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Life insurance companies are subject to various risks related to universal life products. One such risk -

paid-up- arises when policyholders, at some point before maturity, exercise their option to stop paying the 

periodic premiums initially agreed to for the life of the policy. Here, several predictive models are applied, 

aimed at anticipating the future state of in-force premium payment policies. This is undertaken in 

conjunction with balancing techniques, designed to avoid misclassification errors caused by the scarcity of 

paid-up events in our data. Using the findings from our predictive modeling, we initially identify certain 

policyholder profiles that seem less likely to paid-up premiums and consequently may be considered as 

potential targets for underwriting. Additionally, we delve into an essential aspect of policy design: 

surrender fees. Our analysis highlights a pattern where surrender fees, intended to mitigate surrender risk, 

may actually exacerbate the risk of policies becoming paid-up under certain circumstances.
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1. Introduction 

The purpose of this article is two-fold: firstly, to advance comprehension of optimal 

machine learning techniques for performing a risk analysis of paid-ups; and secondly, to 

discuss ways of integrating the insights gained from this analysis into risk management 

strategies. The main sources of these risks lie in policyholder behavior, which, in an 

actuarial context can be understood as the decisions that policyholders (individuals, 

groups, or organizations) make in the selection and utilization of benefits and 

guarantees embedded in life insurance policies, Campbell et al. (2014). Other risks that 

need to be taken into consideration include the expenses risk – i.e. the risk of not being 

able to meet administrative and acquisition costs – and the death risk (albeit with a 

relatively low impact given that the amounts insured are appreciably smaller than wealth 

account values). 

 

Because the short-term impact for insurance companies of paid-ups is not as great as 

that of surrenders, this risk has received little attention in the literature. Indeed, unlike 

significant increases in surrenders rates, paid-ups would not lead to a company’s short-

term financial instability (Russell et al. 2013; Fier and Liebenberg 2013; Gatzert, 

Hoermann, and Schmeiser 2009); they would not oblige the insurer to liquidate high-

yielding investments to meet policyholder requests for surrender values (Smith 1982); 

and they should not, in theory, have a direct impact on an insurer’s reputation (Eling and 

Kochanski 2013). 

 



This, however, does not mean that the paid-up risk of universal life insurance is devoid 

of any research interest. Indeed, such products must be valued from a long-term 

perspective (i.e. the whole of a policy’s life), given that, for valuation purposes, 

companies must account not only for major short-term impacts but also for smaller, long-

term, cumulative impacts. Best estimate liabilities (BEL, a Solvency II requirement) or 

fulfilment cash-flows (FCF, one of the IFRS17 key elements of the balance sheet) 

summarize all the future liabilities of an insurer at valuation date, based on assumptions 

regarding the future behavior of its policyholders, including those related to the exercise 

of their paid-up options. Inaccurate assumptions regarding paid-up probabilities 

adversely affect business valuations (i.e. embedded values as proposed by the CFO 

Forum1 or profit testing of a company’s products); and the amount of regulatory capital 

to be set aside as a cushion against potential insolvencies (the SCR of the Solvency II 

regulation)2; and have direct impact on the bottom-line of the profit and loss account 

each year under the IFRS17 rules.  

 

Concerning investment management, deviations from anticipated patterns in earned 

premiums may result in unfavorable scenarios, such as the inability to procure assets 

when required, such as when existing assets covering liabilities reach maturity. While 

such occurrences are rare and typically manifest in extreme circumstances, paid-up risk 

is intricately linked to asset-liability risk management. Furthermore, it is plausible that a 

rise in paid-up premiums may serve as a key risk indicator for an elevated likelihood of 

surrender, leading to more adverse economic consequences as previously mentioned. 



Thus, it is evident that the study of paid-up probabilities and their impact on business 

valuations and the accounting statements of insurance companies is of some relevance. 

 

In common with any risk, the probability and economic impact of an event associated 

with paid-ups needs to be understood. Despite universal life policies typically being long-

term agreements, our analysis adopts a short-term (one-year-ahead) perspective. This 

choice is deliberate, as it allows us to concentrate solely on the inherent policy 

underwriting features, without considering external factors such as market interest rates 

and the overall economic climate. Although these external elements could potentially 

influence the probability of paid-up risk, exploring their impact requires additional 

external data sources and the implementation of dynamic models, both of which are 

beyond the scope of this paper. The effectiveness of this approach will be examined in 

the Results section. 

 

In what follows, as a key objective of this article, we conduct an initial analysis of 

predictive models for deriving paid-up probabilities and apply these well-documented 

approaches – including, logistic regression, individual and ensemble tree-based 

methods and neural networks – to calculate a desirable level of risk. One of our 

objectives in taking such an approach is to make machine-learning predictive tools 

available to actuaries and risk analysts who are responsible for conducting valuations of 

life companies but that are not necessarily data science experts. For this reason, a step-

by-step approach has been deemed the most adequate here. Indeed, this study of paid-



up probabilities in universal life products should be of interest to other financial 

institutions, including banks, because clear parallels can be identified with the study of 

loan paid-up probabilities, among others. 

 

After concluding the paid-up risk analysis, this article aims to explore ways for 

incorporating the acquired insights into risk management strategies as an additional 

objective. This will be done through two different approaches. First, by analyzing fitted 

predictive models, we seek to offer insights into the key factors influencing the prediction 

of a paid-up event. Armed with this knowledge, we can identify policyholder profiles less 

prone to paid-up premiums, making them an attractive underwriting target to mitigate 

this risk in our portfolio. Second, by leveraging the same knowledge source, we can 

explore the evaluation of the policy design for such products. Specifically, we aim to 

examine the relationship between paid-up risk and surrender fees. This analysis aims to 

inform product managers about potential counter-effects that components designed to 

mitigate surrender risk, like surrender fees, may exert on paid-up risk. 

 

The rest of this paper is structured as follows. Section 2 provides definitions of interest 

and outlines basic notions underpinning the predictive models, the cost-sensitive and 

resampling techniques and the performance and validation tools used in the study. 

Section 3 describes the dataset, while Section 4 presents the results. In Section 5, we 

present our conclusions and identify areas for further research. 

 



2. Models and techniques 

We focus our attention on conditional Bernoulli random variables, such as the following: 

𝑌𝑖,𝑡+1 ≔ 𝑋𝑖,𝑡+1|{𝑋𝑖,𝑡 = 0} =  {
0    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  1 − 𝜋(𝑡)
1            𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝜋(𝑡)

 

where 𝑋𝑖,𝑡 indicates the premium payment state of the policy 𝑖 at time 𝑡, and where the 

feasible states are 0 (active or negative case) and 1 (paid-up or the positive case).  

That is, we are interested in the random variable of the premium payment state of policy 

𝑖 for period 𝑡 + 1, given that we know that in period 𝑡 the policy has an active state. The 

paid-up probability 𝜋(𝑡) is unknown but can be assumed to depend on specific features 

of each policy 𝑖 at time 𝑡. 𝑌𝑖,𝑡+1 is the response variable in all the models proposed 

hereinafter; however, note that references to 𝑡 or 𝑡 + 1 should be omitted unless 

necessary. Thus, 𝑌𝑖 rather than 𝑌𝑖,𝑡+1 is the usual notation for our response variable. 

2.1. Approaches to predictive modeling 

The following set of predictive models is tested in our study: logistic regressions, 

decision trees, random forests, extreme gradient boosting, and neural networks. The 

first two models can be considered more classical approaches than the rest, but they 

also facilitate interpretation of the importance of the explanatory variables. In what 

follows, we provide a brief description of each model and a few key references. 

 

As an extension of classical linear regression models, logistic regression is a non-linear 



regression technique that assumes that the expected probabilities of our binary 

response variable 𝑌𝑖 are as follows, 

𝜋𝑖
𝑙𝑟 =

𝑒𝛽0+𝐱𝑖
𝑇𝛃

1 + 𝑒𝛽0+𝐱𝑖
𝑇𝛃

 

where 𝐱𝑖 and 𝛃 are the 𝑛 −dimensional vectors of explanatory variables for the 𝑖th policy 

and of regression parameters, respectively (see Henriksen, Nielsen, and Steffensen 

2014). 

 

Decision trees are models that predict the class or value of the target (categorical) 

variable (in our case, the value of the random variable 𝑌𝑖) by learning simple decision 

rules (a set of conditions or if-else statements) inferred from a training dataset (Breiman 

et al. 1984). 

 

The random forest algorithm, an extension of the bagging method (Breiman 1996), relies 

on the creation of a random subset of features of a sample or samples to create an 

uncorrelated forest of decision trees (Breiman 2001). This means any possible 

correlation between decision trees can be reduced and the errors associated with the 

model minimized, because while individual decision trees consider all possible feature 

splits, random forests only select a subset of those features. 

 

Extreme gradient boosting (Breiman et al. 1984) is an extension of the gradient boosting 

trees introduced by Friedman (2001). It is a set-based learning algorithm that gives a 



different weight to the distribution of the training datasets at each iteration. Each iteration 

of boosting adds a weight to the misclassified rate (the error rate) and subtracts a weight 

from the correctly classified sample, thereby effectively changing the distribution of the 

training data (Chen and Guestrin 2016; Ramraj et al. 2016). 

 

Finally, the neural networks algorithms (Venables and Ripley 2002) can be represented 

as a group of nodes interconnected by edges. The output of one node plays an input 

role for another node, to carry on the process according to the interconnections of the 

model. The nodes are usually grouped according to the transformation they perform, in 

a matrix known as a layer. 

 

None of the proposed models performs a statistical classification but rather provides 

probabilities of observing a paid-up event. If we denote these probabilities by 𝜋𝑖
𝑚 (where 

𝑚 ∈ {𝑙𝑟, 𝑑𝑡, 𝑟𝑓, 𝑥𝑔𝑏, 𝑛𝑛} refers to the source model), then, once a threshold 𝑞 ∈ (0,1) is 

fixed, the premium payment state �̂�𝑖
𝑚 assigned by model 𝑚 to the 𝑖th observation is as 

follows: 

�̂�𝑖
𝑚 =  {

0      𝑖𝑓 �̂�𝑖
𝑚  <  𝑞

1      𝑖𝑓 �̂�𝑖
𝑚  ≥  𝑞

 

When the data present balanced classes, as is the case here following the 

arrangements explained in Section 4.1, a threshold 𝑞 = 50% can be used. 

In this study, the caret R package (Kuhn 2008) was used to fit each of the predictive 

models described above. 



2.2. Dealing with imbalanced data sets (rare events) 

Fortunately for life insurance companies in general, paid-up events can be considered 

as rare events: the number of policies with a paid-up state is proportionally very small 

with respect to the number of active premium payment policies, leading to an 

imbalanced dataset. 

 

Using an imbalanced dataset of this kind to build predictive models for the binary 

classification problem under study is likely to give unreliable results because the 

classifiers may be biased towards predicting the majority class. Thus, any information 

we obtain about the quality of the model would be either inaccurate or incomplete 

(Maalouf and Siddiqi 2014; Wallace et al. 2011). In practical applications, imbalanced 

datasets are usually negatively biased towards the class representative of the concept 

to be learned, i.e. the minority class in the dataset tends to be the class of interest. Such 

a situation arises because of a lack of previous experience/information about the 

relevant events, given that they are related to exceptional or previously unobserved 

cases (Seiffert et al. 2007; Weiss 2004). In other words, relevant events can be 

considered rare events. 

 

To address the impact of biased classifiers on imbalanced data and mitigate the 

possible negative impact of rare events, two main techniques are currently employed in 

the literature: cost-sensitive learning (Elkan 2001; Ling and Sheng 2008; Thai-Nghe, 



Gantner, and Schmidt-Thieme 2010; Khan et al. 2017) and resampling (Estabrooks, Jo, 

and Japkowicz 2004; Chawla et al. 2002).  

 

Cost-sensitive learning techniques consider the costs of misclassification of all the 

different classes. When dealing with imbalanced problems, positive (scarce) instances 

have to be over-weighted, to some degree, vis-à-vis negative instances. Here, this is 

achieved by forcing the cost of misclassifying a positive instance to be higher than the 

cost of misclassifying a negative one. Given the cost matrix, an evaluated element is 

classified into the class with the lowest expected cost, in accordance with the minimum 

expected cost principle (Elkan 2001; Sun, Wong, and Kamel 2009; He and Garcia 2009; 

López et al. 2013). 

 

Resampling techniques can be classified into three main groups: undersampling 

methods, which create a subset of the original dataset by eliminating majority class 

instances; oversampling methods, which create a superset of the original data set by 

replicating some minority class instances or creating new instances from existing ones; 

and, finally, hybrid methods – such as the SMOTE (Chawla et al. 2002) and ROSE 

(Menardi and Torelli 2014) algorithms. The SMOTE algorithm draws artificial samples by 

choosing points that lie on the line connecting the rare observation to one of its nearest 

neighbours in the feature space. The ROSE algorithm uses smoothed bootstrapping to 

draw artificial samples from the feature space around the minority class. 

 



2.3. Performance and validation metrics and tools 

To measure the performance of the classification models and to validate the results 

obtained, a set of metrics are considered (see Table 2). Most of these metrics are based 

on the confusion matrix associated with each model, which for a binary classification 

model such as the paid-up model under study here can be represented as in Table 1. 

Recall that in our case the negative class is the class of policies with an active premium 

payment state and the positive class is linked to the set of policies with a paid-up state. 

 

In addition to the metrics provided in Table 2, the receiver operating characteristic 

(ROC) curve – a graphical representation of the ability of the binary classification model 

to provide correctly classified positive cases – is also considered as a performance 

evaluation tool. The area under the ROC curve (AUC) is a summary statistic of the 

information provided by the ROC curve about the classification performance of the 

model under analysis. It is expressed on a scale of 0.5 to 1, where AUC = 0.5 

represents the performance of a random classifier (no discriminatory ability) and AUC = 

1 is a perfect classifier. 

 

3. Data 

All data related to this study come from a life and non-life insurance company operating 

in the Spanish insurance market but note that several transformations/modifications 

have been made to these raw data so as not to compromise confidential information. 



The data refer to life insurance policies sold between 2018 and 2020. More specifically, 

the policies are universal life products, and our data comprise a detailed description of 

policy features – including premium payment status – and policyholder characteristics. 

All policies analyzed in the portfolio are periodic premium payment policies. 

 

We set two timeframes (2018–2019 and 2019–2020), in order to predict the one-year 

premium payment probability. Policies associated with a particular year in our database 

correspond to those policies in force as of December 31st of that same year. For the 

purposes of this study, for the first timeframe, we select those active premium payment 

policies from 12/31/2018 that were in force as of 12/31/2018 and also as of 12/31/2019 

(although, obviously, at this latter date the premium payment states of the policies are 

no longer restricted to being active). The total number of policies in the 2018–2019 

timeframe is 45,227, while the subset of interest (i.e. policies with a paid-up premium as 

of 12/31/2019) represents 3.68% (1,665 policies). For the second timeframe, we follow 

the same rationale to filter the database: thus, we have active premium payment policies 

in force at the end of 2019, which are still in our insurance portfolio at the end of 2020. 

 

The 2018–2019 timeframe was used to build the models and to analyze their 

performance and the accuracy of their results (see Section 4). Of these observations, 

80% were employed for training and the remaining 20% for testing. The 2019–2020 

timeframe was used as an additional test set, to check whether the predictive models 

generate accurate results for a different timeframe. 

 



The Table 3 contains a brief definition of each of the proposed variables. A minimum-

maximum scaling was applied to adjust the value of the continuous variables in Table 4 

for each policy in the range of [−1,1]. This was done to scale both the training (main) 

and testing sets with the same mean and standard deviation and, by so doing, avoid 

problems related to the magnitudes of the variables, given that several of them present 

different ranges of values. In addition, it allows us to adjust the data for higher 

throughput for machine learning models, especially those based on neural networks or 

heavy workloads. In parallel, the categorical variables shown in Table 5 were also pre-

processed before incorporation into the runs of each model by applying the one-hot 

encoding technique. This creates new binary columns composed of vectors with values 

0 and 1 representing each of the categories of each variable, where if the value is true, it 

corresponds to 1, and if the value is false, it corresponds to 0, for the entire dataset. 

 

It should be pointed out that the four values taken by the aggprod variable in our dataset 

(AG_1, AG_2, AG_3 and AG_4) were initially proposed by actuaries in the company of 

reference. Policies in the dataset were assigned to each group depending on just one 

characteristic: the overall penalty rate applied to paid premiums if the policyholder 

exercises a partial or total withdrawal option at any time before a pre-established term 

(typically 10 years). Specifically, AG_1 refers to products with an overall penalty rate of 

25%, AG_2 to products with an overall penalty rate of 45%, AG_3 to products without a 

penalty rate, and AG_4 to products with an overall penalty rate of 10%. However, the 

AG_3 group present other particular characteristics: i.e. most unit-linked products and 

most products with tax advantages for the policyholder are included in this group. As we 



explain in Section 4.3, these characteristics are relevant when analyzing the results 

obtained. 

 

Actual values of the target variable for the 𝑖th policy in the dabaset (𝑌𝑖,𝑡+1) are added 

under the name bin_resp to the dataset. Thus, if we know that the 𝑖th policy has paid-up 

premiums in 𝑡 + 1, the bin_resp value is set at 1, and 0 otherwise. Tables 4 and 5 show 

the descriptive statistics for the numerical and categorical explanatory variables, both for 

the subset of paid-up policies (i.e. our positive cases) and the complementary subset of 

policies (those whose premium payment remains active) at the end of the 2018-2019 

timeframe. 

 

In Table 4, it seems that values of wealth funds (res) and values of total insured 

amounts to be paid in case of death (cap) are greater for active premium payment 

policies at the end of the 2018-2019 timeframe than the respective values for paid-up 

policies. In the case of the categorical variables, paid-up policies present two main 

characteristics: all of them have a monthly premium frequency and all of them have 

constant premiums. In contrast, active payment policies present more heterogeneous 

payment frequencies and types of premium increments. Additionally, a higher 

percentage of AG_3 policies are to be found in paid-up than in active payment policies 

(see Table 5). 

 



4. Results 

4.1. Balancing dataset 

As discussed, the distribution of cases in our dataset is more biased towards 0 (active or 

negative; 96.32%) than towards 1 (paid-up or positive; 3.68%). Thus, unless the data 

are treated in some way before building predictive models, the latter will tend to 

underestimate the probability of the occurrence of paid-up events. Moreover, the default 

threshold of 50% used to classify predictions of active and paid-up policies will generate 

very few, if any, cases classified as paid-up. 

 

Here, several runs of each model were performed and evaluated adopting the balancing 

methods discussed in Section 2.2 in what is known as a repeated k-fold cross-validation 

(where k=10 and we repeated the validation five times). The performance metrics 

considered for each validation were the AUC, the sensitivity and specificity rates, and 

the balanced accuracy rate (as defined in Table 2). Given that we obtained various 

values for these metrics for each model and balancing technique considered, we 

summarize them using a simple average.  

For illustrative purposes, here, we report only those results for logistic regression and 

eXtreme Gradient Boosting (XGB) (see Tables 5 and 6). 

 

When using the original imbalanced dataset with all models, the sensitivity values are 

high, while the specificity rates drop, ranging between 42.50% (with logistic regression) 



and 62.67% (with XGB). This indicates the need to consider some of the balancing 

techniques that might address this issue. As can be seen, for all models and balancing 

techniques, remarkable improvements were achieved in terms of specificity rates, albeit 

at the cost of slightly deteriorated sensitivity values. For all models considered here, a 

noticeable improvement was detected in the balanced accuracy (bacc) rates when using 

any of the balancing techniques described in Section 2.2. 

 

In addition to comparing the relative performance metrics for each balancing technique 

applied to the predictive models, we identified the best balancing technique by ranking 

their overall performance from highest balanced accuracy rate to lowest (see, for 

example, final column in Tables 5 and 6). The technique with the best overall ranking 

among all the predictive models was then selected as the technique that best fits our 

purposes herein. 

 

Thus, we selected the undersampling technique: ranked first for decision tree, random 

forest and XGB models, and second for logistic regression. Only in the case of neural 

networks did its accuracy rate fall (ranked 4th). In addition to these quantitative criteria, 

other rationale for using this technique is that it makes use of all the available 

information about positive cases in our training dataset and that it is relatively 

straightforward to explain. 



4.2. Predictive capacity of the models 

We next analyzed the predictive capacity of the models and selected the one that 

performed best. Again, we worked with a 10-fold cross-validation repeated five times, 

applied in this instance only to the training dataset after applying the undersampling 

technique. To assess the robustness of the models, we analyzed the data from the 

training set using the previously defined metrics (and not a single value as in Tables 6 

and 7, but several statistics for each: percentiles and mean values). 

 

Table 8 presents summary statistics for the set of AUC, sensitivity, and specificity 

metrics. The dispersion of the three metrics is low for all models, except for the decision 

tree. If we consider the AUC as the main decision metric, then the random forest model 

is optimal, followed by the XGB and neural network models. In the case of sensitivity, 

XGB seems to classify true positives more accurately than the rest, while in that of 

specificity, the logistic regression model has the best true negative classification rate. 

 

Below, we comment in detail on the predictions and risk management implications of 

three of the five models. The random forest model is the best performing, with a mean 

AUC of 97.92%, a mean sensitivity rate of 88.82%, and a mean specificity rate of 

98.06% (see 8), followed by the neural network model with means of 97.23%, 87.41%, 

and 97.61%, respectively; however, given the computational burden involved in 

performing the calculations, the latter model is discarded as an appropriate model for 

our purposes here.  



We opted to replace it with the XGB with respective means of 97.15%, 89.50%, and 

93.66%. Finally, the third model selected for further study is the logistic regression 

model, with means of 96.73%, 86.01%, and 99.67%, respectively. We consider this last 

model to be of interest based on the strength of its true negative classification rate, and 

the simplicity with which it can be executed, and its results interpreted. Moreover, by 

being a classical predictive model, it provides a good counterweight to what might be 

considered the more trending predictive models of random forest and XGB. 

 

To assess the predictive capacity of these three models, we analyze the results 

obtained when contrasting the predictions obtained by each model with the actual 

values. Table 8 shows the confusion matrices of these three models when applied to the 

2018–2019 timeframe testing dataset (with 9,045 observations), as well as several 

performance metrics for each of the models. 

 

The confusion matrices shown in Table 8 are better visualized in Figure 1. Here, the 

model predictions are plotted as follows: predictions over the 50% threshold are positive 

cases for the models (predicted paid-up premiums) and those below are negative cases 

(active premium payment policies). If the prediction coincides with the actual premium 

payment status in the dataset, then the point is colored green (true prediction), 

otherwise, it is colored red (false prediction). 

 

In summary, all three predictive models perform well; however, the confusion matrices 

point to significant levels of false positives in each, especially in the logistic regression 



model. In other words, a relevant number of policies are incorrectly predicted to be paid-

up premiums. A careful inspection of the characteristics of these false positive policies 

shows that positive cases (both TP and FP) have constant monthly premiums for all 

models. In contrast, only a negligible percentage of negative cases (both TN and FN) 

feature constant monthly premiums. 

 

To some extent, this reflects the fact that all the paid-up cases in the original dataset 

feature constant monthly premiums (see Table 5; Paid-up policies) and, hence, the 

models capture this reality by classifying the vast majority of constant monthly premium 

policies as paid-up cases. However, this does not coincide with the data, since there are 

a significant number of constant monthly premium policies with an active premium 

payment status (see Table 5; Policies paying premiums). 

 

To address this and, in so doing, to enhance the balance between the models’ 

sensitivity and specificity, we propose a two-step modeling approach. First, based on 

empirical evidence, we can predict that all policies without constant monthly premiums 

are active premium payment policies. This holds true for the 2018–2019 timeframe 

dataset and for all but 3 of 46,243 cases in the 2019–2020 timeframe dataset, which is 

bearable. Second, we repeat the above modeling procedure but, on this occasion, we 

limit it to the subset of constant monthly premium policies from the 2018–2019 

timeframe dataset. Figure 2 highlights the marked reduction of false cases (red points) 

compared to those observed in Figure 1. Moreover, these false cases are now more 



balanced between positive and negative cases. 

 

Similar conclusions can be drawn from Table 10, where the same performance metrics 

reported in Table 8 are now shown for the two-step approach. A comparison of these 

two tables shows that the two-step approach improves substantially the overall 

proportion of correctly classified predictions (accuracy rate) for all models. This 

enhanced predictive performance is explained by the improvement in the specificity rate, 

i.e. the proportion of active payment premium cases correctly classified by the models. 

The models no longer consider all constant monthly premiums policies as being paid-up 

and some of them are now correctly predicted as being active payment premiums. 

However, this enhancement in specificity is obtained at the cost of a slight decrease in 

sensitivity, with a larger number of paid-up cases being classified as active payment 

premiums. 

 

Finally, we conducted an out-of-sample validation using the 2019–2020 timeframe as 

our testing dataset and fitting the three models with the two-step approach. Table 11 

reports the same performance metrics as those employed previously. As is evident, the 

performance of the models when applied to this dataset (comprising 46,243 elements, 

none of which were used to calibrate the models) is very similar to that of the models 

when predicting the pure testing dataset (i.e. the 2018–2019 timeframe testing dataset). 

 

These results serve to validate even further, were this possible, the models’ predictive 

performance. In parallel, one might question the suitability of adopting a short-term 



perspective in this instance, given the long-term nature of universal life contracts. 

Nevertheless, as we will explore shortly, this assumption proves satisfactory for 

achieving the outlined objectives in the Introduction. This is because our emphasis is on 

internal factors, typically maintaining stability over time and deemed controllable by the 

insurer. By exploring these internal factors influencing paid-up events, we can enhance 

the customization of our risk management strategies. 

 

4.3. Risk management implications 

Our application leaves little doubt that incr (type of premium increments) and freq 

(frequency of premium payments) are the most relevant variables (without there being 

any need to employ a variable importance methodology). As discussed, in the 2018–

2019 timeframe dataset, only policyholders with constant monthly payments exercised 

their paid-up option. Thus, to reduce paid-up risk, the underwriting of universal life 

products with increasing premiums and payments on at least a quarterly basis should be 

encouraged. On the one hand, policyholders with increasing premiums are much less 

likely to stop their premium payments given that when they take out a policy with 

increasing premiums, they show no indication of wanting to reduce them to their 

minimum expression. On the other hand, policyholders with monthly payments are more 

likely to exercise their paid-up option either because they are more aware of what they 

are paying (given they receive a monthly reminder) or because they do not have the 

financial capacity to meet a higher premium frequency. 



 

From Figure 3 and Table 12, we can draw the following conclusions. First, the most 

important variable in tree-based models is res (current value of the fund), while its 

logistic regression coefficient indicates that the larger the fund value, the less likely a 

policyholder is to stop paying premiums. This is reasonable considering that 

policyholders with larger funds are likely to have a higher degree of confidence in the 

product. Second, gender does not seem to have an influence on paid-up probability. 

Third, the rest of the continuous variables (prem - initial premium, cap - death capital, 

finalpp - years until final scheduled premium, age -current insured’s age, and loy -policy 

in force in years) in tree-based models appear to have a similar and considerable 

influence on the outcome. Here again, for each of these variables, the logistic regression 

coefficients indicate that a larger value is associated with a lower paid-up probability. 

Considering these findings, one might view customers aged 50 and above, providing a 

substantial initial premium and funds, as a preferred underwriting focus. This may 

include customers who transfer significant initial funds from another entity. 

 

When evaluating our universal life policy design, our primary concern is the impact of 

incorporating a surrender fee into the paid-up probability. From a risk management 

perspective, it's crucial to note that measures aimed at mitigating one risk (like surrender 

risk) could potentially exacerbate another risk (like paid-up risk). According to the fitted 

models, savings products belonging to group AG_3 (without penalty rates for 

withdrawals) are associated with a marked deduction in the likelihood of a policyholder 

exercising their paid-up option. Meanwhile, savings products belonging to group AG_1, 



AG_2, or AG_4 (incorporating surrender fees) do not seem to have an influence on 

paid-up probability. This might, at first glance, appear counter-intuitive, and merits 

further examination and analysis.   

 

To further our knowledge of policyholder profiles, we examined the main characteristics 

of the policies in the test set identified as TPs, TNs, FPs, and FNs by all the models 

(two-step approach) when applied to the 2018–2019 timeframe. This analysis provides 

better insights into the variables that determine whether a policyholder is identified as 

TP or TN, and a broader picture of what is happening when the models fail to predict 

positive or negative cases (i.e. FP vs. TP, or FN vs. TN). 

 

First, contrary to previous comments, it is evident that the inclusion of surrender fees 

(such as in AG_1, AG_2, or AG_4) does indeed affect paid-up probabilities. When a 

product incorporates a surrender fee (to manage its surrender risk), it either amplifies 

the paid-up risk for policyholders with low premiums and reserves (TP cases) or 

diminishes it for those with high premiums and reserves (TN cases). This outcome might 

prompt risk managers to reconsider the rules pertaining to surrender fees. Second, for 

products lacking surrender fees (such as AG_3), TN instances predominantly involve 

policyholders making moderate to low premium payments over a lengthy period (e.g., a 

40-year-old individual saving for retirement) while benefiting from tax advantages.  

 



From the perspective of paid-up risk management, this profile (policyholders that aim to 

save wealth in the long-term, but who seek some tax advantages in so doing) can be 

considered a target for a company to address this risk. Conversely, TP cases within the 

AG_3 group typically involve policyholders nearing retirement age, making substantial 

premium payments, and holding significant reserves. In such scenarios, reconsidering 

surrender fee policies or introducing new paid-up fees could mitigate this risk. 

 

5. Conclusions 

Through the development of predictive models, the aim is to not only forecast these 

probabilities but also to investigate ways for integrating the resulting insights into risk 

management practices, such as underwriting or policy design for universal life products. 

As paid-up events are rare in our data, balancing techniques were required as a prior 

step to the application of predictive modelling. Here, we have applied a set of cost-

sensitive and resampling techniques precisely to avoid biased classifiers and a marked 

improvement in balanced accuracy rates was achieved as a result. More specifically, 

undersampling was identified as the optimum method because of both its simplicity and 

because it provided the best-balanced accuracy rates. Five predictive models – logistic 

regression, decision tree, random forest, XGB, and neural network – were then applied 

to the balanced dataset. However, only three were selected for further analysis, the 

decision tree model being discarded for presenting, by far and away, the worst 



performance metrics together with the neural network model, which despite having 

similar metrics to those selected, presented an excessive computational burden. 

 

The three models selected performed well, especially when adopting a two-step 

approach to their application. This procedure was required because all the positive 

cases in our dataset presented the same two main characteristics: namely, a monthly 

payment frequency and the fact that their premiums are constant. Random forest and 

XGB models, with a balanced accuracy of around 85%, performed better than logistic 

regression (c. 78%). Of significance is the fact that largely the same performance 

metrics were recorded when the models were used to predict paid-up events in a 

different timeframe dataset from that from which they were derived. 

 

A detailed analysis of the results provides a series of insights that can help improve 

paid-up risk management allowing companies to focus on those endogenous risk factors 

on which they can act. First, what emerges from a simple inspection of the data is that 

the underwriting of savings products with a non-constant monthly premium profile should 

be fostered. Second, as this recommendation is not always readily applied, companies 

can reduce the paid-up probability of constant monthly premium policies by fostering the 

underwriting of savings products with a long-term horizon combined with tax advantages 

(the case of most of the policies included in the AG_3 category). More specifically, 

according to the corresponding coefficient obtained in the logistic regression, the odds 

ratio (i.e. the probability that paid-up occurs divided by the probability that it does not 



occur) is reduced by 63% when the policyholder purchases a savings product with a 

long-term horizon and tax advantages. 

 

We conducted a number of calculations to estimate the potential short-term economic 

benefit of boosting the underwriting of products with a long-term horizon and tax 

advantages. For each predictive model and for the constant monthly premium policies 

included in our 2018–2019 timeframe dataset, expected paid-up premiums are obtained 

in two distinct scenarios: the first, a base scenario in which all the policies remain as 

they are and, the second, a scenario that requires all policies to be of type AG_3. To 

compare the two types of expected paid-up premium, we made an approximation of the 

best improvement on earned premiums. Here, the improvement rates for active 

premiums were found to be +29% (LR), +10% (RF), and +14% (XGB). In other words, 

given that the total amount of active premiums in our dataset stands at around 8 million 

monetary units, it is estimated that at least 800 thousand additional premiums could be 

earned, one year ahead, by fostering the underwriting of AG_3 type products. If the net 

return that the company is able to obtain from each premium is about 3%, then a net 

income of 24 thousand monetary units before tax could be achieved by implementing 

these management actions. As was stressed in the introduction to this paper, the 

economic impact of paid-up risk in the short term is much less than that attributed to 

surrender risk; nonetheless, if these reductions in paid-up rates are maintained over 

time, then the economic benefit in the long-term could be increased considerably. 

 



In addition to its application in revisiting the underwriting policy, conducting such an 

analysis can offer valuable insights for reviewing our policy design. Specifically, our 

analysis has centered on evaluating the consequences of integrating a surrender fee, 

intended to mitigate surrender risk, into the paid-up probability, thus impacting our paid-

up risk management strategy. In essence, our findings indicate that the inclusion of a 

surrender fee tends to either exacerbate the paid-up risk for policyholders with low 

premiums and reserves or mitigate it for those with high premiums and reserves. This 

observation may urge risk managers to reevaluate the guidelines concerning surrender 

fees. 

 

Finally, a collateral data management strategy, aimed at improving the predictive power 

of the models, requires a redefinition of the categories of the aggprod variable. For 

instance, here, we have detected at least three different subgroups (long-term products 

with tax advantages; short-/mid-term products with tax advantages; and unit-linked 

policies) among AG_3 type products that present different policyholder behavior with 

respect to exercising the paid-up option. Including all of them in the same category may 

well negatively affect the performance of the models. 

 

There is obvious scope for further research on paid-up risk and this would involve, first 

and foremost, relaxing each of the restrictions we imposed herein: that is, changing the 

short-term to a long-term perspective with respect to paid-ups, considering economic 

impact and not only probabilities, and taking exogenous and not solely endogenous 

factors into account. This expanded approach would be particularly beneficial for 



assessing the economic repercussions on the income statement stemming from this 

risk, especially in the context of regulatory valuation. 

 

6. Notes 

1. See https://www.cfoforum.eu/embedded_value.html 

2. As contributions to the SCR are usually the difference between a stressed BEL 

and the central one, although both depend on several valuation assumptions, 

such as paid-up probabilities. 
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A. Tables 

Table 1: Confusion matrix for the binary classification problem associated with paid-up 

risk. 

  Actual  

  Active Paid-up  

Predicted Active True Negative (TN) False Negative (FN)  

Paid-up False Positive (FP) True Positive (TP)  

 

  



Table 2: Performance and validation metrics considered for the paid-up risk models 

under analysis. 

Metric Expression Concept 

Accuracy rate 𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Overall proportion of correctly classified 

predictions. 

Misclassification 

rate 

𝑚𝑖𝑠𝑐 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Overall proportion of misclassified 

predictions. Note that 𝑚𝑖𝑠𝑐 = 1 − 𝑎𝑐𝑐. 

Sensitivity rate 𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Proportion of actual positive cases 

correctly classified by the model (also 

known as recall or recovery rate) 

Specificity rate 𝑠 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 Proportion of actual negative cases 

correctly classified by the model. 

 

Precision rate 

(PPV) 

 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Proportion of correctly classified positive 

cases among predicted positive cases. 

Negative predicted 

rate (NPV) 

𝑛𝑝𝑣 =
𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 Proportion of correctly classified negative 

cases among predicted negative cases. 

Balanced accuracy 

rate 

𝑏𝑎𝑐𝑐 =
𝑟 + 𝑠

2
 Simple average of sensitivity and specificity 

rates. 

Youden’s Index 𝑌𝐼𝑞 = 𝑟𝑞 + 𝑠𝑞 − 1 Evaluation of the discriminative power of 

the test by combining sensitivity (𝑟𝑞) and 

specificity (𝑠𝑞). The 𝑞 is the threshold 



Metric Expression Concept 

considered. 

F1 score 𝐹𝛽 = (1 + 𝛽2)
𝑝𝑟

𝛽2𝑝 + 𝑟
 Evaluation of positive classification ability 

of the model. It combines sensitivity (𝑟) and 

precision (𝑝), and balances the relative 

importance of each by means of the 𝛽 

parameter. 

 

  



Table 3: Definition of selected variables. 

Variable Definition 

bin_resp Premium payment status for the period t+1 

finalpp Years remaining until final payment of the contract premium 

cap Total sum insured in case of death, in terms of monetary unit 

res Current value of the fund, in terms of monetary unit 

prem Initial premium paid at inception, in terms of monetary unit 

age Current age of the insured 

loy Number of years the policy has been in force 

gender Gender of the insured 

aggprod Grouping of the different savings products in the portfolio 

incr Type of premium increments (constant, geometric and arithmetic) 

freq Frequency of premium payment (monthly, yearly and other) 

 

  



Table 4: Descriptive statistics of continuous variables at the end of the 2018-2019 time-

frame. 

Paid-up policies 

Variable Mean Min. Pctl.25 Median Pctl.75 Max. 

finalpp 13.96 0 6.00 9.00 18.00 77.00 

cap 3,789.90 0 887.90 2,663.70 5,327.40 76,843.90 

res 7,514.70 1.23 663.39 2,705.90 7,143.05 253,611.19 

prem 1,204.10 0 532.70 745.80 1,164.20 22,197.50 

age 48.21 19.00 39.00 47.00 57.00 81.00 

loy 5.03 1 2.00 3.00 7.00 35.00 

Policies paying premiums 

Variable Mean Min. Pctl.25 Median Pctl.75 Max. 

finalpp 14.60 0 6.00 10.00 19.00 80.00 

cap 4,906.50 0 887.90 5,327.40 5,488.80 155,382.50 

res 11,154.00 23 2,104.00 4,719.00 11,240.00 720,660.00 

prem 1,032.52 36.34 532.74 710.32 1,065.48 31,964.40 

age 48.07 15.00 40.00 47.00 56.00 90.00 

loy 5.90 1 2.00 4.00 8.00 35.00 



Table 6: Pre-processing imbalanced dataset by methods and metrics - Logistic 

regression. 

Resampling AUC Sensitivity Specificity bacc Rank by bacc 

Original 96.61% 99.38% 42.50% 70.94% 6th 

Weighting 96.82% 85.93% 99.62% 92.78% 3rd 

Undersampling 96.73% 86.01% 99.67% 92.84% 2nd 

Oversampling 96.82% 85.94% 99.58% 92.76% 4th 

SMOTE 96.80% 87.34% 97.50% 92.42% 5th 

ROSE 96.73% 85.86% 99.86% 92.86% 1st 

Table 7: Pre-processing imbalanced dataset by methods and metrics - XGB. 

Resampling AUC Sensitivity Specificity bacc Rank by bacc 

Original 98.30% 99.50% 62.67% 81.09% 6th 

Weighting 96.95% 86.70% 92.82% 89.76% 2nd 

Undersampling 97.15% 89.50% 93.67% 91.59% 1st 

Oversampling 98.41% 98.17% 78.05% 88.11% 3rd 

SMOTE 98.39% 99.31% 65.56% 82.44% 5th 

ROSE 95.85% 65.64% 100.00% 82.82% 4th 

 

  



Table 8: Statistics for performance metrics in each model [Undersampling]. 

AUC       

Model Min. Pct25 Median Mean Pct75 Max 

Logistic regression 96.06% 96.43% 96.73% 96.73% 96.98% 97.69% 

Decision tree 92.44% 95.10% 96.29% 95.74% 96.81% 97.33% 

Random forest 97.38% 97.71% 97.87% 97.92% 98.11% 98.58% 

XGB 96.42% 96.90% 97.18% 97.15% 97.38% 98.01% 

Neural network 96.64% 96.95% 97.15% 97.23% 97.46% 98.12% 

Sensitivity       

Model Min. Pct25 Median Mean Pct75 Max. 

Logistic regression 84.71% 85.56% 86.03% 86.01% 86.31% 87.63% 

Decision tree 84.68% 86.41% 87.66% 87.76% 89.22% 92.22% 

Random forest 87.37% 88.31% 88.75% 88.82% 89.30% 90.36% 

XGB 87.78% 89.20% 89.54% 89.50% 89.87% 91.19% 

Neural network 86.08% 86.93% 87.36% 87.41% 87.83% 89.58% 

Specificity       

Model Min. Pct25 Median Mean Pct75 Max. 

Logistic regression 97.74% 99.25% 100.00% 99.67% 100.00% 100.00% 

Decision tree 89.55% 95.70% 98.13% 97.48% 99.25% 100.00% 

Random forest 94.74% 97.18% 97.76% 98.06% 99.06% 100.00% 



AUC       

XGB 89.47% 91.92% 94.01% 93.66% 94.78% 98.50% 

Neural network 91.00% 96.45% 98.13% 97.61% 99.25% 100.00% 

 

  



Table 9: Performance metrics of selected models. 2018-2019 timeframe testing dataset. 

 Logistic regression Random forest XGB 

 Actual(0) Actual(1) Actual(0) Actual(1) Actual(0) Actual(1) 

Predicted(0) 7,421 0 7,634 3 7,631 7 

Predicted(1) 1,291 333 1,078 330 1,081 326 

Sensitivity 100.00% 99.10% 97.90% 

Specificity 85.18% 87.63% 87.59% 

NPV 100.00% 99.96% 99.91% 

PPV 20.51% 23.44% 23.17% 

Youden’s Index 85.18% 86.73% 85.49% 

F1-Score 34.03% 37.97% 37.62% 

Accuracy 85.73% 88.05% 87.97% 

Balanced Accuracy 92.59% 93.36% 92.75% 

 

  



Table 10: Performance metrics of selected models. 2018-2019 timeframe testing 

dataset (Two-step approach). 

 Logistic regression Random forest XGB 

 Actual(0) Actual(1) Actual(0) Actual(1) Actual(0) Actual(1) 

Predicted(0) 8,450 139 8,544 95 8,507 80 

Predicted(1) 262 194 168 238 205 253 

Sensitivity 58.26% 71.47% 75.98% 

Specificity 96.99% 98.07% 97.65% 

NPV 88.10% 98.90% 99.07% 

PPV 42.54% 58.62% 55.24% 

Youden’s Index 55.25% 69.54% 73.62% 

F1-Score 59.40% 73.61% 70.93% 

Accuracy 95.57% 97.09% 96.85% 

Balanced Accuracy 77.63% 84.77% 86.81% 

 

  



Table 11: Performance metrics of selected models. 2019-2020 timeframe dataset (Two-

step approach). 

 Logistic regression Random forest XGB 

 Actual(0) Actual(1) Actual(0) Actual(1) Actual(0) Actual(1) 

Predicted(0) 43,295 863 45,287 657 43,236 585 

Predicted(1) 1,133 1,071 719 1,277 990 1,349 

Sensitivity 55.38% 66.03% 69.75% 

Specificity 97.45% 98.44% 97.76% 

NPV 98.05% 98.57% 98.67% 

PPV 48.59% 63.98% 57.67% 

Youden’s Index 52.83% 64.47% 67.51% 

F1-Score 64.98% 77.59% 72.80% 

Accuracy 95.69% 97.13% 96.59% 

Balanced Accuracy 76.41% 82.23% 83.76% 

 

  



Table 12: Logistic regression coefficients (Constant monthly premium policies) 

Coefficient Estimate Std. Error z value Pr(>|𝑧|)  

(Intercept) 0.04016 0.08852 0.454 0.650071  

finalpp -0.35156 0.10264 -3.425 0.000614 *** 

cap -0.12288 0.09995 -1.229 0.118916  

res -0.17535 0.09477 -1.850 0.064275 . 

prem -0.13663 0.09334 -1.464 0.143272  

age -0.16144 0.09422 -1.713 0.086630 . 

loy -0.20724 0.10853 -1.910 0.056187 . 

gender_Female -0.12960 0.08787 -1.475 0.140232  

aggprod_AG_2 0.04172 0.12822 0.325 0.744877  

aggprod_AG_3 -0.98607 0.14004 -7.041 1.91E-12 *** 

aggprod_AG_4 0.06962 0.12293 0.566 0.571160  

 

  



B. Figures 

 

Figure 1: Probabilities estimated by the three models on the 2018-2019 timeframe 

testing dataset. In green, policies correctly classified (TP above 50%, TN under 50%). In 

red, policies incorrectly classified (FP above 50%, FN under 50%). 

 



 

Figure 2: Probabilities estimated by the three models in the subset of constant monthly 

premium policies in the 2018-2019 timeframe testing dataset. In green, policies correctly 

classified (TP above 50%, TN under 50%). In red, policies incorrectly classified (FP 

above 50%, FN under 50%). 

  



Figure 3: The relative importance of the variables for the predictions of the two tree-

based models (Constant monthly premium policies) 

  

 

 


