

Title: Application of Graph Neural Networks for biomedical data

Author: Mengru Ma

Advisor: Esteban Vegas Lozano

Department: Genetics, Microbiology and Statistics, University of
Barcelona

Academic year: 2023-2024

Degree in Statistics

Abstract

The rapid advancement of biomedical data
collection technology has enabled compre-
hensive data analysis, but traditional meth-
ods often struggle with complex and irregu-
lar data. While Convolutional Neural Net-
works (CNNs) have improved biomedical im-
age analysis, they are less effective for non-
Euclidean data like graphs. In contrast, Graph
Neural Networks (GNNs) offer a promising so-
lution by capturing complex relationships and
topological structures in graph data.

This final work provides an overview of GNN
applications and challenges in biomedical data
analysis. Core GNN models, including Graph
Convolutional Networks (GCN), Graph Atten-
tion Networks (GAT), and GraphSAGE, are
explained and then implemented through two
detailed case studies, demonstrating their fea-
sibility and effectiveness.

Overall, this work highlights the potential of
GNNs in bioinformatics, providing robust sup-
port for analyzing complex biomedical data
and offering insights for future research and
development in this field.

Keywords: Deep Learning in Biomedicine;
Graph Neural Networks (GNNs); Biomedical
Data Analysis; Machine Learning; Bioinfor-
matics

Resumen

El rápido desarrollo de las tecnologías de re-
copilación de datos biomédicos hace posible
el análisis integral de datos, pero los méto-
dos tradicionales a menudo tienen dificul-
tades para manejar datos complejos e irreg-
ulares. Aunque las Redes Neuronales Con-
volucionales (CNNs) han mejorado el análisis
de imágenes biomédicas, son menos efectivas
para datos no euclidianos como los gráficos.
Por el contrario, las Redes Neuronales de Grá-
ficos (GNNs) ofrecen una solución innovadora
al capturar relaciones complejas y estructuras
topológicas en datos de gráficos.

Este trabajo final ofrece una descripción com-
pleta de las aplicaciones y retos de las GNN
en el análisis de datos biomédicos. Los princi-
pales modelos de GNN, incluidos Graph Con-
volutional Networks (GCN), Graph Attention
Networks (GAT) y GraphSAGE, se explican y
luego se implementan a través de dos estudios
de caso detallados, demostrando su viabilidad
y eficacia.

En general, este trabajo destaca el potencial
de las GNN en bioinformática, brindando un
apoyo sólido para el análisis de datos biomédi-
cos complejos y proporcionando información
útil para futuras investigaciones y desarrollos
en este campo.

Palabras clave: Aprendizaje profundo en
biomedicina; Redes Neuronales de Gráficos
(GNNs); Análisis de datos biomédicos; Apren-
dizaje automático; Bioinformática

i

AMS Classification

• 05Cxx Graph theory
• 62P10 Applications to biology and medical sciences
• 68Txx Artificial intelligence
• 68T07 Artificial neural networks and deep learning

ii

Acknowledgements

Firstly, I would like to thank my tutor for providing me with this research topic, giving me the
opportunity to delve into deep learning and Graph Neural Networks (GNNs), and continually
offering suggestions and feedback that helped me improve throughout the process.

Secondly, I want to thank my friends who have been by my side during this period. I am espe-
cially grateful for your support and encouragement during my most stressful times.

Lastly, I want to express my gratitude to my university, especially the teachers who guided
and taught me. Your guidance has helped me discover my passion, and I hope to continue
contributing to this field in the future.

iii

Contents

List of Figures v

List of Tables vi

Glossary vii

Notations ix

1 Introduction 1

2 Foundations of Graph Neural Networks 3
2.1 Basic Concepts of Deep Learning . 3

2.1.1 Basic Structure of Neural Networks 3
2.1.2 Activation Functions . 5
2.1.3 Optimization Objective . 7
2.1.4 Optimizer . 10

2.2 Graph Theory . 11
2.2.1 Basic Concepts . 11
2.2.2 Algebra Representations of Graphs 11

2.3 GNN Models and Layers . 12
2.3.1 Principles of GNN . 12
2.3.2 Graph Convolutional Network (GCN) 14
2.3.3 Graph Attention Networks (GAT) . 15
2.3.4 GraphSAGE . 16
2.3.5 GNN Pooling . 17
2.3.6 Dropout Layer . 18

2.4 Explainable GNN . 18
2.5 GNN Frameworks . 22

3 Application Domains of GNN in Biomedicine 24
3.1 Drug Discovery and Development . 25

3.1.1 Target Identification . 25
3.1.2 Drug Screening and Optimization . 26
3.1.3 Clinical Trials . 27

3.2 Medical Diagnosis and Analysis . 28
3.2.1 Brain connectivity analysis . 28
3.2.2 Electrical Signal Analysis . 29
3.2.3 Image Segmentation . 31
3.2.4 Multimodal Fusion . 31

iv

3.3 Disease Association Prediction . 31

4 Model Implementation 34
4.1 Protein Classification . 34

4.1.1 Data . 34
4.1.2 Modeling and Training . 35
4.1.3 Results . 37
4.1.4 Explainability . 38

4.2 Protein-Protein Interactions (PPI) . 40
4.2.1 Data . 40
4.2.2 Modeling and Training . 41
4.2.3 Results . 44
4.2.4 Explainability . 45

5 Conclusion 48

6 Reflections and Future Work 49

7 Bibliography 50

8 Appendix A: Supplementary Figures 55

9 Appendix B: Source Code 67
9.1 Code for Task 1: Protein Classification . 67
9.2 Code for Task 2: Protein-Protein Interactions (PPI) 78

v

List of Figures

1.1 Image in Euclidean space (Left). Graph in non-Euclidean space (Right). Image
taken from (Zhou et al. 2020) . 1

2.1 Structure and learning process of a neural network 3
2.2 Activation Functions: Sigmoid/Softmax and ReLU. This plot was generated

using R. 5
2.3 SGD with momentum . 10
2.4 Graph theory . 11
2.5 The general design pipeline for a GNN model. 12
2.6 Graph learning tasks . 13
2.7 Message-passing mechanism . 13
2.8 GNN iterations . 14
2.9 Left: The attention mechanism. Right: An illustration of multi-head attention

(with K = 3 heads) by node 1 on its neighborhood. 15
2.10 Visual illustration of the GraphSAGE sample and aggregate approach. 16
2.11 Explaining an image classification prediction made by Google’s Inception neu-

ral network. The top 3 classes predicted are “Electric Guitar” (p = 0.32), “Acous-
tic guitar” (p = 0.24) and “Labrador” (p = 0.21). Image taken from (Lundberg
and Lee 2017). 19

2.12 An overview of the proposed taxonomy. 20
2.13 An example of explaining the classification of a scene graph. Image taken from

(X. Wang et al. 2020). 21
3.1 (A) Molecular structure-based modeling (Y. Wang, Li, and Barati Farimani

2023). (B) Biological network-based modeling (Zitnik, Agrawal, and Leskovec
2018). 24

3.2 The process of drug discovery and development. Image taken from (Gaudelet
et al. 2021). 25

3.3 (a) fMRI connectivity graph at the individual level. (b) Population graph. Image
taken from (Rakhimberdina and Murata 2020). 28

3.4 Example of process of classifying EEG signals using GNNs. Image adapted
from (Nagel 2019) and (Jang, Moon, and Lee 2018). 30

3.5 Tasks in disease gene prediction. 32
4.1 An example of a protein graph, illustrating the graph structure, the node feature

matrix, the adjacency matrix, and the label. 35
4.2 Overall Model Architecture and Workflow. 35
4.3 GCN Model Summary . 36
4.4 Edge Importance Visualization . 39
4.5 Combined Graph with Original and Important Edges 39

vi

4.6 Summary of Datasets. 41
4.7 Overall Model Architecture . 41
4.8 Summary of GAT Model Layer Transformations and Parameters 42
4.9 Training and Validation Loss and F1 Score Over Epochs 44
4.10 Top 20 Important Edges . 45
4.11 Top 20 Important Edges and Corresponding Nodes 46
4.12 Feature Importance for Top 20 Features . 46
8.1 GCN Model Architecture . 55
8.2 Training and Validation Loss over Epochs for Different Folds (GCN Model) . . 56
8.3 Training and Validation Accuracy over Epochs for Different Folds (GCN Model) 57
8.4 Training and Validation Loss over Epochs with Range (GCN Model) 58
8.5 Training and Validation Accuracy over Epochs with Range (GCN Model) . . . 58
8.6 GIN Model Summary . 59
8.7 GIN Model Architecture . 59
8.8 Training and Validation Loss over Epochs for Different Folds (GIN Model) . . 60
8.9 Training and Validation Accuracy over Epochs for Different Folds (GIN Model) 61
8.10 Training and Validation Loss over Epochs with Range (GIN Model) 62
8.11 Training and Validation Accuracy over Epochs with Range (GIN Model) 62
8.12 GraphSage Model Summary . 63
8.13 GraphSage Model Architecture . 63
8.14 Training and Validation Loss over Epochs for Different Folds (GraphSage Model) 64
8.15 Training and Validation Accuracy over Epochs for Different Folds (GraphSage

Model) . 65
8.16 Training and Validation Loss over Epochs with Range (GraphSage Model) . . . 66
8.17 Training and Validation Accuracy over Epochs with Range (GraphSage Model) 66

vii

List of Tables

2.1 Summary of Functions for Different Problem Types 9
2.2 Overview of Common GNN Frameworks . 22
3.1 Individual and Population Level Graph Models 29
4.1 Best Epoch Model Performance on Validation and Test Sets 37
4.2 Hyperparameters and Parameters for Each Model 38
4.3 Performance Metrics Summary . 44

viii

Glossary

Term Description
Activation Function Function used to introduce non-linear properties, such as

ReLU, Sigmoid, Tanh, etc.
Adjacency Matrix A matrix representing graph structure, where 𝐴𝑖𝑗 = 1 if

there is an edge between node i and node j.
Aggregation Function Function used in GNNs to aggregate features from neigh-

boring nodes, such as sum, mean, max, etc.
Attention Mechanism Mechanism in GATs for assigning different weights to dif-

ferent neighboring nodes based on importance.
Backpropagation Algorithm for updating neural network weights by com-

puting gradients.
Batch Normalization Technique for normalizing inputs of each layer to improve

training speed and stability.
Batch Size Number of training examples utilized in one iteration.
Convolutional Neural Network
(CNN)

Neural network designed for processing grid-like data
such as images.

Degree Matrix Diagonal matrix where elements represent the degree of
corresponding nodes.

Dropout Regularization technique to prevent overfitting by ran-
domly dropping neurons during training.

Edge Connection between two nodes in a graph.
Epoch One complete pass through the entire training dataset.
Feature Attribute or property of a node or edge in a graph.
Graph Attention Network
(GAT)

GNN variant using attention mechanisms to assign differ-
ent weights to different neighbors.

Graph Convolutional Network
(GCN)

GNN variant using convolution operations to aggregate
node features.

Graph Isomorphism Network
(GIN)

GNN variant designed to be as powerful as theWeisfeiler-
Lehman graph isomorphism test.

Graph Neural Network (GNN) Neural network designed for processing graph-structured
data.

GraphSAGE GNN variant using sampling and aggregation of neighbor
features for inductive learning.

Hidden Layer Layers in a neural network between the input and output
layers.

ix

Inductive Learning Learning process where the model generalizes to unseen
data or nodes.

Learning Rate Hyperparameter that controls the step size during the op-
timization process.

LeakyReLU Variant of ReLU activation function allowing a small gra-
dient when the unit is inactive.

Loss Function Function used to measure the difference between pre-
dicted and true values, such as MSE, cross-entropy.

LSTM Long Short-Term Memory, a type of recurrent neural net-
work capable of learning long-term dependencies.

Message Passing Process in GNNs where nodes send and receive informa-
tion to and from neighbors.

Node Entity in a graph representing data points.
Normalization Technique used to adjust the distribution of features in the

input data, often used in neural networks to improve train-
ing performance.

Optimization Algorithm Algorithm used to minimize the loss function, such as gra-
dient descent, Adam, etc.

Output Layer Final layer in a neural network producing the output pre-
diction.

Pooling Layer used for reducing the dimensionality of feature
maps or graph representations in neural networks, includ-
ing CNNs and GNNs, such as max pooling and average
pooling.

Protein-Protein Interaction
(PPI)

Interactions between protein molecules that affect their
function and behavior in biological processes.

Regularization Techniques used to prevent overfitting in a model, such
as L2 regularization, dropout, etc.

Transductive Learning Training model where the test set is known and fixed dur-
ing training.

Update Function Function in GNNs for updating node features with aggre-
gated neighbor information.

XAI (Explainable Artificial In-
telligence)

Techniques and methods in AI that try to provide clear
and understandable explanations for the decision-making
processes.

x

Notations

Notations Descriptions
ℝ𝑚 m-dimensional Euclidean space
𝑎, a,A Scalar, vector and matrix
𝜃, Θ Parameter and parameters set
w,W Weight vector and matrix
b Bias term
x,X Input vector and matrix
h,H Hidden representation vector and matrix
A𝑇 Matrix transpose
I𝑁 Identity matrix of dimension 𝑁
𝒩(𝑣) Neighborhood set of node 𝑣
h𝑙

𝑣 Feature representation of node 𝑣 after the 𝑙-th layer.
𝜎 Activation function
∥ Vector concatenation

xi

1 Introduction

In the era of big data, with the rapid development of biomedical data collection technology,
researchers can use more ways to conduct biomedical data analysis and research more com-
prehensively. Traditional methods of mining and analyzing biomedical data often fall short in
efficiency when faced with a massive volume of data. This is because, on the one hand, biomed-
ical big data features higher dimensions and more complex computations; on the other hand,
the diverse types of biomedical data demand highly versatile processing capabilities from mod-
els due to their complex and variable nature. Recently, deep learning has made breakthrough
progress in the field of biomedicine (Cao et al. 2018), thanks to its robust feature extraction
capabilities (Hinton and Salakhutdinov 2006), making it exceptionally suited for the statistical
analysis of biomedical big data and related issues.

Convolutional Neural Networks (CNNs) (LeCun et al. 1998), in particular, have seen
widespread application in biomedical image analysis. Their role in extracting and analyzing
biomedical image information, such as cell segmentation and classification (Esteva et al. 2017),
as well as physiological and pathological image segmentation and detection (Hu et al. 2018),
is becoming increasingly significant. However, traditional CNNs are primarily designed for
Euclidean space data (Figure 1.1 Left), characterized by translational invariance, such as
images, and are less effective for non-Euclidean data, like graph data.

Figure 1.1: Image in Euclidean space (Left). Graph in non-Euclidean space (Right). Image taken from (Zhou et al.
2020)

Graph data naturally represent the complex relationships and topological structures between
entities, which are crucial for understanding drug development, predicting protein functions
through PPI (protein-protein interactions), molecular structures, and so on. It is against this
backdrop that the development of Graph Neural Networks (GNNs) (Scarselli et al. 2008) offers
a new perspective for analyzing biomedical data. By operating directly on graph data, GNNs
can effectively capture complex data structures and relationships in non-Euclidean space (Figure
1.1 Right), providing strong support for multiple applications in the field of biomedicine.

Although the literature discussing various applications of GNNs is extensive, comprehensive

1

summaries focusing on their applications and challenges in biomedical data analysis are rela-
tively rare. This project aims to bridge this gap by providing a detailed review and summary of
GNNs and their applications in biomedical data analysis, highlighting their strengths and poten-
tial in handling these specific types of data.

This thesis is structured as follows. In Chapter 2, we will introduce the fundamentals of Graph
Neural Networks (GNNs), presenting the core GNN models such as Graph Convolutional Net-
works (GCN), Graph Attention Networks (GAT), and GraphSAGE, along with an exploration
of GNN explainability. In Chapter 3, we will discuss the specific applications of GNNs within
the biomedical domain. Following this, in Chapter 4 we will showcase two detailed case stud-
ies, including the data involved, analysis performed, and results obtained. And finally, we will
conclude the survey in Chapter 5.

2

2 Foundations of Graph Neural Networks

This chapter provides a detailed introduction to the basic concepts of deep learning and the
fundamental principles and common models of Graph Neural Networks (GNNs). Additionally,
it delves into the explainability of GNNs, setting the stage for a comprehensive understanding
of these advanced techniques.

2.1 Basic Concepts of Deep Learning

2.1.1 Basic Structure of Neural Networks

Neural networks are computational models that mimic the structure and function of the human
brain. They consist of numerous simple processing units, called neurons, organized into layers
and interconnected to form a complex network structure for data processing and analysis, as
shown in the Figure 2.1.

Figure 2.1: Structure and learning process of a neural network

Neuron:

A neuron is the basic unit of a neural network, similar to a biological neuron. Each neuron
receives multiple inputs, performs computations, and generates an output. The basic structure
of a neuron can be described as follows:

• Inputs: Each neuron receives multiple inputs, typically represented as a vector x =
[𝑥1, 𝑥2, … , 𝑥𝑛], with x ∈ ℝ𝑛.

3

• Weights: Each input signal is associated with a weight w = [𝑤1, 𝑤2, … , 𝑤𝑛], with w ∈
ℝ𝑛, which adjusts the importance of the input signal.

• Weighted Sum: The neuron computes the weighted sum of the input signals
𝑧 = ∑𝑛

𝑖=1 𝑤𝑖𝑥𝑖 + 𝑏, where 𝑏 is the bias term.
• Activation Function: The weighted sum is passed through an activation function 𝜎(𝑧)
to produce the output of the neuron.

Layer:

A neural network is composed of multiple layers of neurons, with each layer containing several
neurons. Layers are categorized based on their position and function:

• Input Layer: The layer that receives the raw data input. The number of neurons in the
input layer equals the number of input features.

• Hidden Layer: Layers located between the input and output layers and the number and
size of hidden layers can be chosen freely.

• Output Layer: The layer that produces the final prediction results. The number of neu-
rons in the output layer depends on the specific task.

Neural Network Training:

Neural networks consist of layers and neurons interconnected to form a complete architecture,
where each neuron in one layer is typically connected to several neurons in the next layer. Train-
ing a neural network involves adjusting the weights and biases to minimize prediction errors,
through a process that involves several key concepts:

• Forward Propagation: Data flows from the input layer through each hidden layer to the
output layer, with each layer computing the outputs of its neurons.

• Loss Function: Computes the error between the predicted values and the true values.
• Cost function: Computes the average of the loss functions over all training samples.
• Backpropagation: Based on the error, gradients are computed for each weight and bias,
updating the parameters to minimize the cost function.

• Epoch: An epoch involves the complete propagation of the entire dataset through the
neural network in both forward and backward directions. Since the dataset is typically too
large to be processed in one go, it is divided into multiple smaller subsets called Batches.

• Batch Size: This term refers to the number of training examples included in a single batch.
• Iterations: Iterations are the total number of batches required to complete one full epoch
of training. For example, suppose we have a dataset with 800 samples and we set the
batch size to 100. To complete one epoch (processing all samples once), it would require

4

8 iterations.

Input and Output:

• Input: The input to a neural network is typically a multidimensional vector representing
the features of the raw data. For example, the input for image data can consist of pixel
values organized into three matrices — one for each of the Red, Green, and Blue (RGB)
channels, while the input for text data can be word vectors.

• Output: The output of a neural network consists of one or more values representing the
prediction results. The form of the output depends on the specific task. For example, in
a classification task, the output can be class probabilities, while in a regression task, the
output can be continuous values.

Above is a basic understanding of neural networks. Next, we will provide a detailed introduction
to important components such as activation functions and optimization algorithms in the training
of neural networks.

2.1.2 Activation Functions

Activation functions introduce non-linearity into deep learning models, enabling them to capture
complex relationships between inputs and outputs. These functions, denoted as 𝜎, are essential
for the model’s ability to extract meaningful features from data. In this section, we will discuss
several widely used activation functions (Goodfellow, Bengio, and Courville 2016).

Figure 2.2: Activation Functions: Sigmoid/Softmax and ReLU. This plot was generated using R.

1) Rectified linear unit (ReLU)
𝜎(𝑧) = max(0, 𝑧)

where𝜎 ∶ ℝ → ℝ, 𝑧 ∈ ℝ is the input to the neuron. This activation function and its variants show
superior performance inmany cases and are themost popular activation function in deep learning
so far (Figure.2.2). ReLU can also solve the gradient saturation problem and the calculation
speed is much faster (Glorot, Bordes, and Bengio 2011).

5

However, ReLU has its limitations, notably the “dead neuron” problem, where neurons become
inactive and cease to output anything other than zero because their inputs are always negative.

2) Exponential Linear Unit (ELU)

To addresses this problem, ELU offers a solution to the dead neuron issue associated with ReLU,
as shown in Figure 2.2. It introduces a nonzero gradient when the input is negative, which helps
keep the neurons active:

ELU(𝑧) =
⎧{
⎨{⎩

𝑧 if 𝑧 > 0
𝛼(𝑒𝑧 − 1) if 𝑧 ≤ 0

where 𝛼 ∈ ℝ. ELU not only overcomes the problem of dead neurons but also tends to converge
faster than ReLU during training by producing outputs with a mean closer to zero, which is
beneficial for learning dynamics.

3) Sigmoid

𝜎(𝑧) = 1
1 + 𝑒−𝑧

where 𝜎 ∶ ℝ → (0, 1), 𝑧 ∈ ℝ represents the weighted sum of inputs to the neuron.

A sigmoid function transforms variables to values ranging from 0 to 1 and is commonly used to
produce a Bernoulli distribution, as shown in Figure 2.2. Hence, The sigmoid function is widely
used in binary classification problems, where an output of 0 or 1 signifies the two distinct classes.

4) Softmax

The Softmax function is a generalization of the Sigmoid function for multi-class classification
problems. It converts a vector of raw scores (logits) into probabilities. It is defined as:

softmax(𝑧𝑖) = 𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒𝑧𝑗

where 𝜎 ∶ ℝ𝐾 → (0, 1)𝐾:

• 𝑧𝑖 ∈ ℝ is the 𝑖-th element of the input vector z.
• z = [𝑧1, 𝑧2, … , 𝑧𝐾] ∈ ℝ𝐾 is the input vector containing 𝐾 elements (logits).
• 𝐾 is the number of classes.

Comparison between the Sigmoid and Softmax:

6

• Sigmoid Function: Used for binary classification problems, mapping a single scalar input
to a probability between 0 and 1.

• Softmax Function: Used for multi-class classification problems, mapping an input vector
to a probability distribution over multiple classes, with each probability between 0 and 1,
and the sum of all probabilities equal to 1.

The visual representation of the Sigmoid function and the individual probabilities in the Softmax
function are similar, as shown in the Figure 2.2.

2.1.3 Optimization Objective

The objective of optimization typically comprises both a cost function and a regularization
component. The loss function 𝐿(𝑓(x|Θ), y) measures the error between the network’s output
𝑓(x|Θ) and the expected result 𝑦 for a single sample. The cost function 𝐽(Θ) is the average of
the loss functions over all training samples. However, effective learning algorithms are charac-
terized not only by their performance on training data but also by their generalization to unseen
test data. Regularization, a suite of techniques aimed at minimizing test error and fighting over-
fitting, enforces penalties on model parameters to deter the model from becoming overly com-
plex. Therefore, we introduce a commonly utilized cost function alongside the regularization
term Ω(Θ). Typically, the optimization objective is defined as:

Optimization Objective = 𝐽(Θ) + 𝛼Ω(Θ) = 1
𝑛

𝑛
∑
𝑖=1

𝐿(𝑓(x𝑖|Θ), y𝑖) + 𝛼Ω(Θ)

Here,

• x𝑖 ∈ ℝ𝑚 is the input feature vector for the 𝑖-th sample, where x𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚],
• y𝑖 is the expected result or ground truth label for the 𝑖-th sample, which can be a single
target value or a vector,

• Θ ∈ ℝ𝑝 is the set of all parameters of the network that need to be trained, thus 𝑝 is the
total number of parameters,

• 𝑛 is the total number of samples in the training dataset,
• 𝛼 ∈ ℝ is a hyperparameter that controls the trade-off between the cost function and the
regularization term.

2.1.3.1 Loss function (Single Sample)

1) Mean Squared Error (MSE)

7

The loss function utilized is defined as follows:

𝐿(𝑓(x|Θ), 𝑦) = (𝑦 − 𝑓(x|Θ))2

Here,

• x ∈ ℝ𝑚 is the input feature vector for a single sample,
• 𝑦 ∈ ℝ is the target value for the input sample,
• 𝑓 ∶ ℝ𝑚 → ℝ is the model mapping the input feature vector to the predicted value.

This loss function is often used in regression problems. Mean Absolute Error (MAE) is also
commonly used in such problems.

2) Cross-entropy Loss

i. Binary Cross-Entropy Loss:

We usually use binary cross-entropy for a two-class classification problem. Its discrete form is
given by:

𝐿(𝑝(x), 𝑦) = −[𝑦 log(𝑝(𝑦 = 1|x)) + (1 − 𝑦) log(1 − 𝑝(𝑦 = 1|x))]

Here,

• x ∈ ℝ𝑚 is the input feature vector for a single sample,
• 𝑦 ∈ {0, 1} is the true label for the input sample,
• 𝑝 ∶ ℝ𝑚 → [0, 1] is the model mapping the input feature vector to a predicted probability,
• 𝑝(𝑦 = 1|x) is the predicted probability that the sample belongs to class 1.

ii. Multiclass Cross-Entropy Loss:

Inmulti-class problems, each observation is no longer a binary label but a probability distribution
representing the likelihood of the observation belonging to each class. The Multiclass Cross-
Entropy Loss function is defined as follows:

𝐿(𝑝(x), y) = −
𝐾

∑
𝑘=1

𝑦𝑘 log(𝑝(𝑦 = 𝑘|x))

Here,

• x ∈ ℝ𝑚 is the input feature vector for a single sample,

8

• y ∈ ℝ𝐾 is a one-hot encoded vector representing the true category of the sample, where
y = [𝑦1, 𝑦2, … , 𝑦𝐾] with 𝑦𝑘 being 1 if the sample belongs to class 𝑘, and 0 otherwise,

• 𝑝 ∶ ℝ𝑚 → [0, 1]𝐾 is the model mapping the input feature vector to a predicted probability
distribution over 𝐾 classes,

• 𝑝(𝑦 = 𝑘|x) is the model’s predicted probability that the sample belongs to class 𝑘.

Selecting the right activation and loss functions depends on the type of machine learning prob-
lem. The Table 2.1 below summarizes the recommended functions for different problem types
(Chollet 2021):

Table 2.1: Summary of Functions for Different Problem Types

Problem Type Last Layer Activation Loss Function

Binary Classification Sigmoid Binary Crossentropy
Multi-class, Single-label Softmax Categorical Crossentropy
Multi-class, Multi-label Sigmoid Binary Crossentropy
Regression to Arbitrary Values None MSE
Regression to Values in [0, 1] Sigmoid MSE or Binary Crossentropy

2.1.3.2 Regularization term

Regularization techniques are a set of best practices that actively impede the model’s ability
to fit perfectly to the training data, with the goal of making the model perform better during
validation (Chollet 2021). Here, we will introduce the most common regularization techniques
found within the optimization objective, namely L1 and L2 regularization.

• L1 regularization operates by adding the sum of the absolute values of the model param-
eters, typically focusing on the weights. This approach encourages the model to learn
sparse parameter weights, effectively setting many of them to zero. This sparsity can act
as a form of feature selection, helping the model to concentrate on the most significant
features in the data. The L1 regularization can be defined as:

Ω(Θ) = ‖Θ‖1 =
𝑝

∑
𝑖=1

|𝑤𝑖|

• L2 regularization functions by adding the sum of the squares of the weight parameters to
the cost function, leading to smoother model weights where each element of the weight
vector is as small as possible without becoming zero. L2 is especially effective in address-

9

ing multicollinearity in the model. The formula for L2 regularization is:

Ω(Θ) = 1
2‖Θ‖2 = 1

2
𝑝

∑
𝑖=1

𝑤2
𝑖

2.1.4 Optimizer

In deep learning, the solution to many problems is essentially to solve optimization-related prob-
lems. It is an algorithm that updates the network weight by training the neural network and
minimizing the error. Here are some common optimization methods:

Stochastic Gradient Descent (SGD) (LeCun et al. 1998) is the foundational optimization
method, which updates the model parameters by calculating the gradient of the cost function
for a small batch of the dataset. It introduces randomness by using only a single or a small batch
of samples to compute the gradient, which, despite adding noise, helps the model escape local
minima.

Formula: Θ = Θ − 𝜂 ⋅ ∇Θ𝐽(Θ) = Θ − 𝜂 ⋅ 𝜕𝐽
𝜕Θ , where Θ represents the model parameters

(weights and biases), 𝜂 ∈ ℝ+ is the learning rate 1, 𝐽 is the cost function, and ∇Θ𝐽(Θ) or 𝜕𝐽
𝜕Θ

is the gradient of the cost function with respect to Θ.

Momentum (SGD-M) SGD can struggle in regions where the terrain is uneven, causing it to
oscillate and make slow progress. By incorporating momentum, the algorithm can move more
smoothly and quickly toward the optimum by reducing these oscillations, as shown in Figure
2.3. Momentum helps to speed up SGD by adding a portion of the previous update vector to the
current one, thus smoothing out the path and reducing oscillations.

Figure 2.3: SGD with momentum

Formula: 𝑣𝑡 = 𝛾v(𝑡−1) + 𝜂∇Θ𝐽(Θ), then update Θ = Θ − 𝜂v(𝑡), Where v(𝑡) is the current
velocity vector, and 𝛾 ∈ [0, 1] is the momentum factor.

Building on SGD, Adagrad updates parameters according to the accumulation of squared gra-
1The learning rate is a crucial hyperparameter in machine learning algorithms that controls the step size of

parameter updates during training. Proper selection of the learning rate affects the convergence speed and the
model’s ability to reach the optimal solution.

10

dients, which can converge rapidly with convex functions but performs worse in certain models
(Goodfellow, Bengio, and Courville 2016). To address some of Adagrad’s limitations, RM-
Sprop was developed, which has emerged as a highly effective and widely adopted approach
for parameter optimization. In December 2014, the Adam optimizer was proposed by scholars
Kingma and Lei Ba (Kingma and Ba 2014), combining the advantages of both Adagrad and RM-
Sprop optimization algorithms. Adam adapts the learning rate for each parameter by computing
individual adaptive learning rates, making it particularly powerful and popular for a wide range
of machine learning models.

2.2 Graph Theory

2.2.1 Basic Concepts

A graph is often denoted by 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of nodes (or vertices) and 𝐸 is
the set of edges (or links). An edge (𝑒 = 𝑢, 𝑣) has two endpoints 𝑢 and 𝑣, which are said to
be joined by 𝑒. In this case, 𝑢 is called a neighbor of 𝑣, or in other words, these two vertices
are adjacent. Note that an edge can either be directed or undirected. The degree of vertex 𝑣,
denoted by 𝑑(𝑣), is the number of edges connected with 𝑣 (Liu and Zhou 2022) (Figure.2.4).

Figure 2.4: Graph theory

2.2.2 Algebra Representations of Graphs

• Adjacency matrix: for a simple graph 𝐺 = (𝑉 , 𝐸) with 𝑛-vertices, it can be described
by an adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛, where

𝐴𝑖𝑗 =
⎧{
⎨{⎩

1 if {𝑣𝑖, 𝑣𝑗} ∈ 𝐸 and 𝑖 ≠ 𝑗,
0 otherwise.

It is obvious that such matrix is a symmetric matrix in the case where 𝐺 represents an
undirected graph.

• Degree matrix: for a graph 𝐺 = (𝑉 , 𝐸) with 𝑛 vertices, its degree matrix 𝐷 ∈ ℝ𝑛×𝑛 is
a diagonal matrix, where

𝐷𝑖𝑖 = 𝑑(𝑣𝑖).

11

2.3 GNN Models and Layers

When designing a GNN model, it’s essential to follow a systematic process to ensure that the
model is well-suited for the specific task at hand. The general design pipeline for a GNN model
involves several crucial steps, from data preparation to model evaluation. The Figure 2.5 illus-
trates the overall design pipeline for a GNN model, providing a comprehensive overview of the
key stages and components involved in building and deploying a GNN.

Figure 2.5: The general design pipeline for a GNN model.

1. Find graph structure: Determine the basic structure of the graph, including nodes, edges,
and other relevant components.

2. Specify graph type: Identify the type of task (Figure 2.6) and problem (Table 2.1).
3. Compile the model: Compile the model by setting the loss function, optimizer, and met-

rics.
4. Define the model: Define the model by selecting layers, activation functions, and other

necessary components.
5. Train the model: Optimize model parameters using training data. Compute the cost

function through forward propagation and update the model parameters through backward
propagation to minimize the cost function.

6. Evaluate the model: Evaluate the model’s performance using a test set.

Previously, we introduced some basic concepts related to model compilation and training. Next,
we will delve into the definition of the model, detailing its principles and layers.

2.3.1 Principles of GNN

The core concept behind GNNs is iterative information aggregation from neighboring nodes. In
each iteration, a node updates its representation by aggregating information from its neighbors,
capturing the local neighborhood’s structural features. After multiple iterations, the representa-
tion of each node encodes information about the topology of the entire graph. Here are some
key concepts and common formulas associated with GNNs:

12

Figure 2.6: Graph learning tasks

Message Passing:

GNN typically operate on a message-passing mechanism, where nodes send and receive infor-
mation to and from their neighbors. The information update for each node across iterations can
be broken down into two steps: Aggregation and Update (Figure 2.7).

• Aggregation: each node aggregates features from its neighbors. The aggregation function
could be sum, mean, max, etc., aimed at capturing the neighbors’ information.

• Update: nodes combine their own features with the aggregated neighbor information to
update their feature representation.

Figure 2.7: Message-passing mechanism

The feature update for a node can be represented by the following formula:

h(𝑘+1)
𝑣 = 𝑓(h(𝑘)

𝑣 , Aggregate({h(𝑘)
𝑢 ∶ 𝑢 ∈ 𝒩(𝑣)}))

Here,

• h(𝑘+1)
𝑣 is the feature representation of node 𝑣 after the (𝑘 + 1)-th layer,

• h(𝑘)
𝑢 represents the features of neighbor nodes 𝑢 in the 𝑘-th layer,

• 𝒩(𝑣) denotes the set of neighbor nodes of 𝑣, and 𝑓 is the update function.

13

After the initial layer (k=1), each node embedding explicitly incorporates information from its
immediate 1-hop vicinity, accessible through a path of length 1 in the graph. Following the
second layer (k=2), each node embedding contains information from its 2-hop neighborhood.
In general, after k layers, the embedding of each node embodies information from its k-hop
surroundings (Khemani et al. 2024).

Figure 2.8: GNN iterations

It is obvious from the Figure 2.8 that during the iterative update process, the connection rela-
tionships remain unchanged, in other words, the adjacency matrix remains the same. Moreover,
it becomes evident that nodes can capture most of the node features with just a few layers of a
GNN. Hence, it is often unnecessary to employ many layers when using GNNs.

2.3.2 Graph Convolutional Network (GCN)

GCNs are a type of neural network designed to operate on graph-structured data. The classical
GCN model, introduced by Kipf and Welling (2016), is one of the most well-known and widely
used GCN architectures. Its update rule is as follows:

H(𝑘+1) = 𝜎 (D̃− 1
2 ÃD̃− 1

2H(𝑘)W(𝑘))

Here,

• Ã = A + I𝑁 is the adjacency matrix of the undirected graph with added self-loops.
• I𝑁 is the identity matrix.
• D̃ is the degree matrix of Ã.
• W(𝑘) is a layer-specific trainable weight matrix.
• 𝜎(⋅) denotes an activation function, such as the ReLU(.) = max(0, .).
• H(𝑘) ∈ ℝ𝑁×𝐷 is the matrix of activations in the 𝑘-th layer; H(0) = X.

Although GCN have demonstrated significant potential, their limitations in handling specific
tasks highlight the need for further advancements. A notable deficiency of GCNs is their in-
ability to effectively perform inductive learning; they struggle with unseen nodes during testing.
Furthermore, GCNs impose a uniform convolutional transformation across all neighbors, which

14

restricts their ability to allocate differential weights to neighbors based on their importance or
contextual relevance. This uniform approach limits the generalizability of a GCNmodel trained
on one graph to effectively operate on another, distinctly structured graph, thus categorizing
GCNs as primarily semi-supervised methods.

2.3.3 Graph Attention Networks (GAT)

To address the issue of uniform edge weights in GCN, Graph Attention Networks (GAT) (Velick-
ovic et al. 2017) utilize masked self-attentional layers, which fundamentally innovate by en-
abling the assignment of different weights to various neighbors without the need for matrix
operations or prior knowledge of the graph structure.

Figure 2.9: Left: The attention mechanism. Right: An illustration of multi-head attention (with K = 3 heads) by
node 1 on its neighborhood.

In the GAT model, input the set x = {𝑥1, 𝑥2, … , 𝑥𝑁} of node features, where each 𝑥𝑖 ∈ ℝ𝐹

and 𝑁 is the number of nodes, 𝐹 is the number of features in each node. The layer produces a
new set of node features, h = {ℎ1, ℎ2, … , ℎ𝑁}, where ℎ𝑖 ∈ ℝ𝐹 ′ as its output. The attention
coefficient of the edge (𝑖, 𝑗) represented by 𝑒𝑖𝑗, according to the equation:

𝑒𝑖𝑗 = 𝑎(Wx𝑖,Wx𝑗)

where 𝛼 represents a shared attentional mechanism, and 𝑊 ∈ ℝ𝐹 ′×𝐹 is an initial shared linear
transformation weight matrix. To ensure comparability of coefficients across nodes, a softmax
function is used for normalization:

𝛼𝑖𝑗 = exp(𝑒𝑖𝑗)
∑𝑘∈𝑁𝑖

exp(𝑒𝑖𝑘)

Then, the coefficients computed by the attention mechanism (Figure 2.9 Left) may then be ex-

15

pressed as:

𝛼𝑖𝑗 = exp(LeakyReLU(a⊤[Wx𝑖‖Wx𝑗]))
∑𝑘∈𝑁𝑖

exp(LeakyReLU(a⊤[Wx𝑖‖Wx𝑘]))

where ⊤ indicates transposition, and ‖ is the concatenation operation. A shared linear transfor-
mation weight matrix is utilized. The output features of each node are then calculated by the
following equation:

h𝑖 = 𝜎 (∑
𝑗∈𝑁𝑖

𝛼𝑖𝑗Wx𝑗)

Multi-head attention diversifies the attention layer by implementing K independent attention
mechanisms (Figure 2.9 Right), enhancing the stability of the self-attention learning process,
with the final representation formulated as follows:

h𝑖 = ∥
𝐾

𝑘=1
𝜎 (∑

𝑗∈𝑁𝑖

𝛼𝑘
𝑖𝑗W𝑘x𝑗)

where ‖ represents concatenation.

2.3.4 GraphSAGE

While both GCN and GAT are tailored for full-graph computation, which poses computational
challenges when applied to large-scale graphs, GraphSAGE, proposed by Hamilton, Ying, and
Leskovec (2017), offers a promising solution. GraphSAGE not only addresses the computa-
tional complexity but also effectively manages inductive learning tasks. The process comprises
two primary steps: “sampling” and “aggregation”. Subsequently, the aggregated information,
combined with the original node features, undergoes non-linear transformations, such as the
ReLU activation function, to update the node representations.

Figure 2.10: Visual illustration of the GraphSAGE sample and aggregate approach.

1) Sampling: GraphSAGE adopts a sampling strategy whereby, instead of utilizing all neigh-
bors, a fixed number of neighboring nodes, denoted as𝐾, are randomly selected from the neigh-

16

borhood of each target node, as illustrated in Figure 2.10.

2) Aggregation: For each node, GraphSAGE defines an aggregation function to aggregate the
information of neighbor nodes. This aggregation function can involve some operations, such as
averaging, pooling (e.g., max pooling), etc. Below are some common types of Aggregators:

• Mean aggregator:

h𝑘
𝑣 ← 𝜎(W ⋅ MEAN({h𝑘−1

𝑣 } ∪ {h𝑘−1
𝑢 , ∀𝑢 ∈ 𝑁(𝑣)}))

• Max-Pooling Aggregator:

AGGREGATE𝑝𝑜𝑜𝑙
𝑘 = max ({𝜎 (W𝑝𝑜𝑜𝑙h𝑘

𝑢𝑖
+ b) , ∀𝑖 ∈ 𝑁(𝑣)})

• LSTM Aggregator: Utilizes Long Short-Term Memory (LSTM) networks (Hochreiter
and Schmidhuber 1997) to capture temporal dependencies in the neighbor node features.

3) Update: A general GraphSAGE update formula is:

h𝑘
𝑣 ← 𝜎 (W𝑘 ⋅ (h𝑘−1

𝑣 ∥AGG𝑘 ({h𝑘−1
𝑢 , ∀𝑢 ∈ 𝒩(𝑣)})))

Here,

• h𝑘
𝑣 is the updated feature representation of node 𝑣 at layer 𝑘.

• h𝑘−1
𝑣 is the feature representation of node 𝑣 from the previous layer 𝑘 − 1.

• h𝑘−1
𝑢 are the feature representations of the neighbors 𝑢 of node 𝑣 from layer 𝑘 − 1.

• 𝒩(𝑣) is the set of neighbors for node 𝑣.
• AGG𝑘 is the differentiable aggregator functions at layer 𝑘.
• W𝑘 is the trainable weight matrix for layer 𝑘.
• 𝜎 is a non-linear activation function.
• ∥ represents the concatenation of the node’s previous representation with the aggregated
neighbors’ features.

2.3.5 GNN Pooling

Pooling in GNNs is essential for summarizing node information and creating compact graph
representations, especially for tasks like graph classification. By aggregating features from all
nodes, pooling helps reduce the dimensionality of the graph data, efficiently combining node
features into a cohesive graph-level representation. This process enables the creation of hier-
archical representations, facilitating a multi-scale understanding of the graph (as illustrated in

17

Figure 4.2).

Common Pooling Methods:

• Global Average Pooling: hgraph = 1
𝑁 ∑𝑁

𝑖=1 h𝑖
• Global Max Pooling: hgraph = max𝑁

𝑖=1 h𝑖
• Global Sum Pooling: hgraph = ∑𝑁

𝑖=1 h𝑖

where 𝑁 is the total number of nodes and h𝑖 is the feature vector of the 𝑖-th node.

2.3.6 Dropout Layer

Dropout is a regularization technique used to prevent overfitting in neural networks. It works
by randomly deactivating a fraction of neurons during training, forcing the network to learn
more robust features. The dropout rate, usually between 0.2 and 0.5, determines the fraction of
neurons to be deactivated (Srivastava et al. 2014).

2.4 Explainable GNN

Machine learning (ML) algorithms employed in AI can be classified as eitherwhite-box or black-
box (Vilone and Longo 2021). White-box models are easily understood and explained due to
their simple structures and high transparency, such as decision trees and linear regression. How-
ever, not all models possess such clarity. Some black-box models, like deep neural networks,
despite providing higher accuracy across various domains, feature complex hierarchical struc-
tures and extensive non-linear operations that even experts find challenging to comprehend. The
transparency and explainability of models become particularly crucial when applied in high-risk
areas such as biomedicine.

As mentioned in the LIME paper (Ribeiro, Singh, and Guestrin 2016), transparent and explain-
able decision-making processes increase trust—you are likely to trust your doctor because they
can explain their diagnosis based on your symptoms. Similarly, if predictions made by deep
learningmodels can be explained or validated in a way that humans can understand, these predic-
tions appear more reliable and trustworthy. To address these challenges, Explainable Artificial
Intelligence (XAI) has been introduced. This initiative involves developing a range of machine
learning techniques that help human users understand, trust properly, and effectively manage
the next generation of AI systems (Arrieta et al. 2020). Explainability is achieved through
two primary methods: (i) intrinsic model—designing the model with a simple structure, and (ii)
post-hoc approaches—applying explanations to understand the model’s decision-making logic
(A. and R. 2023).

18

Intrinsic model

Amodel is considered intrinsically explainable if it is designed to be interpretable from the outset
(Puthanveettil Madathil et al. 2024). These models are also regarded as white-box models, such
as decision trees and linear regression.

Post-hoc approaches

As the name indicates, post-hoc XAI tools are designed to address the opacity of black-box
machine learning models after they have made predictions. Common explanatory methods are
divided into local and global types; for instance, LIME is local, while SHAP (Lundberg and Lee
2017) provides both local and global explanations. These traditional explanatory methods are
particularly effective in the context of CNNs. As shown in Figure 2.11, the example illustrates
the LIME explanations for the top three predicted class labels for an input image (a). It is evident
from the visualization how specific parts of the image correlate with each predicted class label.
For example, the guitar neck significantly influences the prediction of “electric guitar” (b).

Figure 2.11: Explaining an image classification prediction made by Google’s Inception neural network. The top 3
classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21). Image
taken from (Lundberg and Lee 2017).

However, when it comes to GNNs, things become a bit more complicated. Unlike the highly
structured grids handled by CNNs, the irregular nature of graph structures presents numerous
challenges. For instance, while we can easily interpret the explanations of the aforementioned
CNN models, providing similar node-level explanations for a graph is not as straightforward to
visualize and explain.

For GNNs, current explainable methods offer different perspectives to understand the model
from various aspects of the graph, such as which input edges are more important, which input
nodes carry more weight, which node features are more significant, and what types of graph pat-
terns maximize the predictive ability for a certain class. To comprehend these approaches, Yuan
et al. (2022) have proposed a classification of different GNN explanation techniques. Based
on the type of explanation, these techniques are primarily divided into two main categories:
instance-level methods and model-level methods (Figure 2.12).

19

Figure 2.12: An overview of the proposed taxonomy.

Instance-level methods provide explanations specific to each input graph by identifying im-
portant features. These methods are divided into four categories based on how they generate
importance scores: gradients/features-based, perturbation-based, decomposition, and surrogate
methods.

• Gradients/features-based methods use gradients or feature values to assess feature im-
portance.

• Perturbation-based methods evaluate how changes in input affect predictions to deter-
mine feature importance.

• Decomposition methods break down prediction scores to the last hidden layer and trace
these back to input features.

• Surrogatemethods sample data from a given example’s neighbors and use simplemodels
like decision trees to explain predictions.

Model-levelmethods explain graph neural networks globally without focusing on specific inputs.
They provide general insights into how models behave overall, such as through XGNN (Yuan
et al. 2020), which generates and uses graph patterns to explain model predictions.

Both approaches offer different insights: instance-level methods provide detailed, specific ex-
planations, while model-level methods offer broader, more general understandings. Validating
and interpreting these models requires human supervision, especially for instance-level meth-
ods, which need more detailed examination. Model-level methods, though less demanding in
supervision, might produce less interpretable explanations for humans. Together, these methods
enhance the overall understanding of graph models.

20

Next, we will focus on two common XAI methods: SA and GNNExplainer.

SA (Baldassarre and Azizpour 2019) uses the square of the gradient as an importance score
for different input features, which can be directly calculated through backpropagation. This
process is similar to network training but targets input features instead of model parameters,
allowing for a direct measure of how changes in inputs affect the outputs. These inputs could be
nodes, edges, or features of a graph. It assumes that a higher absolute gradient value indicates
a more important input feature. Although simple and effective, this approach has limitations.
Firstly, SA only reflects the sensitivity between inputs and outputs, not their true importance.
Additionally, in the model’s saturation regions where input changes have minimal impact on the
output, gradients may fail to accurately represent input contributions.

GNNExplainer (Ying et al. 2019) is a perturbation-based method that provides interpretable
explanations for predictions made by any GNN-based model on graph-based machine learning
tasks. It employs soft masks to learn the importance of edges and node features. These masks are
optimized by maximizing the mutual information between the predictions of the original graph
and a modified graph, where the modifications are guided by the masks. This process allows for
the identification of crucial input features, as different masks are generated to explore various
aspects of input influence. The generated masks are applied to the input graph through element-
wise multiplication, producing a new graph that highlights important input features. This new
graph is then fed into the trained GNN to evaluate the effectiveness of the masks and refine the
mask generation algorithm.

While both SA and GNNExplainer have been instrumental in providing insights into the inner
workings of GNNs, they are not without their limitations.

Figure 2.13: An example of explaining the classification of a scene graph. Image taken from (X.Wang et al. 2020).

• Confounding Associations: Consider the example illustrated in Figure 2.13, where the
scene type of a scene graph is predicted as Surfing. Both SA and GNNExplainer employ
gradients and masks, respectively, to attribute importance to various parts of the graph.
However, these methods often highlight edges with large gradients or significant masks,

21

such as (shorts, on, man) or (man, has, hand). These associations, while highly correlated
with the prediction, do not necessarily cause it. In other words, the model identifies cor-
relations that do not truly explain the underlying causation. For example, “shorts” and
“man” may be correlated with surfing scenes but do not directly cause the prediction. In-
stead, the actual causal relationship might involve edges like (standing, on, surfboard),
which are more directly indicative of surfing.

• Redundancy: Another significant issue is redundancy. In GNNs, the interconnected na-
ture of the graph means that the gradient-like signals of edges are influenced and even
scaled by their connected neighbors. This interconnectedness can result in redundant
edges being highlighted in the top explanations. For instance, edges such as (man, on,
ocean) and (man, riding, waves) might both appear as important due to their high gradient
signals. However, these edges essentially convey the same information and contribute to
redundancy in the explanation. This redundancy obscures unique and potentially more
informative edges, leading to a less clear understanding of the model’s decision-making
process.

To address these shortcomings, various newmethods have been proposed by researchers. For ex-
ample, X. Wang et al. (2020) developed Causal Screening, which focuses on identifying causal
relationships within the graph. This approach provides more accurate and reliable explanations
for the predictions made by GNNs, as shown in Figure 2.13 (c).

2.5 GNN Frameworks

In this section, we will briefly introduce several common frameworks for implementing Graph
Neural Networks (GNNs). These frameworks provide a rich set of tools and libraries that sup-
port the construction and training of various GNN models, helping researchers and engineers
efficiently analyze and apply graph data. Each framework has its strengths in functionality,
performance, and support, and the choice of the appropriate framework depends on specific ap-
plication requirements and technical preferences.

Table 2.2: Overview of Common GNN Frameworks

Framework Backend Key Features URL

PyTorch Geometric
(PyG)

PyTorch Efficient graph data
processing and
manipulation, multiple
GNN layers and operations,
strong community support
and documentation

PyG

22

https://pytorch-geometric.readthedocs.io/en/latest/

Framework Backend Key Features URL

Deep Graph Library
(DGL)

PyTorch,
TensorFlow,
MXNet

Supports multiple deep
learning frameworks,
efficient graph data
processing and modeling
capabilities, extensive
GNN models and examples

DGL

TensorFlow GNN
(TF-GNN)

TensorFlow Integrated with
TensorFlow’s powerful
capabilities, provides
flexible API interfaces,
supports various GNN
models and operations

TF-GNN

Graph Nets TensorFlow,
Sonnet

Provides a general GNN
framework, supports
multiple graph operations
and models, easy to
integrate and extend

Graph Nets

StellarGraph Keras, TensorFlow Based on Keras and
TensorFlow, offers various
pre-built GNN models and
examples, focuses on node
classification, link
prediction, and graph
classification tasks

StellarGraph

Spektral Keras, TensorFlow Provides multiple graph
neural network layers and
tools, suitable for quickly
building and training GNN
models

Spektral

Through these frameworks, researchers can choose the appropriate tools to build and train GNN
models according to their needs, achieving efficient graph data analysis and applications. The
advantages and features of these frameworksmake them highly flexible and effective in handling
complex graph-structured data.

23

https://www.dgl.ai/
https://www.tensorflow.org/gnn
https://github.com/deepmind/graph_nets
https://stellargraph.readthedocs.io/en/stable/
https://graphneural.network/

3 Application Domains of GNN in Biomedicine

Biomedical data are typically characterized by high complexity and interconnectivity. Tradi-
tional machine learning methods are often designed for data with regular grid structures, such
as two-dimensional medical images and one-dimensional mRNA sequences, which makes it
challenging for them to fully account for the diverse structural characteristics and rich interac-
tions present in biomedical data. The advent of GNNs provides a new solution to this problem.
GNNs can effectively extract and utilize the information embedded in these biomedical net-
works, thereby advancing biomedical research.

In this chapter, we will explore the fundamental principles and the diverse applications of GNNs
in the field of biomedical sciences. To organize our discussion, we categorize the applications
into several key areas (Zhang et al. 2021): Drug Discovery and Development, Medical Diag-
nosis and Analysis, and Disease Association Prediction. Each category represents a critical
domain where GNNs are making significant contributions by leveraging their ability to model
complex, interconnected data.

Principles of GNN Applications in Biomedicine

Biomedical data with graph structures can be modeled in two ways: structure-based modeling
(molecule-based modeling) and biological network-based modeling (Zhang et al. 2021).

Figure 3.1: (A) Molecular structure-based modeling (Y. Wang, Li, and Barati Farimani 2023). (B) Biological
network-based modeling (Zitnik, Agrawal, and Leskovec 2018).

In molecule-based modeling, atoms or functional chemical substructures are used as nodes, and
bonds are used as edges to construct a molecular graph, as shown in Figure 3.1 (A). Molecule-
based GNNs have a wide range of applications in the biomedical field, such as molecular prop-
erty prediction, compound classification, and designing new molecules in drug development.

24

In biological network-based modeling, various biological entities are used as nodes, such as pro-
teins, diseases, drugs, and RNA, as shown in Figure 3.1 (B). The edges between nodes represent
known associations between these entities, thereby generating a relational network. This type
of network can be used to enhance the analysis and research in bioinformatics.

3.1 Drug Discovery and Development

The process of drug development and discovery is intricate and expensive, involving stages from
fundamental scientific research to new drug discovery, clinical trials, and market introduction,
as illustrated in Figure 3.2. The primary aim of this process is to identify effective therapeutic
agents while ensuring their safety and efficacy. The integration of Graph Neural Networks
(GNNs) into this process has brought revolutionary improvements, especially in the areas of
data analysis and pattern recognition. This section will discuss the critical roles that GNNs can
play at various stages of drug discovery and development, including target identification, drug
screening and optimization, and clinical trials.

Figure 3.2: The process of drug discovery and development. Image taken from (Gaudelet et al. 2021).

3.1.1 Target Identification

In drug development, targets typically refer to molecules such as proteins, receptors, enzymes,
or genes that play a crucial role in the progression of a disease. These targets are instrumental
in the formation, progression, or symptom manifestation of diseases. Drugs interact specifically
with these targets to modulate or inhibit their biological activity, thereby treating or managing
the disease.

For example, if a specific protein is critical in the growth and spread of a cancer, that protein can

25

be targeted by a drug. The drug would be specifically designed to bind to this protein, thereby
inhibiting its activity and preventing the proliferation of cancer cells.

During this process, GNNs can assist researchers in predicting protein functions and identifying
and validating potential drug targets by analyzing complex data such as protein structures, func-
tionalities, and protein-protein interactions (PPI).

Protein Structure-Based Methods

Proteins execute their biological functions by folding into specific three-dimensional structures
determined by their amino acid sequences. Gligorijevic et al. (2019) have proposed modeling
protein structures as graphs to predict protein functions. In this model, proteins are viewed as
graphs where nodes represent amino acids, and edges represent physical bonds or spatial prox-
imities between these amino acids. GNNs can identify key features from the protein structure,
such as active sites, that directly influence the protein’s catalytic activity.

Protein-Protein Interaction Network-Based Methods

Ioannidis, Marques, and Giannakis (2019) have used a multi-relational graph approach based
on Protein-Protein Interaction (PPI) networks for semi-supervised learning to predict protein
functions. This method focuses on understanding how proteins interact within a larger system
to infer their functions. In PPI networks, each node typically represents a protein, and the node
attributes may include the amino acid sequence, protein domains, subcellular location, and gene
expression profiles. These features help describe the biological characteristics and functions of
proteins.

3.1.2 Drug Screening and Optimization

Once potential drug targets have been identified, researchers proceed with high-throughput
screening (HTS), selecting candidate drugs that effectively bind to the targets from thousands
of compounds. This is followed by post-screening data analysis, where GNNs are utilized to
predict molecular compound attributes and drug-target interactions.

Molecular Property Prediction

Molecular property prediction is a crucial step in drug screening and optimization, primarily
used to identify compounds with therapeutic potential early on, assess their safety and toxicity,
optimize pharmacokinetic properties, and enhance the efficiency of the research and develop-
ment process (Wieder et al. 2020). By predicting these properties, researchers can screen for

26

the most promising drug candidates before experimental validation, saving time and costs while
increasing the likelihood of successful drug development. The application of these predictive
tools helps ensure that drugs have the desired biological activity and minimized risk of adverse
effects.

Drug–Target Interaction Prediction

Drug-target interaction prediction is crucial in the drug discovery and development process, in-
volving the prediction of interactions between small molecule drugs and their biological targets
(typically proteins). While traditional methods have struggled with inefficiencies and a lack of
biological explanation, the introduction of GNN has significantly enhanced predictive perfor-
mance.

Feng et al. (2018) pioneered the use of Graph Convolutional Networks (GCN) to predict the
real-valued interaction strengths between drugs and proteins, notably improving the prediction
accuracy for cold targets. In their study, a form of structure-based modeling, drug molecules
and target proteins are modeled as graphs, with nodes representing atoms of drugs or amino
acids of proteins, and edges denoting chemical bonds or spatial proximities. The GCN processes
these graphs to learn and extract deep features, which are then processed through fully connected
layers to predict interaction strengths. Subsequent studies have adopted similar approaches to
enhance predictive outcomes (Gao et al. 2018; Nguyen et al. 2021).

In contrast, research like Zhao et al. (2021) has improved model accuracy and biological in-
terpretability by integrating drug-protein relationship networks with deep learning technologies.
This network-based modeling approach represents entire drugs or proteins as nodes and poten-
tial or known interactions between them as edges, modeling the entire drug-target interaction
network to analyze interaction patterns.

3.1.3 Clinical Trials

Drug-Drug Interactions Prediction

Drug-drug interactions (DDIs) are crucial in clinical medication, especially for patients who re-
quire multiple drug treatments, such as those with chronic diseases or the elderly. DDIs can
affect the absorption, distribution, metabolism, and excretion (ADME) of drugs, potentially
altering their efficacy or causing adverse reactions. Therefore, accurate prediction and man-
agement of DDIs are essential for ensuring medication safety. For example, Zitnik, Agrawal,
and Leskovec (2018) successfully predicted potential side effects between drugs by analyzing a
multimodal heterogeneous network composed of protein-protein interactions, drug-target inter-

27

actions, and drug-drug interactions, where different types of edges represent various side effects,
as shown in Figure 3.1 (B).

3.2 Medical Diagnosis and Analysis

Medical diagnosis often relies on the interpretation of medical images, such as MRI and CT
scans, by healthcare professionals. This process can be time-consuming and prone to human
error due to variability in individual experience. To address these challenges, advanced compu-
tational methods, including deep learning technologies, have been increasingly integrated into
the medical field.

Convolutional Neural Networks (CNNs) have shown promise in medical image analysis, ef-
fectively detecting anomalies in chest X-rays and identifying malignant cells in histopathology
slides (Singh et al. 2018; Dabeer, Khan, and Islam 2019). However, while CNNs excel at ana-
lyzing local pixel patterns, they may not fully capture the complex global interactions in medical
data. In contrast, GNNs, with their ability to model complex dependencies and interactions, are
particularly useful for data that can be represented as graphs, such as brain connectivity analysis,
electrophysiological data analysis, and so on.

3.2.1 Brain connectivity analysis

Brain connectivity analysis is crucial for understanding and diagnosing various neurological
disorders. Functional Magnetic Resonance Imaging (fMRI) is a core data type in this field,
providing critical insights into brain function by recording brain activity. And GNNs can offer
unique advantages in analyzing such data, as they effectively model the complex interactions
and connections between brain regions.

Figure 3.3: (a) fMRI connectivity graph at the individual level. (b) Population graph. Image taken from (Rakhim-
berdina and Murata 2020).

Modeling Method:

The methods are mainly divided into individual graph models and population graph models
(Ahmedt-Aristizabal et al. 2021), as illustrated in Figure 3.3. The Table 3.1 below also details
their differences:

28

Table 3.1: Individual and Population Level Graph Models

Aspect Individual Level Population Level

Nodes ROI (brain regions of interest) Subjects
Features Physiological or statistical

properties of the brain region, such
as ROI coordinates

RSFC (Resting State Functional
Connectivity), phenotypic features
(age, gender, city, handedness)

Edges Pearson correlation, partial
correlation

Phenotypic similarity

Task Graph classification Node classification

Autism Spectrum Disorder (ASD)

In ASD studies, both individual graph models and population graph models are widely used.
For individual graph models, researchers construct a brain connectivity graph for each subject
and use GNNs to classify these graphs as either ASD or Healthy Control (HC). Population
graph models classify subjects by constructing graphs based on similarities between subjects,
analyzing overall group characteristics to identify ASD.

Analysis of Other Brain Disorders

Similar methods can be applied to other brain disorders such as schizophrenia, major depressive
disorder, and bipolar disorder. In these cases, the specifics of implementation and graph models
may vary. For instance, schizophrenia studies might focus on identifying functional connec-
tivity anomalies in specific brain regions, while major depressive disorder studies might target
dysfunctions in regions associated with emotional regulation. Bipolar disorder research could
integrate both functional and structural brain data for a comprehensive analysis. Each case tai-
lors the graph structure and analysis method to the specific characteristics and research goals of
the disorder.

3.2.2 Electrical Signal Analysis

Electrical signal analysis is a crucial field within medical signal processing, primarily involv-
ing the processing and analysis of electroencephalograms (EEG), intracranial electroencephalo-
grams (iEEG), and electrocardiograms (ECG). These electrical signals provide critical informa-
tion about the functional state of organs such as the brain and heart. By leveraging GNNs, we
can effectively capture the spatial and temporal relationships within these signals, thereby en-
hancing the accuracy of classification and detection tasks.

29

Graph Neural Network-based electrical signal analysis can be applied to the detection and clas-
sification of various diseases, such as epilepsy by analyzing EEG signals to detect seizures
(Mathur and Chakka 2020), emotional and mental states by identifying different emotional
states (e.g., happiness, sadness) through EEG signals (Jang, Moon, and Lee 2018), and cardiac
anomalies by detecting arrhythmias and other heart conditions using ECG signals (H. Wang et
al. 2020).

Modeling Method:

Figure 3.4: Example of process of classifying EEG signals using GNNs. Image adapted from (Nagel 2019) and
(Jang, Moon, and Lee 2018).

• Nodes: Each node represents an electrode that records local electrical signals (e.g., in
EEG analysis, each electrode is placed on the scalp at different positions to capture brain
activity signals from various regions, as shown in Figure 3.4).

• Node Features: Node features are extracted from the time-series signals recorded by the
electrodes. These features can include both time-domain features and frequency-domain
features 2.

• Edges: Edges represent the relationships between nodes (electrodes), typically based on
their spatial proximity or functional connectivity.

Classification Tasks:

• Node-Level Classification: Each node is independently classified to predict the state of
each electrode. (e.g., Independently classify each electrode to predict whether it detects
seizure activity.)

• Graph-Level Classification: The entire graph is classified as a whole to predict the state
of the entire EEG recording. (e.g., Aggregate the node-level classification results. If any
electrode’s classification result indicates seizure activity, the entire graph is considered to
have seizure activity.)

2Time-domain features are extracted directly from the signal’s time series, such as mean, standard deviation,
and peak value. Frequency-domain features, derived from band splitting, include power spectral density and band
energy, such as the energy of 𝛿, 𝜃, 𝛼, 𝛽, and 𝛾 waves.

30

3.2.3 Image Segmentation

Although Convolutional Neural Networks (CNNs) have already achieved significant success
and become the mainstreammethod in the field of medical image segmentation, GNNs still have
substantial room for development due to their ability to handle complex graph-structured data.
By dividing an image into multiple interconnected regions or pixel blocks, where each region
is treated as a node with features such as pixel intensity and texture, and edges represent the
relationships between regions, GNNs can capture the complex spatial structure and contextual
information within the image. This capability makes GNNs particularly effective in tasks such
as the precise segmentation of organs or lesions like brain tumors and lung nodules, significantly
improving segmentation accuracy and robustness (Mohammadi and Allali 2024).

3.2.4 Multimodal Fusion

In multimodal medical image analysis, GNNs are widely used to integrate rich information
from different modalities (such as CT, MRI, and PET). By representing multimodal image data
as graph structures, where node features include values from each modality and edges repre-
sent associations either between different modalities or within the same modality, GNNs can
effectively integrate and exploit complementary information from multimodal data, enhancing
the accuracy of disease detection and diagnosis. This approach is particularly important in the
analysis of complex diseases like cancer, where multimodal imaging provides a more compre-
hensive and accurate diagnosis. By leveraging multimodal fusion, GNNs can better capture the
relationships between different imaging modalities, providing a more holistic understanding and
diagnosis of diseases.

3.3 Disease Association Prediction

Disease association prediction is crucial in bioinformatics for identifying connections between
diseases and biological entities like genes and RNA. Traditional methods, while somewhat ef-
fective, often struggle with the complex structures in biological networks, whereas GNNs offer
a powerful alternative.

Disease Gene Prediction

Disease gene prediction helps to understand how biomolecules interact within the context of
diseases and identifies genes that may be linked to specific conditions. Ata et al. (2021) have
proposed two potential predictive frameworks: one based on node classification and the other
on link prediction, as illustrated in Figure 3.5.

• Node Classification: By analyzing the neighborhood and connection patterns of nodes

31

Figure 3.5: Tasks in disease gene prediction.

within the network, GNNs can predict the disease status of unlabeled genes, identifying
key features that indicate disease association.

• Link Prediction: This method is used to predict potential unknown associations between
genes and diseases, where the weight of an edge represents the strength or credibility
of the association. Cinaglia and Cannataro (2023) have demonstrated how GNN-based
link prediction can analyze gene-disease networks, highlighting the potential of GNNs to
improve the precision and interpretability of predictions.

Utilizing well-trained GNN models, it is possible to predict and discover new gene-disease as-
sociations, which are crucial for the early diagnosis of diseases and the development of new
treatments.

RNA–Disease Association Prediction

RNA-disease association prediction is a critical area of research in bioinformatics and systems bi-
ology, aiming to elucidate the interactions between RNA molecules and specific diseases. Iden-
tifying these associations is crucial for understanding the molecular mechanisms of diseases,
early diagnosis, and treatment.

Recently, GNNs have been extensively applied in this research field. In these models, RNA
molecules and diseases are considered as nodes within a network, while the edges between nodes
represent known or potential associations. This network framework allows GNNs to effectively
perform link prediction to reveal possible RNA-disease associations. (Lu et al. 2018; Pan and
Shen 2019; Yang and Lei 2021; Momanyi et al. 2024)

GNNs have a broad range of applications in biomedicine, including but not limited to drug dis-
covery, disease association prediction, and medical diagnosis and analysis. Beyond these areas,

32

GNNs also hold significant potential for future research and development. In summary, GNNs
promise substantial advancements in biomedical research and healthcare, with many more ap-
plications yet to be explored.

33

4 Model Implementation

In the previous chapter, we discussed some common applications of GNNs in the field of
biomedicine. In this section, we will implement two examples of predicting protein functions
using GNNs: protein classification and protein-protein interactions (PPI). For more detailed
results, please refer to the appendix.

4.1 Protein Classification

Proteins are fundamental molecules that play critical roles in nearly all biological processes.
Among the various types of proteins, enzymes (Robinson 2015) are particularly significant. En-
zymes are specialized proteins that act as catalysts, speeding up chemical reactions in cells with-
out being consumed in the process. They are essential for numerous cellular functions, including
metabolism, DNA replication, and signal transduction. Understanding which proteins function
as enzymes is crucial for insights into biological mechanisms and for applications in biotechnol-
ogy, medicine, and pharmaceuticals.

The primary objective of this task is to use GNNs to classify these protein graphs, categorizing
the proteins as either enzymes or non-enzymes. This is a graph-level classification task based
on molecular modeling, and it is a binary classification problem. For this task, we utilize
the Spektral framework, built on TensorFlow/Keras, which supports various types of graph
convolutions and pooling layers.

4.1.1 Data

The dataset proteins is sourced from the paper “Protein function prediction via graph kernels”
(Borgwardt et al. 2005) and is part of the benchmark datasets provided by the Technical Uni-
versity of Dortmund’s TUDataset collection (More details can be found here). This dataset has
been preprocessed for simplicity and ease of use.

Detailed Information:

• Number of Graphs: There are 1113 graphs, each representing a different protein.
• Nodes: Each node represents an amino acid. On average, each graph contains 39.06
nodes.

• Node Features: Each node has 4 features, which likely represent the physicochemical
properties of the amino acids.

• Edges: Two nodes are connected by an edge if the distance between them is less than 6
Angstroms. On average, each graph has 72.82 edges.

34

https://chrsmrrs.github.io/datasets/docs/datasets/

• Labels: Each graph is labeled to indicate whether it is an enzyme or not, using a binary
classification (0 or 1). The labels are represented using one-hot encoding.

Figure 4.1: An example of a protein graph, illustrating the graph structure, the node feature matrix, the adjacency
matrix, and the label.

4.1.2 Modeling and Training

4.1.2.1 Model Definition

Figure 4.2: Overall Model Architecture and Workflow.

The model architecture consists of several key components designed for protein classification.
The input layer accepts graphs representing proteins, where each node corresponds to an amino
acid and initially has 4 features.

Following the input layer, there are two GNN layers, which can be Graph Convolutional Net-
work (GCN), Graph IsomorphismNetwork (GIN) (Xu et al. 2018), or GraphSAGE-Mean layers.
These layers transform the initial node features into new feature representations by aggregating

35

information from the local neighborhood of each node. We will experiment with each of these
methods.

After the GNN layers, a global average pooling layer is applied. This layer computes the average
of the node features across the entire graph, resulting in a single global feature vector for each
protein.

The global feature vector is then processed through a hidden layer with ReLU activation and L2
regularization to enhance model generalization. To further prevent overfitting, a dropout layer
is included, which randomly drops a fraction of the hidden units during training.

The final output is produced by a dense (Logit) layer, which reduces the dimensionality to match
the number of output classes. A softmax activation function is applied to convert the logits into
probability distributions over the two classes (enzyme or non-enzyme).

Figure 4.3: GCN Model Summary

In order to provide a more concrete example, we present the detailed architecture of the GCN
model. Figure 4.3 shows the layers, connections, and corresponding parameter counts within
the GCN model used in our experiments.

4.1.2.2 Compilation of the Model

36

The model employs categorical cross-entropy as the loss function, which is suitable for compar-
ing the predicted probabilities against the true one-hot encoded labels. Even though the task is a
binary classification problem, categorical_crossentropy is chosen over binary_crossentropy due
to the one-hot encoding format of the labels. For the optimization of the model, the Adam opti-
mizer is used. Furthermore, the model’s performance is evaluated using accuracy as the metric,
which directly reflects the proportion of correctly classified instances.

4.1.2.3 Training and Evaluating

Given the moderate size of the dataset and significant variability in model performance across
different training-test splits, we have chosen k-fold cross-validation as our primary evaluation
method. Initially, 10% of the data is randomly selected to serve as a fixed test set. The remain-
ing 90% is subjected to k-fold cross-validation. This strategy allows us to determine the most
effective epoch by identifying which of the 100 training epochs achieves the highest accuracy.

Furthermore, we continuously experiment with various hyperparameters during each training
cycle, including learning rates, the number of hidden units, and the number of folds, to optimize
the model’s performance. After identifying the optimal hyperparameters, we re-train the final
model on the entire 90% training portion of the dataset. Parameters are meticulously optimized
using the backpropagation algorithm throughout the training process. The model’s performance
is then assessed on the designated test set. This comprehensive approach ensures a robust model
evaluation, effectively mitigating the effects of data variability and maximizing the potential of
the available data.

4.1.3 Results

We evaluated three different models: GCN, GIN, and GraphSAGE-Mean. Each model was
trained and validated using K-fold cross-validation. The performance of each model on the
validation and test sets is summarized in Table 4.1. The hyperparameters used for each model
are listed in Table 4.2.

Table 4.1: Best Epoch Model Performance on Validation and Test Sets

Model
Validation
Accuracy

Val Acc
SD

Validation
Loss

Val Loss
SD

Test
Accuracy Test Loss

GCN 0.75 0.03 0.55 0.03 0.77 0.52
GIN 0.75 0.05 0.55 0.07 0.74 0.55
GraphSAGE 0.73 0.04 0.56 0.03 0.77 0.52

37

Note: “Val Acc SD” and “Loss SD” are standard deviations of accuracy and loss, respectively,
across multiple folds at the best epoch. Results may vary due to various training factors.

Table 4.2: Hyperparameters and Parameters for Each Model

Model
Learning
Rate

Hidden
Units

Dropout
Rate K-fold Epochs

Number of
Parameters

GCN 0.001 64 0.3 7 97 8770
GIN 0.001 64 0.4 7 98 8772
GraphSAGE 0.001 32 0.4 7 92 3490

Note: Learning rates tested include 0.1, 0.01, 0.001. Hidden units options are 32, 64, 128.
Dropout rates range from 0.2 to 0.5. K-fold cross-validation is conducted with 5 to 10 folds,
and epochs range from 1 to 100.

The results demonstrate that the three models—GCN, GIN, and GraphSAGE-Mean—show very
similar performance on this dataset, both in terms of validation and test accuracy and loss. This
suggests that the choice of the specific GNN layer (GCN, GIN, or GraphSAGE-Mean) does not
significantly impact the performance for this particular protein classification task.

4.1.4 Explainability

We utilize GNNExplainer (Ying et al. 2019), a tool specifically designed to explain graph neural
networks, to identify the most important node features and edges contributing to our model’s
predictions. For this analysis, we randomly select a protein from our dataset and analyze its
prediction.

GNNExplainer works by learning a mask for the input graph. This mask highlights the key
node features and edges that influence the model’s predictions. The mask values are typically
transformed through a sigmoid function, resulting in values ranging from [0, 1]. To identify
the most significant edges or features, these values are binarized based on a chosen threshold:
values above the threshold are set to 1 (indicating high importance), while those below are set
to 0 (indicating lower importance). This binarization process allows us to clearly distinguish
between crucial and non-crucial elements in the graph, providing a focused explanation of the
model’s predictions.

To further illustrate the application of GNNExplainer, we randomly selected a graph from the
test set and used the GraphSAGE model for analysis.

38

Important Edges

Figure 4.4: Edge Importance Visualization

The edge importance visualization, as shown in Figure 4.4, indicates that most edges have im-
portance values ranging from 0.2 to 0.25. However, there are three edges that stand out with
importance values exceeding 0.8, approaching 1.0. These high values suggest that these edges
are extremely significant for the model’s prediction.

Due to the presence of these few highly important edges, setting a fixed threshold for edge
importance is challenging. If the threshold is set too low, many less important edges will be
included, potentially cluttering the explanation. Conversely, a high threshold might exclude
edges that are still relatively important. Therefore, instead of using a fixed threshold, we have
chosen to highlight the top 10 most important edges. As illustrated in Figure 4.5, these top 10
edges are marked in red within the protein graph, allowing for a clear visual representation of
the subgraph that has the most substantial impact on the model’s prediction.

Figure 4.5: Combined Graph with Original and Important Edges

39

Important Node Features

GNNExplainer not only allows us to assess the importance of edges but also enables the evalu-
ation of node feature importance. The results show that the mask values for the four features of
the selected protein graph are approximately equal: 0.2570, 0.2507, 0.2478, and 0.2542. This
indicates that no single feature stands out as particularly crucial, suggesting that each feature
contributes similarly to the model’s prediction, with none being highly significant in isolation.

4.2 Protein-Protein Interactions (PPI)

Protein-Protein Interaction (PPI) is a vital process within biological systems, playing a crucial
role not only in drug development but also in regulating gene expression, cell signaling, and
maintaining cell cycle and apoptosis. These interactions enable cells to respond to external
signals and maintain normal function and health, which is essential for understanding disease
mechanisms and developing therapeutic strategies.

The primary objective of this task is to employ GNNs to predict protein functions. This is a
node-level classification task based on network modeling, and it represents a multi-class,
multi-label problem. For this task, we utilize the PyG (PyTorch Geometric) framework, which
provides comprehensive tools for building and training GNN models.

4.2.1 Data

The dataset PPI is sourced from the paper “Predicting Multicellular Function through Multi-
layer Tissue Networks” (Zitnik and Leskovec 2017).

Detailed Information:

• Number of Graphs: There are 24 graphs, each corresponding to different human tissues.
• Nodes: Each node represents a protein. On average, each graph contains 2,371 nodes,
totaling 56,944 nodes across the dataset.

• Node Features: Each node has 50 features, which include positional gene sets, motif sets,
and immunological characteristics.

• Edges: Each edge represents an interaction between two proteins. The entire dataset
contains a total of 1,587,264 edges, with an average of approximately 66,136 edges per
graph.

• Labels: The dataset uses Gene Ontology (GO)3 for labeling, comprising 121 different
3Gene Ontology (GO) terms (Ashburner et al. 2000) are used to describe protein functions, providing a stan-

dardized vocabulary to define the roles of proteins in molecular functions, biological processes, and cellular com-
ponents.

40

labels. The labels are not encoded in a one-hot manner.

Here is the division of the dataset into training, validation, and test sets.

Figure 4.6: Summary of Datasets.

4.2.2 Modeling and Training

4.2.2.1 Model Definition

Figure 4.7: Overall Model Architecture

Thismodel employs a GraphAttention Network (GAT) framework designed to process data with
complex relationships. By combining graph attention layers with linear transformation layers
in each layer, the model optimizes and merges features layer by layer. Each layer enhances
the information exchange between nodes and improves the generalizability of features through
activation functions and regularization techniques. The detailed process is illustrated in the
accompanying Figure 4.7. The model structure is as follows:

In the first layer, GAT and linear transformation are simultaneously applied to the input features.
This layer’s GAT is configured with four attention heads and defaults to concatenating features.
Both the GAT and linear layers expand the input features from 50 to 1024 dimensions (256
dimensions per head across four heads), then their outputs are added together to merge infor-
mation. This design allows each node to extract rich contextual information from its neighbors
while retaining essential original features. Subsequently, the ELU activation function introduces

41

non-linearity, batch normalization standardizes feature distribution, and a dropout layer reduces
the risk of overfitting, thus enhancing the model’s stability and generalizability.

The second layer continues the fusion strategy ofGAT and linear layers, similar in structure to the
first layer. This layer aims to further refine and deepen the feature representation between nodes
to better capture and understand deeper inter-node relationships. In this layer, the number of
hidden units and attention heads remains constant to ensure feature dimension stability. The use
of ELU activation and batch normalization again helps maintain data stability while enhancing
the model’s ability to recognize complex data patterns.

In the final layer of the model, the GAT is adjusted to output dimensions of 121, corresponding
to the number of labels in a multi-label classification. Although four attention heads are retained,
the layer opts for averaging instead of concatenating the outputs from each head to control the
output dimensions and prepare for final predictions. The linear transformation layer adjusts its
output dimensions accordingly to suit the classification task. The output of this layer is the logits
used directly for the classification task, with no further activation function applied to facilitate
direct use in loss function calculation.

Figure 4.8: Summary of GAT Model Layer Transformations and Parameters

To demonstrate the model’s functionality, we examine the first graph in the training set. This
example highlights the changes in dimensionality and the number of parameters across each
model layer. Figure 4.8 illustrates these transformations and details, providing clear insights
into how each layer processes and refines node features.

4.2.2.2 Compilation of the Model

In the model configuration, as specified in Table 2.1, we utilize the Binary Cross-Entropywith
Logits Loss function, which is specifically designed for binary and multi-label classification
tasks. This function incorporates a sigmoid layer within the loss calculation, facilitating the

42

handling of predictions in logits form. This integration offers numerical stability during training
and enhances performance by directly optimizing the model’s output for probability thresholds.
Regarding the optimizer, the Adam optimizer is chosen to efficiently manage weight updates
during the training process.

The F1 score is employed as a primary performance metric, particularly valuable in binary
and multi-label classification tasks. The F1 score is the harmonic mean of precision and recall,
providing a balanced measure of the model’s accuracy and its ability to handle positive class
predictions.

To comprehensively evaluate the model’s performance across all labels, we employ themicro-
average F14 score calculation method. The micro-average approach accumulates the True Pos-
itives (TP), False Positives (FP), and False Negatives (FN) across all labels, and then computes
the Precision and Recall based on these aggregated statistics to determine the F1 score. The
formula for the F1 score is as follows:

𝐹1 = 2 × Precision × Recall
Precision + Recall

Where:
Precision = Total TP

Total TP + Total FP
,Recall = Total TP

Total TP + Total FN

4.2.2.3 Training and Evaluating

Model training is completed through multiple epochs. In each epoch, the training data is divided
into 20 batches (batch size of 1), and the validation data is divided into 1 batch (batch size of 2).
For each batch, the model first performs forward propagation to compute predictions. Then, the
loss function is used to calculate prediction errors. Next, backpropagation is used to compute
gradients, and finally, the optimizer updates the model parameters based on these gradients.

During the training process, we employed an early stopping mechanism, which is primarily used
to prevent overfitting and ensure the generalization ability of the model. In this instance, the
mechanism operates by monitoring the model’s F1 score on the validation set: if the F1 score
does not improve by at least 0.001 over 10 consecutive training epochs, the training will be
prematurely halted. This strategy not only helps save computational resources but also ensures
that the model performs optimally in practical applications.

4Another method, called theMacro-average F1 score, calculates the F1 score independently for each label and
then takes the average.

43

Then, we saved the trained model for evaluation. The test data is divided into 1 batch with a
batch size of 2 for the evaluation process.

4.2.3 Results

Here is a refined and supplemented version of the performance analysis:

Table 4.3: Performance Metrics Summary

Metric Training Validation Testing

Loss 0.0118 0.0529 0.0280
F1 Score 0.9934 0.9823 0.9890

Figure 4.9: Training and Validation Loss and F1 Score Over Epochs

Themetrics table, alongwith Figure 4.9, concisely demonstrates themodel’s performance across
the training, validation, and testing phases:

• Loss Trends: The training phase shows the lowest loss at 0.0118, indicative of effective
initial learning. The validation loss, although slightly higher at 0.0529, suggests adequate
generalization capabilities. The test loss stands at 0.0280, confirming consistent perfor-
mance on unseen data.

• F1 Score Trends: The model achieves high F1 scores across all datasets, with the training
phase nearly perfect at 0.9934. The validation score slightly drops to 0.9823 but maintains
a high level in testing at 0.9890, emphasizing the model’s robustness and precision.

These trends indicate that the model quickly adapts to the necessary features, evidenced by the
rapid initial decrease and subsequent stabilization of loss shown in the Figure 4.9. Importantly,

44

there is no sign of overfitting, as the model demonstrates a stable performance curve across
different datasets, showcasing its ability to generalize well and perform consistently in varied
environments.

4.2.4 Explainability

We also employ GNNExplainer, a tool designed to interpret graph neural networks, which helps
us identify themost influential node features and edges that contribute to our model’s predictions.
For this analysis, we focus on a single node within a graph from the test set, examining which
features and connections most significantly impact its predicted outcome.

Important Edges

Figure 4.10: Top 20 Important Edges

In this analysis, we focus on a specific node, node 8, from the test set, utilizing GNNExplainer to
reveal the 20 most influential edges affecting its prediction outcome. As shown in Figure 4.10,
these edges directly connect to node 8, indicating the model’s dependency on these specific
connections for making predictions. The figure shows that the distribution of edge weights
indicates that the top 12 edges all have weights above 0.8, demonstrating their significant impact
on the model’s prediction results. However, the weights of the last 6 edges are all below 0.4,
suggesting their relatively minor influence on the model.

Figure 4.11 presents these 20 important edges and their connected nodes in a more visually intu-
itive manner (due to the size limitations of the graph, only important edges and their connecting
nodes are displayed). From this figure, we can clearly see that all edges identified as important
are directly connected to node 8, further corroborating the model’s potential reliance on features
related to node 8 or its connection patterns. This phenomenon may suggest a strong dependency

45

Figure 4.11: Top 20 Important Edges and Corresponding Nodes

of the model on specific node features, significantly impacting prediction outcomes, or it might
indicate that the model’s predictions are heavily reliant on the node itself and its neighboring
nodes. Of course, these are just possibilities, and different models may exhibit different explana-
tory results.

Important Node Features

Figure 4.12: Feature Importance for Top 20 Features

Figure 4.12 displays the importance scores for the top 20 features in the model. Each node pos-
sesses 50 features, including positional gene sets, motif sets, and immunological characteristics.
From the chart, it is evident that the importance scores of these features are very close, ranging
from 480 to 530, suggesting that they almost equally influence the model’s prediction output.
This tight distribution of scores may indicate a broad dependency of the model on various fea-

46

tures, with no single feature predominating. The decision-making process of the model likely
requires the integration of multiple biological signals and characteristics.

47

5 Conclusion

Graph Neural Networks (GNNs), as a branch of deep learning, excel in processing non-
Euclidean and graph-structured data across various tasks. This project presents a comprehensive
review of GNNs and their advancements in biomedicine from multiple perspectives. According
to specific applications for various omics data, we categorize and discuss related studies in
three key areas: drug discovery and development, medical diagnosis and analysis, and disease
association prediction. Additionally, we implemented the application of GNNs in predicting
protein functions for drug development, focusing on two representative tasks based on different
levels of structural information: node classification and graph classification. Our practical
experiments demonstrate the effectiveness and explainability of GNNs in several biomedical
research domains.

Despite the excellent results GNNs have achieved in many biomedical tasks, they still face
challenges, particularly in the complexity of data preparation and preprocessing, as well as in
achieving explainability and measuring the explained results. There is still a long road ahead in
overcoming these challenges. However, we firmly believe that with continuous advancements,
GNNs are expected to become increasingly integral in addressing complex biological questions
and driving innovations in the field of biomedicine.

48

6 Reflections and Future Work

This project has been a significant and challenging undertaking. Despite having some back-
ground in machine learning and bioinformatics, focusing on a specialized and relatively new
branch of deep learning like Graph Neural Networks (GNNs) posed considerable difficulties.
However, these challenges have also been a source of immense learning and growth for me.

Firstly, throughout this project, I transitioned from understanding the basics of machine learning
to delving into neural network concepts. Starting from Convolutional Neural Networks (CNNs)
and gradually moving to GNNs, I gained a thorough understanding of how to apply these models
to specific tasks. Secondly, my programming skills have been expanded and enhanced. Previ-
ously, my programming experience was primarily in R. For this project, I chose to use the more
widely adopted Python, which required learning a new language and its libraries. Additionally,
I learned to use GitHub to find and understand some open-source GNN code. Thirdly, writing
the thesis itself was a significant learning experience. Since there is a lack of books on GNNs
available on the market, I had a large amount of literature to review. Using RMarkdown for doc-
umentation, I encountered numerous errors and challenges, but each issue was an opportunity
to learn and improve my ability to write in LaTeX.

Despite overcoming many obstacles, some challenges remain unresolved. One of the biggest
challenges in implementing GNNs was data preprocessing. The tasks I worked on were based
on pre-processed data provided by other researchers. Thus, I realized that I lacked the technical
knowledge on how to convert raw data (such as images or text) into a form suitable for GNNs
(including nodes, edges, adjacency matrices, etc.). For instance, in Figure 2.13, while I theo-
retically understand how to construct a graph, I am unsure of the practical steps involved in
transforming an image (a) into a graph structure (b). Whether this process is done manually or
involves specific automated techniques is still a question for me. Addressing this gap will be a
focus of my future research, where I will explore the methods and technologies for preprocess-
ing raw data for GNNs.

Looking ahead, I am also interested in exploring the application of GNNs in other domains,
such as financial risk, transportation, and more. These fields present unique challenges and
opportunities for leveraging the strengths of GNNs to uncover new insights and solutions.

In conclusion, this project has not only expanded my technical knowledge and skills but also
prepared me for future research and professional challenges in the field of bioinformatics and
machine learning. I look forward to continuing my journey in this exciting and rapidly evolving
area of study.

49

7 Bibliography
A., Saranya, and Subhashini R. 2023. “A Systematic Review of Explainable Artificial Intelli-

gence Models and Applications: Recent Developments and Future Trends.” Decision Ana-
lytics Journal 7: 100230. https://doi.org/https://doi.org/10.1016/j.dajour.2023.100230.

Ahmedt-Aristizabal, David, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and Lars
Petersson. 2021. “Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past,
Present and Future.” Sensors 21 (14): 4758.

Arrieta, Alejandro Barredo, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador Garcı́a, et al. 2020. “Explainable Artificial Intelligence
(XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI.” In-
formation Fusion 58: 82–115.

Ashburner, Michael, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J
Michael Cherry, Allan P Davis, et al. 2000. “Gene Ontology: Tool for the Unification of
Biology.” Nature Genetics 25 (1): 25–29.

Ata, Sezin Kircali, MinWu, Yuan Fang, Le Ou-Yang, Chee Keong Kwoh, and Xiao-Li Li. 2021.
“Recent Advances in Network-Based Methods for Disease Gene Prediction.” Briefings in
Bioinformatics 22 (4): bbaa303.

Baldassarre, Federico, and Hossein Azizpour. 2019. “Explainability Techniques for Graph Con-
volutional Networks.” arXiv Preprint arXiv:1905.13686.

Borgwardt, Karsten M, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola,
and Hans-Peter Kriegel. 2005. “Protein Function Prediction via Graph Kernels.” Bioinfor-
matics 21 (suppl_1): i47–56.

Cao, Chensi, Feng Liu, Hai Tan, Deshou Song, Wenjie Shu, Weizhong Li, Yiming Zhou, Xi-
aochen Bo, and Zhi Xie. 2018. “Deep Learning and Its Applications in Biomedicine.” Ge-
nomics, Proteomics and Bioinformatics 16 (1): 17–32.

Chollet, Francois. 2021. Deep Learning with Python. Simon; Schuster.
Cinaglia, Pietro, and Mario Cannataro. 2023. “Identifying Candidate Gene–Disease Associa-

tions via Graph Neural Networks.” Entropy 25 (6): 909.
Dabeer, Sumaiya, Maha Mohammed Khan, and Saiful Islam. 2019. “Cancer Diagnosis in

Histopathological Image: CNN Based Approach.” Informatics in Medicine Unlocked 16:
100231. https://doi.org/https://doi.org/10.1016/j.imu.2019.100231.

Esteva, Andre, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau,
and Sebastian Thrun. 2017. “Dermatologist-Level Classification of Skin Cancer with Deep
Neural Networks.” Nature 542 (7639): 115–18.

Feng, Qingyuan, Evgenia Dueva, Artem Cherkasov, and Martin Ester. 2018. “Padme: A
Deep Learning-Based Framework for Drug-Target Interaction Prediction.” arXiv Preprint
arXiv:1807.09741.

Gao, Kyle Yingkai, Achille Fokoue, Heng Luo, Arun Iyengar, Sanjoy Dey, Ping Zhang, et al.

50

https://doi.org/10.1016/j.dajour.2023.100230
https://doi.org/10.1016/j.imu.2019.100231

2018. “Interpretable Drug Target Prediction Using Deep Neural Representation.” In IJCAI,
2018:3371–77.

Gaudelet, Thomas, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu,
Jeremy BR Hayter, et al. 2021. “Utilizing Graph Machine Learning Within Drug Discovery
and Development.” Briefings in Bioinformatics 22 (6): bbab159.

Gligorijevic, Vladimir, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman,
Kyunghyun Cho, Tommi Vatanen, Daniel Berenberg, et al. 2019. “Structure-Based
Function Prediction Using Graph Convolutional Networks. bioRxiv.”

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. 2011. “Deep Sparse Rectifier Neural
Networks.” In Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence and Statistics, 315–23. JMLR Workshop; Conference Proceedings.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.
Hamilton, Will, Zhitao Ying, and Jure Leskovec. 2017. “Inductive Representation Learning on

Large Graphs.” Advances in Neural Information Processing Systems 30.
Hinton, Geoffrey E, and Ruslan R Salakhutdinov. 2006. “Reducing the Dimensionality of Data

with Neural Networks.” Science 313 (5786): 504–7.
Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural Com-

putation 9 (8): 1735–80.
Hu, Zilong, Jinshan Tang, Ziming Wang, Kai Zhang, Ling Zhang, and Qingling Sun. 2018.

“Deep Learning for Image-Based Cancer Detection and Diagnosis- a Survey.” Pattern
Recognition 83: 134–49.

Ioannidis, Vassilis N., Antonio G. Marques, and Georgios B. Giannakis. 2019. “Graph Neural
Networks for Predicting Protein Functions.” In 2019 IEEE 8th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 221–25. https:
//doi.org/10.1109/CAMSAP45676.2019.9022646.

Jang, Soobeom, Seong-EunMoon, and Jong-Seok Lee. 2018. “EEG-Based Video Identification
Using Graph Signal Modeling and Graph Convolutional Neural Network.” In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3066–70.
IEEE.

Khemani, Bharti, Shruti Patil, Ketan Kotecha, and Sudeep Tanwar. 2024. “A Review of Graph
Neural Networks: Concepts, Architectures, Techniques, Challenges, Datasets, Applications,
and Future Directions.” Journal of Big Data 11 (1): 18.

Kingma, Diederik P, and Jimmy Ba. 2014. “Adam: A Method for Stochastic Optimization.”
arXiv Preprint arXiv:1412.6980.

Kipf, Thomas N, and Max Welling. 2016. “Semi-Supervised Classification with Graph Convo-
lutional Networks.” arXiv Preprint arXiv:1609.02907.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. “Gradient-Based Learn-
ing Applied to Document Recognition.” Proceedings of the IEEE 86 (11): 2278–2324.

Liu, Zhiyuan, and Jie Zhou. 2022. Introduction to Graph Neural Networks. Springer Nature.

51

https://doi.org/10.1109/CAMSAP45676.2019.9022646
https://doi.org/10.1109/CAMSAP45676.2019.9022646

Lu, Chengqian, Mengyun Yang, Feng Luo, Fang-Xiang Wu, Min Li, Yi Pan, Yaohang Li, and
Jianxin Wang. 2018. “Prediction of lncRNA–Disease Associations Based on Inductive Ma-
trix Completion.” Bioinformatics 34 (19): 3357–64.

Lundberg, Scott M, and Su-In Lee. 2017. “A Unified Approach to Interpreting Model Predic-
tions.” Advances in Neural Information Processing Systems 30.

Mathur, Priyanka, and Vijay Kumar Chakka. 2020. “Graph Signal Processing of EEG Signals
for Detection of Epilepsy.” In 2020 7th International Conference on Signal Processing and
Integrated Networks (SPIN), 839–43. IEEE.

Mohammadi, Sina, and Mohamed Allali. 2024. “Advancing Brain Tumor Segmentation with
Spectral–Spatial Graph Neural Networks.” Applied Sciences 14 (8): 3424.

Momanyi, Biffon Manyura, Yu-Wei Zhou, Bakanina Kissanga Grace-Mercure, Sebu Aboma
Temesgen, Ahmad Basharat, Lin Ning, Lixia Tang, Hui Gao, Hao Lin, and Hua Tang. 2024.
“SAGESDA: Multi-GraphSAGE Networks for Predicting SnoRNA-Disease Associations.”
Current Research in Structural Biology 7: 100122. https://doi.org/https://doi.org/10.1016/j.
crstbi.2023.100122.

Nagel, Sebastian. 2019. “Towards a Home-Use BCI: Fast Asynchronous Control and Robust
Non-Control State Detection.” PhD thesis. https://doi.org/10.15496/publikation-37739.

Nguyen, Thin, Hang Le, Thomas P Quinn, Tri Nguyen, Thuc Duy Le, and Svetha Venkatesh.
2021. “GraphDTA: Predicting Drug–Target Binding Affinity with Graph Neural Networks.”
Bioinformatics 37 (8): 1140–47.

Pan, Xiaoyong, and Hong-Bin Shen. 2019. “Inferring Disease-Associated microRNAs Using
Semi-Supervised Multi-Label Graph Convolutional Networks.” Iscience 20: 265–77.

Puthanveettil Madathil, Abhilash, Xichun Luo, Qi Liu, Charles Walker, Rajeshkumar Madarkar,
Yukui Cai, Zhanqiang Liu, Wenlong Chang, and Yi Qin. 2024. “Intrinsic and Post-Hoc XAI
Approaches for Fingerprint Identification and Response Prediction in Smart Manufacturing
Processes.” Journal of Intelligent Manufacturing, 1–22.

Rakhimberdina, Zarina, and Tsuyoshi Murata. 2020. “Linear Graph Convolutional Model for
Diagnosing Brain Disorders.” In Complex Networks and Their Applications VIII: Volume 2
Proceedings of the Eighth International Conference on Complex Networks and Their Appli-
cations COMPLEX NETWORKS 2019 8, 815–26. Springer.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “” Why Should i Trust You?”
Explaining the Predictions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 1135–44.

Robinson, Peter K. 2015. “Enzymes: Principles and Biotechnological Applications.” Essays in
Biochemistry 59: 1.

Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and GabrieleMonfardini.
2008. “The Graph Neural Network Model.” IEEE Transactions on Neural Networks 20 (1):
61–80.

Singh, Ramandeep, Mannudeep K Kalra, Chayanin Nitiwarangkul, John A Patti, Fatemeh

52

https://doi.org/10.1016/j.crstbi.2023.100122
https://doi.org/10.1016/j.crstbi.2023.100122
https://doi.org/10.15496/publikation-37739

Homayounieh, Atul Padole, Pooja Rao, et al. 2018. “Deep Learning in Chest Radiography:
Detection of Findings and Presence of Change.” PloS One 13 (10): e0204155.

Srivastava, Nitish, GeoffreyHinton, AlexKrizhevsky, Ilya Sutskever, andRuslan Salakhutdinov.
2014. “Dropout: A SimpleWay to Prevent Neural Networks fromOverfitting.” The Journal
of Machine Learning Research 15 (1): 1929–58.

Velickovic, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. 2017. “Graph Attention Networks.” Stat 1050 (20): 10–48550.

Vilone, Giulia, and Luca Longo. 2021. “Classification of Explainable Artificial Intelligence
Methods Through Their Output Formats.” Machine Learning and Knowledge Extraction 3
(3): 615–61.

Wang, Hongmei, Wei Zhao, Zhenqi Li, Dongya Jia, Cong Yan, Jing Hu, Jiansheng Fang, and
Ming Yang. 2020. “A Weighted Graph Attention Network Based Method for Multi-Label
Classification of Electrocardiogram Abnormalities.” In 2020 42nd Annual International
Conference of the IEEE Engineering inMedicine & Biology Society (EMBC), 418–21. IEEE.

Wang, Xiang, Yingxin Wu, An Zhang, Xiangnan He, and Tat-seng Chua. 2020. “Causal Screen-
ing to Interpret Graph Neural Networks.(2020).” In URL Https://Openreview. Net/Forum.

Wang, Yuyang, Zijie Li, and Amir Barati Farimani. 2023. “Graph Neural Networks for
Molecules.” InMachine Learning in Molecular Sciences, 21–66. Springer.

Wieder, Oliver, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot,
Thomas Seidel, and Thierry Langer. 2020. “A Compact Review of Molecular Property
Prediction with Graph Neural Networks.” Drug Discovery Today: Technologies 37: 1–12.
https://doi.org/https://doi.org/10.1016/j.ddtec.2020.11.009.

Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. “How Powerful Are Graph
Neural Networks?” arXiv Preprint arXiv:1810.00826.

Yang, Jing, and Xiujuan Lei. 2021. “Predicting circRNA-Disease Associations Based on Au-
toencoder and Graph Embedding.” Information Sciences 571: 323–36. https://doi.org/https:
//doi.org/10.1016/j.ins.2021.04.073.

Ying, Zhitao, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019. “Gn-
nexplainer: Generating Explanations for Graph Neural Networks.” Advances in Neural In-
formation Processing Systems 32.

Yuan, Hao, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. “Xgnn: Towards Model-Level Expla-
nations of GraphNeural Networks.” InProceedings of the 26th ACMSIGKDD International
Conference on Knowledge Discovery & Data Mining, 430–38.

Yuan, Hao, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2022. “Explainability in Graph Neural
Networks: A Taxonomic Survey.” IEEE Transactions on Pattern Analysis and Machine
Intelligence 45 (5): 5782–99.

Zhang, Xiao-Meng, Li Liang, Lin Liu, and Ming-Jing Tang. 2021. “Graph Neural Networks
and Their Current Applications in Bioinformatics.” Frontiers in Genetics 12: 690049.

Zhao, Tianyi, Yang Hu, Linda R Valsdottir, Tianyi Zang, and Jiajie Peng. 2021. “Identifying

53

https://doi.org/10.1016/j.ddtec.2020.11.009
https://doi.org/10.1016/j.ins.2021.04.073
https://doi.org/10.1016/j.ins.2021.04.073

Drug–Target Interactions Based on Graph Convolutional Network and Deep Neural Net-
work.” Briefings in Bioinformatics 22 (2): 2141–50.

Zhou, Jie, GanquCui, ShengdingHu, Zhengyan Zhang, ChengYang, Zhiyuan Liu, LifengWang,
Changcheng Li, and Maosong Sun. 2020. “Graph Neural Networks: A Review of Methods
and Applications.” AI Open 1: 57–81.

Zitnik, Marinka, Monica Agrawal, and Jure Leskovec. 2018. “Modeling Polypharmacy Side
Effects with Graph Convolutional Networks.” Bioinformatics 34 (13): i457–66.

Zitnik, Marinka, and Jure Leskovec. 2017. “Predicting Multicellular Function Through Multi-
Layer Tissue Networks.” Bioinformatics 33 (14): i190–98.

54

8 Appendix A: Supplementary Figures

Task 1: Protein Classification

Figure 8.1: GCN Model Architecture

55

Figure 8.2: Training and Validation Loss over Epochs for Different Folds (GCN Model)

56

Figure 8.3: Training and Validation Accuracy over Epochs for Different Folds (GCN Model)

57

Figure 8.4: Training and Validation Loss over Epochs with Range (GCN Model)

Figure 8.5: Training and Validation Accuracy over Epochs with Range (GCN Model)

58

Figure 8.6: GIN Model Summary

Figure 8.7: GIN Model Architecture

59

Figure 8.8: Training and Validation Loss over Epochs for Different Folds (GIN Model)

60

Figure 8.9: Training and Validation Accuracy over Epochs for Different Folds (GIN Model)

61

Figure 8.10: Training and Validation Loss over Epochs with Range (GIN Model)

Figure 8.11: Training and Validation Accuracy over Epochs with Range (GIN Model)

62

Figure 8.12: GraphSage Model Summary

Figure 8.13: GraphSage Model Architecture

63

Figure 8.14: Training and Validation Loss over Epochs for Different Folds (GraphSage Model)

64

Figure 8.15: Training and Validation Accuracy over Epochs for Different Folds (GraphSage Model)

65

Figure 8.16: Training and Validation Loss over Epochs with Range (GraphSage Model)

Figure 8.17: Training and Validation Accuracy over Epochs with Range (GraphSage Model)

66

9 Appendix B: Source Code

9.1 Code for Task 1: Protein Classification

Packages and libraries
!pip install spektral
!pip install pydot graphviz

import pydot
import numpy as np
import tensorflow as tf
import networkx as nx
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import random
import scipy.sparse as sp

from tensorflow.keras.utils import plot_model
from tensorflow.keras.layers import Dense, Dropout, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras.metrics import categorical_accuracy
from tensorflow.keras.optimizers import Adam

from spektral.layers import GCNConv, GlobalSumPool, GINConv,
GraphSageConv, GlobalAvgPool

from spektral.datasets import TUDataset
from spektral.transforms import GCNFilter, AdjToSpTensor
from spektral.transforms.normalize_adj import NormalizeAdj
from spektral.data import DisjointLoader
from spektral.models import GeneralGNN, GNNExplainer

from sklearn.preprocessing import StandardScaler

###
Load data and data description
###

67

dataset = TUDataset("PROTEINS")

number of graphs
print(len(dataset))

Example: the first graph
graph = dataset[0]

Node features, adj matrix, label
x = graph.x
a = graph.a
y = graph.y

print("Node features (x):\n", x)
print("\nAdjacency matrix (a):\n", a)
print("\nLabel (y):\n", y)

Plot the first graph
Check if the adjacency matrix is a scipy sparse matrix
if sp.issparse(graph.a):

adj_matrix_dense = graph.a.todense()
else:

adj_matrix_dense = graph.a

G = nx.from_numpy_array(adj_matrix_dense)
plt.figure(figsize=(12, 8))
nx.draw(G,

with_labels=True,
node_color='skyblue',
edge_color='gray',
node_size=300,
font_size=8,
width=0.5)

plt.title("Graph Visualization")
plt.show()

###
GCN MODEL

68

###

Config
learning_rate = 0.001 # Learning rate
channels = 64 # Hidden units
layers = 2 # GCN layers
initial_epochs = 100 # Initial number of training epochs for cross-validation
batch_size = 32 # Batch size
k_folds = 7 # Number of folds for cross-validation
drop_rate = 0.3 # Dropout

np.random.seed(123)
tf.random.set_seed(123)
random.seed(123)

Data preprocessing
dataset = TUDataset("PROTEINS")
dataset.apply(GCNFilter())

Train/test split
idxs = np.random.permutation(len(dataset))
split = int(0.9 * len(dataset))
idx_tr, idx_te = np.split(idxs, [split])
dataset_tr, dataset_te = dataset[idx_tr], dataset[idx_te]

Build model

Parameters
N = max(g.n_nodes for g in dataset)
F = dataset.n_node_features # Dimension of node features
n_out = dataset.n_labels # Dimension of the target

Build the model
def build_model():

Define inputs
x_in = Input(shape=(F,), name="Node_Features")
a_in = Input(shape=(None,), sparse=True, name="Adjacency_Matrix")
i_in = Input(shape=(), dtype=tf.int32, name="Graph_Index")

69

Define the GIN model using the functional API
x = GCNConv(channels,

activation="relu",
name="GCNConv_1")([x_in, a_in])

for i in range(1, layers):
x = GCNConv(channels,

activation="relu",
name=f"GCNConv_{i+1}")([x, a_in])

x = GlobalAvgPool(name="GlobalAvgPool")([x, i_in])
x = Dense(channels,

activation="relu",
kernel_regularizer=tf.keras.regularizers.l2(5e-4),
name="Dense_Relu")(x)

x = Dropout(drop_rate,name="Dropout")(x)
output = Dense(n_out,

activation="softmax",
name="Output_softmax")(x)

model = Model(inputs=[x_in, a_in, i_in], outputs=output)
return model

Build and plot the model
model = build_model()
model.summary()
plot_model(model,

to_file='GCN_model.png',
show_shapes=True,
show_layer_names=True)

Cross-validation
idxs = np.random.permutation(len(dataset_tr))
split_size = len(dataset_tr) // k_folds

Variables to store training results
all_train_losses = np.zeros((k_folds, initial_epochs))
all_train_accs = np.zeros((k_folds, initial_epochs))

70

all_val_losses = np.zeros((k_folds, initial_epochs))
all_val_accs = np.zeros((k_folds, initial_epochs))

for fold in range(k_folds):
print(f"Fold {fold+1}/{k_folds}")
start, end = fold * split_size, (fold + 1) * split_size
idx_va = idxs[start:end]
idx_tr_fold = np.concatenate([idxs[:start], idxs[end:]])

dataset_tr_fold, dataset_va_fold = dataset[idx_tr_fold], dataset[idx_va]

loader_tr = DisjointLoader(dataset_tr_fold,
batch_size=batch_size,
epochs=initial_epochs,
shuffle=True)

loader_va = DisjointLoader(dataset_va_fold,
batch_size=batch_size,
epochs=1,
shuffle=False)

Check if loaders are not empty
assert len(dataset_tr_fold) > 0, "Training dataset is empty!"
assert len(dataset_va_fold) > 0, "Validation dataset is empty!"

model = build_model()
optimizer = Adam(learning_rate)
loss_fn = CategoricalCrossentropy()

Fit model
@tf.function(input_signature=loader_tr.tf_signature(),

experimental_relax_shapes=True)
def train_step(inputs, target):

with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
loss = loss_fn(target, predictions) + sum(model.losses)

gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
acc = tf.reduce_mean(categorical_accuracy(target, predictions))

71

return loss, acc, gradients

@tf.function(input_signature=loader_va.tf_signature(),
experimental_relax_shapes=True)

def val_step(inputs, target):
predictions = model(inputs, training=False)
loss = loss_fn(target, predictions) + sum(model.losses)
acc = tf.reduce_mean(categorical_accuracy(target, predictions))
return loss, acc

epoch = step = 0
results = []
val_results = []

for batch in loader_tr:
step += 1
loss, acc, gradients = train_step(*batch)

results.append((loss, acc))

if step == loader_tr.steps_per_epoch:
step = 0
epoch += 1

train_loss, train_acc = np.mean(results, 0)
all_train_losses[fold, epoch-1] = train_loss
all_train_accs[fold, epoch-1] = train_acc

Reinitialize the validation loader for each epoch
(without shuffle)
loader_va = DisjointLoader(dataset_va_fold,

batch_size=batch_size,
epochs=1,
shuffle=False)

val_results = []
for batch in loader_va:

val_loss, val_acc = val_step(*batch)
val_results.append((val_loss, val_acc))

72

if val_results:
val_loss, val_acc = np.mean(val_results, 0)
all_val_losses[fold, epoch-1] = val_loss
all_val_accs[fold, epoch-1] = val_acc
print(f"Ep. {epoch} - Loss: {train_loss:.4f}.
Acc: {train_acc:.4f}. Validation Loss: {val_loss:.4f}.
Validation Acc: {val_acc:.4f}")

else:
print(f"Ep. {epoch} - Loss: {train_loss:.4f}.
Acc: {train_acc:.4f}. No validation data available.")

results = []

Plot training losses and accuracies
epochs = np.arange(1, initial_epochs + 1)

plt.figure(figsize=(16, 6))
plt.subplot(1, 2, 1)
for fold in range(k_folds):

plt.plot(epochs,
all_train_losses[fold],
label=f'Fold {fold+1}')

mean_train_losses = np.mean(all_train_losses, axis=0)
plt.plot(epochs,

mean_train_losses,
label='Mean',
color='black',
linewidth=2,
linestyle='--')

plt.xlabel('Epoch')
plt.ylabel('Training Loss')
plt.title('Training Loss over Epochs')
plt.legend()

plt.subplot(1, 2, 2)
for fold in range(k_folds):

plt.plot(epochs, all_train_accs[fold], label=f'Fold {fold+1}')
mean_train_accs = np.mean(all_train_accs, axis=0)

73

plt.plot(epochs,
mean_train_accs,
label='Mean',
color='black',
linewidth=2,
linestyle='--')

plt.xlabel('Epoch')
plt.ylabel('Training Accuracy')
plt.title('Training Accuracy over Epochs')
plt.legend()

plt.tight_layout()
plt.savefig('training_curves.png')
plt.show()

Plot validation losses and accuracies
plt.figure(figsize=(16, 6))
plt.subplot(1, 2, 1)
for fold in range(k_folds):

plt.plot(epochs, all_val_losses[fold], label=f'Fold {fold+1}')
mean_val_losses = np.mean(all_val_losses, axis=0)
plt.plot(epochs,

mean_val_losses,
label='Mean',
color='black',
linewidth=2,
linestyle='--')

plt.xlabel('Epoch')
plt.ylabel('Validation Loss')
plt.title('Validation Loss over Epochs')
plt.legend()

plt.subplot(1, 2, 2)
for fold in range(k_folds):

plt.plot(epochs, all_val_accs[fold], label=f'Fold {fold+1}')
mean_val_accs = np.mean(all_val_accs, axis=0)
plt.plot(epochs,

mean_val_accs,

74

label='Mean',
color='black',
linewidth=2,
linestyle='--')

plt.xlabel('Epoch')
plt.ylabel('Validation Accuracy')
plt.title('Validation Accuracy over Epochs')
plt.legend()

plt.tight_layout()
plt.savefig('validation_curves.png')
plt.show()

def plot_with_error_bars(epochs,
data,
title,
y_label,
color='b',
ecolor='r',
figsize=(17, 5)):

"""
Plots mean with range as error bars for given data across epochs.

Parameters:
- epochs: Array of epoch indices.
- data: Multidimensional array where each row is data

from a different fold.
- title: Title for the plot.
- y_label: Label for the Y-axis.
- color: Line and marker color.
- ecolor: Error bar color.
- figsize: Size of the figure.
"""
min_values = np.min(data, axis=0)
max_values = np.max(data, axis=0)
mean_values = np.mean(data, axis=0)

plt.figure(figsize=figsize)

75

plt.errorbar(epochs, mean_values,
[mean_values - min_values, max_values - mean_values],
fmt='o', linestyle='-', color='b', ecolor="r",
capsize=5, markersize=1, label=y_label)

plt.xlabel('Epoch')
plt.ylabel(y_label)
plt.title(title)
plt.legend()
plt.grid(True)
plt.show()

epochs = np.arange(1, initial_epochs + 1)

Plot mean and error
plot_with_error_bars(epochs,

all_train_losses,
'Training Loss over Epochs with Range',
'Training Loss')

plot_with_error_bars(epochs,
all_val_losses,
'Validation Loss over Epochs with Range',
'Validation Loss')

plot_with_error_bars(epochs,
all_train_accs,
'Training Accuracy over Epochs with Range',
'Training Accuracy')

plot_with_error_bars(epochs,
all_val_accs,
'Validation Accuracy over Epochs with Range',
'Validation Accuracy')

best epoch
best_epoch = np.argmax(mean_val_accs) + 1
Add 1 because epoch indexing starts from 1
best_val_loss = mean_val_losses[best_epoch - 1]
best_val_acc = mean_val_accs[best_epoch - 1]

76

Calculate the standard deviation of validation loss and accuracy
for the best epoch
std_val_loss = np.std(all_val_losses[:, best_epoch - 1])
std_val_acc = np.std(all_val_accs[:, best_epoch - 1])

print(f"Best epoch: {best_epoch}, Best validation loss: {best_val_loss:.4f}
(SD: {std_val_loss:.4f}), Best validation accuracy: {best_val_acc:.4f}
(SD: {std_val_acc:.4f})")

Re-train the model with the best parameters on the full training set
print("Re-training model on the full training set with the best parameters")

Use the entire training dataset for training
loader_full_tr = DisjointLoader(dataset_tr,

batch_size=batch_size,
epochs=best_epoch)

model = build_model()
optimizer = Adam(learning_rate)
loss_fn = CategoricalCrossentropy()

epoch = step = 0
results = []

for batch in loader_full_tr:
step += 1
loss, acc, gradients = train_step(*batch)

results.append((loss, acc))

if step == loader_full_tr.steps_per_epoch:
step = 0
epoch += 1

train_loss, train_acc = np.mean(results, 0)
print(f"Ep. {epoch} - Loss: {train_loss:.4f}. Acc: {train_acc:.4f}")
results = []

77

Evaluate on the test set
print("Final evaluation on the test set")
loader_te = DisjointLoader(dataset_te, batch_size=batch_size, epochs=1)
test_results = [val_step(*batch) for batch in loader_te]
if test_results:

test_loss, test_acc = np.mean(test_results, 0)
print(f"Final Test Loss: {test_loss:.4f}. Final Test Acc: {test_acc:.4f}")

else:
print("No test data available.")

Note: This section only demonstrates the complete code for the GCN model. The structures
of the GIN and GraphSAGE-Mean models are almost identical, with differences only in the
hyperparameters.

9.2 Code for Task 2: Protein-Protein Interactions (PPI)

Packages and Libraries
!pip install torch-geometric
!pip install tabulate
!pip install networkx matplotlib

import os.path as osp
import matplotlib.pyplot as plt

import torch
import torch.nn.functional as F
from torch.nn import Module, Linear, Dropout, BatchNorm1d

import torch_geometric.transforms as T
from torch_geometric.datasets import PPI
from torch_geometric.loader import DataLoader
from torch_geometric.nn import GATConv
from torch_geometric.explain import Explainer, GNNExplainer
from torch_geometric.nn import summary
from torch_geometric.utils import from_scipy_sparse_matrix

78

import scipy.sparse as sp
import scipy.sparse
from sklearn.metrics import f1_score
from IPython.display import Image, display
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.lines as mlines
import networkx as nx

##Load data ###
path = '/tmp/PPI'
train_dataset = PPI(path, split='train')
val_dataset = PPI(path, split='val')
test_dataset = PPI(path, split='test')
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=2, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=2, shuffle=False)

Data Description
def get_graph_shapes(dataset, name):

print(f"{name} Dataset:")
print("=================")
print(f"Number of graphs: {len(dataset)}")
total_nodes = sum([data.num_nodes for data in dataset])
total_edges = sum([data.num_edges for data in dataset])
num_features = dataset[0].num_features
num_classes = dataset[0].y.size(1) if dataset[0].y.ndim > 1
else len(torch.unique(dataset[0].y))
print(f"Total number of nodes: {total_nodes}")
print(f"Total number of edges: {total_edges}")
print(f"Node feature dimension: {num_features}")
print(f"Number of classes: {num_classes}")
print("=================\n")
for i, data in enumerate(dataset):

print(f"Graph {i + 1}:")
print(f" Number of nodes: {data.num_nodes}")
print(f" Number of edges: {data.num_edges}")
print(f" Node features shape: {data.x.shape}")

79

print(f" Edge index shape: {data.edge_index.shape}")
print(f" Labels shape: {data.y.shape}")
print()

print informations
get_graph_shapes(train_dataset, "Train")
get_graph_shapes(val_dataset, "Validation")
get_graph_shapes(test_dataset, "Test")

Details of the first graph
def dataset_statistics(dataset, name):

first_data = dataset[0]
print(f"First graph information:")
print("=========================")
print(f"Number of nodes: {first_data.num_nodes}")
print(f"Number of edges: {first_data.num_edges}")
print(f"Node features: {first_data.x}")
print(f"Edge index: {first_data.edge_index}")
print(f"Node labels: {first_data.y}")
print("\n")

dataset_statistics(train_dataset, "Train")

Hyperparameters
class Config:

def __init__(self):
self.in_features = train_dataset.num_features
self.n_hidden = 256
self.n_classes = train_dataset.num_classes
self.n_heads = 4
self.dropout = 0.2
self.learning_rate = 0.005
self.epochs = 100
self.patience = 10
self.delta = 0.001
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

config = Config()

80

GAT Model

class GAT(Module):
def __init__(self, config):

super().__init__()
self.gat1 = GATConv(config.in_features,

config.n_hidden,
heads=config.n_heads)

self.lin1 = torch.nn.Linear(config.in_features,
config.n_hidden * config.n_heads)

self.bn1 = BatchNorm1d(config.n_hidden * config.n_heads)
self.dropout1 = Dropout(p=config.dropout)

self.gat2 = GATConv(config.n_hidden * config.n_heads,
config.n_hidden,
heads=config.n_heads)

self.lin2 = torch.nn.Linear(config.n_hidden * config.n_heads,
config.n_hidden * config.n_heads)

self.bn2 = BatchNorm1d(config.n_hidden * config.n_heads)

self.gat3 = GATConv(config.n_hidden * config.n_heads, config.n_classes,
heads=config.n_heads,
concat=False)

self.lin3 = torch.nn.Linear(config.n_hidden * config.n_heads,
config.n_classes)

def forward(self, x, edge_index):
x = F.elu(self.gat1(x, edge_index) + self.lin1(x))
x = self.bn1(x)
x = self.dropout1(x)

x = F.elu(self.gat2(x, edge_index) + self.lin2(x))
x = self.bn2(x)

x = self.gat3(x, edge_index) + self.lin3(x)
return x

config = Config()

81

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GAT(config).to(config.device)
loss_op = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)

Summary
fixed_index = 0 # the first graph
data = train_dataset[fixed_index].to(device)
data = data.to(device)
model_summary = summary(model, data.x, data.edge_index)
print(model_summary)

Train
def train():

model.train()

total_loss = 0
ys, preds = [], []
for data in train_loader:

data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.edge_index)
loss = loss_op(out, data.y)
total_loss += loss.item() * data.num_graphs
ys.append(data.y.cpu())
preds.append((out > 0).float().cpu())
loss.backward()
optimizer.step()

y, pred = torch.cat(ys, dim=0).numpy(), torch.cat(preds, dim=0).numpy()
f1 = f1_score(y, pred, average='micro') if pred.sum() > 0 else 0
return total_loss / len(train_loader.dataset), f1

@torch.no_grad()
def evaluate(loader):

model.eval()

82

total_loss = 0
ys, preds = [], []
for data in loader:

ys.append(data.y.cpu())
out = model(data.x.to(device), data.edge_index.to(device))
preds.append((out > 0).float().cpu())
loss = loss_op(out, data.y.to(device))
total_loss += loss.item() * data.num_graphs

y, pred = torch.cat(ys, dim=0).numpy(), torch.cat(preds, dim=0).numpy()
f1 = f1_score(y, pred, average='micro') if pred.sum() > 0 else 0
return total_loss / len(loader.dataset), f1

Early Stopping
class EarlyStopping:

def __init__(self, patience, delta):
self.patience = patience
self.delta = delta
self.best_score = None
self.counter = 0
self.early_stop = False

def __call__(self, val_f1, model):
score = val_f1
if self.best_score is None:

self.best_score = score
self.save_checkpoint(model)

elif score < self.best_score + self.delta:
self.counter += 1
if self.counter >= self.patience:

self.early_stop = True
else:

self.best_score = score
self.save_checkpoint(model)
self.counter = 0

def save_checkpoint(self, model):
torch.save(model.state_dict(), 'checkpoint.pt')

83

early_stopping = EarlyStopping(patience=config.patience, delta=config.delta)

Store loss and F1
train_losses, train_f1s = [], []
val_losses, val_f1s = [], []

for epoch in range(1, 101):
train_loss, train_f1 = train()
val_loss, val_f1 = evaluate(val_loader)
train_losses.append(train_loss)
train_f1s.append(train_f1)
val_losses.append(val_loss)
val_f1s.append(val_f1)
print(f'Epoch: {epoch:03d}, Train Loss: {train_loss:.4f},
Train F1: {train_f1:.4f}, Val Loss: {val_loss:.4f},
Val F1: {val_f1:.4f}')

conditions of
early_stopping(val_f1, model)
if early_stopping.early_stop:

print("Early stopping")
break

model.load_state_dict(torch.load('checkpoint.pt'))

Evaluate test
test_loss, test_f1 = evaluate(test_loader)
print(f'Test Loss: {test_loss:.4f}, Test F1: {test_f1:.4f}')

Visualization
epochs = range(1, len(train_losses) + 1)

plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)
plt.plot(epochs, train_losses, label='Train Loss')
plt.plot(epochs, val_losses, label='Val Loss')

84

plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Train and Val Loss')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(epochs, train_f1s, label='Train F1')
plt.plot(epochs, val_f1s, label='Val F1')
plt.xlabel('Epochs')
plt.ylabel('F1 Score')
plt.title('Train and Val F1 Score')
plt.legend()

plt.tight_layout()
plt.show()

Explainability

Set a random seed for reproducibility
torch.manual_seed(68)

gnn_explainer = GNNExplainer(epochs=200)
explainer = Explainer(

model=model,
algorithm=gnn_explainer,
explanation_type='model',
node_mask_type='attributes',
edge_mask_type='object',
model_config=dict(

mode='multiclass_classification',
task_level='node',
return_type='log_probs',

),
)

Select the node index of test set to interpret
data = next(iter(test_loader)).to(device)
node_idx = 8

85

explanation: mask
explanation = explainer(data.x, data.edge_index, index=node_idx)

Top 20 Important features
path = 'feature_importance.png'
explanation.visualize_feature_importance(path, top_k=20)
display(Image(filename=path))

Important Edge
edge_mask = explanation.edge_mask.cpu().detach().numpy()

Retrieve the indices and weights of the top 20 important edges
top_20_indices = edge_mask.argsort()[-20:][::-1]
top_20_edges = [(i, edge_mask[i]) for i in top_20_indices]

Get the connection information for the edges
edge_index = data.edge_index.cpu().numpy()
top_20_edge_nodes = [(i, edge_index[0, i],

edge_index[1, i],
edge_mask[i]) for i in top_20_indices]

Print the top 20 important edges, their weights, and connection points
print("Explanation of important edges (edge index, node i, node j, weight):")
for edge_idx, src, dst, weight in top_20_edge_nodes:

print(f"Edge ({edge_idx}, {src}, {dst}, {weight:.4f})")

Prepare data to plot a horizontal bar chart
edges = [f"Edge {i}" for i in top_20_indices]
weights = [edge_mask[i] for i in top_20_indices]

Plot a horizontal bar chart
plt.figure(figsize=(10, 6))
plt.barh(edges, weights, color='skyblue')
plt.xlabel('Importance Weight')
plt.ylabel('Edges')
plt.title('Top 20 Important Edges')
plt.gca().invert_yaxis()
plt.show()

86

Create graph
G = nx.Graph()

Top 20 important nodes
for edge_idx, src, dst, weight in top_20_edge_nodes:

G.add_edge(src, dst, weight=weight)
target_node = node_idx

graph setting
pos = nx.spring_layout(G)
plt.figure(figsize=(11, 5))
node_colors = ['pink' if node == target_node else 'lightblue' for node in G.nodes()]
nx.draw_networkx_nodes(G, pos, node_size=350, node_color=node_colors)
edges = nx.draw_networkx_edges(G, pos,

edgelist=G.edges(data=True),
width=2, edge_color='blue')

nx.draw_networkx_labels(G, pos, font_size=7, font_color='black')

Legend
selected_node = mlines.Line2D([], [],

color='pink',
marker='o',
markersize=10,
label='Selected Node',
linestyle='None')

important_edges = mlines.Line2D([], [],
color='blue',
label='Important Edges',
linewidth=2)

plt.legend(handles=[selected_node, important_edges], loc='upper left')

plt.title('Top 20 Important Edges and Corresponding Nodes')
plt.show()

87

	List of Figures
	List of Tables
	Glossary
	Notations
	Introduction
	Foundations of Graph Neural Networks
	Basic Concepts of Deep Learning
	Basic Structure of Neural Networks
	Activation Functions
	Optimization Objective
	Optimizer

	Graph Theory
	Basic Concepts
	Algebra Representations of Graphs

	GNN Models and Layers
	Principles of GNN
	Graph Convolutional Network (GCN)
	Graph Attention Networks (GAT)
	GraphSAGE
	GNN Pooling
	Dropout Layer

	Explainable GNN
	GNN Frameworks

	Application Domains of GNN in Biomedicine
	Drug Discovery and Development
	Target Identification
	Drug Screening and Optimization
	Clinical Trials

	Medical Diagnosis and Analysis
	Brain connectivity analysis
	Electrical Signal Analysis
	Image Segmentation
	Multimodal Fusion

	Disease Association Prediction

	Model Implementation
	Protein Classification
	Data
	Modeling and Training
	Results
	Explainability

	Protein-Protein Interactions (PPI)
	Data
	Modeling and Training
	Results
	Explainability

	Conclusion
	Reflections and Future Work
	Bibliography
	Appendix A: Supplementary Figures
	Appendix B: Source Code
	Code for Task 1: Protein Classification
	Code for Task 2: Protein-Protein Interactions (PPI)

