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Abstract

Sprumont (1990) introduces Population Monotonic Allocation Schemes (PMAS)
and proves that every assignment game with at least two sellers and two buyers,
where each buyer-seller pair derives a positive gain from trade, lacks a PMAS. In
particular glove games lacks PMAS. We propose a new cooperative TU-game con-
cept, Population Lorenz-Monotonic Allocation Schemes (PLMAS), which relaxes
some population monotonicity conditions by requiring that the payoff vector of
any coalition is Lorenz dominated by the corresponding restricted payoff vector
of larger coalitions. We show that every TU-game having a PLMAS is totally
balanced, but the converse is not true in general. We obtain a class of games hav-
ing a PLMAS, but no PMAS in general. Furthermore, we prove the existence of
PLMAS for every glove game and for every assignment game with at most five
players.
Additionally, we also introduce two new notions, PLMAS-extendability and
PLMAS-exactness, and discuss their relationships with the convexity of the game.
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1 Introduction

Cooperation is not without conflict. This tension results from the negotiation process
on how to share the collective earnings. In some cases, cooperation is enforced; that is,
economic gains are only achieved when all of us cooperate. The construction and main-
tenance of public goods generally require the cooperation of many economic agents.
These situations represent instances where cooperation is not a choice but a necessity,
as the achievement of societal goals relies on it. In other cases, cooperation may be
voluntary and agents increase their benefits simply by cooperating. For instance, this
is the case when several agents jointly invest their funds, getting a higher yield the
larger is the amount invested. In such instances, cooperation becomes a mutually ben-
eficial strategy, where individuals recognize that their collective efforts yield greater
rewards, aligning their individual interests with the broader societal benefit.

In this study, we examine a society represented as a coalition of n individuals
engaged in a cooperative problem. To model this scenario, we employ a cooperative
game with transferable utility and its characteristic function, which delineates the
gains of the entire society and the potential gains of subcoalitions of individuals. The
central issue is how to distribute the overall gain among the n agents.

In some societies, social equity is considered a desirable goal and a social value
in itself. At this point, individual interests, where maximizing personal earnings
is paramount, may enter into conflict with the societal objective of promoting an
equitable distribution. How to reconcile these two contrasting positions?

Consider, for example, an egalitarian and equitable extreme distribution, such
as the equal division of gains. From an egalitarian perspective, there is no better
distribution. However, from the cooperation standpoint, this distribution may conflict
with the individual or coalitional interests that would require a distribution within
the core of the cooperative game associated.

At this point, let us remark that each individual may have their own interpretation
of the egalitarian concept. Within the context of cooperative game theory, various
solutions related to egalitarianism have already been proposed: the equal division core
(Selten, 1972), the constrained egalitarian solution (Dutta and Ray, 1989), the strong
constrained egalitarian solution (Dutta and Ray, 1991), the stable egalitarian set (Arin
and Iñarra, 2001 and 2002), and the split-off set (Branzei et al., 2006).

A standard way to compare distributions that allocate the same total amount
(with same efficiency) among agents, and assess their quality concerning the equality
of their payoffs, is to use the Lorenz criterion ( Lorenz, 1905). For our purposes, one
allocation of gains Lorenz dominates another one when, upon arranging the payoffs
to agents from smallest to largest, the cumulative sums in the first allocation exceed
those in the second. The Lorenz criterion, or Lorenz dominance, has been used in
various economic contexts to provide some justification for certain distributions over
others. As a result, there is a vast body of literature on the application of Lorenz
dominance: in bankruptcy problems (see Miras et al., 2023; Thomson, 2019 and 2012;
Bosmans and Lauwers, 2011), in taxation analysis (see Ju and Moreno-Ternero, 2008;
Moreno-Ternero and Villar, 2006; Mitra and Ok,1997; Eichorn et al., 1984; Jakobsson,
1976), and in general cooperative games (see Sánchez-Soriano et al., 2010; and Arin
and Feltkamp, 2002). Furthermore, experiments have been carried out with the result

2



that agents prefer allocations where payoffs between agents do no differ too much,
reinforcing from a positive point of view egalitarian criteria (see Traub et al., 2003).
In this line, we can quote Moulin (1988), page 24:

Experimental evidence strongly supports egalitarianism when utilities are per-
ceived as representing objective needs; see Yaari and Bar-Hillel (1984), where
utilities are measured by the amount of certain vitamins metabolized by the
agents. When utilities represent different tastes, the experimental outcome is
much less easy to read.

The Lorenz domination has been extended and used to compare vectors with dif-
ferent efficiency. In Moulin (1988, p. 48), Arin and Feltkamp1 (2002) or Marshall2 et
al. (2011), an allocation of gains Lorenz dominates another one with smaller efficiency
when, upon arranging the payoffs to agents from smallest to largest, the cumulative
sums in the first allocation exceed those in the second. This way, Lorenz domination
can be interpreted as a social welfare ordering that compares two allocation vectors
with different efficiency where the more preferred vector correspond to a society with
a larger welfare, e.g. see Endriss et al. (2006).

Within the context of cooperatives games, Sprumont (1990) introduces Population
Monotonic Allocation Schemes (PMAS). An allocation scheme proposes an allocation
for each subcoalition of agents. These allocations serve to justify the final allocation
for the whole society showing that the more agents join a coalition (and thus the
population grows) the larger can be the payoffs to agents. As a consequence of the
definition of a PMAS, it is evident that not only individual payoffs, but social welfare of
any subgroup of agents increases, leading to an allocation in the core of the associated
cooperative game. However, not for all games with a non-empty core we can describe
such an allocation scheme. For instance, as Sprumont remarks, an assignment game
with at least two sellers and two buyers, where each buyer-seller pair derives a positive
gain from trade, lacks a PMAS.

In this paper we propose a new cooperative TU-game concept, namely Popula-
tion Lorenz-Monotonic Allocation Scheme (PLMAS). This concept encompasses the
concept of PMAS and proposes an allocation scheme such that if new agents join a
coalition the initial group of agents becomes socially better (in the Lorenz sense). As
we have commented, societal interests may enter in conflict with individual or coali-
tional interests. However, a non-negligible consequence of adopting a PLMAS is that
the final allocation proposed for the whole society turns out to be an allocation in
the core of the game. This way PLMAS could be interpreted as a method to select a
Pareto efficient allocation in the core of the game.

The remainder of the paper is organized as follows. In Section 2, we define the main
concepts of cooperative games. In Section 3, we introduce the concept of PLMAS and
Lorenz-monotonic core (the set of all the PLMAS). We show that this set can be dis-
crete, and thus a non-convex set (see Example 1), which makes it different from the

1For a formal definition, see page 872.
2In this compilation book, the extended Lorenz relationship is named weak-majorization. See page 12,

definition A.2.
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case of PMAS. In Proposition 1, we point out that a PMAS can be reinterpreted as a
PLMAS, and thus the individual incentive point of view makes the allocation compati-
ble with the social point of view. However, the converse is not true. In fact, in Example
4, we exhibit a four-person game with PLMAS, but without PMAS, demonstrating
that there are cases where the social point of view is appropriate to justify alloca-
tions. Indeed, in Theorem 1, we introduce a sufficient condition for having PLMAS
that includes games with no PMAS. In Theorem 2, we discuss the case of glove games,
a particular case of assignment games, and show that even though they do not have
PMAS, any core allocation can be supported by a PLMAS.

In Section 4, we discuss concepts related to PLMAS. We state that convex games
are PLMAS-extendable (Theorem 3) and are the unique class of games that are
PLMAS-exact (Theorem 4). In Section 5 we conclude.

2 Notations

A cooperative game with transferable utility (a game) is a pair (N, v) (in short v),
where N = {1, 2, · · · , n} is a finite set of players and v : 2N → R is the characteristic
function with v(∅) = 0. A subset S of N , S ∈ 2N , is a coalition of players,|S| denotes
its cardinality, and v(S) is interpreted as the worth of coalition S. We denote by
P (N) = {S ⊆ N | S ̸= ∅} the set of nonempty coalitions of N . Given S ∈ P (N), we
denote by (S, vS) the subgame of (N, v) related to coalition S (i.e. vS (R) = v (R) for
all R ⊆ S).

A payoff allocation is a vector z = (zi)i∈N ∈ RN , where zi is the payoff to player i,
and for S ∈ P (N) we write z (S) =

∑
i∈S

zi , z(∅) = 0 and z|S = (zi)i∈S . The core of a

game (N, v) is the set C (N, v) =
{
z ∈ RN | z(N) = v(N), z (S) ≥ v (S)∀S ∈ P (N)

}
.

A game (N, v) is balanced if it has a nonempty core, it is totally balanced if the
subgame (S, vS) is balanced for all S ∈ P (N), and it is convex (Shapley, 1971) if
v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N .

A Population Monotonic Allocation Scheme (PMAS) of a game (N, v) (Sprumont,
1990) is a vector x =

(
xS

)
S∈P (N)

, where xS =
(
xS
i

)
i∈S

∈ RS , that satisfies the

following conditions:

(i) Efficiency in each coalition:
∑
i∈S

xS
i = v(S) for all S ∈ P (N).

(ii) Monotonicity: xS ≤ xT
∣∣
S
( xS

i ≤ xT
i for all i ∈ S) for all S, T ∈ P (N), S ⊆ T .

We also use the notation x =
(
xS
i

)
S∈P (N), i∈S

to describe a PMAS. The above defi-

nition implies that a PMAS x selects a core allocation xS =
(
xS
i

)
i∈S

∈ C (S, vS) for

every subgame (S, vS) in such a way that the payoff to any player cannot decrease
when the coalition to which he/she belongs becomes larger. Thus every game having
a PMAS is totally balanced. Sprumont shows that all convex games have a PMAS.

The monotonic core of a game v ∈ GN , denoted by MC(N, v), is the set of all
its PMAS (Moulin, 1990). This set always coincides with the core of a certain game
associated to the initial game (Getán et al., 2009).
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PMAS-extendability
A balanced game (N, v) is core-extendable (Kikuta and Shapley, 1986) when for every
S ∈ P (N) and y ∈ C (S, vS) there exists z ∈ C(N, v) such that zi = yi for all i ∈ S.
Each convex game is core-extendable, but the converse is not necessarily true (Sharkey,
1982; Kikuta and Shapley, 1986).

A game (N, v) is PMAS-extendable (Getán et al., 2014) if for every S ∈ P (N) and
for every y =

(
yR

)
R∈P (S)

∈ MC (S, vS) there exists x =
(
xR

)
R∈P (N)

∈ MC(N, v)

such that yR = xR for all R ∈ P (S). Notice that every PMAS-extendable game has at
least one PMAS. Moreover, we know that a game (N, v) is convex if and only if it is
PMAS-extendable (Getán et al., 2014). In particular, every PMAS-extendable game
is core-extendable.

PMAS-exactness
A game (N, v) is called exact (Schmeidler, 1972) if for every S ∈ P (N) there exists
z ∈ C(N, v) with z(S) = v(S). It is evident that all exact games are totally balanced.
Additionally, it is easy to observe that every convex game is exact. However, in general,
the converse statement does not hold.

A game (N, v) is PMAS-exact (Getán et al., 2014) when for every S ∈ P (N) there
exists x = (xR)R∈P (N) ∈ MC(N, v) such that xN (S) = v (S). It is important to note
that every PMAS-exact game is also exact, and any subgame of a PMAS-exact game
is also PMAS-exact. Moreover, it is known that a game (N, v) is convex if and only if
it is PMAS-exact (Getán et al., 2014).

Lorenz domination
A standard of fairness is the one provided by the Lorenz domination criterion
(Lorenz, 1905). To define it, consider a fixed population of individuals denoted as
N = {1, 2, . . . , n}. Given a vector x = (x1, · · · , xn) ∈ RN , we can interpret xi as
the income of individual i ∈ N and we can order the individuals from the poorest
to the richest to obtain x(1) ≤ . . . ≤ x(n). Now, given x = (x1, . . . , xn) ∈ RN and
y = (y1, . . . , yn) ∈ RN , we say that y weakly Lorenz dominates x, and we denote it by
x ≼L y or by y ≽L x, if:

x(1) ≤ y(1),
x(1) + x(2) ≤ y(1) + y(2),

· · · · · · · · ·
x(1) + x(2) + · · ·+ x(n) ≤ y(1) + y(2) + · · ·+ y(n).

An equivalent way to express the Lorenz domination criterion is by means of a
function φ : RN→Rn (n = |N |), defined as follows. Let x ∈ RN and 1 ≤ k ≤ n, then
we define the function φk(x) as

φk(x) = min {x(S)|S ⊆ N and |S| = k} = x(1) + · · ·+ x(k).

For x, y ∈ RN , we have that x ≼L y if φk(x) ≤ φk(y) for all k = 1, . . . , n. It is said
that y Lorenz dominates x, denoted by x ≺L y, if x ≼L y and φ(x) ̸= φ(y) (i.e.
φk(x) ̸= φk(y) for some k = 1, . . . , n).
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The relation ≼L is a preorder on RN but not a partial order, as it satisfies the
following properties:

(i) Reflexivity: x ≼L x for all x ∈ RN .
(ii) Transitivity: For x, y, z ∈ RN with x ≼L y and y ≼L z we have x ≼L z.
(iii) Non anti symmetry3: For x, y ∈ RN we have

x ≼L y and y ≼L x
⇐⇒ x(k) = y(k) for all k = 1, . . . , n
⇐⇒ x = yΠ for some permutation matrix Π.

However, the relation ≼L is a partial order on the commutative monoid D ={
x = (x1, · · · , xn) ∈ RN | x1 ≤ . . . ≤ xn

}
. Moreover, ≼L is compatible with the sum

”+” of D:
x ≼L y =⇒ x+ z ≼L y + z for all x, y, z ∈ D.

Notice that for x, y ∈ RN we have the implications:

x ≤ y ⇒ x ≼L y ⇒ x(N) ≤ y(N) (1)

where x ≤ y means xi ≤ yi for all i ∈ N . Moreover, notice that the egalitarian
allocation α :=

(
ν
n , . . . ,

ν
n

)
∈ RN , where ν ∈ R, satisfies

α ≽L x for all x ∈ RN with x(N) = ν; (2)

in others words, the egalitarian allocation α =
(
ν
n , . . . ,

ν
n

)
∈ RN Lorenz dominates

any efficient allocation x ∈ RN with x(N) = ν.

3 Population Lorenz-Monotonic Allocation Schemes

In this section, we use the Lorenz domination criterion to introduce a new concept for
a cooperative game. This concept aims to mimic and generalize the notion of PMAS.

Definition 1. Let (N, v) be a cooperative game. We say that a vector x =
(
xS

)
S∈P (N)

,

where each xS =
(
xS
i

)
i∈S

∈ RS, is a Population Lorenz-Monotonic Allocation Scheme

(PLMAS) if it satisfies the following conditions:

(i) Efficiency in each coalition: for all S ∈ P (N),
∑
i∈S

xS
i = v(S).

(ii) Lorenz-monotonicity: for all S, T ∈ P (N), S ⊆ T ,

xS ≼L xT
∣∣
S
(i.e. φk

(
xS

)
≤ φk

(
xT

∣∣
S

)
for all k = 1, · · · , s).

Notice that, by (1), the Lorenz-monotonicity condition relaxes the monotonicity
condition of Sprumont. After providing the definition of PLMAS, we present several
results regarding PLMAS for general cooperative games.

3A square matrix Π is said to be a permutation matrix if each row and column has a single unit entry,
and all other entries are zero (Marshall et al., 2011)
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The set of PLMAS of the game (N, v) is denoted by

LMC(N, v) = {x | x is a PLMAS of (N, v)},

and its projection to RN is denoted by

LMCN (N, v) =
{
xN | x =

(
xS

)
S∈P (N)

∈ LMC(N, v)
}
.

Notice that the set LMC(N, v) is compact, but is not convex in general, as illustrated
in the following example where the LMC(N, v) is a discrete set. This is a significant
difference between PLMAS and PMAS, which makes it difficult to state a general
existence theorem for PLMAS.

Example 1. Consider the three-player game (N, v) defined by:

v(S) =

{
1 if S = {1, 2}, {1, 3} or N,
0 otherwise,

for all S ⊆ N . Then |LMC(N, v)| = 4, since any x ∈ LMC(N, v) can be described as
follows:

xN = (1, 0, 0);
x{1,2} = (1, 0) or (0, 1), x{1,3} = (1, 0) or (0, 1);
x{2,3} = (0, 0);
x{i} = (0) for all i ∈ N.

The four previous possibilities give rise to all PLMAS of (N, v).

We collect some basic facts about PLMAS in the following proposition. Proofs are
left to the reader.

Proposition 1. Let (N, v) be a cooperative game.

(a) If x =
(
xS

)
S∈P (N)

is a PLMAS of (N, v), then xS ∈ C(S, vS) for all S ∈ P (N).

In particular, LMCN (N, v) ⊆ C(N, v).
(b) Every PMAS of (N, v) is also a PLMAS, i.e. MC(N, v) ⊆ LMC(N, v).
(c) If (N, v) has a PLMAS and (N, v′) is a game satisfying v′(S) = v(S) for all

S ⊆ N,S ̸= N and v′(N) ≥ v(N), then (N, v′) also has a PLMAS.

Part (a) in Proposition 1 states that all cooperative games having a PLMAS are
totally balanced. However, it is not true that all totally balanced games have a PLMAS,
as shown in the following example. Since every three-player totally balanced game has
a PMAS (Sprumont, 1990), we need to consider games with at least four players.

Example 2. Fix a real number a ≥ 6, and consider the four-player game (N, v)
defined by:
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v(N) = a,
v(134) = v(234) = 2, v(123) = 3, v(124) = a,
v(14) = v(24) = 0,
v(12) = v(13) = v(23) = v(34) = 2,
v(i) = 0 for all i ∈ N.

It is straightforward to see that this game is totally balanced. Its core is

C(N, v) = {(α, β, 0, a− α− β) | α, β ≥ 2 and α+ β ≤ a− 2} .

Additionally, we have C (R, vR) = {(1, 1, 1)} for R = {1, 2, 3}. Moreover, (N, v) lacks
a PLMAS. To see this, suppose to the contrary that x = (xS)S∈P (N) is a PLMAS of
(N, v). By part (a) in Proposition 1, we know that xN ∈ C(N, v), xR ∈ C(R, vR), for
R = {1, 2, 3}. Therefore, we obtain

(1, 1, 1) = xR ≼L xN
∣∣
R
= (α, β, 0) for some α, β ≥ 2.

This leads to a contradiction since 1 = φ1(x
R) ≤ φ1

(
xN

∣∣
R

)
= 0.

Note that for the game (N, v) in Example 2 every game (N, v′) such that v′(S) = v(S)
for all S ⊆ N , S ̸= N , and v′(N) ≥ v(N) lacks a PMAS, as v(123) + v(134) <
v(12)+ v(13)+ v(34) (Norde and Reijnierse, 2002). However, if we take v′(N) ≥ 4

3a it
can be shown that (N, v′) has a PLMAS. In fact, we can state a more general result
for totally balanced four-player games.

Proposition 2. Let (N, v) be a totally balanced four-player game. Then there exists
a real number ν′ ≥ v(N) such that the game (N, v′) defined by v′(S) = v(S) for all
S ⊆ N,S ̸= N and v′(N) = ν′, has a PLMAS.

Proof. Take ν′ ∈ R such that ν′ ≥ max
{

4v(S)
|S| | S ∈ P (N)

}
. Then, it is straightfor-

ward that the egalitarian allocation αv′
=

(
ν′

4 ,
ν′

4 ,
ν′

4 ,
ν′

4

)
is in the core of (N, v′),

i.e. αv′ ∈ C(N, v′). Hence, define the vector x = (xS)S∈P (N) satisfying the following
properties:

xN = αv′
,

xS ∈ C(S, vS) for all S ∈ P (N) with |S| = 3,
x{i,j} = (v(i), v(ij)− v(i))

for all i, j ∈ N with i < j and v(i) ≤ v(j),
x{i,j} = (v(ij)− v(j), v(j))

for all i, j ∈ N with i < j and v(i) > v(j), and
x{i} = (v(i)) for all i ∈ N.

Notice that the vector xS is fixed for all S ∈ P (N) with |S| = 4, 2 or 1, while xS is an
arbitrary core allocation of the subgame (S, vS) for all S ∈ P (N) with |S| = 3. We
next prove that x ∈ LMC(N, v′). Indeed, it is clear that x satisfies efficiency in each
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coalition, xS(S) = v(S) for all S ∈ P (N). Given a coalition S ∈ P (N), S ̸= N , we
have

xS ≼L

(
v(S)

s
, (s). . . . . .,

v(S)

s

)
since xS(S) = v(S) and (2). On the other hand, we have(

v(S)

s
, (s). . . . . .,

v(S)

s

)
≼L

(
ν′

4
, (s). . . . . .,

ν′

4

)
= xN

∣∣
S

by the choice of parameter ν′. Hence, xS ≼L xN
∣∣
S
. Now, given two coalitions S, T ∈

P (N) with S ⊆ T , S ̸= T and T ̸= N , it is clear that xS ≼L xT
∣∣
S
. Therefore, we

conclude x is a PLMAS of (N, v′).

We remark that the previous proposition is not valid in the case of games with five
or more players as the following example shows.

Example 3. We consider the extension of the four-player game (N, v) given in Exam-
ple 2 to a game (M,w), where M = N ∪ N ′, N ′ ̸= ∅ and N ∩ N ′ = ∅, defined
by

w(S ∪ S′) := v(S) for all S ⊆ N,S′ ⊆ N ′.

Then it is clear that the game (M,w) is totally balanced with m ≥ 5 players, and every
game (M,w′) such that w′(T ) = w(T ) for all T ⊆ M , T ̸= M , and w′(M) ≥ w(M)
lacks a PLMAS, since as we have seen in Example 2 the subgame (N, v) lacks a
PLMAS.

Now we introduce a class of games having PLMAS, but not PMAS in general as
Example 4 illustrates.

Definition 2. A zero-normalized game (N, v) (i.e. v(i) = 0 for all i ∈ N) is a
leadership game if it satisfies the following properties:

(i) v(S)
s ≤ v(N)

n for all S ∈ P (N).
(ii) There exists a family {iT }T∈P (N),T ̸=N , with each iT ∈ T , such that:

v(T )

t− 1
≥


v(S)
s−1 if s > 1 and iT ∈ S,

v(S)
s if s = 1 or iT /∈ S,

for all S, T ∈ P (N) with S ⊆ T , S ̸= T and T ̸= N .

We can interpret these games as follows. Consider a game (N, v) and a coalition
of players T ⊆ N , where one specific player, denoted as iT , assumes the role of the
leader within the group. Player iT contributes a unique set of assets, including know-
how, capital, networking contacts, and prestige, while also organizing the collaborative
efforts of the remaining members. The remaining group members contribute symmet-
rically through their work efforts. To establish a structured framework, we impose the
following conditions:
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(i) The equal distribution of the total output should be a core allocation of the game.
(ii) The productivity of each worker diminishes as the workforce size decreases and

the leader stays in the coalition, i.e. v(T )
t−1 ≥ v(S)

s−1 . On the other hand, if some group
of workers S ⊆ T opt to leave the group, the per capita value they could generate

by working elsewhere as a collective, v(S)
s , is lower than the productivity they achieve

under the leadership of iT .

Theorem 1. Let (N, v) be a leadership game. Then (N, v) has a PLMAS.

Proof. First, notice that, by hypothesis, v(S) ≥ 0 for all S ∈ P (N). Then, define the
vector x =

(
xS

)
S∈P (N)

as follows:

xN
i = v(N)

n for all i ∈ N ;

xS
i =

{
v(S)
s−1 if i ̸= iS ,

0 if i = iS ,

for all S ∈ P (N), S ̸= N, i ∈ S. We next prove that x ∈ LMC(N, v). Indeed, it is
clear that x satisfies efficiency in each coalition. By part (a) of Lemma 1 below and
property (i) we have that for each S ∈ P (N), S ̸= N and |S| ≥ 2 (case |S| = 1 is
trivial), it holds:

xS =

(
v(S)

s− 1
, . . . ,

v(S)

s− 1
, 0

)
≼L

(
v(N)

n
, . . . ,

v(N)

n

)
= xN

∣∣
S
.

Now, given two coalitions S, T ∈ P (N) with S ⊆ T , S ̸= T and T ̸= N , we want
to argue that xS ≼L xT

∣∣
S
. If s = 1, it is clear since xS = (0). If s > 1 and iT /∈ S,

then, by part (a) of Lemma 1 below and property (ii) we have:

xS =

(
v(S)

s− 1
, . . . ,

v(S)

s− 1
, 0

)
≼L

(
v(T )

t− 1
, . . . ,

v(T )

t− 1

)
= xT

∣∣
S
.

Finally, if s > 1 and iT ∈ S, by part (b) of Lemma 1 below and property (ii), we have:

xS =

(
v(S)

s− 1
, . . . ,

v(S)

s− 1
, 0

)
≼L

(
v(T )

t− 1
, . . . ,

v(T )

t− 1
, 0

)
= xT

∣∣
S
.

Hence, we conclude x is a PLMAS of (N, v).

Lemma 1. Let ν, ν′ ∈ R+ and s ≥ 1 an integer. Then:

(a) (ν′, . . . , ν′, 0) ≼L (ν, . . . , ν) (in Rs) if and only if (s− 1)ν′ ≤ sν.
(b) (ν′, . . . , ν′, 0) ≼L (ν, . . . , ν, 0) (in Rs) if and only if s = 1 or ν′ ≤ ν.
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Proof. (a) Let z := (ν, . . . , ν) and let z′ := (ν′, . . . , ν′, 0) ∈ RS . Then we have:

z′ ≼L z ⇐⇒ φk(z
′) ≤ φk(z) for all k = 1, . . . , s

⇐⇒ (k − 1)ν′ ≤ kν for all k = 1, . . . , s
⇐⇒ (1− (1/k))ν′ ≤ ν for all k = 1, . . . , s
⇐⇒ max{(1− (1/k))ν′ | k = 1, . . . , s} ≤ ν
⇐⇒ (1− (1/s))ν′ ≤ ν.

(b) This part is straightforward.

In general, a leadership game does not have a PMAS, as the following example
illustrates.

Example 4. Fix a, b, c ∈ R such that 2 ≤ a ≤ b ≤ c, and consider the four-player
game (N, v) defined by:

v(N) = 4c,
v(123) = 2b, v(124) = v(234) = 3c, v(134) = a,
v(12) = 2b, v(13) = a,
v(14) = v(23) = v(24) = 0, v(34) = 1,
v(i) = 0 for all i ∈ N.

Then (N, v) is a leadership game since it is straightforward to check that this game
satisfies properties (i) and (ii) of Definition 2 (taking iT := max{i | i ∈ T} for
all T ∈ P (N), T ̸= N), and thus by Theorem 1 the game has a PLMAS. However,
this game lacks a PMAS since v(123) + v(134) < v(12) + v(13) + v(34) (Norde and
Reijnierse, 2002).

In the next theorem we demonstrate the existence of PLMAS for every glove game
(Shapley, 1959). In fact, we show that every core allocation in a glove game can be
reached by a PLMAS.

Theorem 2. Let (N, v) be the glove game with respect to the disjoints sets L and R
(i.e. N = L∪R,L ̸= ∅, R ̸= ∅ and let v(S) := min{|S∩L|, |S∩R|} for all S ∈ P (N)).
Then LMCN (N, v) = C(N, v). In particular, any glove game has a PLMAS.

Proof. We write y = (y|S∩L ; y|S∩R) for all S ∈ P (N) and y = (yi)i∈S ∈ RS . Without
loss of generality, let us suppose that |L| ≤ |R| and let z ∈ C(N, v). We next prove
that there exists x =

(
xS

)
S∈P (N)

∈ LMC(N, v) such that xN = z. To this aim, for

every S ∈ P (N) we denote lS = |S ∩ L| and rS = |S ∩R|. Then, define xS as follows:

xS =


z if S = N,

(0, (s). . . . . ., 0) if S ⊆ L or S ⊆ R,

(1, (ls). . . . . ., 1; 0, (rs). . . . . ., 0) if S ̸= N and 1 ≤ lS ≤ rS ,

(0, (ls). . . . . ., 0; 1, (rs). . . . . ., 1) if 1 ≤ rS < lS .
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Notice that xN = z and xS ∈ C(S, vS) for all S ∈ P (N), Thus, x =
(
xS

)
S∈P (N)

satisfies efficiency in each coalition.
To prove that x is a PLMAS of (N, v), it remains only to check the Lorenz

monotonocity of x. Let S, T ∈ P (N) be two coalitions such that S ⊆ T, S ̸= T . We
claim that xS ≼L xT

∣∣
S
. Indeed, to prove it, we need to differentiate between several

cases based on the previous definition of xS :

Case 1. If S ⊆ L or S ⊆ R, then it is straightforward since xS = (0, (s). . . . . ., 0).

Case 2. If T = N and l = |L| < r = |R|, then z = (1, (l). . . . . ., 1; 0, (r). . . . . ., 0) and
xS ≼L z|S since the number of components equal to 1 in xS is at most the number of
components equal to 1 in z|S , which is equal to ls.

Case 3. If T = N and l = |L| = r = |R|, then z = (λ, (l). . . . . ., λ; 1 − λ, (r). . . . . ., 1 − λ)
for some 0 ≤ λ ≤ 1 and we must see that xS ≼L z|S . Suppose that 1 ≤ lS ≤
rS (the other case lS > rS ≥ 1 is similar and it is left to the reader), and thus

xS = (1, (ls). . . . . ., 1; 0, (rs). . . . . ., 0). For k = 1, ..., rS , we have φk

(
xS

)
= 0 ≤ φk (z|S). For

k = rS + 1, ..., rS + lS = s, we have φk

(
xS

)
= k − rS ≤ φk (z|S) since φk (z|S) =

(k − rS)λ + rS(1 − λ) when λ ≥ 1/2, and φk (z|S) = lSλ + (k − lS) (1 − λ) when
λ ≤ 1/2.

Case 4. If T ̸= N , S ∩ L ̸= ∅ and S ∩ R ̸= ∅, then xS ≼L xT
∣∣
S
, as the number of

components equal to 1 in xS is at most the number of components equal to 1 in xT
∣∣
S

since S ⊆ T .

Next we show the existence of PLMAS for every assignment game (Shapley and
Shubik, 1971) with at most five players.

The player set is N = M ∪ M ′ where M,M ′ are two disjoints finite sets with
respective cardinality m,m′ ≥ 1, named set of buyers and set of sellers respectively;
so n = m+m′. Given a matrix A = (aij)i∈M,j∈M ′ ∈ Mm×m′(R+), where each entry of
the matrix aij ≥ 0, we can associate a cooperative game (N,wA), named assignment
game defined by the matrix A, defining the worth of any coalition S ∪ S′ ⊆ N , with
S ⊆ M and S′ ⊆ M ′, by:

wA(S ∪ S′) = max

 ∑
(i,j)∈µ

aij | µ ∈ M(S, S′)

 ,

where M(S, S′) is the set of all matchings µ between S and S′; i.e. µ ⊆ S × S′ is
a bijection from S0 ⊆ S to S′

0 ⊆ S′ such that |S0| = |S′
0| = min{s, s′}. A matching

µ ∈ M(M,M ′) is optimal w.r.t. the matrix A when it satisfies∑
(i,j)∈µ

aij ≥
∑

(i,j)∈µ′

aij for all µ′ ∈ M(M,M ′).

We denote by M∗
A the set of optimal matchings for the grand coalition. So, we have∑

(i,j)∈µ aij = wA(N) for all µ ∈ M∗
A.
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Shapley and Shubik (1971) prove that the core of the assignment game (N,wA) is
nonempty and it is enough to impose coalitional rationality for one-player coalitions
and mixed-pair coalitions:

C(N,wA) =

{
(u; v) ∈ RM

+ × RM ′

+ |
∑

i∈M ui +
∑

j∈M ′ vj = wA(N),

ui + vj ≥ aij ∀i ∈ M ∀j ∈ M ′

}
.

Therefore if (u; v) ∈ C(N,wA), then for every optimal matching µ ∈ M∗
A we have:

ui + vj = aij if (i, j) ∈ µ,
ui = 0 if i ∈ M is not mached by µ,
vj = 0 if j ∈ M ′ is not mached by µ.

There exists a sellers-optimal core allocation, (u; v) =
(
uA; vA

)
∈ C(N,wA), where

each seller attains his maximum core payoff. For every seller j ∈ M ′ is

vj := wA(N)− wA(N \ {j}),

and given an optimal matching µ ∈ M∗
A for every buyer i ∈ M is

ui :=

{
aiµ(i) + wA(N \ {µ(i)})− wA(N) if i is matched by µ;
0 if i is not matched by µ.

A survey on assignment games is given in Núñez and Rafels (2015).

Proposition 3. Every assignment game with at most five players has a PLMAS.

Proof. Let (M,M ′, A) be an assignment game with 1 ≤ m ≤ m′ and m + m′ ≤ 5.
For a coalition S ∈ P (N), we denote s = |S|, mS = |S ∩M | as the number of buyers
in S, m′

S = |S ∩ M ′| as the number of sellers in S and AS = (aij)i∈S∩M,j∈S∩M ′ ∈
MmS×m′

S
(R+) denotes the corresponding submatrix of A at S.

If m = 1, it is clear that for each z ∈ C(N,wA) the vector x =
(
xS

)
S∈P (N)

defined

by

xS =


z if S = N,

(0, (s). . . . . ., 0) if S ⊆ M or S ⊆ M ′,

(wA(S); 0,
(s−1). . . . . ., 0) if mS = 1 ≤ m′

S ,

for all S ∈ P (N), is a PLMAS of (N,wA).
If m = m′ = 2, it is straightforward to check that for each z ∈ C(N,wA) the vector

x =
(
xS

)
S∈P (N)

defined by

xS =


z if S = N,

(0, (s). . . . . ., 0) if S ⊆ M or S ⊆ M ′,

(wA(S); 0,
(s−1). . . . . ., 0) if mS = 1 ≤ m′

S ,
(0, 0;wA(S)) if mS = 2 and m′

S = 1,
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for all S ∈ P (N), is a PLMAS of (N,wA).
If m = 2 and m′ = 3, we denote z = (u; v) ∈ C(N,wA) as the sellers-optimal core

allocation of (N,wA). It is straightforward to check that z(N \ {j}) = wA(N \ {j})
for all j ∈ M ′ and thus we have z|S ∈ C (S,wAS

) for all S ⊆ N with mS = m′
S = 2.

Proceeding as in the proof of Theorem 2, we observe that the vector x =
(
xS

)
S∈P (N)

defined by

xS =


z if S = N,

(0, (s). . . . . ., 0) if S ⊆ M or S ⊆ M ′,

(wA(S); 0,
(s−1). . . . . ., 0) if mS = 1 ≤ m′

S ,
(0, 0;wA(S)) if mS = 2 and m′

S = 1,
z|S if mS = m′

S = 2,

for all S ∈ P (N), is a PLMAS of (N,wA).

We would like to remark that in general (n ≥ 6), assignment games could lack
PLMAS, as the following example illustrates.

Example 5. Consider the following matrix A =

(
9 7 5 3
7 5 3 1

)
. We claim the assign-

ment game (N,wA) relative to A lacks of PLMAS. Indeed, let M = {1, 2} be the set
of buyers and M ′ = {3, 4, 5, 6} be the set of sellers. If x =

(
xS

)
S∈P (N)

∈ LMC(N, v)

was a PLMAS, then we would necessarily have xN
5 = xN

6 = 0 and φ2

(
xR

)
= 0 for

R := {1, 2, 5, 6}. However, this is not possible since

C (R,wAR
) = {(α, α− 2; 5− α, 3− α) | 2 ≤ α ≤ 3}

and therefore φ2(z) > 0 for all z ∈ C (R,wAR
).

Now we show the existence of PLMAS in another interesting model. Shapley and
Shubik (1967) introduces a model of a production economy involving a landowner and
m ≥ 1 peasants. The profit that arises if p peasants work for the landowner is denoted
by f(p), where f : {0, 1, 2, . . . ,m} → R is a production function such that:

f(0) = 0,
if 0 ≤ p1 < p2 ≤ m, then f(p1) ≤ f(p2) (increasing function),
if 0 ≤ p1 < p2 < p3 ≤ m, then f(p2)− f(p1) ≤ f(p3)− f(p2) (concavity).

Then, the associated cooperative game between the landowner (player 0) and the
m peasants is defined as follows: for any coalition ∅ ̸= S ⊆ N := {0, 1, 2, . . . ,m},

v(S) :=

{
f(|S| − 1) if 0 ∈ S
0 otherwise.

(3)

In this model, the marginal productivity of any peasant when working for the
landowner is equal to ∆ := f(m) − f(m − 1) ≥ 0. The allocation z ∈ RN such that
z0 := f(m) − m∆ and zi := ∆ for all i = 1, . . . ,m is a core allocation since f is a
concave function. In next proposition we prove this core allocation z is supported by
a PLMAS.
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Proposition 4. Let (N, v) be the cooperative game between a landowner (player 0) and
m peasants associated to a increasing concave function f : N = {0, 1, 2, . . . ,m} → R
with f(0) = 0, and defined by (3). Let z ∈ RN the allocation defined by

zi =

{
f(m)−m∆ if i = 0,
∆ if i = 1, . . . ,m,

for all i ∈ N , where ∆ := f(m) − f(m − 1). Then z ∈ LMCN (N, v). In particular,
(N, v) has a PLMAS.

Proof. Consider the vector x =
(
xS

)
S∈P (N)

defined by:

xS =


(f(m)−m∆,∆, (m). . . . . .,∆) if S = N,

(f(|S| − 1), 0, (s−1). . . . . ., 0) if 0 ∈ S and S ̸= N,

(0, (s). . . . . ., 0) if 0 ̸∈ S.

Observe that xN = z. We next prove that x ∈ LMC(N, v). Indeed, it is straightfor-
ward that x satisfies efficiency in each coalition. Now, given two coalitions S, T ∈ P (N)
with S ⊆ T, S ̸= T , we want to see that xS ≼L xT

∣∣
S
. If 0 /∈ S, it is clear since

xS = (0, (s). . . . . ., 0). If 0 ∈ S and T = N , then xS = (f(|S| − 1), 0, (s−1). . . . . ., 0) and we
have xS ≼L z|S = xN

∣∣
S
since z(S) ≥ v(S) = xS(S). Finally, if 0 ∈ S and T ̸= N then

xT = (f(|T | − 1), 0, . . . , 0) and xS ≼L xT
∣∣
S
since f is an increasing function. Hence,

we conclude x is a PLMAS of (N, v).

We finish this section with another interesting example. Moretti and Norde (2021)
analyze weighted multi-glove games. They generalize the model of glove markets, a two-
sector production economy, by introducing several sectors, all of which are necessary
to extract some positive profit. Each member of a sector has a certain number of units
of an input. The production process requires using one unit of input from each sector
to obtain one unit of output.

Formally, given a player set N and a partition of N into k sectors, P =
{P1, P2, . . . , Pk}, each member i is endowed with wi units of input. The vector w ∈ NN

is the vector of inputs. Then, the worth of a coalition S ⊆ N , S ̸= ∅ (the amount of
output), is given by

vP,w(S) = min

{ ∑
i∈S∩Pr

wi : r = 1, . . . , k

}
.

The authors demonstrate that the corresponding game is totally balanced and provide
a characterization of when the game admits PMAS. However, in Example 3.6 of their
paper (page 728), they present an example of a five-player game with a core element
that cannot be extended by a PMAS. The specific game is as follows.

Example 6. (Example 3.6 of Moretti and Norde (2021)) Let N = {1, 2, 3, 4, 5}
be the set of agents, let P = {{1, 2}, {3, 4}, {5}} be the partition of N that defines
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three sectors, and let w = (1, 1, 1, 1, 2) be the vector of inputs. The allocation x =
(0.5, 0.5, 0.5, 0.5, 0) is in the core of the game, but the authors prove that there is no
PMAS that extends this core allocation. However, it is easy to check that the following
PLMAS extends this allocation:

xS =


(0.5, 0.5, 0.5, 0.5, 0) if S = N,

(0, (s−1). . . . . ., 0, vP,w(S)) if 5 ∈ S ̸= N,

(0, (s). . . . . ., 0) if 5 ̸∈ S,

where s = |S|. The proof is left to the reader.

4 PLMAS-extendability and PLMAS-exactness

In this section, we provide a characterization of the convexity of a game in terms of
PLMAS. To do this, we introduce two new concepts related to the Lorenz-monotonic
core: PLMAS-extendability and PLMAS-exactness. These notions are inspired by the
concepts of PMAS-extendability and PMAS-exactness introduced by Getán et al.
(2014).

Definition 3. A game (N, v) is PLMAS-extendable if for every S ∈ P (N) and for
every y =

(
yR

)
R∈P (S)

∈ LMC (S, vS) there exists x =
(
xR

)
R∈P (N)

∈ LMC(N, v)

such that yR = xR for all R ∈ P (S).
It is worth noting that every PLMAS-extendable game possesses at least one PLMAS,
as every game contains subgames with PLMAS. For example, one can consider the
restriction of the game to individual coalitions.

The following theorem proves that PLMAS-extendability is implied by the
convexity of the game.

Theorem 3. Let (N, v) be a convex game. Then (N, v) is PLMAS-extendable.

Proof. To show that (N, v) is PLMAS-extendable we proceed by recurrence. We con-
sider S ∈ P (N), j ∈ N\S, and y ∈ LMC (S, vS). Then, we define x =

(
xR

)
R∈P (S∪{j})

as follows: xR = yR, for ∅ ̸= R ⊆ S, and for R ⊆ S ∪ {j}, with j ∈ R,

xR
i =

{
y
R\{j}
i if i ̸= j,
v(R)− v(R\ {j}) if i = j,

for all i ∈ R.

First, by definition we have
(
xR

)
R∈P (S)

= y. Let us see that x is a PLMAS of vS∪{j}.

Notice that for each coalition R ∈ P (S ∪ {j}) we have xR(R) = yR(R) = v(R) when
j /∈ R, and xR(R) = xR (R\ {j})+xR

j = yR\{j} (R\ {j})+ [v (R)− v (R\ {j})] = v(R)
when j ∈ R. Moreover, we claim that for each R, T ∈ P (S ∪ {j}) such that R ⊆ T the
Lorenz-monotonicity property holds, i.e. xR ≼L xT

∣∣
R
. To prove it we must distinguish

different cases:

Case 1. If j /∈ T , then j /∈ R and xR = yR ≼L yT
∣∣
R
= xT

∣∣
R
.

Case 2. If j ∈ T and j /∈ R then R ⊆ T\ {j} ⊆ S and xR = yR ≼L yT\{j}
∣∣
R
= xT

∣∣
R
.
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Case 3. If j ∈ R then

xR =
(
yR\{j}, v (R)− v (R\ {j})

)
≼L

(
yT\{j}

∣∣∣
R\{j}

, v (T )− v (T\ {j})
)

= xT
∣∣
R
,

where the Lorenz domination follows from Lemma 2 below taking into account that
yR\{j} ≼L yT\{j}

∣∣
R\{j} and v (R) − v (R\ {j}) ≤ v (T ) − v (T\ {j}), due to the

convexity of the game.

Therefore we conclude x ∈ LMC
(
S ∪ {j} , vS∪{j}

)
.

Lemma 2. Let x, y ∈ RN with x ≼L y and let a, b ∈ R with a ≤ b. Then (x, a) ≼L
(y, b).

Proof. Since x ≼L y it holds that φk (x) ≤ φk (y), for all k = 1, . . . , n. Hence,
φ1 (x, a) = min{φ1(x), a} ≤ min{φ1(y), b} = φ1 (y, b). Moreover, for all k = 2, . . . , n,
we have φk (x, a) = min{φk(x), φk−1(x) + a} ≤ min{φk(y), φk−1(x) + b} = φk (y, b).
Therefore, we conclude (x, a) ≼L (y, b).

Since a game is PMAS-extendable if and only if it is convex (Getán et al., 2014)
we obtain the following result.

Corollary 1. Every PMAS-extendable game is PLMAS-extendable. □

It is generally not true that every PLMAS-extendable game is convex.

Example 7. Fix a real number a with 1.5 ≤ a < 2, and consider the three-player
game (N, v) defined by:

v(N) = a,
v(12) = v(13) = v(23) = 1,
v(i) = 0 for all i ∈ N.

Then (N, v) is not convex, but it is totally balanced and its core is

C(N, v) = {(α, β, a− α− β) | α, β ≤ a− 1 and α+ β ≥ 1} .

Moreover, (N, v) is PLMAS-extendable. Indeed, first notice that z :=(
0, 0, 0;

(
1
2 ,

1
2

)
,
(
1
2 ,

1
2

)
,
(
1
2 ,

1
2

)
;
(
a
3 ,

a
3 ,

a
3

))
∈ MC(N, v) ⊆ LMC(N, v). Let S ∈ P (N)

and y =
(
yR

)
R∈P (S)

∈ LMC (S, vS). We must build an allocation scheme

x =
(
xR

)
R∈P (N)

∈ LMC(N, v) such that xR = yR for all R ∈ P (S). If |S| = 1, then

S = {i}, y = (0) and x := z extends y. If |S| = 2, then S = {i, j}, y = (0, 0; (λ, 1− λ))
for some 0 ≤ λ ≤ 1. Without loss of generality we can assume, by symmetry, that
S = {1, 2}. Then x :=

(
0, 0, 0; (λ, 1− λ) ,

(
1
2 ,

1
2

)
,
(
1
2 ,

1
2

)
;
(
a
3 ,

a
3 ,

a
3

))
∈ LMC(N, v)

extends y, since min{λ, 1− λ} ≤ 1
2 ≤ a

3 and so (λ, 1− λ) ≼L
(
a
3 ,

a
3

)
. Finally, the case

|S| = 3 trivially holds.
Next, we approach the notion of convexity from a different perspective by intro-

ducing the concept of PLMAS-exactness. In simple terms, PLMAS-exactness implies
that the worth of any coalition of players is achieved in at least one PLMAS of the
entire game.
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Definition 4. A game (N, v) is PLMAS-exact when for every S ∈ P (N) there exists
x = (xR)R∈P (N) ∈ LMC(N, v) such that xN (S) = v (S).

It is evident that a game which is PLMAS-exact is also exact. Furthermore, it can
be easily demonstrated that any subgame of a PLMAS-exact game is also PLMAS-
exact. Next theorem establishes that PLMAS-exactness is a characterization of the
convexity of the game.

Theorem 4. Let (N, v) be a game. The following statements are equivalent:

(i) (N, v) is convex.
(ii) (N, v) is PLMAS-exact.

Proof. (i) ⇒ (ii) It is known that a game is convex if and only if it is PMAS-
exact (Getán et al., 2014). Moreover, any PMAS-exact game is PLMAS-exact since
MC(N, v) ⊆ LMC(N, v) by part (b) of Proposition 1.

(ii) ⇒ (i) Assume that (N, v) is PLMAS-exact and let S, T ⊆ N . Since the
subgame (S ∪ T, vS∪T ) is PLMAS-exact too, there exists x = (xR)R∈P (S∪T ) ∈
LMC (S ∪ T, vS∪T ) such that xS∪T (S ∩ T ) = v(S ∩ T ). Therefore, by the second
implication in (1), we obtain

v (S) + v (T )− v (S ∩ T ) = xS (S) + xT (T )− xS∪T (S ∩ T )
≤ xS∪T (S) + xS∪T (T )− xS∪T (S ∩ T )
= xS∪T (S ∪ T ) = v (S ∪ T ) .

This proves the convexity of (N, v).

5 Conclusion

Allocation schemes serve as a means to illustrate the benefits of forming larger coali-
tions. The PMAS concept primarily emphasizes individual incentives, whereas PLMAS
justifies the final allocation from a social standpoint. This concept holds particular
relevance in cooperative scenarios where players are substitutable or symmetric, as
demonstrated in the case of a production economy or market situation.

For future research, it would be valuable to characterize the games that admit
PLMAS and analyze other models where the Lorenz criterion offers fresh perspectives
on allocation problems.
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