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Abstract
Amidst the COVID-19 pandemic, most research has examined specific tem-
poral snapshots. This study diverges by offering a comprehensive analysis
of COVID-19 incidence across the Spanish provinces throughout six distinct
waves of the pandemic. Using spatial exploratory techniques, we find no
single pandemic; rather, there have been waves. Significant differences in
the spatial distribution of cases and deaths across six waves show that
each has unique characteristics. Homogeneous conclusions cannot be
drawn at the national level. Notable regional differences in the pandemic’s
spatial distribution suggest a need for subnational responses, reflecting vari-
ations in climate, economic dynamism, sectoral specialisation, and socio-
health resources. Spatial regression models show that the main determi-
nants of COVID-19 incidence depend on stage. Traditional factors com-
monly associated with epidemiological studies, such as temperature,
exerted significant influence during the pandemic’s onset. However, as
mobility restrictions were enforced and vaccination campaigns were rolled
out, economic conditions, and especially levels of economic activity,
emerged as increasingly significant determinants.
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1 | INTRODUCTION

From the end of 2019, when the SARS-CoV2 virus
was detected and the COVID-19 outbreak appeared
in Wuhan, China, to mid-June 2022,1 more than five
billion people have been infected, and more than six
million people have died due to this world-wide pan-
demic. According to the International Monetary Fund
(2020), the average global gross domestic product
(GDP) dropped by 3.9% from 2019 to 2020, making it
the worst economic downturn since the Great Depres-
sion. The pandemic outbreak caught populations and
governments off guard, resulting in both the collapse
or the near collapse of the health system worldwide
and a slew of containment and mitigation measures,

such as the obligation to wear masks in inner spaces,
increased testing, contact tracing, lengthy lockdowns,
quarantines, and mobility restrictions. Those had an
uneven impact on the spread of the virus.

Even within Europe, in the first six months of 2020,
Belgium, Italy, Spain, and the United Kingdom had the
greatest incidence relative to their populations,
whereas many Central and Eastern European nations
were spared. Deaths in the Baltic States, Bulgaria,
Czechia, Hungary, and Slovakia were lower than the
previous five-year average. In the first half of 2020,
Denmark and Germany similarly had no total excess
mortality (Statista, 2023).

The economic literature analysing the pandemic
has been profuse in the last two years, dealing to a
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greater extent with the study of its determinants as well
as its impact (for a literature review, see Brodeur
et al., 2021). More specifically, some authors have
shown the relevance of geography to better understand
the COVID-19 crisis, and several works have focused
on the spatial distribution of the pandemic and the
determinants behind the heterogeneity in such patterns
(see, for instance, Bissell, 2021; Burton, 2021). In addi-
tion, some authors have analysed the temporal evolu-
tion of the pandemic by focusing on specific moments,
primarily some days or weeks in the first wave of the
pandemic (see, for instance, Briz-Red�on & Serrano-
Aroca, 2020; Wang et al., 2021).

The evolution of COVID-19 has been deeply inter-
twined with those using the theory of diffusion, who
seek to understand how infectious diseases spread
through populations and across geographic territories
(Chang et al., 2021; Elliott & Wartenberg, 2004). We
adhere to the idea that the pandemic follows a dynamic
evolution due to the different conditions and circum-
stances in each wave, so that the conclusions obtained
for specific points in time may not be directly transfer-
able to other moments of the pandemic.

We focus on the Spanish case, a decision justified
by a dual rationale. First, Spain experienced prolonged
and significant impacts from the pandemic, exhibiting
pronounced geographical variations within its territory.
Second, the governance of the state of alert and deci-
sions regarding the implementation or easing of restric-
tions were decentralised to regional governments. We
gain deep insight from an exploration of the spatial distri-
bution of the pandemic in the Spanish provinces across
the six waves, from the beginning of the pandemic until
March 2022. We compare the pandemic’s evolution
across waves, while considering the changes in the sig-
nificance of the determinants of the pandemic’s spread
across them. We use spatial exploratory techniques as
the method to study the spatial pattern of the incidence
of the pandemic and take full account of this spatial
dimension in the regressions through the estimation of
spatial autoregressive models.

The outline of the paper is as follows. Section 2 pro-
vides an overview of the literature. In Section 3, we
describe the data, whereas Section 4 uses a spatial
exploratory analysis to offer the main patterns of the
spatial distribution of the pandemic across the Spanish
provinces across the six waves. Section 5 presents the
main findings on the determinants of such spatial distri-
bution through regression analyses, and Section 6
states conclusions.

2 | LITERATURE REVIEW

2.1 | Review of research on the spatial
distribution of the pandemic

Given the relevance of the COVID-19 pandemic, there
is an extensive body of literature studying the dynamics

of the spread of the virus and its effects on the econ-
omy, even if research started only about two years ago.
We provide a brief review of the vast literature on the
topic, focused first on those papers that place a special
emphasis on the spatial/territorial characteristics of
COVID-19 and, second, on those dealing with our case
study (that is, the Spanish case).

Even though findings from prior literature concern-
ing the spatial dispersion of the disease are specific to
the areas and time periods under consideration, sev-
eral issues are worth noting. One study by Amdaoud
et al. (2021) used spatial models to analyse the hetero-
geneity of the spread of the COVID-19 pandemic
across 125 regions in 12 European countries. The
authors found that spatial clusters existed and that
income and public health policies explained disparities
across regions. In another study, Sun et al. (2021)
found a greater spatial inequality in the United Kingdom
in COVID-19 mortality than in mortality from other
causes. Cao et al. (2020) examined the case-fatality
rate in 209 countries and territories worldwide and
found a significant correlation with population size,
which may imply a strain on healthcare and lower treat-
ment efficiency in countries with large populations.
Ehlert (2021) found evidence that the infections and
deaths in 401 German counties to June 2020 were pos-
itively and significantly related to median age, the num-
ber of people working in care of the elderly, early cases
since the beginning of the pandemic, and population
density. For New York City, Yang et al. (2021) found
that COVID-19 case rates were positively related to
racial minority groups, household size, and the elderly
population, while they were negatively related to the
number of teleworkers. Fonseca-Rodríguez et al.
(2021) conducted a study in Sweden and found that the
virus was associated with population density, the pro-
portion of immigrants, and the proportion of people 65+
years old.2

Key insights
A detailed analysis of COVID-19 reveals multi-
ple pandemics across different waves, each
with its own characteristics and determining fac-
tors. Highly relevant at the pandemic’s onset,
when the first state of emergency was declared,
were factors such as temperature, which are
significant in epidemiological studies. However,
after mobility restrictions and widespread vacci-
nation processes were implemented, economic
conditions became more significant. Regional
variations and the importance of the geographic
scale in the analysis highlight the need for tai-
lored and context-specific responses, ensuring
more effective and efficient management of the
health crisis.
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The methods used in these studies include spatial
exploratory techniques, basically through disease map-
ping and the identification of spatial clusters. In addi-
tion, the studies tended to estimate spatial models to
analyse the determinants of the spatial pattern
observed (Elhorst, 2014), all of them implicitly consider-
ing the presence of spatial autocorrelation in the esti-
mation (for a review of papers using spatial techniques,
see Fatima et al., 2021).

For the Spanish case and with special emphasis on
the spatial component of the pandemic, Maza and Hierro
(2022) focused on the distribution of COVID-19 among
municipalities in Madrid during the first wave of the pan-
demic, finding that those territories with more mobility as
well as those with a higher level of tourism had a higher
incidence. Along the same line, Hierro and Maza (2023)
suggested an adapted spatial Markov chain methodol-
ogy that involves estimating both an unconditional and a
conditional spatial contagion index. With respect to the
primary drivers of spatial contagion, the authors con-
cluded that elevated intermunicipal mobility before con-
finement served as a catalyst for the development of
positive spatial dependence in subsequent cumulative
incidence rates. Additionally, the conditional spatial con-
tagion index illustrated that densely populated municipal-
ities with sizable immigrant populations were the most
susceptible to spatial contagion dynamics during the
early stages of the pandemic in Madrid.

Gull�on et al. (2022) found evidence for Madrid that
there is an unequal distribution of COVID-19 incidence
by neighbourhood deprivation (March 2020–September
2021), whereas Gonz�alez et al. (2022) obtained evi-
dence that there is spatial correlation in the distribution
of the incidence of the pandemic across Spanish regions
and that both socioeconomic variables as well as those
of spatial interaction are significant. P�aez et al. (2021)
used spatial SURE models to investigate Spanish prov-
inces from March to April 2020 and concluded that a
higher incidence of the disease is associated with a
higher GDP per capita and the presence of mass transit
systems, lower population density, and a higher percent-
age of older adults. Romero and Arroyo (2022) found
that in the period March 2020–January 2021, the pan-
demic was especially suffered in urban areas with higher
population density and higher levels of contamination,
and Briz-Red�on and Serrano-Aroca (2020) failed to
obtain consistent evidence of a relationship between the
accumulated number of cases in the provinces of Spain
and temperature values between February and March
2020. Orea and Álvarez (2022) investigated the spread
of COVID-19 throughout the provinces of Spain and
evaluated the efficacy of the nationwide lockdown
imposed on 14 March 2020 in combating the pandemic.
Researchers accomplish these goals by employing a
spatial econometric model, which offers an alternative
approach to the widely used, reproduction-based
models found in epidemiological literature.

2.2 | Main determinants of the diffusion
of COVID-19

Because of the heterogeneous geographical spread of
COVID-19, researchers from all over the world have
been investigating the spatial distribution of the disease
in conjunction with its main determinants. In accor-
dance with the findings of the literature succinctly sur-
veyed in Section 2.1, we can classify the main
determinants into five dimensions, namely, climatology,
demographic factors, agglomeration, connectivity, and
economic factors.

2.2.1 | Climatology

Viruses transmit more easily depending on climate con-
ditions, such as average temperatures and rainfall
(Dalziel et al., 2018). Previous studies have suggested
a correlation between weather and the COVID-19 pan-
demic that is similar to that of other viral infectious dis-
eases, such as influenza (Ficetola & Rubolini, 2021;
Ma, Lai, et al., 2020; Ma, Zhao, et al., 2020; Tosepu
et al., 2020). According to Wang et al. (2020) and
Sajadi et al. (2020), the climatic characteristics of the
areas in which the incidence of COVID-19 was higher
were average temperatures between 5�C and 11�C
and relative humidity levels between 50% and 70%.
According to this literature, an increase in temperatures
and air humidity levels associated with the arrival of
spring in the northern hemisphere could significantly
reduce the transmission and spread of the coronavirus.
In contradiction, other studies have found that meteoro-
logical conditions may not be associated with COVID-
19 in terms of absolute humidity (Shi et al., 2020) or
temperature (Jamil et al., 2020; Xie & Zhu, 2020).
According to the authors, the previous results that
showed evidence for a correlation between meteorolog-
ical factors and COVID-19 transmission were likely to
be an artefact, reflecting the pathways of the spread;
that is, several of the previous studies in favour of the
role of climate were performed considering only meteo-
rological factors, without accounting for nonmeteorolo-
gical variables that might also be decisive.

2.2.2 | Demography

Initially, higher incidences were attributed to ageing.
Several studies have reported age and underlying
diseases as the most important risk factors for death
by COVID-19 (Liu et al., 2020; Morley & Vellas, 2020;
Onder et al., 2020). Iyanda et al. (2022) conducted a
broad study in the United States to explore the
health and social determinants of the spread of
COVID-19 and found that age plays a central role in
determining the spread over all the space. Because
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Spain has for decades been ranked among the top
10 countries in the world for highest life expectancy,
this is an issue to consider in the Spanish case. It is
possible that the ageing population in Spain could be
behind the remarkably hard impact of the disease in
this country.

2.2.3 | Agglomeration

Population density was accounted for in most of the
studies analysing the factors that influenced the spread
of COVID-19 with the observation that it is a telling fac-
tor for risk exposure (Ahmadi et al., 2020; Bayode
et al., 2022; Bhadra et al., 2021; Coccia, 2020;
Ehlert, 2021; Gonz�alez et al., 2022; Mollalo et al., 2020;
Pequeno et al., 2020; Wong & Li, 2020). Large and
dense European cities were regarded as the focus of
the spread of the coronavirus, and most of the literature
has concluded in this direction. Even though density
may have shaped the early outbreaks, it did not seem
to influence its related mortality over time (Carozzi
et al., 2020). For instance, P�aez et al. (2021) found a
negative influence of population density in Spanish
provinces.

2.2.4 | Connectivity

Linked to large agglomerations, we may think that it is
not only relevant to consider the influence of population
density but also its greater connectivity (Coelho
et al., 2020). Highly connected cities were among the
first to be hit by the virus. This connectivity can take
place with extra-regional agents as well as internally.
From an extra-regional connectivity perspective, the
World Tourism Organization (2019) reported that Spain
was the country with the second highest international
tourist arrivals in the world in 2019. For this reason, we
consider that the entry of tourists can be extremely sig-
nificant in trying to estimate the causes of COVID-19
diffusion in Spain (in line with Maza & Hierro, 2022). As
for connectivity within a region or even in cities, public
transportation has been related to the spread of conta-
gious diseases (Wang et al., 2020). P�aez et al. (2021)
reported that the presence of mass transit systems in a
province implies a clear positive impact on the diffusion
of the disease.

2.2.5 | Wealth

A further determinant of the diffusion of the virus is eco-
nomic wealth, although there is no consensus in the
sign of its effect. Wealthier regions may present a lower
diffusion of the illness because they tend to concentrate
more activities that produce nontraded goods, which

would imply that wealthier individuals remain more
active even during lockdowns. In contrast, infectious
diseases would tend to have a greater effect on the
poorest neighbourhoods because they face more chal-
lenges in maintaining social distancing than wealthier
individuals and have less access to resources to
reduce the chances of infection. In addition, poorer indi-
viduals may lack access to medical services and basic
resources for living. Less wealthy areas also have a
higher proportion of workers in manual occupations
who cannot telework and have more difficulty in com-
plying with shelter-in-place orders (Almagro & Orane-
Hutchinson, 2020). Accordingly, Baena-Díez et al.
(2020) obtained evidence of a negative relationship
between income level and COVID-19 incidence for the
different districts in the city of Barcelona. Mena et al.
(2021) similarly found that mortality rates of young peo-
ple in Chile were lower in high-income municipalities
than in low-income municipalities. However, greater
economic capacity could promote greater physical
mobility, a factor that spreads the virus. As highlighted
by Gong and Zhao (2022), COVID-19 in some
European countries was imported by comparatively
wealthy travellers, such as Chinese entrepreneurs and
ski tourists from the Alps. In this respect, Amdaoud
et al. (2021) obtained a positive and significant relation-
ship in European regions between the level of GDP per
capita and the level of COVID-19 death rates.

Although not considered in our paper,3 other deter-
minants that could explain the uneven geography of the
COVID-19 pandemic are institutional factors, for
instance, formal institutional quality across European
regions may imply different capacities to effectively
implement measures to prevent and combat the
pandemic; sociological factors, such as the tendency
to meet with friends and family in celebrations
(Rodríguez-Pose & Burlina, 2021) and the vaccination
level in the last three waves; and differences in health
systems that can influence the capacity to detect and
treat outbreaks (Ahmed et al., 2020; Bauer et al., 2020;
Liang et al., 2020).

3 | DATA AND DESCRIPTIVES: THE
GEOGRAPHY OF SIX WAVES

3.1 | Data and variables

3.1.1 | Incidence of the COVID-19
pandemic

The data on the incidence of the COVID-19 pandemic
were taken from the Instituto de Salud Carlos III.4 We
used two variables: number of detected cases (positive
diagnosis of active infection) and the number of
deaths.5 For both variables, the data were computed
over 100,000 inhabitants. Although data on
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hospitalised cases and emergency room admissions
were also available, we did not use that data in this
analysis because the results were very similar to those
offered by the two variables finally included. Detected
cases consider the number of reported cases con-
firmed with a positive diagnostic test for active infection
(PDIA) as established in the strategy for early detec-
tion, surveillance, and control of COVID-19 and the
cases notified before 11 May 2020 that at any time
required hospitalisation, admission to the ER, or
resulted in death with a clinical diagnosis of COVID-19
according to the current case definitions.

The dates that were considered for the detected
cases included the date of diagnosis and, in its
absence, the date of declaration to the community (see
Appendix S1 for a more detailed explanation of the key
date). For deaths, the date of death was considered.
The data were gathered for each wave, using the
following schedule:

• 1st wave: from 01/03/2020 to 26/06/2020 (peak
26/03)

• 2nd wave: from 27/06/2020 to 10/12/2020 (peak
4/11)

• 3rd wave: from 11/12/2020 to 16/03/2021 (peak
27/01)

• 4th wave: from 17/03/2021 to 22/06/2021 (peak
26/04)

• 5th wave: from 23/06/2021 to 14/10/2021 (peak
27/07)

• 6th wave: from 15/10/2021 to 10/03/2022 (peak
21/01)

All the information is provided at the provincial level
for Spain, spanning from February 2020 to March 2022.
Because the restrictions and health policies related to
the pandemic evolved along the waves, we briefly
recall them.

The first case of COVID-19 in Spain occurred on
31 January 2020 and involved a German tourist who
was on vacation in the Canary Islands. After that initial
case, more began to appear, leading to the declaration
of the start of the pandemic in Spain on 1 March 2020
(the beginning of what we define as the first wave). A
few days later, the state of emergency was declared
(14 March 2020), and the population was placed under
lockdown. In mid-April, discussions about the de-
escalation began, initiating a process in which time
slots were defined for the outing of children, the elderly,
and so on. On 21 June, what was referred to as the
“new normality” began, in which restrictions on move-
ment throughout Spain were lifted, although a minimum
distance of one and a half metres between individuals
and mandatory mask usage were required. The second
wave was marked by a new increase in infections start-
ing in September and the imposition of a new nation-
wide state of alarm at the end of October, which

included nighttime curfews and regional border clo-
sures. During the third wave, the state of emergency
was still in place, but vaccination campaigns were grad-
ually initiated. The fourth wave was characterised by
the end of the second state of alarm in early May 2021,
when 10% of the country’s population had been vacci-
nated. The fifth wave progressed much like the previ-
ous one, without restrictions except for the use of a
mask in certain places (hospitals and medical centres
and public transportation), reaching 70% of the popula-
tion vaccinated in September 2021 (even with three
doses for immunocompromised patients and those
older than 70). The last wave was characterised by an
increase in both the number of cases and deaths, pri-
marily due to the appearance of a new virus variant
(Omicron), as well as the continued use of masks as a
protective measure.

Finally, Spain was unlike other countries with a
more homogeneous territorial management of the pan-
demic. Following a period of recentralisation of the
state-level health policy in terms of pandemic manage-
ment during the initial state of alarm in Spain, a process
of co-governance with the autonomous communities for
the transition to a new normality began in May 2020.
This process led to regional governments adopting dif-
ferent responses in terms of the imposed restrictions
(as exemplified by the contrast between greater
leniency in the case of the autonomous community of
Madrid compared to more restrictive measures in the
region of Catalonia).6

3.1.2 | Determinants of the COVID-19
pandemic

Based on our analysis of the literature, we chose the
variables proxying for the five dimensions of factors that
could be relevant in explaining the incidence of COVID-
19.

For climatology, we selected the variable of aver-
age temperature (Temperature)7 taken from the Agri-
Cast Resources Portal of the Joint Research Centre of
the European Commission.8 To proxy for the demo-
graphic structure of the province, we considered the
share of people over 70 years old (Pop_70), while pop-
ulation density, Pop_dens, was considered for the exis-
tence of agglomerations of population (both variables
from National Institute of Statistics). Gross domestic
product per capita (GDPpc) was chosen to proxy the
economic wealth of each province (taken from INE).
Finally, the dimension associated with connectivity
was captured from three different perspectives: intraur-
ban mobility, passengers’ mobility and freight mobility.
In the first case, we used a variable that considers
whether the province has a mass transit system (Sub-
way) in any of the cities in the province. In the second
case, the number of travellers staying in hotels was
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selected (Travellers), while in the last case, we used
information about international trade (exports
+ imports) over GDP (Comin_gdp), extracted from the
Institute of Foreign Trade.

Table S1 in the Appendix online presents the def-
inition, frequency and source of each variable.
Although many variables vary across the different
waves, the ones referring to the GDP and population
structure are maintained throughout the analysis.9

Appendix S1 also offers the maps of the spatial dis-
tribution of the variables selected as potential
determinants.

3.2 | Description of the COVID-19
incidence in Spanish provinces

Here, our first focus is on the analysis of the evolution
of the incidence of the COVID-19 pandemic (case and
death rates; that is, number of cases and deaths per
100,000 inhabitants, respectively) across the six waves
in Spain. Temporarily speaking (see Tables 1 and 2),
there are some substantial differences along the
waves.

The first wave presents an interestingly low case
rate, probably because of limited ability to detect the
pathogen. Afterwards, incidence grew between waves
except in the fourth wave, which presents an intrigu-
ingly low incidence that corroborates the effectiveness
of vaccines as well as the restrictions still imposed.
Finally, during the last wave, the highest peak ever
reached throughout the entire pandemic in Spain was
observed, probably due to more relaxed restrictions
and Christmas celebrations and due to the appearance
of an Omicron virus variant.

In relation to the death rate, the greatest value
occurred during the first wave, although a high magni-
tude was also observed in the second and third waves.
Likewise, from the fourth wave, a very pronounced
change in the level was observed, with a lower number
of deaths throughout the period (going from a value of
69.83 deaths per 100,000 inhabitants in the first wave
to a value of 11.25 in the fourth). Similarly to the num-
ber of cases, deaths also grew in the fifth and, espe-
cially, in the sixth wave, although the impact of the

vaccines significantly reduced the magnitude of
the problem (if we take into consideration the number
of deaths in relation to the number of cases).

4 | EXPLORATORY SPATIAL ANALYSIS
OF COVID-19 IN SPAIN

We turn now to analyse the regional distribution of the
incidence of COVID-19 in the provinces in Spain for
the six consecutive waves. For the case rate (Figure 1),
in general terms, we observe that the pattern of the
spatial distribution of the illness had important changes
across time. The correlation matrix across the case rate
in the six waves (Figure 2) reinforces the conclusion of
the absence of high correlations in the incidence across
waves, with the third wave as the one with the least
similarity compared to the rest.

In looking at the quantile maps of the death rate
(Figure 3) as well as the correlation across waves
(Figure 4), there seems to be a lower homogeneity
between neighbouring provinces than for the case rate,
which could be because the contagion of the disease is
due to a process of transmission between human
beings (and, therefore, their proximity is decisive). Sec-
ond, the correlation across waves is higher than those
observed in terms of the number of cases, indicating
more similarities in the spatial distribution between
waves in deaths than in cases.

All in all, the territorial patterns for both case and
death rates point to a potential presence of a positive
spatial autocorrelation process among different prov-
inces10: In all six waves of COVID-19, provinces with

TAB LE 1 Temporal evolution of COVID-19 in Spain. Case rate.

Variable Obs Mean Min Max

First wave incidence 50 564.822 69.492 1722.071

Second wave incidence 50 3241.663 854.351 5539.773

Third wave incidence 50 3025.169 814.921 5549.373

Fourth wave incidence 50 1094.762 231.113 2408.844

Fifth wave incidence 50 2395.46 1490.866 4015.11

Sixth wave incidence 50 13,685.67 5448.053 21,489.65

TAB L E 2 Temporal evolution of COVID-19 in Spain. Death rate.

Variable Obs Mean Min Max

First wave death 50 69.83 4.07 261.27

Second wave death 50 55.00 8.84 147.72

Third wave death 50 58.90 11.40 145.13

Fourth wave death 50 11.25 1.84 27.98

Fifth wave death 50 13.75 4.94 37.71

Sixth wave death 50 34.41 10.84 81.15
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high COVID incidence were surrounded by provinces
with high incidence, while provinces with low incidence
were surrounded by provinces with low incidence. This
pattern was tested with the global Moran’s I test
(Tables 3 and 4), with the use of two weight matrices:
one based on the first-order physical contiguity criterion
and the other based on the inverse of the distance that
separates the centroids of each province.11

Starting with the case rate, we reject the null
hypothesis of no spatial autocorrelation in all the

waves, and therefore confirm that, as shown in
the maps, the COVID-19 pandemic followed a clear
pattern of positive spatial autocorrelation (in line with
the one obtained by Gonz�alez et al., 2022, for Spanish
regions and P�aez et al., 2021, for Spanish provinces).
Additionally, the autocorrelation seems to be more
intense when the concept of neighbourhood is
extended and the inverse distance matrix is used
instead of the first-order physical contiguity matrix, a
fact that reinforces the amplitude of the diffusion.

F I GURE 1 Maps of the case rate of COVID-19 in Spanish provinces by waves.

F I GURE 2 Correlation matrix
among case rates by waves.

492 MORENO and VAYÁ
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Likewise, the autocorrelation is more intense in the last
wave (where the case rate is also higher) in which there
seems to be a division of the country into two parts: a
high number of cases in the northeast and fewer cases
in the southwest.

When the analysis was repeated for the death rate,
the null hypothesis of no spatial autocorrelation is

rejected in practically all the scenarios (apart from the
fifth wave) but with a test value lower than for the case
rate. Likewise, while the autocorrelation was much stron-
ger in the last wave for the case rate, the greatest spatial
association for deaths was observed in the first wave.

Despite its significance, the Global Moran’s I test
has some limitations because it only reveals a global

F I GURE 3 Maps of the death rate due to COVID-19 in Spanish provinces by waves.

F I GURE 4 Correlation matrix
among death rates by waves.
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spatial behavioural pattern, even though a variety of
local spatial patterns can arise. To check for this limita-
tion, we also performed a local wave-by-wave analysis
(Figures 5 and 6). The local indicators of spatial auto-
correlation were applied using a weight matrix based
on the inverse of the distance between the centroids of
each pair of provinces, which presents the advantage

of allowing the analysis to take the islands into
consideration.

During the first and second waves, centric and
northern provinces represented clusters with the high-
est values of COVID-19 incidence, whereas southern
provinces were low-value clusters. In the third wave,
the clusters with the highest incidence were in the
centre-eastern provinces, and only in the north in
the fourth wave, which changed to the north-eastern
area in the fifth and sixth waves, with southern prov-
inces as well as Galicia (northwestern region) being
clusters of low cases. In the sixth wave, the number of
clusters reached its highest point, totalling 30, with only
one spatial outlier. Therefore, in the latest wave, the
spatial heterogeneity was quite pronounced and in line
with the highest value of the Moran’s I test. All in all,
COVID-19 expanded unevenly between Spanish prov-
inces over the six observed waves. Similar conclusions
were obtained in the case of the death rate (Figure 6),
although the number of provinces that did not end up
showing a significant autocorrelation scheme is greater
than in the case rate, a result that is also in line with the
lower intensity of autocorrelation at a global level
obtained with the Moran’s I test.12

5 | DETERMINANTS OF COVID-19 IN
SPANISH PROVINCES: METHOD AND
MAIN FINDINGS

We turn now to estimate a model in which the depen-
dent variable is one of the proxies for the incidence

TAB LE 3 Moran’s I test (standardised). Case rate.

Z-Moran (p value)
Binary
contiguity

Inverse
distance

First wave incidence 5.22 (0.002) 5.20 (0.002)

Second wave incidence 5.04 (0.002) 6.02 (0.002)

Third wave incidence 4.17 (0.002) 5.55 (0.002)

Fourth wave incidence 5.19 (0.002) 3.57 (0.004)

Fifth wave incidence 4.63 (0.002) 5.43 (0.002)

Sixth wave incidence 8.74 (0.002) 10.11 (0.002)

Note: p value in brackets.

TAB LE 4 Moran’s I test (standardised). Death rate.

Z-Moran (p value) Binary contiguity Inverse distance

First wave death 5.06 (0.002) 4.40 (0.008)

Second wave death 2.60 (0.016) 3.09 (0.01)

Third wave death 1.80 (0.052) 3.45 (0.008)

Fourth wave death 3.03 (0.008) 3.59 (0.006)

Fifth wave death 1.54 (0.064) 0.97 (0.150)

Sixth wave death 3.44 (0.006) 3.57 (0.004)

Note: p value in brackets.

F I GURE 5 Local Moran’s I. Case rate by waves. Inverse distance matrix.
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(case and death rates) and the explanatory variables
are their potential determinants as defined in Section 4.
In addition, a spatial lag of the dependent variable is
included (WIncidence), which was computed using a
spatial weight matrix based on the inverse of the dis-
tance between centroids. The decision to include a
spatial spillover proxied by the lag of the dependent
variable in the proposed initial model has both theoreti-
cal and empirical justifications. Theoretically, in the
case of COVID-19 transmission, even though the initial
spatial distribution of the illness incidence might be ran-
dom, the virus outbreak would result in the creation of a
cluster consisting of the province of origin of the virus
and its neighbouring areas. Empirically, the results of
the spatial exploratory analysis presented in Section 4
allow us to conclude in favour of a spatial dependency
pattern in almost all waves for both variables (case rate
and death rate) in the case of the Spanish provinces.
Consequently, we estimate the following model:

Incidencei ¼ β0þβ1Temperatureiþβ2Pob_70i
þβ3Pob_densiþβ4GDPpciþβ5Subwayi
þβ6Travellersiþβ5Comin_gdpi
þρWIncidenceiþui

where i refers to the Spanish provinces in one wave,
and we thus run six different regressions, one for each
wave. This spatial autoregressive lag model is esti-
mated using a maximum likelihood method that takes
explicit account of the endogeneity problem generated

by the inclusion of the spatial lag of the dependent vari-
able (Anselin, 1988).

Tables 5 and 6 present the results of the estimation
for the case and death rates, respectively. In all waves,
the results are presented both including and excluding
the temperature variable because depending on the
waves, its inclusion diminishes the significance of other
variables (which is especially evident in the case of the
first wave). From both tables, the following general con-
clusions can be drawn. First, the selected variables
have a greater capacity to explain the case rate than
the death rate (greater model fit for the former). Sec-
ond, when comparing the goodness of fit between
waves, the fourth wave shows the worst fit for the case
and death rates,13 with the fifth wave also having a bad
fit for the death rate. Conversely, for both variables, the
best fit occurs in the last wave. All the selected explan-
atory variables are relevant at least in one estimation.

The spatial lag of the case rate (Table 5) is consis-
tently significant even at the 1% level in most waves
(the significance of spatial lag was also found by
Gonz�alez et al., 2022, for Spanish regions; P�aez
et al., 2021, for Spanish provinces; Baena-Díez
et al., 2020, for districts in the city of Barcelona; and by
Maza and Hierro [2022] for municipalities in Madrid). Its
highest magnitude is observed in the sixth wave, which
is when the highest spatial heterogeneity in the distribu-
tion of the case rate is observed, with the highest value
of the univariate Moran’s I statistic and the highest
number of detected spatial clusters, a total of
30 provinces.

F I GURE 6 Local Moran’s I. Death rate by waves. Inverse distance matrix.
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The spatial lag of the death rate (Table 6) is also
significant but only in the first four waves. This would
be in line with the result obtained from the univariate
analysis in Section 4 that detected spatial randomness
in the distribution of the number of deaths in the fifth
wave (when the number of significant spatial clusters
equalled the number of spatial outliers). However, in
the sixth wave, global univariate spatial dependence
was detected; thus, the reason for the nonsignificance
of the spatial lag coefficient in this wave could be the
inclusion of the GDPpc variable, which shows a spatial
distribution almost identical to that of the death rate.14 If
compared with the case rate model, the estimated
parameter of the spatial lag in the case of the death
rate is also lower in magnitude. That is, spatial
dependence seems to have a greater role in terms of
incidence transmission than for deaths (a result
consistent with the conclusions of the univariate
analysis in which the case rates exhibited higher Mor-
an’s I values compared to those observed for the death
rates).

As for the determinants of the incidence of COVID-
19, the Temperature variable is relevant in the first,
third, and fourth waves, both for cases and deaths,
although it is in the first wave where the coefficient’s
magnitude and significance are greater, always with a
negative sign in line with the literature (for example,
P�aez et al., 2021). The inclusion of the Temperature
variable (when relevant) reduces the magnitude of the
spatial lag, showing that the spatial pattern of
the dependent variable is partly picked up by the spatial
pattern of the Temperature variable. Additionally, the
inclusion of this variable in the first wave (when
the coefficient associated with the variable is the high-
est) absorbs most of the explanatory capacity of the
other determinants, because POp_dens, GDPpc, or
Subway lose their significance when Temperature is
included. We thus conclude that the Temperature vari-
able (relevant in epidemiological studies) may have
contributed to a fast spread of the virus during the first
wave in which the spatial pattern of incidence and
death variables could be the result of several months of
virus transmission (before the state of alarm and, there-
fore, without protective measures).

The Percentage of population over 70 years old
does not seem to have been particularly relevant for
any of the two variables proxying for the incidence of
the illness, except in the case of the fourth wave. In
such a case, the negative sign of the coefficient is
in line with P�aez et al. (2021) for Spanish provinces but
contrasts with the positive sign of the “average age”
variable used by Maza and Hierro (2022) for the munic-
ipalities in Madrid. In this fourth wave, it was almost the
only variable (in addition to the spatial lag of the depen-
dent variable) that proved to be relevant. This result
could be explained by the fact that the vaccination pro-
cess was more extensive in the fourth wave, with 10%

of the Spanish population having been vaccinated in
May. Because vaccination priority was mainly based on
age, this could explain both the relevance and the sign
of this variable (a higher share of the population over
70, who were more vulnerable, would result in a larger
population rate protected by vaccines and correspond-
ing fewer cases and deaths).

The Pop_dens variable was especially relevant and
negative in the fifth wave for the case rate and in the
second wave for the death rate. The negative sign goes
against the expectation that contact rates are higher in
more dense areas and, consequently, positively corre-
lated with the transmission of the virus (as detected by
Gonz�alez et al., 2022, for Spanish regions or Maza and
Hierro [2022] for municipalities in Madrid). A potential
explanation is in line with what was obtained in other
works, such as P�aez et al. (2021), which was also for
Spanish provinces, in which they argued that this nega-
tive correlation is due to the so-called risk compensa-
tion, that is, a situation in which people adapt their
behaviour according to the perceived level of risk and
become more careful when the perceived risk is higher,
as in dense areas, and vice versa.

The level of GDPpc in each province is mainly rele-
vant and positive when explaining both incidence rate
indicators, with special relevance in the fifth and sixth
waves (with the only exception of a negative sign in the
third wave). Especially in the sixth wave, the spatial dis-
tribution of GDPpc is very similar to the spatial distribu-
tion of the incidence rates. The positive sign of this
variable contradicts the negative sign obtained by
Baena-Díez et al. (2020) in the first wave for the dis-
tricts of Barcelona or by Maza and Hierro (2022) for
municipalities in Madrid (that is, very small geographic
scales) but is consistent with the positive sign obtained
for this same variable for larger areas, such as Spanish
provinces in P�aez et al. (2021) or with the negative sign
of the unemployment rate variable for Spanish regions
detected by Gonz�alez et al. (2022). This positive rela-
tionship would indicate that wealthier provinces may
remain more active, in relative terms, even during a
lockdown due to the presence of more non-traded
activities. Another explanation relates to the fact that
wealthier provinces can be part of global city networks
with a greater “potential to be further ahead in the tra-
jectory of the pandemic” (P�aez et al., 2021, p. 399). In
addition, the higher relevance of this variable in the last
two waves suggests that during a period of greater vac-
cination and normality (fewer restrictions), one main
reasons for a higher number of cases and deaths could
be a greater economic activity (resulting in increased
internal movement of people, higher commuting, and
increased activity in certain service sectors).

As for the role of connectivity on the diffusion of the
virus, the Subway variable has proven to be relevant
only in some waves, particularly the fifth one, for both
dependent variables. The sign is generally positive,

MORENO and VAYÁ 497
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which is in line with what was found by P�aez et al.
(2021), inferring that thanks to higher vaccination rates
(with 70% of the population vaccinated in October
2021), the higher internal mobility in public transporta-
tion could explain a higher transmission and risk of
death. This result would point to public transportation
as potential hotspots for social contact. As for the
across-provinces connectivity, the Travellers variable is
not particularly significant in any wave, except again in
the fifth wave for the number of cases and with a posi-
tive sign, in line with what was found by Maza and
Hierro (2022). Finally, the Comin-GDP variable proxy-
ing for freight mobility is the least relevant variable,
being significant and negative only in the first wave for
the case rate and in the sixth wave for the death rate.
The provinces with the main ports for international
goods—C�adiz, Valencia, Barcelona, Murcia, Huelva,
Bilbao, Tarragona and Las Palmas—and the border
provinces were the ones that showed lower incidences
in the first wave. That is because the majority of cases
were concentrated in the central part of the country,
thereby providing an explanation for the negative sign.

6 | DISCUSSION

This paper has been focused on the incidence of
COVID-19 in the Spanish provinces along the six
waves of the pandemic and has two main objectives.
First, we compared the uneven spatial distribution of
the incidence, both in terms of the number of cases and
the number of deaths per 100,000 inhabitants, across
the six waves considering exploratory spatial tech-
niques. Second, we studied the main determinants of
the diffusion of the pandemic through the estimation
of spatial models, while analysing to what extent they
experimented a different role across waves.

As for the spatial distribution of the pandemic, we
obtained a clear generalised pattern of positive spatial
autocorrelation between nearby provinces, both in
terms of cases and deaths, although their intensity was
higher in the former. This points to the incidence of the
COVID-19 as an interprovincial contagion process. At a
local level, it seems that COVID-19 expanded unevenly
between Spanish provinces over the six observed
waves. In particular, the southern provinces appear as
clusters with low values as far as the number of cases
is concerned, while the opposite occurs with the central
provinces in the first wave and the northeastern prov-
inces in the last. We also observe that the spatial asso-
ciation found in the distribution of the incidence of the
illness is more intense when the concept of neighbour-
hood is extended, reinforcing the extent of the diffusion.

As for the evolution in time, we observe that the
pattern of the spatial distribution of the case and death
rates revealed important changes along time, with the
correlation across waves being higher in terms of

deaths. As for the determinants of the incidence of the
pandemic, at its onset, when the first state of emer-
gency was declared after a previous incubation period
of the virus in the preceding two months, a factor such
as temperature—which is significant in epidemiological
studies—was highly relevant. However, after the
implementation of mobility restrictions and the wide-
spread vaccination process, variables such as GDP
became more significant. This explains how increased
economic activity (associated with lower unemploy-
ment rates and greater population mobility) could lead
to a higher number of cases and deaths. In addition,
during the initial stages of the vaccination process
when specific groups, such as the elderly (over 70),
were prioritised, provinces with a higher rate of these
specific groups had a lower number of infections and
deaths because a larger proportion of vulnerable indi-
viduals had been vaccinated. Although some of these
findings are in line with previous evidence for Spain
from other authors, this is especially the case in those
papers using regional or province data and not for
other, more disaggregated levels of analysis. It seems,
therefore, that the geographical scale used is impor-
tant, and general statements cannot be made without
considering the level of geographical disaggregation
used. Because Spain’s settlement pattern resembles
many other southern European countries such as Italy,
France, Portugal, and Greece, our findings could be
expanded to other settings beyond Spain in a
generalisable way.

Our findings on the evolution of COVID-19 are
deeply intertwined with the theory of diffusion, which
seeks to understand how infectious diseases spread
through populations and across geographic territories.
Initially, during the onset of the pandemic, transmission
patterns were influenced by factors commonly associ-
ated with infectious diseases, such as environmental
conditions. However, the spatial patterns of COVID-19
incidence were far from static; they exhibited a remark-
able degree of dynamism over time. As governments
and public health authorities implemented interventions
to curb transmission, such as lockdowns, social dis-
tancing measures, and mask mandates, the spatial
dynamics of the pandemic began to shift. Areas that ini-
tially experienced lower incidence rates may have
become new hotspots as the virus found opportunities
to propagate within vulnerable populations or through
social networks. That is, mobility restrictions, social dis-
tancing measures, and mask mandates disrupted tradi-
tional modes of disease transmission, leading to a
reconfiguration of spatial patterns as transmission rates
fluctuated in response to varying levels of compliance
and enforcement. The emergence of new variants of
the virus further complicated the spatial dynamics
of COVID-19 transmission. Variants with increased
transmissibility could lead to shifts in incidence pat-
terns. The dynamic interplay between viral evolution
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 17455871, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1745-5871.12669 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [13/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and human behaviour underscored the need for adap-
tive public health responses that could quickly identify
and contain emerging hotspots of transmission.

7 | CONCLUSION

All in all, we can conclude that we cannot refer to a sin-
gle pandemic, but rather many pandemics in waves.
Significant differences in the spatial distribution of the
number of cases and deaths across the six waves
demonstrate that each wave has unique characteris-
tics. The low correlation between waves, especially in
the number of cases, and the changes in their deter-
mining factors among the different waves further rein-
force this idea.

Similarly, just as we cannot refer to a single pan-
demic, we cannot draw homogeneous conclusions at
the national level. The notable regional differences
detected in the spatial distribution of the pandemic,
which conceal behind them interregional variations in
climatological issues, economic dynamism, sectoral
specialisation, and socio-health resources, suggest the
need for a subnational scale response. Furthermore,
the positive and significant spatial autocorrelation
detected among neighbouring provinces supports the
implementation of responses at the regional level. How-
ever, this does not preclude the adoption of specific
measures at the local level when necessary.

In addition, the geographic scale used in any analy-
sis of the pandemic is crucial in determining the positive
or negative influence of certain factors. For instance, at
the provincial level, a positive influence of GDP per
capita on the number of COVID-19 cases and deaths
has been detected in our study. In contrast, other stud-
ies applied to Spain at a more local level (districts within
the same city or municipalities) have found the opposite
effect. This indicates how the relationship between
socioeconomic factors and the spread of the virus
depends on the level of spatial disaggregation in the
analysis.

Moreover, the main determinants of the incidence of
the COVID-19 depend on the stage of the pandemic
we are in. Traditional factors of geographic virus
spread, such as the temperature of the area, seem to
be particularly important at certain stages of a pan-
demic, especially at its onset. In contrast, at more
advanced stages, when the vaccination process is fur-
ther along, variables such as the economic dynamism
of the area may become more relevant. This shift in
determining factors throughout the different stages
underscores the need for flexible and adaptive
approaches in pandemic management, capable of
responding to changing conditions and diverse regional
contexts.

In conclusion, the evolution of COVID-19 has exem-
plified the dynamic nature of infectious disease

diffusion, with spatial patterns of incidence shifting in
response to a complex interplay of factors, including
human behaviour, public health interventions, viral evo-
lution, and vaccination efforts. Understanding these
dynamics is crucial for devising effective strategies to
mitigate the spread of the virus and minimise its impact
on populations worldwide. While nothing can be done
with respect to the meteorological conditions and little
can be done about agglomeration characteristics,
regional governments can respond to the pandemic
with the provision of an efficient vaccination procedure
and other measures adapted to the characteristics of
the region under their government.
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ENDNOTES
1 We give this figure in 2022 since it is the end of the period consid-
ered in this paper.

2 Other papers that have followed the specific purpose of investigat-
ing the spatial distribution of the disease through the consideration
of spatial techniques have focused on different countries and cities,
such as Murugesan et al. (2020) in India, Mota et al. (2021) in
Brazil, Guliyev (2020) for China, and Maiti et al. (2021) for the
United States, among others.

3 In this paper, these other factors were not considered, not only
because of the lack of data at the provincial level but also because
we do not expect them to have a significant influence since there is
not variability across Spanish provinces in the level of institutional
quality, social factors, and vaccination levels.

4 Instituto de Salud Carlos III: https://cnecovid.isciii.es/covid19/#
documentaci%C3%B3n-y-datos (last access 24 November 2022).

5 As pointed out by Karlinsky and Kobak (2021) and Mathieu et al.
(2020), comparing the impact of the COVID-19 pandemic among
countries or across time is difficult since the reported number of
cases and deaths can be strongly affected by testing capacity and
reporting policy. Instead of deaths, excess mortality (increase in
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all-cause mortality relative to the expected mortality) is widely con-
sidered as a more objective indicator of COVID-19 deaths
(Bartoszek et al., 2020). However, data on excess mortality is not
available at the provincial level in Spain (we only found the infor-
mation at the national level). In any case, we would expect that the
main determinants of the number of deaths would not be highly dif-
ferent from the determinants of excess mortality across provinces
in the same country, given that the policies to control the pan-
demics were centralised.

6 While regional discretion in pandemic management may have
influenced its varied evolution, according to Biglino Campos
(2021), it has not been proven that the territorial structure or the
distribution of competencies corresponding to each form of state
has been a determining factor in the success or failure in the fight
against the pandemic. Thus, the results do not seem to have dif-
fered much between unitary states, such as France, and federal
states, such as the Federal Republic of Germany.

7 Additionally, we selected the variable “rainfall”, although it was not
ultimately chosen due to showing lower correlation with COVID-19
incidence compared to the temperature variable.

8 https://agri4cast.jrc.ec.europa.eu/dataportal/ (last access
24 November 2022).

9 The variables referring to the GDPpc and population structure
remain constant throughout the six waves. There were different
reasons behind this procedure. First, because at the time of con-
ducting the research, there was not sufficiently updated information
available for the studied period at a provincial level. This led us to
keep the variables constant throughout the six waves. Second,
because the waves refer to periods of time that do not cover the
whole year but only some months and they refer to different years,
whereas the data refer to the whole year. Consequently, it was not
possible to get the specific data of such variables for each wave.
Third, these variables were not expected to present substantial
changes in their spatial distribution along the 2 years under consid-
eration; thus, we expect that the influence this may have had
should be minimal.

10 For a detailed explanation of spatial dependence and its treatment
in a regression model, see Anselin (1988), Fotheringham (2009),
or LeSage and Pace (2009).

11 Spain is very well connected by air, land and sea, a fact that would
justify the suitability of defining an alternative weight matrix to
physical contiguity based, for example, on the flows of human
mobility between provinces (as suggested by Orea &
Álvarez, 2022). However, daily information on such mobility flows
between Spanish provinces was not available for the entire period
analysed in this paper.

12 Figures 5 and 6 are also provided in Appendix S2 when using the
binary contiguity matrix.

13 The fourth wave has the lowest number of both deaths and cases,
with the exception of the first wave, which had a lower number of
cases. However, this is not real since the capacity for mass testing
and monitoring was considerably weak at that time.

14 If GDPpc is not included in the estimation, the spatial lag of the
dependent variable in Table 6 becomes significant.
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