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Simple Summary: Prostate cancer (PCa) detection remains a critical area of research, with
an ongoing need for predictive tools that accurately identify significant PCa (sPCa) while
decreasing unnecessary prostate biopsies and the overdetection of insignificant tumors.
Risk calculators based on predictive models are among the most valuable tools, as they
can individualize the likelihood of sPCa with high accuracy at no cost. Machine learning
algorithms are the modern preferred methods for developing predictive models, especially
when managing big data. However, it remains unclear whether machine learning is superior
to traditional logistic regression. In this study, we demonstrate that both algorithms proved
similarly effective on a limited dataset.

Abstract: Objective: This study compares machine learning (ML) and logistic regression
(LR) algorithms in developing a predictive model for sPCa using the seven predictive
variables from the Barcelona (BCN-MRI) predictive model. Method: A cohort of 5005 men
suspected of having PCa who underwent MRI and targeted and/or systematic biopsies
was used for training, testing, and validation. A feedforward neural network (FNN)-based
SimpleNet model (GMV) and a logistic regression-based model (BCN) were developed.
The models were evaluated for discrimination ability, precision–recall, net benefit, and
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clinical utility. Both models demonstrated strong predictive performance. Results: The
GMV model achieved an area under the curve of 0.88 in training and 0.85 in test cohorts
(95% CI: 0.83–0.90), while the BCN model reached 0.85 and 0.84 (95% CI: 0.82–0.87), re-
spectively (p > 0.05). The GMV model exhibited higher recall, making it more suitable for
clinical scenarios prioritizing sensitivity, whereas the BCN model demonstrated higher
precision and specificity, optimizing the reduction of unnecessary biopsies. Both models
provided similar clinical benefit over biopsying all men, reducing unnecessary procedures
by 27.5–29% and 27–27.5% of prostate biopsies at 95% sensitivity, respectively (p > 0.05).
Conclusions: Our findings suggest that both ML and LR models offer high accuracy in
sPCa detection, with ML exhibiting superior recall and LR optimizing specificity. These
results highlight the need for model selection based on clinical priorities.

Keywords: predictive models; prostate cancer detection; machine learning; logistic regression

1. Introduction
Prostate cancer (PCa) screening is currently recommended by the European Union

based on compelling evidence supporting its benefits [1]. The European Randomized
Screening for Prostate Cancer (ERSPC) has been instrumental in shaping these guidelines.
The screened group demonstrated a 20% reduction in PCa-specific mortality compared
to the control group after a median follow-up of eight years [2]. Long-term benefits have
also been observed over 22 years in the Göteborg randomized screening program, further
highlighting the sustained impact of PCa screening on mortality reduction [3].

Recent advancements in PCa screening focus on identifying significant PCa (sPCa)
while minimizing unnecessary prostate biopsies and reducing the detection of insignificant
PCa (iPCa). This approach integrates elevated serum prostate-specific antigen (PSA) levels
with advanced imaging techniques such as magnetic resonance imaging (MRI). MRI facili-
tates risk stratification of sPCa in suspicious lesions using the Prostate Imaging-Reporting
and Data System (PI-RADS). The integration of MRI with transrectal ultrasound (TRUS)
via fusion imaging technology enhances the accuracy of targeted biopsies with PI-RADS
v2.1 further improving diagnostic efficacy [4,5]. However, given MRI’s limited positive
predictive value, particularly in cases with a PI-RADS score of 3, additional tools to refine
biopsy decisions are needed [6,7]. PSA density, modern biomarkers, and novel predictive
models offer promising strategies to improve biopsy candidate selection and optimize
diagnostic strategies [8–12].

The Barcelona-MRI (BCN-MRI) predictive model was developed to enhance sPCa risk
assessment by improving its detection in prostate biopsies. This model was developed
using logistic regression (LR) and seven independent predictive clinical variables after MRI:
age (years), type of biopsy (initial vs. repeated), PCa family history (no vs. yes), serum
PSA level (ng/mL), digital rectal examination (DRE: normal vs suspicious), MRI-based
prostate volume (mL), and PI-RADS v2.0 score (1–5) [12]. Although LR remains widely
used and accessible, it has become increasingly outdated due to evolving clinical prac-
tices, requiring external validations to maintain its relevance [13]. In contrast, machine
learning (ML) models offer greater adaptability by continuously integrating new cases
and outcomes, as well as big data management. These models can accommodate diverse
data inputs, including genomic and radiomic data, enhancing predictive accuracy and
clinical applicability [14,15]. Additionally, ML algorithms facilitate federated networks,
reducing the need for repeated model validation across different clinical sites. This capa-
bility may improve the generalizability and robustness of sPCa predictions across diverse
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populations [16]. The feedforward neural network (FNN)-based SimpleNet model builds
upon MRI-based predictive modeling for sPCa, proposing that ML-driven predictions may
surpass LR in clinical effectiveness [17]. FNNs, known for their effectiveness in modeling
complex nonlinear relationships, offer a robust framework for integrating and analyzing
structured clinical and biomarker data to enhance predictive modeling in sPCa [18].

The effectiveness of predictive models developed with ML and LR methods, in dif-
ferent areas of health, has been recently compared with controverted results [19–24]. We
hypothesize that an ML-based model for sPCa detection will demonstrate superior pre-
dictive performance compared to an LR-based model, particularly in terms of sensitivity
and overall clinical utility. Our objective is to compare the clinical effectiveness of a novel
SimpleNet FFN-based predictive model, developed by GMV Innovative Solutions Inc.,
Madrid, Spain, with a traditional LR-based model (BCN) for sPCa detection.

2. Materials and Methods
2.1. Study Design and Participants

This was a retrospective study conducted among 5005 men suspected of having
prostate recruited at ten participant centers of the sPCa opportunistic screening program in
Catalonia, Spain. The inclusion criteria were to have undergone a pre-biopsy multipara-
metric MRI (mpMRI) and targeted and/or systematic prostate biopsy between 1 January
2016, and 31 December 2022. Exclusion criteria were to have had a previous PCa diagnosis
or atypia, and a lack of reporting of the seven clinical predictive variables included in
the BCN-MRI predictive model. This study was approved by the ethics committee of the
coordinator center (PRAG-02/2021, approved on 12 February 2021).

2.2. Diagnostic Approach for Significant Prostate Cancer

A serum PSA level higher than 3.0 ng/mL and/or a suspicious DRE were detected at
the primary healthcare center, leading to suspicion of PCa [25]. These men were referred
to their reference center where mpMRI exams were conducted, using 1.5 or 3 Tesla scans
with a pelvic phased-array surface coil. The acquisition protocol included T2-weighted
imaging (T2W), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE)
imaging, according to the guidelines of the European Society of Urogenital Radiology [26].
Experienced radiologists analyzed images at each institution and reported using PI-RADS
v2.0 until 2019 [27] and v2.1 later [5].

Men selected for prostate biopsy were those with PI-RADS score ≥ 3, and those with
PI-RADS < 3 and high risk of sPCa due to a suspicious DRE, PCa family history, or a PSA
density above 0.15 ng/mL2. Prostate biopsies were conducted in each participant center by
experienced operators. Two- to four-core MRI-transrectal ultrasound cognitive or software
image fusion targeted biopsies of suspicious lesions and 12-core systematic biopsy were
conducted in men with PI-RADS ≥ 3 [28]. Men with PI-RADS < 3 underwent only 12-core
systematic biopsy. Prostate biopsies were conducted via transrectal route in 3760 cases
(75.1%) and via transperineal route in 1245 (24.9%) [29].

The prostate biopsy material was analyzed by experienced pathologists in each pathol-
ogy department. PCa was reported according to the International Society of Urologic
Pathology (ISUP) grade group classification. Cases were classified as sPCa when the grade
group was 2 or higher [30].

2.3. Predictive Variables Included in the Models and Outcome Variable

Anonymized datasets, following the standards of reporting for MRI-targeted biopsy
studies (START) of the prostate, were provided by each participant center for harmonization
and analysis at the coordinator center [31]. Predictive variables were recorded during the
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PCa diagnosis approach. These variables were age (years); PCa family history (no vs. yes);
type of prostate biopsy (repeated vs. initial); serum PSA level (ng/mL); and DRE (normal
vs. suspicious). Additionally, prostate volume (mL), and PI-RADS score (1 to 5) were
extracted from MRI images. The outcome variable was sPCa (yes vs. no).

2.4. Algorithms Used for Model Development

Two models were built to assess which strategy would offer the best sPCa prediction.
The BCN predictive model [12] consisted of a logistic regression where sPCa was the
outcome variable and seven clinical variables were included. The GMV predictive model,
used a FNN SimpleNet architecture, including the same clinical variables [18]. SimpleNet
features a lightweight design, making it ideal for efficient computation and rapid exper-
imentation. The GMV model architecture consisted of three layers (fc), two with ReLU
activation functions, and the third one with a sigmoid output function. The model was
implemented using the PyTorch version 2.5.0 deep learning framework, with 32 neurons in
the first and second layers and 16 neurons in the third layer. The binary cross-entropy loss
(BCELoss) function was selected as the optimal loss function, while the RMSprop optimizer
was employed for parameter optimization, maintaining a fixed learning rate of 0.001. The
training set used the full training set, employing mini-batch gradient descent with a batch
size of 32, over the course of 50 epochs.

Before training, several preprocessing steps were applied to the dataset to enhance
model performance. First, data cleaning was conducted to handle duplicates, mismatched
cases, and extreme values, ensuring that the dataset remained complete and reliable.
Next, categorical variables (family history of PCa, type of biopsy, DRE, and PI-RADS)
were encoded using one-hot encoding, converting them into binary vectors that were
suitable for the model, and standardization was also applied to the numeric variables
Age, PSA, and PV using StandardScaler 1.6.1 to ensure compatibility between features.
Additionally, the dataset was split into three distinct subsets: training, validation, and
test sets. This split allowed for effective model training while providing separate data
for tuning hyperparameters and evaluating performance, ultimately leading to a more
robust and generalizable model (Figure A1, Appendix A). Specifically, 4254 cases (85%)
were allocated for training and 751 (15%) were reserved for testing. A set of 639 cases
of the training set (15%) were used for validation. All data partitions retained similar
values across all variables analyzed (Table A1). The binary classification task aimed to
classify the cases into predefined categories of the outcome. The code for a comprehensive
examination of the initial dataset and analyses can be found in the Supplementary File
00_dataset_analysis.ipynb (Supplementary Materials).

2.5. Statistical Analyses, Algorithm Performance, and Interpretation

Statistical analyses were conducted for the eight variables under study. Quantitative
variables, expressed as means and standard deviations (SD), were compared with the
Mann–Whitney test, and qualitative variables, expressed in percentages, with the Chi-
square test. Odds ratios (OR) and 95% confidence intervals (CI) were assessed. The
resulting SimpleNet (GMV model) was calibrated. The performance of both predictive
models was compared using the metrics, true positives (TP), true negatives (TN), false
positives (FP), false negatives (FN), negative predictive values (NPV), positive predictive
values (PPV), specificity, sensitivity, and accuracy. Receiver operating characteristic (ROC)
curves were plotted for each model to determine optimal classification thresholds. The area
under the curve (AUC) and 95% CI were estimated and compared with the DeLong test.
The precision–recall (PR) curve and AUC-PR in the training cohort were computed. For
model interpretability, SHAP values were used to determine the feature attributions [32].
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SHAP summary plots were generated to examine the model’s behavior in terms of feature
importance and effects. Moreover, DCA was conducted to visualize the net benefit of
each model. Both the AUCROC and net benefit were employed for model discrimination
analysis. The clinical effectiveness of each model was assessed through the clinical utility
curve (CUC), representing the rates of avoided prostate biopsies and the undetected
rate of sPCa according to the continuous probability threshold. GMV and BCN models
were developed using the Python programming language v. 3.10.12 (Python Software
Foundation, Scotts Valley, CA, USA). Statistical analyses were conducted using the R
programming v.4.3.3 language (R Foundation for Statistical Computing, Viena, Austria),
and SPSS v.29 (IBM, statistical package for social sciences, San Francisco, CA, USA).

3. Results
3.1. Participant Characteristics

A total of 5005 men suspected of having PCa were included in this study. Among these,
4790 (95.7%) had a serum PSA above 3.0 ng/mL, and only 215 (4.3%) had a suspicious
DRE. All participants who underwent multiparametric MRI (mpMRI) as well as targeted
and/or systematic biopsies were included in the study. Participant characteristics for
the overall study population are presented in Table 1. Overall, 2097 participants (41.9%)
were diagnosed with sPCa, whereas 2908 (58.1%) were found to have non-signi-ficant PCa
(nsPCa), a category that included both individuals without PCa and those with iPCa. The
average age at the time of prostate biopsy was significantly higher in participants with
sPCa than in those with nsPCa. Additionally, the mean serum PSA level was 20 ng/mL
in the sPCa group compared to 8.4 ng/mL in the nsPCa group, while the mean prostate
volume was 51.9 mL in the sPCa group versus 69.1 mL in the nsPCa group. Regarding
PI-RADS scores, the sPCa group had higher percentages of scores 4 (47.3%) and 5 (39%),
whilst the nsPCa predominantly had scores 3 (35.9%) and 4 (35.2%). Based on the computed
p-values, no significant differences were observed among the variables across the training,
validation, and test sets, indicating a homogeneous data split (Table A1).

Table 1. Characteristics of participants and odds ratio estimates for clinical variables in a logistic
regression analysis for significant prostate cancer.

Characteristic sPCa nsPCa Odds Ratio (95% CI) p-Value

Number of men (%) 2097 (41.9) 2908 (58.1) - -
Mean age, years (SD) 70 (8.2) 66 (7.6) 1.07 (1.06–1.08) <0.001
Mean serum PSA, ng/mL
(SD) 20 (109) 8.4 (9.6) 1.04 (1.03–1.05) <0.001

PCa family history, n (%)
No 1930 (92%) 2723 (93.6%) - Ref.
Yes 167 (8%) 185 (6.4%) 1.27 (1.02–1.58) 0.033

Type of prostate biopsy, n (%)
Initial 1594 (76%) 1906 (65.5%) - Ref.
Repeated 503 (24%) 1002 (34.5%) 0.6 (0.53–0.68) <0.001

DRE, n (%)
Normal 1161 (55.4%) 2417 (83.1%) - Ref.
Suspicious 936 (44.6%) 491 (16.9%) 3.97 (3.49–4.52) <0.001

Prostate volume (mL) 51.9 (27.6) 69.1 (34.4) 0.98 (0.98–0.98) <0.001

PI-RADS score, n (%)
1 60 (2.9%) 514 (17.7%) - Ref.
2 23 (1.1%) 152 (5.2%) 1.3 (0.76–2.14) 0.322
3 206 (9.8%) 1044 (35.9%) 1.69 (1.25–2.31) 0.001
4 991 (47.3%) 1024 (35.2%) 8.29 (6.31–11.08) <0.001
5 817 (39%) 174 (6%) 40.22 (29.61–55.48) <0.001

CI: confidence interval; SD: standard deviation; PCa: prostate cancer; sPCa: significant PCa; nsPCa: non-significant
PCa; PSA: prostate-specific antigen; DRE: digital rectal examination; PI-RADS: Prostate Imaging-Reporting and
Data System.
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3.2. Model Performance, Calibration, and Validation of the GMV and BCN Predictive Models

The key factors influencing the performance of the GMV predictive model were
evaluated. Class imbalance was acknowledged as a potential concern in this analysis;
however, after conducting balancing tests, it was determined that adjustments were not
necessary. The models demonstrated robust performance across all classes, indicating
that the existing distribution did not significantly impact the results. Additionally, the
evaluation metrics used provided sufficient insight into model effectiveness.

Given the moderate size of the training set, a simple network with two hidden layers
was chosen to balance model capacity and avoid overfitting, as more complex architectures
did not yield significant performance improvements and increased computational complex-
ity. The optimal network architecture was determined using hyperparameter optimization
with the OPTUNA library, testing various configurations for the number of neurons, loss
function, optimizer, and learning rate. The best-performing model achieved an objective
value of 12.36 (Trial 63) with a configuration of hidden_size = 32, hidden_size_2 = 16,
RMSprop optimizer, and a learning rate of 0.00102.

Despite some variation in other trials, with performance differences ranging from
13.53 to 16.27, the model showed relatively consistent performance, suggesting stability
and robustness across different hyperparameter settings. These results indicate that the
model is not overly sensitive to minor changes in hyperparameters, minimizing the risk
of overfitting.

Calibration of the BCN and GMV models showed that the BCN model slightly overes-
timated predictions at higher probability thresholds, whereas the GMV model moderately
underestimated predictions in the middle range of probability thresholds (Figure A2). In
the training cohort, the area under the receiver operating characteristic (ROC) curve (AUC)
was 0.88 (95% CI, 0.87–0.90) for the GMV model and 0.85 (95% CI, 0.84–0.86), for de BCN
model, p > 0.05 (Figure 1A). In the test cohort, the AUC was 0.85 (95% CI, 0.83–0.88) for the
GMV model and 0.84 (95% CI, 0.82–0.86) for the BCN model, p > 0.05 (Figure 1B).

Cancers 2025, 17, 1101 6 of 19 
 

 

3 206 (9.8%) 1044 (35.9%) 1.69 (1.25–2.31) 0.001 
4 991 (47.3%) 1024 (35.2%) 8.29 (6.31–11.08) <0.001 
5 817 (39%) 174 (6%) 40.22 (29.61–55.48) <0.001 

CI: confidence interval; SD: standard deviation; PCa: prostate cancer; sPCa: significant PCa; nsPCa: 
non-significant PCa; PSA: prostate-specific antigen; DRE: digital rectal examination; PI-RADS: Pros-
tate Imaging-Reporting and Data System. 

3.2. Model Performance, Calibration, and Validation of the GMV and BCN Predictive Models 

The key factors influencing the performance of the GMV predictive model were eval-
uated. Class imbalance was acknowledged as a potential concern in this analysis; how-
ever, after conducting balancing tests, it was determined that adjustments were not nec-
essary. The models demonstrated robust performance across all classes, indicating that 
the existing distribution did not significantly impact the results. Additionally, the evalu-
ation metrics used provided sufficient insight into model effectiveness. 

Given the moderate size of the training set, a simple network with two hidden layers 
was chosen to balance model capacity and avoid overfitting, as more complex architec-
tures did not yield significant performance improvements and increased computational 
complexity. The optimal network architecture was determined using hyperparameter op-
timization with the OPTUNA library, testing various configurations for the number of 
neurons, loss function, optimizer, and learning rate. The best-performing model achieved 
an objective value of 12.36 (Trial 63) with a configuration of hidden_size = 32, hid-
den_size_2 = 16, RMSprop optimizer, and a learning rate of 0.00102. 

Despite some variation in other trials, with performance differences ranging from 
13.53 to 16.27, the model showed relatively consistent performance, suggesting stability 
and robustness across different hyperparameter settings. These results indicate that the 
model is not overly sensitive to minor changes in hyperparameters, minimizing the risk 
of overfitting. 

Calibration of the BCN and GMV models showed that the BCN model slightly over-
estimated predictions at higher probability thresholds, whereas the GMV model moder-
ately underestimated predictions in the middle range of probability thresholds (Figure 
A2). In the training cohort, the area under the receiver operating characteristic (ROC) 
curve (AUC) was 0.88 (95% CI, 0.87–0.90) for the GMV model and 0.85 (95% CI, 0.84–0.86), 
for de BCN model, p > 0.05 (Figure 1A). In the test cohort, the AUC was 0.85 (95% CI, 0.83–
0.88) for the GMV model and 0.84 (95% CI, 0.82–0.86) for the BCN model, p > 0.05 (Figure 
1B). 

 

Figure 1. ROC curves comparing the discrimination ability for sPCa of the GMV and BCN predictive 
models in the training cohort (A) and the test cohort (B). 

Figure 1. ROC curves comparing the discrimination ability for sPCa of the GMV and BCN predictive
models in the training cohort (A) and the test cohort (B).

The precision–recall (PR) curve and AUC-PR in the training cohort were computed
to further assess model performance. As shown in Figure A3 the PR curve is consis-
tent with the ROC analysis, and the AUC-PR of 0.85 (95% CI, 0.82–0.87) supports the
model’s robustness.

Comparative performance metrics of the GMV and BCN predictive models across
the training, validation, and test datasets are summarized in Table 2. The validation
dataset comprised 631 cases (15% of the training dataset). The metrics include AUC,
precision, recall, F1 score, accuracy, sensitivity, specificity, the Kappa index, and Matthew’s



Cancers 2025, 17, 1101 7 of 18

correlation coefficient (MCC), providing a comprehensive evaluation of each model’s
predictive capabilities. This consolidated format allows for a clear comparison of model
performance across different datasets, highlighting the strengths and consistency of each
model on unseen data.

Table 2. Comparative performance metrics for the GMV and BCN predictive models across training,
validation, and test datasets with key values for each metric.

Metric
Training Set (n = 4–254) Validation Set (n = 631) Test Set (n = 751)

GMV Model BCN Model GMV Model BCN Model GMV Model BCN Model

AUC
(95% CI)

0.88
(0.87−0.90)

0.85
(0.84−0.86)

0.88
(0.86−0.91)

0.86
(0.85−0.87)

0.85
(0.83−0.88)

0.84
(0.82−0.86)

Precision
(95% CI)

0.7171
(0.6973−0.7362)

0.7435
(0.7228−0.7633)

0.7184
(0.6659−0.7657)

0.7426
(0.6876−0.7910)

0.7126
(0.6618−0.7585)

0.7607
(0.7074−0.8069)

Recall
(95% CI)

0.8266
(0.8083−0.8435)

0.7435
(0.7228−0.7633)

0.8284
(0.7787−0.8688)

0.7537
(0.6988−0.8015)

0.7556
(0.7052−0.7997)

0.6762
(0.6227−0.7255)

Specificity
(95% CI)

0.765
(0.7478−0.7813)

0.8151
(0.7993−0.8299)

0.7655
(0.7198−0.8058)

0.8113
(0.7684−0.8479)

0.7798
(0.7386−0.8162)

0.8463
(0.8095−0.8771)

Accuracy
(95% CI)

0.7908
(0.7783−0.8027)

0.7851
(0.7725−0.7972)

0.7919
(0.7587−0.8215)

0.7872
(0.7538−0.8171)

0.7696
(0.7382−0.7983)

0.7750
(0.7437−0.8034)

F1 score
(95% CI)

0.768
(0.7537−0.7832)

0.7435
(0.7275−0.7592)

0.7695
(0.7298−0.8047)

0.7481
(0.7025−0.7842)

0.7334
(0.6952−0.7695)

0.7160
(0.6736−0.7537)

Kappa score
(95% CI)

0.5792
(0.5548−0.6037)

0.5587
(0.5325−0.5847)

0.5815
(0.5163−0.6389)

0.5639
(0.4903−0.6276)

0.5309
(0.4671−0.5851)

0.5307
(0.4671−0.5911)

MCC
(95% CI)

0.5841
(0.5603−0.6085)

0.5587
(0.5325−0.5850)

0.5864
(0.5243−0.6441)

0.5639
(0.4910−0.6287)

0.5316
(0.4682−0.5857)

0.5332
(0.4685−0.5948)

AUC: area under the curve; MCC: Matthew’s correlation coefficient; CI: confidence interval.

The GMV model outperformed the BCN model across both the training and validation
datasets. Specifically, the GMV model achieved AUC values of 0.88 for both training and
validation datasets, while the BCN model exhibited slightly lower AUC values of 0.85 and
0.86, respectively. In the test dataset, both models experienced a slight decline in AUC;
however, the GMV model still outperformed the BCN model, with an AUC of 0.85 versus
0.84. Nonetheless, these differences were not statistically significant, p > 0.05. Regarding
precision, the BCN model demonstrated a slight advantage over the GMV model in both
the training and test stages. The BCN model achieved precision scores of 0.7435 in the
training dataset and 0.7607 in the test dataset, compared to the GMV model’s of 0.7171 and
0.7126, respectively. This suggests that the BCN model is marginally more accurate when
making positive predictions, with a higher likelihood of correctly identifying true positives.
In contrast, recall values favored the GMV model across all datasets. Specifically, the GMV
model achieved recall values of 0.8266 in the training dataset, 0.8284 in the validation
dataset, and 0.7556 in the test dataset, compared to the BCN model’s recall values of
0.7435, 0.7537, and 0.6762, respectively. These results indicate that the GMV model was
more effective at capturing true positive cases, suggesting it may be better at identifying
individuals who truly have sPCa.

In terms of specificity, the BCN model outperformed the GMV model, particularly in
the test dataset, where the BCN model achieved a specificity of 0.8463 compared to GMV’s
0.7798. This indicates that the BCN model was better at correctly identifying negative
cases and minimizing false positives. Both models showed similar accuracy rates, with
the GMV model slightly ahead in the training and validation phases (0.7908 and 0.7919,
respectively) compared to the BCN model (0.7851 and 0.7872, respectively); however, the
difference in accuracy was negligible in the test dataset. The F1 score, which balances
precision and recall, also favored the GMV model across all datasets. The GMV achieved
F1 scores of 0.768 in training, 0.7695 in validation, and 0.7334 in testing, while the BCN
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model obtained scores of 0.7435, 0.7481, and 0.716, respectively. This further supports
that the GMV model maintained a better balance between precision and recall than the
BCN model. Regarding the Kappa score, both models demonstrated moderate agreement
beyond chance, indicating that the models’ classifications were not entirely due to random
chance. The MCC, which reflects the quality of binary classifications, also consistently
favored the GMV model, suggesting its overall classification performance was superior to
that of the BCN model.

Overall, the GMV model demonstrated superior performance across most performance
metrics, particularly in recall and F1 score. This suggests that the GMV model is better at
capturing true positives, which is critical in applications where identifying all potential
positive cases is a priority. In terms of ROC and AUC, the GMV model exhibited a better
balance between sensitivity (recall) and specificity, given its higher AUC in training and
better overall performance in testing. Although both models showed similar AUC results
in the test dataset, the GMV model outperformed the BCN model in terms of AUC during
training and demonstrated a more favorable ROC curve, suggesting more consistent and
robust model performance across datasets.

3.3. Variable Importance Interpretation with SHapley Additive exPlanations (SHAP)

SHAP values are a concept used to explain the output of machine learning models.
They are based on cooperative game theory, specifically the Shapley value, which provides
a fair method for distributing a total gain (or outcome) among different players based on
their contributions. Global SHAP values were used to assess the overall importance of
individual features across the entire dataset. The distribution of SHAP values for each
feature across all data points (Figure A4) revealed that features such as prostate volume
and PI-RADS 5 had the highest SHAP values, indicating their significant impact on the
GMV model’s output (Figure A4A). PSA and PI-RADS 3 also had substantial influence,
whereas lower-ranked features, such as family history of PCa and repeated prostate biopsy,
contributed minimally to the prediction. For the BCN model (Figure A4B), the two most
important features were prostate volume and PI-RADS 3, both with SHAP values around
0.1, suggesting they had nearly equal influence on model predictions. Age and PI-RADS 1
also contributed significantly, though to a lesser extent. Features such as PCa family history,
PI-RADS 4, and repeated biopsies had minimal to negligible SHAP values, making them
less relevant in this context. Both models consistently identified prostate volume as the
most decisive feature in predicting sPCa outcomes, while they also agreed that repeated
biopsies were the least relevant factor.

The SHAP Beeswarm plot (Figure 2) provided valuable insights into the features
that most influenced the model’s predictions, offering a clearer understanding of model
behavior and supporting more informed decision-making. Each point represents a single
prediction’s SHAP value of a single prediction, with vertical jittering applied to enhance
visibility. The color gradient indicates the feature’s value, ranging from low (blue) to
high (red). This plot highlights both the direction (positive or negative impact) and the
distribution of SHAP values, revealing patterns and interactions that contribute to the
model’s predictions. In both models, high values of prostate volume (shown in red)
demonstrated an inverse relationship with sPCa risk, indicating that larger prostate volume
was associated with a lower likelihood of sPCa, whereas smaller prostate volumes increased
the risk (Figure 2A,B).

A similar pattern was observed for PI-RADS 1, 2, 3, and repeated biopsies. In contrast,
higher values of PI-RADS 4, 5, age, and suspicious digital rectal examination (also shown
in red) were associated with a greater risk of sPCa, reflecting their positive contribution to
the outcome. Interestingly, these models exhibited different directionality regarding initial
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biopsies. In the GMV model, undergoing an initial biopsy was associated with a lower
probability of a positive sPCa outcome, whereas the BCN model showed the opposite trend.
This discrepancy suggests that the relationship between initial biopsy status and sPCa may
not be straightforward and could differ based on model-specific feature interactions.
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3.4. Clinical Comparison of GMV and BCN Predictive Models for sPCa Detection

The net benefit of the GMV and BCN predictive models was analyzed with decision
curve analysis (DCA). In this analysis, the x-axis represents the predicted probabilities,
while the y-axis indicates the proportion of actual positive cases identified by the model.
The blue line corresponds to the GMV model, and the orange line represents the BCN model.
For reference, the gray line represents the “Biopsy None” strategy, in which no instances
are classified as positive, resulting in unidentified positive cases and potentially missing
all at-risk patients. Conversely, the green line represents the “Biopsy All” strategy, where
all instances are classified as positive, ensuring that all positive cases are identified but
also leading to a high number of false positives, which may result in unnecessary prostate
biopsies. DCA provides a comparative framework for assessing model performance relative
to these two extreme strategies, illustrating the trade-offs between sensitivity and specificity
at different threshold probabilities.

The BCN predictive model demonstrated a higher net benefit than the GMV model
across a wide range of threshold probabilities. DCA indicated that the GMV model pro-
vided a higher net benefit for threshold probabilities between 1% and 35%, whereas the
BCN model outperformed it at threshold probabilities ranging from 36% to 75% (Figure 3).
This suggests that the BCN model may be slightly more effective at identifying high-risk
patients. However, both models performed similarly within the critical range of 10% to
35%, where most clinical decisions are made. As threshold probabilities for sPCa detection
increased beyond 30%, both models deviated further from the performance of the “Biopsy
All” strategy, reinforcing their clinical utility. Additionally, both models consistently main-
tained a gap above the “Biopsy All” and “Biopsy None” curves across various thresholds,
highlighting their overall robustness and clinical applicability.
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Figure 3. Net benefit of the GMV and BCN predictive models compared to the “biopsy all” and
“biopsy none” strategies, as assessed by Decision Curve Analysis (DCA).

Clinical utility curves (CUC) illustrate the rates of saved prostate biopsies and un-
detected sPCa as the continuous threshold probability for sPCa prediction continuously
increases in both models (Figure 4).
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Figure 4. Clinical utility curves (CUC) for the GMV model (A) and the BCN model (B). The x-axis
represents varying threshold probability points (expressed as percentages), indicating the probability
above which a prostate biopsy is recommended. The y-axis displays two key metrics, the rate of
saved biopsies (red line) and the rate of undetected sPCa (blue line), as the continuous threshold
probability for sPCa prediction increases continuously.

The GMV model demonstrated a 23% reduction in prostate biopsies at a 14% proba-
bility threshold for sPCa, with only 2.6% of sPCa cases remaining undetected. Even at a
higher 20% threshold, it maintained a substantial 32.5% biopsy reduction while missing
6.5% of sPCa cases. In comparison, the BCN model achieved greater biopsy savings but at
the cost of higher missed sPCa rates. At a 14% threshold, the BCN model reduced prostate
biopsies by 34%, but 8% of sPCa cases remained undetected. At a 20% threshold, biopsy
savings increased to 41%, though the missed sPCa rate also rose to 13%. The rates of
avoided prostate biopsies and undetected sPCa for the GMV and BCN predictive models
at thresholds ranging from 5% to 20% are summarized in Table 3. When fixing a clinically
appropriate 95% sensitivity, the GMV model avoided between 27.5% and 29% of prostate
biopsies at thresholds between 16% and 17%. In contrast, the BCN model avoided between
27% and 27.5% of prostate biopsies at lower thresholds of 9% to 10%.
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Table 3. Rates of avoided prostate biopsies and undetected sPCa provided with the GMV and BCN
models at threshold probabilities between 5% and 20%.

Threshold
(%)

GMV Model BCN Model

Saved
Biopsies (%)

Undetected
sPCa (%)

Saved
Biopsies (%)

Undetected
sPCa (%)

5 3.5 0.5 18 2

6 5 0.75 20 2.5

7 9.5 1 23 3.5

8 10 2 26 4.75

9 14 2 27 5

10 17 2 27.5 5

11 19 2.5 30 6

12 20 2.5 32.5 6.5

13 22 2.6 33.5 6.5

14 23 2.6 34 8

15 26 4.5 35 8.5

16 27.5 5 36 10.5

17 29 5 37.5 10.5

18 30 5.1 39.5 13

19 30 5.1 40 13

20 32.5 6.5 41 13

4. Discussion
This study compared the clinical performance of two predictive models for sPCa

detection in prostate biopsies, both developed using seven clinical variables obtained
during the diagnostic process. The GMV model, based on a SimpleNet-FNN-based ML
algorithm, demonstrated clinical effectiveness comparable to that of the BCN model, which
was developed using a classic LR approach. Both models demonstrated appropriate
calibration and strong performance, though each had distinct advantages depending on
clinical priorities. The GMV model exhibited a discrimination ability with an AUC of 0.85,
comparable to the 0.84 achieved by the BCN model [33–42]. The GMV model prioritized
recall, making it particularly suitable for scenarios where detecting men with sPCa and
minimizing false-negative predictions is critical, such as in cancer diagnosis. In contrast, the
BCN model showed higher precision and specificity, making it more effective in reducing
false-positive predictions and unnecessary prostate biopsies.

The use of predictive models offers a significant advantage over the use of biomarkers
in improving the current diagnostic approach for sPCa, as they are often expensive and
require the collection of biological fluids for analysis [10,11]. However, ensuring the
availability of a freely accessible risk calculator web-based or smartphone application
would be very beneficial for clinical practice as patients could be efficiently classified in the
early stages of diagnosis. This is exemplified by the BCN risk calculator, which is available
at https://mripcaprediction.shinyapps.io/MRIPCaPrediction/ (accessed on 12 February
2025) [12]. Regarding net benefit analysis, the GMV model prioritized minimizing missed
sPCa detections while achieving moderate reductions in prostate biopsies. In contrast,
the BCN model focused on maximizing biopsy reduction, albeit at the cost of a higher
number of missed sPCa cases. Nonetheless, the clinically optimal threshold detecting

https://mripcaprediction.shinyapps.io/MRIPCaPrediction/
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95% of sPCa of the BCN model provided a balance similar to that of the GMV model,
aligning with the performance of comparable models. The GMV model, designed using the
SimpleNet-FNN framework, offers modularity for future integration of diverse data sets,
including genomics and other omics such as MRI radiomics, enhancing its adaptability.
While the BCN model is similarly effective, it is less expandable [43–45].

The choice between these models for clinical implementation should align with specific
clinical priorities. If minimizing missed diagnoses (false negatives) and maximizing sPCa
detection is the primary concern, the GMV model is preferable. Conversely, if reducing
unnecessary prostate biopsies and false positives is the priority, the BCN model would be
the better option. The optimal threshold for clinical decision-making with the GMV model
was found to be 14%, at which it could reduce prostate biopsies by 23% while missing only
2.6% of sPCa. Even at a higher threshold of 20%, the GMV model could avoid 32.5% of
biopsies, with an acceptable trade-off of 6.5% missed sPCa. In comparison, at a threshold
of 14%, the BCN model avoided 34% of biopsies but at the cost of an 8% rate of undetected
sPCa. At a threshold of 20%, the BCN model saved 41% of biopsies, with a corresponding
13% rate of undetected sPCa cases. The ideal threshold for the BCN model appeared to be
around 13%, allowing a 33.5% reduction in biopsies while maintaining a 6.5% rate of missed
reclassifications. The BCN model performed similarly to other previously reported models,
which, at a 20% threshold, reduced biopsies by 42% but had a 7% rate of missed cancers [46].
This suggests that the GMV model prioritizes minimizing missed sPCa detections, even at
the cost of performing more biopsies. However, when both models were compared at a
fixed 95% sensitivity, the GMV model achieved a slightly higher percentage of avoidable
prostate biopsies.

SHAP analysis identified prostate volume as the most influential feature in the GMV
model, with higher prostate volume values inversely associated with the likelihood of sPCa.
This aligns with the traditional analysis of independent predictive variable weights in LR
models [12–14]. Additionally, a PI-RADS score of 5 was a key determinant in the GMV
model, whereas a PI-RADS score of 3 and age played significant roles in the BCN model,
consistent with previous findings [18]. A discrepancy in the SHAP analysis was observed
in the effect of the initial biopsy feature, which had differing impacts between the models.
In the GMV model, initial biopsy status was associated with a lower probability of sPCa, as
previously reported. However, in the BCN model, initial biopsy status did not demonstrate
a significant relationship with sPCa detection, suggesting that it may not be a relevant
predictor in this model. This difference can be attributed to the difference in the weights
of predictive variables regarding the model. Other risk factors, such as DRE, exhibited
moderate importance in both models. Conversely, PCa family history did not emerge as
a highly relevant factor in either predictive model, despite being a well-established risk
factor for sPCa. Previous studies have identified its predictive significance [12,47], but those
models did not incorporate PI-RADS scores, which may have altered the relative weight
and ranking of predictive variables. Additionally, the evolving demographic profile of PCa
diagnoses may suggest that a growing proportion of cases occur in men without a known
family history of the disease. Nevertheless, PCa family history remains an important risk
factor and should not be excluded from predictive models or preventive medicine strategies.
Overall, the SHAP analysis provided valuable insights into the clinical features driving
model predictions, enhancing the interpretability of both the GMV and BCN models. These
findings, in combination with clinical threshold evaluations, offer a clearer understanding
of how these models can be effectively applied in clinical practice to support informed
decision-making in sPCa detection.

Several limitations of our study must be acknowledged. Its retrospective nature
may have introduced selection bias, as the included population was determined by the
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availability of pre-existing data. The analyzed cohort was derived from an opportunistic
PCa screening program, which may have introduced biases in participant characteristics
compared to those identified through population-based screening programs. While our
study included a substantial number of men suspected of having PCa, the limited sample
size for specific subgroup analyses may have reduced the statistical power and robustness of
these analyses, potentially affecting the reliability of our conclusions. As a multicenter study
without centralized diagnostic procedures, some degree of variability was likely inevitable,
even with well-established criteria for identifying men with suspected PCa, performing
and interpreting MRI scans, and conducting and reporting prostate biopsies. Variations
in expertise across centers may have further contributed to this variability. The current
definition of sPCa in prostate biopsies does not correlate well with the true pathology of the
entire prostate gland, which can be only assessed when radical prostatectomy is performed
as a local treatment for the tumor [48].

After this analysis, we recognize that both machine learning and logistic regression
algorithms resulted in small differences when developing predictive models for sPCa
based on seven clinical variables, which represents a small dataset. These differences
produced minor changes in the clinical performance metrics of both models. However,
their effectiveness was nearly identical at the 95% sensitivity threshold for sPCa detection,
which is highly appropriate for this purpose. The GMV model requires a web-based or
smartphone application for routine clinical use [49]. Moreover, the GMV model offers
greater potential for integration into federated networks, as its online evolution could be
supported through continuous model updates [16]. Additionally, the GMV model can
incorporate other data types such as genomic, proteomic, or radiomic features from MRI,
enabling the processing of large data sets, an approach not supported by logistic regression
models [50,51].

5. Conclusions
Both ML and LR models achieve high accuracy in predicting sPCa, with ML favoring

recall and LR optimizing specificity. Future studies should explore external validation and
the integration of multimodal data to refine predictive accuracy.
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Mean age at biopsy, years (SD) 68 (8.3) 68 (8.3) 68 (8.2) 1 
Mean serum PSA, ng/mL (SD) 13.4 (75.0) 12.7 (35.5) 12.8 (47.6) 0.36 
Suspicious DRE, n (%)  1210 (28.5) 192 (30.1) 217 (28.9) 0.11 
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Mean prostate volume, mL (SD) 61.5 (32.3) 62.0 (33.1) 64.6 (35.8) 0.65 
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PI-RADS version used 2 2.1 2  
Mean number of suspicious lesions 2 2 2  
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1 470 (11.1) 71 (11.2) 104 (13.9) 0.33 
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Figure A1. Diagram of dataset split and participant distribution across model development datasets.
This diagram provides a detailed overview of the dataset division and participant allocation across
machine learning model development stages. The dataset is split into three subsets: 85% for training
and 15% for testing. A total of 15% of the training set was selected for validation. The training subset
is used to develop the classifier, followed by evaluation on the validation subset to fine-tune model
parameters. Finally, the trained classifier’s performance is assessed on the test subset, offering an
unbiased evaluation of its generalization ability. This breakdown clarifies the distinct roles of each
subset in training, internal validation, and final testing phases, ensuring a rigorous approach to model
development and assessment.

Table A1. Demographic, clinical, and imaging characteristics of the training, validation, and
test datasets.

Characteristic Development
Cohort

Validation
Cohort

Test
Cohort p-Value

Number of men 4254 639 751
Mean age at biopsy, years (SD) 68 (8.3) 68 (8.3) 68 (8.2) 1
Mean serum PSA, ng/mL (SD) 13.4 (75.0) 12.7 (35.5) 12.8 (47.6) 0.36
Suspicious DRE, n (%) 1210 (28.5) 192 (30.1) 217 (28.9) 0.11
PCa family history, n (%) 304 (7.2) 51 (8.0) 48 (6.4) 0.2
Mean prostate volume, mL (SD) 61.5 (32.3) 62.0 (33.1) 64.6 (35.8) 0.65
Previous negative prostate biopsy,
n (%) 1281 (30.2) 216 (33.9) 224 (29.9) 0.41

PI-RADS version used 2 2.1 2
Mean number of suspicious lesions 2 2 2
PI-RADS score of index lesion,
n (%)

1 470 (11.1) 71 (11.2) 104 (13.9) 0.33
2 148 (3.5) 15 (2.4) 27 (3.6) 0.09
3 1053 (24.8) 161 (25.2) 197 (26.3) 0.27
4 1743 (41.0) 261 (40.9) 272 (36.3) 0.07
5 840 (19.8) 131 (20.6) 151 (20.2) 0.71

sPCa detection, n (%) 1782 (41.9) 268 (42.0) 315 (42.0) 1
SD: standard deviation; PSA: prostatic specific antigen; DRE: digital rectal examination; PI-RADS: Prostate
Imaging-Reporting and Data System; PCa: prostate cancer; sPCa: significant PCa.
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Figure A2. (A,B) Calibration plots for the BCN and GMV predictive models on training dataset. 
Predicted probabilities against observed outcomes for each model on the training dataset. The cali-
bration curves assess each model’s ability to predict probabilities that reflect true clinical outcomes, 
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rate probability estimation. These plots offer insights into the consistency and reliability of each 
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Figure A2. (A,B) Calibration plots for the BCN and GMV predictive models on training dataset.
Predicted probabilities against observed outcomes for each model on the training dataset. The
calibration curves assess each model’s ability to predict probabilities that reflect true clinical outcomes,
where closer alignment of the curve to the diagonal line indicates better calibration and more accurate
probability estimation. These plots offer insights into the consistency and reliability of each model’s
predictions across the probability range.
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tions. The x-axis corresponds to the individual features used in the model, while the y-axis displays 
the mean absolute SHAP value for each feature. A higher value on the y-axis indicates a greater 
contribution to the model’s prediction, with features associated with longer bars being more influ-
ential in the model’s decision-making process. This visualization highlights the key variables that 
drive the predictions of each model, helping to identify which features play the most significant role 
in determining outcomes. The comparison between the two models reveals how the importance of 
various features differs, shedding light on the factors each model relies on to classify the data. 
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influential in the model’s decision-making process. This visualization highlights the key variables
that drive the predictions of each model, helping to identify which features play the most significant
role in determining outcomes. The comparison between the two models reveals how the importance
of various features differs, shedding light on the factors each model relies on to classify the data.
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