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Abstract 
 

This Final Degree Project introduces a simulation pipeline for generating realistic brain SPECT 

images using Monte Carlo methods. Built on real anatomical MRI and CT data from patients with 

diagnosed or suspected Parkinson’s disease, the pipeline creates synthetic images by first 

generating activity and attenuation maps that replicate radiotracer distribution and tissue densities. 

These are then used as inputs for the SimSET simulation engine to produce synthetic SPECT 

projections. 

A core feature of the pipeline is its iterative framework. Simulated reconstructions are compared to 

real clinical SPECT images using anatomical atlases to quantify regional differences. These 

discrepancies inform successive updates to the activity map, gradually refining image realism 

across iterations. The approach enables the generation of synthetic SPECT studies that closely 

resemble real data, while maintaining known ground truth—key for evaluating and validating 

quantification methods in nuclear medicine. 

The pipeline is modular, reproducible, and scalable, with integrated quality controls and 

standardized preprocessing steps. It lays the groundwork for creating a database of synthetic 

realistic neuroimaging studies. The project contributes to the advancement of validation for  

quantification imaging tools, particularly for Parkinson’s disease research and clinical validation. 
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Abstract 

 

Aquest Treball de Final de Grau presenta un pipeline de simulació per generar imatges cerebrals 

de SPECT realistes mitjançant mètodes de Monte Carlo. Utilitza dades anatòmiques reals d’RM i 

TC de pacients amb diagnòstic o sospita de malaltia de Parkinson per construir mapes d’activitat i 

atenuació que simulen la distribució del radiotraçador i les densitats tissulars. Aquests mapes són 

emprats com a entrada per al simulador SimSET, que genera projeccions sintètiques de SPECT. 

Un dels elements clau del projecte és el seu enfocament iteratiu. Les reconstruccions simulades 

es comparen amb les imatges clíniques utilitzant atlas anatòmics per detectar diferències 

regionals. Aquestes discrepàncies es fan servir per actualitzar progressivament el mapa d’activitat, 

millorant iterativament el realisme de les imatges. El resultat són estudis sintètics de SPECT molt 

similars als reals, però amb veritat de base coneguda, essencial per validar mètodes de 

quantificació en medicina nuclear. 

El pipeline és modular, escalable i incorpora mecanismes de control de qualitat i preprocesament 

estandarditzat. Representa una base sòlida per al desenvolupament d’una base de dades sintètica 

realista d’estudis neurofuncionals. El projecte contribueix a l’avanç de les eines de validació per 

mètodes de quantificació d’imatge, especialment en l’àmbit de la malaltia de Parkinson. 

 

 

 

 

 

 

 

 

Paraules clau 

 

SPECT, Malaltia de Parkinson, Simulació, Monte Carlo, Quantificació, DaTscan, Reconstrucció  

 

 

 

 



 

 

iii  

Acknowledgements 
 

The completion of this project has not been easy, but I have always felt supported by those who 

accompanied me throughout the process. For that reason, I want to express my deepest gratitude 

in this section.  

First and foremost, I would like to thank Raúl Tudela and Aida Niñerola, who have guided and 

mentored me over the past months. Their patience and constant willingness to help have been 

invaluable, especially during moments when I felt stuck or frustrated.  

I am also sincerely grateful to my family, who have always encouraged me to keep going and 

believed in me, even during the most challenging times.  

Finally, I would like to thank everyone who has shared this journey with me, especially my friends 

from university, with whom I have shared mutual support as we each worked through our respective 

projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv  

List of Figures  

 

Figure 1. Overview of the components of the basal ganglia in coronal view. [18] 

Figure 2. DaTscan of a normal patient (left) and DaTscan of a patient with Parkinsonian syndrome (right) [28] 

Figure 3. Tomographic acquisition process based on projections and sinogram formation [31] 

Figure 4. (Left) Process of evaluating quantification through phantom image acquisition. (Own source) 

Figure 6. (Right) Process of evaluating quantification through simulation softwares. (Own source) 

Figure 7. (Right) Hoffman 3-D Brain Phantom cylinder and 3-D Brain Insert [46] 

Figure 8. (Left) Striatal Phantom [47] 

Figure 9. SimSET PHG inputs and outputs [7] 

Figure 10. MRI (left) and CT (right) studies of one of the patients in the dataset (Own source) 

Figure 11. Attenuation map (axial view) (Own source) 

Figure 12. Activity map (axial view) (Own source) 

Figure 13. Schematic of the designed iterative process (Own source)  

Figure 14. DICOM tags (metadata) record from part of the dataset (Own source) 

Figure 15. Example of BIDS architecture [61] 

Figure 16. HD-BET brain segmentation (top left), HD-BET brain mask (top middle), outskin mask (top right), outskull mask (bottom 
left), skull mask (bottom middle) and inskull mask (bottom right). All images display an axial view of the head. (Own source) 

Figure 17. FAST output file representing brain tissues with different intensity levels (axial orientation) (Own source) 

Figure 18. FIRST output file containing segmentation of subcortical structures (axial orientation) (Own source) 

Figure 19. SimSET attenuation indexes for different materials (Own source) 

Figure 20. T1 template in standard space (axial view) (Own source) 

Figure 21. Occipital template in standard space (axial view) (Own source) 

Figure 22. Reconstruction workflow for simulated projections (Own source) 

Figure 23. xAAL anatomical atlas (Own source) 

Figure 24. Schematic of the designed iterative framework (Own source) 

Figure 25. Evolution of the activity map and the simulated images over 2 iterations (First column corresponds to the original 

simulation and left image to the clinical reconstruction) (Own source) 

Figure 26. Evolution of SSIM values across iterations for three representative subjects. (Own source) 

Figure 27. Evolution of MSE values across iterations for the same subjects. (Own source) 

Figure 28. WBS Chart (Own source) 

Figure 29. GANTT diagram of the project (Own source) 

Figure 30. SWOT matrix (Own source) 

Figure 31. Pie chart of the project's cost distribution (Own source) 

Figure A1. Summary of the attenuation and activity maps generation (Own source)  



 

 

v  

List of Tables 
 

Table 1. WBS dictionary (Own source) ............................................................................................. 40 

Table 2. Data for precedence analysis (Own source) ......................................................................... 41 

Table 3. Human resources of the project (Own source) ...................................................................... 45 

Table 4. Material resources of the project (Own source) ..................................................................... 45 

Table 5. Computing resources of the project (Own source) ................................................................. 46 

Table 6. Indirect cost of the project (Own source) .............................................................................. 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 

vi  

List of Abbreviations  

 

PD: Parkinson’s Disease  

SNpc: substantia nigra pars compacta 

PET: Positron Emission Tomography 

SPECT: Single Photon Emission Computed Tomography  

DAT: DaTscan, Dopamine Transporter 

SUR: Specific Uptake Ratio  

MRI: Magnetic resonance imaging 

CT: Computed Tomography 

GIB-UB: Biomedical Imaging group  

LB: Lewy Bodies  

UPDRS: Unified Parkinson’s Disease Rating Scale  

ROIs: Regions of interest 

MC: Monte Carlo 

AI: Artificial intelligence 

CNNs: convolutional neural networks   

GANs: generative adversarial networks  

EANM: European Association of Nuclear Medicine  

FSL: FMRIB Software Library 

SPM: Statistical Parametric Mapping 

FBP: Filtered Back Projection 

ANTs: Advanced Normalization Tools 

HD-BET: High Definition Brain Extraction Tool  

BET: Brain Extraction Tool  

FAST: FMRIB's Automated Segmentation Tool 

FIRST: FMRIB's Integrated Registration and Segmentation Tool 



 

 

vii  

xAAL: Extended Automated Anatomical Labeling (atlas)  

SSIM: Structural Similarity Index Measure 

MSE: Mean Squared Error  

FDA: Food and Drug Administration (USA) 

MDR: Medical Device Regulation 

GDPR: General Data Protection Regulation 

DICOM: Digital Imaging and Communications in Medicine 

NIfTI: Neuroimaging Informatics Technology Initiative 

BIDS: Brain Imaging Data Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

viii  

Table of contents 

 

Abstract ......................................................................................................................................... i 

Keywords ....................................................................................................................................... i 

Abstract ......................................................................................................................................... ii 

Paraules clau ................................................................................................................................. ii 

Acknowledgements ..................................................................................................................... iii 

List of Figures .............................................................................................................................. iv 

List of Tables ................................................................................................................................ v 

List of Abbreviations ................................................................................................................... vi 

1. Introduction .......................................................................................................................... 1 

1.1. Motivation ..................................................................................................................... 1 

1.2. Objectives ..................................................................................................................... 2 

1.3. Scope ........................................................................................................................... 2 

1.4. Methodology ................................................................................................................. 2 

1.5. Location of the project .................................................................................................. 3 

2. Background .......................................................................................................................... 3 

2.1. Parkinson’s disease ...................................................................................................... 3 

2.2. SPECT imaging technique ........................................................................................... 5 

2.3. State of the art .............................................................................................................. 6 

3. Market analysis .................................................................................................................... 8 

3.1. Target Sectors .............................................................................................................. 8 

3.2. Historical Market Evolution ......................................................................................... 10 

3.3. Future Market Perspectives ........................................................................................ 11 

4. Concept engineering ......................................................................................................... 12 

4.1. Dataset ....................................................................................................................... 12 

4.2. Monte Carlo simulation ............................................................................................... 12 

4.2.1. Attenuation and activity maps ................................................................................ 13 

4.2.2. Reconstruction algorithms ...................................................................................... 16 

4.3. Iterative framework ..................................................................................................... 16 

5. Detailed engineering .......................................................................................................... 18 

5.1. Dataset preprocessing ................................................................................................ 18 

5.2. Attenuation and activity maps ..................................................................................... 22 

5.3. SimSET Simulation ..................................................................................................... 27 

5.4. FBP Reconstruction .................................................................................................... 28 



 

 

ix  

5.5. Iterative framework ..................................................................................................... 30 

5.5.1. Stopping criteria ..................................................................................................... 34 

5.6. Results and Discussion .............................................................................................. 35 

6. Execution schedule ........................................................................................................... 38 

6.1. Work Breakdown Structure (WBS) ............................................................................. 38 

6.2. Precedence analysis and critical path method............................................................ 40 

6.3. GANTT Chart.............................................................................................................. 42 

7. Technical feasibility ........................................................................................................... 43 

7.1. SWOT Analysis .......................................................................................................... 43 

7.2. Technical specifications .............................................................................................. 44 

8. Economic viability ............................................................................................................. 45 

9. Legal aspects ..................................................................................................................... 47 

10. Conclusions and future lines ....................................................................................... 48 

10.1. General conclusions ................................................................................................... 48 

10.2. Future work ................................................................................................................ 49 

11. Bibliography .................................................................................................................. 49 

12. Annexes ........................................................................................................................... 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1  

1. Introduction 

 

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder affecting the motor 

and nervous systems. Symptoms include involuntary tremors, muscular rigidity, slowed motion, 

and psychological issues such as depression, anxiety, and memory problems. As PD advances, it 

leads to significant disability and care needs. PD is the second most common neurodegenerative 

disorder after Alzheimer’s disease, with increasing prevalence and mortality rates. [1] 

PD is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta 

(SNpc), resulting in reduced dopamine in the striatum, causing motor symptoms. [2] Typically, PD 

diagnosis is based on clinical evaluation. However, emission tomography imaging, including 

Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography 

(SPECT), serves as a valuable tool to enhance PD diagnosis, monitor disease progression, and 

evaluate treatment efficacy. Specifically, SPECT using the radiotracer [123I] FP-CIT (commercially 

known as DaTscan) is useful for evaluating dopaminergic neurons. [3] [4] Moreover, even if brain 

SPECT scans are typically interpreted by the professionals’ visual inspection, the quantification of 

these images can significantly enhance diagnostic accuracy.[5] This quantification involves 

measuring the uptake of specific radioligands in the striatal region, expressed through metrics such 

as the Specific Uptake Ratio (SUR), which will be defined in the ‘Background’ section. 

 

1.1.  Motivation 
Lately, an increase interest in 123I-Ioflupane1 quantification methods to numerically evaluate 

radioactive distribution in the nigrostriatal region has been observed, leading this to the release of 

several quantification methods collected in commercial software. These tools are already being 

used in clinical settings, as they undergo a validation process required for CE marking, typically 

based on comparison with the patient’s clinical profile. [6] However, their generalized and robust 

use is still limited due to the lack of reliable gold standard references that would allow for objective 

validation of their quantification accuracy.  

The motivation of this project lies in the need to develop reliable and precise systems that enable 

the proper assessment of the quality and vericity of specific medical imaging quantification 

methods. These techniques require the obtention of reference images to serve as ground truth, 

which can be generated through simulation. Among the few available options (as will be discussed 

in the Market Analysis section), there is SimSET, a simulation engine designed to simulate images 

from user-defined maps [7]. The goal of this software is to enable the modeling of any SPECT scan 

specified by the user applying Monte Carlo methods, computational algorithms that use random 

sampling to estimate numerical results. [8] 

 

 
1 123I-Ioflupane is an equivalent nomenclature for referring to [123I] FP-CIT (also known as DaTscan) 
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1.2.  Objectives 

The main objective of this project is to develop a simulation pipeline capable of generating realistic 

SPECT images with known ground truth using Monte Carlo methods. 

In line with this goal, a series of secondary objectives have been established to address the specific 

requirements of the proposed pipeline: 

- Prepare it to allow an iterative process in the simulation calculus. 

- Adapt it to SimSET architecture. 

- Test its performance with a dataset of real images. 

Derived from the handling of a dataset, other aims are defined:  

- Depuration and optimization of the preprocessing codes involved in the framework. 

- Inclusion of quality control checkpoints to ensure dataset integrity and traceability 

throughout the pipeline. 

 

1.3. Scope 

According to the objectives described above, this project lays the groundwork for the development 

of a simulation-based pipeline that enables the generation of realistic SPECT studies. The ultimate 

aim is to build the foundation for a future database of realistic simulated studies with known ground 

truth, which will allow the evaluation and benchmarking of different quantification and/or image 

processing methods intended for clinical implementation, including acquisition and reconstruction 

algorithms. The project focuses on the simulation of the dopaminergic system using [123I] FP-CIT 

as the radiotracer for SPECT imaging. While the current work does not aim to produce a final 

applicable tool, it represents an essential first step toward establishing a reliable framework that 

can support future validation of medical imaging software under controlled, reproducible conditions. 

 

1.4. Methodology 

The project is based on the implementation of an iterative pipeline for generating realistic simulated 

SPECT images using Monte Carlo techniques. The process begins with the conversion and 

organization of clinical imaging data into a standardized format suitable for automated processing. 

Subsequently, relevant brain regions are segmented from magnetic resonance images (MRI) and 

registered with corresponding computed tomography (CT) scans to generate attenuation and 

activity maps. These maps serve as inputs for the simulation engine, which generates synthetic 

projection data emulating clinical acquisition conditions. The simulated projections are 

reconstructed and then compared with clinical reconstructions to evaluate their level of similarity. 

Based on this comparison, the activity map is adjusted to generate new simulations, repeating the 

process iteratively until a satisfactory level of similarity between simulated and clinical images is 

achieved. 
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1.5. Location of the project 

This project has been conducted in collaboration with the Biomedical Imaging group (GIB-UB) of 

the Biophysics and Bioengineering Unit from University of Barcelona (UB). This is a highly 

experienced research group specialized in the development of software for treatment, and study of 

biomedical images, including nuclear medicine simulation, the main line of research of this project. 

The project has been primarily developed in the Biophysics and Bioengineering Laboratory of the 

Faculty of Medicine at UB, although remote work has also been conducted.  

 

2. Background 
 

2.1. Parkinson’s disease 

 

Characteristics and symptoms  

PD is a chronic, progressive neurodegenerative disorder primarily affecting the motor system but 

also impairing cognitive processes, emotional regulation, and autonomic functions. Its main clinical 

signs are often summarized using the acronym TRAP: [9] 

• Tremor at Rest: Involuntary shaking, especially in the hands and arms, observed in about 

70% of PD patients as the first symptom. [10] 

• Rigidity: Increased stiffness and resistance during passive joint or limbs movement. [10] 

• Akinesia: Loss of movement, associated with bradykinesia (slowness of movement) and 

hypokinesia (reduced movement). [10] 

• Postural Instability: Gradual loss of balance due to impaired postural reflexes, leading to 

an increased risk of falls, generally appearing in the later stages of PD. [10] 

PD has a prevalence of 0.3% in the general population, with prevalence rising to 1% among people 

over 60. It rarely occurs before age 50, affects individuals of all ethnicities, and is slightly more 

common in men. [11] 

 
Etiology and pathology 

The exact cause and molecular mechanisms of PD remain still unknown. [12] While about 95% of 

cases are sporadic with no genetic linkage, the remaining cases are linked to genetic mutations, 

such as those affecting the parkin gene. [13] PD is thought to result from a combination of aging, 

genetic factors, and environmental exposures. [14] The hallmark features of PD pathology include 

the loss of dopaminergic neurons in the SNpc and the presence of Lewy Bodies (LB). [10] [13] [15] 
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Dopaminergic Neurotransmission System 

As mentioned, PD primarily affects the dopaminergic neurons, which produce dopamine and are 

crucial components of the basal ganglia, including the striatum, nucleus accumbens, globus 

pallidus, subthalamic nucleus, and substantia nigra (see Figure 1). The basal ganglia is involved in 

motor control as well as cognitive and emotional functions. [11] In PD, the degeneration of SNpc 

dopaminergic neurons disrupts the basal ganglia circuitry, leading to motor symptoms. [16] [17]  

 

Figure 5. Overview of the components of the basal ganglia in coronal view. [18] 

 

The nigrostriatal pathway, which transmits dopamine from the SNpc to the striatum, is crucial for 

motor control. The degeneration of this pathway results in the primary symptoms of PD. Dopamine 

synthesis occurs in dopaminergic neurons and is regulated by the Dopamine Transporter (DAT), 

which controls dopamine levels by reuptaking excess dopamine from the synaptic space. In PD, 

reduced dopamine leads to decreased DAT, serving as an indicator of dopaminergic neuron 

degeneration. [14] [11] [19] 

 

Diagnosis and progression 

The diagnosis of PD is primarily clinical, based on characteristic motor symptoms and secondary 

signs. Although there are no definitive biological markers for PD, sustained improvement with 

levodopa treatment supports the diagnosis. Post-mortem examination remains the gold standard 

for confirming PD, identifying the loss of nigrostriatal neurons and the presence of LB. [20] [21] To 

assess motor impairment and disability, scales such as the Hoehn and Yahr scale and the Unified 

Parkinson’s Disease Rating Scale (UPDRS) are used. The Hoehn and Yahr scale, widely utilized 

worldwide, categorizes PD severity into five stages, providing a framework for comparing patient 

groups and tracking disease progression. [22] [23]  
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2.2. SPECT imaging technique 

SPECT technique has contributed to a better understanding of PD as it allows the in vivo 

assessment of the dopaminergic neurotransmission system.  

SPECT imaging is a diagnostic technique in nuclear medicine. It involves administering a small 

amount of radioactive substance attached to a specific compound, known as a radiotracer or 

radiopharmaceutical, which travels to the target organ or tissue. As the radiopharmaceutical 

decays, it emits gamma rays that are detected by a gamma camera positioned over the body part 

being studied. This process creates an image showing the distribution of the radiopharmaceutical 

within the body. [25] [26] 

Radiotracers for Parkinson’s Disease Diagnosis 

Iodine-123 labelled 2-iodo-6-methoxybenxamide (IBZM) was the first SPECT tracer used to study 

dopamine postsynaptic receptors in (PD). Over time, other presynaptic dopaminergic terminal 

SPECT ligands like [123I] FP-CIT and [123I] β-CIT have been introduced into clinical practice. 

[123I] FP-CIT, also known as DaTSCAN, is the most used presynaptic radioligand. It binds to 

presynaptic dopamine DAT and detects changes in striatal uptake in patients with premotor PD 

symptoms and asymptomatic carriers of genetic mutations in familial PD. Its rapid uptake kinetics 

allow SPECT imaging 3 to 6 hours after administration, and its high affinity and specific binding to 

DAT make it ideal for clinical use. SPECT imaging with DaTscan provides a 3D image of the striatal 

dopaminergic system, useful for detecting the loss of nigrostriatal dopaminergic neurons. This 

technique is particularly valuable for distinguishing PD from essential tremors and differentiating 

LB dementia from Alzheimer’s disease. In PD and LB dementia, there is reduced uptake in the 

striatal region, indicating a loss of dopamine transporters (see Figure 2). [27]  

 

Figure 6. DaTscan of a normal patient (left) and DaTscan of a patient with Parkinsonian syndrome (right) [28] 

 
Image Acquisition and Reconstruction 

The gamma camera captures 2D projections from different orientations. Multiple detectors, typically 

ranging from one to four, rotate around the patient to acquire projections from various angles. As 

the gamma camera rotates, it collects projection profiles at each angle, generating a data matrix 

called a sinogram. Each row in the sinogram represents an intensity profile across an angular view, 

creating a sinusoidal pattern. [29] [30] (see Figure 3) 
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Figure 7. Tomographic acquisition process based on projections and sinogram formation [31] 

 

To visualize the 3D results, the sinogram must be reconstructed. The reconstruction process 

involves transforming the sinogram into a volumetric image that represents the radiotracer 

distribution within the patient. This transformation relies on combining the projection data collected 

at different angles to estimate the internal activity distribution. The goal is to recover a spatially 

accurate representation of the radiopharmaceutical uptake, enabling both visual assessment and 

quantitative analysis. While various reconstruction algorithms exist, the process in general serves 

as a bridge between raw projection data and clinically interpretable images. [32] (see Figure 4)  

 
Figure 8. Process of the obtention of a SPECT study (Own source) 

 

Quantification 

There are different methods to quantify SPECT images, but the semi-quantitative method is highly 

recommended to objectively assess DAT binding. Quantification is performed using different 

Regions of Interest (ROIs), which can be defined either on high-resolution MRI images of the same 

patient or in a standard space using a template. Semi-Quantification uses the equation below to 

calculate the SUR in order to quantify radioligand uptake in the striatal volume (see Equation 1). 

𝑆𝑈𝑅 =  
𝐴𝑠̅̅̅̅ −𝐴0̅̅ ̅̅

𝐴0̅̅ ̅̅
        (Equation 1) 

𝐴𝑠 is the mean activity concentration in the striatal region and 𝐴0 is the mean activity concentration 

in a reference region (typically the occipital area, which is free from radioligand uptake). [33] 

 

2.3. State of the art  

As previously explained, quantitative image analysis requires a reference or ground truth to 

evaluate how accurate the results are.  
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A traditional way to get this reference is by means of using physical phantoms, objects built to 

imitate human tissues and scanned with real equipment. The procedure consists of filling the 

phantoms with a specific activity, representing that of the brain, and introducing them into the 

gamma camera to acquire the images that will be later on quantified. Since the structure of the 

phantom is fully known, it serves as a comparison point. This process is represented in Figure 5. 

Although phantoms provide accurate validation, they have some limitations. The process is time-

consuming and labor-intensive. Also, they are hard to modify, especially when trying to reproduce 

complex geometries like those in the human brain. Their rigid design makes it difficult to model 

specific conditions or patient variability, which often leads to reference images that do not fully 

reflect real clinical scenarios. [32]  

Because of this, simulation has become a powerful and more efficient alternative. In a simulation, 

the phantom is created digitally, giving full control over its shape, composition, and internal activity. 

This allows researchers to design highly detailed models that represent different brain structures, 

disease stages, or technical setups. Simulations can generate a wide range of realistic scenarios 

without needing a physical scanner, reducing both costs and time, while offering greater flexibility 

and accuracy for method validation. [33] To implement numerical phantoms with an activity and 

attenuation map in simulation softwares the same procedure is applied but performing a simulation 

instead of an acquisition (see Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. (Left) Process of evaluating quantification through phantom image acquisition. (Own source) 
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Figure 6. (Right) Process of evaluating quantification through simulation softwares. (Own source) 

 

Monte Carlo (MC) simulation is a computational method that uses probabilistic models to estimate 

the likelihood of different outcomes for random variables. The method is named after the Monte 

Carlo Casino in Monaco, reflecting its association with randomness and games of chance. This 

technique is particularly useful for simulating physical processes in SPECT imaging, allowing for 

the generation of synthetic data without the need for physical phantoms, making it a cost-effective 

alternative for validation. The simulation mimics the emission and attenuation of gamma rays in 

biological tissue, as well as the collimation and detection processes of the imaging system. Given 

the stochastic nature of radiation emission, transport, and detection, the MC method is widely 

regarded as one of the most accurate for these applications. [8] 

In addition to Monte Carlo, based methods, deterministic or analytical simulation approaches have 

been explored. These rely on mathematical approximations, such as projection and backprojection 

models or convolution operations, to replicate image formation. Although they are less realistic from 

a physical modeling standpoint, they offer much faster computation times and are often used in 

algorithm prototyping or training scenarios. [34] More recently, artificial intelligence (AI)–driven 

methods have emerged in the simulation landscape. Deep learning models, particularly 

convolutional neural networks (CNNs) and generative adversarial networks (GANs), are being used 

to generate synthetic SPECT images, correct for attenuation, or enhance image quality. These 

data-driven models can produce realistic outputs rapidly once trained and have shown promising 

results in reducing noise [35]. 

 

3. Market analysis  

 

3.1. Target Sectors 

The primary intention of this pipeline is to be used in order to generate a realistic database of 

simulated SPECT studies, particularly tailored to support the validation of quantitative image 



 

 

9  

analysis methods in neuroimaging applications such as Parkinson’s disease. These synthetic 

datasets are highly valuable across multiple domains where reliable ground truth is essential for 

validating different image processing techniques, including acquisition, reconstruction and 

quantification techniques. 

The project has been developed in the field of nuclear medicine imaging, with a special emphasis 

on quantitative SPECT applied to neurodegenerative disorders. However, its impact extends to two 

related markets. These include academic and clinical research institutions working on novel 

processing pipelines and companies developing medical imaging software.  

Research groups are frequent users of simulated imaging data, particularly in early-stage method 

development. Projects like the EU-funded SIMCor initiative have shown the value of in silico trials 

for medical device evaluation through realistic virtual cohorts [36]. In nuclear medicine, platforms 

like SimPET have provided Monte Carlo-based PET datasets for validating quantification and 

registration methods [37]. Regarding SimSET specifically, several research groups are currently 

taking advantage of it in their studies; some examples are: the University of Washington, which, 

apart from developing the tool, is working with it [7]; the Department of Biomedical Engineering of 

the University of California-Devis [38] or the department where this project has been developed, 

the GIB-UB. 

Both software developers and commercial imaging vendors working on diagnostic tools and 

quantitative analysis platforms also benefit from such resources. Companies like Voximetry [39], 

Subtle Medica [40] and Mirada Medical [41] increasingly rely on simulated data to train, test, fine-

tune and validate their algorithms, reducing dependency on expensive clinical acquisitions and 

expediting regulatory approval. Similarly, vendors such as MIM Software [42] and Hermes Medical 

Solutions [43] incorporate simulated data into their development and quality assurance workflows to support 

the validation and deployment of clinical imaging tools. Moreover, for AI-driven imaging tools, large and 

diverse datasets, real or simulated, are essential for model generalization and reproducibility. 

Although the final goal of the realistic database in question is to support the validation of clinical 

software, it is important to note that hospitals and clinics typically adopt commercial tools that have 

already been validated externally. Internal validation by healthcare providers is uncommon, which 

further emphasizes the need for high-quality public simulation resources for software vendors and 

regulatory assessments. 

Beyond commercial stakeholders, professional organizations such as the European Association 

of Nuclear Medicine (EANM) [44] play a central role in shaping clinical practice, research priorities, 

and technological adoption in the field. While not a direct customer, the EANM represents a 

valuable communication and dissemination platform for innovations in image quantification and 

simulation. Engagement with such entities can foster validation, visibility, and eventual integration 

of advanced tools into clinical workflows.  
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3.2. Historical Market Evolution 

The trend towards quantification in SPECT imaging has been evident since the first methodological 

approaches in the 1970s. Tools that provide accurate quantification, particularly for SPECT, are 

increasingly in demand for both clinical diagnostics and research. The development of dedicated 

software solutions, such as those integrated into GE DaTQUANT, reflects the growing interest in 

robust quantification tools for DaTscan imaging. Released by GE Healthcare in 2013, this software 

automatically calculates putamen-to-caudate uptake ratios using predefined VOIs and enables 

longitudinal monitoring of disease progression. [45] 

As explained before, validation of these methods, including acquisition protocols and reconstruction 

techniques, is essential and can be done using phantoms or simulations.  

These are some examples of the phantoms that are commercially available.  

• Hoffman 3-D brain phantom (Figure 7) is crafted by CAPINTEC and it offers a precise 

three-dimensional replication of radiopharmaceutical distribution within the brain, tailored 

for SPECT and PET investigations. Its primary functions include assessing acquisition and 

reconstruction techniques as well as quantitative methodologies [46].  

 

• The Striatal Phantom, depicted in Figure 8, is designed to enhance the quantitative 

accuracy of PET or SPECT imaging in clinical settings. This phantom is modeled on a 

standard RSD head with a cut in the calvarium to easily insert or remove the brain shell. 

Its purpose is to gauge image fidelity and validate quantification of striatal uptake. It 

comprises a brain shell divided into five compartments for separate filling: left and right 

nucleus caudate, left and right putamen, and the remaining brain tissue [47] 

 

  

Figure 7. (Right) Hoffman 3-D Brain Phantom cylinder and 3-D Brain Insert [46] 

Figure 8. (Left) Striatal Phantom [47] 

 

On the other hand, over the last three decades, a variety of Monte Carlo–based simulation tools 

have emerged to support emission tomography, both for PET and SPECT modalities. Originally 

conceived to model radiation transport in nuclear environments, several of these simulators were 

later adapted to the medical imaging field as the demand for accurate, customizable simulation 

environments grew. These platforms have evolved from academic prototypes to widely adopted 

resources in research and, in some cases, clinical development.  
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• One of the earliest and most influential tools is MCNP (Monte Carlo N-Particle), 

developed by Los Alamos National Laboratory, which became available to researchers in 

the 1980s. Although initially focused on general radiation physics, MCNP’s flexibility 

allowed it to be adapted to emission tomography studies. [48] 

 

• In parallel, the SimSET platform was released in the early 1990s by the University of 

Washington Imaging Research Laboratory, specifically tailored for PET and SPECT 

simulation using voxelized anatomical inputs. Its academic license and efficient 

computation made it a valuable resource for research applications. [7] 

 

• In the 2000s, a new generation of simulation software emerged, combining greater physical 

realism with modular programming. GATE, developed by the OpenGATE collaboration in 

2004, is perhaps the most prominent example. Built upon the Geant4 particle physics 

toolkit, GATE enabled highly flexible simulations of time-dependent imaging processes, 

including PET, SPECT, CT, and even radiotherapy scenarios. [49] 

 

• Around the same period, SIMIND, developed by the medical physics group at Lund 

University Hospital in Sweden, was also gaining traction. It offers a SPECT-specific 

solution known for its user-friendly interface and strong alignment with clinical protocols. 

[50] 

 

• More recently, newer simulation tools and platforms have expanded the market. 

STRATOS, developed for rapid prototyping and image simulation, has been adopted in 

experimental setups where faster iteration cycles are needed. [51] 

 

• PET-focused simulators such as SimPET, MCGPU-PET (Monte Carlo GPU-based 

Positron Emission Tomography) and ASIM (Analytic PET Simulator) provide alternatives 

optimized for performance and accuracy in brain imaging or small-animal studies. Some 

platforms, such as SimPET, even offer web-based simulation services to enhance 

accessibility and reproducibility. [52] [53] 

 

3.3. Future Market Perspectives 

Despite significant advancements in SPECT simulation, the synthetic images generated to date 

are not fully realistic when compared to clinical acquisitions. Even when simulations are based on 

attenuation and activity maps extracted from real patient data, these maps are custom-designed 

and often fail to capture the true distribution patterns observed in actual SPECT studies, particularly 

in terms of regional uptake ratios such as SUR. This discrepancy limits the usefulness of such 

simulations for validating quantitative methods. Therefore, the future market perspective is the 

development of different pipelines, such as the proposed in this project, to improve the realism of 

the synthetic images obtained from the simulation tools mentioned above.  

One of the most relevant precedents in this area is the Brain-VISET project (Voxel-based Iterative 

Simulation for Emission Tomography), a collaborative initiative led by the Instituto de Investigación 
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Sanitaria de Santiago de Compostela (IDIS) and the University of Santiago de Compostela (USC). 

Brain-VISET was specifically developed to support simulation and quantification in PET 

neuroimaging. The framework integrates anatomical and functional information extracted from real 

PET and MRI scans to generate synthetic PET datasets through Monte Carlo-based simulations, 

followed by image reconstruction with tools like STIR. Its voxel-level approach allows for precise 

control over activity and attenuation maps, resulting in synthetic images that closely replicate the 

statistical and physical characteristics of clinical acquisitions. [54] 

The Brain-VISET methodology was originally developed for PET and integrated into SimPET. This 

project seeks to apply a similar process for SPECT imaging, where modular simulation frameworks 

are still uncommon. Brain-VISET has served as a key reference, demonstrating the potential of 

anatomically-informed iterative pipelines for generating realistic synthetic datasets. 

Initiatives focused on SPECT are expected to emerge in the near future, following the same 

principles. However, deep learning approaches, such as image synthesis using generative models, 

are also gaining traction as alternative methods for producing realistic medical images without 

traditional physics-based simulation. While not yet mature enough to replace simulation entirely, 

AI-based techniques represent a promising direction for future image generation workflows. 

 

4. Concept engineering 
 

The aim of this final degree project is to create a pipeline capable of simulating and reconstructing 

realistic SPECT data by means of an iterative process. To accomplish this goal, the first step is to 

identify the appropriate tools necessary for developing the project successfully and consider the 

resources at disposal. Also, in this section several workable solutions are studied. 

 

4.1. Dataset 

In order to generate realistic simulated SPECT images, it is essential to work with real clinical data 

that can serve as a reference. For this project, a dataset of patients has been collected. It contains 

images from anonymized patients with Parkinson's disease diagnostic or suspicion, each including 

brain MRI, brain CT, and SPECT scans. The GIB-UB collaborates closely with Hospital Clínic de 

Barcelona, which facilitated access to this dataset.  

 

4.2. Monte Carlo simulation 

Given the advantages of Monte Carlo simulation in accurately modeling physical processes in 

nuclear medicine imaging, this project proposes a MC-based approach. Several Monte Carlo (MC) 

simulation platforms have been developed specifically for SPECT imaging, each offering different 

strengths. Among the most widely recognized are GATE, SIMIND, STRATOS, and MCNP, which 

have already been introduced in the Historical Market Evolution section. In order to choose the best 
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simulation engine for developing the pipeline, the availability and feasibility of each software is 

considered. 

SimSET is a specific Monte Carlo simulator for emission tomography. It is a popular toolkit known 

for its computational efficiency and ongoing development. Although it does not support the 

advanced detector modeling features available in GATE, it offers excellent performance in 

scenarios requiring voxel-based input and high-throughput simulation. These features are 

particularly advantageous for pipelines that involve multiple simulation iterations. [7] Given that 

SimSET is already employed in the host laboratory (GIB-UB), it represents a highly practical and 

accessible option for this Final Degree Project. Its compatibility with existing data workflows, 

processing scripts, and cluster-based computing environments make it the strongest candidate for 

the development of an iterative pipeline. 

In general, these simulation tools require two key 

inputs: an activity map that defines the spatial 

distribution of the radiotracer in the body, and an 

attenuation map that describes the tissue 

densities through which photons travel. In 

addition to these inputs, Monte Carlo simulators 

often rely on auxiliary configuration files that 

define simulation parameters such as detector 

geometry, collimator2 specifications, binning 

strategy, and energy response. SimSET 

architecture is based on a photon history 

generator module, which simulates the 

trajectories and interactions of individual 

photons as they travel through the body and 

reach the detector. [7] The software architecture 

described is represented in Figure 9.  

 

4.2.1. Attenuation and activity maps 

Attenuation and activity maps are typically derived from anatomical imaging modalities such as 

MRI or CT, or generated synthetically when working with digital phantoms. Specifically, T1-

weighted MRI scans are employed to create accurate anatomical segmentations, which are 

essential for defining the activity distribution within the brain. T1-weighted images provide high-

resolution contrast between different brain tissues, making them ideal for accurate structural 

delineation. CT images, on the other hand, are used to derive attenuation maps due to their ability 

to provide quantitative information about tissue densities, which is critical for modeling photon 

attenuation accurately.  

This project proposes generating these maps directly from the anatomical patient images included 

in the clinical dataset by processing them through a Python-based script. By integrating both T1-

 
2 A collimator is a lead-based device in SPECT systems that allows only gamma photons traveling in specific directions to reach 

the detector, improving spatial resolution by blocking scattered or misaligned photons. 

Figure 9. SimSET PHG inputs and outputs [7] 
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weighted MRI (Figure 10, left) and CT data (Figure 10, right), high-fidelity simulations can be 

achieved. 

  

 

 

 

 

 

Figure 10. MRI (left) and CT (right) studies of one of the patients in the dataset (Own source) 

 

MRI segmentation 

To generate attenuation and activity maps from anatomical imaging, a critical first step is the 

segmentation of the brain MRI. This process allows for the extraction of relevant tissue classes and 

anatomical regions needed to construct input maps for simulation. Several established software 

tools are available for this purpose, each offering different advantages in terms of precision, 

processing time, and compatibility with automated workflows.  

• Among the most widely used tools is FSL (FMRIB Software Library), which includes 

modules such as BET for brain extraction and FAST for automated tissue classification 

from T1-weighted MRI scans. It is valued for its balance between accuracy and 

computational efficiency, as well as its ease of integration into Python-based processing 

pipelines [54].  

 

• SPM (Statistical Parametric Mapping), another popular tool, uses a probabilistic 

framework and a priori tissue probability maps to perform voxel-wise segmentation. It is 

well-suited for studies requiring spatial normalization and advanced statistical analysis, 

though its MATLAB dependency can complicate integration in some environments [55].  

 

• FreeSurfer offers detailed cortical and subcortical segmentation, including surface 

reconstruction and morphometric measurements, making it a strong candidate for 

anatomical analysis; however, its high processing time may be a limitation in simulation 

workflows involving large datasets or iterative tasks. [56] 

 

Therefore, the methodology to obtain attenuation and activity maps is the following: Starting from 

the MRI as the base image, masks generated from both MRI segmentation step and CT 

preprocessing are applied, in order to assign a specific attenuation or activity coefficient to each 

material or structure segmented. This results in the attenuation map and the activity map, 

respectively. Examples for this files are shown in Figures 11 and 12.  



 

 

15  

  

 

 

 

 

 

 

 

The activity of interest in the clinical context of Parkinson's is that of the striatum. In simulations, it 

is typically defined by a 4-value SUR code (e.g., 70707070), with each pair of values indicating the 

relative activity of one of the structures present (left caudate, left putamen, right caudate, and left 

putamen). This SUR value is customizable by the user and can be specified both in the activity 

map before launching the simulation or later in the step prior to reconstruction. 

Simulation setup 

Simulation parameters are defined based on the specifications of the imaging system being 

emulated. Ideally, these parameters should match those of the gamma camera used to acquire the 

real SPECT images in the clinical dataset, in order to ensure that the simulated projections replicate 

the same acquisition conditions. This alignment strengthens the validity of the comparison between 

simulated and real data.  

While hardware settings typically remain fixed, other simulation variables—such as acquisition 

time, tracer energy, and the number of photon histories—can be adjusted to better reflect different 

imaging conditions, such as the desired level of noise. SimSET allows the computation of free-

noise simulations but these are computationally expensive and time-consuming, taking around 48 

hours to finish. For this project, simulating with zero noise is not necessary, since the goal is to 

replicate real clinical studies, which are inherently noisy. 

Moreover, it is possible to conduct two types of simulations in SimSET:  

• Independent simulation calculus for each structure: This configuration allows the 

isolated inspection of each anatomical component being simulated (background, left and 

right caudate, left and right putamen and scalp). At the output, simulated projections are 

obtained separately and require a specific postprocessing to prepare data for 

reconstruction.  

 

• Simulation of the whole activity map: This simplified approach simulates the entire 

activity map as a single structure. This method is not as computationally expensive as the 

previous one and is enough accurate for the purpose of this project.  

 

Figure 11. Attenuation map (axial view) 
(Own source) 

Figure 12. Activity map (axial view) (Own 
source) 
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4.2.2. Reconstruction algorithms  
The simulation outputs include projection data in sinogram format and statistical summaries 

describing detection rates and photon histories. In order to perform a valid comparison between real 

and synthetically-generated data, it is crucial that both datasets undergo reconstruction using the same 

algorithm. This is because the reconstruction method itself introduces variability and any mismatch in 

reconstruction methodology could compromise the reliability of the comparison between clinical and 

simulated images.  

Two main reconstruction methods for SPECT imaging data are widely used in clinical and research 

settings: analytical and iterative approaches. 

● Filtered Back Projection (FBP) is an analytical method known for its speed, simplicity, and 

computational efficiency, making it widely used in clinical environments. FBP reconstructs the 

image by redistributing projection counts along the paths they were detected, applying a filter, 

commonly a Butterworth filter, to suppress high-frequency noise. Its advantages include minimal 

computational cost, rapid execution, and straightforward implementation, which are particularly 

beneficial in high-throughput clinical workflows or simulation pipelines requiring multiple 

reconstructions. Despite its strengths, FBP may be more prone to artifacts and reduced image 

quality in cases of low count statistics or non-uniform attenuation. [58] 

● Ordered-Subsets Expectation Maximization (OSEM) is a widely used iterative reconstruction 

technique based on the Maximum Likelihood Expectation Maximization (MLEM) algorithm. OSEM 

refines the image estimate over multiple iterations by comparing measured and estimated 

projections, using subsets of data to accelerate convergence. Compared to analytical methods, 

iterative approaches like OSEM are more computationally intensive but offer enhanced noise 

suppression, better resolution recovery, and the ability to incorporate physical corrections such as 

attenuation and scatter modeling. [59] 

In current clinical practice, both FBP and OSEM are routinely employed, with OSEM gaining 

traction for its superior accuracy in anatomically complex regions such as the brain. However, the 

simplicity, transparency, and computational efficiency of FBP continue to make it an attractive 

option, especially when reconstruction speed and reproducibility are crucial factors. 

 

4.3. Iterative framework 

To address the limited realism of the simulated images generated from the current softwares, this 

project proposes a strategy focused on iteratively improving the realism of activity maps. As 

explained before, these maps include different activity coefficients for the different anatomical 

structures that appear in the image. However, these distribution patterns are usually falsely uniform 

and homogeneous (see activity map in Figure 12) and do not accurately represent the ones 

observed in actual SPECT studies in terms of regional uptake ratios at the different regions of the 

brain. This discrepancy affects the realism level of simulated studies and limits the usefulness of 

such simulations for validating quantitative methods 
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The designed strategy involves comparing each simulated reconstruction with its clinical 

counterpart and adjusting the activity map accordingly. This iterative refinement is performed 

without tuning or modifying the internal parameters of the simulator itself, ensuring that 

improvements are solely driven by the adjustment of the input maps. As a result, the final 

simulations are expected to resemble more closely the physiological distribution of radiotracer 

uptake observed in clinical practice. 

To perform the whole iterative process the following methodology is suggested. The procedure 

begins with the generation of an initial simulation based on attenuation and activity maps derived 

from the patient’s MRI and CT images. Both the simulated and clinical projection data are 

reconstructed using the same reconstruction algorithm to ensure methodological consistency. 

Following reconstruction, both resulting images are aligned to allow for spatial comparison. To 

quantify the similarity between both reconstructed images, a numerical comparison metric is 

computed voxel-to-voxel as done in Brain-VISET [54]. 

In order to adjust the activity map, two solutions are considered:  

One approach involves overlaying an anatomical brain atlas segmented into predefined regions 

onto the reconstructions. This atlas is first transformed from standard space to the patient space 

and resampled to match the reconstruction resolution. Once aligned, the atlas enables the 

calculation of average uptake values in each brain region for both the simulated and clinical images. 

The regional values from the two images are then compared by computing a ratio or difference for 

each atlas-defined region. These values are used to adjust the activity map: the brain atlas is 

overlaid onto the original activity map, and each region is scaled according to its corresponding 

ratio. This modified activity map is used as input for a new simulation, keeping all other parameters 

constant. 

An alternative strategy considered for this step is a voxel-wise approach, where the ratio is 

calculated directly on a voxel-to-voxel basis across the entire brain volume. This method avoids 

potential loss of resolution and allows finer spatial sensitivity, which can be particularly useful when 

tracer uptake patterns are spatially heterogeneous. However, voxel-wise comparison can be more 

sensitive to noise and misalignment, and may require stronger spatial smoothing or regularization 

strategies. In contrast, region-based comparison offers increased robustness by aggregating voxel 

data, but might obscure localized differences, especially in regions with uniform uptake. 

The process is repeated iteratively. At each iteration, the most recently generated activity map is 

modified and used to simulate the next projection set, which is reconstructed and compared again 

to the clinical reconstruction. This loop continues until the similarity between the simulated and real 

SPECT images reaches a predefined threshold, which serves as the stopping criterion for the 

iterative framework. 
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The whole process is schematically represented in Figure 13. It enables progressive refinement of 

the simulated data, with the ultimate goal of achieving reconstructions that are more closely aligned 

with clinical observations.  

 

 

 

 

 

 

 

 

5. Detailed engineering 
 

This project develops a pipeline to execute the iterative process described above (see Figure 13). 

In this section, the different parts of this pipeline are described in detail.  

 

5.1. Dataset preprocessing 

As previously mentioned, the dataset created consists of 55 anonymous patients, each with 

available T1-weighted MRI, CT, and SPECT projection images acquired using one of the gamma 

cameras at Hospital Clínic de Barcelona. In some cases, the CT and SPECT acquisitions were 

performed simultaneously, meaning there is perfect spatial alignment between images of both 

modalities.  

It is important to note that several patients were excluded from the dataset due to significant 

temporal gaps between the anatomical (MRI or CT) and functional (SPECT) studies. When an 

excessive time interval exists between acquisitions, anatomical changes may occur that 

compromise the accuracy of these modalities as anatomical references at the time of the SPECT 

scan. For the purposes of this simulation framework, it is critical that anatomical and functional data 

correspond to the same physiological state of the patient. Therefore, only cases with acceptable 

temporal proximity between imaging modalities were included. The studies included in the dataset 

were acquired between 2022 and 2024. 

 

 

Figure 13. Schematic of the designed  
iterative process (Own source)  
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DICOM to BIDS (Brain Imaging Data Structure) 

All images in the dataset were originally stored in DICOM format, which is the standard format used 

in medical imaging for storing and transferring image data along with embedded metadata. 

However, in order to facilitate further processing and analysis within modern neuroimaging 

workflows, it is necessary to convert DICOM files into the NIfTI format. NIfTI is widely adopted in 

research because it allows for more efficient access, manipulation, and compatibility with analysis 

software and libraries. To carry out this conversion, the executable tool dcm2nii.exe was used. 

While a more modern version of the tool, dcm2niix.exe, also exists and was tested, dcm2nii proved 

to be more compatible with the current Python-based pipeline developed for this project. [60]  

Before starting their processing, all NIfTI images included in the dataset have undergone a visual 

quality control process to confirm the presence of the expected imaging modality and to ensure 

acceptable quality. Studies affected by artifacts or inadequate acquisition protocols were excluded 

in order to maintain the integrity of the dataset and avoid further problems in the next processing 

steps. 

Each converted NIfTI file is accompanied by a corresponding .json file, which stores metadata 

extracted from the original DICOM headers using standardized DICOM tags. These tags include 

critical acquisition information that can be leveraged for simulation and quality control. In this 

project, the DICOM tags associated with the clinical SPECT studies are specifically stored and 

checked to ensure that the simulation parameters accurately reflect the clinical acquisition physical 

conditions. Examples of relevant DICOM tags include: acquisition time, acquisition date, scanner 

manufacturer, gamma camera model, patient orientation and position, image shape, pixel spacing, 

number of frames, etc. (see Figure 14)  

 

 

 

 

Figure 14. DICOM tags (metadata) record from part of the dataset (Own source) 
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In this project, the dataset has been organized following the Brain Imaging Data Structure (BIDS) 

standard. BIDS provides a consistent, hierarchical structure for organizing neuroimaging data, 

enhancing reproducibility, interoperability, and clarity. Originally designed for MRI, BIDS has been 

extended to support CT and SPECT modalities, making it suitable for this multimodal dataset. [61] 

Each subject is stored in a sub-<label> folder, with modality-specific subfolders: rm/ for MRI, ct/ for 

CT scans, dat/ for SPECT images and dat_tc/ for multimodal SPECT and CT studies. An example 

of the BIDS architecture is represented in the image below (see Figure 15).  

 

 
 

Figure 15. Example of BIDS architecture [61] 

 

 

RM segmentation  

The segmentation of brain MRI images in this project is mainly performed using the FSL suite. The 

initial strategy involved developing a Python-based program tailored to run on a Linux workstation 

in the Biophysics laboratory equipped with FSL.  

For skull stripping, two methods are applied:  

• HD-BET: It is a deep learning–based method providing high-accuracy brain segmentation, 

especially suitable for complex or noisy images, with optional GPU acceleration. [62] It 

provides highly accurate brain segmentation and returns, apart from the brain 

segmentation and mask in the original (patient) space (see Figure 16), the segmented 

image transformed into standard space, which can be potentially useful in case spatial 

normalization is needed. 



 

 

21  

• FSL BET: It is a tool from the FSL suite that extracts the brain from MRI images by 

removing non-brain tissues like the skull and scalp [63]. It allows for manual adjustment of 

the brain extraction threshold and offers a robust option intended to improve segmentation 

in noisy or low-quality images. BET outputs, in addition to the brain segmentation and 

mask, a broader set of masks which are essential for constructing the attenuation and 

activity maps that serve as the foundation of our simulation pipeline. The masks generated 

are: an outskin mask (including the whole head of the patient), an outskull mask (just 

excluding the skin), a skull mask (including bone) and an inskull mask (including all the 

tissues inside the skull). (see Figure 16)  

 

  

 

 

 

 

 

 

 

 

 

 

 

A visual inspection of the results obtained from this segmentation step shows that BET does not 

correctly detect the brain in some subjects. Since BET output files are crucial for the pipeline’s 

workflow several tests were conducted in order to improve the results. BET’s robust mode was 

evaluated and different threshold values were tested but no significant improvement was observed. 

Finally, BET was tested in 3 different workstations with different versions of the software, resulting 

in more reliable segmentations using older versions.  

Due to BET’s limited accuracy, a quality control checkpoint was automated to systematically assess 

its performance across the whole dataset. This quality assessment checkpoint relied on the HD-

BET segmentation as ground truth (which was considered as valid by previous visual inspection) 

and consists on comparing the number of voxels included in the BET-generated brain mask and 

the amount of voxels included in the one generated by HD-BET. Subjects exhibiting a large 

discrepancy in voxel count between the two methods were categorized as potentially poorly 

segmented by BET. These cases were subsequently reviewed through visual inspection, 

confirming that the masks generated by BET were inadequate. This quality control step helped 

identify and exclude suboptimal segmentations from further processing. 

Figure 106. HD-BET brain segmentation (top left), HD-BET brain mask (top middle), outskin mask (top right), outskull mask 
(bottom left), skull mask (bottom middle) and inskull mask (bottom right). All images display an axial view of the head. (Own 

source) 
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Additional segmentations are performed using FSL's FAST and FIRST tools.  

FSL FAST (FMRIB's Automated Segmentation Tool) classifies brain tissue into three primary 

types: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Among its outputs, it 

provides an image where each tissue type is represented as a different intensity level (0 for CSF, 

1 for GM, and 2 for WM) (see Figure 17). Additionally, it generates binary masks for each class, 

probabilistic maps, and partial volume estimates, which express the likelihood or fractional content 

of each tissue type per voxel. These maps are key for localizing tissue boundaries and for 

quantitatively characterizing anatomical regions. [64] 

FSL FIRST (FMRIB's Integrated Registration and Segmentation Tool) is used for subcortical 

structure segmentation, focusing on deep gray matter regions such as the caudate, putamen, 

globus pallidus, and thalamus. The tool employs shape and appearance models within a Bayesian 

framework, an approach that combines prior anatomical knowledge with image-derived evidence 

to estimate the most probable segmentation. [65] This allows FIRST to delineate these structures 

with high anatomical precision, even in the presence of image variability. Outputs include multiple 

individual NIfTI files for each structure as well as a combined NIfTI file containing all structures in 

a single labeled volume (see Figure 18). Although FIRST typically expects a full-head T1-weighted 

MRI as input, in this project, the high accuracy of HD-BET was leveraged to preprocess the image. 

The brain segmentation obtained via HD-BET was used as the input to FIRST, taking advantage 

of the tool’s option that allows specifying whether the input has already been brain-extracted. This 

modification improved segmentation outcomes by eliminating irrelevant regions outside the brain. 

 

 

 

 

 

 

 

 

5.2. Attenuation and activity maps 

As previously explained, to generate the necessary inputs for Monte Carlo SPECT simulation, two 

key maps must be constructed for each subject: the attenuation map and the activity map. These 

maps are created through a sequential Python pipeline that integrates multiple intermediate outputs 

derived from prior segmentation and image registration steps. The following section describes in 

detail the steps required to construct the input maps required by SimSET from our MRI and CT 

patient studies. 

Figure 17. FAST output file representing brain tissues with 
different intensity levels (axial orientation) (Own source)  

Figure 18. FIRST output file containing segmentation of 
subcortical structures (axial orientation) (Own source) 
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The workflow of the script is schematically represented in Annex 1. In the description below, some 

of the names of the files are included for ease of understanding.   

1. MRI-CT Co-registration:  

The first step is to align the CT image with the brain MRI using affine registration with ANTs 

(Advanced Normalization Tools), where the MRI serves as the fixed reference. ANTs is a widely 

used image registration toolkit known for its high accuracy and flexibility. [66] Affine registration is 

used here because it preserves linear spatial relationships while allowing for translation, rotation, 

scaling, and shearing, which are sufficient to align images like CT and MRI without distorting 

anatomical proportions [67]. MRI is used as the fixed image because it offers higher soft-tissue 

contrast and spatial resolution, especially for brain structures, making it a more reliable anatomical 

reference. In contrast, CT primarily captures bone structures and lacks the detailed contrast needed 

for precise alignment of brain tissue. This process outputs the aligned CT (ct_reg) and a 

transformation matrix. 

2. Removal of Support Structures:  

To isolate the head from the CT scan and remove the scanner bed or other artifacts, the registered 

CT image is multiplied by the outskin mask, resulting in an image without the surroundings 

(ct_reg_head).  

3. Attenuation Map Construction:  

The construction of the attenuation map integrates anatomical information from the binary masks 

obtained from segmentation and CT intensity values.  

First, a labeled map is built where each voxel is assigned a value according to the corresponding 

anatomical region following these steps: 

• Outskin mask is used as a base and, initially, the entire head is assigned 4 

• The skull (obtained from the skull mask) is set to 5 

• Inskull tissues (obtained from the inskull mask) are labeled as 6 

• The brain (obtained from the HD-BET-derived mask) is labeled as 7 

Then, a binary mask is generated from ct_reg_head and multiplied by the resulting labelled map to 

remove background values and exclude non-head regions. To refine the attenuation 

representation: 

• Voxels with intensity >= 750 HU (Hounsfield Units3) in ct_reg_head are reassigned to value 

3 (representing bone) in the output map. 

• Voxels below -400 HU in ct_reg_head are set to 0 (representing air) in the output map. 

The result is saved as _att_segmentation, containing detailed tissue-type labels. 

 
3 Hounsfield Units (HU) are a quantitative scale for describing radiodensity in medical CT images.  
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A simplified 8 bits version is created for SimSET compatibility, where muscle-equivalent tissues 

(current labels 4 and 5 representing outer skin and inskull non-brain tissues) are unified as value 

7, bone is maintained with label 3 and brain is set to 4. This map is saved as _att_map and later 

used as simulation input. SimSET assigns predefined linear attenuation coefficients to each label 

in the input attenuation map, which correspond to materials such as air, bone, soft tissue, and 

muscle. By matching the values in our map to the expected SimSET labels (displayed in Figure 

19), we ensure that the physical properties modeled during photon transport simulation are realistic 

and correctly interpreted by the software. 

 
 

Figure 19. SimSET attenuation indexes for different materials (Own source) 

 

4. Striatum Segmentation and Activity Labelling:  

This is a previous step for generating the final activity map. 

To generate binary masks of caudates and putamens, these components are identified from the 

segmentation of subcortical structures obtained from FIRST (all_fast_firstseg) and a binary mask 

is created for each structure.  

These masks (created using _att_segmentation as basis, initial attenuation map) are then used to 

assign region-specific labels in the activity segmentation file (_act_segmentation), directly 

generated from copying _att_segmentation. This labelled map is used in the next step to assign an 

activity value to each structure. 

Once the different regions masks are used to generate the labelled map, they are not needed 

anymore. Therefore, their further processing becomes optional and is only required in case the 

simulation is conducted processing each structure independently, which is not the instance of this 

pipeline. For this reason, even though the script generates outputs for this files, they will be no 

longer mentioned. 

5. Activity Map Generation:  

The correct execution of the iterative pipeline requires the activity of all anatomical components 

present in the image being established in the input activity map (before the simulation calculus), 

including the one of the striatum. As explained in previous sections, an 8-digit SUR code (e.g., 

'70707070') is used to encode the relative activity levels of four specific striatal regions: left caudate, 

right caudate, left putamen, and right putamen. Each pair of digits in the SUR string corresponds 
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to one of these regions and defines a relative activity intensity. Therefore, a SUR code with the 

same 2-digit number repeated four times indicates that all the striatum structures have the same 

uniform activity. All non-striatal tissues, such as muscle, scalp, or other brain regions, are assigned 

a uniform background activity value (10), while bone and air are assigned a value of 0 to reflect the 

absence of tracer uptake. 

The activity value for each region is computed using the formula: 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖 = 𝑆𝑈𝑅𝑖 + 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑   (Equation 2)  

where i indicates each striatal structure. This value is then assigned to all voxels in the 

corresponding region within a copy of the segmented activity map (_act_segmentation). According 

to SimSET requirements, original SUR digits must be ranging from 00 to 99 to represent a realistic, 

continuous and acceptable activity range.  

This approach results in a custom-designed map that reflects physiological activity differences 

between structures, with striatum activity characterized by the chosen SUR code. The resulting 

map is saved as _act_map_SUR_{SUR_code} and an Excel file is generated to log the assigned 

activity values for each region, ensuring reproducibility and traceability. 

To proceed with the execution of the Python script described, it is necessary to import specific 

modules from the FSL Python API. In particular, the script requires the module fsl.utils.image.roi, 

as well as the Image class from fsl.data.image. These components are essential for manipulating 

neuroimaging data and working with regions of interest (ROIs) within image volumes. Therefore, it 

is important to ensure that FSL is properly installed and configured in the Python environment 

before running the script.  

6. Resampling to Simulation Resolution:  

To conduct all simulations with the same geometry and uniform dimensions, activity and attenuation 

maps must be resampled to a fixed voxel size and volume dimensions. This involves three main 

steps: 

1. Affine Definition and Resampling: Each image is resampled using Nilearn’s resample_img 

function, with a new affine matrix that defines the desired voxel size of 0.859 × 0.859 × 0.9 

mm and a final volume shape of 256 × 256 × 240 voxels. Nearest-neighbor interpolation is 

used, as the inputs are binary masks or labeled maps (e.g., _act_map_SUR_{SUR_code} 

and _att_map). This interpolation method preserves discrete values and avoids introducing 

partial volume effects. The Python function responsible for this step adjusts the affine 

matrix accordingly and casts the resulting data to 8-bit unsigned integers (uint8). 

2. Cropping and Padding: Once resampled, images are either cropped or zero-padded to 

strictly match the target dimensions. If the resampled shape is smaller than the target (e.g., 

new_shape[0] = 252 vs. target = 256), padding is applied symmetrically: for a 4-voxel 

difference, 2 voxels are added before and after (i.e., pad = (-2, 254)), effectively instructing 

the cropping tool to extend the volume beyond its actual bounds by filling with zeros. 

Conversely, if the resampled image is larger than the target, excess voxels are cropped.  
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3. Consistent ROI Definition: For consistency in subsequent simulations and reconstructions, 

all maps are cropped with the same spatial indices derived from anatomical landmarks. 

This is especially important along the z-axis to avoid losing relevant brain regions or 

including non-cranial areas like the neck. Along the z-axis (inferior-superior direction), no 

padding is added below the neck, as simulating air under the patient would not be correct. 

This way we ensure anatomical structures remain centered and standardized across 

subjects. 

This step is performed by two python functions; one to compute and record the pad and the other 

one to read this pad and apply the resampling. The padded or cropped dimensions are also logged 

for reproducibility.  

Output files obtained from this step include both final attenuation and activity maps and both initial 

attenuation and activity maps labeled, all resampled to the target space for simulating.  

7. Conversion to SimSET Format:  

Due to SimSET requirements, all resampled maps are converted to .dat, .img and hdr Analyze-

format4 files and cast to uint8.   

8. Resampling to reconstruction resolution 

In addition to the simulation geometry, attenuation and activity maps are also resampled to match 

the resolution and geometry of the reconstructed SPECT images. This ensures that all reference 

data is also available in the reconstruction space for any potential alignment, evaluation, or 

comparison task that may be needed later in the analysis. This step may allow, for example, a 

future adjustment of the activity map directly in the reconstruction space. 

The resampling is performed using the same Python-based utilities as in the simulation preparation 

stage, ensuring consistency in affine transformation and interpolation. Specifically, activity and 

attenuation maps that have already been resampled to simulation space undergo a second 

resampling. This is done by applying nearest-neighbor interpolation to preserve the discrete nature 

of the data. These maps are resampled to a fixed voxel size of 3.9 mm × 3.9 mm × 3.9 mm and 

volume shape of 128 × 128 × 56, matching the resolution of reconstruction space. The output files 

follow the naming convention: *_map_res_reco. 

9. Template transformation 

In some cases, it is useful to perform the full processing pipeline starting from templates in standard 

space. This allows for the possibility of reverting to standard space later in the workflow, should 

additional transformations or comparisons be required. For this reason, the processing of two 

standard-space templates is incorporated into the script: a whole-brain T1-weighted anatomical 

template (Figure 20) and an occipital region template (Figure 21). The occipital region is specifically 

selected as it is commonly used as a reference in functional neuroimaging due to its anatomical 

 
4 Analyze-format files are an early neuroimaging data format consisting of a .hdr (header) and .img (image data) file pair.  
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clarity, relative stability in resting-state conditions, and preservation across various neurological 

disorders. This makes it a reliable region for normalization and comparative analysis. [33] 

Both templates are first transformed into patient space. The T1 template is aligned using an affine 

transformation. The occipital template, in turn, is transformed using a generic label interpolator, as 

it contains discrete labeled regions; this method avoids interpolation artifacts and preserves the 

integrity of label boundaries. Once in patient space, both templates are resampled to match the 

simulation geometry. The occipital template is resampled using the same nearest-neighbor 

interpolation and voxel specifications used for attenuation and activity maps, ensuring consistency 

in spatial resolution and label preservation. The T1 template, being a continuous anatomical image, 

is resampled using continuous interpolation to preserve intensity gradients and anatomical detail. 

Finally, both resampled templates are further resampled into reconstruction space using the same 

methodology as in the previous resampling.  

 
 

 

 

 

 

 

 

Lastly, to be ready for simulation, attenuation and activity maps of each subject must be adapted 

to the architecture of folders and filenames the simulator is expecting as input. 

 

5.3. SimSET Simulation 

As mentioned above, the chosen software engine to carry out the project is SimSET. This simulator 

is installed in a clustered workstation of the Biophysics and Bioengineering Laboratory. All 

simulations are launched from that workstation, a Linux-based high-performance computing (HPC) 

environment that operates through a node-based architecture. In this distributed computing model, 

tasks are executed across individual nodes, which act as semi-independent processing units within 

a shared infrastructure. To avoid interfering with other computationally intensive processes being 

run by other users on different nodes, all simulations are carried out in one of the available nodes, 

ensuring that they remain isolated and do not impact on the performance of parallel workloads 

within the system. 

As previously mentioned, to closely replicate clinical SPECT studies, it would be ideal that 

simulation parameters describing the acquisition system are configured to match the physical 

characteristics of the gamma camera being emulated. In this project, the emulated acquisition 

Figure 20. T1 template in standard 
space (axial view) (Own source) 

Figure 21. Occipital template in standard 
space (axial view) (Own source) 
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system is the gamma camera 1 specified in the DICOM metadata of the clinical scans performed 

at Hospital Clínic, which corresponds to a Siemens system.  

On the other hand, indications for the simulation step of the pipeline include performing short (due 

to the time limitation of this Final Degree Project) and noisy simulations (to mimic real conditions). 

Noise level and simulation time can be both controlled by adjusting parameters such as the number 

of decays to simulate and the decay time. The number of decays to simulate determines how many 

radioactive disintegrations are generated, directly influencing the amount of statistical noise in the 

resulting projections. The decay time defines the total acquisition duration, which, in combination 

with activity levels, affects the event density. By lowering the number of simulated decays or 

shortening the decay time, we produce more realistic, noise-containing images that better reflect 

clinical conditions while also reducing computational cost and time. These modifications resulted 

in statistically balanced simulation outputs, as confirmed by the values reported by the simulation 

engine: the sum of accepted weights, which reflects the total contribution of all detected events, 

and the sum of squared weights, an indicator of statistical variance. These two values being of the 

same order of magnitude suggest that the simulation is not dominated by outlier events with 

disproportionate weights. Checking this balance is essential to ensure the simulated data are 

suitable for subsequent processing.  

Nevertheless, since the methodology of this project is based on improving image realism through 

iterative simulations, it is not strictly necessary for the simulation parameters or the noise level to 

be fully optimized. The aim is not to achieve maximum realism from a single simulation run, but 

rather to progressively enhance realism by adjusting the activity map while keeping the simulation 

parameters fixed. As long as the simulation parameters remain the same, any increase in realism 

across iterations will depend solely on the modifications applied to the activity map. Starting from 

a reasonably realistic baseline is desirable, but what truly matters is the detection of a progressive 

improvement achieved in each iteration without the need of changing parameters related to the 

acquisition system characterization. 

Regarding the simulation method, simulating each structure separately is not necessary for the 

purposes of this project. Therefore, the simplified approach in which the entire activity map is 

simulated as a single structure is adopted.  

 

5.4. FBP Reconstruction 

As previously discussed, it is important that both clinical and simulated projections are 

reconstructed using the same method, in this case FBP. This is particularly important because 

reconstruction is performed at every iteration of the workflow. If the activity map is progressively 

adjusted to enhance realism of simulated data, but the reconstruction method differs from the one 

used for the clinical data, additional variability is introduced into the process. Such inconsistency 

could undermine the improvements in similarity that the iterative activity map refinement is intended 

to achieve. Ensuring reconstruction consistency is therefore essential for maintaining the integrity 

and comparability of the results.  
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The basis of FBP reconstruction algorithm has already been explained in the Concept Engineering 

section. As mentioned there, a Butterworth Filter is applied before reconstruction to reduce high 

frequency noise that would otherwise be amplified by the ramp filter. The chosen parameters for 

the filter are a cut-off frequency of 0.5 and an order of 10. Also, FBP command itself applies a ramp 

filter to compensate for the blurring introduced by the back-projection step. It enhances high-

frequency components and restores sharpness, ensuring the reconstructed image accurately reflects the 

spatial distribution of the activity. The specified parameters are used for both simulated and clinical 

reconstructions.  

Simulated projections  

A custom Python script has been developed to automate the complete post-processing and 

reconstruction workflow of the simulated projections.  

This script integrates multiple processing stages into a single, consistent workflow. It begins by 

locating the relevant projection folders corresponding to each patient and SUR condition simulated. 

The simulation provides four types of projection files: primary photons, high-energy scatter, low-

energy scatter, and the total projections file, labeled simply as ‘projeccions’. Each file represents a 

different component of the detected signal: primary photons reach the detector without interaction, 

while the scatter components account for photons that have been deflected at different energy 

levels. Although the ‘projeccions’ file is theoretically the sum of all components, the pipeline 

explicitly reconstructs the image by adding the three individual components manually. This ensures 

maximum reliability and guarantees that the final input to the reconstruction accurately reflects the 

full projection data, as is the case in clinical studies. Once the components are summed, the 

resulting projection volume is normalized to a fixed target count value, estimated based on typical 

signal levels observed in clinical SPECT acquisitions. This normalization serves a dual purpose: it 

enforces consistency across simulations and reproduces realistic clinical count statistics, improving 

the comparability between simulated and real data. The normalized image is then rotated to match 

the correct acquisition orientation and cropped to extract the relevant region. After this geometric 

preparation, the Butterworth low-pass filter is applied. Filtered projections are then submitted to a 

custom FBP reconstruction module, which emulates the clinical reconstruction setup. Finally, the 

reconstructed volumetric image is saved alongside its header file. Throughout the process, header 

files are verified or regenerated to ensure compatibility with Analyze-format conventions.  

This integrated script allows direct reconstruction of full-volume simulated activity maps that already 

encode the desired SUR configuration. The described process is summarized in Figure 22.  

 

Figure 22. Reconstruction workflow for simulated projections (Own source) 
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Clinical projections  

The reconstruction of clinical projections is carried out using a custom Python script that automates 

preprocessing and FBP reconstruction.  

Although the same reconstruction method and exactly the same parameters are used for both 

clinical and simulated projections, ideally the same script would have been applied to both cases. 

However, this is not feasible due to the inherent variability of clinical acquisitions. The 

reconstruction script developed for simulated data assumes very specific structural features and a 

fixed format that are consistent across all simulated subjects. In contrast, clinical projections often 

require tailored preprocessing steps depending on the acquisition characteristics. As a result, the 

reconstruction of simulated projections is performed executing in an Ubuntu-based workstation the 

custom Python script described earlier, which internally calls a series of bash commands. In turn, 

the reconstruction of clinical projections is carried out on a Windows system using precompiled 

.exe executables. This dual-system setup, although not ideal, allows each type of data to be 

handled with the tools and platform best suited to its format and variability. 

 

5.5. Iterative framework 

The iterative process developed in this project (already introduced in the Concept Engineering 

section) relies on a region-based approach for adjusting the former activity map. A brain atlas 

divided into anatomical regions is used to quantify the difference between clinical and simulated 

images on a per-region basis. The resulting ratio from this comparison is then used to modify the 

activity map, which is resimulated in the next iteration. This feedback mechanism aims to 

progressively reduce the discrepancy between clinical and simulated data, enhancing realism in a 

structured and localized manner. 

The first step in the framework is to generate the initial simulation, which is obtained from an activity 

map defined by the SUR code 70707070. In practice, the specific SUR value used at this stage is 

not critical, since the activity distribution will be iteratively adjusted as needed throughout the 

process. This is the selected value because it lies within the imposed range (00 to 99, considering 

a background activity of 10), providing a moderate initial contrast that makes the striatum clearly 

distinguishable and visibly enhanced in the first iteration. It is important to note that this uniform 

SUR configuration does not reflect real physiological distribution but serves as a functional starting 

point for the iterative refinement. 

Reconstructions alignment  

To accurately compare the clinical and simulated reconstructions, both images must be in the same 

spatial orientation and resolution. Since this project produces many simulated reconstructions in 

the native (MRI) space, one for each iteration, it is most practical to transform the clinical 

reconstruction to this common reference space. This way, the alignment step only needs to be 

performed once per subject, minimizing redundancy and ensuring consistency across iterations. 
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A dedicated Python script handles this realignment. The first step is to make the orientation of these 

reconstructions match. Then, the script uses the ANTsPy library [66] to register the flipped clinical 

image (moving) to the simulated reconstruction (fixed). Several transformation models have been 

tested for this task, including rigid, affine, and SyN (non-linear) registrations. The similarity 

transform is ultimately selected as it visually provides the best balance between accuracy and 

stability. This choice is particularly important, as the precision of this alignment step is critical: even 

small misalignments can compromise the validity of the region-based comparisons used to guide 

the activity map updates. 

Anatomical atlas registration and resampling  

The atlas used in this project for regional brain analysis is the xAAL (extended Automated 

Anatomical Labeling) atlas. This atlas is an enhanced version of the widely known AAL atlas, 

originally developed by Tzourio-Mazoyer et al. at the French neuroimaging research institute GIN 

(Groupe d'Imagerie Neurofonctionnelle). The xAAL version refines and expands the original 

labeling to offer better anatomical accuracy and broader coverage, particularly in cortical and 

subcortical areas. It segments the brain into well-defined regions using the standard MNI152 space, 

enabling consistent comparisons across subjects and studies. Its detailed parcellation makes it 

especially suitable for region-based quantification and image adjustment, as required by the 

iterative framework of this project. 

Before using the atlas to guide either the similarity comparison or the modification of the activity 

map, it must be spatially aligned with the patient-specific data and resampled to match the 

resolution and dimensions of the simulation and reconstruction volumes. The atlas is initially in 

standard (MNI) space and thus must undergo registration and resampling to be usable within the 

iterative framework. 

 

 

 

 

 

 

 

 

 

 

A Python script accomplishes this task through a multi-step process: 

1. Registration to Patient Space: The first step is to register the xAAL atlas, which is defined 

in standard space, to the patient’s native anatomical space. This is achieved using the 

ANTsPy library. Initially, the registration was performed using the patient’s T1-weighted 

MRI as the fixed image. However, since the T1 image includes extracranial and 

extracerebral structures that are not present in the atlas, which contains only cerebral 

regions, this led to suboptimal alignment. To address this, the T1 image has been replaced 

by a segmentation mask that includes only the brain, improving registration performance 

by ensuring spatial correspondence between both inputs. Several transformation models 

Figure 23. xAAL anatomical atlas (Own source) 
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have been tested, including rigid and affine registrations. However, the SyN (Symmetric 

Normalization) method is ultimately selected due to its superior performance in capturing 

both global and local anatomical variations, especially in deep brain structures. The xAAL 

atlas is treated as the moving image, and the subject-specific brain mask as the fixed 

reference. After computing the non-linear transformation, the atlas is warped into patient 

space using nearest-neighbor interpolation to preserve its discrete labeling. The result is a 

subject-specific atlas, spatially aligned to the patient’s anatomy. 

2. Resampling to Simulation Space: Once aligned to the patient space, the atlas is then 

resampled to match the resolution and voxel dimensions of the simulated projection data. 

This resampling involves adjusting the voxel size to a predefined resolution (0.859 × 0.859 

× 0.9 mm) and applying a spatial padding specific to the patient, retrieved from a subject-

specific Excel file generated from the maps generation code. The padding ensures that the 

final image fits precisely into the simulation volume dimensions (256 × 256 × 240). 

3. Resampling to Reconstruction Space: Additionally, the script generates a second 

resampled version of the atlas to match the resolution and size of the reconstructed 

images. In this case, the resampling adjusts the image to a coarser resolution (3.9 mm 

isotropic voxels) and resizes the volume to 128 × 128 × 56 voxels, which corresponds to 

the FBP reconstruction setup. The appropriate padding for this transformation is again 

extracted from a separate subject-specific Excel file previously created. 

In both resampling steps, the atlas data is first converted to uint8 to ensure compatibility, and 

nearest-neighbor interpolation is used to maintain the integrity of the label values. The final outputs 

are two patient-specific atlas images, one resampled to simulation space and the other to 

reconstruction space, that can be directly used for voxel-based operations in the iterative similarity 

framework. This preprocessing step ensures that the anatomical regions defined in the atlas are 

spatially valid and accurately overlaid on both simulated and clinical reconstructions.  

Comparison metrics  

Two quantitative metrics are established to evaluate the similarity between simulated and clinical 

images: the Structural Similarity Index Measure (SSIM) and the Mean Squared Error (MSE). 

SSIM is a perceptual metric that quantifies image similarity by evaluating structural information, 

contrast, and luminance between two images. It is particularly useful in medical imaging, as it 

captures how similar the spatial organization of anatomical structures is between the simulated and 

clinical reconstructions. SSIM values range from -1 to 1, where 1 indicates perfect similarity. Since 

the SSIM metric does not directly support volumetric (3D) image comparison, the evaluation was 

adapted to a slice-by-slice approach. Specifically, the SSIM was computed independently for each 

axial slice of the images. For each slice, the values in the simulated and clinical reconstructions are  

extracted, SSIM is then calculated for these 2D slices and the resulting values are averaged across 

all slices to obtain a final, representative SSIM score. [68] 

MSE, on the other hand, calculates the average of the squared differences between corresponding 

voxel intensities in the two images. It provides a straightforward estimate of pixel-wise dissimilarity, 
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where lower values indicate greater similarity. While MSE is sensitive to intensity differences, it 

does not account for structural or perceptual factors as SSIM does. [69] Since dealing with float 

images, MSE falls in the range between 0 and 1.   

Together, these two metrics offer a complementary assessment: SSIM captures structural fidelity, 

and MSE reflects numerical accuracy.  

In this project, similarity metrics are not computed over the entire reconstructed image but are 

restricted to the brain region. This decision is based on the fact that the iterative adjustments are 

applied exclusively to the brain activity map using a region-based brain atlas. As such, only the 

brain is subjected to modifications across iterations, and therefore it is the only region where 

improvement in similarity can be expected. Including the rest of the image, such as extracranial 

tissues or background, would introduce variability unrelated to the iterative process and could mask 

the actual impact of the activity map adjustments. In particular, structures that remain unchanged 

throughout the simulation (e.g., skull, scalp, or surrounding air) do not contribute meaningfully to 

the iterative refinement and may even bias the evaluation. For example, clinical SPECT 

acquisitions typically exhibit significantly more noise outside the patient due to acquisition 

conditions. This peripheral noise is not reproduced in the simulated images unless specific 

simulation parameters are specifically tuned to mimic it. Therefore, incorporating these regions in 

the similarity computation could lead to an underestimation of the improvement achieved in the 

brain. To ensure that the similarity metrics truly reflect the effectiveness of the activity map 

adjustments, the comparison is masked by a brain region defined by the same atlas used to modify 

the activity map. Achieving a more realistic match across the entire image, including extracranial 

noise, would require fine-tuning the simulator’s configuration, which falls outside the scope of the 

current iterative framework. 

Activity map adjustment 

To implement the iterative adjustment of the activity map, a Python script is developed to compute 

region-wise scaling ratios between the simulated and clinical reconstructions, and to generate a 

new activity map accordingly. First, the xAAL atlas registered to the reconstruction space is used 

to extract anatomical regions of interest. For each labeled region, the mean intensity is computed 

separately in the clinical and simulated images. A ratio is calculated as the quotient of clinical to 

simulated mean intensity (see Equation 3) and stored in a ratio map with the same spatial 

dimensions as the atlas.  

𝑟𝑎𝑡𝑖𝑜 =  
𝑚𝑒𝑎𝑛𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙

𝑚𝑒𝑎𝑛𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
    (Equation 3) 

These ratios are also exported to an Excel table for further inspection. To improve interpretability, 

the script then enriches the Excel book with anatomical region names by merging it with the 

reference file containing xAAL label definitions. Although this ratio map is resampled to simulation 

resolution by means of a nearest neighbout interpolation, the designed approach does not consist 

on directly multiplying this ratio map to the activity map for scale it. Resampling from the 

reconstruction resolution to simulation space is basically doing the inverse process we did when 

going from simulation to reconstruction space. However, simulation space has much more 

resolution than reconstruction one, therefore, the resampling from a lower resolution space to a 
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higher one could lead to inaccuracies and undesired changes in the ratios values. Because of this, 

ratios for each region are extracted from the saved Excel file and copied to the atlas resampled to 

simulation space according to the label each voxel belongs to. This way, the ratios values used to 

modify the activity map have not suffered any resampling process that could have altered them.  

The script generates a new activity map by scaling the previous one in each iteration. Regions 

without a valid ratio (not represented in the atlas filled with ratios) are filled with the mean ratio 

computed from occipital regions, which are assumed to represent the reference activity. This step 

is crucial to maintain the magnitude and scale of the regions or voxels that are not included in the 

atlas used to adjust. Despite these regions not being taken into account for the comparison with 

clinical SPECT, this way we ensure that all voxels in the image are rescaled along with the brain to 

preserve all the activities as relative (proportional to the one in the occipital), even the activity of 

extracellular components. 

The resulting product is normalized and scaled to an 8-bit intensity range (0–127) to comply with 

the input format required by the simulation software. Finally, the updated activity map is saved in 

both NIfTI and Analyze formats, ready to be passed to the next iteration of the simulation pipeline. 

This entire process ensures that each iteration reflects targeted, region-specific improvements in 

similarity between simulated and clinical images. 

The described workflow is schematically represented in Figure 24.  

 

Figure 24. Schematic of the designed iterative framework (Own source) 

 

 

5.5.1. Stopping criteria 
In the design of the pipeline, the stopping criterion for the proposed iterative process was defined 

through a combined evaluation using both SSIM and MSE metrics, as this dual approach provides 

a more comprehensive assessment of similarity. While SSIM captures structural and perceptual 
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resemblance between the clinical and simulated images, MSE quantifies the voxel-wise intensity 

differences, offering complementary insights. The initial proposals were: a threshold of SSIM ≥ 0.8 

to ensure sufficient structural similarity, alongside a Mean Squared Error (MSE) ≤ 0.005, which is 

understood as a reasonable limit indicating acceptable numerical agreement. This combined 

criterion ensures that the iterative adjustments yield reconstructions that are not only visually 

consistent with clinical data but also quantitatively accurate, providing a robust and balanced 

foundation for convergence. 

5.6. Results and Discussion 

When testing the iterative process on the subjects from the dataset, the results confirmed the 

following: in general, the similarity between the clinical and simulated reconstructions increases 

with each iteration. However, a few subjects were excluded from the evaluation due to failures in 

the realignment step between clinical and simulated reconstructions. This step is critical for 

ensuring that SSIM and MSE are accurately calculated, and any misalignment would compromise 

the validity of these metrics. 

One notable observation is that the activity map tends to undergo substantial adjustments during 

the first iteration, but subsequent iterations result in much smaller changes. This indicates that the 

magnitude of adjustment needed progressively decreases, as the difference (or ratio) between 

simulated and clinical region intensities becomes smaller with each cycle.  

In Figure 25, an example is shown illustrating how the activity map evolves over two iterations (in 

addition to the initial simulation) for a single subject, along with the corresponding reconstructions 

generated from each cycle, compared to the clinical reconstruction.  

 

Figure 25. Evolution of the activity map and the simulated images over 2 iterations (First column corresponds to the original 

simulation and left image to the clinical reconstruction) (Own source) 
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It is worth noting that when the initial iteration already achieves a high similarity score, as happens 

with the subject shown above (see Figure 25) the improvements in subsequent iterations are 

minimal and often negligible. 

For most subjects, realism improves progressively with each iteration but eventually reaches a 

plateau. In some cases, minor oscillations in similarity scores are observed, which may even result 

in slight decreases in SSIM or increases in MSE. Results for 3 patients are displayed in Figures 26 

and 27.  This suggests that the framework reaches a point where further updates do not improve 

and can oscillate and even provide worse returns. 

 

Figure 26. Evolution of SSIM values across iterations for three representative subjects. (Own source) 

 

This plot shows how the Structural Similarity Index (SSIM) evolves over the iterations for three 

different subjects. Each line represents a subject and starts from a different initial similarity level, 

reflecting inter-subject variability. In all cases, the SSIM improves progressively across iterations, 

indicating that the iterative adjustments are effectively increasing the structural similarity between 

simulated and clinical reconstructions. The curves tend to stabilize in later iterations, suggesting 

convergence of the process. 
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Figure 27. Evolution of MSE values across iterations for the same subjects. (Own source) 

 

This plot illustrates the evolution of the Mean Squared Error (MSE) between simulated and clinical 

reconstructions for the same three subjects. Lower MSE values indicate higher numerical similarity. 

All subjects exhibit a consistent reduction in MSE through the iterations, with a sharp improvement 

in the early steps followed by stabilization. The decreasing trend confirms that the activity map 

adjustments are reducing voxel-wise intensity differences, complementing the SSIM analysis. 

SSIM and MSE reflect very different aspects of similarity. As such, in some of the subjects tested, 

improvements in one metric do not always correspond to improvements in the other. This reinforces 

the idea of either using both measures jointly to evaluate convergence or studying a more suitable 

metric. 

Finally, based on the observed behavior, it is proposed that the stopping criterion should not rely 

on a fixed threshold, but rather on convergence. Specifically, the process should stop when both 

SSIM and MSE stabilize, i.e., when neither shows significant improvement compared to previous 

iterations. This adaptive criterion would make the framework more robust and generalizable across 

different subjects. 
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6. Execution schedule  

 

In this section one of the crucial parts of the planification of a project is represented: the expected temporal distribution. Usually, time is one of the limiting factors 

of the projects, as in our case, so it is of high importance to correctly split the tasks and assign them a reasonable amount of time. 

6.1.  Work Breakdown Structure (WBS) 

This section focuses on outlining the various tasks required to successfully complete the project. (Figure 28)  

WBS Chart 

 

Figure 28. WBS Chart (Own source) 
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WBS Dictionary 

Code Task name Description Duration 

1 INITIAL BIBLIOGRAPHIC RESEARCH 

1.1 Market Analysis Literature review on SPECT simulation 

softwares and iterative projects such as 

BrainViset.  

3 days 

2 PROJECT MANAGEMENT 

2.1 Tasks definition Definition of the objectives and the methodology 

to accomplish them. Division of the procedure 

into tasks. 

2 days  

2.2  Execution Schedule  Planning of the Project timming.  1 day 

3 DATASET PREPROCESSING 

3.1 Downloading of clinical 

studies 

Dataset generation from the hospital repository.  3 days 

3.2 DICOM to BIDS Images are converted to NIfTI format and 

organized following BIDS architecture.  

4 days 

3.3 RM segmentation Generation of anatomical masks using MR 

images and FSL tools. 

15 days 

3.4 Attenuation and activity 

maps generation 

Development a Python script to create 

attenuation and activity maps.  

10 days 

3 MONTE CARLO SIMULATION 

3.1 Familiarization with 

SimSET Software 

Launch first simulations and analyze the 

configuration setup of SimSET.  

7 days 

3.2 Adaptation of scripts and 

files to SimSET 

architecture  

Adapt the maps generation code to match with 

the simulator expected inputs and launch noisy 

simulations.  

8 days 

4 FBP RECONSTRUCTION 

4.1 Reconstruction of 

simulated projections 

Python-based FBP pipeline applied to 

simulated projections.  

7 days 

4.2 Reconstruction of clinical 

projections 

FBP reconstruction of real SPECT images by 

means of Windows executables. 

4 days 

4.3 Reconstrutions alignment  Transformation of clinical reconstruction to 

simulated MRI patient space.  

3 days  

5 ITERATIVE FRAMEWORK 

5.1 Procedure design Study of the possible solutions to approach the 

iterative pipeline.  

4 days 
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5.2 Atlas Registration and 

Resampling 

Transforming xAAL atlas to patient space and 

resampling it to both simulation and 

reconstruction resolutions. 

4 days 

5.3 Comparison between 

clinical and simulated 

images  

Computation of SSIM and MSE within the brain 

mask. 

5 days 

5.3 Ratios Computation Regional mean intensity comparison and ratio 

map creation. 

4 days 

5.4 Adjustment of the activity 

map 

Generation of new activity map based on 

correction ratios. 

3 days 

5.5 Repeat process and test 

performance 

Execution of next simulation iterations and 

tracking results.  

10 days 

6 FINAL STAGE 

6.1 Written document  Throughout the execution of the project, a 

memory of the process performed is written.  

40 days 

Deliverable: 11/06/2025 

6.2 Oral presentation Slide creation and rehearsal for defense. (10 

minutes) 

 5 days 

Deliverable: 19/06/2025 

Table 1. WBS dictionary (Own source) 

6.2. Precedence analysis and critical path method 

To estimate the duration (in days) required for each task, a precedence analysis has been 

performed. The expected time for each task is calculated using the PERT (Program Evaluation 

and Review Technique) method. 

Task ID Preceding 
activities 

Duration (days) Looseness 
(days) 

1.1 Market Analysis               A - 3 76 

2.1 Tasks definition B - 2 1 

2.2 Execution 
schedule 

C B 1 76 

3.1 Downloading of 
clinical studies                    

D - 3 0 

3.2 DICOM to BIDS   E B, D 4 0 

3.3 RM segmentation F E 15 0 

3.4 Attenuation and 
activity maps 
generation 

G F 10 0 

4.1 Familiarization 
with SimSET 
software                

H G 7 0 
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4.2 Adaptation of 
scripts and files to 
SimSET architecture  

I H 8 0 

5.1 Reconstruction of 
simulated 
projections 

J I 7 0 

5.2 Reconstruction of 
clinical projections                

K E 4 43 

5.3 Reconstructions 
alignment 

L J, K 3 0 

6.1 Procedure design                    M B 4 51 

6.2 Atlas registration 
and resampling                    

O G 4 43 

6.3 Comparison 
between clinical and 
simulated images                             

N L, M 5 0 

6.4 Ratios 
computation                

P M, K, O 4 0 

6.5 Adjustment of the 
activity map                           

Q M, P 3 0 

6.6 Repeat the 
process and test 
performance            

R Q 10 0 

7.1 Written document                       S - 40 34 

7.2 Oral presentation                              T S 5 34 

Table 2. Data for precedence analysis (Own source) 

The activities with no looseness make up the critical path.  
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6.3. GANTT Chart 

Project conducted from February to June, one meeting per week with director and tutor of the project. Timing of the project displayed in Figure 29. 

 

Figure 29. GANTT diagram of the project (Own source)
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7. Technical feasibility 
 

7.1. SWOT Analysis  

In this section, a technical viability study will be conducted using the SWOT analysis method, which 

involves listing the project's strengths and weaknesses (internal origin) but also its opportunities 

and threats (external origin). This approach provides an overall assessment of the project's 

feasibility and highlights potential challenges that may arise during the development of the chosen 

solution. The SWOT diagram is illustrated in Figure XX.  

 

 

Figure 30. SWOT matrix (Own source) 

While most points in the matrix are self-explanatory, it is worth clarifying that the lack of realistic 

noise modeling in SimSET refers to the fact that simulation parameters are not explicitly tuned to 

match the noise characteristics of real clinical acquisitions, which limits absolute realism. Regarding 

weaknesses such as “remote work and availability of cluster resources,” these point to the shared 

nature of the SOL computing infrastructure, where node usage may be restricted or delayed 

depending on other users’ activity. Similarly, “operating system dependency” in the threats section 

refers to the division of workflows between Linux (with Ubuntu operating system) and Windows 

environments, which may complicate portability or future integration. Moreover, since working with 

real data, the project must comply with data privacy regulations, which are specified in section 9 

(Legal aspects). Finally, the “temporal limitation of the project” reflects the constraints of a time-
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bounded academic setting, which limits the exploration of more complex or long-term 

developments.  

Among all the aspects mentioned above, experience and abilities of the user have to be analyzed 

as well. Here, we focus on programming knowledge and prior experience dealing with imaging 

datasets and Ubuntu operating system, since this skills are crucial for the development of the 

pipeline. In this case, previous knowledge on imaging and programming was acquired in courses 

like ‘Biomedical Imaging Computing Laboratory’, ‘Computer science’ and ‘Biomedical Imaging’.  

Taking all of this into account, we can expect that the strengths of the project will help overcoming 

its weaknesses, and although there might be some threats, the potential opportunities in having 

success on the project have more weight. Consequently, we can consider that the project is feasible 

and possible to execute in the terms it has been raised. 

 

7.2. Technical specifications  

The project has been developed using a combination of specialized software tools, programming 

libraries, and computing infrastructure tailored to neuroimaging research and Monte Carlo 

simulation. All tools used are either open-source, available for academic use, or were provided 

through the technical environment of the research group where the project was conducted. 

For image preprocessing and segmentation, key tools include FSL (FMRIB Software Library), used 

for brain extraction, bias correction, and registration tasks, and ANTs (Advanced Normalization 

Tools), which provide state-of-the-art rigid, affine, and non-linear registration capabilities. Both FSL 

and ANTs are free for academic use and were pre-installed on the laboratory systems.  

SimSET (Simulation System for Emission Tomography) is the core simulation engine employed 

and is freely available for non-commercial academic purposes. All simulations are launched by 

means of bash scripts.  

For visualization, the project relies on ITK-SNAP, a free and open-source application designed for 

medical image navigation and annotation. This tool has also been useful for validating registration 

accuracy and inspecting image quality throughout the processing pipeline. 

The programming language used for most of the scripts is Python, with the majority of development 

done using the Spyder IDE, which provides an integrated development environment suited for 

scientific computing. A custom Python virtual environment was configured to include all required 

packages: 

• nibabel: for handling NIfTI and Analyze image formats 

• numpy and pandas: for data manipulation and numerical analysis 

• skimage: for filters and SSIM computation 

• matplotlib: for visualization 

• ANTsPy: for applying spatial transforms and resampling 
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For remotely accessing the Linux simulation server from a Windows workstation, WinSCP was 

used to manage secure file transfers and remote directory navigation. 

To enable image conversion and reconstruction, the project used several dedicated executables, 

including dcm2nii for DICOM-to-NIfTI conversion and tools like fbpreconstruction and buttFilter for 

SPECT image reconstruction. These executables were either provided by the research laboratory 

or downloaded from free-access resources. 

This set of tools, combined with modular code design and a consistent file structure, ensured 

technical feasibility, reproducibility, and scalability throughout the project. 

 

8. Economic viability 
 

From an economic perspective, the implementation of this project is highly feasible. To evaluate it 

in more detail, a breakdown of costs into key categories is displayed: personnel, material, 

computing, and indirect expenses.  

On the one hand we must consider the human resources costs of the author of this project but also 

her advisors. Total hours are defined in accordance with the stipulated in the Final Degree Project 

guidelines is assumed: 300 hours for the student and 80 hours for the tutors. The salary data is an 

estimation because in the real context, as it is a Final Degree project, there has not been any 

financial compensation for the engineering student. 

Concept Salary Total cost 

Sara Álvarez Gamero (Student) 7 €/h 2100 € 

Aida Niñerola Baizán (Senior Engineer)  20 €/h 1600€ 

Raúl Tudela Fernández (Senior Engineer) 20 €/h 1600€ 

Total Human Resources cost 
 

5300 € 

Table 3. Human resources of the project (Own source) 

On the other hand, we have to consider the material resources employed: 

Concept Unitary cost Total cost 

Personal computer 600 € 600 € 

Department computer 1500 € 1500 € 

Total Material Resources cost 
 

2100 € 

Table 4. Material resources of the project (Own source) 

Also, a consideration of all software tools and licenses used in this project is done. In the list, the 

software packages used appear:  
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Concept Unitary cost Total cost 

WinSCP Free software (0€) 0€ 

SimSET Free software (0€) 0€ 

Spyder IDE Free software (0€) 0€ 

ITK-SNAP Free software (0€) 0€ 

Office 365 license 5,60€/month 28€ (5 months) 

Total Computing Resources cost 
 

28 € 

Table 5. Computing resources of the project (Own source) 

Finally, we also have to consider our stay at the lab and the work at home, and the associated 

costs it brought during these months in terms of energy. This is the distribution of costs assuming 

that we worked 4 days/week, at the laboratory from February to May and from home in May and 

June. Total expense is an estimation.  

Concept Unitary cost Total cost 

Electricity costs 0.50€/day 40 € 

Laboratory consumption 30€/day 1500 € 

Total Indirect cost 
 

1,540 € 

Table 6. Indirect cost of the project (Own source) 

Considering all expenses, the total estimated budget of the project is: 8.968€ 

To complement this, the following pie chart shows the percentage allocation of resources across 

cost categories: 

 

 

 

 

Figure 31. Pie chart of the project's cost 
distribution (Own source) 
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This cost-effective design makes the proposed methodology suitable not only for academic 

research but also for future clinical software validation processes. Furthermore, the scalability of 

the pipeline enables future extensions, such as the generation of large synthetic image datasets or 

integration into regulatory-grade validation tools, without significant additional financial burden. 

 

9. Legal aspects  
 

In general, all Final Degree Projects at the University of Barcelona must comply with the institution’s 

Code of Research Integrity. This code is based on key values such as honesty, responsibility, 

reliability, rigor, respect, and independence, and applies to all academic and research personnel. 

It establishes the foundations of intellectual authorship and explicitly condemns any form of 

academic misconduct, including plagiarism, data falsification, and fabrication. [70] 

The current project operates entirely in a research context and involves only anonymized clinical 

image data with no direct involvement of patients or personal health information. Therefore, it 

complies with GDPR (General Data Protection Regulation) and does not require specific ethical 

approval. All image datasets are previously acquired under existing clinical protocols and 

anonymized before use. [71] 

Regarding the potential applicability of this pipeline, regulatory bodies are responsible for certifying 

the clinical safety and performance of diagnostic tools. Agencies such as the U.S. Food and Drug 

Administration (FDA) are actively encouraging the use of simulation and computational modeling 

in medical device evaluation. The FDA’s framework for modeling credibility highlights the role of 

simulation in preclinical assessment and risk evaluation of imaging systems (FDA, 2023). The 

regulatory sector is not treated as a target market for the project because these agencies rarely 

conduct validations themselves; instead, they require robust evidence from developers, for which 

simulated datasets can serve as a standardized, reproducible foundation. [72] 

Similarly, in the European context, CE marking under the Medical Device Regulation (EU MDR 

2017/745) also demands strong technical documentation demonstrating performance and safety. 

Simulated data can be used to support software verification and validation, especially for higher-

risk classes where conformity assessments by notified bodies are mandatory. This makes high-

fidelity synthetic datasets a valuable asset in streamlining regulatory submissions and accelerating 

product approval. The use of simulation to generate known ground-truth data contributes directly 

to the technical validation step required in CE marking processes. Projects such as BrainViSet 

have demonstrated that synthetic data can serve as a valuable tool for early-stage software 

evaluation, fulfilling part of the "clinical evidence" requirement in MDR [54]. [73] 

The project itself aligns with the European Medical Device Regulation (EU MDR 2017/745) in spirit, 

as its long-term goal is to contribute to the development and validation of medical image 

quantification software. According to MDR guidelines, software intended for diagnostic or 

therapeutic purposes is considered a medical device and must be validated using reliable datasets. 

Therefore, in the future, any translation of this pipeline into clinical applications or commercial tools 
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would require formal certification and clinical trials. However, at its current stage, the project is 

compliant with research best practices and serves as a foundational step for regulatory-compliant 

software development in nuclear medicine. 

 

10. Conclusions and future lines 
 

10.1. General conclusions 

In this project, a pipeline has been successfully developed to iteratively generate realistic SPECT 

images from anatomical data. The proposed methodology has been tested using real patient 

datasets, with the results suggesting its capability to refine simulated activity maps and improve 

similarity with clinical reconstructions over multiple iterations. 

The pipeline has been specifically adapted to the SimSET simulation architecture and includes 

integrated quality control steps throughout the image processing workflow. Preprocessing scripts 

and map generation modules have been optimized to support execution for large cohorts, 

significantly improving scalability and usability. 

One of the critical challenges encountered during the project was the segmentation of MR images. 

In particular, the performance of FSL BET proved to be more limited than expected, resulting in the 

exclusion of several subjects due to inaccurate brain extractions. This highlights the importance of 

robust and adaptable segmentation tools when designing automated pipelines for neuroimaging 

applications. 

While both clinical and simulated projections were reconstructed using the same algorithm (FBP), 

the reconstruction script itself is not yet fully generalizable across both data types, which may limit 

its portability to other datasets or clinical environments. 

Regarding the evaluation of similarity, the project used SSIM and MSE as reference metrics. 

Although these provide complementary perspectives (structural and intensity-based respectively),it 

remains unclear whether they are the most appropriate indicators for comparing simulated and 

clinical reconstructions. In some cases, the two metrics yielded conflicting results, suggesting that 

further study is needed to validate or refine these measures for this specific context. 

Based on the results obtained, the project proposes a convergence-based stopping criterion: the 

iterative process should terminate when both SSIM and MSE stabilize across consecutive 

iterations. However, to confirm the robustness and general applicability of this criterion, future work 

should test it on larger and more diverse datasets. 

Overall, this work lays the groundwork for realistic SPECT simulation using patient-specific 

anatomical information and contributes a flexible, extensible framework that can be further 

improved and adapted to future clinical and research applications. 
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10.2. Future work 

As further work is expected for this project, all the scripts involved in the project and a set of 

guidelines have been provided to the director to ease the future adaptation and implementation of 

the developed pipeline. 

There are several potential avenues to further develop and enhance the framework established in 

this project. One of the most immediate and impactful next steps would be the full automation of 

the entire pipeline, from initial data input to the final similarity evaluation and map adjustment. 

While the current implementation integrates a high degree of automation, some stages still require 

manual supervision. Streamlining the entire process into a single, user-independent workflow would 

not only reduce the risk of human error but also enable large-scale testing across extended 

datasets with minimal intervention. 

Another promising direction would be to explore an alternative adjustment strategy based on 

voxel-wise corrections, rather than the current region-based approach. In the present framework, 

activity scaling is performed uniformly within predefined anatomical regions extracted from the 

xAAL atlas. While this method is efficient and interpretable, it may limit spatial precision and 

overlook subtle, localized discrepancies between clinical and simulated images. A voxel-level 

adjustment, on the other hand, could allow for finer granularity, potentially capturing 

microstructural differences and heterogeneity that are not represented at the regional level. This 

approach could also remove the dependency on atlas registration and labeling quality, which 

sometimes introduces uncertainty into the adjustment process. Implementing and validating voxel-

based scaling, however, would require careful regularization strategies to avoid overfitting local 

noise and to preserve physiological plausibility in the resulting activity maps. 

Regarding the ultimate intention of this project: The integration of realistic SPECT simulation 

studies to validate acquisition, reconstruction, or quantification methods is complex, requiring 

scripting knowledge to execute the processes. In the event that this project is improved in the future 

and actually ends up giving rise to a database of realistic simulated SPECT images intended to be 

used to validate quantification methods; the theoretical SUR value (obtained from the activity map 

that generated the last simulated iteration) must be computed and provided to the user for each of 

the images. It can be calculated using the masks generated from the segmentation of striatal 

regions and the last activity map which generated the final simulation iteration. This theoretical SUR 

value should be used as ground truth by comparing it to the SUR value the quantification method 

obtains from quantifying the reconstruction image in question. 
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Figure A1. Summary of the attenuation and activity maps generation (Own source)  


