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SUMMARY
Liver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Ac-
curate identification and quantification are crucial for effective patient management, including precise diag-
nosis, prognosis, and therapy evaluation. We present SALSA (system for automatic liver tumor segmentation
and detection), a fully automated tool for liver tumor detection and delineation. Developed on 1,598
computed tomography (CT) scans and 4,908 liver tumors, SALSA demonstrates superior accuracy in tumor
identification and volume quantification, outperforming state-of-the-art models and inter-reader agreement
among expert radiologists. SALSA achieves a patient-wise detection precision of 99.65%, and 81.72% at
lesion level, in the external validation cohorts. Additionally, it exhibits good overlap, achieving a dice similarity
coefficient (DSC) of 0.760, outperforming both state-of-the-art and the inter-radiologist assessment.
SALSA’s automatic quantification of tumor volume proves to have prognostic value across various solid tu-
mors (p = 0.028). SALSA’s robust capabilities position it as a potential medical device for automatic cancer
detection, staging, and response evaluation.
INTRODUCTION

Liver cancer poses a significant health challenge. Primary liver

cancers such as hepatocellular carcinoma and cholangiocarci-

noma are often diagnosed in advanced stages, with limited treat-

ment options available and unfavorable prognosis. Additionally,

the liver is a common site for metastases originating from other

primary cancers, significantly impacting patient prognosis.1,2

Early and precise detection is crucial as it opens the possibility

for localized and potentially curative treatments, thereby

improving the overall outcomes for patients.

The evaluation of liver tumor burden is crucial at different

stages of cancer treatment. For therapy decisions, especially

when planning surgical interventions, accurately assessing the

number and volume of liver tumors is critical.3 This evaluation,

typically performed on medical images, such as computed to-

mography (CT), is essential for planning curative-intent surgeries
Cell Reports Medicine 6, 102032,
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where balancing tumor removal with preserving healthy liver tis-

sue is crucial. Currently, this task is carried out either subjectively

or in a more quantitative way manually, which is not only time-

consuming but also prone to variability between different ob-

servers and within the same observer.4–6 Furthermore, the

need for a more comprehensive assessment of liver tumors ex-

tends to treatment monitoring in patients with cancer. The eval-

uation of cancer volume changes throughout treatment on CT

images, as opposed to relying solely on the maximum diameter

of a few tumors (as defined by the standard Response Evaluation

Criteria In Solid Tumors [RECIST]7), offers a more accurate

response assessment and prediction of clinical outcomes.8–10

Yet, accurately delineating tumors for volume analysis (i.e.,

drawing tumor contours) poses practical challenges and often

acts as a bottleneck in numerous research projects and clinical

applications that involve volumetric disease assessment. Here,

a fully automated delineation tool can be transformative,
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enhancing accuracy in tumor detection and volume assessment.

Such a tool will reduce manual workload and variability in mea-

surements, streamline the treatment planning process, and sup-

port more accurate and robust response evaluation.

Previous studies in the field of medical imaging have aimed to

advance the automated detection and segmentation of liver

tumors.11,12 While these efforts have yielded valuable insights

and tools, they often confront challenges related to limited inclu-

sion of tumor types and a primary focus on segmenting individual

lesions, which limits their capacity to enable an integral assess-

ment of liver tumor burden. Seeking to address these clinical

challenges, our study introduces system for automatic liver tu-

mor segmentation and detection (SALSA), a tool that offers a

comprehensive solution for the automatic detection and delinea-

tion of all liver tumors on CT images. Our approach has been

developed in an extensive and heterogeneous dataset encom-

passing primary tumors, liver metastases, and various CT proto-

cols, enabling comprehensive performance evaluation. The tool

is generalizable across a multicentric test cohort and four

external independent datasets. It also incorporates qualitative

feedback from expert radiologists, allowing comparison be-

tween their preferred segmentations (ground truth) and those

produced by our tool. Furthermore, we benchmarked our tool’s

efficacy against the most accurate liver tumor segmentation tool

to date, derived from the Liver Tumor Segmentation Challenge

(LiTS),12 compared our model’s segmentations against evalua-

tions from three expert radiologists, and explored the prognostic

potential of liver cancer burden quantified automatically by

this tool.

Our tool, SALSA, which can be accessed and tested through

our site https://radiomics.vhio.net/salsa/, surpasses the accu-

racy of the top available LiTS12 models and expert radiologists.

It offers precise and automated liver cancer detection and vol-

ume quantification on CT images, with implications for clinical

outcomes and with no need for user prompts such as region of

interest delineation of the lesions to segment.

RESULTS

Population demographics
In this multi-center, retrospective study, we analyzed CT data

from 1,598 contrast-enhanced CT scans of the entire liver in

1,306 patients with cancer. This analysis included 4,908 liver

tumors identified in 1,041 of these patients, while 265 patients

had no cancer in the liver. The detection and delineation

model was developed and tested using 885 CT scans from

593 patients. Additionally, four independent cohorts were

collected from open-access repositories for external valida-

tion12–15 (Figure 1). The dataset comprises a wide range of im-

ages, including both primary and secondary tumors with

differing sizes and visual characteristics. The predominant tu-

mor types in the development and test cohorts are liver me-

tastases from colorectal cancer (151 patients), lung cancer

(88 patients), and neuroendocrine tumors (80 patients). Also,

19 patients had primary liver tumors (either hepatocarcinoma

or cholangiocarcinoma).

Two of the four independent external validation datasets, the

Liver Tumor Segmentation (LiTS) open-source dataset12 and
2 Cell Reports Medicine 6, 102032, April 15, 2025
the Medical Segmentation Decathlon (MSD)-Hepatic Vessels

dataset,13 did not include specific information about the origin

of the liver tumors, indicating only that both primary and meta-

static cancers were present in the dataset, without specifying

the type for each scan. Patients in the third external validation

dataset, from The Cancer Imaging Archive (TCIA) Colorectal

Liver Metastases (CRLM),14 all had liver metastases from colo-

rectal cancer, whereas the fourth external validation dataset,

also from TCIA, Hepatocellular Carcinoma Transarterial Chemo-

embolization (HCC-TACE-Seg),15 only included patients with

primary liver cancer (hepatocarcinoma).

Additionally, the tumors in the development and test cohorts

exhibit varying levels of contrast compared to the healthy liver

tissue, spanning from hyperdense to hypodense tumors. Both

datasets exhibit similar distributions in terms of gender, number

of liver tumors, percentage of patients with primary liver cancer,

and disease burden. The patient demographics and clinical

characteristics per group are shown in Table 1.

CT scan characteristics
The dataset comprised a diverse collection of abdominal CT

scans acquired using different scanners and acquisition proto-

cols following intravenous contrast injection, adhering to stan-

dard clinical procedures. This dataset mirrors real-world clinical

conditions, encompassing common imaging artifacts such as

metal and motion artifacts and displaying variations in resolution

and image quality. For a concise summary of data statistics, see

Table S1.

SALSA shows high accuracy for cancer detection and
precise tumor delineation
Three state-of-the-art neural network architectures for image

segmentation, including the latest transformer architectures,

were employed in the development of a tool designed for the

automatic detection and delineation of liver tumors. The 3D

U-Net cascade model implementation from nnU-Net exhibited

the top performance of all the explored models (Figures 2A–2C

and S1; Tables S2–S4). Therefore, the 3D U-Net cascade model

is designated as the SALSA tool and has been tested to evaluate

its robustness and prognostic value, with the results shown in the

following sections.

The lesion detection accuracy was assessed both in a patient-

wise and tumor-wise manner. SALSA showed high accuracy for

detecting liver tumors, with a patient-wise precision of 80.59%

and a recall of 99.08% on the test set. In the external validation

cohort, which included the four independent datasets, it ob-

tained similar results: a precision of 99.65% and a recall of

94.17%. When considering each lesion individually, SALSA ob-

tained a lesion-by-lesion detection precision of 58.07% and

81.72% in the test and external validation cohort and a recall

of 70.38% and 57.92%, respectively (see Table 2). These results

are consistent with the differences among the four datasets,

where different segmentation criteria, in terms of minimum lesion

size, were applied, reflecting the robustness of the pro-

posed tool.

In parallel, segmentation evaluation was performed binarily by

computing patient-wise and tumor-wise metrics. Both ap-

proaches reported a good overlap among the tumor masks

https://radiomics.vhio.net/salsa/


Figure 1. Overview of the study population and design

(A) Distribution of the data included in the study. It details the number of CT scans and liver tumors involved in the development and test cohorts as well as the

collected external validation cohorts.

(B) Overview of the study workflow and methodological framework, including the tested architectures and evaluation metrics for per-patient and tumor-wise

assessments. It features a schematic representation of two side studies: (1) benchmarking against professional radiologists through intra- and inter-reader

variability studies and (2) expert preference analysis comparingmanual (ground truth) segmentations with those generated by SALSA. Additionally, it explores the

use of automated liver tumor quantification as a prognostic biomarker in patients with cancer.
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generated by SALSA and the ground truth in both the test

(patient-wise DSC of 0.737 and tumor-wise DSC of 0.761) and

external validation (patient-wise DSC of 0.738 and tumor-wise

DSC of 0.760) cohorts (see Table 2).
With a precision for liver tumor detection of 28.06%, 82.61%

recall, and 0.714 DSC in our test set and 54.03%, 85.47%, and

0.690, respectively, in the external validation cohort, SALSA

has been proved to benchmark the LiTS top-performing model,
Cell Reports Medicine 6, 102032, April 15, 2025 3



Table 1. Description of the patient characteristics in the development and test datasets used in this study

Development Test LiTS TCIA-CRLM TCIA-HCC MSD p values

Number of patients 452 141 131 197 82 303 –

Number of CT scans 726 159 131 197 82 303 –

Number of CT scans with

liver tumors

524 109 118 197 82 303 –

Number of CT slices with

tumor (%)

35,692 (19.53) 9,006 (22.44) 7,296 (23.56) 8,834 (19.31) 2,411 (39.76) 16,693 (23.38) –

Number of CT scans with

primary liver

cancer (%)

20 (2.76) 8 (5.03) – 0 (0) 82 (100) – 0.595

Tumor volume (mL) 2.97

(0.91–10.45)

4.52

(1.42–15.64)

0.54

(0.15–2.80)

1.56

(0.49–7.24)

55.46

(17.73–185.49)

5.84

(0.94–37.90)

6.82e�06

Total tumor

volume (mL)a
27.99

(6.88–97.88)

53.28

(18.56–151.27)

16.64

(3.54–108.53)

9.49

(3.68–32.31)

79.65

(24.79–317.53)

31.34

(8.46–104.48)

0.119

Age 69 (59–77) 63 (55–71) – 61 (52–69) 67 (58–76) – 1.65e�05

Gender (% female) 42.04 50.35 – 40.61 35.2 – 0.101

Number of tumors 2,365 466 893 524 118 542 –

Number of tumors per patient 2 (0–5) 2 (0–5) 4 (1–10) 2 (1–3) 1 (1–7) 1 (1–2) 0.489

Data are represented as median and interquartile range (IQR).

LiTS, Liver Tumor Segmentation Challenge; TCIA, The Cancer Imaging Archive; CRLM, Colorectal Liver Metastases; HCC, Hepatocellular Carcinoma;

TACE, Transarterial Chemoembolization; MSD, Medical Segmentation Decathlon.
aNot including patients without liver tumors.
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benefitting from having a larger, more heterogeneous, and real-

world set of cohorts of liver tumors (Figures 3 and 4A; Table S5).

Impact of tumor size and density on SALSA’s detection
and segmentation performance
We assessed whether factors such as tumor type, size, imaging

characteristics, including tumor intensity, and CT scan acquisi-

tion parameters, like slice thickness, had an impact on the accu-

racy of SALSA in detecting and delineating liver cancer. Remark-

ably, hypodense tumors compared to the liver density and larger

tumors were proven to be more readily detected and delineated

by the SALSA tool (Figures 2D and 2E; Table S6). Furthermore,

our analysis revealed that the distribution of DSC remained

consistent across different tumor types and regardless of the

CT slice thickness (Figure S2; Table S7).

The SALSA tool showed a lower performance when detecting

and delineating small liver tumors (Figure 2E; Table S8). Consid-

ering that tumors under 1 cm in the largest axial plane are often

deemed indeterminate and non-measurable by the RECIST

guidelines,7 which were applied during the development cohort

segmentation, SALSA inherently prioritizes clinically significant

cancers. Moreover, its consistent performance across tumor

types and CT slice thicknesses underscores SALSA’s broad

applicability in diagnosing prevalent solid tumors with standard

CT imaging protocols.

Automatically generated contours are comparable to
manual segmentations by expert radiologists
To explore the variability among radiologists in detecting and

delineating liver tumors, we randomly selected a group of 25 pa-

tients from our test cohort. Three radiologists, blinded to the

ground truth, delineated all liver tumors in each case. All outlines
4 Cell Reports Medicine 6, 102032, April 15, 2025
created by both the radiologists and the models were measured

against a gold standard, specifically, masks segmented manu-

ally by the reference expert radiologist (radiologist 1).

We calculated how closely the contours matched the manual

segmentation using the tumor-wise DSC metric for quantifica-

tion. Additionally, we examined intra-radiologist variability by as-

sessing the agreement in delineation when the same reference

radiologist performed the liver tumor segmentation twice.

Our findings revealed that SALSA’s performance in outlining

liver tumors (F1-score of 75.89 and DSC of 0.800 in the

25-patient test cohort subset) was comparable to, or even better

than, the level of agreement observed by each of the two blinded

radiologists (F1-scores of 68.72 and 47.81, DSCs of 0.778 and

0.736, respectively), used for inter-radiologist variability assess-

ment. Such performance was found to be even close to that of

the reference expert radiologist (F1-score of 79.50 and DSC of

0.820), used for intra-radiologist variability assessment, indi-

cating a high level of precision in the model’s detections and de-

lineations (Figure 4B; Table S9).

Automatic tumor burden quantification by SALSA is
prognostic in patients with cancer
The prognostic value of liver cancer burden was assessed using

both manual evaluations by expert radiologists and automated

delineations by SALSA. Analysis was conducted on data

including the test set, with 141 patients (Table S10), and all the

cases from the external validation cohort for which clinical

outcome was available (TCIA-CRLM), including 197 patients.

The association between total tumor volume and clinical

outcomewas studied. The results revealed that a higher liver can-

cer burden is associatedwith poorer prognosis (p=0.028, hazard

ratio; 95% confidence interval = 1.692; 1.055, 2.715), regardless



Figure 2. SALSA’s performance evaluation

(A and B) Delineation performance evaluated by the intersection of ground truth masks with those automatically generated by SALSA, calculated using the dice

similarity coefficient (DSC). Results from the three tested architectures in the test set (orange) and external validation set (blue) are shown for both patient-wise

(A) and tumor-wise (B) levels.

(C) Evaluation of various metrics for detection (precision, recall, and F1-score) and delineation (DSC and Jaccard Index [JI]) performance by SALSA.

(D and E) Analysis of the impact of tumor density (D) and volume (E) on delineation performance, highlighting SALSA’s reduced efficacy in hyperdense and small

liver tumors.

Significance was calculated using independent two-sample t tests with Bonferroni correction and is represented as: *p < 0.05; **p % 0.01; ***p % 0.001; **p %

0.0001; NS, not significant. Data are represented as median and interquartile range (IQR) in (A), (B), and (E). See also Tables S3, S4, and S6.
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of whether the assessment was manual or automated. Notably,

theautomatedquantificationbySALSAconfirmed theprognostic

importance of tumor burden and demonstrated comparable risk

stratification of patients to manual assessments. This finding

suggests that automated tools like SALSA could offer fast and

precise tumor burden quantification and associated prognostic

differentiation in liver cancer (Figure 5).
Radiologists show equal preference for manual and
SALSA liver tumor segmentations
For expert validation purposes, a user-friendly web application

was developed to allow direct comparison of radiologist prefer-

ences between manual segmentations and those generated by

the SALSA tool. The application, available at https://radiomics.

vhio.net/salsa/, featured the entire liver volume as a scrollable
Cell Reports Medicine 6, 102032, April 15, 2025 5
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Table 2. Liver tumor detection and delineation performance of SALSA at both the patient and tumor-wise levels

Tumor detection performance

Patient-wise Tumor-wise

Precision Recall F1-score Precision Recall F1-score

Test (n = 159) 80.59 99.08 88.88 58.07 70.39 63.64

External validation (n = 713) 99.65 94.17 96.83 81.72 57.92 67.79

Tumor detection performance

Patient-wise Tumor-wise

DSC JI DSC JI

Test (n = 159) 0.738 (0.474–0.831) 0.585 (0.310–0.710) 0.761 (0.619–0.832) 0.635 (0.534–0.721)

External validation (n = 713) 0.737 (0.520–0.841) 0.583 (0.351–0.725) 0.760 (0.629–0.840) 0.633 (0.502–0.733)

External validation LITS (n = 131) 0.769 (0.543–0.841) 0.624 (0.373–0.725) 0.773 (0.677–0.833) 0.670 (0.554–0.717)

External validation TCIA (n = 197) 0.724 (0.518–0.828) 0.568 (0.349–0.707) 0.760 (0.651–0.826) 0.617 (0.501–0.726)

External validation MSD (n = 303) 0.743 (0.533–0.841) 0.591 (0.363–0.726) 0.766 (0.602–0.846) 0.638 (0.501–0.739)

External validation HCC (n = 82) 0.726 (0.435–0.868) 0.569 (0.278–0.767) 0.715 (0.385–0.861) 0.590 (0.459–0.767)

Data are presented as percentages (%) for precision, recall, and F1-score and as median and interquartile range (IQR) for DSC and JI.

LiTS, Liver Tumor Segmentation Challenge; TCIA, The Cancer Imaging Archive; CRLM, Colorectal Liver Metastases; HCC, Hepatocellular Carcinoma;

TACE, Transarterial Chemoembolization; MSD, Medical Segmentation Decathlon; DSC, dice similarity coefficient; JI, Jaccard’s Index.
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element and allowed for window adjustment and navigation to

aid radiologists in accurately evaluating the quality of the con-

tours, depicted over the scan using random colors in order to

avoid biasing the choice. A subset of 200 randomly selected

cases from both the test and external validation cohorts was re-

viewed by three experienced radiologists, who were asked to

submit their preference for either manual or automated segmen-

tation, or to express no preference.

In the test dataset, radiologists clearly preferred model seg-

mentations over manual ones, choosing them 53.33% of the

time compared to 15.00% for manual segmentations. They

claimed no specific preference in the remaining 31.66%of cases.

Conversely, in the TCIA-CRLM dataset used for external valida-

tion, preferences for manual and automatic segmentations

were equally distributed, alongwith a similar rate of nopreference

responses (p value 0.855), indicating no significant bias toward

either method. These observations are depicted in Figure 4C,

which illustrates the frequency of each type of segmentation cho-

sen by each radiologist across different evaluation datasets.

Within the LiTS cohort, a distinct preference for manual seg-

mentations was observed, primarily due to the cohort’s charac-

teristic of smaller lesions, as highlighted in Table 1. This pattern

reflects SALSA’s slightly decreased performance in segmenting

smaller lesion sizes, as shown in Figure 2. It should be noted that

SALSA is designed to prioritize the detection of malignant liver

tumors larger than 1 cm in diameter, intentionally excluding inde-

terminate lesions, also defined as those non-measurable ac-

cording to standard response criteria such as RECIST.7

This validation by expert radiologists revealed a balanced

preference for SALSA’s segmentations, highlighting its strategy

to exclude non-specific or non-measurable lesions.

DISCUSSION

The liver, affected by both primary hepatobiliary cancers and

metastases, plays a pivotal role in cancer staging, prognosis,
6 Cell Reports Medicine 6, 102032, April 15, 2025
and treatment planning. Precision in tumor detection and delin-

eation is pivotal for consistently and precisely measuring tumor

burden on imaging at diagnosis and over multiple time points

through the course of the disease. However, the detailed quan-

tification of liver cancer currently demands the skill of experi-

enced radiologists and manual tumor segmentation, posing sig-

nificant barriers to clinical application. Our development of an

automatic segmentation tool for liver tumors, both primary and

metastatic, aims to overcome these challenges.

We compared three advanced deep learning methods,

including a transformer-based U-Net and nnU-Net,16–18 to

develop a robust tool for automated tumor detection and delin-

eation. Our models were trained on a diverse dataset, encom-

passing primary tumors, liver metastases, and various CT proto-

cols, enabling comprehensive performance evaluation. Among

the exploredmodels, nnU-Net was found to be the best perform-

ing option, surpassing state-of-the-art transformer architec-

tures, which exhibited poor performance due to their require-

ment for massive training cohorts to achieve good results.19

We demonstrated the tool’s ability to generalize across a mul-

ticentric test cohort and four external datasets.12 We computed

standard evaluation metrics to assess its performance quantita-

tively and, additionally, requested qualitative feedback by asking

expert radiologists to compare their preferred segmentations,

ground truth with those produced by our tool, SALSA. Further-

more, we benchmarked our tool’s efficacy against the most ac-

curate liver tumor automatic segmentation tool to date, derived

from the LiTS.12 We also compared our model’s segmentations

against those from three expert radiologists, offering an in-depth

evaluation of our tool’s performance. Additionally, with the aim of

exploring a possible clinical application, we explored the poten-

tial of liver cancer burden quantified automatically by this tool as

a prognostic biomarker and proven that it is equal to the one ob-

tained from manual segmentations.

SALSA enables fully automated detection and segmenta-

tion of liver tumors, providing precise quantification of tumor



Figure 3. Visual comparison of the automatically delineated contours with radiologist-generated ground truth

Representative cases of liver tumors delineated by SALSA (red lines) compared to the ground truth (blue lines) segmented masks. Yellow dashed boxes in (A) and

(C) indicate the regions magnified in (B) and (D) for improved visualization. The delineations are displayed as colored masks, highlighting areas of agreement and

discrepancies between the assessments.
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number and volume. It matches expert radiologists in detect-

ing and outlining liver tumors, a capability not previously avail-

able in open-access tools. Surpassing the highest-performing

model from the LiTS challenge at both patient and lesion

levels, SALSA sets a new benchmark in automated medical
imaging segmentation. Crucially, unlike the LiTS dataset

models, SALSA’s robustness and generalizability have been

rigorously validated across an independent test set and four

external datasets, showcasing its unparalleled effectiveness

in tumor detection and delineation in real-world clinical
Cell Reports Medicine 6, 102032, April 15, 2025 7



Figure 4. Benchmarking SALSA against state-of-the-art models and inter-radiologist metrics

(A) SALSAbenchmarks against the top-performing LiTSmodel for both detecting and delineating liver tumors. Metrics include detection (precision, recall, and F1-

score) and delineation (dice similarity coefficient [DSC] and Jaccard Index [JI]) across the test set using patient-wise and tumor-wise approaches.

(B) Comparison of tumor delineation overlaps. Overlap with ground truth delineations is compared for segmentations by the same radiologist on two occasions

(Rad 1), two independent radiologists (Rad 2 and Rad 3), and the SALSA models (nnU-Net, Vanilla U-Net, and TransUNet), providing a benchmark of model

performance against human experts.

(C) Radiologist preferences for manual versus automated liver tumor delineation. Three expert radiologists (Rad 1, Rad 2, and Rad 3) assessed their preferences

between manual segmentations (performed by an expert radiologist) and automated segmentations (SALSA), with the option to express no preference.

Data are represented as median and interquartile range (IQR) in (A) and (B). See also Tables S5 and S9.
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settings. We have also developed an open-source software

application, accessible for testing at https://radiomics.vhio.

net/salsa/. This tool may facilitate the integration of SALSA
8 Cell Reports Medicine 6, 102032, April 15, 2025
into clinical oncology imaging workflows, significantly

reducing the time required for manual tumor detection and

precise delineation.

https://radiomics.vhio.net/salsa/
https://radiomics.vhio.net/salsa/


Figure 5. Total tumor volume quantification as a prognostic biomarker

Kaplan-Meier curves and log rank test results for overall survival are shown for 141 patients in the test set (A) and 197 patients from the TCIA-CRLM dataset in the

external validation cohort (B). Patients were grouped by thresholding total liver tumor volume, using both ground truth (left) and SALSA-generated volumes (right),

at the median value for each cohort, demonstrating SALSA’s potential for biomarker research.
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In conclusion, SALSA achieves precise and automated iden-

tification and delineation of liver cancer on CT images, facili-

tating more accurate quantification of tumor burden, a critical

factor in cancer prognosis and management, with no prior

manual prompt requirements. Our validation across several

test and external cohorts highlights SALSA’s effectiveness

and reliability, matching, and often surpassing, the accuracy
of expert radiologists. The inclusion of an open-source applica-

tion further underscores its potential for widespread adoption in

clinical routines. SALSA holds the promise of improving cancer

care, enhancing patient outcomes, and increasing the effi-

ciency of healthcare systems by offering more rapid, consis-

tent, and reliable data for clinical trials and decision-making

in clinical practice.
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Limitations of the study
We acknowledge certain limitations in our study. The datasets

considered as ground truth were annotated by expert radiolo-

gists, but with only one rater per scan, potentially introducing la-

bel bias. In our inter- and intra-radiologist variability study, we

demonstrate that our radiologists’ segmentations are subject

to intrinsic manual variability, which is inevitably inherited by

our model. Although this variability represents a limitation that

could be mitigated by using consensus-based annotations, we

chose to retain the original annotations as they were produced

in the original studies and clinical routine to maintain a real-world

context.

This potential limitation may be more pronounced in the seg-

mentation of small lesions, where inter- and intra-observer vari-

ability tends to be greater. Furthermore, tumor segmentation

adhered to RECIST guidelines, which stipulate that lesions under

1 cm in diameter are not segmented as they are considered non-

measurable. This limitation becomes apparent when evaluating

SALSA on the LiTS dataset,12 which includes smaller liver lesions

(median lesion volume of 0.54 mL, corresponding to a radius

smaller than 0.5 cm, under sphericity assumption). In this cohort,

SALSA’s accuracy in detecting the so-called ground truth liver

lesions decreases. However, considering that such small liver le-

sions are often regarded as indeterminate and non-measurable

by RECIST, this raises questions about the true malignant nature

and clinical relevance of all these small tumors.

Moreover, the vast majority of the lesions in the development

cohort were metastatic and hypodense (mean lesion density in-

terquartile range ranging 55.04–84.21 HU) compared to the

background of the non-pathological liver tissue, which markedly

benefited SALSA’s performance in identifying hypodense le-

sions. Conversely, while hyperdense lesions, present in both

the test and external validation datasets, led to poorer perfor-

mance, no similar bias was observed for primary liver cancers.

While acknowledging the limitations related to the manual anno-

tations and variability in tumor types, densities and size, and the

potential for improving SALSA’s performance in small and hy-

perdense liver tumors, the development of SALSA offers a robust

solution for liver tumor detection and volume quantification.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

LiTS Challenge training dataset Bilic et al.12 https://doi.org/10.48550/arXiv.1901.04056

TCIA-CRLM dataset Simpson et al.14 https://doi.org/10.7937/QXK2-QG03

MSD Hepatic Vessels dataset Antonelli et al.13 https://doi.org/10.1038/s41467-022-30695-9

TCIA-HCC-TACE-Seg Moawad et al.15 https://doi.org/10.7937/TCIA.5FNA-0924

Trained model for SALSA (‘‘models’’ folder) This paper; Zenodo; GitHub https://doi.org/10.5281/zenodo.14644657,

https://github.com/radiomicsgroup/liver-SALSA

Software and algorithms

Code for SALSA This paper; Zenodo; GitHub https://doi.org/10.5281/zenodo.14644657,

https://github.com/radiomicsgroup/liver-SALSA

Python v3 Python Software Foundation https://www.python.org/

TotalSegmentator Wasserthal et al.20 https://github.com/wasserth/TotalSegmentator
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study population
This retrospective study included data from cancer patients treated at Vall d’Hebron University Hospital and other centers collabo-

rating with the Vall d’Hebron Institute of Oncology (VHIO). For external validation purposes, data from four open-access, public data-

sets were also collected: the Liver Tumor Segmentation (LiTS) challenge training dataset,12 the Medical Segmentation Decathlon

(MSD)-Hepatic Vessels dataset,13 The Cancer Imaging Archive (TCIA) Colorectal Liver Metastases (CRLM) dataset.14 The total sam-

ple size of the study consisted of 1598 CT scans, accounting for 4908 tumors from 1306 patients.

Anonymized CT scans were obtained retrospectively from digital clinical records at the Vall d’Hebron Institute of Oncology

following approval by VHIO’s Ethics Committee (PR(AG)70/2018, PR(AG)261/2019) and the waiver of informed consent. An anonym-

ization process, which involved removing all metadata linking the CT scans to the corresponding patients from the DICOM files, was

applied to ensure patient privacy.

The set of scans from the VHIO cohorts was divided into a training cohort, consisting of 726 scans, and an in-domain test cohort,

comprising 25%of the cases and totaling 159 scans. The split was defined by identifying those cohorts coming from clinical trials that

were still ongoing at the beginning of the study. As recruitment was not completed or not all the recruited patients’ scans had been

segmented, these cohorts could not be used for training purposes and were defined as the test ones. For this VHIO cohort, the me-

dian overall survival (OS) was 12.16 months, and 60% of the patients had an ECOG grade of 0 or 1. Regarding previous treatments,

therewas considerable heterogeneity in the specific drugs administered, and informationwasmissing for 26%of the patients (155 in-

dividuals). However, when considering the predominant drug mechanisms, immune checkpoint inhibitors were the most common

treatment: a combination of PD-1/anti–PD-1 therapy was administered to 261 patients (44%), while PD-L1 immunotherapy was

used in 125 patients (22.6%), together covering the vast majority of the cohort.

The four open-source datasets were reserved for external validation.

METHOD DETAILS

Image processing
From the development cohort, CT images were evaluated by experienced radiologists using 3D Slicer software, and all liver tumors

larger than 1 cm in diameter were delineated. Tumor segmentations were already available for all open-access validation datasets,

forming a comprehensive and independent dataset of scans and ground truth segmentations. Both the scans and the masks were

converted to NIfTI format to enhance computational performance and ensure format standardization.

Before applying additional transformations to the CT scans, the TotalSegmentator tool20 was used to extract a binary mask label-

ing the liver volume. This mask was preserved for subsequent masking and cropping of the scans.

The Python NiBabel library21 was used to extract a 3D array of voxel intensities in Hounsfield Units (HU) from each CT scan,22 along

with the corresponding voxel sizes, from the NIfTI files. This data was then used to standardize the voxel size of the scans to 13 13

1 mm3 using the Spacingd function available in the MONAI Transforms package.23 This transformation was applied in parallel to the

scans, with bilinear interpolation, and to the binary masks, using nearest neighbor interpolation.
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Non-liver tissue masking and CT scan cropping
To reduce the variability of features that the models need to learn, all non-liver tissue was masked to a constant value. To optimize

computational efficiency, the scans were then cropped around the remaining unmasked signal.

For this purpose, the TotalSegmentator v2 tool20 was applied to the scans before resizing, generating a binary mask labeling the

liver. This mask, along with the lesion segmentation mask and the scan, was resized using nearest neighbor interpolation.

Before using them for masking, the liver masks were dilated using the SciPy Image binary_dilation function.24 The dilation process

was iteratively applied for 15 cycles to ensure that the liver borders were not inadvertently excluded from the data. Subsequently, the

dilated mask underwent pre-processing to ensure it consisted of a single connected component without any internal holes. This step

was implemented using the connected-components-3d Python package,25 retaining only the largest component from both the orig-

inal and inverted masks.

Once pre-processed, the liver mask was used to set the values of all non-liver voxels to �1024 Hounsfield Units (HU), the typical

minimum value in the CT scan range. The resulting array was cropped to remove all regions devoid of liver, retaining only the bound-

ing box surrounding the liver mask with an additional 10-voxel margin. To ensure compatibility with all applied models and reduce

computational costs during training, the cropping process concluded with a padding operation to ensure that each axis had a length

that was a multiple of 64.

Modeling
Neural network architectures

For our study, we selected three frameworks, resulting in a total of seven different architectures. The first choice was a vanilla 3D

U-Net26 obtained from the nnU-Net package,27 serving as our benchmark architecture.27 Additionally, we opted for a TransUNet

2D-transformer18 architecture featuring a field of view of 256x256 pixels, 4 heads, 4 output channels, 8 blocks, a patch dimension

of 16 and an MLP dimension of 512. Finally, our third model was an nnU-Net ensemble,27 which incorporated five distinct, indepen-

dently-trained architectures for comprehensive comparison.

The vanilla U-Net was initialized with weights from a reference project focused on automatic segmentation28 combining FDG-PET

and CT images. To ensure compatibility with our CT-based study, the FDG-PET channel was deleted, retaining only the CT input

channel. TransUNet was initialized using random weights as no available pretrained models were found.

Model training

Both the vanilla U-Net and TransUNet models were trained for over 800 epochs until convergence was observed. The AdamW opti-

mizer29 was used with an initial learning rate of 1e�4 and a weight decay of 1e�4. To adapt the learning rate dynamically, a Step

Learning Rate (LR) scheduler was used, reducing the learning rate by a factor of 1/sqrt(10) every 140 epochs. A combination of Binary

Cross Entropy (BCE) loss and Dice loss30 was used for backpropagation.

The nnU-Net was trained following the default configuration of the authors’ implementation, using BCE and Dice loss function, an

initial learning rate of 1e�2 with a Poly LR scheduler, 100 epochs per fold and SGD optimizer with Nesterov momentum.

Evaluation metrics
The model performance was evaluated for both liver tumor detection and delineation. Moreover, these evaluations were conducted

at both the patient and tumor levels. For per-tumormetrics, it was necessary to establish associations between predicted and ground

truth tumors, accounting for scenarios where each predicted tumor could be linked to none, one, or multiple ground truth tumors, and

vice versa. This tumor association challenge was addressed by treating it as a graph partitioning problem.

Lesion association
Lesion association was accomplished through the utilization of themax-flow/min-cut graph theory algorithm.31 To compare segmen-

tations, we transformed them into a graph for each pair of predicted and ground truth masks, where nodes represented segmented

lesions and edges represented their overlap.

Initially, all lesions were identified using a 3D connected components algorithm.25 Subsequently, all components from each seg-

mentation were paired with those from the other. For each overlapping pair, the Jaccard Index32 was computed to measure their

similarity and degree of overlap, constituting the edges of a weighted graph.

Each graph was first analyzed to identify all sub-graphs that constituted isolated components. Components consisting of a single

isolated vertex from a ground truth lesion were categorized as undetected lesions. Conversely, components with a single vertex from

the segmentationwere classified as incorrect detections. Components containing one lesion from each segmentation were classified

as true positives. Similarly, those containing only a single edge from either of the two segmentations, with several from the other, were

classified as instances where a single lesion was detected as multiple or vice versa. In such cases, the ground truth lesions involved

were considered true positives.

Finally, components containing more than one lesion from each segmentation were regarded as complex sub-graphs that needed

to be divided into simpler components as described earlier. To achieve this, the well-known max-flow/min-cut graph theory algo-

rithm31 was used, designating two random vertices, chosen from the segmentation with fewer lesions involved in the component,

as the source and sink vertices. For those components where both segmentations hadmore than two lesions involved, the described

process was applied iteratively until the component was properly divided.
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Once all the components had been processed, the sets of lesions involved from each segmentation were combined into a single

lesion per segmentation. Hence, considering only 0-to-1, 1-to-0 and 1-to-1 correspondences thereafter.

Detection evaluation
For the evaluation of tumor detection performance confusion matrices, precision, recall and F1 Score33 metrics were employed. In

the per-scan approach, the ground truth data was compared with the model predictions, classifying each case as true positive, false

positive, true negative, or false negative based on the presence or absence of lesions in both the ground truth and the model pre-

diction, regardless of the lesion location and individual detection.

To perform a per-lesion evaluation, we utilized the graph-based previously described lesion association method. This approach

allowed us to associate each lesion from the predicted segmentations with either nothing, a tumor, or a set of tumors from the ground

truth segmentation and vice-versa. Each ground truth tumor was counted as a true positive or false negative depending on whether it

was associated with a predicted lesion or a set of predicted lesions. Conversely, all model-predicted lesions that were not associated

with any ground truth lesion were considered false positives.

Delineation evaluation
The evaluation of liver tumor delineation performance was conducted using multiple, well-established metrics, both on a per-patient

and per-lesion basis.

On a per-scan basis, the Dice Similarity Coefficient (DSC) and Jaccard Index (JI) were applied to compare the predicted and

ground truthmasks. Thesemetrics were calculated by applying the corresponding functions to the binary delineatedmasks, allowing

for the assessment of the overall tumor delineation quality for each scan.

To evaluate the delineation quality at the per-lesion level, the graph-based previously described lesion association method. Sub-

sequently, DSC and JI were computed for each pair of associated ground truth and predicted lesions or sets of lesions. This

approach enabled the accurate gauging of delineation precision for individual lesions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed to compare: (i) patient age, number of tumors, individual tumor volume and total tumor volume dis-

tribution between development and test sets of each tumor type (unpaired two-sample Wilcoxon test, after a Shapiro-Wilk normality

test); (ii) patient gender distribution and liver cancer origin, either primary or metastatic, between development and test sets

(Chi-squared test). Relations are shown in Table 1. Statistical significance was considered for p < 0.05. Variable names and abbre-

viations are explained in each figure or table legend, numbers in tables are explained in the heading of each column.

Impact of tumor size and slice thickness on SALSA’s segmentation performance
To assess the impact of the tumor volume and the slice thickness, the ground truth volumes were divided in groups and significance

for distribution equality was calculated by performing independent two-sample t-tests, both among the produced groups and the test

and external validation cohorts. Later, the p-valueswere adjusted using the Bonferroni correction. The results of these statistical tests

are summarized in Figures 2E and S2B, and Tables S6 and S7.

Inter- and intra-radiologist variability study
An additional sub-study was designed to evaluate intra- and inter-radiologist tumor delineation variability, using 25 randomly

selected cases from the development cohort assessed by three experienced radiologists. Radiologist 1, who has over 15 years of

experience in oncological imaging, was responsible for delineating the ground truth segmentations. This radiologist evaluated the

CT scans twice, with an interval of more than three months between assessments, to facilitate intra-radiologist variability studies.

Radiologists 2 and 3, with 15 and 5 years of experience respectively, who were blinded to the ground truth delineations, also eval-

uated the CT scans to allow for inter-radiologist evaluation.

The radiologists independently segmented the cases without access to the ground truth segmentations. We then computed the

previously described evaluationmetrics by comparing the resulting segmentations with the ground truthmasks from our dataset. The

results of this evaluation were compared with those of the selected SALSA model to assess both human and machine performance.

Prognostic value of tumor burden study
Clinical outcome data from the development, test, and TCIA datasets were collected in the form of overall survival (OS). This data

allowed us to explore the potential of tumor burden as a prognostic biomarker in cancer patients.

Tumor volume was categorized into two classes using the median value obtained from all the scans in the training cohort as a

threshold. These two groups were then used to explore differences in patient survival through Kaplan-Meier charts. Log rank tests

were conducted to assess differences in mean OS. This procedure was applied to both the tumor burden values extracted from the

model-predicted segmentations and the ground truth segmentations.

To evaluate the effectiveness of both the radiologist and model-powered criteria, the Kaplan-Meier charts were compared by

examining the statistical test p-values associated with each.
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Radiologist feedback on the preferred delineation mask: SALSA vs. ground truth
To collect feedback from expert radiologists on the SALSA segmentations, an easy-to-use web interface app was developed using

the Streamlit Python library for blinded delineation comparison. For each scan, both the ground truth and the model-predicted delin-

eation masks were displayed on the liver scan, using random colors for distinction.

Three expert radiologists were asked to evaluate a subset of cases from both the test and external validation sets. They reported

which delineation masks they considered more accurate or indicated that both masks were equally good if no specific preference

was evident. The frequency of each of the three choices, including opting for no preference, was then recorded and a descriptive

analysis of the preferences was performed (Figure 4C).
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