectrum, and borderline personality disorders) to comparison subjects. Two 

authors independently extracted data and assessed quality using the Newcastle-Ottawa Scale. We derived GMV 

correlates for each disorder using: a) a multi-disorder meta-analysis accounting for all co-occurring mental 

disorders simultaneously; b) separate standard meta-analyses for each disorder ignoring co-occurring 

disorders. We assessed the alterations’ extent, intensity (effect size), and specificity (inter-disorder correlations 

and transdiagnostic alterations) for both approaches.

Results:

We included 433 studies (499 datasets) involving 19,718 patients and 16,441 comparison subjects (51% 

females, aged 20-67 years). We provide GMV correlate maps for each disorder using both approaches. The 

novel approach, which accounted for co-occurring disorders, produced GMV correlates that were more focal 

and disorder-specific (less correlated across disorders and fewer transdiagnostic abnormalities).

Conclusions:

This work offers the most comprehensive atlas of GMV correlates across major mental disorders. Modeling 

co-occurring disorders yielded more specific correlates, supporting this approach’s validity. The atlas NIfTI 

maps are available online.
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INTRODUCTION

Hundreds of studies have reported a plethora of brain features statistically associated with mental disorders 

(1–4). And even if neuroimaging has long refrained from uncovering pathognomonic anatomical markers, 

improved knowledge of the features statistically associated with the disorders would help advance brain-

targeted research and interventions (5). However, this knowledge is still inconsistent, partly because of the 

demographic and clinical variation between studies (1,6,7) and partly because of the common but usually 

overlooked presence of co-occurring disorders. 

Arguably, the frequent co-occurrence of mental disorders is one of the most significant contributors to 

the limited knowledge about the neural underpinnings of mental disorders (5). Indeed, approximately half of 

the individuals with a mental disorder meet the diagnostic criteria for at least one other disorder simultaneously 

(8). For example, in a meta-analysis of obsessive-compulsive disorder (OCD), 75% of the studies included 

patients with co-occurring mental disorders, such as major depressive disorder (MDD, up to 40%) or anxiety 

disorders (up to 80%) (9). Numerous studies have investigated common and distinct gray matter volume 

(GMV) features associated with mental disorders, employing various methods to address the issue of co-

occurring disorders. Some meta-analyses decided to exclude these patients, including possible non-

representative patient groups, and consequently limiting the generalizability of findings at the brain level (10). 

Other studies decided to include these patients, which provides more representative patient groups but may 

lead to non-disorder-specific findings influenced by the co-occurring disorders. Although they often tried to 

assess the impact of the co-occurring disorder in the main results by secondary analysis, there are no current 

robust methods to account for it adequately

The present study aimed to establish a new methodology to account for the presence of co-occurring 

mental disorders. Furthermore, it sought to provide an updated structural magnetic resonance imaging (MRI)-

based atlas to map the common and distinct GMV alterations associated with each major mental disorder. For 

that, we systematically searched all voxel-based morphometry (VBM) studies comparing major psychiatric 

disorders and comparison subjects and conducted a novel meta-analysis of all mental disorders simultaneously, 

considering the percentage of individuals with each disorder. This methodology (11) differs from prior multi-

disorder meta-analyses, which often carried out a separate meta-analysis for each disorder. Nevertheless, 

Goodking et al. (2018) (2) made a significant contribution by identifying a common neurobiological substrate 

of GMV alterations across several mental disorders, which remained significant after excluding studies with 

patients having co-occurring disorders. Finally, we conducted additional analyses to capture the magnitude and 

uniqueness of the GMV alterations associated with each mental disorder. We hypothesized that different 

disorders would show shared and specific alterations.

METHODS AND MATERIALS

We conducted this meta-analysis as per PRISMA guidelines (12,13) (see Supplement) and pre-registered and 

published the protocol (PROSPERO: CRD42021245098 and (11)). The present study focuses on non-
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substance-related psychiatric disorders in adults. Two researchers independently conducted the systematic 

search, data extraction, and quality assessment (LF, MO, MDP, VO, AF, SM, YWY, and LDF) and resolved 

discrepancies with a third researcher (JR).

Systematic literature search and data extraction

Our systematic search strategy had two stages: identifying meta-analyses of case-control whole-brain VBM 

studies for each psychiatric disorder listed in the ICD-11 (14) and enriching our samples with additional 

eligible studies. We conducted both searches in PubMed and Scopus up to 31st December 2021 (see keywords 

and full search queries in the Supplement). We screened all results by title/abstract, followed by full-text 

review. We excluded substance use disorders because they add complexity to the model, as different substances 

have some common and distinct effects on the brain (15). Further studies should use this methodology to model 

and focus on the common and distinct effects of substances. Note that for schizophrenia, we also included 

other psychotic-related disorders (e.g., schizoaffective disorder). Further information about both stages of the 

search process, inclusion and exclusion criteria, and data extraction is presented in the Supplement.

Novel meta-analysis considering co-occurring disorders

To investigate the regional differences in GMV between each mental disorder and comparison subjects, we 

employed SDM-PSI version 6.23 (www.sdmproject.com) (16,17), recently adapted to enable investigation into 

all co-occurring mental disorders simultaneously (11). Briefly, the meta-analysis employed a linear model 

without an intercept, where the dependent variable was the brain anatomical difference between patients and 

comparison subjects in a voxel, and the independent variables were the percentages of patients diagnosed with 

each included disorder (whether as a primary or co-occurring disorder). For example, consider a study 

involving patients with MDD, of whom 30% also had an anxiety disorder and 10% had OCD. In this case, the 

meta-analysis would explain the brain anatomical differences between patients and comparison subjects by the 

effects of MDD, plus 30% of the effects of anxiety disorders, plus 10% of the effects of OCD. This modeling 

differs from previous works where all brain anatomical differences between patients and comparison subjects 

would exclusively be attributed to MDD. To perform the novel meta-analytical analyses, we excluded those 

studies that lacked complete information about co-occurring mental disorders. Details of the methods 

employed by SMD-PSI and the used SDM code are presented in the Supplement.

This linear model allowed us to derive the GMV correlates of each disorder and conduct an ANOVA 

(followed by post hoc t-tests) to detect differences across pairs of disorders. To prevent significant results with 

very small effect sizes (standardized mean difference, Hedges’ g<|0.2|), we set a z threshold based on the mean 

of z-values corresponding to a g=0.2, ensuring that z≥3.09 (p<0.001). We used Gaussian Random Fields to 

correct for multiple testing; we report findings at FWER<0.05. In the Supplement, we list findings at more 

lenient threshold (uncorrected p<0.005). Finally, we independently evaluated potential publication bias for 

each significant meta-analytic peak and calculated the percentage of variability that reflected the residual 

heterogeneity across studies (the I2 statistic). 
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We also explored a linear model that accounts for interactions between disorders (Supplement).

Separate standard meta-analyses ignoring co-occurring disorders

To compare the novel approach with the commonly used method, we conducted separate meta-analyses for 

each primary mental disorder using the standard SDM-PSI methodology without considering co-occurring 

mental disorders.

Extent, intensity, and specificity of the GMV differences

We assessed the observed GMV alterations’ extent, intensity (effect size), and specificity (inter-disorder 

correlations and transdiagnostic alterations) for both the novel meta-analysis that considers co-occurring 

disorders vs. the standard one that ignores them. From this analysis, we excluded ADHD and ASD due to their 

classification as neurodevelopmental disorders and BPD because it is a personality disorder. Detailed 

information is presented in the Supplement.

Data availability

We provide the meta-analytic images at https://neurovault.org/collections/17834/ under the CC-BY license to 

allow other groups to use our anatomical atlas. We also provided the meta-analytical maps obtained with the 

separate standard meta-analyses for each mental disorder without accounting for co-occurring disorders. SDM 

software can be downloaded at https://www.sdmproject.com/, and the new function to correlate brain images 

is freely available as the “nifti.pbcor” R package. 

RESULTS

The literature search yielded a total of 499 datasets investigating 19,718 individuals with mental disorders and 

16,441 comparison subjects (See Table 1 for demographics and Table S2-6 for co-occurring disorders). The 

included mental disorders were anorexia nervosa, anxiety, bipolar disorder (BD), MDD, OCD, post-traumatic 

stress disorder (PTSD), and schizophrenic disorders, plus attention-deficit/hyperactivity disorder (ADHD), 

autism spectrum disorder (ASD), borderline personality disorder (BPD), internet gaming disorder. After 

excluding studies that lacked complete information about co-occurring disorders, we had 290 datasets (11,395 

patients and 8,826 comparison subjects). For internet gaming disorder, only nine studies reported full 

information about co-occurring disorders, so we discarded it from the main analysis. We describe the 

systematic search results in the Supplement.

Results from the novel and standard meta-analyses

For anorexia, both meta-analyses found smaller GMV in the temporal lobe, precuneus, supplementary motor 

area, and middle cingulate, while the standard analysis also in the anterior cingulate (ACC) and cerebellum. 

For anxiety disorders, both identified smaller GMV in the temporal and occipital lobes; the novel analysis 

found smaller GMV in the thalamus and right striatum and larger GMV in the right cerebellum, while the 

standard analysis found smaller GMV in the middle cingulate and insula. For BD, both revealed smaller GMV 
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in the prefrontal cortex (PFC), orbitofrontal cortex, temporal lobes, insulas, cerebellum, and striatum. For 

MDD, both identified smaller GMV in the PFC, ACC, middle cingulate, bilateral insula, and cerebellum, and 

the novel analysis also in the thalamus, hippocampus and left striatum. For OCD, both found smaller GMV in 

the parietal lobe and larger GMV in the right cerebellum; the novel analysis found smaller GMV in the 

orbitofrontal cortex, and the standard analysis in the ACC and superior temporal gyrus. For PTSD, both 

identified smaller GMV in the left lingual gyrus, and the standard approach also in the superior frontal gyrus. 

For schizophrenia, both identified widespread smaller GMV across cortical and subcortical regions. Detailed 

information can be found in the Supplement (Table 2 and Fig. 2-3), including uncorrected results (Table S7) 

and standard meta-analyses (Table S8, Fig. S1).

In the ANOVA to detect GMV differences across disorders, we identified 14 cortical clusters (Table 

S9). Significant results from the post-hoc pairwise t-tests are presented in Table S10. Briefly, anorexia showed 

distinctly smaller GMV in the precuneus compared to other mental disorders. PTSD exhibited larger GMV 

compared to most other disorders in regions where, in the primary analyses, they showed reduced GMV 

relative to controls, while PTSD did not. Finally, OCD showed smaller GMV in the right inferior parietal gyrus 

compared to anxiety disorders and PTSD.

Results from the novel meta-analysis accounting for interactions are presented in the Supplement

(Tables S12-13).

Extent, intensity, and specificity of the GMV differences

As shown in Fig. 4, schizophrenic disorders exhibited the highest percentage of voxels (20%), showing GMV 

differences with comparison subjects with a Hedges’ g>0.2, followed by BD (12%), anorexia (8%), anxiety 

disorders (5%), and PTSD (4%). Anorexia exhibited the highest intensity of GMV differences (g=0.94), 

followed by PTSD (g=0.83). MDD and OCD showed differences in 3% of voxels with milder intensity 

(g<0.34). In the standard meta-analysis, we observed a higher percentage of voxels showing GMV differences 

in all the disorders except BD, while a similar intensity (or occasionally smaller, e.g., anorexia: g=0.69 vs. 

0.94; BD: g=0.35 vs. 0.46).

The correlation analysis (Fig. 4) showed similarities in GMV differences between schizophrenic 

disorders and those from BD, MDD, OCD, and anxiety disorders (r=[0.39-0.56]), moderate similarities 

between BD and those from MDD, anxiety disorders, and OCD (r=[0.27-0.40]), and weakly similarities 

between MDD and anorexia (r=0.25). The standard meta-analysis revealed more significant correlations 

between all mental disorders. 

In the transdiagnostic analysis, several clusters showed smaller GMV (g≥0.2) in at least three 

disorders, including the PFC, orbitofrontal cortex, ACC, middle cingulate, and temporal gyrus, including the 

insulas (Table 3, Fig. S2). This transdiagnostic map significantly correlated with alterations associated with 

schizophrenic disorders (r=0.99), BD (r=0.95), anxiety (r=0.65), MDD (r=0.52), anorexia (r=0.43), OCD 
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(r=0.38) and PTSD (r=0.65). The standard analysis showed more transdiagnostic regions, including the 

precuneus, fusiform gyrus, and parietal lobe (Table S11, Fig. S3). 

Findings from the standard meta-analysis were similar when we repeated the analysis using only 

studies with complete information on co-occurring disorders (Table S12).

DISCUSSION

This work provides a comprehensive GMV neuroanatomical atlas of major mental disorders, accounting for 

co-occurring disorders. Here, we report the main GMV alterations associated with anorexia, anxiety disorders, 

BD, MDD, OCD, PTSD, and schizophrenic disorders (Table 2-S8, Fig. 2-S1), with further details provided in 

the Supplement. Alterations associated with ADHD, ASD, and BPD are reported in the Supplement. We discuss 

the results for each disorder below, including the extent and intensity of the alterations. We also discuss 

separately their specificity, based on the correlations between disorders and the extent of transdiagnostic 

alterations. Finally, we comment on the strengths and limitations of this work.

Importantly, GMV alterations derived from this novel meta-analysis were more focal (fewer voxels 

included) and disorder-specific (less correlated and shared among disorders) than when we conducted separate 

standard meta-analyses per each disorder (i.e., ignoring co-occurring disorders), even when we included the 

same studies. The presence of more focal and disorder-specific alterations supports the increased validity of 

the novel approach. Or, seen from the opposite side, the maps from the standard meta-analyses would mix 

alterations from different co-occurring disorders, resulting in more extensive alterations over-correlated across 

disorders with inflated transdiagnostic alterations.

Results from the novel and standard meta-analyses

Anorexia nervosa

Findings from both meta-analyses aligned with previous work (18–20), except for smaller GMV in ACC and 

cerebellum that was found in previous work and our standard meta-analyses, but not in our novel approach,

likely to our adjustment for co-occurring disorders. Indeed, these regions have been associated with MDD, 

which is commonly co-occurring in anorexia (Table 2). Interestingly, smaller GMV in the precuneus was 

unique to anorexia. However, this finding should be interpreted cautiously due to significant study 

heterogeneity, which may be linked to individual variability in anorexia, particularly in weight recovery, 

warranting further investigation.

Anxiety disorders

Findings from both meta-analyses partially matched previous studies (1,21,22). A main difference is that 

previous research often reported larger GMV in the parietal and occipital lobes (21,22), primarily associated

with SAD (23), whereas our analysis included all anxiety disorders. Another discrepancy was smaller GMV in 

the middle cingulate and insula, reported by the standard approach (1). In the interaction meta-analysis, we 

found smaller GMV in these regions for individuals with anxiety but without MDD or OCD, suggesting that 
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the neural correlates of anxiety disorders may vary based on the presence of co-occurring mental disorders.

Notably, individuals with anxiety and MDD/OCD showed an effect size of g=0.3 in these regions, though not 

statistically significant, likely due to the small sample size. 

Bipolar disorders

Findings from both meta-analyses are consistent with previous studies (6,23,24), supporting smaller GMV in 

the dorsal/ventral PFC and ACC as a common substrate of mood disorders (24). 

Major depressive disorder 

Findings from both meta-analyses aligned with previous studies (1,26), further supporting evidence for 

biomarkers in mood disorders (24). The novel meta-analysis also identified differences in several subcortical 

regions, contrasting with the standard approach and prior research, which often reported subcortical alterations 

only in the hippocampus (1,24,25). This discrepancy may arise from including patients with co-occurring 

disorders, usually excluded, as MDD has been found to cluster in distinct biotypes with different neural 

correlates (26). As a result, previous studies may have overlooked biotypes less likely to co-occur with other 

psychiatric disorders. Interestingly, controlling for the interaction with co-occurring anxiety disorders, these 

subcortical regions were no longer significant, suggesting that the neural correlates of MDD may vary 

depending on the presence of co-occurring mental disorders. Finally, the effect sizes of the GMV alterations 

were generally small (g<0.25), which may be attributed to the fact that MDD is primarily driven by brain 

functional irregularities rather than structural ones (3,27). 

Obsessive-compulsive disorder

Findings from both meta-analyses partially aligned with previous studies (31–33), although the novel approach 

did not identify smaller GMV in the temporal gyrus, as reported in previous research and the standard analysis. 

This discrepancy may be due to the presence of co-occurring disorders (23% had MDD, and 17% anxiety 

disorders). Indeed, abnormalities in the temporal lobes have often been associated with these mental disorders 

(1,24) and are supported by our present findings. Interestingly, smaller GMV in the parietal gyrus was 

statistically different between OCD and other anxiety-related disorders (anxiety and PTSD). 

Post-traumatic stress disorder

The main finding of the novel meta-analysis, supported by the standard approach, was consistent with previous 

studies (1,30). However, previous meta-analyses also reported alterations in regions from the frontolimbic 

circuit, such as the PFC and hippocampus (31,32), essential for threat processing and emotion regulation (33). 

We observed smaller GMV in the dorsal PFC in both meta-analyses (uncorrected p<0.005) but no significant 

differences in the hippocampus, possibly due to previous studies specifically targeting that region. 

Schizophrenic disorders
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Findings from both meta-analyses align with previous research and established models for schizophrenic 

disorders, as discussed in previous meta-analyses and ENIGMA findings (34,35). Interestingly, the findings 

also included the GMV decreases found to estimate relapse risk after a first episode of psychosis (right middle 

temporal, right inferior frontal/precentral, right middle frontal, bilateral rectus, and right Angular) (36).

Specificity of the GMV differences – correlations across disorders

Schizophrenic disorders showed the highest percentage of voxels with GMV alterations, affecting multiple 

brain networks. Additionally, the spatial pattern of GMV alterations of schizophrenic disorders was correlated 

with those of BD, MDD, OCD, and anxiety. These findings are consistent with those reported by the ENIGMA 

(4), which identified strong correlations among mood disorders, schizophrenic disorders, and OCD, involving 

regions like the insula, hippocampus, and fusiform gyrus, explaining 42% and 89% of the variance. Supporting 

these ENIGMA findings, the abnormality pattern of BD also correlated with MDD, OCD, and anxiety. The 

GMV abnormality pattern of MDD also correlated with anorexia, possibly due to the common depressive 

symptoms in these patients, without reaching the threshold of MDD. Surprisingly, the GMV abnormality 

pattern of PTSD did not correlate with any other mental disorder, showing significant differences with other 

mental disorders. 

These findings contrast with those from the standard meta-analyses, where almost all mental disorders 

significantly correlated with each other. This discrepancy may rely on the high prevalence of co-occurring 

disorders not accounted for in the standard meta-analysis. For instance, in the standard analysis, the GMV 

abnormality pattern of MDD significantly correlated with those from anxiety (r=0.60) and OCD (r=0.47). 

Therefore, the observed similarities are likely due to the common co-occurrence of these disorders, where 28% 

of the individuals with anxiety and 23% of the individuals with OCD presented co-occurring MDD. This 

finding supports the need to adjust for co-occurring mental disorders when investigating specific brain 

alterations associated with each mental disorder. It also suggests that our method successfully mitigated this 

potential confounding effect.

Specificity of the GMV differences – extent of transdiagnostic alterations

Our study identified smaller GMV in the dorsal PFC, orbitofrontal cortex, dorsal ACC, middle cingulate, and 

insula across psychotic, mood, and anxiety disorders. This finding supports previous hypotheses of common 

neurobiological substrates across mental disorders (2–4), specifically the dorsal ACC and insula, highlighting 

that they are not due to the presence of co-occurring disorders. Previous studies have also reported smaller 

GMV in the PFC associated with mood disorders (24) and in the middle cingulate linked to mood, anxiety, and 

trauma-related disorders (1). 

These regions are crucial for emotion regulation, social behavior, and cognitive and executive 

functions (39,40), commonly impaired across mental disorders. Therefore, these GMV alterations could be 

associated with cognitive impairments rather than diagnosis-specific symptoms (2,39). Although evidence 
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suggests that those common substrates are associated with the disorders rather than a risk state, we cannot rule 

out that our findings could stem from early life trauma. Notably, evidence showed that early life trauma is 

associated with an increased risk of developing specific disorders in adulthood, such as mood or psychotic 

disorders (40). Additionally, childhood maltreatment is associated with smaller GMV in several brain regions, 

including the ACC, even though they did not develop any mental disorder (41). Another potential explanation 

could be the shared genetic pattern across disorders. For instance, a study investigating the genetic architecture 

of 11 mental disorders (42) identified four factors explaining the genetic structure for (i) compulsive behaviors 

(anorexia, OCD), (ii) psychotic features (schizophrenic disorders, BD), (iii) neurodevelopmental disorders 

(ADHD, ASD), and (iv) internalizing disorders (anxiety, MDD). This genetic clustering partially differs from 

our neuroanatomical patterns (e.g., there are no overlapping structures between anorexia and OCD). 

Additionally, there is converging evidence of a shared genetic pattern across mood and psychotic disorders 

(MDD, BD, and schizophrenic disorders) (43). Our findings suggest that genetics and neuroanatomy can 

provide different and complementary information about the neurobiological underpinnings of mental 

disorders. 

Strengths of this work

Despite multiple efforts to investigate disorder-specific and transdiagnostic structural alterations in mental 

disorders (1–4), prior studies often exclude patients with co-occurring disorders or investigate their potential 

effect via meta-regressions. Our work presents the first large-scale meta-analysis considering all mental 

disorders simultaneously in a single linear model, effectively accounting for co-occurring disorders and 

providing a more accurate disorder-specific spatial pattern of GMV alterations. We also investigated the 

similarities of GMV alterations across disorders, supporting findings by Opel (4). Finally, we presented new 

and complementary evidence regarding ACC and insula being a transdiagnostic biomarker, as suggested by 

Godking (2).

There are several applications of the current work. Firstly, we provide a new meta-analytical 

methodology, overcoming the previous limitation of not fully accounting for co-occurring mental disorders 

when investigating disorder-specific brain alterations. This methodology can be extended to other MRI 

modalities, including functional MRI and diffusion tension imaging, contributing to a deeper comprehension 

of the psycho-pathological processes underlying mental disorders. Additionally, the provided atlas of GMV 

alterations offers an improved localization of alterations in mental disorders, which may also enhance the 

efficacy of therapies targeting specific brain regions to improve symptom severity, such as deep brain 

stimulation or non-invasive brain stimulations (44).

Finally, the atlas could benefit future machine learning research, particularly in improving the 

diagnoses of mental disorders. We fully acknowledge the low accuracy of MRI-based machine learning tools 

(45,46), which is expected considering that the diagnostic labels are a pragmatic but conventional 

classification. For this reason, we should not think about diagnostic prediction but risk estimation, 
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acknowledging the uncertainty of the estimates. Similarly, we must remind here some rules for properly using 

machine learning in mental health research, such as pre-registering the analysis, starting with simpler 

algorithms, avoiding data leakage, considering implementation issues, or mitigating racial and gender biases 

(47). Taking all these considerations into account, we believe that this atlas may help create models that 

estimate the risk of different mental disorders, offering the clinician additional information that might help 

enhance diagnostic accuracy and, thus, a more focused treatment earlier. 

Limitations

The current study has several limitations. Firstly, the included studies' cross-sectional nature impedes the 

causality inference; thus, findings must be interpreted as statistical associations. Additionally, there is a 

limitation concerning the debatable nosology of current mental disorders based on clinical consensus rather 

than known biological underpinnings (48). Further, the proportion of co-occurring disorders in our study did 

not reflect those in the general population (Table S6). However, our focus was not on the comorbidity patterns 

in the general population but on disentangling the specific neuroanatomy of co-occurring mental disorders. We 

also must consider limitations inherent to meta-analysis, such as results being based on summarized data (e.g., 

peak and effect sizes) rather than raw data (49). Similarly, we did not examine the effects of potential clinical 

and methodological moderators such as symptom severity, body mass index, or software used. We decided not 

to analyze the effects of these covariates to avoid adding complexity to the current paper and invite future 

studies to investigate them. Another limitation is that we only included those mental disorders for which a 

meta-analysis has already been published and examined by at least ten studies. Finally, we must highlight that 

even when, for simplicity, we talk about GMV differences, we should more appropriately refer to differences 

in T1-MRI signal, given that the acquired MRI data are not a direct measure of brain structure (50).

Conclusion

In summary, we present the first large-scale atlas of specific and transdiagnostic GMV alterations statistically 

associated with major psychiatric conditions, considering the confounding effect of co-occurring disorders. 

This innovative meta-analysis, which involved 19,718 patients and 16,441 comparison subjects, represents a 

significant contribution to our understanding of the shared and distinct neural substrates underlying mental 

disorders. This work adds to admirable initiatives, such as the Health’s Brain Research Through Advanced 

Innovative Neurotechnology (BRAIN) (51), ENIGMA consortium (4) or Psychiatric Genetics Consortium 

(42), that enhance our knowledge of the physiopathology of mental disorders, paving the way for future 

diagnostic aid tools and precision-based interventions directed to specific brain targets. To allow other groups 

to use our anatomical atlas, we have uploaded the images at https://neurovault.org/collections/17834/ under 

the CC-BY license.
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Figure 1. Flowchart of the systematic literature searches for all mental disorders included.

Footnote: VBM: voxel-based morphometry

Figure 2. Atlas of gray matter volume alterations in mental disorders – maps of the main findings at family-

wise error rate (FWER)<0.05 and k≥100 for anxiety disorder, anorexia nervosa, attention-deficit hyperactivity 

disorder, autism spectrum disorders, and bipolar disorder.

Region names indicated the location of the maximum peak of the significant clusters. Regions with larger 
GMV are displayed in yellow/red. Regions with smaller GMV are displayed in green/blue. The right side of 
the brain image represents the right hemisphere. The displayed slices correspond to z=-25, -15, 0, 15 30, 45. 
ADHD: attention-deficit hyperactivity disorder, ASD: autism spectrum disorders, B: bilateral, BD: bipolar 
disorder, IFG: inferior frontal gyrus, L: left, MFG: middle frontal gyrus, MOG: middle occipital gyrus, MTG: 
middle temporal gyrus, PHG: parahippocampal gyrus, R: right, SFG: superior frontal gyrus, SMA: 
supplementary motor area, SMA: supramarginal gyrus, SOG: superior occipital gyrus, STG: superior temporal 
gyrus, STR: striatum, THAL: thalamus.

Figure 3. Atlas of gray matter volume alterations in mental disorders – maps of the main findings at family-

wise error rate (FWER)<0.05 and k≥100 for borderline personality disorder, major depressive disorder, 

obsessive-compulsive disorder, post-traumatic stress disorder, and schizophrenia-spectrum disorders.

Region names indicated the location of the maximum peak of the significant clusters. Regions with larger 
GMV are displayed in yellow/red. Regions with smaller GMV are displayed in green/blue. The right side of 
the brain image represents the right hemisphere. The displayed slices correspond to z=-25, -15, 0, 15 30, 45. 
B: bilateral, BPD: borderline personality disorder, IPG: inferior parietal gyrus, ITG: inferior temporal gyrus, 
L: left, MDD: major depressive disorder, MTG: middle temporal gyrus, OCD: obsessive-compulsive disorder, 
PTSD: post-traumatic stress disorder, R: right, SCH Dis.: schizophrenic disorders, STG: superior temporal 
gyrus.

Figure 4. Extent of gray matter volume differences between disorders and similarity of the differences across 

disorders

Footnote: GMV: gray matter volume, g: Hedges' g, ADHD: attention-deficit/hyperactive disorder, ASD: autism 
spectrum disorder, BD: bipolar disorder; BPD: borderline personality disorder, GMV: gray matter volume, 
IGD: internet gaming disorder, MDD: major depressive disorder, OCD: obsessive-compulsive disorder, PTSD: 
post-traumatic stress disorder, SCH Dis: schizophrenic disorders.
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Table 1. Demographic and clinical characteristics of the included participants.

Mental Disorder N
Females 

(%)
Age 

Mean
Age 
SD

Duration 
of illness 

mean 
(years)

Duration 
of illness 

SD 
(years)

Co-occurring 
disorders (%) Medication (%)

Anorexia
nervosa

484 91.9% 28.05 8.3 7.80 8 14% anxiety
10% MDD 
8% OCD 
2% PTSD

Total: 25.5% 
21% AntiD 
5% AP

Anxiety
disorders

1844 59.3% 32.87 11.1 8.40 9 1% ADHD
20% MDD 

Total: 24% 
21.5% AntiD
10% AA

ADHD 788 42.5% 32.04 12.4 - - 2% anorexia
12% anxiety

1% BD
2% BPD

14% MDD

Total: 29% 
29% STM

ASD 493 11.8% 29.69 8.7 - - 3% anxiety
3% ADHD 
7% MDD 
1% SSD 

Total: 15% 
11% AntiD
6% AA
5% AP

BD 3350 56.1% 36.82 12.9 12.07 10 4% anxiety
1% ADHD 

Total: 86% 
19% AntiD 
12% AA
45% AP
65% MS

BPD 414 83.5% 30.89 8.9 - - 7% anorexia
20% anxiety
38% MDD
3% OCD

21% PTSD

Total: 35% 
21% AntiD 
8% AA
17% AP
15% MS 

Internet gaming 
disorder

312 5.8% 22.61 2.6 - - 0% 0%

MDD 6897 61.7% 35.82 13.1 7.58 10 6% anxiety Total: 49% 
42% AntiD
5% AA
6% AP

OCD 1204 49% 32.26 9.8 10.11 9 13% anxiety
15% MDD

Total: 61% 
56%AntiD
5% AP

PTSD 464 53.7% 34.51 11.7 7.3 8 3% anxiety
22% MDD

Total: 21% 
20% AntiD

Schizophrenic 
disorders

5465 36.2% 33.12 11.2 9.37 10 0% Total: 80% 
80% AP

AA: anxiolytics, AntiD: antidepressants, ADHD: attention-deficit hyperactivity disorder, AP: antipsychotic, ASD: autism 
spectrum disorder, BD: bipolar disorder; BPD: borderline personality disorder, MDD: major depressive disorder, MS: 
mood stabilizer, OCD: obsessive-compulsive disorder, PTSD: post-traumatic stress disorder, SD: standard deviation, 
STM: stimulants.
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Table 2. Atlas of gray matter volume alterations in mental disorders – location and statistics of the main 

differences with healthy controls. Significance was set at family wise error rate (FWER)<0.05.

Peak Clusters

MNI Hedges'g
(95% CI) Z-value I2

p-bias
N voxels
(P-value) Breakdown

Anorexia Nervosa (Z > |3.09|)
Anorexia < Comparison subjects

L supplementary 
motor area

-2,-10,60 -0.94
(-1.17, -0.71)

7.96 42%
p=0.17

2639
(<0.001)

B SMA (1303)
B MCC (685)
B paracentral lobule (225)

R precuneus 6,-70,40 -0.94
(-1.16, -0.70)

7.95 52%
p=0.99

990
(<0.001)

B precuneus (680)
B cuneus cortex (103)

L middle 
temporal gyrus

-46,-2,-24 -0.67
(-0.89, -0.46)

6.09 13%
p=0.97

872
(<0.001)

R MTG (281)

R middle 
temporal gyrus

58,-18,-16 -0.67
(-0.88, -0.45)

6.10 15%
p=0.96

387
(0.012)

R middle/ITG (270)

Anxiety Disorders (Z > |3.09|)
Anxiety < Comparison subjects

R superior 
temporal gyrus

54,-22,12 -0.36
(-0.49, -0.24)

5.56 10%
p=0.78

1924
(<0.001)

R STG (818)
R RO (535)
R heschl gyrus (148)

L supramarginal 
gyrus

-54,-42,24 -0.39
(-0.51, -0.27)

6.47 4%
p=0.43

1312
(<0.001)

L STG (462)
L SMG (415)

R striatum 22,14,-4 -0.38
(-0.51, -0.25)

5.83 24%
p=0.09

420
(0.004)

R putamen (99)
R stritatum (88)

R thalamus 18,-26,12 -0.45
(-0.57, -0.33)

7.47 8%
p=0.55

282
(0.021)

R thalamus (154)

L middle 
occipital gyrus

-22,-90,20 -0.37
(-0.51, -0.24)

5.40 0%
p=0.17

271
(0.026)

L superior/MOG (136)

Anxiety > CS
R cerebellum 10,-74,-16 0.31 

(0.18, 0.44)
4.57 2%

p=0.83
262

(0.029)
R cerebellum (218)

Attention deficit/hyperactive disorder (Z > |3.09|)
ADHD < Comparison subjects

R supramarginal 
gyrus

54,-42,28 -0.33
(-0.48, -0.18)

4.40 12%
p=0.40

333
(<0.001)

R SMG (221)

Autism spectrum disorder (Z > |3.09|)
ASD < Comparison subjects

R cerebellum 18,-66,-16 -0.47
(-0.65, -0.28)

4.98 60%
p=0.15

389
(0.014)

R cerebellum (335)

B calcarine 
fissure*

6,-74,12 -0.49
(-0.68, -0.30)

5.05 39%
p=0.74

396
(0.015)

B calcarine fissure (221)

Bipolar Disorder (Z > |3.97|
BD < Comparison subjects
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L superior 
frontal gyrus, 
medial

2,34,36 -0.33
(-0.43, -0.23)

9.70 6%
p=0.64

15652 B SFG, dorsal (5193)
R MTG (2727)
B MFG (1349)
R IFG (1336)
B ACC (919)
R insula (838)
R ITG (536)
B MCC (526)
B SMA (227)
R amygdala (101)

L middle 
temporal gyrus

-46,-70,8 -0.27
(-0.36, -0.18)

7.41 1%
p=0.86

3920 L postcentral gyrus (1012)
L IPG (779)
B SMG (483)
L MTG (385)
L angular gyrus (329)
L precentral gyrus (283)
L STG (253)
L MOG (171)

R 
parahippocampa
l gyrus

18,-34,-12 -0.41
(-0.50, -0.33)

7.27 2%
p=0.82

1603 R cerebellum (675)
R fusiform gyrus (231)
R PHG (180)

L superior 
temporal gyrus

-34,6,-24 -0.31
(-0.40, -0.23)

6.89 2%
p=0.96

1457 L STG (359)
L ITG (271)
L insula (151)
L MTG (147)

L fusiform gyrus -26,-54,-16 -0.32
(-0.41, -0.23)

7.12 1%
p=0.57

1474 L cerebellum (700)
L fusiform gyrus (299)
L lingual gyrus (176)

L gyrus rectus -10,34,-28 -0.32
(-0.41, -0.23)

7.23 4%
p=0.55

1219 B gyrus rectus (499)
B SFG, orbital (306)

R caudate 2,10,8 -0.32
(-0.41, -0.24)

8.70 4%
p=0.26

701 R caudate (124)

R cerebellum 6,-62,-28 -0.32
(-0.41, -0.23)

6.27 33%
p=0.96

523 R cerebellum (379)

R middle 
occipital gyrus

38,-86,8 -0.38
(-0.47, -0.30)

7.30 35%
p=0.06

445 R MOG (397)

R angular gyrus 42,-66,48 -0.29
(-0.38, -0.20)

6.48 3%
p=0.20

475 R angular gyrus (286)
R IPG (173)

L calcarine 
fissure

-10,-74,12 -0.32
(-0.40, -0.23)

5.91 1%
p=0.44

291 B calcarine fissure (123)

BD > Comparison subjects

L precuneus -10,-46,64 0.30 
(0.20, .39)

6.26 15%
p=0.69

864 B paracentral lobe (356)
L precuneus (307)

R superior 
frontal gyrus

22,26,48 0.30
(0.22, .39)

7.17 2%
p=0.63

561 R MFG (362)
R SFG (146)

L superior 
occipital gyrus

-10,-94,8 0.28
(0.18, .37)

5.95 0%
p=0.56

336 L superior occipital gyrus (117)

Borderline Personality Disorder (Z > |3.09|)
BPD vs. Comparison subjects

No significant results
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Major depressive disorder (Z > |4.65|)
MDD < Comparison subjects

R cerebellum 6,-38,-12 -0.25
(-0.32, -0.19)

7.49 17%
p=0.65

23891 B cerebellum (2800)
B MCC (1816)
R IFG (1815)
B MFG (1811)
B MTG (1419)
B SMA (13549
B SFG, dorsal (1282)
B ACC (1231)
B precuneus (1204)
R precentral gyrus (1158)
B fusiform gyrus (910)
B ITG (758)
R postcentral gyrus (653)
R STG (628)
B lingual gyrus (540)
R insula (503)
B cuneus cortex (280)
L calcarine fissure (213)
R hippocampus (146)

L inferior 
temporal gyrus

-46,-14,-36 -0.22
(-0.28, -0.16)

7.11 2%
p=0.34

7160 L insula (928)
L STG (824)
L IFG (489)
B striatum (445)
L ITG (360)
L MFG (248)
L fusiform gyrus (245)
L putamen (237)
L RO (181)
L MTG (175)
L PHG (169)
L caudate (120)

L angular -46,-66,36 -0.23
(-0.29, -0.16)

6.96 0%
p=0.51

1222 L angular (638)
L IPG (249)
L superior parietal gyrus (147)

B gyrus rectus 2,58,-20 -0.23 
(-0.30, -0.17)

6.99 3%
p=0.72

795 B gyrus rectus (352)
L SFG, orbital (214)

L inferior 
parietal gyrus

-42,-26,44 -0.18
(-0.25, -0.11)

5.15 1%
p=0.95

566 L postcentral gyrus (390)
L IPG (61)

Obsesive-compulsive disorder (Z > |3.09|)
OCD < Comparison subjects

R angular gyrus 54,-50,36 -0.33
(-0.45, -0.22)

5.70 2%
p=0.84

723
(<0.001)

R angular gyrus (347)
R IPG (206)
R SMG (141)

B gyrus rectus 2,30,-28 -0.31
(-0.43, -0.20)

5.26 19%
p=0.89

299
(0.024)

B gyrus rectus (153)

OCD > Comparison subjects

R cerebellum 10,-34,-16 0.34 
(0.22, 0.45)

5.69 25%
p=0.78

1186
(<0.001)

R cerebellum (403)
R fusiform gyrus (167)
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Posttraumatic stress disorder (Z > |3.09|)
PTSD < Comparison subjects

L lingual gyrus -10,-66,-4 -0.83
(-1.08, -0.57)

6.41 7%
p=0.66

859
(<0.001)

L lingual gyrus (334)
L fusiform gyrus (185)
L cerebellum (144)

Schizophrenic disorders (Z > |6.12|)
Schizophrenic disorders < CS

L superior 
temporal gyrus

-58,-10,0 -0.48 
(-0.57, -0.40)

10.80 4%
p=0.88

30642
(<0.001)

B SFG (4623)
B MCC (2513)
L STG (1926)
B ACC (1782)
L IFG (1745)
L insula (1496)
B MFG (1187)
L MTG (1051)
B gyrus rectus (764)
L RO (653)
B SMA (498)
L putamen (260)
L PHG (239)
L precentral gyrus (228)
L postcentral gyrus (218)
L heschl gyrus (184)
L precuneus (149)
L fusiform gyrus (145)
L amygdala (131)
L striatum (117)

R postcentral 
gyrus

62,-10,16 -0.46
(-0.55, -0.36)

9.47 22%
p=0.72

10958
(<0.001)

R STG (2160)
R IFG (1336)
R insula (1016)
R RO (981)
R MTG (833)
R precentral gyrus (743)
R postcentral gyrus (713)
R SMG (618)
R heschl gyrus (185)

L middle 
temporal gyrus

-42,-66,20 -0.29 
(-0.38, -0.20)

6.52 3%
p=0.55

1864
(<0.001)

L MTG (497)
L IPG (398)
L angular gyrus (358)
L ITG (325)

R middle 
occipital gyrus

46,-74,16 -0.23
(-0.32, -0.14)

4.99 5%
p=0.74

1040
(0.006)

R MTG (597)
R MOG (220)
R angular gyrus (131)

R hippocampus 26,-18,-16 -0.25
(-0.34, -0.16)

5.30 0%
p=0.78

816
(0.015)

R cerebellum (375)
R fusiform gyrus (133)
R hippocampus (111)

L lingual gyrus -26,-46,-8 -0.23 
(0-.32, -0.14)

5.09 0%
p=0.93

601
(0.037)

L cerebellum (116)
L lingual gyrus (110)
L fusiform gyrus (105)

ADHD: attention-deficit hyperactivity disorder, ASD: autism spectrum disorders, BD: bipolar disorder, BPD: borderline 
personality disorder, MDD: major depressive disorder, OCD: obsessive-compulsive disorder, PTSD: post-traumatic stress 
disorder; ACC: anterior cingulate cortex, IFG: inferior frontal gyrus, IPG: nferior parietal gyrus, ITG: inferior temporal 
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gyrus, MCC: middle cingulate cortex, MFG: middle frontal gyrus, MOG, middle occipital gyrus, MTG, middle temporal 
gyrus, PHG: parahippocampal gyrus, RO: rolandic operculum, SFG: superior frontal gyrus, SMA: supplementary motor 
area, SMG: supramarginal gyrus, STG: superior temporal gyrus.
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Table 3. Transdiagnostic abnormalities: regions showing a smaller gray matter volume in at least three 

disorders compared to healthy controls.

Peak Cluster

MNI Hedges'g N voxel Breakdown Mental disorders 

R heschl gyrus 54,-6,4 -0.43 2118 R superior temporal gyrus (772)
R rolandic operculum (424)
R middle temporal gyrus (316)
R heschl gyrus (95)
R insula (83)

Anxiety disorder, BD,
MDD,
schizophrenic disorders

L supplementary 
motor area

2,18,52 -0.35 1362 B superior frontal gyrus medial 
(468)
B anterior cingulate cortex (630)
B middle cingulate cortex (123)
B supplementary motor area (94)

BD, MDD, OCD, PTSD, 
schizophrenic disorders

L insula -34,-2,-24 -0.38 456 L superior temporal gyrus (184)
L insula (68)

Anorexia nervosa, BD,
MDD, schizophrenic 
disorders

L gyrus rectus 2,34,-24 -0.33 467 B gyrus rectus (262)
B superior frontal gyrus, orbital 
(148)

BD, OCD, schizophrenic 
disorders

R inferior frontal 
gyrus

50,18,4 -0.41 316 R inferior frontal gyrus (225)
R insula (90)

BD, MDD, schizophrenic 
disorders

BD: bipolar disorder, MDD: major depressive disorder, OCD: obsessive-compulsive disorder, PTSD: post-traumatic 
stress disorder.
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Studies included in
previous version of
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Duplicate records removed

Records identified from*:
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Scopus (n = 2002) (n = 1668)

Records screened (n = 2533) Records excluded** (n = 2250)

Reports not retrieved (n = 0)Reports sought for retrieval
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No t-test (n=78)
No whole-brain (n=43)
No adult sample (n=33)
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No imaging data (n = 11)
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Duplicated dataset (n=5)New studies included in review
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Supplementary information 

1. Supplementary Methods 
2. Supplementary Results 
3. Supplementary Discussion 
4. Figure S1. Brain regions showing larger and smaller gray matter volume in mental disorders 

compared to comparison subjects obtained by a separate meta-analysis using the standard 
methods. Statistical significance is set at FWE < 0.05. 

5. Figure S2. Brain regions showing a low gray matter volume in at least three disorders 
compared to comparison subjects, using the meta-analytic maps from the novel meta-analysis 
considering co-occurring disorder. 

6. Figure S3. Brain regions showing a low gray matter volume in at least three disorders 
compared to comparison subjects, using the meta-analytic maps from the standard meta-
analysis ignoring co-occurring disorders 

7. Table S8. Brain regions showing larger and smaller gray matter volume in mental disorders 
compared to comparison subjects obtained by a separate meta-analysis using the standard 
methods. Statistical significance is set at FWE < 0.05. 

8. Table S14. Brain regions showing larger and smaller gray matter volume in mental disorders 
compared to comparison subjects using an interaction meta-analysis with two overlapping 
disorders. Statistical significance is set at FWE < 0.05. 

 

Note: The complete supplementary material from this article can be download from: 
https://www.biologicalpsychiatryjournal.com/cms/10.1016/j.biopsych.2024.10.020/attachment/a7305190-
7894-403e-8bcc-f7dc4f67e175/mmc1.pdf 
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SUPPLEMENTARY METHODS 

Systematic literature search 

First, we systematically searched for meta-analyses of VBM studies comparing whole-brain regional GMV 

differences in individuals with each psychiatric disorder listed in the ICD-11 (1), and comparison subjects. 

Second, we enriched our samples by including studies that were not included in these meta-analyses (i.e., 

studies excluded from the original meta-analysis that had different eligibility criteria from ours or studies 

disseminated after the publication of those meta-analyses). Therefore, we finally included all eligible studies, 

regardless of whether they were included in the meta-analysis. Following our strategy, we searched for new 

case-control VBM studies of GMV features associated with mental disorders published between the meta-

analysis’ search date (start or end date depending on their criteria) and 31st January 2023. 

First stage – systematic search of SDM meta-analyses  

In the search of the most recent SDMN meta-analysis of each psychiatric disorder listed in the ICD-11 

classification of mental, behavioral, or neurodevelopmental disorders, we used the following keywords: 

(psychiatric disorder) AND (“meta-analysis”) AND (“voxel-based morphometry” OR “VBM” OR “gray 

matter” OR “grey matter”) (see below full search queries). From this classification, we excluded substance use 

disorders, neurocognitive disorders, and disorders associated with pregnancy, childbirth, or the puerperium. 

For each mental disorder, we included the most recent SDM meta-analyses of VBM studies that investigated 

whole-brain regional GMV differences between individuals with the disorder and HCs. This search aimed to 

reduce the amount of work and thus optimize the efficiency of the data search/collection. This search was 

limited to SDM meta-analyses because, in contrast to other approaches, they extracted the effect size of the 

peaks and included studies reporting no differences between patients and controls. 

Second stage – multisource search for individual case-control studies 

Afterward, we collected all VBM studies investigating whole-brain regional GMV differences between 

individuals diagnosed with one of the selected psychiatric disorders and HCs. We retrieved them from several 

sources: 

First, we assessed whether the studies included in the selected SDM meta-analyses adhere to our inclusion 

criteria. Subsequently, in cases where a given meta-analysis employed different inclusion/exclusion criteria 

than ours (e.g., excluding studies investigating individuals diagnosed with more than one disorder, which 

would be eligible according to our criteria), we extended our following search of individual studies. To achieve 

this, we adjusted the initial search date to match the start date employed in the meta-analysis. Second, we 

searched in PubMed and Scopus databases to find new case-control structural VBM studies of GMV features 

associated with mental disorders published between the meta-analysis’ search date (start or end date depending 

on their criteria) and 31st January 2023 using keywords of the mental disorder and VBM/GMV (see full search 

queries in the Supplement). 

Inclusion and exclusion criteria 
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Across the two stages, we included those studies that: i) reported whole-brain regional GMV comparison 

between individuals diagnosed with the included disorders by standard criteria (e.g., DSM-IV/V or ICD-10/11) 

and comparison subjects; ii) employed VBM, iii) age≥18 years old, iv) sample size≥10 individuals per group, 

v) available statistical parametric map, reported peaks coordinates of the significant clusters or null findings; 

vi) covered the whole gray matter and not white matter; vii) using a constant statistical threshold throughout 

the whole gray matter; viii) published as peer-reviewed original articles in English in indexed journals. 

Studies were excluded if: i) the subtypes’ disorder came from a known organic origin (e.g., pediatric 

autoimmune neuropsychiatric disorders associated with streptococci); ii) diagnosis made by self-reported rated 

scales; iii) small volume correction; iv) ANOVA analysis without whole-brain post hoc pairwise comparison. 

Special inclusion criteria are presented in the Supplement. Notably, we discarded mental disorders with fewer 

than ten eligible datasets to limit our analysis to extensively studied mental disorders only. 

In case of overlap, we only included the study analyzing the larger sample (i.e., measurements were 

taken from distinct samples). Similarly, we only included baseline data from longitudinal studies. Studies 

investigating posttraumatic stress disorder (PTSD) may use two types of comparison groups: traumatized HCs 

and non-traumatized HCs; we preferred the former because it investigates alterations associated with the 

diagnosis rather than with the trauma but used the latter if the study did not include traumatized HCs. We 

acknowledge that this decision implied that the HC from PTSD studies were all traumatized while only a part 

of the HC from other studies was traumatized (i.e., as in the general population). However, our analyses only 

aimed to find the alterations associated with the disorders for which the potential lack of transitivity should 

have a minor impact. Note that some studies reported more than one patient dataset per eligible study (e.g., 

medicated, and non-medicated individuals with major depressive disorder (MDD)); in this case, we included 

the different patients’ datasets but divided the sample size of the comparison controls by the number of datasets. 

Data extraction 

For each dataset separately, we saved the original statistical parametric map when available or extracted and 

coded the peak coordinates, and effect sizes (standardized mean difference, Cohen’s d) or the absence of 

significant findings. If the studies had used multiple whole-brain statistical significance levels (e.g., 

uncorrected p-value<0.001 and corrected familywise error rate (FWER)<0.05), we selected the least stringent 

threshold (2). Additionally, we collected: sample sizes, demographic information (age distribution, percentage 

of male and female participants), clinical information (percentages of individuals with different co-occurring 

mental disorders, medication usage breakdown, and severity of the primary disorder with standard scales), 

methodological details needed for the meta-analysis (pre-processing analysis software, stereotactic space). 

And the selection of study groups and group comparability required by the quality assessment of the 

Newcastle-Ottawa Scale (3). 

Novel meta-analysis considering co-occurring disorders 

SDM-PSI meta-analysis 
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Once we had the required data for the SDM-PSI analysis (2,4), we recreated the effect size map of each dataset 

separately for each of the 50 imputations. Then, we fitted voxel-based random-effects meta-linear models, 

where the voxel's effect size, measured by Hedges’ g, serves as the dependent variable and the percentage of 

individuals with each mental disorder as the independent variable. Finally, we combined the results from the 

50 imputations using Rubin’s rules (5), in line with previous descriptions and validations of these methods 

(4,6,7). 

Finally, we explored the potential interaction of co-occurring mental disorders using the novel meta-

analytic method. We focused on every pair of disorders that appear together in at least ten studies, with one of 

them as the primary disorder of the study. For each pair of co-occurring mental disorders (e.g., anxiety and 

MDD), we performed a meta-analysis using the following regressors: i) individuals with anxiety but not MDD, 

ii) individuals with MDD but not anxiety, and iii) individuals with both anxiety and MDD.  

Extent, intensity, and specificity of the GMV differences  

To further explore the observed GMV anomalies, we first quantified the extent, intensity of the GMV 

alterations associated with each disorder by computing the percentage of gray matter voxels with Hedges’ 

g>0.2 (extent) and finding the maximum Hedges’ g (intensity). Second, we assessed the specificity of these 

alterations by correlating the unthresholded Hedges’ g between each pair of disorders across brain voxels (4) 

and by evaluating the extent of transdiagnostic alterations. To quantify correlations, we used Pearson’s 

coefficients (r), where r close to 1 indicated similar patterns of GMV alterations, whereas r close to 0 indicated 

different patterns We developed R package (“nifti.pbcor”) to estimate correlations across disorders by 

parcellating the brain using k-means 50 times and selecting the median correlation from the various 

parcellations. To assess transdiagnostic alterations, we selected those voxels in which at least three disorders 

showed smaller or larger GMV, with a Hedges’ g≥0.2.  

 

SUPPLEMENTARY RESULTS 

Description of the sample 

The search of most recent SDM meta-analyses and individual studies of mental disorders listed in the ICD-11 

classification yielded an inclusion of 11 mental disorders in our meta-analysis: anorexia, anxiety (including 

SAD, GAD, PD, agoraphobia and specific phobia), attention-deficit/hyperactivity disorder (ADHD), BD, 

borderline personality disorder (BPD), internet gaming disorders, MDD, obsessive-compulsive disorder 

(OCD), PTSD, and schizophrenic from 7 meta-analytic publications (8–15). The search of new individual 

VBM studies not included in these meta-analyses retrieved a total of 2481 studies potentially suitable (Fig. 1), 

from which 105 met all eligibility criteria. We counted 29 (6%) statistical parametric maps (1 for anxiety 

disorders, 9 for BD, 1 for BPD, 14 for MDD, and 3 for OCD). Flowcharts of study selections specific to each 

mental disorder and the demographic and clinic characteristics of every included study are available in the 

Supplementary Material (Table S14 and Fig. S4-S14). According to the NOS scale (3), the methodological 
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quality of the included investigations was good (scored 7-9) in 206 studies (47%), fair (scored 4-6) in 220 

(51%), and poor (scored <4) in 8 studies (2%). 

Results from the novel and standard meta-analyses 

Anorexia nervosa  

Of the 19,286 patients, 464 were reported to have anorexia (92% females; age m±SD=28±8.3, range=20-36.3). 

In studies investigating anorexia as the primary disorder and providing full information about co-occurring 

disorders, 11% (n=30) of the patients (n=261) had co-occurring anxiety disorders, 10% (n=26) had MDD and 

6% (n=16) had OCD. The mean age of onset was 18.5 (SD=7.7) years, and the mean illness duration was 7.8 

(SD=8) years. The mean body mass index (BMI) was 17.2 (SD=2.4). Of these patients, 380 (79%) were acute, 

whereas only 104 (21%) were weight recovered. Of these patients, 21% were taking antidepressants, 5% 

antipsychotics, and 2% anxiolytics.  

 The main results (Table 2, Fig. 2-3) showed that individuals with anorexia presented smaller GMV 

than CS in the bilateral supplementary motor area (g=-0.94), extending to the middle cingulate cortex, 

precuneus (g=-0.94), left and right middle temporal gyrus (g=-0.67). There was no evidence for publication 

bias (all p > 0.17), but we found high heterogeneity in the right precuneus cortex (I2 = 52%).  

 In the standard meta-analysis (Table S8, Fig. S12), similarly to the main analysis, individuals with 

anorexia showed smaller GMV compared to comparison subjects in the bilateral precuneus (g = -0.66), 

extending to the ACC and middle cingulate, right middle temporal gyrus (g = -0.50), extending to the insula 

and amygdala. In contrast with the main results, we also found smaller GMV in the bilateral cerebellum (g = 

[-0.58, -0.56]) and left inferior temporal gyrus including the amygdala (g= -0,53). 

Anxiety disorders  

Of the 19,286 patients, 1548 were reported to have one or more anxiety diagnoses (59% females; age 

mean±SD=32.9±11.1, range=21.8-47.0). In studies investigating anxiety as the primary disorder and providing 

full information about co-occurring disorders, 28% (n=227) of the patients (n=800) had co-occurring MDD. 

The mean age of onset was 21.4 (SD=11) years, and the mean illness duration was 8.4 (SD=9.2) years. The 

mean score of the Hamilton Anxiety Rating Scale (HAM-A) (34) was 14.43. Of 1085 patients with available 

information, 306 were diagnosed with GAD (28.2%), 348 with PD (32.1 %), 420 with SAD (38.7%), 140 with 

specific phobia (12.9 %; the reported types were snake and dental phobia), and 57 with agoraphobia (5.3%). 

Of these patients, 21.5% were taking antidepressants and 10% anxiolytics. 

The main results (Table 2, Fig. 2-3) showed that individuals with anxiety presented smaller GMV than 

comparison subjects in the bilateral superior temporal gyrus, (g= [-0.36, -0.39]), right striatum (g=-0.38), right 

thalamus (g=-0.45), and left middle occipital gyrus (g=-0.37). In addition, individuals with anxiety presented 

larger GMV in the right cerebellum (g=0.31). None of these findings showed relevant heterogeneity between 

studies (all I2<247) or publication bias (all p>0.09).  
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In the standard meta-analysis (Table S8, Fig. S12), similarly to the main analysis, individuals with 

anxiety disorders showed smaller GMV compared to comparison subjects in the bilateral rolandic operculum 

(g=-0.46), extending to the insula, left thalamus (g=-0.45), and left middle occipital gyrus (g=-0.37). However, 

they also presented smaller GMV in the bilateral superior frontal gyrus (g=0.38) including the ACC and middle 

cingulate, and right precentral gyrus (g=-0.30)- 

Attention-deficit/hyperactivity disorder  

Of the 19,286 patients, 734 were reported to have ADHD (42% females; age mean±SD=32±12.4, range=20-

66.9). In studies investigating ADHD as the primary disorder and providing full information about co-

occurring disorders, 20% (n=85) of the patients (n=432) had co-occurring MDD, and 17% (n=72) had anxiety 

disorders. There was no information about the age of onset. Of 329 patients with available information, 80 

were diagnosed as inattentive (24.3%), nine as hyperactivity (3%), and 240 as combined type (72.9%). Of 

these patients, 29% were taking stimulants. 

In the main analysis (Table 2, Figure 2), individuals with ADHD showed smaller GMV in the right 

supramarginal gyrus compared to comparison subjects. This cluster did not show relevant heterogeneity 

between studies (I2=12%) or publication bias (p=0.4) 

In contrast, in the standard meta-analysis (Table S8, Fig. S12), we observed no significant differences 

between individuals with ADHD and comparison subjects.  

Autism spectrum disorder  

Of the 19,286 patients, 502 were reported to be diagnosed with ASD (12% females; age mean±SD=29.7±8.7, 

range=21.9-38). In studies investigating ASD as the primary disorder and providing full information about co-

occurring disorders, 8% (n=25) of the patients (n=326) had co-occurring MDD. There was no information 

about the age of onset. Of 502 patients, 11% were taking antidepressants, 6% anxiolytics, and 5% 

antipsychotics.  

The main results (Table 2, Fig. 2-3) showed that individuals with ASD presented smaller GMV than 

comparison subjects in the right cerebellum (g=-0.47), and bilateral calcarine fissure cortex (g=-0.49). The 

cluster in the bilateral calcarine fissure showed a relevant heterogeneity between studies in the meta-analyses 

with studies (I2>60%), but none of them showed publication bias (p > 0.15).  

Contrary to the main results, we observed no significant differences between individuals with ASD 

and comparison subjects in the standard meta-analysis. 

Bipolar disorder  

Of the 19,286 patients, 3369 were reported to have BD (56% females; age mean±SD=36.8±12.9, range=19.9-

61.9). In studies investigating BD as the primary disorder and providing full information about co-occurring 

disorders, 5% (n=84) of the patients (n=1747) had co-occurring anxiety disorders. The mean age of onset was 

23.9 (SD=9.5) years, and the mean illness duration was 12.1 (SD=10) years. The mean score of the Hamilton 
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Depression Rating Scale – 17 items (HARDS-17) (35) was 10.8, and the mean score of the Young Mania 

Rating Scale (YMRS) (32) was 7. Of 2990 patients with available information, 2644 were diagnosed with type 

I (79.4%) and 346 with type II (10.4 %). In addition, 1230 patients were in remission (36.9%), 532 in a mania 

episode (15.9%), and 885 in a depressed episode (26.5%) at the time of the MRI acquisition. Of these patients, 

85.5% were under medication and taking mood stabilizers (65%), antipsychotics (45%), antidepressants 

(19%), and anxiolytics (12%).  

The main results (Table 2, Figure 2) showed that individuals with BD showed smaller GMV than 

comparison subjects in the several clusters across cortical regions, the right caudate (g=-0.32) and right 

cerebellum (g=-0.32). The cortical regions included the bilateral superior frontal gyrus dorsomedial (g=-0.33), 

extending to the ACC, middle cingulate and insula, left middle and superior temporal gyrus (g= [-0.27,-0.31]), 

right parahippocampal gyrus (g=-0.41), left fusiform gyurs (g=-0.32), extending to the left cerebellum, 

bilateral gyrus rectus (g=-0.32), right middle occipital gyrus (g=-0.38), right angula gyrus (g=-0.29) and left 

calcarine fissure (g=-0.32). Additionally, they showed larger GMV in other cortical regions such as the left 

precuneus (g=0.30), right superior frontal gyrus (g=0.30), and left superior occipital gyrus (g=0.28). None of 

these findings showed relevant heterogeneity between studies (all I2<35%) or publication bias (all p>0.06).  

In the standard meta-analysis (Table S8, Fig. S12), similarly to the main analysis, individuals with BD 

showed smaller GMV in several cortical regions, including the bilateral superior frontal gyrus (g=[-0.22, -

0.26]), extending to the ACC, middle cingulate and right insula, left postcentral gyrus (g=-0.22), right cuneus 

cortex (g=-0.22), gyrus rectus (g=-0.20), left insula, bilateral fusiform gyrus (g=[-0.17,-0.27]), thalamus (g=-

0.30), lingual gyrus (g=-0.26), left superior occipital gyrus (g=-0.24) and left inferior temporal gyrus (g=-

0.22). Please note that some cluster present a very small effect size (g<0.2). 

Borderline personality disorder  

Of the 19,286 patients, 382 were reported to have BPD (84% females; age mean±SD=30.9±8.9, range=22.9-

36). In studies investigating BPD as the primary disorder and providing full information about co-occurring 

disorders, 45% (n=133) of the patients (n=293) had co-occurring MDD, 26% (n=72) had PTSD and 23% 

(n=66) had anxiety disorders. There was no information about the age of onset or illness duration. Of these 

patients, 35% were taking medication, antidepressants (21%), anxiolytics (8%), antipsychotics (17%), and 

mood stabilizers (15%). 

 In the main results (Table 2, Fig. 2-3), we did not observe significant differences in individuals with 

BPD when compared to comparison subjects. However, we found larger GMV in the right superior temporal 

gyrus when using a less stringent threshold (p < 0.005). 

In contrast, the standard meta-analysis (Table S8, Fig. S12) showed that individuals with BPD 

presented smaller GMV in the left superior frontal gyrus orbital (g=-0.45), bilateral inferior frontal gyrus 

orbital (g=-0.44) and left middle temporal gyrus (g=-0.43). 

Internet gaming disorder  
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Of the 19,286 patients, 312 were reported to have internet gaming disorder (6% females; age 

mean±SD=22.6±3.9, range=19.1-29.5). The mean illness duration was 6.2 (SD=4) years. There was no 

information about the age of onset. No patients were taking psychotropic medication. We excluded this 

disorder from the main analysis, as the number of studies reporting full information about co-occurring 

disorder was less than 10. 

In the standard meta-analysis with all studies, we observed that individuals with internet gaming 

disorder presented lower GMV than comparison subjects in the bilateral gyrus rectus (g=-0.55), extending to 

the rostral ACC.  

Major depressive disorder 

Of the 19,286 patients, 6624 were reported to have MDD (62% females; age mean±SD=35.8±13.1, 

range=20.5-61.6). In studies investigating MDD as the primary disorder and providing full information about 

co-occurring disorders, 10% (n=314) of the patients (n=3195) had co-occurring anxiety disorders. The mean 

age of onset was 27.3 (SD=13.6) years, and the mean illness duration was 7.6 (SD=10) years. The mean score 

of HARDS-17 was 21.3. Of the 4115 patients with available information, 3898 were depressed (63.1%), and 

217 were in remission (3.5%) at the time of the MRI acquisition. Of these patients, 41.6% were taking 

antidepressants, 6.4% antipsychotics, and 4.8% anxiolytics.  

 The main results (Table 2, Figure 2) showed that individuals with MDD showed smaller GMV than 

ssomparison subjects in a big cluster with the highest peak in the right cerebellum (g=-0.25), but extending to 

the bilateral superior frontal gyrus dorsal, ACC, middle cingulate, right insula, among others, in the left inferior 

temporal gyrus (g=-0.22), extending to the insula, left angular (g=-0.23), bilateral gyrus rectus (g=-0.23), and 

left inferior parietal gyrus (g=-0.18). None of these findings showed relevant heterogeneity between studies 

(all I2<17%) or publication bias (all p>0.34).  

 In the standard meta-analysis (Table S8, Fig. S12), similarly to the main analysis, individuals with 

MDD showed smaller GMV in the bilateral superior temporal gyrus extending to the insula, left ACC, bilateral 

gyrus rectus, left superior frontal gyrus orbital, bilateral cerebellum, and left middle frontal gyrus. In contrast, 

they also showed smaller GMV in the left cuneus cortex, left fusiform gyrus, and left caudate. 

Obsessive-compulsive disorder  

Of the 19,286 patients, 961 were reported to have OCD (49% females; age mean±SD=32.2±9.8, range=25-

38). In studies investigating BPD as the primary disorder and providing full information about co-occurring 

disorders, 23% (n=146) of the patients (n=745) had co-occurring MDD and 17% (n=110) anxiety disorders. 

The mean age of onset was 20.1 (SD=8.3), and the mean illness duration was 10.1 (SD=9) years. The mean 

score of the total Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) (37) was 25.1. The obsessive composite 

was 12.7, and the compulsive composite was 12.1. Of these patients, 56.4% were taking antidepressants, 4% 

anxiolytics, and 7% antipsychotics.  
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The main results (Table 2, Fig. 2-3) showed that individuals with OCD presented smaller GMV 

compared to somparison subjects in the right angular gyrus (g=-0.33), and bilateral gyrus rectus (g=-0.31). 

Additionally, they presented larger GMV in the right cerebellum (g=0.34). None of these findings showed 

relevant heterogeneity between studies (all I2<25%) or publication bias (all p>0.78). 

 In the standard meta-analysis (Table S8, Fig. S12), similarly to the main analysis, individuals with 

OCD showed smaller GMV right angular gyrus (g= -0.29) and larger GMV in the right cerebellum (g=0.26) 

compared to comparison subjects. In contrast, they also showed smaller GMV in the bilateral superior frontal 

gyrus including ACC (g=-0.32), and superior temporal gyrus (g= [-0.26, -0.30]). 

Post-traumatic stress disorder  

Of the 19,286 patients, 423 were reported to have PTSD (54% females; age mean±SD=34.5±11.7, range=26.3-

52.8). In studies investigating BPD as the primary disorder and providing full information about co-occurring 

disorders, 26% (n=53) of the patients (n=202) had co-occurring MDD. The mean illness duration was 7.3 

(SD=8) years. There was no information about the age of onset. Of these patients, 21% were taking 

antidepressants.  

 The main results (Table 2, Figure 2) showed that individuals with PTSD presented smaller GMV than 

comparison subjects in the left lingual gyrus (g=-0.83), extending to the fusiform gyrus and cerebellum. This 

cluster showed no relevant heterogeneity between studies (I2= 7%), nor publication bias (p = 0.66).  

In the standard meta-analysis (Table S8, Fig. S12), similarly to the main analysis, individuals with 

PTSD showed smaller GMV in left fusiform gyrus (g=-0.57). In contrast, they also showed smaller GMV in 

the bilateral superior frontal gyrus (g=-0.66), left postcentral gyrus (g=-0.63), and right insula (g=-0.53). 

Schizophrenic disorders 

Of the 19,286 patients, 5377 were reported to have schizophrenic disorders (36% females; age 

m±SD=33.1±11.2, range=19.9-59.9). In studies investigating BPD as the primary disorder and providing full 

information about co-occurring disorders, none of the patients (n=2140) had other co-occurring disorder. The 

mean age of onset was 24.5 (SD=7.8) years, and the mean illness duration was 9.4 (SD=10) years. The total 

mean score of the Positive and Negative Syndrome Scale (PANSS) (48) was 74.4, positive symptoms scores 

were 18.3, negative symptoms scores were 19.5, and global symptoms scores were 38.1. Of these patients, 

80% were taking antipsychotics.  

The main average results (Table 2, Fig. 2-3) showed that individuals with schizophrenic disorders 

presented smaller GMV than comparison subjects in several clusters covering most of the cortical and 

subcortical regions. The highest peaks were located in the left superior temporal gyrus (g = -0.48), right 

postcentral gyrus (g=-0.46), left middle temporal gyrus (g=-0.29), left middle temporal gyrus (g=-0.23), right 

middle occipital gyrus (g=-0.25), right hippocampus (g=-0.25) and left lingual gyrus (g=-0.32). None of the 

cluster showed heterogeneity between studies (I2 < 22%) nor publication bias (p > 0.55).  
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In the standard meta-analysis (Table S8, Fig. S12), similarly to the main analysis, we also observed 

several significant clusters covering most of the cortical and subcortical regions. The highest peaks were 

located in the right superior temporal gyrus (g=-0.42), left Heschl gyrus (g=-0.50), right fusiform gyrus (g=-

0.27), and left superior frontal gyrus (g=-0.22). 

Results from the novel meta-analysis accounting for the interaction between disorders 

In this secondary analysis, we further studied the interaction between overlapping mental disorders, 

specifically between anxiety and MDD, anxiety and OCD, MDD and OCD, and MDD and BPD (Table S13). 

Results are presented in the Supplement and Table S14. Interestingly, in the case of anxiety and MDD, we 

observed that individuals with anxiety but not MDD, among others, showed a part of the main results, also 

exhibited smaller GMV in the bilateral middle cingulate cortex, bilateral superior temporal gyrus, extending 

to the right insula, and left superior frontal gyrus dorsolateral in addition to the main findings. Individuals with 

MDD but not anxiety also displayed exhibited less significant clusters compared to the main analysis.  

Extent, intensity, and specificity of the GMV differences in the standard meta-analysis but only including 

the studies with complete information on co-occurring disorders 

Using the standard meta-analysis but only including the studies with complete information on co-occurring 

disorders, we observed that the percentages of voxels showing GMV differences was similar to those of the 

standard meta-analyses with all studies and larger than those of the novel meta-analyses, with three exceptions: 

A) For schizophrenic disorders, the percentage (21%) was similar to that of the novel meta-analysis, which 

may be expected because studies on schizophrenia reported nearly no co-occurring disorders and thus the 

extent would only depend on the statistical power (larger in the standard meta-analysis of all studies); B) For 

BD, the percentage (11%) was similar to those of both the standard meta-analysis of all studies and the novel 

meta-analysis, but note that we had already found that that the extent of this disorder anomalies was similar 

between the standard meta-analysis of all studies and the novel meta-analysis; and C) For anorexia, the 

percentage (15%) was smaller than in the standard meta-analysis of all studies but still larger than in the novel 

meta-analysis. Intensities were similar to the standard meta-analysis of all studies and the novel meta-analysis. 

In the correlation analysis, the spatial patterns of GMV differences in mental disorders significantly correlated 

with each other as in the standard meta-analysis of all studies, except for anorexia with OCD and PTSD. 

Finally, in the transdiagnostic analysis, we observed significant clusters similar to those of the standard meta-

analysis of all studies except for the precuneus. 

 

SUPPLEMENTARY DISCUSSION 

Results from the novel and standard meta-analyses 

Anorexia nervosa 
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The precuneus is a core region from the default mode network (DMN), which is involve in cognitive 

performance and self-directed processing (16). A GMV abnormality in this area could alter the function of the 

DMN related to ruminative preoccupation with eating, body weight and impaired cognitive flexibility (17). 

Indeed, several resting-state functional MRI studies reported abnormal functional connectivity in the DMN in 

patients with anorexia (18).  

The supplementary motor area is involved in the planning and control of motor actions and plays a 

crucial role in task switching (19). An impairment in this region may contribute to the cognitive rigidity in 

patients with anorexia (20). Finally, The middle cingulate plays a key role salient network and is involved in 

identifying the emotional significance of stimuli and producing appropriate affective and behavioral responses, 

particularly fear and avoidance (21). A reduction of GMV in this middle cingulate could lead to abnormal 

functionality, previously reported (18), contributing to typical symptoms of anorexia such as excessive 

perfectionism, cognitive rigidity and excessive attention to detail (20).  

Anxiety disorders 

The striatum has been previously associated with threat attentional bias, and fear conditioning (22), playing a 

crucial role in the anxiety circuitry. Smaller GMV in this region may produce the avoidance of treat stimuli, 

avoiding the exposure to those environments (23). The temporal lobes are part of the ventral attention network 

(VAN), involved in orientating stimulus-driven attention. Therefore, alterations in this network may disrupt 

the shift from internally directed stimuli (e.g., worrisome thoughts) to external events. In addition, the insula 

is associated with perceiving strong emotions and processing introspective awareness (24), and together with 

the thalamus, are parts of the fear network model modulating fear through the fronto-temporo-insula network 

(25,26). Therefore, alterations in both areas may be associated with intense response to negative events and 

enhancement of their expectations of negative incomes. Finally, aberrant structure in the PFC can contribute 

to impairments in executive function, impulse control, and social cognition, which are symptoms often 

experienced by individuals with anxiety (27). 

Attention-deficit/hyperactivity disorder  

The novel meta-analyses showed smaller GMV in the right supramarginal gyrus compared to comparison 

subjects. In contrast, the standard meta-analysis did not show any significant GMV differences associated with 

ADHD. Our findings partially align with those from previous meta-analysis (13), where they report aberrant 

structure in the parietal lobe. Additionally, another consistent finding is a smaller GMV in the ventromedial 

orbitofrontal cortex, including the gyrus rectus, associated with adult ADHD (11,13). Notably, we identified 

smaller GMV in the bilateral gyrus rectus using a less stringent threshold (uncorrected p < 0.005).  

The right supramarginal gyrus plays an important role in attention, spatial processing, and the integration of 

sensory information (28). Structural deficits in this region may contribute to the attentional and executive 

function impairments seen in ADHD. For example, previous research has demonstrated that the supramarginal 
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gyrus is crucial for tasks requiring sustained attention and working memory, both of which are often 

compromised in ADHD (29,30). 

The orbitofrontal cortex is involved in decision-making, impulse control, and the regulation of emotional 

responses (31). Alterations in this region have been frequently reported in ADHD, supporting the notion that 

structural changes in the orbitofrontal cortex may be related to the impulsivity and emotional dysregulation 

characteristic of the disorder (32).  

Autism spectrum disorder 

In contrast to the null findings obtained by the standard meta-analysis, the novel approach revealed lower 

GMV in the bilateral calcarine fissure, and right cerebellum associated with ASD. These findings align with 

previous meta-analysis (13,33). 

The calcarine fissure is a region involved in primary visual processing. Thus, smaller GMV in that region may 

underpin the altered sensory processing and visual perceptual difficulties often observed in ASD. This finding 

is consistent with previous reports suggesting abnormal visual cortex development and function in ASD (34). 

The cerebellum, traditionally associated with motor control, has been increasingly recognized for its role in 

cognitive processes, including attention, language, and social cognition (35). Our finding of smaller GMV in 

the right cerebellum further corroborates earlier studies highlighting cerebellar structural and functional 

alterations in ASD, suggesting a potential link to the motor and cognitive impairments characteristic of the 

disorder (36). However, it is important to note that the reported cerebellar anomalies in ASD present high 

heterogeneity between studies, indicating variability in the specific regions and extent of cerebellar 

involvement. Collectively, these results underscore the importance of considering both sensory and motor-

related brain regions in understanding the neurobiological underpinnings of ASD. 

Bipolar disorder 

The dorsal/ventral PFC and ACC are involved in mood and emotion regulation (37), specifically the ACC has 

been shown an important role in the regulation of affective states (38). In addition, the PFC is also a 

fundamental structure within the frontoparietal network, with functions that include executive functions, 

working memory, inhibition, and task-switching (39). The volumetric reduction of this structure observed in 

our analyses may contribute to the multiple cognitive difficulties described by patients with bipolar disorder 

(40). Insulas have also been reported as a potential biomarker of mood disorder. This region is involved in 

several functions including affective processing and awareness of bodily states (41,42). Notably, functional 

meta-analysis has reported atypical functional activity in these areas (14). 

Increasing attention has focused on the cerebellum’s role in BD symptomatology, including cognitive 

deficits and emotion dysregulation (43). Indeed, some cerebellar lesions have been associated with the so-

called “cerebellar cognitive affective syndrome” (44). Our findings support the potential role of the cerebellum 
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in BD, where smaller volume is linked to more severe clinical courses (45) or alterations in social cognition 

(46).  

Borderline personality disorder  

In the case of BPD, the comorbidity-based meta-analysis showed no significant GMV differences compared 

to comparison subjects. In contrast, the standard meta-analysis identified smaller GMV in the orbitofrontal 

cortex, extending to the ACC, which aligns with previous meta-analyses (15). A plausible explanation for this 

discrepancy may be the high prevalence of co-occurring disorders among individuals with BPD, higher than 

in other mental disorder (45% MDD, 26% PTSD, and 23% anxiety), a factor not adequately adjusted in 

previous meta-analyses. Indeed, 100% of the included studies had at least one individual with another co-

occurring disorder. Interestingly, smaller GMV in the orbitofrontal cortex has been previously associated with 

anxiety (8) and also in our findings.  

Furthermore, our meta-analysis investigating the interaction between BPD and MDD found that 

individuals with MDD, but not BPD, exhibited smaller GMV in the orbitofrontal cortex, among other regions. 

In individuals with both disorders, the effect size of this cluster was g=-0.39, though it was not significant, 

likely due to the low sample size. These results suggest that individuals with BPD alone do not exhibit 

structural GMV alterations, but such alterations are present when there is a co-occurrence of MDD or anxiety. 

Obsessive-compulsive disorder 

The parietal lobe is a core region of the fronto-parietal network and is involve in cognitive functions such as 

attention, planning and response inhibition (39,47). Structural alterations in this region may underlie the 

cognitive deficits seen in individuals with OCD, such as the lack of cognitive flexibility related to the repetitive 

nature of OCD symptoms and behaviors (48). Notably, this is a symptom that differs from other anxiety-related 

disorders. 

The orbitofrontal cortex plays and important role in fear extinction, cognitive reappraisal and reward-

related decision making (49). Structural alterations in this region could affect the top-down control over affect 

and motivation (50). Notably, several functional studies had reported an under activation of this area when 

doing fear extinction of symptoms provocation (51).  

Posttraumatic disorder 

The lingual gyrus is situated in the occipital lobe, which is responsible from processing visual information. 

Aberrant structure and function in this region have been linked to dissociative responses in PTSD patients, and 

emotional processing of visual stimuli (52).  

Schizophrenia-spectrum disorder 

Several structural alterations had also been linked to functional alterations across both treated and untreated 

patients (53,54), highlighting a complex interplay between structural and functional changes in schizophrenic 
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disorders. Specifically, smaller GMV overlapping areas showing decrease activation within the DMN, and 

conversely with areas showing increase activation in the auditory network. These findings are consistent with 

the hypothesis that schizophrenic disorders involves widespread disruption in brain structure that affect 

multiple functional neural networks (9,53,54). Additionally, studies reported the antipsychotic medication, 

being the primary clinical intervention, can further impact the GMV and neural activity in psychosis (55,56). 

Therefore, future studies should investigate the impact of antipsychotics on this brain model.  
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Figure S1. Brain regions showing larger and smaller gray matter volume in mental disorders 
compared to comparison subjects obtained by a separate meta-analysis using the standard methods. 
Statistical significance is set at FWE < 0.05.  
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Regions with larger GMV are displayed in yellow. Regions with smaller GMV are displayed in green/blue. 
The right side of the brain image represents the right hemisphere. The displayed slices correspond to z=-25, -
15, 0, 15 30, 45. ADHD: attention-deficit/hyperactivity disorder, ASD: autism spectrum disorder, BD: bipolar disorder, 
BPD: borderline personality disorder, MDD: major depressive disorder; OCD: obsessive-compulsive disorder, PTSD: 
posttraumatic stress disorder, SCH Dis.: schizophrenic disorders. 
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Supplementary Table 2. Brain regions showing a low gray matter volume in at least three 
disorders compared to comparison subjects, using the meta-analytic maps from the novel meta-
analysis considering co-occurring disorders. 

 
IFG: inferior frontal gyrus, SMA: supplementary motor area 
 
Supplementary Table 3. Brain regions showing a low gray matter volume in at least three 
disorders compared to comparison subjects, using the meta-analytic maps from the standard meta-
analysis ignoring co-occurring disorders. 

 

SFG: superior frontal gyrus. 

  



155 
 

Table S8. Brain regions showing larger and smaller gray matter volume in mental disorders compared 
to comparison subjects obtained by a separate meta-analysis using the standard methods. Statistical 
significance is set at FWE < 0.05. 

 Peak 
 MNI Hedges'g Z-value p-value N voxel 
Anorexia Nervosa (Z > |3.09|)      
Anorexia < CS      
B precuneus, SMA, MCC, ACC -2,-50,48 -0.66  6.87 <0.001 9395 
R middle temporal gyrus, insula, 
amygdala 

62,-14,-20 -0.50  5.82 <0.001 4317 

L cerebellum -26,-66,-28 -0.56  6.17 <0.001 1975 
R cerebellum 26,-62,-36 -0.59  5.08 0.001 1398 
L inferior temporal gyrus, amygdala -58,-6,-28 -0.53  5.56 0.003 1144 
      
Anxiety disorders (Z > |3.09|)      
Anxiety < CS      
L heschl gyrus, insula, rolandic 
operculum 

-46,-18,8 -0.46  7.33 <0.001 5939 

R rolandic operculum, insula, 
superior temporal gyrus 

50,-6,12 -0.43  6.22 <0.001 3021 

B MCC, ACC, SFG  2,2,32 -0.38 6.24 <0.001 2520 
L thalamus, B ACC,  -10,-22,12 -0.45  6.58 0.001 1707 
L middle occipital gyrus -22,-90,20 -0.37  5.33 0.033 469 
R precentral gyrus 50,-14,52 -0.30  4.57 0.035 476 
      
Attention-Deficit/Hyperactivity Disorder (ADHD) (Z > |3.09|) 
No significant results      
      
Autistic spectrum Disorder (ASD) (Z > |3.09|)    
No significant results      
      
Bipolar Disorder (BD) (Z > |4.58|)      
BD < CS      
B SFG medial, insula, MCC, ACC -2,30,40 -0.22  8.99 <0.001 7088 
L postcentral gyrus -58,-18,44 -0.22  7.75 <0.001 2426 
R cuneus cortex 10,-62,20 -0.22 8.99 <0.001 2092 
B gyrus rectus 2,18,-12 -0.20 7.32 <0.001 1327 
L insula -34,18,-12 -0.20 7.68 <0.001 1287 
L fusiform gyrus, cerebellum -26,-46,-16 -0.19  7.31 <0.001 1029 
L middle frontal gyrus -38,42,28 -0.22  7.05 <0.001 417 
B thalamus -2,-2,8 -0.30  6.73 <0.001 352 
R fusiforme gyrus 22,-62,-12 -0.27 6.45 <0.001 291 
R SFG, dorsolateral 26,10,64 -0.30 6.5 <0.001 190 
R fusiform gyrus 30,-18,-32 -0.26 6.39 <0.001 163 
L SFG dorsolateral -18,38,40 -0.26  6.66 <0.001 152 
R lingual gyrus 22,-90,-16 -0.26 5.71 <0.001 113 
L SFG dorsolateral -22,62,16 -0.23  5.64 <0.001 89 
L superior occipital gyrus -26,-90,24 -0.24  5.67 0.001 79 
L inferior temporal gyurs -54,-66,-8 -0.22  6.28 0.002 55 
      
Borderline personality disorder (BPD) (Z > |3.09|) 
BPD < CS      
L SFG orbital -2,34,-12 -0.71 4.81 <0.001 1071 
      
Internet gaming disorder (Z > |3.09|)     
Internet gaming disorder < CS      
B gyrus rectus, ACC -2,46,-16 -0.55 4.87 0.004 762 
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Major Depressive Disorder (Z > |6.12|)     
MDD < CS      
R rolandic operculum, insula, STG 50,-2,4 -0.18  10.66 <0.001 4309 
L insula, STG -42,10,-4 -0.18  10.57 <0.001 2879 
L ACC 2,42,12 -0.21  9.25 <0.001 2583 
B gyrus rectus 6,26,-20 -0.26  8.97 <0.001 571 
L SFG orbital -30,58,-4 -0.26  8.19 <0.001 557 
L cuneus cortex -18,-78,36 -0.24 7.09 <0.001 254 
L fusiform gyrus -34,-58,-16 -0.22  7.46 <0.001 224 
R cerebellum 34,-62,-44 -0.21 7.52 <0.001 148 
R precentral gyrus 54,-6,40 -0.18  7.52 <0.001 124 
L cerebellum -10,-42,-12 -0.18  7.37 <0.001 108 
L middle frontal gyrus -30,46,24 -0.19 7.48 <0.001 76 
L caudate  -6,6,4 -0.19  8.07 <0.001 62 
      
Obsessive-Compulsive Disorder (Z > |4.33|) 
OCD < CS      
R angular gyrus 58,-50,32 -0.29 5.02 0.004 511 
B ACC 2,30,20 -0.32 4.96 0.014 383 
L superior temporal gyrus -50,-6,-4 -0.26 4.58 0.021 343 
      
OCD > CS      
R fusiform gyrus, cerebellum 26,-38,-20 0.26 4.55 0.031 309 
      
Posttraumatic Stress Disorder (Z > |3.09|)    
PTSD < CS      
B SFG, SMA 2,34,44 -0.66  5.93 0.004 1010 
L postcentral gyrus -50,-6,40 -0.63  6.32 0.010 805 
L fusiform gyrus -26,-74,-16 -0.57  5.45 0.013 755 
R insula 50,14,-4 -0.53 4.85 0.027 606 
      
Schizophrenic disorders (Z > |6.67|)     
Schizophrenic disorders < CS      
R superior temporal gyrus, MCC, 
ACC 

58,-10,-8 -0.42 17.11 <0.001 36133 

L heschl gyrus, insula, inferior 
frontal gyrus, thalamus 

-54,-10,8 -0.50 18.69 <0.001 22514 

R fusiform gyrus 26,-38,-16 -0.27 10.57 <0.001 745 
L SFG dorsolateral -18,2,64 -0.22 7.74 <0.001 58 
      

ACC: anterior cingulate cortex, ADHD: attention-deficit/hyperactivity disorder, ASD: autism spectrum disorder, BD: 
bipolar disorder, BPD: borderline personality disorder, CS: comparison subjects; MCC: middle cingulate cortex, MDD: 
major depressive disorder; OCD: obsessive-compulsive disorder, PTSD: posttraumatic stress disorder, SFG: superior 
frontal gyrus; SMA:  motor area. 
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Table S14. Brain regions showing larger and smaller gray matter volume in mental disorders compared to 
comparison subjects using an interaction meta-analysis with two overlapping disorders. Statistical significance 
is set at FWE < 0.05. 

 Peak 
 MNI Hedges'g Z-value p-value N voxel 

Anxiety disorders & MDD 
Individuals with Anxiety disorders and not MDD < CS 
R superior temporal gyrus, 
insula, striatum 58,-6,4 -0.54 7.35 <0.001 6059 

L superior temporal gyrus, 
insula -50,-30,16 -0.58 7.72 <0.001 4174 

B MCC 2,-2,32 -0.43 5.85 <0.001 1262 

L superior/middle occipital 
gyrus -22,-90,20 -0.44 5.63 0.016 543 

L fusiform gyrus, cerebellum, 
parahippocampal -26,-26,-28 -0.5 6.48 0.018 528 

L SFG, dorsolateral -18,66,8 -0.42 5.00 0.021 504 

L inferior frontal gyrus, orbital, 
superior temporal gyrus -34,22,-16 -0.4 5.33 0.031 447 

      
Individuals with MDD and not anxiety disorders < CS 
B cerebellum 6,-74,-12 -0.39 5.01 0.002 571 

B SFG, medial 6,50,36 -0.43 5.13 0.006 469 

L precuneus -10,-50,60 -0.43 5.13 0.026 329 

B precuneus -2,-66,32 -0.43 5.28 0.039 294 

      
Individuals with MDD and not anxiety disorders > CS 
L superior temporal gyrus 

-50,-30,20 0.34 4.22 0.004 522 

R superior temporal gyrus 
58,-6,4 0.32 3.77 0.018 365 

      
      
Individuals with Anxiety disorders and MDD vs. CS 
No significant results      
      

Anxiety disorders & OCD 
Individuals with Anxiety disorders and not OCD < CS 
L superior temporal gyrus, 
insula -54,-38,16 -0.54 8.31 <0.001 9785 

R superior temporal gyrus 
insula 50,-14,24 -0.34 5.39 <0.001 6552 

B MCC 
2, 2, 32 -0.34 5.33 0.04 838 

      
Individuals with OCD and not anxiety disorders < CS 
L supramarginal gyrus, superior 
temporal gyrus, inferior frontal 
gyrus 

-54,-22,16 -0.34 4.64 0.002 1888 
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Individuals with Anxiety disorders and OCD vs CS 
No significant results      
      

MDD & OCD 
Individuals with MDD and not OCD < CS 
B superior temporal gyrus, 
insula, SFG, MCC, ACC, 

-46,6,-12 -0.31 
 

8.81 <0.001 48966 

L postcentral/precentral gyrus -50,-14,36 -0.20 6.03 0.02 850 
      
Individuals with OCD and not MDD < CS 
B SFG, orbital, ACC 14,38,-20 -0.43 4.93 <0.001 877 
R sperior/middle temporal 
gyrus 

50,-26,-8 -0.43 5.12 0.04 267 

      
Individuals with both MDD and OCD vs CS 
No significant results      
      

MDD & BPD 
Individuals with MDD and not BPD < CS 
B superior temporal gyrus, 
insula, SFG, MCC, ACC, 

-50,6,-4 -0.32 9.23 <0.001 48531 

L postcentral/precentral gyrus -54,-14,36 -0.21 6.27 0.02 836 
      
Individuals with BPD and not MDD vs CS 
No significant results      
      
Individuals with both MDD and BPD vs CS 
No significant results      
      

ACC: anterior cingulate cortex, BPD: borderline-personality disorder, CS: comparison subjects, MDD: major 
depressive disorder, MCC: middle cingulate cortex, N: number, OCD: obsessive-compulsive disorder, SFG: superior 
frontal gyrus; SMA: supplementary motor area. 
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In the discussion of this thesis, I will describe new insights into the causes of the heterogeneity 

observed in the neural correlates of mental disorders, specifically due to genetic haplotypes, 

comorbid cognitive impairments, and co-occurring mental disorders. Finally, I will present a 

neuroanatomical atlas of GMV alterations associated with major non-substance use mental 

disorders accounting for the impact of co-occurring disorders.  

 

1. Genetic haplotypes as confounding factors  

Study I examined the role of genetic haplotypes as a source of heterogeneity in the neural 

correlates of mental disorders and their potential as a confounding factor. This study 

specifically investigated how protective and risk Adhesion G Protein-Coupled Receptor L3 

(ADGRL3) haplotypes impact brain structure and function in individuals with ADHD and 

healthy controls. Contrary to our first hypothesis, the presence of a specific ADGRL3 

haplotype did not significantly influence the structural or functional neural correlates 

associated with ADHD. However, consistent with our fourth hypothesis, both haplotypes 

showed widespread strong effects on brain response during a working memory task, regardless 

of ADHD status. These findings suggest that, while ADGRL3 haplotypes may not modulate 

the neural correlates of ADHD directly, they exert a considerable overall influence on brain 

function. Given the high prevalence of ADGRL3 risk haplotype in individuals with ADHD 

(130), this effect may introduce a substantial confounding factor that complicates the 

interpretation of ADHD-related neural findings.  

In this study, individuals with both protective and risk ADGRL3 haplotypes exhibited hypo-

activation compared to non-carries. When the task difficulty increased, individuals with the 

risk haplotype showed more pronounced hypo-activation patterns in the 2-back versus baseline 

contrast than individuals with the protective haplotype. However, when comparing patients 

with ADHD to healthy controls, patients demonstrated hyper-activation during cognitive tasks, 

which contrasts with previous research that typically reports widespread hypo-activation in 

ADHD patients (131). One potential explanation for this discrepancy is that this reported hypo-

activation could be attributed to the higher prevalence of ADGRL3 risk haplotype in ADHD 

patients (130) rather than to ADHD-related executive cognitive deficits alone. However, other 

factors may also contribute to the observed differences in brain activation. For instance, 

individuals who are not fully engaged in the task may show minimal or no activation, and both 

ADHD and ADGRL3 haplotypes may influence task engagement. Additionally, some studies 
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have associated brain activation with task accuracy and reaction time (132,133). Even 

methylphenidate may play a role (134), although its involvement in working memory networks 

is unclear (135). 

Given these considerations, the hypo-activation observed in individuals with the protective 

haplotype and the hypo-activation previously seen in ADHD patients may stem from different 

underlying causes. For instance, those with the protective haplotype may require less brain 

activation to sustain attention during tasks, whereas ADHD patients may struggle to engage 

their cognitive networks effectively. Under this hypothesis, individuals predisposed to ADHD 

but carrying the protective haplotype may be less likely to develop the disorder, as their reduced 

activation requirement could compensate for difficulties in activating cognitive networks.  

In terms of structural brain differences, although this study found some interactions between 

the effects of ADGRL3 haplotypes and ADHD, they did not survive after correcting for 

multiple comparisons. In this regard, a recent meta-analysis showed that ADGRL3 haplotypes 

confer a relevant risk in pediatric ADHD, but the association was less significant in adult 

ADHD (130). This suggests that the weaker association between ADGRL3 haplotypes and 

ADHD in adults may account for the lack of significant brain effects related to these 

interactions. However, this lack of statistical significance is not surprising in ADHD literature, 

where some studies have reported frontostriatal abnormalities that may change with age and/or 

treatment, while others have failed to detect them (69,114,136–139). In agreement with 

previous literature, we found more robust evidence of functional brain abnormalities than 

structural brain abnormalities in ADHD. 

Study I have several limitations. First, despite efforts to achieve a well-balanced sample, the 

ratio of homozygous vs. heterozygous individuals for the protective and risk ADGRL3 

haplotypes was higher in ADHD patients than in healthy controls. This imbalance could have 

led to potential misattribution of haplotypic effects to ADHD status or its interaction with 

haplotypes. However, this seems unlikely, given that the main findings were related to 

haplotypes rather than ADHD status. Second, while the overall sample size was relatively large 

for a neuroimaging study, it may still have provided limited statistical power to detect weaker 

effects, particularly in comparisons between patients and controls or in examining interactions 

between haplotypes and ADHD. However, the study could still detect significant hypo-

activations, suggesting that larger effects were robust. Third, the sample consisted of adults, 
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and a recent meta-analysis has indicated that the effects of ADGRL3 haplotypes may vary by 

age, which limits the generalizability of the findings across different age groups. 

This study underscores the critical role genetic haplotypes play as confounding factors in 

neuroimaging research, particularly regarding brain function studies. Our findings suggest that 

haplotypes strongly associated with specific mental disorders, such as the ADGRL3 risk 

haplotype with childhood ADHD (130), can confound disorder-specific neural patterns, leading 

to broader, less specific results that may not accurately reflect the neural correlates of the 

disorder itself. These findings have significant clinical implications, as they highlight the 

necessity of accounting for genetic variability in developing precise machine-learning tools for 

diagnosis. Predictive models that overlook genetic differences or rely solely on generalized 

biomarkers may produce confounded and, thus, less accurate predictions. This study suggests 

that integrating genetic information into neuroimaging analyses of mental disorders could 

improve the specificity and accuracy of disorder biomarkers, supporting more personalized 

diagnostic approaches and paving the way for more targeted and effective treatment.  

 

2. The impact of cognitive impairments  

Study II examined the impact of comorbid cognitive impairments on the heterogeneity of 

neural correlates in mental disorders. Specifically, this study assessed differences in brain 

function among cognitively impaired individuals with BD, cognitively normal individuals with 

BD, and healthy controls. In line with our second hypothesis, patients with cognitive 

impairments showed significant differences in resting-state functional connectivity compared 

to healthy controls, whereas cognitively normal patients showed no such differences. These 

findings suggest that cognitive impairments significantly contribute to the neural variability in 

BD, influencing the distinct resting-state functional connectivity differences observed in 

affected individuals. 

Several studies have consistently reported hypo-connectivity within the DMN in individuals 

with BD during acute episodes (140,141). However, findings from the remission are more 

variable. Some studies, consistent with our results, indicate a shift towards hyper-connectivity 

during remission (140), whereas others report a normalization of DMN connectivity (142). A 

plausible explanation for these differences is that previous studies treated BD patients as a 

homogeneous sample, independently of their cognitive status. This suggests that the likelihood 
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of detecting significant resting-state functional connectivity in remitted BD patients may 

depend on the proportion of cognitively impaired patients in the sample. Supporting this idea, 

our study found that cognitively normal patients did not exhibit significant differences in 

connectivity compared to healthy controls. 

Previous research using the same study sample has identified distinct structural and task-based 

functional neural correlates in BD when considering cognitive status (143,144). In these 

studies, cognitively impaired patients showed increased thickness in the left dorsomedial PFC, 

a crucial region of the DMN, compared to cognitively normal patients and healthy controls 

(144). Additionally, compared to cognitively normal patients, they exhibited hypo-activity in 

regions associated with the cognitive control network and hyper-activity in the DMN during a 

working memory task (143). These findings, alongside ours, suggest that cognitively impaired 

patients may struggle to suppress DMN activity during cognitive tasks, such as working 

memory, potentially explaining their poorer task performance (143,145). The observed 

alterations within the CEN may indicate a reduced capacity to regulate cognitive control, a key 

component of executive functioning, which may further contribute to the impaired cognitive 

performance seen in this group.  

From a theoretical perspective, it is interesting that resting-state functional connectivity 

alterations were seen both within and between DMN and CEN, particularly overlapping regions 

from the parietal and posterior cingulate cortex. These alterations may arise from a disruption 

of structural connectivity, potentially due to white matter deficits found in cognitively impaired 

patients with mood disorders relative to cognitively normal patients and healthy controls 

(144,146). Supporting this hypothesis, an MRI study found a lower circularity of the splenium 

of the corpus callosum in a sample of pediatric patients with bipolar disorder relative to healthy 

controls, suggesting that such white matter alterations may occur early in the course of bipolar 

disorder (147).  

Based on previous literature, the observed differences may not be unique to bipolar disorders 

but could represent a broader neural correlate of cognitive impairments seen across various 

mental disorders, such as MDD and schizophrenia (123,148,149). These similarities suggest 

that shared neural pathways may underlie cognitive impairments across different conditions, 

reinforcing the need for cross-disorder investigations to understand these shared mechanisms 

better and highlighting the importance of considering comorbid cognitive impairments when 

identifying specific neural correlates of a mental disorder.  
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Study II has several limitations. First, the cross-sectional design limits the ability to make 

causal inferences about the neuronal mechanisms underlying cognitive impairments. 

Additionally, the priori selection of cognitive networks may introduce bias, as cognitive 

impairments could be influenced by other networks not directly related to cognition. Another 

limitation was the lack of a statistically significant difference between the cognitively impaired 

and cognitively normal groups, which challenges the utility of resting-state fMRI biomarkers 

for use in treatment trials. However, the observed differences between the cognitively impaired 

patients and healthy control groups suggest that illness-related alterations in resting-state 

functional connectivity are associated with cognitive impairments in bipolar disorder. 

Medications may have influenced the connectivity differences between groups, although 

association analyses did not survive correction for multiple comparisons, indicating that 

medication was unlikely to explain the findings. Finally, the absence of data on psychotic 

symptom history, which could have affected the results, represents another limitation of this 

study. 

This study highlights the significant impact of comorbid cognitive impairments on the neural 

correlates in mental disorders. These findings suggest that observed differences between 

individuals with BD and healthy controls may be partly attributed to cognitive status, 

potentially indicating a shared neurobiological mechanism for cognitive impairments across 

several mental disorders. These insights underscore the importance of accounting for cognitive 

status when developing diagnostic tools and treatment strategies for BD. The functional 

alterations identified in this study present promising targets for pro-cognitive interventions, 

which, if replicated, could inform go-no/go decisions on advancing treatment strategies for BD 

and other mental disorders (150). This emphasizes the need for personalized approaches in 

psychiatric care that consider individual cognitive profiles, thereby enhancing the precision of 

interventions and improving overall treatment outcomes by directly addressing cognitive 

deficits in patients with mental disorders. 

 

3. The role of co-occurring mental disorders  

Study III explored the role of co-occurring mental disorders as a source of heterogeneity in the 

neural correlates of major mental disorders and examined their potential confounding effect in 

neuroimaging analyses. This study implemented a novel meta-analytic approach designed to 

address the effects of co-occurring disorders on brain structure across major non-substance 
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mental disorders. Supporting our third hypothesis, the interaction meta-analysis revealed that 

the neural correlates of mental disorders, such as anxiety disorders, MDD, and OCD, differ 

depending on whether these disorders occur alone or co-occur with one another. Consistent 

with our fifth hypothesis, the GMV alterations identified through this adjusted meta-analysis 

were more focal (fewer voxels included) and disorder-specific (less correlated and shared 

among disorders) compared to standard meta-analyses that do not account for co-occurring 

disorders. These findings suggest that co-occurring disorders influence the neural correlates of 

specific mental disorders in two different ways: i) by directly shaping the observed neural 

patterns and ii) by introducing confounding effects that lead to broader, over-correlated 

alterations and inflated transdiagnostic patterns. Additionally, this study provides a 

comprehensive neuroanatomical atlas of GMV alterations associated with major non-substance 

use mental disorders, including anorexia, anxiety disorders, ADHD, ASD, BD, borderline 

personality disorder (BPD), MDD, OCD, PTSD, and schizophrenia spectrum disorders (SSD).  

3.1. Modulatory effects 

The findings from the interaction meta-analysis revealed that the neural correlates of anxiety 

disorders, MDD, OCD, and BPD differ depending on whether these disorders occur alone or 

in combination with others. Below, we detail the findings for each disorder, emphasizing the 

influence of co-occurring conditions. 

The main meta-analytic results for anxiety disorders confirmed several previously established 

findings, although regions like the middle cingulate cortex and right insula were not identified 

(35,54,151). However, when controlling for interactions with MDD and OCD, these regions 

showed statistically significant differences. These findings suggest that co-occurring disorders, 

particularly MDD and OCD, may influence GMV alterations, highlighting the role of comorbid 

interactions in shaping the neurobiological profile of anxiety disorders. 

For MDD, meta-analytical results mainly aligned with prior research (35,39,152). However, 

this study identified additional GMV alterations in several subcortical regions beyond the 

hippocampus. Interestingly, after accounting for interactions with anxiety disorder and OCD, 

these subcortical differences lost significance, suggesting that co-occurring disorders may 

amplify certain neurobiological variations in MDD. These findings suggest that comorbid 

conditions significantly modulate the neuroanatomical profile of MDD. 

For OCD, the meta-analytical results were partially consistent with previous research, though 

some discrepancies emerged (153–155) likely attributable to the comorbidity effects. When 
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controlling for interactions with anxiety disorders and MDD, the neural correlates of OCD 

exhibited distinct characteristics, with fewer regions demonstrating significant volumetric 

alterations. This suggests that comorbid conditions significantly shape the neuroanatomical 

profile observed in OCD. 

For BPD, the novel meta-analysis found no significant GMV alterations contrary to previous 

research (156). Interestingly, the interaction meta-analysis showed that BPD co-occurring with 

MDD was associated with smaller GMV in the orbitofrontal cortex (g=-0.39). However, this 

result was not statistically significant, likely due to the low sample size. These results suggest 

that individuals with BPD alone may not lead to GMV alterations, but such changes appear 

when co-occurring with MDD, emphasizing the modulatory effect of co-occurring disorders in 

BPD.  

3.2. Confusion effects 

The GMV alterations derived from this novel meta-analysis were more focal (fewer voxels 

included) and disorder-specific (less correlated and shared among disorders) than when we 

conducted separate standard meta-analyses per disorder (i.e., ignoring co-occurring disorders), 

even when we included the same studies. The presence of more focal and disorder-specific 

alterations supports the increased validity of the novel approach. Or, seen from the opposite 

side, the maps from the standard meta-analyses would mix alterations from different co-

occurring disorders, resulting in more extensive alterations over-correlated across disorders 

with inflated transdiagnostic alterations. The results for each disorder are discussed below, 

including the extent and intensity of the alterations. The specificity of these findings is 

addressed separately, focusing on the correlations between disorders and the extent of 

transdiagnostic alterations 

Anxiety Disorders  

The novel meta-analysis for anxiety disorders, in addition to confirming findings from earlier 

studies (35,54,151), identified smaller GMV in subcortical regions and larger GMV in the right 

cerebellum, offering further insight into anxiety-related neuroanatomy. The striatum has been 

previously associated with threat attentional bias, and fear conditioning (157), playing a crucial 

role in the anxiety circuitry. Smaller GMV in this region may produce the avoidance of treat 

stimuli, avoiding the exposure to those environments (158). The temporal lobes, part of the 

ventral attention network, are involved in orientating stimulus-driven attention, so alterations 

in this network may disrupt the shift from internally directed stimuli (e.g., worrisome thoughts) 
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to external events. In addition, the insula is associated with perceiving strong emotions and 

processing introspective awareness (159), and together with the thalamus, are parts of the fear 

network model modulating fear through the fronto-temporo-insula network (160,161). 

Therefore, alterations in both areas may be associated with intense response to negative events 

and enhancement of their expectations of negative incomes. Finally, aberrant structure in the 

PFC can contribute to impairments in executive function, impulse control, and social cognition, 

which are symptoms often experienced by individuals with anxiety (162).  

Bipolar Disorder   

The findings for BD in the novel meta-analysis largely align with previous research, revealing 

smaller GMV in several cortical and subcortical regions (39,163,164), and partially 

overlapping the results observed in MDD. These findings suggest that GMV reductions in the 

dorsal/ventral PFC, including the ACC, may represent a common neurobiological substrate for 

mood disorders, further supporting the existence of shared neural mechanisms across these 

conditions. The dorsal/ventral PFC, along with ACC, are involved in mood and emotion 

regulation (165,166). The PFC is also essential within the frontoparietal network, supporting 

executive functions, working memory, inhibition, and task-switching (167), so smaller GMV 

may contribute to the multiple cognitive difficulties described by patients with bipolar disorder 

(168). Additionally, the insula, involved in affective processing and awareness of bodily states 

(169,170), has been suggested as a potential biomarker for mood disorders, with functional 

meta-analyses reporting abnormal activity in these regions (164). Increasing attention has 

focused on the cerebellum’s role in bipolar disorder, including cognitive deficits and emotion 

dysregulation(171), where smaller volume has been linked to more severe clinical courses 

(172) or alterations in social cognition (173).  

Major Depressive Disorder   

The findings for MDD are partially consistent with prior research (35,39,152), though some 

discrepancies likely arise from the inclusion of samples with co-occurring disorders, which 

were generally excluded in earlier studies. Given the recognized heterogeneity in MDD, 

including subtypes or "biotypes" (174), previous studies may have overlooked these biotypes 

more likely to co-occur with other psychiatric conditions. Finally, despite several regions 

showing smaller GMV, the effect sizes were generally small (g<0.25), suggesting that MDD is 

primarily driven by brain functional irregularities rather than structural ones (44,98).  
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Schizophrenia Spectrum Disorders  

The findings for SSD were largely consistent with previous research (40,65), supporting the 

notion that SSD involves widespread structural disruptions affecting multiple functional neural 

networks, overlapping with those observed in mood and anxiety disorders (40,175,176). These 

alterations included GMV decreases associated with relapse risk following a first episode of 

psychosis (177). Structural alterations have also been associated with functional alterations in 

both treated and untreated patients, highlighting the complex interplay between structure and 

function in SSD (175,176). Specifically, smaller GMV was found in areas showing decreased 

activation within DMN, while areas with increased activation were observed in the auditory 

network. Additionally, antipsychotic medication can further impact both the structural and 

brain activity in psychosis (178,179).  

Attention-deficit/hyperactivity disorder  

The findings identified for ADHD by the novel meta-analysis partially align with previous 

research  (69). The right supramarginal gyrus plays an important role in attention, spatial 

processing, and the integration of sensory information (180). Structural deficits in this region 

may contribute to the attentional and executive function impairments seen in ADHD (181,182). 

The orbitofrontal cortex is involved in decision-making, impulse control, and the regulation of 

emotional responses (183). Alterations in this region have been frequently reported in ADHD, 

supporting the notion that structural changes in the orbitofrontal cortex may be related to the 

impulsivity and emotional dysregulation characteristic of the disorder (184).   

Autism spectrum disorder  

The findings identified for ASD by the novel meta-analysis partially align with previous 

research (69,75). Calcarine fissure is a region involved in primary visual processing, so smaller 

GMV may underpin the altered sensory processing and visual perceptual difficulties often 

observed in ASD. This finding is consistent with previous reports suggesting abnormal visual 

cortex development and function in ASD (185). The cerebellum, traditionally associated with 

motor control, has been increasingly recognized for its role in cognitive processes, including 

attention, language, and social cognition (186). The findings of smaller GMV in the right 

cerebellum support previous studies that highlight cerebellar structural and functional 

alterations in ASD, suggesting a potential link to the motor and cognitive impairments 

characteristic of the disorder (187). However, it is important to note the significant study 

heterogeneity in this region, indicating variability in the specific regions and extent of 
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cerebellar involvement. These findings underscore the importance of considering sensory and 

motor-related brain regions in understanding the neurobiological underpinnings of ASD.  

Obsessive-Compulsive Disorder  

The findings for OCD were consistent with previous research, though some discrepancies were 

noted (153–155). These discrepancies may be attributed to the presence of co-occurring 

disorders, as 23% of the patients also had MDD, and 17% had anxiety disorders. For instance, 

smaller GMV in the insula, not observed in this meta-analysis, have often been associated with 

MDD and anxiety disorders (35,39), and was also observed in the present findings.  The parietal 

lobe, a core region of the frontoparietal network, is involved in cognitive functions such as 

attention, planning, and response inhibition (167,188). Structural alterations in this region may 

underlie the cognitive deficits seen in individuals with OCD, such as reduced cognitive 

flexibility, which is linked to the repetitive nature of their behaviors (189). Interestingly, this 

symptom is unique to OCD, and alterations in the parietal lobes were not found in other 

anxiety-related disorders. The structural alterations in the orbital frontal cortex crucial for fear 

extinction, cognitive reappraisal, and reward-related decision-making (190), may contribute to 

the top-down control over affect and motivation (191). Several functional studies had reported 

a hypo-activation of this area during fear extinction of symptoms provocation, further 

underscoring its role in OCD (192).  

Post-Traumatic Stress Disorder  

Contrary to previous studies, which highlighted the frontolimbic circuit alterations in PTSD 

(35,193), the novel meta-analysis only identified smaller GMV in the left lingual gyrus with a 

large effect size. This discrepancy may reflect the higher sensitivity of our approach and the 

fact that earlier studies specifically targeted the hippocampus. The lingual gyrus is in the 

occipital lobe, which is responsible for processing visual information. Aberrant structure and 

function in this region have been linked to dissociative responses in PTSD patients and 

emotional processing of visual stimuli (194).  

Anorexia Nervosa  

The GMV alterations identified for anorexia nervosa were largely consistent with previous 

research (83,195,196). However, unlike prior studies, no significant GMV reduction was found 

in the ACC or cerebellum, likely due to adjustment for co-occurring disorders such as MDD. 

Notably, the GMV reduction in the precuneus appeared unique to anorexia, though this finding 
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should be interpreted with caution due to study heterogeneity, potentially driven by factors like 

weight recovery. The precuneus is a core region of the DMN that is involved in cognitive 

performance and self-directed processing (197). A GMV abnormality in this area could alter 

the function of the DMN related to ruminative preoccupation with eating, body weight, and 

impaired cognitive flexibility (198). Indeed, several resting-state functional MRI studies 

reported abnormal functional connectivity in the DMN in patients with anorexia (83). The 

supplementary motor area is involved in the planning and controlling motor actions and plays 

a crucial role in task switching (199). An impairment in this region may contribute to cognitive 

rigidity in patients with anorexia (200). Finally, the middle cingulate cortex plays a key role 

salience network and is involved in identifying the emotional significance of stimuli and 

producing appropriate affective and behavioral responses, particularly fear and avoidance 

(201). A reduction of GMV in this middle cingulate cortex could lead to abnormal functionality, 

previously reported (83), contributing to typical symptoms of anorexia such as excessive 

perfectionism, cognitive rigidity, and excessive attention to detail (200).  

Borderline personality disorder   

Contrary to previous research, the novel meta-analysis found no significant GMV differences 

in BPD (156). A plausible explanation for this discrepancy may be the high prevalence of co-

occurring disorders among individuals with this disorder, which is higher than in other mental 

disorders (45% MDD, 26% PTSD, and 23% anxiety disorders), a factor not adequately 

accounted for in previous meta-analyses. In fact, all included studies had at least one individual 

with another co-occurring disorder. Interestingly, smaller GMV in the orbitofrontal cortex, 

commonly reported in BPD, has been previously associated with anxiety (35) and supported 

by the findings of this study. These results suggest that individuals with BPD alone do not show 

GMV alterations, but such changes may be present when co-occurring with another disorder. 

Specificity of the GMV differences – correlations across disorders 

This study found that the spatial pattern of GMV alterations in SSD correlated with those in 

BD, MDD, OCD, and anxiety disorders, consistent with previous studies that identified strong 

correlations among mood disorders, SSD, and OCD (96,97). Similarly, the GMV abnormality 

pattern of BD also correlated with MDD, OCD, and anxiety disorder. The correlation between 

the GMV abnormality pattern of MDD and anorexia nervosa was likely due to common 

depressive symptoms in these patients, even when not meeting the full criteria for MDD. 
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Interestingly, PTSD displayed a unique GMV abnormality pattern, showing no significant 

correlations with other mental disorders. 

These findings contrast with standard meta-analyses, where almost all mental disorders showed 

significant correlations with each other. This discrepancy may rely on the high prevalence of 

co-occurring disorders not accounted for in the standard meta-analysis. For instance, in the 

standard analysis, the GMV abnormality pattern of MDD significantly correlated with anxiety 

disorders (r=0.60) and OCD (r=0.47). The observed similarities are likely driven by the 

common co-occurrence of these disorders, as 28% of individuals with anxiety and 23% with 

OCD also presented MDD. These findings support the importance of adjusting for co-occurring 

mental disorders when investigating disorder-specific brain alterations and suggest that the 

novel method successfully mitigated this potential confounding effect. 

Specificity of the GMV differences – extent of transdiagnostic alterations 

The findings for transdiagnostic alterations support previous hypotheses of common 

neurobiological substrates across mental disorders (96–98), specifically in the dorsal ACC and 

insula, highlighting that co-occurring disorders do not drive these common alterations. 

Additionally, previous studies have also reported smaller GMV in the PFC associated with 

mood disorders (39), and in the middle cingulate cortex linked to mood, anxiety, and trauma-

related disorder (35). These regions, crucial for emotion regulation and social behavior, also 

play key roles in cognitive and executive functions (93,202), which are commonly impaired 

across mental disorders. Therefore, these observed GMV alterations may be associated with 

cognitive impairments rather than diagnosis-specific symptoms (93,96).  

Although evidence suggests that these common substrates are associated with the disorders 

rather than a predispose risk state, the possibility that these findings are influenced by early life 

trauma cannot be ruled out. Notably, early trauma has been shown to increase the risk of 

developing mood or psychotic disorders in adulthood (202), and childhood maltreatment has 

been associated with smaller GMV in several brain regions, including the ACC, even in 

individuals who do not develop a mental disorder (21). Another potential explanation may rely 

on the shared genetic pattern across disorders. For instance, a study investigating the genetic 

architecture of 11 mental disorders identified four factors linked to (i) compulsive behaviors 

(anorexia, OCD), (ii) psychotic features (SSD, BD), (iii) neurodevelopmental disorders 

(ADHD, ASD), and (iv) internalizing disorders (anxiety, MDD) (88). Additionally, there is 

converging evidence of a shared genetic pattern across mood and psychotic disorders (MDD, 
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BD, and SSD) (89). These findings suggest that genetics and neuroanatomy can provide 

different yet complementary information about the neurobiological underpinnings of mental 

disorders, as the genetic clustering identified in previous studies partially differs from the 

neuroanatomical patterns (e.g., there are no overlapping structures between anorexia and 

OCD).  

3.3. Limitations and implications 

Study III has several limitations. Firstly, there is a debatable nosology of current mental 

disorders based on clinical consensus rather than known biological underpinnings (203). Major 

mental disorders often share some genetic risk factors, and there are high rates of co-occurring 

disorders and diagnostic shifts over time. However, this overlap does not invalidate the 

existence of disorder-specific brain correlates, as diagnostic labels are among the best 

predictors of future outcomes, highlighting their clinical relevance (177). Secondly, the cross-

sectional nature of the included studies impedes the causality inference; thus, findings must be 

interpreted as statistical associations. Another limitation is the commonly poor report of some 

co-occurring disorders in the literature, as well as the omission of subthreshold disorder-

specific symptoms due to the complexity of the analysis and the expected large amount of 

missing data. Additionally, the proportion of co-occurring disorders in the sample does not 

reflect those in the general population. Still, the objective was to disentangle the specific 

neuroanatomy of co-occurring mental disorders, not to analyze the patterns of co-occurring 

disorders in the general population. Furthermore, like a limitation in many meta-analyses, the 

study relied on summarized data (e.g., peak and effect sizes) rather than raw data (204). 

Similarly, potential clinical and methodological moderators such as symptom severity, body 

mass index, or software used were not accounted for, as including these covariates would have 

added considerable complexity to the current study, leaving them for future research. Another 

limitation is that only mental disorders with a previously published meta-analysis comprising 

at least ten studies were included. Finally, although the study refers to GMV differences, it is 

more appropriate to describe these differences in T1-MRI signal, given that the acquired MRI 

data are not a direct measure of brain structure (205). 

This study underscores the importance of accounting for co-occurring disorders and their 

interactions in neuroimaging research, particularly in structural analysis, to identify robust and 

disorder-specific neural correlates of mental disorders. Several important implications emerge 

from this study. First, the novel meta-analytical methodology can be extended to other MRI 



173 
 

modalities, such as fMRI and diffusion tensor imaging, paving the way for a comprehensive 

atlas of structural and functional brain correlates in mental disorders. Such atlas would deepen 

our understanding of the neurobiological mechanisms underlying these conditions. Clinically, 

the GMV atlas generated in this study enhances the precision of the brain alterations 

localization, which may improve the effectiveness of targeted interventions, such as deep brain 

stimulation or non-invasive brain stimulation therapies, aimed at alleviating specific symptoms 

(206). Furthermore, this atlas could serve as a valuable resource for future machine-learning 

research in mental health by contributing to improved diagnostic accuracy for mental disorders. 

Current MRI-based machine-learning tools often face limited accuracy due to the reliance on 

conventional diagnostic classifications (103,105). By using this atlas, models could shift from 

direct diagnostic prediction to risk estimation, offering clinicians valuable additional, nuanced 

insights that enhance diagnostic precision and enable more proactive, targeted interventions. 

In this way, this meta-analytical approach and, consequently, GMV atlas hold promise for 

advancing machine-learning applications in psychiatry, ultimately leading to more 

personalized treatments that improve patient outcomes. 

 

4. Future directions 

This thesis advances our understanding of the sources of heterogeneity in neuroimaging 

research aimed at identifying the neural correlates of mental disorders, with a focus on genetic 

haplotypes, comorbid cognitive impairments, and co-occurring disorders. However, further 

research is needed to expand our knowledge of these factors and investigate additional 

variability sources, such as stages of life, medication, and clinical variables like illness duration 

or symptom severity. Building on the current findings, future studies could offer deeper insights 

into the underlying neurobiological processes and support the development of reliable 

machine-learning tools for clinical application. 

In the following section, I will outline several potential future research directions that could 

build upon this thesis to enhance our understanding of other causes of heterogeneity, the neural 

underpinnings of mental disorders, and advance personalized medicine in psychiatry. 
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4.1. Additional moderator factors and longitudinal studies 

As discussed in the introduction, several factors can influence neuroimaging findings. While 

this thesis primarily investigates the impact of genetic haplotypes, comorbid cognitive 

impairments, and co-occurring disorders, other important moderators remain unexplored, such 

as medication use or patient stage. Additionally, the development of the GMV atlas did not 

include these additional moderators to avoid adding further complexity to the model. 

Therefore, future research should address these gaps by investigating how these factors 

influence structural and functional neural correlates of mental disorders by grouping 

participants based on criteria such as medication status (e.g., medicated vs. never medicated) 

or patient stage (e.g., currently depressed vs. remission). Findings from such studies could 

deepen our understanding of the neurobiological underpinnings of mental disorders and 

enhance the specificity of brain alterations associated with distinct subtypes. Incorporating 

these moderators could ultimately improve the clinical relevance of neuroimaging research, 

leading to the identification of more precise biomarkers for diagnosis and treatment planning. 

All the studies within this thesis focused exclusively on adult samples, limiting the 

generalizability of the findings to other life stages. For instance, previous research suggests 

that the effects of ADGRL3 haplotypes may vary across developmental stages, with stronger 

effects observed during critical periods of brain development. This underscores the need for 

future studies to explore the impact of genetic haplotypes in pediatric populations. Developing 

a GMV atlas that maps alterations across key life stages, such as childhood and adolescence, 

would be especially valuable for neurodevelopmental disorders, such as ADHD and ASD, 

where the brain undergoes rapid growth and reorganizations that can have lasting effects into 

adulthood. Such an atlas could provide critical insights into early neural changes related to the 

onset and progression of these disorders, ultimately supporting more age-appropriate 

diagnostic and treatment strategies. Additionally, exploring the impact of genetic haplotypes 

and co-occurring conditions on brain development in children could further clarify the 

mechanisms underlying early-onset mental disorders. Furthermore, identifying early neural 

biomarkers may facilitate the development of targeted interventions during critical periods of 

neuroplasticity, potentially preventing or mitigating the severity of these disorders as children 

transition into adulthood. 

Finally, findings from this thesis are derived from cross-sectional studies, which limit the 

ability to infer causality and should, therefore, be interpreted as statistical associations. To 
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advance this research, future studies should prioritize longitudinal design to investigate the 

progression of brain alterations related to cognitive impairments and co-occurring disorders 

over time. Longitudinal data would offer crucial insights into how these factors evolve and 

interact as the disorder progresses, enabling a more thorough understanding of the 

neurobiological mechanisms driving brain structure and function changes. Such studies are 

essential for identifying early markers of disease onset and progression, allowing for more 

accurate predictions of disorder trajectories.  

4.2. Additional confounding factors 

In this thesis, we investigated the potential confounding effects of genetic haplotypes and co-

occurring disorders in neuroimaging research. However, as highlighted in the introduction, 

other factors can significantly confound neuroimaging findings. For instance, variability in 

MRI devices and methodologies can introduce noise and reduce the replicability of results 

across studies. Additionally, clinical variables such as symptom severity and duration of illness 

may act as confounders in studies of mental disorders. For example, neural alterations may 

show larger effect sizes in individuals with more severe symptoms, potentially confounding 

the true relationship between brain changes and the disorder itself. Future research should 

prioritize the systematic investigation of these factors to better understand their potentially 

confounding effects on the neural correlates of mental disorders. Addressing these confounding 

factors is crucial for advancing the field of neuroimaging. Standardizing MRI protocols and 

incorporating advanced harmonization techniques could mitigate variability across studies and 

improve the reliability of findings. 

Additionally, accounting for clinical variables in statistical analyses would help estimate their 

effects and obtain more specific findings. This approach could lead to identifying more precise 

and clinically meaningful biomarkers. Future research should integrate these considerations to 

enhance neuroimaging findings' robustness, reproducibility, and clinical relevance in mental 

health research. 

4.3. Advancing the neuroanatomical atlas  

The atlas presented in this thesis provides comprehensive maps of GMV alterations associated 

with mental disorders, derived from a meta-analysis of VBM studies. While VBM offers 

valuable insights into structural brain correlates, it captures a limited view of the complex 

neurobiological processes underlying these disorders. Future research should expand this work 
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by incorporating additional MRI modalities, such as fMRI, diffusion tensor imaging (DTI) or 

magnetic resonance spectroscopy (MRS), to build a more comprehensive understanding of the 

brain’s structural, functional, connectivity and chemical changes underlying mental disorders. 

Extending this approach to fMRI could complement structural findings by identifying disorder-

specific patterns of altered brain activity and network dysfunctions. For instance, task-based 

fMRI could reveal alterations in neural responses during tasks targeting specific cognitive or 

emotional processes, such as working memory, emotional regulation, or reward processing, in 

individuals with mental disorders. Resting-state fMRI, meanwhile, could uncover disruptions 

in functional connectivity within networks such as DMN, salience network, and CEN, which 

are commonly altered in several mental disorders.  

DTI would enable the assessment of white matter integrity and connectivity pathways, 

revealing the disruption in structural connectivity networks of mental disorders. Additionally, 

MRS could provide insights into the brain’s chemical environment of mental disorders by 

quantifying the alterations of metabolites, such as glutamate or GABA, in specific brain regions 

associated with neurotransmitter function.  

Developing multimodal atlases of alterations in mental disorders by applying the novel meta-

analytical methodology to fMRI, DTI and MRS data, and integrating these findings with the 

current GMV atlas, would yield a detailed map of brain architecture and functional interactions 

associated with mental disorders. This comprehensive approach would offer a more holistic 

understanding of the complex neural mechanisms underlying these conditions.  

Finally, the GMV atlas and future multimodal atlases could serve as valuable resources for 

developing machine-learning tools that enhance diagnostic accuracy. By incorporating the 

atlases into machine-learning algorithms, researchers could develop predictive models capable 

of confirming diagnoses, distinguishing mental disorders, and estimating the treatment 

response based on individual brain imaging data. This approach could inform clinical 

decisions, enabling the selection of interventions that specifically target identified brain 

alterations, ultimately leading to more effective, individualized care. In this way, these 

comprehensive atlases could play a crucial role in advancing machine-learning applications in 

psychiatry, supporting the development of more personalized, precise, and effective 

interventions. 
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 Conclusions 
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This work provides new insights into factors contributing to the heterogeneity of neural 

correlates observed in mental disorders, including genetic haplotypes, cognitive impairments, 

and co-occurring mental disorders. The conclusions of my thesis are summarized below: 

C1. The presence of protective or risk ADGRL3 haplotypes does not influence the structural 

and functional neural correlates of attention-deficit/hyperactivity disorder. Therefore, this 

result does not provide evidence to support that the neural correlates of mental disorders depend 

on genetic haplotypes.  

C2. Cognitive impairments affect resting-state functional connectivity in patients with bipolar 

disorder. Therefore, this result provides evidence to support that neural correlates of mental 

disorders are influenced by comorbid cognitive impairments.  

C3. Structural alterations in major depression, anxiety disorder, and obsessive-compulsive 

disorder differ when these conditions are present alone versus co-occurring in the same 

individual. Therefore, this result provides evidence to support that the neural correlates of 

mental disorders depend on co-occurring mental disorders. 

C4. ADGRL3 haplotypes, associated with attention-deficit/hyperactivity disorder, have 

relevant brain functional correlates, for which they can confound the analysis of the brain 

correlates of attention-deficit/hyperactivity disorder. Thus, this result provides evidence to 

support that genetic haplotypes can confound the analysis of neural correlates in mental 

disorders. 

C5. Co-occurring mental disorders influence structural alterations in mental disorders, leading 

to broader and over-correlated patterns. Therefore, this result provides evidence to support that 

co-occurring disorders can confound the analysis of neural correlates in mental disorders.  

C6. The neural correlates of mental disorders are influenced by several factors at least including 

comorbid cognitive impairments and co-occurring mental disorders. 

C7. The analysis of the neural correlates of mental disorders may be confounded by several 

factors at least including genetic haplotypes and co-occurring mental disorders. 

C8. The presence of moderator and confounding effects in the neural correlates of mental 

disorders complicates the identification of robust and specific biomarkers but opens new 

possibilities. 
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