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Abstract
A simple and economic high-performance liquid chromatography with UV–vis detection (HPLC–UV) metabolomic finger-
printing methodology was developed and applied after a water extraction procedure to obtain sample chemical descriptors 
suitable for meat authentication by chemometrics. Three hundred meat samples involving different species (lamb, beef, 
pork, rabbit, quail, chicken, turkey, and duck) as well as different non-genetic attributes (protected geographical indications, 
organic production, and Halal and Kosher meats) were analyzed, and the obtained HPLC–UV fingerprints subjected to PCA 
and PLS-DA for classification and authentication. Excellent PLS-DA discrimination and classification performance was 
accomplished for calibration and cross-validation, with sensitivity and specificity values higher than 100% and 99.3%, respec-
tively, and classification errors below 0.4%, when meat species were considered. The prediction capability when employing 
a classification decision tree consisting on consecutive dual PLS-DA models built using a hierarchical model builder was of 
100% accuracy when 48 meat samples were subjected to the model as unknown samples. Multiclass PLS-DA classification 
performances when addressing meat geographical origin, organic productions and Halal and Kosher products were also very 
acceptable, with overall sensitivity and specificity values higher than 91.2%, and classification errors below 6.9%. Finally, 
fraudulent meat adulteration cases involving PGI, organic and Halal and Kosher adulterated meats were evaluated by partial 
least squares (PLS) regression, allowing the detection and quantitation of adulteration levels within the range from 15 to 85% 
with prediction errors below 6.6%, demonstrating the suitability of the proposed methodology to assess meat authenticity.

Keywords HPLC–UV fingerprinting · Meat authentication · Chemometrics · Meat geographical origin · Meat production 
practices · Classification decision tree

Introduction

The quality and integrity of food is one of the aspects that 
most concerns society today, being willing to pay higher 
prices for foods with specific characteristics such as the 
region where the food has been produced, the use of sustain-
able production practices, foods enriched with bioactive sub-
stances, etc. However, this situation has led to an increase in 
fraudulent practices that seek to illicit financial enrichment 
at the expense of consumers by taking advantage of their 
predisposition to such products considered to be of higher 
quality. Food fraud refers to the deliberate production, mar-
keting, and distribution of counterfeit or adulterated foods 
for profit. These fraudulent practices may include the incor-
rect labelling (false information included on the product 
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packaging or label, such as untrue nutritional statements, 
products labelled as organic without being so, additives not 
declared), the food dilution or substitution with lower-value 
components to minimize production costs without reflecting 
this information on the label, or the addition of unknown or 
undeclared substances (sometimes to conceal such fraud), 
among other practices. The great danger of fraudulent prac-
tices in food, apart from the economic deception, is that 
they can alter its safety, which can lead to health problems 
for consumers (addition of potentially toxic substances, pos-
sibility of allergy episodes, etc.). For this reason, food fraud 
is prohibited throughout the world, and the competent bod-
ies must guarantee its rapid detection. To achieve this, it is 
necessary to develop feasible, simple, and fit-for-purpose 
analytical methodologies able to assess food authenticity.

Meat and meat products are worldwide consumed as 
one of the main dietary sources of protein, contributing to 
40% of the total global protein consumption, leading to an 
increase in demand for these products with the population 
growth, and generating significant challenges in the food 
sector (Henchion et al. 2014). Incidents related to species 
substitution, adulteration, and fraud-labelling on meat and 
meat-derived products are common to generate illegal finan-
cial benefits, requiring new analytical approaches to assess 
their authenticity, quality, and safety (Cavin et al. 2018; 
Hrbek et al. 2020; Candoğan et al. 2021; Khalil et al. 2021). 
Since the huge food safety and security scandal of the detec-
tion of horsemeat in ready-meal food products marketed as 
100% beef in Europe in 2013 (Kerschke Risch 2017), the 
number of fraudulent practices based on animal species 
substitution is increasing. This kind of fraud is even more 
relevant in countries with cultural/religious practices prohib-
iting the consumption of meat products from some specific 
animal species such as on Muslim countries regarding Halal 
products, where the consumption of pork, for example, is not 
allowed, or the case of Kosher products in Jewish communi-
ties (Hossain et al. 2021; Mortas et al. 2022). Despite the 
number of analytical methodologies developed to address 
this kind of authenticity issues, the identification of the 
animal species present in meat-derived products is easily 
solved by genetic detection tools based on DNA determina-
tion such as the use of real-time polymerase chain reaction 
(PCR) among other techniques (Ali et al. 2012; Khalil et al. 
2021; Prachugsorn et al. 2022; Ramachandran et al. 2022; 
Rohman et al. 2024).

However, several meat authentication issues not involving 
different meat species cannot be solved by means of genetic 
detection tools. These cases also involved cultural/religious 
practices, for instance, in Halal or Kosher products where 
the way in which animals permitted for consumption are 
slaughtered, or how the meat products are processed, is per-
fectly established (Hossain et al. 2021). Other examples are 
related to the geographical origin of meat products, where 

the region where the animal has been raised becomes impor-
tant, especially in those meat products with protected geo-
graphical indication (PGI) seals. For example, only in Spain, 
on 2022, 20 PGI raw meat products, including beef, pork, 
lamb, goatling, ox, and chicken, are registered (2023). Meat 
sustainable production practices that consider aspects such 
as organic production or animal welfare are also examples 
where fraudulent practices will not be detected by genetic 
methodologies. As previously mentioned, due to the fact that 
society is increasingly aware of good practices in meat pro-
duction, and is willing to pay more for specific attributes that 
result in supposedly higher quality products at least from an 
organoleptic point of view, not so much as a nutritional one, 
the number of fraudulent cases based on the examples previ-
ously mentioned is increasing. In these cases, metabolomic 
analytical methodologies are emerging as the best options 
to address these authentication issues.

The metabolome is the complete set of small molecules 
called metabolites (such as metabolic intermediates, hor-
mones and other signaling molecules, and secondary 
metabolites) that can be found in any biological sample, 
including food samples from animal or plant origin. Thus, 
all animal metabolites that may be present in a meat product 
will not only depend on the genetics of the animal but also 
on the phenotype, that is, all those external factors that have 
affected the animal at some point or another. Therefore, any 
environmental factor (geographical origin), feeding (organic 
production), animal care practices (animal welfare), or how 
the animal has been slaughtered (Halal or Kosher products) 
will affect the animal metabolome and, consequently, the 
metabolites that can be detected in its meat or derivatives. 
As a consequence, metabolomic studies will be very useful 
to assess meat authentication and to fight against fraudulent 
practices that cannot be easily solved by genetics (Cubero-
Leon et al. 2014; García-Cañas and Simó 2019; Selamat 
et al. 2021; Zhang et al. 2021). Two main analytical strate-
gies are normally employed in metabolomic studies: targeted 
(profiling) and non-targeted (fingerprinting) strategies. In 
targeted (profiling) metabolomic analysis, specific com-
pounds or families of compounds, perfectly identified, are 
monitored by means of specifically designed methodologies 
providing high precision, selectivity, and reliability (Selamat 
et al. 2021). Despite some advantages of targeted methodol-
ogies such as low detection limits, simple data interpretation, 
and quantitative analysis, these approaches have several lim-
itations such as the requirement of purified standards of the 
targeted compounds for correct identification, confirmation, 
and quantitation. In contrast, non-targeted (fingerprinting) 
metabolomics focus on monitoring all detectable analytes in 
one sample without requiring knowledge of which metabo-
lites are detected before the gathering of the data (Selamat 
et al. 2021). Thus, non-targeted approaches are more high-
throughput and comprehensive and may allow, if necessary, 
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the discovery of new compounds. However, the interpreta-
tion of data can be difficult, and normally will require the 
use of chemometric analysis to reduce the comprehensive 
data sets into smaller collections of controllable variables, 
especially when addressing classification and authentication 
issues.

In both cases, but specially in non-targeted approaches, 
the use of chromatographic separation techniques, mainly 
liquid chromatography (LC), in combination with high-res-
olution mass spectrometry (LC-HRMS) are among the most 
powerful techniques to address meat authentication issues 
by metabolomics (Man et al. 2021; Windarsih et al. 2022b, 
2024c, b). For example, LC-HRMS metabolomics and che-
mometrics has been recently proposed for the analysis of 
dog meat adulteration in beef meatballs for halal authenti-
cation studies (Windarsih et al. 2024b). In another work, a 
mass spectrometry-based untargeted metabolomics approach 
was described for the discrimination among beef of different 
origins including geographical origins as well as feeding 
regimes (Man et al. 2021). Despite the great advantages of 
HRMS in metabolomic studies due to its high-resolution 
and accurate mass measurements, these techniques are quite 
expensive and require of specialized users, being not afford-
able in worldwide control laboratories specially in develop-
ing countries.

More affordable, simple, and less-expensive non-targeted 
methodologies based on spectroscopic (UV–vis, near-infra-
red, or Fourier transform infrared, among others) or even 
liquid chromatography with spectroscopic detection are also 
employed in food (including meat products) authentication 
taking advantage of fingerprinting metabolomic approaches, 
that is, recording as much instrumental chemical responses 
as possible of the analyzed samples without having to know 
the identity of the chemical compounds responsible for those 
responses (Candoğan et al. 2021; Hossain et al. 2021; Haider 
et al. 2024; Putri et al. 2024). These fingerprints are then 
proposed as sample chemical descriptors to address sample 
discrimination/classification by chemometrics, allowing fit-
for-purpose methodologies to solve authentication issues.

Within this line, the present contribution aims to develop 
a simple high-performance liquid chromatography with 
ultraviolet detection (HPLC–UV) fingerprinting method to 
assess meat authenticity after a simple sample extraction 
procedure. This work does not aim to propose a fully vali-
dated method, an aspect that will be carried out later, but 
rather to evaluate the applicability of HPLC–UV fingerprints 
to tentatively assess meat authenticity as a proof-of-concept. 
The obtained HPLC–UV fingerprints were then employed 
as meat chemical descriptors for principal component anal-
ysis (PCA) and partial least squares-discriminant analysis 
(PLS-DA) chemometric methodologies in classification and 
authentication studies based on animal species, geographical 
origin, organic production, and Halal and Kosher products. 

Finally, several meat fraud cases based on the adulteration of 
organic, PGI, Halal, or Kosher meats were studied, and the 
adulteration levels detected and quantified by partial least 
squares (PLS) regression.

Materials and Methods

Materials

Methanol (Chromosolv™ for HPLC, ≥ 99.9%), acetonitrile 
(Supergradient ACS quality for UHPLC), and ethanol (abso-
lute) were obtained from Panreac AppliChem (Barcelona, 
Spain). Formic acid (≥ 96%) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Water (Milli-Q quality) was 
purified using a Milli-Q Reference A + system from Merck 
(Darmstadt, Germany), and filtered through 0.22-µm nylon 
filters.

Instrumentation

An HPLC instrument (Agilent 1100 Series, Waldbronn, 
Germany) equipped with a binary pump (G1312A model), 
an automatic sample injector (WPALS G1367A model), 
a diode-array UV–visible detector (G1315B model), and 
a PC with the Agilent Chemstation for LC software was 
employed. Chromatographic separation for meat fingerprint-
ing was accomplished using a Phenomenex Kinetex® C18 
(100 × 4.6 mm I.D., 2.6 µm partially porous particle size) 
fused-core column (Torrance, CA, USA) under a universal 
gradient elution program using 0.1% formic acid in water 
(solvent A) and acetonitrile (solvent B) as the mobile phase 
components. The flow-rate employed was of 0.4 mL  min−1. 
Briefly, the gradient elution program used was as follows: 
from 0 to 1 min at 3% of solvent B (initial conditions); then 
a universal lineal gradient from 1 to 20 min up to 95% sol-
vent B; the elution was then kept at 95% solvent B from 20 
to 22 min; then back to initial conditions at 3% solvent B in 
0.1 min (20–22.1 min), and finally these initial conditions 
were kept until minute 25 for column equilibration. UV–vis-
ible acquisition was performed from 190 to 400 nm, and 
HPLC–UV fingerprints at 280 nm were selected as meat 
chemical descriptors for authentication purposes. A meat 
aqueous extract injection volume of 5 µL was used.

Meat Samples

Meat samples belonging to eight different animal species 
and, in some cases, involving different geographical produc-
tion regions, production practices (organic vs. non-organic), 
or religious production practices (Halal and Kosher meats) 
were obtained from local markets and supermarkets in Spain.



 Food Analytical Methods

To evaluate the discrimination capability of the proposed 
HPLC–UV fingerprinting methodology based on the ani-
mal species, a total of 160 meat samples were analyzed (20 
different samples for each animal species), including mam-
mals such as rabbit, beef, pork, and lamb, and birds such as 
chicken, turkey, quail, and duck.

To evaluate meat geographical production region authen-
ticity, lamb samples belonging to two different production 
regions in Spain (20 different samples for each sample class) 
were employed. Samples involved lamb produced in Catalo-
nia and lamb produced in Aragon with a PGI stamp.

To evaluate meat production system authenticity, chicken 
and beef samples were employed (20 different samples for 
each sample class). In the first case, non-organic chicken 
meat samples and organic chicken meat samples were used, 
all of them produced in Catalonia (Spain). In the second 
case, non-organic beef meat samples, and organic beef meat 
samples coming from two different producer companies, all 
of them produced in Catalonia (Spain), were analyzed.

To evaluate meat production systems including religious 
practices, such as the way of animal slaughtering, lamb and 
beef samples were employed (20 different samples for each 
sample class). In the case of lamb, Halal and non-Halal lamb 
samples were analyzed, while for beef samples, beef, Halal 
beef, and Kosher beef samples were used.

For the optimization of the extraction solvent conditions, 
five meat samples (rabbit, beef, pork, lamb, and chicken) 
were used.

Sample Treatment

Meat samples were first processed by eliminating the fatty 
parts and grinding them using a meat blended-processor 
from Moulinex (Alençon, France). Only meat muscle parts 
were employed. Then, 1 g of meat was weighed in a 50-mL 
PTFE centrifuge tube (Serviquimia, Barcelona, Spain) and 
mixed with 10 mL of water by vigorously shaking with the 
help of a VibraMix Vortex (OVAN, Barcelona, Spain) for 
1 min. Ultrasound-assisted extraction (UAE) was then per-
formed for 15 min in a 5510 Branson ultrasonic bath (Bar-
celona, Spain). The samples were then centrifuged (5 min, 
4000 × g) with a Rotina 420 Centrifuge (Hettich, Tuttingen, 
Germany). The obtained aqueous meat extracts were then 
filtered into 2-mL HPLC vials using 0.45-µm nylon syringe 
filters (FILTER-LAB, Barcelona, Spain), and kept at 4 °C 
until analysis.

For the optimization of the extraction solvent conditions, 
several extraction solvents with different polarity were 
employed: Milli-Q water (W), methanol (M), ethanol (E), 
and acetonitrile (A). Additionally, 1:1 (v/v) mixtures of these 
solvents were also tested: water–methanol (WM), water–eth-
anol (WE), water-acetonitrile (WA), methanol-ethanol (ME), 
methanol–acetonitrile (MA), and ethanol-acetonitrile 

(EA). All these extraction experiments were performed by 
triplicate.

Data Analysis

Meat Classification Studies

Aqueous meat extract samples were randomly analyzed with 
the proposed HPLC–UV method to minimize the influence 
of instrumental drift on the results. A quality control (QC) 
sample was prepared mixing 50 µL of each extract to evalu-
ate the repeatability and robustness of the proposed method-
ology. For that purpose, the QC was analyzed after each ten 
aqueous meat extract samples. All the registered HPLC–UV 
chromatograms were then exported to a spreadsheet using 
Unichrom software from New Analytical Systems (Minsk, 
Belarus), obtaining for each sample an HPLC–UV finger-
print consisting of 3750 absorbance signal values at 280 
nm as a function of chromatographic retention time. For 
chemometric analysis, only the chromatographic retention 
segment from 7 to 17 min was employed, thus obtaining for 
each sample an HPLC–UV fingerprint consisting of 1500 
absorbance signal values at 280 nm. The SOLO autoscaling 
preprocessing was applied to all fingerprints prior to che-
mometric analysis to ensure that all variables were equally 
weighted. This autoscaling consisted on a mean-centering 
followed by division of each column (variable) by the stand-
ard deviation of that column. No other data preprocessing 
correction was employed.

Different data matrices were then built from the non-tar-
geted HPLC–UV fingerprints, and they were submitted to a 
PCA, used as an exploratory method to evaluate the distribu-
tion of the meat samples and the QC samples behavior, and, 
to PLS-DA, employed as a supervised sample classificatory 
method according to meat species, geographical origin, or 
production (organic vs. non-organic; Halal vs. non-Halal; 
Kosher vs. non-Kosher) system. SOLO 8.6 chemometrics 
software from Eigenvector Research (Manson, WA, USA) 
was used to carry out these analyses. In PCA, the X-data 
matrix was built with the absorbance values recorded at 
280 nm at a specific time over the chromatogram segment 
from 7 to 17 min for each sample. The same X-data matrix 
was employed for the PLS-DA analyses (without the QCs) 
together with a Y-data matrix defining each sample class 
(species, geographical origin, or production system). The 
number of LVs used to build PLS-DA models was estab-
lished by the first relevant minimum of the cross-validation 
(CV) error from Venetian blind. When necessary, the ellip-
ses delimitation areas in the score plots of both analyses 
were drawn manually to help with the visualization of the 
different sample clusters.

PLS-DA classification performance was evaluated by 
means of cross-validation sensitivities, specificities, and 
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accuracies (classification errors) (Riedl et al. 2015). Sen-
sitivity describes the capability of the model to detect true 
positives, and it is calculated as TP/(TP + FN) in percent-
age, where TP (true positive) is the number of positive sam-
ples correctly assigned to the corresponding class and FN 
(false negative) is the number of positive samples incorrectly 
assigned as not belonging to the class. Specificity describes 
the capability of the model to detect true negatives, and it 
is calculated as TN/(TN + FP) in percentage, where TN 
(true negative) is the number of negative samples correctly 
assigned (i.e., not belonging to the studied class) and FG 
(false positive) is the number of negative samples incor-
rectly assigned to the studied class. Finally, the accuracy 
is calculated as the classification error as (TP + TN)/TS in 
percentage, where TS is the total number of samples.

When necessary, paired PLS-DA models were also built 
and validated using 70% of the samples (randomly selected) 
as a calibration set, and the remaining 30% of the samples 
being employed as the prediction (unknown) set.

Besides, to improve the classification performance, a clas-
sification decision tree consisting of consecutive dual PLS-
DA models built using hierarchical model builder (HMB) 
was employed. For that purpose, the first 30% of the sam-
ples of each sample group were randomly selected to form 
a group of prediction samples (in total, 48 meat samples for 
the meat species authentication study), and the other 112 
samples were then used to build the corresponding PLS-DA 
calibration models. First, a non-supervised PCA model was 
performed with the calibration set to detect (and remove) 
outliers. Then, in a first step, a multiclass PLS-DA model 
with these 112 aqueous meat extract samples employed for 
calibration was built to select the sample class that was bet-
ter discriminated based on cross-validation sensitivity and 
specificity performance (if more than two sample groups 
provided similar performance, then the sample class was 
randomly selected). Then, a paired PLS-DA model of the 
selected sample class (i.e., sample class 1) against all the 
other samples was performed (first rule node of the classifi-
cation tree), by employing the 112 samples of the calibration 
set, and the 48 “unknown samples” for prediction. Then, 
prediction samples belonging to sample class 1 correctly 
assigned to its group and prediction samples belonging to 
the other sample groups incorrectly assigned to sample class 
1 were removed from the prediction set, while prediction 
samples belonging to sample class 1 incorrectly assigned as 
belonging to the other sample group were kept. Then, the 
second rule node of the classification tree is performed, also 
removing all the calibration samples belonging to sample 
class 1. A new multiclass PLS-DA model was then built to 
select the next sample group that was better discriminated 
(for instance, sample class 2), and then a paired PLS-DA 
model to sample class 2 versus all the other remaining sam-
ples was performed (second rule node of the classification 

tree), and the same process is performed until all the classi-
fication tree rule nodes are built. The classification decision 
tree performance was then evaluated by means of sensitivity, 
specificity, and accuracy (classification error) for calibration, 
cross-validation, and prediction, respectively.

Detection and Quantitation of Meat Adulteration

The potential of the proposed HPLC–UV fingerprints to 
detect and quantify meat adulteration by PLS was evalu-
ated by means of six adulteration cases based on blended-
meat adulterations from different geographical production 
regions or different production systems (including organic 
vs. non-organic, Halal vs. non-Halal and Kosher vs. non-
Kosher meats). For that purpose, PLS calibration was per-
formed at adulteration levels of 0 (pure meat), 20, 40, 60, 
80, and 100% (pure adulterant meat). PLS validation was 
performed at adulteration levels of 15, 25, 50, 75, and 85%. 
Each adulteration percentage in calibration and validation 
was done by quintuplicate. In addition, an additional 50% 
adulteration level was employed as QC extract to control the 
reproducibility and robustness of the proposed methodology. 
The PLS X-data matrix consisted of the HPLC–UV finger-
prints at 280 nm within the chromatographic segment from 
7 to 17 min for each meat-blended sample and QC, while 
the Y-data matrix defined the adulteration percentages. The 
number of LVs in the PLS models was selected by Venetian 
blinds cross-validation.

Results and Discussion

Optimization of Sample Extraction Solvent

As commented in the introduction section, the aim of 
the present contribution is to evaluate the potential of 
HPLC–UV fingerprints obtained after a simple metabolite 
meat extraction, working in a non-targeted metabolomic 
approach without the requirement of identifying the iden-
tity of the extracted chemical compounds, to address meat 
authentication issues. With this aim, first, different pure sol-
vents (Milli-Q water, methanol, ethanol, and acetonitrile) 
were employed for meat metabolite extraction, following 
the procedure described in materials and methods sec-
tion, and the obtained extracts analyzed with the proposed 
HPLC–UV methodology. For this optimization, five meat 
samples (rabbit, beef, pork, lamb, and chicken) were tested, 
and all the extractions were performed in triplicate. As an 
example, Fig. S1 (supplementary information) shows the 
non-targeted HPLC–UV chromatogram at 280 nm of a pork 
sample extracted with pure Milli-Q water. In general, the 
HPLC–UV fingerprints obtained for the five meat samples 
under study were characterized for the presence of some 
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quite polar compounds, with high-signal intensities, elut-
ing close to the chromatographic dead volume, and a group 
of less polar compounds, with lower signal intensities, and 
eluting within the range from 7 to 17 min. It should be men-
tion that no important differences were observed for the first 
group of polar compounds within the five meat samples 
analyzed, while more notable difference in both compound 
profiling and signal distribution was observed for the sec-
ond group of compounds. Thus, to evaluate the extraction 
capacity of the studied solvents and conditions, the area of 
the chromatogram signal registered at 280 nm in the chro-
matographic range from 7 to 17 min was employed (this 
parameter will be referred as the “total metabolite signal 
(TMS)” from now). Fig. S2 (supplementary information) 
compares the obtained TMS values for the different pure 
solvents employed on rabbit, beef, pork, lamb, and chicken 
meat samples. As can be seen, without any doubt, water 
is the pure solvent that most metabolites extract under the 
evaluated extraction conditions, with a significance differ-
ence, followed by methanol. Regarding the other two sol-
vents, ethanol and acetonitrile, the metabolite extraction is 
clearly higher for acetonitrile in the case of beef, while no 
significant differences were observed for the other analyzed 
meats. Besides, important differences were also observed 
on the TMS parameter depending on the meat sample under 
study, with lamb showing the highest metabolite extraction, 
followed by beef, pork, chicken, and rabbit when, for exam-
ple, water was employed.

Even though it seems clear that water is the solvent that 
can extract most metabolites under the studied conditions, 
extraction was also valuated by employing 1:1 (v/v) sol-
vent mixtures, to evaluate if their mixed properties helps 
in the solvent extraction capacity. Thus, six 1:1 (v/v) sol-
vent combinations were employed, i.e., water:methanol 
(WM), water:ethanol (WE), water:acetonitrile (WA), 
methanol:ethanol (ME), methanol:acetonitrile (WA), 
and ethanol:acetonitrile (EA), and the comparison of the 
obtained TMS values on the five meats under study is shown 
in Fig. S3 (supplementary information). As observed, sol-
vent mixtures with water are the ones with the highest 
extraction capacity, being the mixture of water with metha-
nol the one providing the highest TMS value, followed by 
the mixtures of water with ethanol and acetonitrile, respec-
tively. In any case, none of the solvent mixtures evaluated 
provided higher TMS values than those obtained when using 
pure Milli-Q water (Fig. S2); thus, water was selected as the 
optimal extraction solvent for the present work.

HPLC–UV Fingerprints of Meat Samples

As previously commented in the introduction section, chro-
matographic metabolomic fingerprinting studies focus on 
recording the instrumental signal (absorbance, in this case) 

as a function of chromatographic retention time, with no 
previous knowledge of the components present in the sam-
ples, and monitoring as much instrumental response signals 
as possible, to be able to assess sample discrimination based 
on different sample attributes. The obtained HPLC–UV fin-
gerprints can then be employed as potential meat chemical 
descriptors to address its characterization and classification.

Thus, once the extracting solvent was selected, 1 g of 
each meat sample was extracted with water following the 
extraction procedure described in the sample treatment 
section. Chromatographic fingerprints of the aqueous meat 
extracts were obtained by reversed-phase separation using 
a porous-shell C18 column and 0.1% aqueous formic acid 
and acetonitrile as mobile phase components under uni-
versal gradient elution conditions. All the samples were 
analyzed randomly, and injecting a QC solution every ten 
samples. A total of 160 meat samples involving eight meat 
species (mammals: pork, beef, lamb, and rabbit; birds: 
chicken, turkey, duck, and quail) were analyzed. Figure 1 
shows, for illustration, the obtained HPLC–UV fingerprints, 
within the 7- to 17-min range, for each meat sample group 
under study. Important differences can be observed on the 
obtained peak signal profiling regarding both the number of 
peaks as well as the peak intensities depending on the meat 
species, especially on the region from 9 to 10 min and from 
12.5 to 15 min, where the most intense peaks are appear-
ing. Besides, other compounds with lower peak signals can 
also be observed through the chromatographic region from 
10 to 12.5 min that may also be important discriminant 
chemical descriptors when addressing sample classifica-
tion. Therefore, the differences observed in the obtained 
HPLC–UV fingerprints (in both metabolite signal profiles 
and intensities), and the fact that the obtained fingerprints 
seem to be reproducible for all the samples within their 
specific sample class (meat species), suggested that this 
HPLC–UV fingerprinting data could be proposed as sam-
ple chemical descriptors to study the classification of meat 
species by chemometrics.

Exploratory Non‑supervised PCA

Once the HPLC–UV fingerprints of the 160 meat samples 
and QCs were obtained, the characterization and clas-
sification of the analyzed meat samples was assessed by 
chemometrics. First, an exploratory non-supervised PCA 
study was conducted. The main objective when employing 
PCA was to evaluate the reproducibility and robustness 
of the proposed methodology by studying the behavior 
of all the QCs analyzed through the sample sequence, as 
well to see if there is also an initial sample discrimination 
among the different sample groups (meat species) under 
study. Therefore, an X-data matrix with the correspond-
ing HPLC–UV fingerprints (280 nm, segment from 7 to 
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Fig. 1  HPLC–UV fingerprints (at 280 nm, segment from 7 to 17 min) for one selected sample of each meat specie under study
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17 min) for the 160 meat samples and QCs analyzed was 
built and submitted to PCA. This data matrix has dimen-
sion of (180 × 1500) being defined by Samples + QCs 
× absorbance values (as a function of retention time). The 
obtained PCA model was built by employing eight PCs 
(describing 87.68% of the total sample variance). For 
illustration, Fig. S4 (supplementary information) shows 
the obtained PCA score plot of PC1 vs. PC2. As can be 
seen, QCs appeared clustered close to the center area of 
the plot, showing that no instrumental drifts affected the 
obtained results and, consequently, validating the robust-
ness and reproducibility of the proposed HPLC–UV fin-
gerprinting strategy. This behavior with the corresponding 
QCs was also observed in all the PCA studies performed 
in this work prior to classification studies, demonstrating 
the long-term stability of the HPLC–UV fingerprints over 
extended periods. Besides, meat samples also tend to be 
clustered according with the animal species, even though 
some of them appeared overlapped (when only two PCs 
are plotted). Briefly, beef and quail samples are the two 
sample groups completely discriminated from the others, 
exhibiting in both cases positive PC1 values, and being 
differentiated among them by PC2, with positive and neg-
ative PC2 values for quail and beef, respectively. Chicken 
and turkey samples appeared overlapped on the left-top 
area of the plot (with negative PC1 and positive PC2 val-
ues). All the other sample groups tend to be located at the 
bottom of the plot (with negative PC2 values), with some 
overlapping and a certain discrimination through PC1. In 
any case, it should be considered that sample discrimina-
tion is accomplished with the eight PCs obtained in the 
PCA model, and cannot be visualized when only two PCs 
are depicted in 2D plots.

Meat Classification Based on Animal Species 
by PLS‑DA

After verifying the HPLC–UV method robustness and 
reproducibility by the PCA behavior of QCs, a super-
vised PLS-DA study was conducted employing the 
HPLC–UV fingerprints previously obtained to classify 
the analyzed samples according to the animal species. 
In this study, QCs were not considered. Thus, a X-data 
matrix with a dimension of (160 × 1500) being defined by 
Samples × absorbance values (as a function of retention 
time) was employed, while the Y-data matrix defined the 
sample category (animal species). After subjecting the 
data matrix to PLS-DA, a model employing seven LVs 
was built (explaining 83.59% of the sample variance), 
and the obtained score plots of LV1 vs. LV2 and of LV1 
vs. LV2 vs. LV3 are shown in Fig. 2. As can be seen, a 
good discrimination capacity was accomplished. Samples 
tend to be grouped according to the animal species, and 
when plotting the first three LVs, almost all the sample 
groups are visually discriminated, with the exception of 
chicken and turkey samples. However, as previously com-
mented, sample discrimination is accomplished with the 
seven LVs defined in the PLS-DA model, so to better 
evaluate the PLS-DA classification performance of the 
proposed methodology, sensitivity, specificity, and accu-
racy values were determined. Table 1 shows the PLS-DA 
cross-validated multiclass prediction performance for the 
set of meat samples when using seven LVs. Figures of 
merit demonstrate the good performance of the proposed 
methodology, with overall sensitivities, specificities, and 
accuracies of 100% for calibration, with the exception of 
a 0.36% classification error (99.64% accuracy) for quail 

Fig. 2  Partial least squares-discriminant analysis (PLS-DA) score 
plots of a LV1 vs. LV2 and b LV1 vs. LV2 vs. LV3 when employing 
HPLC–UV fingerprints (280 nm, segment from 10 to 17 min) as sam-

ple chemical descriptors of the analyzed meat samples. The PLS-DA 
model was built by employing 7 LVs
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samples. Regarding cross-validation parameters, again 
sensitivity, specificity, and accuracy values of 100% 
are obtained for most of the cases, with the exception of 
chicken samples, showing a specificity of 99.3% and an 
accuracy with a classification error of 0.36%, and quail 
samples, showing both sensitivity and specificity values 
of 99.3%, and again an accuracy of 99.64% (classification 
error of 0.36%).

The obtained data demonstrate the suitability of the pro-
posed HPLC–UV fingerprints (at 280 nm, chromatographic 
segment from 10 to 17 min), obtained after a simple sample 
extraction with pure water, as meat chemical descriptors to 
assess their classification and authenticity based on the ani-
mal species.

PLS-DA models to study the classification of mammal 
and bird meat animal species, independently, were also 
evaluated following the same procedure. In both cases, a 
X-data matrix with a dimension of (80 × 1500) being defined 
by Samples × absorbance values (as a function of retention 
time) were employed, while the Y-data matrix defined the 
sample category (animal species). For illustration, Fig. S5 
(supplementary information) shows the obtained 3D-PLS-
DA score-plots of LV1 vs. LV2 vs. LV3 for the classifica-
tion of (a) mammal meat and (b) bird meat animal species, 
respectively. In addition, Table S1 and S2 (supplementary 
information) summarize the PLS-DA performance data 
when mammal meat and bird meat animal species are 
studied, respectively. As can be seen, in both cases, the 
discrimination capability of the proposed HPLC–UV fin-
gerprints is very acceptable. In the case of mammal meat 
animal species, sensitivity, specificity, and accuracy values 
of 100% were observed for all sample groups (Table S1). 
The same trend is observed for most of the sample classes in 
the case of bird meat animal species, with the exception of 
chicken that depicted a calibration specificity of 95.0% and 
a cross-validation classification error of 2.5%, and of tur-
key, showing both sensitivity and specificity cross-validation 
values of 98.3%, and both calibration and cross-validation 

classification errors of 0.8%. In any case, these are also very 
acceptable PLS-DA performance values.

Finally, although the multiclass PLS-DA model employed 
for the classification of the eight meat animal species showed 
a very good performance, the prediction capability of the 
model was evaluated by means of a classification decision 
tree consisting of consecutive dual PLS-DA models built 
using hierarchical model builder. Thus, 30% of the samples 
were randomly selected for each sample class (48 samples 
in total) and used as unknown samples for prediction, while 
the other 112 samples were employed to build the different 
dual PLS-DA models for each rule node. For illustration, 
Fig. 3 shows the flow-chart of the designed classification 
tree employed with the seven rule nodes involved, together 
with the matrix dimensions and the LVs used for the paired 
PLS-DA calibrations: (1) beef vs. others; (2) duck vs. oth-
ers (excluding beef samples); (3) pork vs. others (excluding 
beef and duck samples); (4) chicken vs. others (excluding 
beef, duck, and pork samples); (5) lamb vs. others (exclud-
ing beef, duck, pork, and chicken samples); (6) quail vs. 
others (excluding beef, duck, pork, chicken, and lamb sam-
ples); and (7) rabbit vs. turkey (excluding beef, duck, pork, 
chicken, and quail samples). Table 2 shows the obtained 
classification decision tree confusion matrix for prediction, 
and the accuracy for each meat species under study.

As shown in Table 2, the prediction capability of the pro-
posed classification decision tree was excellent, with a 100% 
accuracy in the prediction of the 48 “unknown” samples 
within their corresponding sample group, clearly improving 
the performance obtained when a conventional multiclass 
PLS-DA model was employed.

Although a simple HPLC–UV fingerprinting strategy 
is proposed, the accomplished meat specie discrimination 
is similar or even better than the one described in the lit-
erature with more complex and expensive methodologies. 
For example, Windarsih et al. (2024c) demonstrated that 
non-targeted LC-HRMS metabolomics in combination with 
chemometrics was able to perfectly discriminate between 

Table 1  PLS-DA multiclass predictions by cross-validation for the set of meat samples based on animal species

Sample class variety Sensitivity (%) Specificity (%) Accuracy (classification error, %)

Calibration Cross-validation Calibration Cross-validation Calibration Cross-validation

Beef 100 100 100 100 0 0
Chicken 100 100 100 99.3 0 0.36
Duck 100 100 100 100 0 0
Lamb 100 100 100 100 0 0
Pork 100 100 100 100 0 0
Quail 100 99.3 100 99.3 0.36 0.36
Rabbit 100 100 100 100 0 0
Turkey 100 100 100 100 0 0
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beef, chicken, and wild boar meats. Obviously, the use of 
HRMS allow the identification of metabolites, being one 
of the disadvantages of our proposed methodology, but for 
meat specie authentication purposes this is not required, 
and more simple, non-expensive, and affordable techniques 
such as HPLC–UV fingerprinting can be employed, as 
demonstrated.

Meat Classification Based on Different Meat 
Attributes (Production Systems, Geographical 
Origin, Halal, or Kosher meats) by PLS‑DA

As previously demonstrated, the obtained HPLC–UV fin-
gerprints within the chromatographic segment from 7 to 17 
min resulted on excellent sample chemical descriptors to 

Fig. 3  Flowchart of the classification decision tree constructed using PLS-DA models as the rule nodes. The dimensions of the data matrices and 
LVs employed to build the paired PLS-DA calibration models are indicated

Table 2  Prediction confusion 
matrix for animal meat species 
when using a classification 
decision tree based on dual 
PLS-DA models

Beef Chicken Duck Lamb Pork Quail Rabbit Turkey Accuracy (%)

Beef 6 0 0 0 0 0 0 0 100
Chicken 0 6 0 0 0 0 0 0 100
Duck 0 0 6 0 0 0 0 0 100
Lamb 0 0 0 6 0 0 0 0 100
Pork 0 0 0 0 6 0 0 0 100
Quail 0 0 0 0 0 6 0 0 100
Rabbit 0 0 0 0 0 0 6 0 100
Turkey 0 0 0 0 0 0 0 6 100
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accomplish meat discrimination and authentication based 
on the animal species. However, nowadays, this authentica-
tion issue can also be solved by employing genetic-based 
methodologies. In contrast, as commented in the introduc-
tion section, other meat authentication issues based on some 
meat attributes highly considered nowadays by society are 
not easily detected by genetics. This is the case, for instance, 
when the geographical production region of meat needs to be 
assessed, especially in the case of meat products with pro-
tected geographical indications (PGIs), or the case of different 
meat production systems, such as those based on organic-pro-
duction practices, or meats produced under religious produc-
tion systems such as Halal or Kosher products. The potential 
of the obtained HPLC–UV fingerprints to assess these meat 
authenticity issues was also evaluated by employing chicken, 
lamb, and beef meats, based on sample availability.

Thus, chicken samples were employed to address meat 
organic production authenticity issues. For that purpose, 
20 conventional and 20 organic produced chicken samples 
(all of them from Catalonia, Spain) were analyzed with the 
proposed methodology, and the obtained HPLC–UV finger-
prints (segment from 7 to 17 min) submitted to PLS-DA 
analysis. Important differences on the metabolite signals 
detected in the obtained fingerprints (Fig S6, supplemen-
tary information) can be observed, especially regarding the 
intensity of some of them in the organic-produced chickens. 
Figure 4a shows the obtained PLS-DA score plot of LV1 vs. 
LVs (model built with two LVs), depicting a perfect discrim-
ination of both sample groups based on LV1, and attaining 
sensitivity, specificity, and accuracy values of 100%.

In the case of lamb meats, three sample classes were 
employed: (i) lamb meat produced in Catalonia (Spain), (ii) 
lamb meat with PGI produced in Aragon (Spain), and (iii) 
Halal lamb meat produced in Catalonia (Spain). Twenty 
samples per group were analyzed with the proposed meth-
odology, and the obtained HPLC–UV fingerprints (segment 
from 7 to 17 min) subjected to PLS-DA analysis to address 
both geographical production region and Halal produced 
meat issues, simultaneously. Fig. S7 (supplementary infor-
mation) depicts some differences in the detected metabolite 
signals of the corresponding chromatographic fingerprints 
that will help on the chemometric discrimination of the ana-
lyzed samples. The PLS-DA score plot (building the model 
with four LVs) of LV1 vs. LV2 is depicted in Fig. 4b. Excel-
lent discrimination was accomplished for the three sample 
groups, with LV1 allowing to discriminate conventional 
lamb (negative LV1 values) against the other two sample 
groups, and LV2 allowing to discriminate between Halal 
lamb samples (negative LV2 values) against the other two 
sample groups. Sensitivity, specificity and accuracy values 
of 100% were also obtained for the three sample groups.

Finally, beef meat samples belonging to five sam-
ple classes were also analyzed (all of them produced in 

Catalonia (Spain)): (i) beef meat, two different organic beef 
meats (grown from different organic producers) labeled as 
(ii) organic beef 1 and (iii) organic beef 2, (iv) Halal beef 
meat, and (v) Kosher beef meat. Examples of the obtained 
HPLC–UV fingerprints (segment from 7 to 17 min) are pro-
vided in Fig. S8 (supplementary information), showing dif-
ferences in the detected metabolites extracted with water. 
PLS-DA was then employed to address discrimination of 
organic, Halal, and Kosher production systems, simultane-
ously, and the obtained score plot (model built with three 
LVs) of LV1 vs. LV2 vs. LV3 is depicted in Fig. 4c. PLS-
DA multiclass prediction values by cross-validation are 
summarized in Table 3. As can be seen in the 3D PLS-DA 
plot, a very acceptable sample discrimination among the 
five beef sample groups under study was obtained. Cali-
bration and cross-validation sensitivity values higher than 
95.0% were achieved, while specificity values higher than 
95.0% and 91.2% were obtained for calibration and cross-
validation, respectively. Accuracy worsened in comparison 
to the previous addressed examples, although classification 
errors lower than 6.25% and 6.9% were observed for cali-
bration and cross-validation, respectively, which are quite 
acceptable considering the sample types under study. In any 
case, when addressing each beef meat attribute under study 
separately, i.e., organic production and halal/kosher produc-
tion, results improved considerably, as can be seen in Fig. S9 
(supplementary information) depicting the corresponding 
PLS-DA plots when studying beef samples against organic 
produced beef (Fig. S6a) and beef samples against Halal 
and Kosher beef (Fig. S6b). In the case of the beef organic 
production, sensitivity, specificity, and accuracy values of 
100% were obtained, with the exception of cross-validation 
specificity (> 95.0%) and accuracy (> 97.5%). However, 
when addressing Halal and Kosher beef production, sensitiv-
ity, specificity, and accuracy values of 100% were observed 
for all the sample groups.

Overall, the obtained results demonstrate that the pro-
posed HPLC–UV fingerprinting strategy by obtaining 
metabolite instrumental responses (without the require-
ment of compound identification) after a simple meat water 
sonication extraction provide excellent sample chemical 
descriptors for chemometrics to address meat authenticity 
issues based on different meat attributes such as geographi-
cal region, organic, and Halal/Kosher production systems.

As commented in the introduction section, the main 
objective of the present contribution was to evaluate the 
applicability of simple HPLC–UV fingerprints as chemical 
descriptors to assess several meat authentication issues that 
cannot be easily solved my beans of genetic tests. However, 
to ensure the method performance for future validation, an 
independent group of meat samples will be employed for 
prediction purposes. In any case, the prediction capabil-
ity accomplished when using the PLS-DA model based on 
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Fig. 4  Partial least squares-
discriminant analysis (PLS-DA) 
score plots when employing 
HPLC–UV fingerprints to 
address classification of meat 
samples based on different meat 
production attributes. a Chicken 
samples, b lamb samples, and c 
beef samples
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HCA was excellent, showing that important discriminants 
features are present on the obtained HPLC–UV fingerprints. 
Identification of these discriminant chemicals will also be 
performed in future studies by means of LC–MS and LC-
HRMS methodologies.

Detection and Quantitation of Meat Adulteration 
Frauds by PLS Regression

The potential of the proposed HPLC–UV fingerprints to 
detect and quantify meat adulterations based on the meat 
attributes previously described by PLS regression was also 
evaluated. For that purpose, six adulteration cases were 
studied: (i) PGI lamb (produced in Aragon, Spain) adulter-
ated with lamb (produced in Catalonia, Spain), (ii) organic 
chicken adulterated with non-organic chicken, (iii) organic 
beef adulterated with non-organic beef, (iv) Halal lamb adul-
terated with non-Halal lamb, (v) Halal beef adulterated with 
non-Halal beef, and (vi) Kosher beef adulterated with non-
Kosher beef. For PLS regression, two sets of adulterated 
blended meat samples were prepared for training and vali-
dation/prediction. Meat blended samples were prepared by 
pooling different meat samples belonging to the same sam-
ple group. The training set included the adulteration levels of 
0 (pure studied meat), 20, 40, 60, 80, and 100% (pure meat 
considered as the adulterant). The set for validation/predic-
tion consisted on adulteration levels of 15, 25, 50, 75, and 
85%. All the adulteration levels were prepared in quintupli-
cate. An additional 50% adulteration level was prepared for 
each case under study to be employed as QC to assess and 
control the robustness and reproducibility of the PLS predic-
tions. All the adulterated samples of each case under study 
were analyzed randomly and the QC was injected every ten 
samples injections. For each adulteration case studied, first 
the obtained HPLC–UV fingerprints (segment from 7 to 17 
min) were subjected to PCA to evaluate the behavior of the 
QCs and to see the distribution of the different adulteration 
levels in the PC1 vs. PC2 plot. In all cases, QCs appeared 
clustered together, demonstrating the good robustness and 
reproducibility of the proposed methodology, and samples 
tend to be distributed through PC1 based on the adultera-
tion content with pure samples located at opposite ends of 

PC1. Then PLS regression was performed for each adul-
teration case studied, and the obtained Y predicted 1 vs. Y 
measured 1 plots are shown in Fig. 5. PLS performances 
accomplished with the six meat adulteration cases are sum-
marized in Table 4.

As can be seen, overall, very acceptable performances 
were observed for de detection and quantitation of meat 
frauds based on blended adulterations with different meat 
production systems. Good calibration linearity was obtained 
in all the adulteration cases under study, with R2 values in 
the range 0.928–0.998 for the calibration scatter plots of 
predicted vs. measured adulteration levels.

PLS calibration, cross-validation, and prediction errors 
within the ranges of 1.7–9.0%, 3.9–10.6%, and 2.4–6.6%, 
respectively, were obtained. These figures of merit dem-
onstrate the potential of the obtained HPLC–UV finger-
prints (segment from 7 to 17 min) as good sample chemical 
descriptors not only for classification purposes, as previously 
described, but also to detect and quantify meat adulteration 
frauds that cannot easily be detected by genetics such as 
the meat geographical production region or meat production 
practices (organic, or Halal and Kosher products).

It must be highlighted that these chemical descriptors are 
obtained after a very simple meat sample extraction proce-
dure based on sonication with water, and the correspond-
ing analysis with a simple HPLC–UV strategy, methodolo-
gies affordable in most food quality laboratories, without 
the requirement of more expensive instrumentation, such 
as LC–MS or LC-HRMS, nor the necessity of identifying 
or targeting specific metabolites thanks to the fingerprint-
ing approach, resulting in an easy-to-use and economical 
methodology. Obviously, the proposed methodology will 
lack the potential of compound identification that can be 
affordable with LC–MS or LC-HRMS methods (Man et al. 
2021; Windarsih et al. 2022b, a, 2023, 2024a). Another 
handicap of the proposed methodology that will need to be 
evaluated in the future is the detection capability on meat 
adulteration, which at the moment cannot exceed those of 
LC-HRMS methodologies. Although this factor will not be 
important in some of the meat attributes under study if an 
illicit profit is intended (relatively high adulteration levels 
can be expected, for example, in the case of geographical 

Table 3  PLS-DA multiclass predictions by cross-validation for the set of beef meat samples

Sample class variety Sensitivity (%) Specificity (%) Accuracy (classification error, %)

Calibration Cross-validation Calibration Cross-validation Calibration Cross-validation

Beef 95.0 95.0 95.0 91.2 5 6.9
Halal beef 100 100 100 100 0 0.36
Kosher beef 100 100 100 100 0 0
Organic beef 1 100 100 98.8 97.5 6.25 1.3
Organic beef 2 100 95.0 100 100 0 2.5



 Food Analytical Methods

Fig. 5  Partial least squares (PLS) regression results depicting the 
scatter plots of predicted vs. measured percentages when evaluat-
ing different meat adulteration cases. a PGI lamb adulterated with 
conventional lamb, b organic chicken adulterated with non-organic 

chicken, c organic beef adulterated with non-organic beef, d Halal 
lamb adulterated with non-Halal lamb, e Halal beef adulterated with 
non-Halal beef, and f Kosher beef adulterated with non-Kosher beef
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indications or organic production), in other situations, such 
as the case of Halal or Kosher products, the capability to 
detect low adulteration levels will be mandatory, and at least 
levels lower than 5% will need to be detected. In any case, 
and as a proof-of-concept, we demonstrated that at least we 
can detect and quantify meat adulteration levels down to 
15%, which can be a first approach for a simple and afford-
able screening method in food control laboratories.

Conclusions

The results obtained in this work demonstrate that a rela-
tively simple technique widely implemented in the vast 
majority of laboratories, such as liquid chromatography with 
ultraviolet detection, used for non-targeted metabolomic 
analysis, allows to obtain HPLC–UV fingerprints that are 
very good chemical descriptors in meat authentication and 
in the detection of meat fraud. In addition, different (rela-
tively polar) solvents were evaluated for the non-targeted 
extraction of metabolites in meat, with the best results being 
observed when simply using water as the extraction solvent, 
which allows us to propose a simple, inexpensive sample 
treatment method that generates little waste. The study of 
the HPLC–UV fingerprints of the aqueous extracts obtained 
from the different meats analyzed allowed us to detect that 
most of the metabolites of interest elute in the chromato-
graphic segment from minute 7 to minute 17. These dif-
ferences were based on both the metabolite profile and 
the relative abundances of the obtained signals, as well as 
between the different differentiating attributes of the samples 
analyzed such as the animal species, the geographical origin 
of the samples, and the organic or non-organic production 
of the animals, as well as Halal or Kosher products. Thus, 
HPLC–UV fingerprints (chromatographic segment from 7 
to 17 min) were proposed as the final meat chemical descrip-
tors for meat authentication by chemometrics.

As a proof of concept, despite the fact that genetic 
detection methodologies are able to detect meat fraudu-
lent practices involving different animal species, the pro-
posed methodology was evaluated for the classification and 

authentication of eight meat group samples (involving mam-
mals and birds) by PLS-DA. Results demonstrated a very 
good sample discrimination capability of the obtained fin-
gerprints (when simultaneously considering the eight groups 
of samples), with sensitivity and specificity values of 100% 
and higher than 99.3% for calibration and cross-validation, 
respectively. The observed accuracy was also very good, 
with classification errors below 0.36% for both calibration 
and cross-validation. In order to evaluate the prediction 
capability of the proposed methodology for the authentica-
tion of meat species, a classification decision tree consisting 
of consecutive dual PLS-DA models built using a hierarchi-
cal model builder was applied by using only 70% of the 
samples (randomly selected) for the calibration models, and 
submitting the other 30% of the samples (48 meat samples) 
as unknown samples for prediction. Excellent results were 
observed, with a 100% accuracy on the prediction capability 
of the proposed methodology.

It must be highlighted the high-capability of the proposed 
methodology to address meat authentication issues involving 
meat attributes that cannot be solved by genetic method-
ologies, such as the meat geographical origins, the animal 
organic production systems, or cultural/religious aspects 
such as Halal or Kosher meats. PLS-DA discrimination was 
perfect when addressing organic chicken versus non-organic 
chicken, and lamb vs. halal lamb and PGI lamb. In the case 
of beef samples, involving five sample groups (beef, two 
organic beefs, Halal beef, and Kosher beef), results were 
also very acceptable, with overall calibration and cross-val-
idation values higher than 95.0% and 91.2% for sensitivity 
and specificity, respectively, and with classification errors 
below 6.9%. In any case, when addressing independently 
beef vs. organic beefs, or beef vs. Halal/Kosher beefs, the 
PLS-DA discrimination performance improved.

Finally, the obtained fingerprints were also very appro-
priate to easily detect and quantify meat adulteration levels 
by PLS regression. As a proof of concept, six adulteration 
cases involving adulterations on PGI, organic, Halal, and 
Kosher meats were evaluated, with good PLS linearities, 
and with calibration, cross-validation, and prediction errors 
below 9%, 10%, and 6.6%, respectively.

Table 4  Evaluation of meat 
adulterations by PLS using 
HPLC–UV fingerprints as 
chemical descriptors

Adulteration  casea LVs Linearity (R2) Calibration 
error (%)

Cross-validation 
error (%)

Predic-
tion error 
(%)

PGI lamb 4 0.996 2.2 4.1 5.7
Organic chicken 2 0.928 9.0 10.0 6.1
Organic beef 3 0.987 3.9 10.6 6.6
Halal lamb 6 0.998 1.7 5.8 6.4
Halal beef 2 0.966 6.2 7.9 5.2
Kosher beef 5 0.997 2.0 3.9 2.4
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Thus, HPLC–UV fingerprinting analysis of meat samples 
after water extraction working in a non-targeted metabo-
lomic approach (without the requirement of metabolite iden-
tification) resulted in a simple, feasible, fit-for-purpose, and 
non-expensive methodology to assess meat authentication 
issues based on meat fraudulent practices involving species, 
geographical origin, and organic, Halal, or Kosher produc-
tion systems. Future studies will be performed to ensure full 
method validation by evaluating the PLS-DA prediction per-
formance employing an independent meat data set, as well as 
to establish the detection capability of the proposed method-
ology specially on Halal/Kosher authentication issues. Liq-
uid chromatography coupled with mass spectrometry (both 
low- and high-resolution mass spectrometry) will also be 
employed for the characterization and identification of the 
most discriminant metabolites aiming to propose future meat 
biomarkers for authenticity purposes.
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