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A B S T R A C T   

Lead (Pb) is a trace element that is naturally present in arid regions but it is also released to the marine envi-
ronment by anthropogenic industrial emissions. Here, we assessed Pb concentrations in bone samples of four 
pinniped species: the Galapagos sea lion Zalophus wollebaeki, sampled in Galapagos archipelago, the monk seal 
Monachus monachus from Mauritania, and the South American fur seal Arctocephalus australis and the South 
American sea lion Otaria flavescens, from Uruguay, and investigate potential geographic differences. Concen-
trations of lead in the samples from Galapagos were lower than those detected in samples from Mauritania and 
Uruguay, indicating that the Galapagos archipelago is a comparatively pristine spot for this toxic element as 
related to the other two areas. The waters of Mauritania and Uruguay are likely affected by the inputs of lead 
brought by the desert dust and released by the local industry, respectively. This study supports the use of bone to 
assess lead concentrations in biota, as well as the use of pinnipeds as bioindicators of marine pollution.   

1. Introduction 

Lead (Pb) is naturally present in the environment in the chemical 
forms of Pb salts, ionic Pb, tetraethyl Pb, or Pb bound to other organic 
molecules (Assi et al., 2016). Pb may also originate from anthropogenic 
sources, mainly from the steel industry and mining, among other in-
dustrial activities (Rodríguez and Mandalunis, 2018), and is used in 
diverse applications, such as in the manufacture of batteries, electrical 
systems, construction materials and, in the past, as an additive to gas-
oline (Avery and Watson, 2009; Bridgestock et al., 2016, 2018; Järup, 
2003; Pacyna and Pacyna, 2001). During the 20th century, the Pb input 
into the oceans caused by anthropogenic activities far exceeded natural 
concentrations (Boyle et al., 2014). 

In vertebrates, Pb is deposited mainly in the bone matrix due to its 
ability to replace cations of Ca2+, Mg2+, Fe2+ and Na+ (Rodríguez and 
Mandalunis, 2018). Lead pollution has been linked to detrimental effects 
on the health of wildlife, the environment, and public health. In humans, 
elevated exposure to this metal has been associated to hypertension, 

anaemia, risk for stroke, neurotoxicity, hypocalcemia and hypo-
phosphatemia (Dongre et al., 2013; Gambelunghe et al., 2016; Vorvo-
lakos et al., 2016). Laboratory tests on rodents determined that the 
threshold value associated with adverse effects of Pb on bone formation 
is 50 mg kg− 1 dw (Andrews et al., 1989; Carmouche et al., 2005; Lan-
ocha et al., 2012). 

The identification of heavy metal pollution hot spots and potential 
hazards to human health is usually carried out through the monitoring 
of concentrations in biota. In the case of marine ecosystems, the most 
common procedure is to analyse bioindicators such as mussels or other 
shellfish. However, because their distribution is limited to the conti-
nental shelf, their coverage is restricted to inshore coastal waters (Bor-
rell et al., 2014). Analogous information on oceanic waters is much 
scarcer, as adequate indicators are not commonly available. Within this 
context, mobile (but local) top predators such as marine mammals have 
been proposed as potential indicators for trace metals exposure (e.g., 
Vighi et al., 2017; De María et al., 2021; Borrell et al., 2023). 

Pinnipeds are potential bioindicators of marine pollution, since they 
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have been successfully used for other groups of environmental pollut-
ants (e.g., Garcia-Garin et al., 2020; Perez-Venegas et al., 2020). 
Although bone has been scarcely used as a target tissue for cetacean and 
pinniped research (Borrell et al., 2023; De María et al., 2021; Garcia--
Garin et al., 2021; Hao et al., 2020; Honda et al., 1986; Lavery et al., 
2008; Szteren and Aurioles-Gamboa, 2013; Vighi et al., 2017), it is a 
promising tissue to analyse Pb levels because, as stated above it accu-
mulates mainly in the bone. Therefore, the Pb concentration in the bones 
of pinnipeds living in marine areas subject to different degrees of 
anthropogenic pressures would likely indicate differences in environ-
mental Pb concentrations. 

In the present study, the bone of four pinniped species, namely: the 
Galapagos sea lion Zalophus wollebaeki, the monk seal Monachus mon-
achus, the South American fur seal Arctocephalus australis and the South 
American sea lion Otaria flavescens, were analysed to assess the con-
centration of Pb in three marine areas: (1) The Galapagos archipelago 
(Ecuador), a UNESCO World Heritage Site well-known for its endemic 
biodiversity and where the only anthropogenic impact is related with 
tourism; (2) the waters off Mauritania, in the Eastern coast of North 
Atlantic Ocean, where dominant winds transport the dust from the 
Sahara desert to the sea; and (3) the Uruguay coast in the Western coast 
of South Atlantic Ocean, which receive the waters from the Rio de la 
Plata estuary affected by anthropogenic activities producing Pb inputs, 
such as industrial outfalls and mining. The Rio de la Plata is one of the 
largest estuarine systems of South America and is the fifth largest in the 
world and drains the second largest basin in South America. 

2. Material and methods 

2.1. Study area and sampling 

In the Galapagos archipelago, the bone samples (a small fragment of 
turbinate bone taken from the nasal cavity) were collected from 20 in-
dividuals of Galapagos sea lion (10 males and 10 females) found dead 
between 2000 and 2001 at the breeding sites of five islands (see Drago 
et al., 2016 and Fig. 1). In Mauritania, samples were collected from 11 
individuals of monk seal (unknown sex) stranded dead in 1997 along the 
coastline (Fig. 1; See Pinela et al., 2010). In Uruguay, samples were 
collected between 2006 and 2008 from 24 individuals of two species, 
South American fur seal (n = 12; 6 males and 6 females) and South 
American sea lion (n = 12; 6 males and 6 females), found stranded dead 
along the coastline (Fig. 1), incidentally caught by fishermen, or ob-
tained from skulls preserved in the scientific collection of the Museo 
Nacional de Historia Natural and the Universidad de la República at 
Montevideo, Uruguay (see Drago et al., 2020). The exact age of the 

sampled individual was unknown to us, although we only analysed 
skulls from physically mature specimens in order to minimize any po-
tential age-related bias. The four populations considered in the present 
study are non-migratory animals (Drago et al., 2016; González Carman 
et al., 2016; Pinela et al., 2010; Riet-Sapriza et al., 2013; Rodriguez 
et al., 2013). Therefore, the Pb concentrations found in their bones can 
serve as potential indicators of the amount of Pb present in their living 
areas. 

2.2. Lead analysis 

Lead analysis was performed following Garcia-Garin et al. (2021): 
0.1 g of each powdered bone sample was acid-digested in clean Teflon 
reactors using 2 mL of HNO3 (70%) and 1 mL of H2O2 (30%). After 12 h 
incubation at 90 ◦C, digested samples were diluted in 46 mL distilled 
water. Subsamples (10 mL) of each diluted sample were analysed with 
an ICP-MS (Induction Coupled Plasma-Mass Spectrometer) Nexion 350 
PerkinElmer. One blank and the Bone Meal 1486 standard reference 
material, as certified by the US National Institute of Standards and 
Technology (NIST), were analysed every 10 samples to validate ana-
lyses. Lead concentrations were expressed as mg kg− 1 dry weight (dw). 
The recovery percentage ranged from 99 to 103%. The lowest -Limit of 
Quantification- (i.e., LOQ) was 0.05 mg kg− 1 dw. Analyses were per-
formed at the Centres Científics i Tecnològics (CCiT-UB) of the University 
of Barcelona, Spain. 

2.3. Statistical analysis 

The normality and heteroscedasticity of the distribution of Pb con-
centrations were preliminary tested using the Shapiro Wilk and Levene’s 
tests, respectively. As the tests showed that data distribution departed 
from normality, comparisons were made using the non-parametric 
Kruskall-Wallis rank sum test and the post-hoc Dunn test, using the 
Benjamini-Hochberg method. The significance level was set at p-value 
<0.05. Calculations were carried out with the programming environ-
ment R (R Core Team, 2022). 

3. Results and discussion 

Lead was detected in all samples at concentrations ranging between 
0.05 and 175.14 mg kg− 1 dw (Table 1). This range was consistent with 
concentrations previously found in other pinniped studies conducted in 
calcified matrices (Table 1). The Pb concentrations here detected do not 
appear to be sufficiently high to produce adverse effects (Andrews et al., 
1989; Lanocha et al., 2012), except for one South American sea lion 
whose bone Pb concentration reached 175.14 mg kg− 1 dw. This indi-
vidual presented Pb pellets lodged in its skull, an evidence of human 
induced-trauma likely due to conflictive interactions with recreational 
fisheries, although after forensic analysis, it was not safe to assert that 
the individual died from that cause. This concentration far exceeded the 
generally accepted 50 mg kg− 1 dw toxicity thresholds in rodents 
(Andrews et al., 1989; Lanocha et al., 2012), and for this reason it is 
believed likely that it may have caused effects to the individual. 

Our results showed that the lead concentrations in the bone of pin-
nipeds from the Galapagos Islands were lower than those in the bones of 
individuals from Mauritania and the Rio de la Plata estuary (p-value 
<0.0001; Table 1; Fig. 2). This is clearly justified by the remoteness and 
isolation of the Galapagos archipelago in relation to the other 
geographic areas. Also, the local management practices, environmental 
control and moderate population density of the archipelago all 
contribute to limit the sources of local pollution (Alava et al., 2014; 
Alava and Ross, 2018) although it is also true that other types of pol-
lutants (e.g., marine litter, PCBs, DDTs, and PBDEs) have been reported 
to be in the rise in the last decades as a consequence of the increase in 
tourism and human population (Jones et al., 2021; Alava et al., 2022). 
The remoteness and low industrialization would also apply to 

Fig. 1. Study area and sampling locations shown by red dots. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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Mauritanian waters, but there the geographical and ecological charac-
teristics are quite different. The Sahara dust, carried by the wind, is a 
significant source of ocean contamination, particularly of metals such as 
Pb (Abiye et al., 2020; Garrison et al., 2006; Morman et al., 2013), and 
this is clearly reflected in the bone of the local M. monachus population. 
The Pb concentrations found in the two pinniped species sampled in the 
Rio de la Plata estuary were similar to those detected in the species from 
Mauritania, although higher than those of the Galapagos archipelago 
but there the source of contamination is very likely different. As the 
contribution of wind-blown dust does not appear to be relevant along 
that segment of the coast, the high concentrations observed in South 
American sea lions and fur seals could be of anthropogenic origin and 
derive from the intense industrial activity present in the area (Gar-
cía-Rodríguez et al., 2010). The contaminants produced by the in-
dustries, including Pb, are transported by rivers and the atmosphere to 
the Rio the la Plata estuary and, as both species are known to use 
estuarine habitats and feed on coastal fish (Naya et al., 2002; Drago 

et al., 2020), the exposure to the local sources of pollution are facili-
tated. Further studies are necessary to trace the anthropogenic origins of 
Pb in samples. 

4. Conclusions 

This study shows that the use of pinniped or other marine mammal 
species as bioindicators of marine pollution is a practical approach to 
assess Pb concentrations in separate marine areas, as has proven useful 
previously in the monitoring of other contaminants (Aguilar and Borrell, 
2005; Vighi et al., 2017). It also shows that the Galapagos archipelago is 
a pristine environment for Pb pollution as compared with the coasts of 
Mauritania and the Rio de la Plata estuary, which are highly impacted by 
natural and anthropogenic sources of Pb, respectively. The present study 
supports the validity of bone to assess lead concentrations in marine 
organisms and, by extension, in their environment. Additional research 
is required to elucidate the anthropogenic origin of Pb in the samples. 
Analysing Pb within the trophic web of these areas could contribute to 
clarifying these differences. 
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Table 1 
Number of samples and lead concentrations (mean ± SD, median, max and min values, expressed in mg/kg dw) detected in the bone of pinniped species from Gal-
apagos archipelago, Mauritania and Uruguay, and those currently available in the literature in other pinniped studies conducted in calcified matrices. aindicates wet 
weight.b indicates mean ranges.  

Species Area n Tissue Mean ± SD Median Min. Max. Reference 

Zalophus wollebaeki Galapagos archipelago 20 Bone 0.12 ± 0.07 0.10 0.05 0.37 This study 
Monachus monachus Mauritania 11 Bone 1.80 ± 1.93 0.90 0.54 5.92 This study 
Arctocephalus australis Rio de la Plata estuary 12 Bone 2.92 ± 4.35 1.70 0.27 16.27 This study 
Arctocephalus australis Rio de la Plata estuary 61 Teeth 0.17 ± 0.12 – – – De María et al. (2021) 
Otaria flavescens Rio de la Plata estuary 12 Bone 18.74 ± 49.95 1.14 0.44 175.14 This study 
Otaria flavescens Rio de la Plata estuary 33 Teeth 0.42 ± 0.41 – – – De María et al. (2021) 
Zalophus californianus California 6 Bone  8.7–34.2b  – – – Braham (1973) 

Zalophus californianus California 6 Teeth 12.9b – – – Braham (1973) 
Leptonychotes weddellii Antarctica 2 Bone 0.07 ± 0.11a 0.07 0.03 0.48 Yamamoto et al. (1987) 
Arctocephalus gazella Bird Island  4  Teeth  20–150b  – – – Cruwys et al. (1994) 

Phoca hispida North Atlantic 16 Teeth 40–60b – – – Cruwys et al. (1994) 
Odobenus rosmarus rosmarus North Atlantic 7 Teeth 8.2 ± 7.7 – 1.7 17.3 Outridge et al. (1997) 
Odobenus rosmarus rosmarus North Atlantic 79 Teeth 0.89–2.31b – – – Outridge and Stewart (1999) 
Callorhinus ursinus Northern Japan and Okhotsk Sea 16 Teeth – – – – Arai et al. (1999) 
Eumetopias jubatus North Pacific 63 Teeth 10.04 ± 11.6 – 2.08 39.50 Ando et al. (2005) 
Odobenus rosmarus divergens North Pacific 199 Teeth 1.15 ± 0.54  0.29 4.60 Jay et al. (2008) 
Phoca vitulina North Sea 58 Bone 0.11 – – – Agusa et al. (2011)  

Fig. 2. Box-plots of lead concentrations detected in the bone of the four 
pinniped species analysed. In violet the South American fur seal (Aa) and South 
American sea lion (Of) from Rio the la Plata estuary (Uruguay), in yellow the 
monk seal (Mm) from Mauritania and in black the Galapagos sea lion (Zw) from 
the Galapagos archipelago (Ecuador). Horizontal lines represent medians, boxes 
represent interquartile intervals, and whiskers represent values within 1.5 times 
the interquartile range from the boxes. Outliers are plotted as larger points. The 
“y” axis is shown in natural logarithmic scale. Boxplots indicated by different 
lowercase letters are statistically different in their median values according to 
Kruskal-Wallis and Dunn’s tests. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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