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Conditional likelihood based inference on
single-index models for motor insurance claim

severity

Catalina Bolancé1, Ricardo Cao2 and Montserrat Guillen1

Abstract 

Prediction of a traffc accident cost is one of the major problems in motor insurance.
To identify the factors that infuence costs is one of the main challenges of actuarial
modelling. Telematics data about individual driving patterns could help calculating the
expected claim severity in motor insurance. We propose using single-index models to
assess the marginal effects of covariates on the claim severity conditional distribution.
Thus, drivers with a claim cost distribution that has a long tail can be identifed. These
are risky drivers, who should pay a higher insurance premium and for whom preventa-
tive actions can be designed. A new kernel approach to estimate the covariance matrix
of coeffcients’ estimator is outlined. Its statistical properties are described and an ap-
plication to an innovative data set containing information on driving styles is presented.
The method provides good results when the response variable is skewed.

MSC: 62G05, 62P20, 91G70. 

Keywords: covariance matrix of estimator, kernel estimator, marginal effects, telematics covari-
ates, right-skewed cost variable. 

1. Introduction

We analyse costs of claims in a motor insurance data set. Because higher costs occur
much less frequently than lower costs of claims, the dependent variable here is right-
skewed. Specifcally, we are interested in modelling the distribution of costs of claims
conditional on the values of covariates that refect driving habits. We focus on the whole
conditional distribution rather than on the conditional expectation to measure the infu-
ence of covariates on different quantiles, specifcally on the costly claims, i.e., the right
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2 Conditional likelihood based inference on single-index models for motor insurance claim severity 

tail of the severity distribution. This problem could be addressed by quantile regres-
sion, for fxed quantile levels, but this could potentially lead to contradictory results for
close quantiles. Modelling the cost of claims conditional on covariate information has
remained a bottleneck for insurance companies, as a result of which average costs are
used in practice worldwide. We address this problem also considering data on driving
patterns and driving conditions, a type of information that is available through sensor
data regularly collected by insurtech frms. Some new motor insurance rate making
schemes are based on near-miss telematics information which measures the propensity
of risky events that do not always lead to an accident (see Guillen et al., 2019, 2020 and
Guillen, Nielsen and P´ ın, 2021). Risk scores such as the ones obtained witherez-Mar´
index-models can be combined with the evaluation of near-miss information to improve
the performance of predictive modelling in motor insurance pricing.

Single-index regression models are semiparametric methods for generalising linear
regression. They specify the dependence between a random variable Y (here the cost of
a traffc accident, or claim severity) and a d-dimensional vector X as follows (see Härdle
et al., 1993): � � 

Y = m θ
⊤X + ε, (1)

where θ is a vector of unknown parameters, m is an unknown smooth function, and ε is
a random variable with zero-mean conditional on X .

Traditional approaches for estimating the linear predictor coeffcients θ and the func-
tion m are based on the conditional expectation rather than on the whole conditional dis-
tribution and, as a consequence, they are vulnerable to the presence of extremes, heavy
tails or strong asymmetry, as in many applications. Our contribution is to extend the
maximum likelihood estimation of (1) and, in so doing, to open the door to single-index
conditional distribution modelling which has enormous potential for a range of applica-
tions.

In order to estimate the vector θ , Härdle, Hall and Ichimura (1993) proposed the
direct minimisation of the residual sum of squares, so their estimator is

n h � �i2
θ̂ = argminθ ∑ Yi − m̂i θ

⊤Xi , 
i=1

where (X1,Y1) , . . . ,(Xn,Yn) are iid observations of the covariates and the dependent vari-
able and m̂i indicates the leave-one-out kernel estimator of m. Alternatively, Hristache,
Juditsky and Spokoiny (2001) analysed the average derivative estimator of the vector
of parameters in the index model, introduced by Stoker (1986) and as subsequently
employed by Powell, Stock and Stoker (1989). Hristache et al. (2001) presented the
method for estimating the vector of coeffcients, θ , by minimising an M−function, with
a score function ψ , that again compares Yi with a nonparametric estimator m̂(·), i.e.,� � �� 
argminθ ∑

n
i=1 ψ Yi, m̂ θ ⊤Xi . All these methods ignore the shape of the conditional

distribution because they are based on ftting the conditional expectation.
Delecroix, Härdle and Hristache (2003) investigated the pseudo-maximum likeli-

hood estimation of θ in (1). They proposed starting from a preliminary
√ 

n-consistent
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estimator and, subsequently, correcting it with the gradient and the Hessian of the log-
likelihood function. They showed that the corrected estimator is effcient. Previously,
Klein and Spady (1993) had analysed the maximum likelihood estimation of θ but only
for a binary response dependent variable. In the context of survival data with censored
observations, Strzalkowska-Kominiak and Cao (2013) investigated maximum likelihood
alternatives based on the kernel estimation of the conditional distribution and showed
that previous methods for censored data could be improved.

Nonparametric regression is more general than the single-index model specifed in
(1). Indeed, it emanates from a more general specifcation Y = m(X)+ ε , where the
aim is to estimate the regression curve m(x) = E (Y |X = x); Härdle (1990). However,
in practice, nonparametric regression presents two considerable challenges. First, es-
timation becomes increasingly diffcult as the number of covariates rises (the curse of
dimensionality). The second challenge is that any interpretation of the effects of the ex-
planatory variables cannot be carried out directly and it is necessary to plot the different
relations to explore these effects. Another alternative to the single-index model is the
generalised additive model (see Hastie and Tibshirani, 1990); however, it faces the same
challenges as those described for nonparametric regression.

Here, a new maximum likelihood estimator of θ in (1) is proposed, inspired by the
work of Strzalkowska-Kominiak and Cao (2013) with right-censored data. As these
authors proposed we use two different smoothing parameters: one associated with the
distribution of Y and the other one associated with the distribution of the index θ⊤X .
The new theoretical results that we present in Section 2 for uncensored data do not
follow directly as a particular case of Strzalkowska-Kominiak and Cao (2013), since
some assumptions of the censored data case can be relaxed or dropped. In this paper,
we deduce the covariance matrix that can be easily estimated using a kernel estimator.
We evaluate the inference power of the statistical test for the covariate effects deduced
from our maximum likelihood estimator. Details on the method, some results of the
simulation study and proofs are available in the Supplementary Material.

We show the superiority of our estimator, in particular, when there are extreme val-
ues, like in our application where we observe only a few severe accidents. Additionally,
we show that the results of the estimated index model are easily interpretable from dif-
ferent points of view, for example, for the prediction of conditional mean, quantiles and
marginal effects.

We analyse a data set obtained from a specifc portfolio from an insurance company
in Spain. The portfolio is made up of a small group of policyholders under 35 years of
age, who have underwritten a new insurance contract that requires a telematics device to
be installed in their vehicle. The data set contains information on mean yearly claim cost
per policy and on telematic and non-telematic characteristics. Our aim is to fnd the in-
fuence of telematic information on pricing compared to a traditional approach with only
classical non-telematic variables. The data set is available at http://www.ub.edu/rfa/R/
SORT-BCG/. We observe how the mean yearly claim cost per policy does not change
with a linear index; however, the shape of the distribution depends on a linear index,
something that could be considered when calculating the premium.

http://www.ub.edu/rfa/R/SORT-BCG/
http://www.ub.edu/rfa/R/SORT-BCG/


            

  
    

   
  

 
  

  

  

 
 

   
 

  
   

4 Conditional likelihood based inference on single-index models for motor insurance claim severity 

In a simulation study presented in Section 3, the fnite-sample properties of our pro-
posal are compared with several alternative methods for different distributions with het-
erogeneity in the location and in the scale parameters. We also carry out basic inference
about the estimators. In addition, we evaluate how the results are affected when the co-
variates are correlated and binary explanatory variables are included. Note that Hall and
Yao (2005) and Newey and Stoker (1993) only consider continuous covariates; indeed,
not many papers to date have dealt with discrete covariates in single-index models. One
exception is Horowitz and Härdle (1996), who focused on analysing a direct estimator
for the effect of the discrete covariates. Elsewhere, methods such as those proposed by
Härdle et al. (1993), Hristache et al. (2001) and Delecroix et al. (2003), while allowing
dummy (binary) variables to be incorporated, do not consider the consequences of their
inclusion.

2.  Methods  

Let us denote the vector of covariates X = (X1, . . . ,Xd)
⊤ and let f (·|x) be the density

function of Y given X = x, where x = (x1, . . . ,xd) is a fxed vector where f (y|x) = 
fθ0(y|θ0

⊤x), where fθ0(·|θ0
⊤x) is the conditional density of Y given θ0

⊤X = θ0
⊤x and θ0 is

the parameter vector to be estimated. Furthermore, we assume that F(y|x) = Fθ0(y|θ0
⊤x) 

is its conditional cumulative distribution function. For any θ0 and any nonzero real num-
ber λ , then vector θ0 can be replaced by λθ0. This means that the conditional distribution
of the response given X = x only depends on this covariate vector via the linear combina-
tion t = θ0

⊤x. If we choose any nonzero real number λ , then, since there is a one-to-one
correspondence between t and λ t, it is also true that the conditional distribution only de-
pends on the covariate vector via the linear combination λθ0

⊤x. Consequently, infnitely
multiple choices exist for the single-index parameter vector θ0. The usual way to solve
this identifcation problem is to introduce a scale constraint, for example ||θ0|| = 1 or
fxing one component of θ0 to be equal to one. In practice, the identifcation problem
implies that the signs of the effects of the covariates on the dependent variable are not
identifed but are comparable, i.e., two parameters with different sign indicate opposite
effects and, if variables are measured in the same scale, then their corresponding param-
eter estimates can be compared directly.

Let (X1,Y1) , . . . ,(Xn,Yn) be a random sample of the dependent variable and the co-
variates, where Xi = (Xi1, . . . ,Xid)

⊤ and it is assumed that at least one covariate is con-
tinuous. Let K be a nonnegative kernel and h1, h2 two positive bandwidths. In line with
Bashtannyk and Hyndman (2001), the kernel conditional density estimator is:

r̂(t,y)
f̂θ (y|t) = 

ŝ(t) 
, (2)

where � �n1 t − θ ⊤Xiŝ(t) = s (t) = ∑ Kĥ1 nh1 i=1 h1
(3)
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and the product bivariate kernel density estimator is used for r̂(t,y); see Chapter 6 of
Scott (2015). The product kernel is just a simple way to smooth using multiplicative
weights, so: � � � �n1 t − θ⊤Xi y−Yir̂(t,y) = r̂h1,h2(t,y) = ∑ K K . (4)

nh1h2 i=1 h1 h2

We use a Gaussian kernel, and the smoothing parameters are calculated using alter-
native criteria considering the estimator type, i.e., the parameter vector, the conditional
density, the conditional distribution or the conditional mean.

In line with Hall, Wolff and Yao (1999), the kernel estimator of the conditional
distribution function is:

Fbθ (y|t) = 
Rb(t,y) 

, 
ŝ(t) 

where � � � �n1 t − θ⊤Xi y−YiRb(t,y) = Rbh1,h2(t,y) = ∑ K K
nh1 i=1 h1 h2

and K is the kernel distribution function.

2.1. Maximum conditional likelihood estimation 

If we know Fθ except for the value of the index vector θ (a highly unrealistic assump-
tion), then we can defne the following theoretical conditional likelihood function:

n
Ln(θ) = ∏ fθ (Yi|θ⊤Xi).˜

i=1

Maximising this function is equivalent to maximising its logarithm:

n1 � � 1
ℓ̃n(θ) = log L̃n(θ ) = ∑ log fθ (Yi|θ ⊤Xi). (5)

n n i=1

Here, the ideal estimator should maximise the theoretical log-likelihood

θ̃n = argmax ℓ̃n(θ). 
θ 

In practice, fθ (or Fθ ) is unknown and so, we need to estimate it and plug it into the
logarithm of the theoretical conditional likelihood function.

We propose to maximise the kernel estimation of the log-likelihood function de-
fned in (5) with respect to θ and to the two smoothing parameters, h1 and h2. At this
point, we note that, in the kernel estimation, when a smoothing parameter selector is ob-
tained by optimising some criteria, such as the integrated square error or the likelihood
function, which required computing a kernel estimator; using the whole observed data
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6 Conditional likelihood based inference on single-index models for motor insurance claim severity 

set, (X1,Y1) , . . . ,(Xn,Yn), produces undersmoothing of the optimal smoothing parameter
values; see Silverman (1986). As a consequence, we need to modify the estimated like-
lihood with a leaving-one-out procedure so as not to pick artifcially small bandwidths.
Let f̂−i(Yi|θ⊤Xi) be the estimator defned in (2), where the sum in (3) and (4) runs over

θ 
j ̸= i. Then, we defne the leaving-one-out estimated conditional log-likelihood:

n1
ℓ̂n(θ) = ∑ log f̂−i(Yi|θ⊤Xi). (6)

θn i=1

Given h1 and h2, the fnal maximum conditional likelihood estimator is defned as

θ̂n = argmax ℓ̂n(θ). 
θ 

The estimation procedure including the two smoothing parameters h1 and h2 will be
described in sub-section 2.3. A similar procedure based on the leave-one-out estimator
of the hazard rate model was proposed by van den Berg et al. (2021). We point out
that it can be diffcult to avoid local optima in the maximisation of the log-likelihood in
(6). Considering the existence of local optima, in the described estimation procedure we
checked how initial values for the smoothing parameters affect the fnal estimation. We
have observed that the fnal estimation is practically not affected by the initial values of
the covariate coeffcients.

2.2. Properties 

In this sub-section we study the properties of θ̂n. Let the score function be defned as the
expected log-likelihood:

ℓ(θ ) = E(ℓ̃n(θ )). 

We start by proving that the true parameter vector, θ0, can be characterised as the max-
imiser of the score function. The existence of that function is the only condition required:

A1: E(log fθ (Yi|θ ⊤Xi)) < ∞ for any θ 

Theorem 1. The true single-index parameter, θ0, is the maximiser of the score function,
i.e., θ0 = argmaxθ ℓ(θ).

To establish the main results for the estimator, we need to assume some further
conditions:

A2: E(X |θ0
⊤X ,Y ) = E(X |θ0

⊤X) 

A3: E(XX⊤) < ∞ componentwise.

Condition A2 is a technical one needed to prove our theoretical results. It essentially
means that all the information needed to predict the values of the explanatory variables
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given the index and the response variable is contained just in the index. Assumption A2
also implies exogeneity of the explanatory variables, i.e., covariates are known previous
to the response.

The two bandwidths h1, h2 should fulfll the following conditions

A4:
√ 

nh4
1 → 0,

√ 
nh2

2 → 0, nh6
1 → ∞ and h1,h2 → 0 when n → ∞.

Consider fθ0 the bivariate joint density function of (θ0
⊤X ,Y ) and f

θ0
⊤X the marginal

density function of θ0
⊤X . Finally, let ℓ[1](θ0) = ∇θ ℓ(θ )|θ denote the gradient of ℓ(θ)=θ0

over θ evaluated in θ0. Further, let ℓ[2](θ) denote the Hessian matrix of ℓ(θ). The
following regularity conditions are also assumed.

∂ j ∂ k d j d j
A5: The derivatives fθ0(u,v), d ju ⊤X(u) and d ju E(X |θ0

⊤X = u) exist for j = 
∂ ju ∂ kv f

θ0
1,2,3 and k = 1,2.

A6: The function h(x,y) = 
∂ θ 
∂ 

j
fθ (θ ⊤x,y)θ is continuous and

∂

∂ 
2θ 

2

j
fθ (θ0

⊤x,y)θ=θ0 =θ0

exists.

A7: The Hessian matrix ℓ[2](θ ∗) is positive defnite for θ ∗ belonging to a neighbourhood
of θ0.

Now we can state the frst result for the proposed estimator.h i−1
Lemma 1. Under A1, A4 and A6 we have θ̂n − θ0 = − [2]

ℓ̂ (θ̂ ∗)n n
[1]

(ℓ̂n (θ0) − ℓ[1](θ0)),

where θ̂ ∗ is between θ̂n and θ0.n

Theorem 2. Under A1-A7, we have θ̂n → θ0 in probability.

Theorem 3. Let us assume conditions A1-A7. Then, we have

√ 
n(θ̂n − θ0) → N(0,Σ), (7)

where
Σ = Σ2Σ1Σ

⊤ (8)2 , h i−1
Σ2 = ℓ[2](θ0) 

and � � 
Σ1 = E ∇θ log( fθ (Y |θ ⊤X))θ )(∇θ log( fθ (Y |θ ⊤X))θ )⊤ 

=θ0 =θ0Z 
= (∇θ log( fθ (y|θ⊤x))θ )(∇θ log( fθ (y|θ⊤x))θ )⊤ f (x,y)dxdy.=θ0 =θ0

All the proofs can be found in the Supplementary Material.
The asymptotic variance-covariance matrix in (8) is different from the one obtained

by Delecroix et al. (2003). These authors obtained this matrix from ℓ̃n(θ ) defned in (5)
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and took into account the almost sure convergence of the parameter estimator and the
weak convergence of ℓ̂n(θ ), defned in (6), and some of its partial derivatives. Instead,
to obtain the asymptotic variance-covariance matrix, we take into account that θ0 is es-
timated by maximising the kernel estimator of the conditional likelihood function ℓ̂n(θ) 
defned in (6).

2.3. Estimation procedure 

To obtain θ̂n, h1 and h2 we have used an algorithm in two steps. The frst step aims to ob-
tain θ̂n by maximising the likelihood function in (6) given fxed values for the smoothing
parameters h1 and h2. In the second step the smoothing parameters are recalculated by
maximising the same likelihood function given the values of θ̂n obtained in the previous
step. Both steps are repeated until convergence. In the frst step the initial values of the
smoothing parameters are given by h1 = aσ̂θ⊤X n−2/13 and h2 = aσ̂Y n−4/13, where a > 0
and σ̂θ ⊤X and σ̂Y are the empirical standard deviations (see Silverman (1986) for rule-
of-thumb smoothing parameters in kernel density estimation). The sample size orders,
n−2/13 and n−4/13, respectively for the two bandwidths, are chosen in order to fulfll the
asymptotic assumptions for the bandwidths needed for Condition A4. We have observed
that initial values of the smoothing parameters considerably affect the fnal estimation.
Initially we used a = 1 but it is recommended to consider a grid of values around 1.
The initial values of the covariate coeffcients hardly affect the results, so to start the
algorithm we set all these coeffcients equal to 1. To maximise the likelihood func-
tion in the frst step, we use the function “optim()” with the default optimization method
(“Nelder-Mead”) of the “stats” R package. In the second step, to recalculate the values h1
and h2 we also use function “optim()” but with optimization method ”L-BFGS-B”. We
need to defne limits for the smoothing parameters because it is known that ℓ̂n(θ) → ∞ 

(1)
σθ⊤X n−2/13 (1)as h1, h2 → 0. The limits are defned as (c ˆ ,c σ̂θ ⊤X n−2/13) for h1 and1 2

(2)
σY n−4/13 (2) ( j) ( j)

(c ˆ ,c σ̂Y n−4/13) for h2, for some c1 < c , j = 1,2.1 2 2
Our two-step algorithm is designed to guarantee the conditions established in the

theoretical properties shown in the previous sub-section. In practice, we are selecting the
best estimation in a set of pre-fxed smoothing parameters which are calculated taking
into account the sample size and the scale of the dependent variable and the index.

To estimate the variance-covariance matrix in (8) we calculate the corresponding
derivatives of the leave-one-out kernel estimation of conditional log-likelihood defned
in (6). Asymptotic normality inference, based on (7), is carried out using the esti-
mated variance-covariance matrix, replacing theoretical derivatives by estimated ones
(kernel estimator of the gradient ∇θ log( fθ (y|θ ⊤x))θ is direct). For kernel estimator=θ0

of ℓ[2](θ0) see Lemma 9 in the Supplementary Material.

2.4. Marginal effects estimation 

For a given θ = θ0, using the conditional distribution function we can obtain the p-
th conditional quantile: Qθ (p|θ ⊤x) = F−1(p|θ ⊤x), i.e., Fθ (yp|θ⊤x) = p where p ∈

θ 
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(0,1). As in any generalised linear model, comparing marginal effects is equivalent to
comparing parameters, i.e., for two covariates Xk and Xk′ , with k ̸= k′, we obtain:

∂ Qθ (p|θ ⊤x) 
∂ xk = 

θk
,

∂ Qθ (p|θ ⊤x) θk′ 
∂ xk′ 

where:
∂ Fθ (Qθ (p|θ ⊤x)|t) ·

∂ Qθ (p|θ ⊤x) ∂ t θk
t=θ⊤x = − . (9)

∂ xk fθ (Qθ (p|θ ⊤x)|θ⊤x) 

For estimating the marginal effects we will use kernel estimators for fθ (y|θ ⊤x), Fθ (y|θ ⊤x) 
and their derivatives, as shown below.

The kernel estimator of the index marginal effects on the conditional distribution
function is: " # 

∂ Fbθ (y|t = θ⊤x) R̂′ (θ⊤x,y) ŝ′ (θ⊤x)h1,h2 h1= − Fbθ (y|θ ⊤x) ,
∂ t ˆ (θ ⊤x) ˆ (θ⊤x)sh1 sh1

where � � � �n1 t − θ⊤Xi y−YiR̂′ (t,y) = ∑ K′ Kh1,h2 nh2
1h2 h2i=1 h1

and � �n1 t − θ⊤Xi′ ŝh1
(t) = ∑ K′ ,

nh2 h11 i=1

where K′ is the frst derivative of the kernel.
In this paper, we obtained the marginal effects using kernels estimators of the differ-

ent functions that appear in the expression (9). The smoothing parameters of the kernel
estimator of conditional density can be calculated using the sample size orders of ref-
erence rules obtained in Bashtannyk and Hyndman (2001). The kernel estimator of the
conditional distribution and its derivatives are obtained directly from the estimated con-
ditional density. Considering that in this paper the aim of estimating marginal effects
is purely descriptive, we have obtained the values of smoothing parameters subjectively
from graphic visualization. However, a double-cross-validation approach as suggested
van den Berg et al. (2021) can be used.

2.5. Scoring rules for prediction 

To evaluate the goodness of ft and the predictive capacity of the single-index model, a
variety of measures is available. Gneiting and Raftery (2007) present an exhaustive re-
view of different families of scoring rules for moments, density and distributional fore-
casts. We use three types of score described in Gneiting and Raftery (2007).



            

  
        

  
   

  
    

 
   

   
 

 
  

   
 

  
    

  

     
   

        
   

   
 

    
 

10Conditional likelihood based inference on single-index models for motor insurance claim severity 

The predictive model choice criterion (PMCC) selects the best model based on the
frst two moments of the predicted values, i.e., the mean and the variance, as follows

n h � �i2 � � 
ˆ 2PMCC = − 

1
∑ Yi − m̂ θ ⊤Xi − σ θ ⊤Xi , (10)

n i=1� � � � 
where m̂ θ ⊤Xi is the kernel estimator of the conditional expectation E Yi|θ ⊤Xi and� � 
ˆ 2σ θ⊤Xi is estimated with the kernel estimates of both expectations as follows:� � � � h � �i2

σ̂
2

θ ⊤Xi = Ê Yi
2|θ⊤Xi − Ê Yi|θ⊤Xi , 

where � � 
∑

n t−θ ⊤Xi� � � � i=1 K h1
Yi

Ê Yi|θ⊤Xi = m̂ θ
⊤Xi = � � 

∑
n t−θ ⊤Xi
i=1 K h1

and � � 
t−θ ⊤Xi Y 2� � ∑

n
i=1 K h1 i

Ê = � � .Yi
2|θ⊤Xi

∑
n t−θ ⊤Xi
i=1 K h1

Here h1 is calculated using the optimal sample size order (n−1/5) to estimate the condi-
tional expectation and considering the scale of the dependent variables.

The logarithmic scoring rule is calculated as

n h � �i 
ℓ̂(θ) = ∑ log f̂ Yi|θ ⊤Xi . (11)

i=1

From l̂(θ ) other widely used criteria such as the AIC (Akaike Information Criterion) and
the BIC (Bayesian Information Criterion) can be obtained.

For the p-quantile prediction of the dependent variable, Y , the goodness of ft crite-
rion proposed by Koenker and Bassett (1978) for quantile regression is:

n1
QEp(θ) = ∑ p Yi − Q̂θ (p|θ ⊤Xi)n

i=1,Yi>Q̂θ (p|θ ⊤Xi) 
n

+ 
1

∑ (1− p) Yi − Q̂θ (p|θ⊤Xi) , (12)
n

i=1,Yi≤Q̂θ (p|θ ⊤Xi) 

where Q̂θ (p|θ ⊤Xi) is the kernel conditional quantile estimator based on the kernel es-
timator of the conditional distribution function. For a set of probabilities p1, . . . , pk, we

1 1defne QE = k ∑
k
j=1 QEp j(θ ) and its corresponding weighted version, WQE = j=1k ∑

k

p jQEp j(θ ).
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3. Simulation study 

We carry out a simulation study, the aim being to evaluate the fnite-sample properties
of our estimator. The properties of the parameter estimator, θ̂ , are summarised in the
Supplementary Material and the basic inferences about the value of these parameters are
presented in this section. The results are obtained using a Gaussian kernel.

We compare the variance, the bias and the mean square error (MSE) of the estimated
parameters in the vector θ̂ , using our fexible maximum conditional likelihood (FMCL)
estimator and three alternatives. The frst is based on ftting the single-index model to
individual conditional expected values as proposed by Härdle et al. (1993) (hereinafter,
HHI). The second alternative is based on Delecroix et al. (2003) (hereinafter, DHH),
where we use as our initial parameters those obtained with the HHI method which are√ 

n-consistent. The third is the direct method proposed by Hristache et al. (2001) (here-
inafter, HJS).

We analyse six different conditional distributions for the dependent variable Y , two
symmetric distributions (zero skewness) and four right-skewed distributions. The con-
ditional distributions are shown in Table 1.

Table 1. Conditional distributions for dependent variable as a function of the linear index θ⊤x 
for the simulation study.

Skewness Distribution Parameters Density

Zero

normal

logistic

(µ = θ ⊤x,σ = |θ ⊤x|) 

(µ = θ ⊤x,σ = |θ ⊤x|) 

� � 
x)21 (y− θ⊤p exp − 

2π|θ ⊤x|2 2|θ ⊤x|2

� � 
(y− θ ⊤x)

exp
1 |θ ⊤x|� � |θ ⊤x| (y− θ⊤x)

1+ exp
|θ⊤x| 

Positive

lognormal

Weibull

Champernowne

(µ = θ ⊤x,σ = |θ ⊤x|) 

(α = 1, σ = |θ ⊤x|) 

(α = 1,M = |θ ⊤x|) 

(α = 2,M = |θ ⊤x|) 

� � 
1 (ln(y) − θ⊤x)2p exp − 

2π|θ ⊤x|2 2|θ⊤x|2y � � 
1 y

exp − 
|θ ⊤x| |θ ⊤x| 

|θ ⊤x| 
2

(y+ |θ ⊤x|) 

2|θ ⊤x|2y
2

(y2 + |θ ⊤x|2) 



            

  
  

      
   

 

 

 

   

   
    

 

  
 

 

12Conditional likelihood based inference on single-index models for motor insurance claim severity 

For our two choices of symmetric distribution, the logistic distribution has more
kurtosis and heavier tails than the normal distribution. If we compare our selection of
right-skewed distributions, we fnd that the Champernowne or log-logistic has a heavier
tail than the lognormal and the Weibull; see Buch-Larsen et al. (2005) for a description
of the Champernowne distribution.

In our simulation study, we use six vectors of covariates X that we identify as vec-
tors V1, V2, V3, V4, V5 and V6. For the frst three θ⊤ = (1,1.3,0.5) and for the fourth
θ ⊤ = (1,1.3,0.5,0.8). The values in vector V1 are generated from three uncorrelated
standard normal distributions. The vectors V2 and V3 are trivariate normal distributions
with correlated marginals. For V2 the components are three standard normal distribu-
tions whose covariances are cov(Xk,Xk′ ) = 0.3 for k ≠ k′ and k,k′ = 1,2,3. The same
holds for V3 but with covariances cov(X1,X2)= cov(X2,X3)= 0.7 and cov(X1,X3)= 0.5.
Vector V4 consists of V1 and a binary variable whose values are generated from a
Bernoulli distribution with probability 0.4, independent of the three components of V1.
Furthermore, the number of categorical covariates is usually greater than one. We have
carried out an alternative simulation study using two new vectors of covariates V5 and
V6, with θ⊤ = (1,1.3,0.5,0.8). Vector V5 consists of two independent standard normal
variables and two binary variables whose values are generated from two Bernoulli dis-
tributions with probabilities 0.4 and 0.7, respectively. The covariate vector V6 includes
the same two binary variables, one lognormal with mean 0 and σ equal to 0.5 and one
with a standard normal distribution.

We generate 500 samples of size n = 100, 500 and 2,000 and calculate the bias, the
standard deviation (STD) and the MSE of the estimators using each method, FMCL,
HHI, DHH and HJS. The results of the simulation study show that the proposed FMCL
estimator is the most suitable when the conditional distribution is right-skewed and also
when the tail of the conditional distribution is heavy. Moreover, the FMCL is more
robust to multicollinearity and to the presence of binary and asymmetric covariates.

3.1. Basic inference 

Power analysis of hypothesis tests is fundamental to determining whether the effect of a
covariate is signifcantly different from zero. The null hypothesis for each parameter is
H0 : θk = 0, k = 1, . . . ,d and as an alternative hypothesis we assume that the sign of the
parameter is known, i.e., H1 : θk > 0, k = 1, . . . ,d. The statistic test is Z = θ̂ j/se(θ̂ j),
where se indicates the standard error. The statistic Z asymptotically follows a N(0,1) 
distribution. To obtain the power of the test we calculate the proportion of times that we
reject the null hypothesis in the 500 samples obtained from each analysed conditional
distribution and sample size. Alternatively, we also analyse the power of the test when
the null hypothesis is H0 : θ2 = θ3 and the alternative hypothesis H1 : θ2 > θ3. Again,
we know that the alternative hypothesis is true. The statistic for this test is Z = (θ̂2 − 
θ̂3)/se(θ̂2 − θ̂3).
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Table 2. Power of the test for skewed distributions. The values are calculated using the 500
samples for each skewed distribution in Table 1.

H0

Lognormal
n = 500 n = 2,000

Weibull
n = 500 n = 2,000

Champernowne α = 1
n = 500 n = 2, 000

Champernowne α = 2
n = 500 n = 2, 000

V1

V4

V1
V4

θ2 = 0
θ3 = 0
θ2 = 0
θ3 = 0
θ4 = 0
θ2 = θ3

θ2 = θ3

1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

0.864 0.996
0.876 0.998
0.856 1.000
0.828 1.000
0.770 0.984
0.882 0.996
0.662 1.000

0.722 0.970
0.702 0.972
0.636 0.908
0.622 0.902
0.584 0.862
0.730 0.976
0.598 0.880

0.984 0.998
0.992 1.000
1.000 1.000
1.000 1.000
0.996 1.000
0.988 1.000
0.998 1.000

Table 3. Percent of no-rejection of null hypothesis. The values are calculated using the 200
samples for each distribution in Table 1.

H0

Normal
n = 500 n = 2000

Logistic
n = 500 n = 2000

Lognormal
n = 500 n = 2000

V1
V4

θ4 = 0
θ5 = 0

0.848 0.955
0.828 0.980

0.942 0.985
0.992 0.980

0.696 0.850
0.345 0.890

H0

Weibull
n = 500 n = 2000

Champernowne α = 1
n = 500 n = 2000

Champernowne α = 2
n = 500 n = 2000

V1
V4

θ4 = 0
θ5 = 0

0.850 0.965
0.924 0.965

0.530 0.570
0.478 0.795

0.752 0.720
0.720 0.770

The results for symmetric distributions have a power about 100% for almost all tests
when n ≥ 500, these results are shown in the Supplementary Material. Here we focus on
the results for the power of tests for skewed distributions.

Table 2 shows the powers of the two tests proposed for skewed distributions. Both
tests are at the 95% confdence level. These results indicate that when n = 500 the power
decreases considerably for the Weibull and the Champernowne distribution with α = 1,
compared to a larger sample size, n = 2,000.

To analyse the percent of times the null hypothesis that the parameter is equal to
zero is not rejected, we have designed an alternative reduced simulation study that con-
sists of adding a new covariate with associated parameter equal zero in the estimation
procedure; this implies to re-estimate the parameters. To reduce the computation time,
instead of 500 replicates, we use 200 replicates of sizes n = 500 and n = 2,000. The
null hypothesis is H0 : θ j = 0, j = 4,5, and the results of the percent of no-rejection
of the null hypothesis, for the models described in Table 1 and using extended covariate
vectors, are shown in Table 3. For n = 500 the results for skewed distributions are poorer
than those obtained for a symmetric distributions. For n = 2,000, in general, the results
improve compared to a smaller sample size, except for the Champernowne distribution,
which is heavy tailed. These results suggest that if the dependent variable is asymmetric,
a transformation to achieve a symmetric distribution should be suitable.
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4. Data analysis and model estimations of automobile claim costs 

In this section we analyse the effect of risk factors on the distribution of the cost per
automobile claim in a real case study. We show that single-index models constitute a
new tool for identifying the infuence of some of those covariates that are known to the
insurer at the beginning of the contract or during the coverage period. We estimate the
single-index model coeffcients with the FMLC method. The results are obtained using
a Gaussian kernel. Some parametric models based on Weibull, gamma, log-normal and
log-logistic distributions, which are not reported here, produced poor fts. Furthermore,
signifcant effects of the covariates were not found.

We analyse a data set obtained from a Spanish insurance company. The original
portfolio consists of policyholders between age 18 and 35, who underwrote a motor
insurance policy and accepted a telematics engine that allows the company to gather
data on the policyholder’s driving behaviour. In the available data set, all claims are
settled. In the original data set, a few claims result from no fault agreements between
insurers, in these cases the amount recorded is equal to the legally established cost.
Claims regulated by a no-fault agreement were excluded from our analysis. Hence, our
data are not censored. Those in the no-fault agreement had to be removed because there
was no information on the true cost of the claim, which could be lower or higher than the
amount established by the agreement. To estimate the proposed single-index model, we
have selected a sample of n = 489 car insurance policyholders who reported at least one
claim in 2011. Furthermore, we have also selected another sample of 100 policyholders
to carry out a predictive analysis. The claims correspond to third-party liability accident.
For each policyholder in the sample, the total incurred losses and the number of claims
along the year is known, the ratio between both values is equal to the yearly mean claim
cost per policy. The cost refers to incurred and paid losses.

For each policyholder, we have information about the following covariates (labels
in parentheses): cost per policyholder in thousands of euros (cost), age in years (age),
number of years holding a driving licence (agelic), age of car in years (agecar), a binary
indicator equal to 1 if car is parked in a garage overnight and 0 otherwise (parking), an-
nual distance driven in thousands of kilometres (tkm), percentage of kilometres driven
at night (nightkm), percentage of kilometres driven on urban roads (urbankm) and per-
centage of kilometres driven above the speed limit (speedkm). These data correspond
to a sample of insureds for whom the company collected driving behaviour informa-
tion employing a telematics device installed in their vehicle. Thus, “tkm”, “urbankm”,
“nightkm” and “speedkm” correspond to the so-called “telematics covariates” that cap-
ture policyholders’ driving style and driving patterns. We do not include the gender
variable in the model because European Union regulations prohibit discrimination be-
tween men and women in the feld of insurance premiums; for more information on these
data, see Guillen et al. (2019).

Table 4 shows our descriptive statistics for the cost per policyholder variable in the
original scale, transformed into logarithmic form (log(cost)), and information on the
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covariates. We show that our data set contains one extreme observation for the response
variable corresponding to a claim that exceeded C130,000 (natural logarithm close to
5).

Table 4. Descriptive statistics of the variables in the claim costs dataset.

Mean Std. Min. Q25 Median Q75 Max.
cost 1.810 6.191 0.018 0.417 0.818 1.878 130.870
log(cost) -0.145 1.128 -4.031 -0.874 -0.201 0.630 4.874
age 27.009 3.246 20.586 24.496 26.820 29.886 34.067
agelic 6.429 2.833 2.001 4.337 5.864 7.992 14.686
agecar 8.916 4.162 2.111 5.777 7.943 11.370 20.468
parking 0.763 0.426 0.000 1.000 1.000 1.000 1.000
tkm 8.356 4.530 1.220 5.174 7.549 10.635 35.105
nightkm 7.514 6.504 0.044 2.979 5.841 9.954 42.830
urbankm 27.127 14.163 3.810 16.565 24.401 35.245 80.659
speedkm 7.203 7.100 0.122 2.286 4.969 9.403 48.002
Q25 and Q75 are the frst and third quartiles.
log(•) denotes natural logarithm.

The single-index models that we estimate in this section are ftted using “log(cost)”
as the dependent variable. Table 5 shows the results of the estimated parameters (θ̂ )
of the single-index models when using our FMCL method and three different covariate
vectors, that is, all the explanatory variables, only the telematics variables and only the
traditional rating factors, i.e., the non-telematics covariates. Note that the smoothing
parameters h1 and h2 obtained for each estimated parameter vector are the same. This
is just a coincidence which does not occur for other analyses. We establish “speedkm”
as the variable with the constrained coeffcient θ1 = 1 while for the model with the
non-telematics variables we use “age”. This is convenient because the nature of these
covariates makes interpretation straightforward in this context. The reason we opt to
fx the effect of the speed variable is that we believe that high speeds result in a greater
risk of being involved in severe accidents, which in turn are more costly than minor
accidents. For each estimated parameter θ̂ j, j = 2, . . . ,8, we test individual signifcance.

We also estimated the parameters with methods HHI and DHH, that are shown in
the Supplementary Material. These results indicate that the estimated parameters with
the HHI method have larger standard errors than those obtained with our method. In
general, HHI and DHH are more sensitive than FMCL to the selection of the covariate
vector.

Table 5 shows that the sign of the effect of the telematics variables is unchanged
when comparing the model with all the variables and that one using only the telematics
variables. This indicates that, in the single-index model of the logarithm of the cost per
policyholder, driving patterns matter. For example, in the model with all variables, as the
effect of “speedkm” is the reference and the effects of “age” and “agelic” are positive and
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we conclude that the longer the driving experience is, the greater the risk is; however,
driving experience is associated with “tkm’, the effect of which is negative.

As shown above in Section 2, given that we assume θ1 = 1, even when the signs
of the coeffcients of the explanatory variables are not identifed, we are still able to
analyse the relation between these effects. For example, in Table 5, we observe, on the
one hand, that “tkm” has an opposite effect to “speedkm”, i.e., excess speed can be offset
by the amount of time spent driving (measured here in terms of total distance driven).
On the other hand, the coeffcients of “nightkm” and “urbankm” present the same sign
as the “speedkm” coeffcient. Thus, if a higher percentage of driving at speeds above the
limit implies higher values of the index, then the same is true as night-time and/or urban
driving increase.

Table 5. Estimated parameters and their signifcance (p-value in parentheses) for the single-
index model in the claim cost data set.

Model
All variables Only telematics Only non-telematics

speedkm 1.000 1.000 –
age 0.153 (<0.0001) – 1.000
agelic 0.097 (0.0034) – -0.246 (<0.0001)
agecar -0.107 (<0.0001) – 0.074 (<0.0001)
parking -0.162 (0.2570) – -0.655 (<0.0001)
tkm -0.044 (0.0004) -0.423 (<0.0001) –
nightkm 0.117 (<0.0001) 0.089 (0.0005) –
urbankm 0.141 (<0.0001) 0.080 (<0.0001) –
h1 = 0.3857 and h2 = 0.1488

The frst coeffcient of each model is fxed and equal to 1.000.

The computational times are 4.28 minutes with all variables,

35.27 seconds with telematics and 21.49 seconds with no telematics

The values of the index do not have a direct interpretation. These values allow us to
analyse how the shape of the conditional distribution and the marginal effects change.
To analyse these results in greater detail, we use plots, shown now in the original scale
of the cost per claim as opposed to their log-transformation. In Figures 1 and 2, we
plot the index against the ftted mean of the model with all variables and with non-
telematics variables only, the median and p-th quantiles with p = 0.90, p = 0.95 and
p = 0.99 (the plot with only telematics variables is similar to Figure 1). The mean curve
is estimated using the Nadaraya-Watson estimator of the regression function between the
dependent variable and the estimated linear index. The median and the higher quantiles
are estimated from the inverse of the estimated conditional distribution function. The
smoothing parameters are calculated specifcally for each estimated curve, i.e., for the
kernel regression the order is n−1/5 and for the quantile it is n−1/3. The main result is that
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the cost distribution conditional on the value of the index is not constant. Furthermore 
quantiles are not monotonic in the index. This is evidence that some combinations of 
the covariates lead to a conditional cost distribution with a longer tail than others. For 
example, Figure 1 shows that when the index takes values around 22.5 and around 31 the 
conditional distribution has a heavier tail than for the rest of the index domain. We have 
calculated the mean of the covariates for the policyholders with index values between 22 
and 23 and the results indicate that these individuals tend to use night parking and the 
means for the telematics covariates (tkm, nightkm, urbankm and speedkm) are higher 
than the means for the whole sample. A second group of policyholders with heavier 
tail takes index values around 31. The means of the covariates for policyholders with 
index values between 30 and 32 indicate that these individuals also use parking and 
drive more than 20% of total kilometres above the speed limit. These features are not 
captured by the mean curve, which is fat; thus, we can conclude that using a single-
index conditional distribution model prediction is helpful to insurance companies when 
setting up wider margins that correspond to the values of those predicted in the intervals 
where the conditional distribution presents a remarkable heavy tail. 

Mean 
Median 
0.90 quantile 
0.95 quantile 
0.99 quantile 

25
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Figure 1. Fitted values of the conditional mean (solid line) and quantiles (dotted and dashed 
lines) with all covariables in the model. 

When comparing the plot of the model with all the variables (Figure 1) with the 
plot of that with only the traditional rating variables (Figure 2), the benefts of including 
the telematics regressors become evident. By doing so, the intervals of the index cor-
responding to a conditional distribution with a longer tail are easily identifed and, as 
a result, in such cases the insurance company estimates a slight increase in the median 
cost and a marked increase in the upper quantiles. 

The single-index value provides a one-dimensional summary of the characteristics 
that discriminate between the policyholders in terms of the conditional cost distribution. 
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Figure 2. Fitted values of the conditional mean (solid line) and quantiles (dotted and dashed 
lines) with only the non-telematics covariables in the model. 

4.1. Marginal effects on extreme quantiles 

The study of marginal effects on extreme quantiles of the cost per policyholder, obtained 
from the derivative of the estimated inverse conditional distribution function, provides 
us with information about the changes of the risk of high losses when explanatory vari-
ables increase or decrease. Furthermore, we analysed to what extent the effects of the 
variables are different in the extremes and in the central values of the variable cost per 
policyholder. The results of the marginal effects have been obtained from the kernel es-
timates described in Subsection 2.4, using the signifcant parameters. These results are 
purely descriptive and show the fexibility of our proposal. 

As we explained in Section 2, for a given vector of values of the covariates x = 
(x1, . . . ,xd), we estimated the marginal effects along a grid of values of the covariate xk. 
We focused this analysis on telematics variables and studied some examples for certain 
policyholders. Specifcally, once the grid for each telematics variable was fxed, we esti-
mated the marginal effects for the younger and the older individuals, when the rest of the 
variables take their minimum values. Figures 3 and 4 show the marginal effects for vari-
ables “speedkm”, and “nightkm”, respectively, similar results for “tkm” and “ubankm” 
are shown in Supplementary Material. In general, we observe that marginal effects of 
telematics variables are different for the median and for the 0.95 quantile of the cost per 
policyholder. Furthermore, the marginal effects for the younger and older policyholders 
exchange their position when they are calculated at the median or when they are calcu-
lated at the 0.95 quantile. For example, in Figure 3 we see that the impact on the severity 
of a claim of exceeding approximately 10% or more kilometers over the posted speed 
limit is higher for older than for younger drivers at the 95% quantile (right plot) while it 
is lower at the median (left plot). Note that a negative marginal effect is possible because 
drivers that exceed speed limits by more that 10% could be more skilled than the rest 
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and for them the median cost may be lower (left plot) while the extreme quantile may be 
higher (right plot). 

Median 0.95 quantile 
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Figure 3. Marginal effects on the median (left plot) and on the 0.95 quantile (right plot) of the 
cost per policyholder vs the percentage of kilometers with excess speed. Younger policyholder 
(solid line) and older policyholder (dashed line). The rest of covariates take their minimum 
values. 
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Figure 4. Marginal effects on the median (left plot) and on the 0.95 quantile (right plot) of the 
cost per policyholder vs the percentage of kilometers at night. Younger policyholder (solid line) 
and older policyholder (dashed line). The rest of covariates take their minimum values. 
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4.2. Predictive analysis of automobile red claim costs 

To analyse the predictive capacity of the estimated single-index models with the three
estimators FMCL, HHI and DHH, we used a sample of 100 cases, which were not in-
cluded in the sample used to estimate the models in the previous subsection. The results
using HHI and DHH are practically the same, only some differences are observed from
the fourth decimal, for this reason we only analyse the results for HHI. In Table 6 we
present the descriptive statistics of this new sample.

Table 6. Descriptive statistics of the variables in the claim costs sample for prediction analysis.

Mean Std. Min. Q25 Median Q75 Max.
cost 1.557 2.080 0.030 0.438 0.820 1.880 13.584
Log(cost) -0.138 1.107 -3.518 -0.827 -0.199 0.631 2.609
age 26.438 2.763 20.594 24.410 26.418 28.461 32.769
agelic 5.952 2.670 1.859 3.908 5.458 7.592 14.628
agecar 8.349 3.875 2.283 5.175 7.943 10.665 20.468
parking 0.790 0.409 0.000 1.000 1.000 1.000 1.000
tkm 7.644 4.006 0.560 5.018 7.267 9.876 23.336
nightkm 8.022 6.794 0.462 3.235 5.889 12.115 40.694
urbankm 29.232 14.522 10.266 17.386 27.811 36.246 85.553
speedkm 6.638 6.369 0.155 1.911 4.582 9.103 29.420
Q25 and Q75 are the frst and third quartiles.

Table 7. Criteria for the scoring rules for prediction. QE and WQE are multiplied by 10.

Methods FMCL HHI
MSE 1.303 1.514

PMCC -2.529 -2.662
l̂(θ) -149.592 -153.595
AIC 313.184 321.191
BIC 331.420 339.427

10× QE 11.495 11.531
10×WQE 8.388 8.436

For each of the indices that were estimated with the alternative methods, all the
criteria defned in Section 2.5 are calculated and presented in Table 7. In addition, the
mean squared error (MSE) associated with the frst order predicted conditional moment
corresponding to the frst sum of the PMCC criterion is also calculated. All these criteria
are obtained with the estimated parameters of the single-index models that include all
the covariates. These parameters are applied to the sample described in Table 6 to obtain
the values of the index, i.e., the parametric part of the single-index model. To obtain the
nonparametric estimation of the conditional functions used in the evaluated criteria, we
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need to calculate the appropriate degree of smoothing in each case, which depends on
the type of function, on the sample size and on the scale of the variable. So, the optimal
bandwidth for the kernel estimation of the density function is of order n−1/5 and for the
distribution function and quantile it is of order n−1/3.

Scoring rules are shown in Table 7, QE and WQE are calculated for a sequence of
values for p between 0.5 and 0.999 in intervals of 0.001 units. The results show that the
best ft is provided by the FMCL method for prediction in all cases.

5. Conclusion 

The method proposed herein provides a full specifcation of the conditional distribution,
while preserving the fexible nature of the single-index. Contrary to this principle, one
limitation of the traditional approach to generalised linear modelling is the fact that the
linear predictor is linked to the mean which, in general, is related to the location param-
eter of a given distribution that is assumed to be true.

In many contexts, heterogeneity is likely to be more closely associated with the
shape of the distribution and not so much with location. This is precisely the case of
the application presented as a case study herein. The use of a single-index model allows
us to analyse all the components of the motor insurance claims cost distribution: that
is, its mathematical expectation, its median, its quantiles and the marginal effects of the
covariates at their different values.

Here, we have developed an estimator for the conditional distribution single-index
model based on maximisation of the estimated conditional likelihood. We have used
this approach to estimate the conditional distribution and, more specifcally, its quan-
tiles. This, today, is fundamental in data analysis, given that in certain applications a
knowledge of the mean is not as interesting as a knowledge of other characteristics of
the distribution. In our application, the estimation of the probability of a severe accident
given some covariates, i.e., a cost larger than a fxed value, is a measure of the risk of
driving unsafely.

From the expression of the marginal effect of a covariate on a given quantile, we
have developed a way to interpret the estimated parameters of the index. Furthermore,
we can also interpret the specifc marginal effects for each insured individual.

Our main theoretical results demonstrate the asymptotic properties of the estimator
for a vector of parameters in a conditional distribution single-index model and provide
an expression for its covariance matrix. Likewise, the simulation study conducted herein
demonstrates the power of the inference using the kernel estimator of the covariance ma-
trix. These results are fundamental in situations in which the analyst does not have any
prior knowledge for identifying the variables that are actually responsible for changes
in the distribution of the dependent variable. The estimation of the variance-covariance
matrix considering the possible censored data in line with what is described by Laudagé,
Desmettre and Wenzel (2019) is a future goal.
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Moreover, the simulation study shows how our method is, in fact, an improvement
with respect to the fnite-sample properties of certain known alternative methods, es-
pecially when the conditional distribution is skewed and has a long right tail. This is
frequent in economic variables measuring revenues and expenses. The estimator pro-
posed is a considerable improvement on the alternatives analysed, showing robustness
in the presence of extreme values. However, for a distribution of this shape using a sam-
ple of small size, the results are still not especially good, but they can be improved with
the use of a logarithmic transformation.

In the application described here, the observed characteristics of the insured drivers
can be usefully employed to understand the distribution of claims cost. Additionally, if
single-index models were implemented in practice, they would enable insurers to com-
bine the cost per policyholder distribution with predictions about the expected number
of claims, which is currently the baseline for premium calculation dependent on such
covariates as age, number of years holding a driving licence, power of the vehicle, age
of the vehicle, and so on. Moreover, when we include driving behaviour information
in the model (that is, variables such as distance driven and a range of driving habits),
our approach allows us to identify the values of the single-index that correspond to a
long-tailed cost distribution and, therefore, to detect situations in which the probability
of observing a large claim increases. In addition, our proposal presents better predictive
scores and, therefore, more adjusted predictions than other existing alternatives.

SUPPLEMENTARY MATERIAL 

SM: The fle contains: 1. The proofs of the theoretical results in Section 2.2. 2. The
results of simulation study related to the properties (bias, variance and MSE) of the
alternative methods and the inference power of FMLC for symmetric distributions.
3. The results of application using HHI and HHD methods and additional plots
marginal effects using FMLC method and are available in http://www.ub.edu/rfa/
R/SORT-BCG/.

DS: Data set and R program used in the illustration of FMCL method in Section 4 are
available in https://data.mendeley.com/datasets/py3kb2hn2b/1 and
http://www.ub.edu/rfa/R/SORT-BCG/

Acknowledgements 

This article is part of the I+D+i projects PID2019-105986GB-C21 and grant TED2021-
130187B-I00, fnanced by MCIN/ AEI/10.13039/501100011033. MG thanks ICREA
Academia.

http://www.ub.edu/rfa/R/SORT-BCG/
http://www.ub.edu/rfa/R/SORT-BCG/
https://data.mendeley.com/datasets/py3kb2hn2b/1
http://www.ub.edu/rfa/R/SORT-BCG/
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Delecroix, M., Härdle, W. and Hristache, M. (2003). Effcient estimation in conditional
single-index regression. Journal of Multivariate Analysis, 86, 213–226.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction and
estimation. Journal of the American Statistical Association, 102, 359–378.

Guillen, M., Nielsen, J. P., Ayuso, M. and Perez-Mar´ The use of´ ın, A. M. (2019).
telematics devices to improve automobile insurance rates. Risk Analysis, 39, 662–
672.
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