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Abstract

Quantum entanglement is key to the development of more advanced and ef-
ficient technologies. While its nature can be conceptually confusing, it admits
ma-thematical descriptions. This work begins with an overview of quantum me-
chanics fundamentals, followed by a study of methods to characterize and quan-
tify entanglement. Such methods are based on a complex projective geometry
approach, with Segre embeddings playing a central role. Once we have gone
deeper into this mathematical formalism, we explore how quantum teleportation
works. Thanks to some properties that entanglement exhibits, qubits of informa-
tion can be transmitted from one point to another using only classical bits. Finally,
we establish a set of conditions under which a two-qubit state can be utilized for
quantum teleportation and, furthermore, qualifies as a maximally entangled state.
For other states, we briefly introduce an algorithm for achieving better teleporta-
tion results.

Resum

L’entrellaçament quàntic és clau per al desenvolupament de tecnologies més
avançades i eficients. Tot i que la seva naturalesa pot resultar conceptualment
confusa, admet descripcions matemàtiques. Aquest treball comença amb una
visió general dels fonaments de la mecànica quàntica, seguida d’un estudi de
mètodes per caracteritzar i quantificar l’entrellaçament. Tals mètodes es basen en
un enfocament de geometria projectiva complexa, amb les Segre embeddings com
a element central. Un cop aprofundit en aquest formalisme matemàtic, explorem
com funciona la teleportació quàntica. Gràcies a algunes propietats que exhibeix
l’entrellaçament, els qubits d’informació poden ser transmesos de manera segura
d’un punt a un altre utilitzant només bits clàssics. Finalment, establim un con-
junt de condicions sota les quals un estat de dos qubits pot ser utilitzat per a la
teleportació quàntica i, a més, qualifica com un estat màximament entrellaçat. Per
a altres estats, fem una introducció breu d’un algorisme per tal d’assolir millors
resultats de teleportació.

2020 Mathematics Subject Classification. 14E25, 81P42, 81P48



iv

Acknowledgments

I am very grateful to my advisor Dra. Joana Cirici Núñez for her advices,
corrections and guidance throughout this work. Her dedication has been essential
for the development of the project.

I would also like to thank Dr. Jordi Salvadó Serra, whose numerous expla-
nations and meetings have been such a great help. His contributions have been
fundamental for achieving the results in our Physics Final Degree Project.

Lastly, I would like to express my gratitude to my family, friends and partner
for their support and encouragement throughout these years. A special mention
goes to my colleague Andreu, whose notes on quantum mechanics have been
crucial in clarifying some of its fundamental concepts.



Introduction v

Introduction

Since the 20th century, quantum mechanics has undergone enormous develop-
ment. This is the fundamental theory that studies the behavior of physical systems,
constituted by particles smaller than atoms, such as electrons and photons. One
of the most important implications of this field is that some characteristics of such
particles are undetermined: they are found to be in a superposition of different
values or states. However, quantum mechanics can only predict the probability of
finding the particle at every different state. For instance, the exact position of the
electron in a hydrogen atom cannot be obtained, but one obtains the probability
of finding it at different locations.

The features of these particles are described mathematically by quantum states.
Their formalism depends on the kind of problem under study. Generally, they are
defined as wave functions or vector quantum states. When the characteristic of the
particle under study is more than assumed or is not important, then it is just said
state of the particle.

One interesting situation is when a particle presents a physical feature that is
found in a superposition of only two states. Such characteristic is described by
what is known as a qubit. This is the fundamental unit of quantum information,
consisting on a quantum state superposed in two different states, typically labeled
as “0” and “1”. For example, the spin of a spin- 1

2 particle, such as an electron, acts
as a qubit as it can exist in a superposition of spin-up and spin-down (along the ẑ
direction, for example):

state of the spin ≡ |S⟩ = α1 |↑ẑ⟩+ α2 |↓ẑ⟩ , α1, α2 ∈ C

where |α1|2 and |α2|2 are the probabilities of finding the spin upwards or down-
wards, respectively.

In this context, when we say that a physical system is formed by n qubits, we
refer to a system of n particles where the physical characteristic under study of
each one behaves as a qubit. We could have a quantum state of a 2-qubit system
of spin- 1

2 particles:

|S1S2⟩ = α1 |↑ẑ↑ẑ⟩+ α2 |↑ẑ↓ẑ⟩+ α3 |↓ẑ↑ẑ⟩+ α4 |↓ẑ↓ẑ⟩

This case give 4-dimensional systems since there are up to four possible states.
We will often say for states like this that they are two-particle states, or in this case
two-qubit states.

When preparing a system of several particles, it has been found that there can
arise some interesting phenomena between the states of these particles. One of the
most well-known is quantum entanglement. When two particle states are entangled,
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both behave as a single, inseparable entity. In other words, the state of each particle
cannot be described independently of the state of the other. Consequently, any
measurement or transformation applied to the state of one particle instantaneously
changes the state of the other one, regardless of the distance between them.

The simplest case for illustrating how entanglement works is with the 2-qubit
state

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩).

If a measurement on one of these two qubits gives as an outcome the state labeled
as “0” (or “1”), then the state of the other changes instantly to “0” (or “1”). From
this state it is impossible to obtain two independent states, one for each particle.
On the other hand, the states for which this can be done are called product states.
An example of this is the 3-qubit state

|B⟩ = 1√
2
(|000⟩+ |011⟩) = |0⟩ ⊗ |Φ+⟩ .

The concept of entanglement was first introduced by Erwin Schrödinger†2 in
response to the Einstein-Podolsky-Rosen†3 (EPR) paradox in 1935 [EPR35]. This
paper led to the conception of EPR pairs: two-qubit states which were later recog-
nized as being maximally entangled —the state |Φ+⟩ is one of these pairs. In 1964,
John Bell formulated Bell’s theorem [Bel64], introducing the well-known Bell in-
equalities. His work tested the validity of the EPR paradox, and after that, EPR
pairs were renamed Bell states. The presence of quantum entanglement in physical
systems was proven theoretical and experimentally. Although it is still an active
area of research, it has been recognized its importance and utility in technology
and communication. In fact, it is at the forefront of several scientific areas such as
quantum information theory, dense coding and quantum computing.

One of the most important implementations of quantum entanglement is to
“teleport” one qubit from one point to another without being concerned about
distance. Actually, there is no matter teleport but transmission of information.
This phenomenon is known as quantum teleportation (QT) and a brief explanation
of this goes as follow: a Bell state is prepared and the two entangled particles
are separated; the qubit wanted to be teleported is coupled to one of these two
particles; then a Bell measurement is performed onto the state of the two-coupled
qubits, changing to one of the four Bell states; so, the qubit isolated is also modi-
fied because of the existing entanglement; after that, the measurement outcome

2† Physicist and Nobel Prize-winning Austrain, 1887-1961.
3† Albert Einstein, German theoretical physicist and Nobel Prize-winning, 1879-1955.

Boris Yakovlevich Podolsky, Russian-American physicist, 1896-1966.
Nathan Rosen, American-Israeli physicist, 1909-1995.
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is sent to the insulated particle via two bits of classical information and, depend-
ing on the message, a certain transformation on this qubit is made, leading to a
quantum state equivalent to the one desired to transfer. At the end of the process,
despite the entangled pair —which could be prepared long ago, without concern-
ing about the teleportation—, a qubit of information has been teleported via the
transmission of two bits.
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Figure 1: A schematic representation of the global quantum teleportation process.

Among the first papers investigating about (QT) using Bell states we find
[BBC+93] published in 1993. After that, some experiments with photons have
verified this phenomenon: across the Danube River (600m) in 2004 [UJA+04] and
between Las Palmas and Tenerife (143km) in 2012 [MHS+12], among others. One
of the latest experiments has been carry out the last December by a research team
from the University of Northwestern [TYC+24]. They have achieved performing
quantum teleportation with existing fiber optics crowded with classical Internet
signals. Such a discovery is a big approach to the settlement of a large-scale quan-
tum network, because it seems that there is no need of a new infrastructure for
transmitting quantum information. On the other hand, there are studies related
to teleport two qubits instead of only one [YC06]. Furthermore, [DC00] investi-
gates how to teleport one qubit to several different places. All in all, because of the
fast information transmission, the versatility of qubits and the message encryption
provided by QT, this phenomenon is very useful for doing quantum computing.
It is also visualized as an option to establish a better and more secure global-scale
internet.

This process seems unnatural and impossible to perform, but it is already a
reality. Theoretically, it can be also proven that this actually works. In Chapter 4,
one can find a detailed explanation of how it is carried out with the mathematical
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quantum formalism —see also [Pre01]. On the other hand, a crucial step to achieve
QT is when performing a Bell measurement on the 2-qubit state. For this reason,
the procedure of this is described as well. Hereafter, we investigate how this
process goes for a generic 2-qubit state. We are able to establish some conditions
under which a state is perfect for quantum teleportation (PQT).

Quantum mechanics is the new emerging paradigm in the technology field.
Although there still is so much to investigate and develop, some quantum phe-
nomenons are already being exploited to achieve more accurate results in the
shortest possible time. The main objective of this work is to show that some quan-
tum features and behaviors, such as entanglement and quantum teleportation, can
be explained with a complex algebraic-geometrical approach. Extensive research
on this topic can be found in [BBC+19]. But before going straight to these mathe-
matical descriptions, in Chapter 1 one has at its disposal some basic concepts
about quantum mechanics, such as the description of Hilbert spaces H, quantum
states |φ⟩ and how measurements of observables A work.

The fascinating nature of entanglement and its crucial role in quantum me-
chanics have been the motivation to delve deeper into this phenomenon in this
work. In fact, it is the key for doing quantum teleportation. For this reason, we
consider that it is important to give a mathematical characterization of quantum
entanglement for pure states. In general, an algebraic-geometrical approach to
quantum entanglement via a hypercube of Segre embeddings†4 [CST21] is stu-
died (Chapter 2) and implemented (Chapter 3) on systems of qubits. The Segre
embedding is a map describing how to take products between projective spaces P:

Ξ : P× (k)· · · ×P −→ P.

We settle the relation between quantum states |φ⟩ ∈ H and projective points in a
complex projective space, [φ] ∈ P. Then, there is a clear implementation of the
Segre embedding for obtaining the state of a composite system:

Ξ([φ1], . . . , [φk])←→ |φ1⟩ ⊗ · · · ⊗ |φk⟩ .

From this, some interesting results are extracted. For instance, the Segre variety
is defined as the image of the Segre embedding, Σ = Im Ξ. If a projective point
lies in Σ, then it can be separated, so the state associated to the former point is a
product state.

We dedicate more attention to bipartite-type Segre embeddings between sys-
tems of n qubits:

Ξn,l : P2l−1 ×P2n−l−1 −→ P2n−1,

4† Named after the Italian mathematician Corrado Segre, 1863-1924.
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where 1 ≤ l ≤ n− 1 refers to the system partition. The notation PN means that
it is N-dimensional. These type of functions are the fundamental objects in the
Segre theory, as every Segre embedding is a combination of some bipartite-type
ones. Actually, this decomposition is not unique. Something interesting is found
when considering all possible decompositions: it leads to the construction of a
(n − 1)-hypercube, where the vertices are products of projective spaces and the
edges are maps of the form I× Ξn,l × I.

The bipartite-type Segre varieties, Σn,l , are then enough for characterizing the
entanglement of n-qubit systems. In fact, the Generalized Decomposability theorem
settles that [ψ] lies in at least q different bipartite-type Segre varieties if and only if
the state is (q + 1)-partite (that is, it can be expressed as a product of q + 1 states).
Given the importance of Σn,l , it is crucial to describe the structure of these Segre
varieties. We proof that they are defined by the zero locus of all 2× 2 minors of a
matrix constructed using projective coordinates.

The images of bipartite-type Segre maps become essential for defining a family
of quantum observables {Jn,l}l . Generally, their values range from zero to one.
Notably, a state is q-partite if at least q − 1 observables Jn,l are zero. Therefore,
they settle the connection between the geometry from the Segre embedding to
quantum entanglement.

A crucial step for being capable to teleport one qubit is to use one maximally
entangled state of two qubits. This concept emerged when measurements for
quantifying the amount of entanglement on any physical state arose. For pure
states, the most widely used measurement of quantum entanglement is given by
the so called von Neumann entanglement entropy. According to this, a state of
two qubits is maximally entangled if the entropy of entanglement is maximal,
with value ln 2. Nevertheless, it is still an open problem and there is not only one
way for quantifying entanglement, but in general it is agreed that a good measure
must satisfy some properties [HHHH09]. Other commonly methods are exposed
in [PV07].

In this work, we will study and adopt an entanglement measure provided in
the paper [CST21] already mentioned. This is defined as the average observable
of the family {Jn,l}l from before:

Jn =
1

n− 1

n−1

∑
l=1
Jn,l .

It has been observed that Jn works well for quantifying entanglement when n ≤ 4.
The physical interpretations of its extreme values are

Jn(ψ) = 0⇔ |ψ⟩ is (n− 1)-partite, Jn(ψ) = 1⇔ |ψ⟩ is maximally entangled.
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For a number of qubits greater than four, maximally entangled states are not
well defined since it is unknown the maximal value of this function: have been
observed states with Jn(ψ) > 1. However, in this work we will only consider
states consisting of up to four qubits.

For the ones that are more interested in such teleportation protocol, we suggest
taking a look on our Physics Final Degree Project [LSC25]. It is contemplated
to carry out the process in question by considering two-qubit states of the form
|Φ(θ)⟩ = cos θ |00⟩+ sin θ |11⟩ for angles between 0 and π. The main issue is that
these states are or are not maximally entangled depending on the angle, according
to J2. For the latter case, it is impossible to perform successful QT. Despite of
that, we implement an algorithm called Multiple Correlated-Try Metropolis (MCTM)
[CL07] with the aim to find the best transformations to apply on the isolated qubit
in order to obtain the best possible results. This method is a modification of the
Metropolis-Hastings†5 algorithm [Rob16].

We briefly explain the structure and contents of this project. In Chapter 1,
we introduce the principal concepts about Quantum mechanics that will appear
along, as well as their mathematic formalism. Later, in Chapter 2 we describe
how practical are projective points for representing quantum states. Consequently,
we also introduce the fundamentals of the Segre embedding and give important
results for the following part. Once provided these features, we implement the
Segre theory for studying the separability of n-qubit states in Chapter 3. Moreover,
we also define the family of observables {Jn,l}, the entanglement measure given
by Jn and it is also provided an illustration of the (n− 1)-hypercube for 2 ≤ n ≤ 5.
Lastly, in Chapter 4 we explain how quantum teleportation and Bell measurement
are carried out. After that, a discussion about performing QT with an arbitrary
two-qubit state is given. We will see that this is connected to the work done in our
physics project.

5† Named after the Greek-American physicist Nicholas Constantine Metropolis (1915-1999) and
the Canadian statistician Wilfred Keith Hastings (1930-2016).



Chapter 1

Quantum mechanics

In this first section, the reader not familiarized with quantum mechanics will
find explanations about some fundamental concepts that will appear frequently
during the next chapters. Specially, we will describe the structure of the Hilbert
space H we will work in and how quantum states may be represented. Later, we
will talk about some functions called operators and how they act on states. Two
important groups of these are the observables and the unitary transformations.
Finally, we will introduce the fundamental quantum element: the qubit.

1.1 The Hilbert space

Definition 1.1. A Hilbert spaceH is a complex vector space equipped with an inner
product denoted as ⟨ , ⟩ which satisfies the following properties:

1) ⟨x, y⟩ ∈ C, ∀x, y ∈ H.

2) It is conjugate symmetric, i.e. ⟨x, y⟩ = ⟨y, x⟩∗. This implies that ⟨x, x⟩ ∈ R.

3) It is linear in its first argument.

4) The product ⟨x, x⟩ is positive definite: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0⇔ x = 0.

This inner product induces a norm in H defined as ∥x∥ :=
√
⟨x, x⟩ for any x ∈ H.

Hilbert spaces are indispensable for describing the quantum states of mecha-
nical systems:

Definition 1.2. A (quantum) state is a vector x ∈ H such that ⟨x, x⟩ = 1.

1



2 Quantum mechanics

The nature of the Hilbert space H depends on the physical system. In this
work, we will focus only on describing the spin1 of fixed particles. The corres-
ponding Hilbert spaces are of finite dimension N < ∞ —we will denote it as
HN— and they are just the complex vector space CN equipped with the usual
inner product. The inner product of two vectors x, y ∈ HN is then ⟨x, y⟩ = x∗ · y.
From now on, we will only consider as elements of the Hilbert space the states of
this kind.

For quantum states, we use the bra-ket notation. On the one hand, the term
ket is referred for vectors of HN written as |φ⟩. They are expressed in terms of
some vector basis {|ei⟩}N

i=1 where |ei⟩ also are quantum states (i.e. this basis is
orthonormal):

|φ⟩ = a1 |e1⟩+ a2 |e2⟩+ · · ·+ aN |eN⟩ ≡


a1

a2
...

aN


ei

. (1.1)

The coefficients a1 . . . , aN ∈ C are the coordinates of the vector in the respective
basis and they satisfy |a1|2 + · · · + |aN |2 = 1. This is called normalization of the
quantum state. With this notation, |φ⟩ refers to a state. An important observation is
that states are physically indistinguishable up to a global phase factor with unitary
norm. Therefore, we say that two states |φ⟩ and |ψ⟩ are equivalent, |φ⟩ ∼ |ψ⟩, (i.e.
with the same physical properties) if and only if

|φ⟩ = eiθ |ψ⟩ , for some θ ∈ R. (1.2)

On the other hand, the term bra ⟨φ| represents a linear form of the dual Hilbert
space

(
HN)∗ and it is expressed as

⟨φ| = a1 ⟨e1|+ a2 ⟨e2|+ · · ·+ aN ⟨eN | ≡
(

a1 a2 · · · aN

)
ei
= |φ⟩† , (1.3)

where ai is the complex conjugate of ai and {⟨ei|} is the dual vector basis.
The inner product of two quantum states |φ⟩ , |ψ⟩ ∈ HN is written as ⟨ψ | φ⟩

and it can be easily computed using matrix forms:

⟨ψ | φ⟩ =
(

b1 · · · bN

) a1
...

aN

 = b1a1 + · · ·+ bNaN ∈ C.

The coordinates ai and bi of |φ⟩ and |ψ⟩, respectively, are in the same basis. This
can be done as well by using that {|ei⟩} is an orthonormal basis, i.e. ⟨ei | ej⟩ = δij.
Note that ⟨ei | φ⟩ = ai for all i = 1, . . . , N.

1The spin is an intrinsic angular momentum characteristic of elementary particles.
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1.2 Composite Hilbert space

Definition 1.3. Let HN1
1 and HN2

2 be two Hilbert spaces, with N1 and N2 two
positive integers. The composite Hilbert space of HN1

1 and HN2
2 is the Hilbert space

given by the tensor product of these vector spaces HN1
1 ⊗HN2

2 . Its inner product is
defined as

⟨⟨φ1| ⊗ ⟨φ2| | |ψ1⟩ ⊗ |ψ2⟩⟩ := ⟨φ1 | ψ1⟩ ⟨φ2 | ψ2⟩ ,

for all |φ⟩i , |ψ⟩i ∈ HNi
i with i = 1, 2. The operation ⊗ is the Kronecker product.

If {|ui⟩}N1
i=1 is basis of HN1

1 and {|vj⟩}N2
j=1 is one of HN2

2 , then a basis of the

composite space HN1
1 ⊗HN2

2 is formed by the vectors |ui⟩ ⊗ |vj⟩ =: |uivj⟩. Observe
that dim(HN1

1 ⊗HN2
2 ) = N1N2.

Note that the definition of this inner product is only defined by quantum states
of H1 ⊗H2 that factorize —that is states of the form |φ⟩1 ⊗ |φ⟩2 where |φ⟩1 ∈ H1

and |φ⟩2 ∈ H2. Fortunately, we can always use a base of states of H1 ⊗H2 where
all of the elements are factorized vectors. So thanks to the linearity of the inner
product, we can extend this to every state written in a basis like this.

Definition 1.4. A state |φ⟩ ∈ HN is product if there exist two smaller Hilbert spaces
satisfying HN1

1 ⊗HN2
2 = HN (where 0 < N1, N2 < N are two integers) and two

states |φ1⟩ ∈ HN1
1 , |φ2⟩ ∈ HN2

2 such that

|φ⟩ = |φ1⟩ ⊗ |φ2⟩ .

In other words, a state is product if there exists a composite Hilbert space where it
factorizes. In contrast, if one state can not be factorized in any way, then the state
is said to be entangled.

Composite Hilbert spaces are very important and frequently used in quantum
mechanics, because sometimes it is necessary to consider different quantum states
of separated systems as a unique state of a single system, or trying to decompose
a quantum state into several independent states. These actions are useful for
studying some properties of the state, such us its separability or its entanglement.

Given an n-particle state |φ⟩ ∈ HN , sometimes it is convenient to consider this
Hilbert space as a composite of the formHN1

1 ⊗ · · · ⊗HNn
n . EachHNi

i represents the
Ni-dimensional system formed by the i-th particle. In respect of these dimensions,
we have N = N1 · · ·Nn. If {|ui

ji
⟩}Ni

ji=1 is a basis of HNi
i for each i = 1, . . . , n, then

{|u1
j1 · · · u

n
jn⟩} is one of HN .

Moreover, it is useful to introduce some observers O, each living in one of the
Hilbert spaces forming the previous composite system. They are used for empha-
sizing that only the observer Oi of HNi

i can make transformations and measure-
ments (see the next two sections) on the particle living at this particular Hilbert
space. With this new concept, the original state |φ⟩ can be written as
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|φ⟩O1···On
= ∑

j1,...,jn

aj1···jn |u1
j1 · · · u

n
jn⟩O1···On

. (1.4)

In this context, in quantum mechanics is said that this state |φ⟩ is separable if
there exist states |φi⟩ ∈ HNi

i for all i = 1, . . . , n such that

|φ⟩O1···On
= |φ1⟩O1

⊗ · · · ⊗ |φn⟩On
.

Note that this is a particular case of product states which can be factorized in
terms of the states of each particle.

1.3 Observables, measurements and transformations

Definition 1.5. An operator O is a linear map on a Hilbert space O : H −→ H.

For any pair of states |φ1⟩ , |φ2⟩ ∈ H, the function |φ2⟩ ⟨φ1| is an operator:

|φ2⟩ ⟨φ1| : H −→ H
|ψ⟩ 7−→ |φ2⟩ ⟨φ1 | ψ⟩

Given a Hilbert spaceHN and a certain orthonormal basis {|ei⟩}, the set of ope-
rators {|ei⟩ ⟨ej|} is a base of the space of the operators in HN . So for any operator
O on H there exists a set of constants {cij} ⊂ C such that O = ∑i,j cij |ei⟩ ⟨ej|. For
this reason, this operator has an associated matrix which in the base {|ei⟩ ⟨ej|} has
the form  c11 · · · c1N

...
. . .

...
cN1 · · · cNN

 .

From now on, we will identify operators with their corresponding matrices given
in a certain basis. Note that any complex matrix of dimension N × N defines an
operator on HN .

In bra-ket notation,

O |φ⟩ := O(|φ⟩) =

 c11 · · · c1N
...

. . .
...

cN1 · · · cNN


 a1

...
aN

 ∈ HN ,

⟨ψ|O|φ⟩ := ⟨ψ| (O |φ⟩) =
(

b1 · · · bN

) c11 · · · c1N
...

. . .
...

cN1 · · · cNN


 a1

...
aN

 ∈ C.
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There is a postulate in quantum mechanics establishing that every observable
magnitude (such as the spin, the momentum, the energy...) is associated with one
linear operator on the Hilbert space which has real eigenvalues.

Definition 1.6. An operator A : HN → HN is called hermitian if A† = A.

This kind of operators satisfy two interesting properties:

1) Their eigenvalues live in the real space. That is if A is hermitian and
A |φ⟩ = λ |φ⟩, then λ ∈ R.

2) Given an hermitian operator A, there exists an orthonormal basis of H
formed with eigenvectors of A.

From this, for any hermitian operator exists one orthonormal basis of HN such
that its associated matrix is diagonal with real numbers:

A =

λ1
. . .

λs

 , where λi ∈ R ∀i = 1, . . . , s and 1 ≤ s ≤ N.

This is the general case, where we contemplate the possibility of the eigenvalue
spectrum of A being degenerate. In this sense, we have λi repeated ri times, where
1 ≤ ri ≤ N and r1 + · · ·+ rs = N. The eigenstates (unit eigenvectors) associated
to the eigenvalue λi are denoted as |λi, 1⟩ , . . . , |λi, ri⟩ and they form a vector basis
of one subspace of HN of dimension ri. Therefore, an orthonormal basis in HN

formed by the eigenstates of A is of the form

{|λ1, 1⟩ , (r1). . ., |λ1, r1⟩ , |λ2, 1⟩ , (r2). . ., |λ2, r2⟩ , . . . , |λs, 1⟩ , (rs). . ., |λs, rs⟩}.

Note that ⟨λj, mj | A | λi, mi⟩ = λiδijδmimj ∀i, j = 1, . . . , s, where 1 ≤ mi,j ≤ ri,j.
These two properties are the reason why hermitian operators correspond to

the operators associated to the observables discussed above. Because of this con-
nection, this type of operators are also named observables.

An observable has a spectral decomposition of the form A = ∑s
i=1 λiΠi where

Πi = ∑ri
l=1 |λi, l⟩ ⟨λi, l| are one kind of observables called projectors: hermitian

operators such that Π2 = Π. Given this, there exists a postulate in quantum
mechanics called the Born rule which states that:

i) The outcome of the measurement of the observable A on one state |φ⟩ will
be one of its eigenvalues λi.

ii) The probability of measuring λi is

P|φ⟩(A : λi) = ∥Πi |φ⟩∥2 = ⟨φ | Πi | φ⟩ . (1.5)
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After an observable measurement, the state of the system always changes fol-
lowing this criteria: if the measurement outcome has been the eigenvalue λi, then
|φ⟩ has become the state

|φi⟩ :=
Πi |φ⟩
∥Πi |φ⟩ ∥

. (1.6)

If we develop this expression we get

|φi⟩ =
∑ri

l=1 |λi, l⟩ ⟨λi, l | φ⟩
∥Πi |φ⟩ ∥

=
ri

∑
l=1

wl |λi, l⟩ ,

where wl =
⟨λi, l | φ⟩
∥Πi |φ⟩ ∥

∈ C for all l = 1, . . . , ri. So, an interesting interpretation of

(1.6) is that, after getting the measurement outcome λi, the state |φ⟩ has been pro-
jected to the subspace generated by the eigenstates associated to this eigenvalue.
In this respect, the notation |φ⟩ → |φi⟩ is commonly used. Note that the likelihood
that the state |φ⟩ will end up being |φi⟩ is the same as obtaining the measurement
λi, i.e.

P (|φ⟩ → |φi⟩) = P|φ⟩(A : λi).

If the eigenspace associated to λi is one-dimensional and generated by the
eigenstate |λi⟩ = |λi, 1⟩, then Πi = |λi⟩ ⟨λi|, so |φi⟩ = |λi⟩. Hence, the probability
is

P (|φ⟩ → |λi⟩) = | ⟨λi | φ⟩ |2. (1.7)

Let us explain how operators are used on a composite Hilbert space. Suppose
a state like (1.4) but of two particles, i.e. |φ⟩O1O2

= ∑i,j cij |uivj⟩O1O2
∈ H1 ⊗H2.

Suppose one operator O acting only on the first particle (the one associated to the
observer O1). An operator like this is defined as

OO1 := OO1 ⊗ IO2 : H1 ⊗H2 −→ H1 ⊗H2

|φ⟩O1O2
7−→ ∑

ij
cij

(
OO1 |ui⟩O1

)
⊗ |vj⟩O2

.

where IO2 is the identity operator in H2. Note that there is an abuse of nota-
tions, but we could avoid writing the observer in O⊗ I if we clearly differentiate
which observable acts on each particle. For the second particle we would take
OO2 := I⊗O. If now we consider both operators acting together,

OO1OO2 := (O⊗ I) (I⊗O) = O⊗O = OO1 ⊗OO2 ,

what we have is

OO1 ⊗OO2 : H1 ⊗H2 −→ H1 ⊗H2

|φ⟩O1O2
7−→ ∑

ij
cij

(
OO1 |ui⟩O1

)
⊗
(

OO2 |vj⟩O2

)
. (1.8)
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An observation about these last operators is that OO1 ⊗ OO2 = OO2 ⊗ OO1 .
When this happens and both are observables, it means that both measurements
can be taken simultaneously. However, not every operator acting on H1 ⊗ H2

can be factorized. Despite of that, a generic operator can be written as a linear
combination of factorizing operators.

Unitary transformations

There are some particular operators U that preserve the norm, in other words
∥Ux∥ = ∥x∥, ∀x ∈ HN . They are called unitary transformations and the associated
complex matrices form the unitary group defined as

U(N) =
{
U ∈ MN (C) | U † = U−1

}
.

Every unitary matrix U satisfies that |det(U )| = 1.
For any state |φ⟩ one can perform a unitary transformation U and get a dif-

ferent state |φ̃⟩ = U |φ⟩. Some examples of these transformations in H2 are the
well-known Pauli† operators (or matrices):

σ0 :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
and σ3 :=

(
1 0
0 −1

)
; (1.9)

which also are hermitian —therefore observables. Because of that, σ−1
i = σ†

i = σi,
so these operators satisfy σ2

i = I.
One matrix from the unitary group U(2) can be written as

U = eiα

(
eiβ cos θ eiγ sin θ

−e−iγ sin θ e−iβ cos θ

)
(1.10)

where α, β, γ, θ ∈ R. Note that there are four degrees of freedom. However, in
the context of quantum mechanics, the factor eiα is a global phase and does not
affect the physical properties of the system. As a result, these transformations are
defined by three degrees of freedom, up to a global phase.

1† Named after the physicist Wolfrang Pauli.
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1.4 Qubits

A qubit is a state of the smallest system one can consider. It consists of a
superposition of two states usually labeled as “0” and “1”. A general qubit is
given by the state

|ψ⟩ = a1 |0⟩+ a2 |1⟩
where {|0⟩ , |1⟩} is an orthonormal basis of a Hilbert space H2. As we have men-
tioned before, this state must be normalized, so its coefficients a1, a2 ∈ C must
satisfy |a1|2 + |a2|2 = 1.

This quantum state is called like this because it is interpreted as the quantum
version of the bit: a classical object that has one of two possible values, commonly
represented as “0” and “1” as well. In the same way bits are the fundamental
element for classical computation, qubits are for quantum, where many qubits
have to coexist and interact. It is therefore interesting to consider a quantum
system composed of n qubits living in a Hilbert space HN , where N = 2n. A
general n-qubit state has the following form of representation:

|Ψ⟩ = a1 |0
(n)· · ·0⟩+ a2 |0

(n−1)· · · 01⟩+ · · ·+ aN−1 |1
(n−1)· · · 10⟩+ aN |1

(n)· · ·1⟩

where a1 . . . , aN ∈ C and ∑N
i=k |ak|2 = 1. We have used the orthonormal basis

|j1 · · · jn⟩ ≡ |j1⟩O1
⊗ · · · ⊗ |jn⟩On

, where ji ∈ {0, 1} represents the state of the j-th
qubit for all i = 1, . . . , n. One difference here is that now there are n different
particles, so as we explained before it may be convenient using observers Oi, one
for each qubit.

One of the most well-known examples of qubits arises from spin- 1
2 particles,

such as electrons. These particles have a spin that can exist in a superposition of
two states: up |↑⟩ and down |↓⟩, along a chosen direction. More precisely, the
particles themselves are not qubits, but their spin states serve as qubits.

Additionally, photons can also function as qubits, making them highly valu-
able in quantum experiments and technological applications. Specifically, their
polarization can exist in a superposition of horizontal |H⟩ and vertical |V⟩ polari-
zation states.



Chapter 2

The Segre embedding

This chapter has been written following the structure and results explained
in [CST21]. We will introduce briefly what a complex projective space is and
how it is strongly connected with the Hilbert space. Moreover, we will use a
map called Segre embedding for taking products between two different projective
spaces. After that, we will generalize this map for a set of projective spaces.

2.1 Complex projective space

Denote by CN the complex vector space of dimension N < ∞.

Definition 2.1. The complex projective space PN is the quotient space defined as

PN :=
CN+1\{0}

z ∼ λz

where z ∈ CN+1\{0}, λ ∈ C\{0} and ∼ is an equivalence relation that identifies
proportional vectors in CN+1.

The notation used PN also means that the dimension of the projective space
is N. The elements of PN are called projective points and they are represented
by the projective coordinates z0, . . . , zN ∈ C using the notation p = [z0 : · · · : zN ].
Actually, these coordinates are the ones of a vector z from CN+1\{0} in a certain
basis. According to the equivalence relation ∼ from Definition 2.1, we have that
(z0, . . . , zN) ∼ (λz0, . . . , λzN), ∀λ ∈ C∗, so in terms of projective points,

p = [z0 : · · · : zN ] = [λz0 : · · · : λzN ], ∀λ ∈ C∗ (2.1)

On the other hand, the complex projective space PN may be also understood
as the set of lines in CN+1 that go through the origin.

9
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2.2 Projective Hilbert space

Complex algebraic geometry can be implemented for understanding some con-
cepts of quantum mechanics.

Let N > 1 be a positive integer and let {ei}N
i=1 be the standard basis in CN . We

will consider a Hilbert space HN with basis |ei⟩ and a complex projective space
PN−1 with ei as adapted basis.

Let be |φ⟩ ∈ HN one state of an N-dimensional system. This state is of the
form (1.1). According to (1.2), |φ⟩ is unique up to a global phase, so for any θ ∈ R

the state of the form eiθ |φ⟩ represents the same physical state. If we consider the
coordinates of any of them, we see that {eiθak}N

k=1 ⊂ C and there must be at least
one nonzero element. Therefore, we have that [eiθa1 : · · · : eiθaN ] is a projective
point in PN−1. Consequently, we have the following identity:

[eiθa1 : · · · : eiθaN ] = [a1 : · · · : aN ], ∀θ ∈ R.

In other words, all equivalent physical states in HN are represented by the same
projective point in PN−1.

On the other hand, let p = [z1 : · · · : zN ] be a projective point in PN−1. If we
consider the constant C = |z1|2 + · · ·+ |zN |2 ∈ R+, then p can be also expressed
like

p =
eiθ
√
C
[z1 : · · · : zN ] = [aθ,1 : · · · : aθ,N ],

where aθ,k = eiθzk/
√
C for all k = 1 . . . , N and θ is some real constant. Note that

aθ,k ∈ C with at least one nonzero, according to Definition 2.1. Moreover, they
satisfy |aθ,1|2 + · · ·+ |aθ,N |2 = 1. For each θ ∈ R, the vector uθ = (aθ,1, . . . , aθ,N)

representing p can be considered thus a state |uθ⟩ in HN . Actually, the family of
vectors {|uθ⟩}θ∈R are all the ones representing a unique physical state. In other
words, any projective point in PN−1 describes a distinctive mechanical state in
HN .

All in all, one may observe that there is a strong correlation between states in
HN and projective points in the complex projective space PN−1. From the above
discussion we obtain:

Proposition 2.2. There exists a bijection between the sets of equivalent states in a Hilbert
space HN and projective points in PN−1:

equivalent states in HN ←→ PN−1{
eiθ
√
C
(a1 |e1⟩+ · · ·+ aN |eN⟩)

∣∣∣∣ θ ∈ R

}
←→ [a1 : · · · : aN ]

where C = |a1|2 + · · ·+ |aN |2.
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Therefore, we can visualize quantum states as projective points. Moreover, one
unique projective point represents all possible states (which are infinity of them)
describing the same properties of a given system. For this reason, and given that
there is no need to compute any normalization constant, using projective points
may be more practical than quantum vector states. When we deal with projective
points, instead of the Hilbert space we use what is called projective Hilbert space P.

Note that, from Proposition 2.2, the correspondence between HN and PN−1

is described also by [φ] ↔ {|ψ⟩ | |φ⟩ ∼ |ψ⟩}, where [φ] = [a1 : · · · : aN ]

and |φ⟩ = 1√
C (a0 |e1⟩+ · · · aN |eN⟩). For simplicity, from now on we will write

[φ] ↔ |φ⟩, where |φ⟩ denotes the state representing all equivalent states.

Example 2.3. Here are some examples of well-known states of two and three
qubits written as projective points:

a) The four Bell states:
|ϕ0⟩ := 1√

2
(|00⟩+ |11⟩)←→ [ϕ0] = [1 : 0 : 0 : 1]

|ϕ1⟩ := 1√
2
(|01⟩+ |10⟩)←→ [ϕ1] = [0 : 1 : 1 : 0]

|ϕ2⟩ := 1√
2
(|01⟩ − |10⟩)←→ [ϕ2] = [0 : 1 : −1 : 0]

|ϕ3⟩ := 1√
2
(|00⟩ − |11⟩)←→ [ϕ3] = [1 : 0 : 0 : −1]

b) |Sep⟩ := |000⟩ ←→ [Sep] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]

c) |B1⟩ := 1√
2
(|000⟩+ |011⟩)←→ [B1] = [1 : 0 : 0 : 1 : 0 : 0 : 0 : 0]

d) |W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩)←→ [W] = [0 : 1 : 1 : 0 : 1 : 0 : 0 : 0]

e) |GHZ⟩ = 1√
2
(|000⟩+ |111⟩)←→ [GHZ] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 1]

In this work, we will often use projective points when studying states as it is
more comfortable: there is no need of computing the normalization constant nor
considering global phases, as we already noticed just above.

2.3 Segre embedding

We will see that the Segre embedding is a map describing how to take products
of projective Hilbert spaces P.

Bipartite-type Segre embedding

Consider a state [φ] in a composite projective Hilbert space PN = PN1 ⊗PN2 ,
where N ≥ 3 and 1 ≤ N1, N2 < N. According to the concepts already introduced
about composite Hilbert spaces in Section 1.2, there exist two adapted bases ui and
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vj from two projective Hilbert spaces PN1 and PN2 , respectively, such that uivj is an
adapted basis of PN , where 1 ≤ N1, N2 < N. Therefore, the projective coordinates
of our state in this basis are of the form:

[φ] = [c00 : · · · : c0N2 : · · · : cij : · · · : cN10 : · · · : cN1 N2 ].

Note that this is a point with (N1 + 1)(N2 + 1) projective coordinates, so we have
the relation N = (N1 + 1)(N2 + 1)− 1 between the dimensions of the projective
spaces. One may wonder if our state is product in these two projective Hilbert
spaces. In other words, if there exist two states [φ1] = [a0 : · · · : aN1 ] ∈ PN1 and
[φ2] = [b0 : · · · : bN2 ] ∈ PN2 such that, according to (1.4),

|φ⟩ = |φ1⟩ ⊗ |φ2⟩ ⇐⇒ [φ] = [a0b0 : · · · : a0bN2 : · · · : aN1 b0 : · · · : aN1 bN2 ]

⇐⇒ cij = aibj, ∀i = 0, . . . , N1 and ∀j = 0, . . . , N2.

The next definition is motivated on that:

Definition 2.4. Let PN1 and PN2 be two projective spaces, where N1, N2 ∈ Z+. The
(bipartite-type) Segre embedding Ξ is the map defined as

ΞN1,N2 : PN1 × PN2 −→ PN

([a0 : · · · : aN1 ], [b0 : · · · : bN2 ]) 7−→ [· · · : aibj : · · · ]

where 0 ≤ i ≤ N1, 0 ≤ j ≤ N2 and N := (N1 + 1)(N2 + 1)− 1.

Note that for any two states [φ1] ∈ PN1 and [φ2] ∈ PN2 , their Segre image
ΞN1,N2 ([φ1], [φ2]) is a state in the projective Hilbert space PN . More precisely, it is
a product state.

This function is injective but not exhaustive. Indeed, the decomposition of one
product state into two states given the spaces PN1 and PN2 is unique, and on the
other hand not every state in PN is product.

Definition 2.5. The (bipartite-type) Segre variety ΣN1,N2 of a Segre embedding ΞN1,N2

is the image of this map:
ΣN1,N2 := Im (ΞN1,N2) .

This can be interpreted as the set of all product states generated by every
pair of states formed by one state from PN1 and another one from PN2 . That is
so interesting, because by knowing how this set is constructed, one may easily
characterize if one state is a product state in respect of two projective Hilbert
spaces.
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Proposition 2.6. Given N1, N2 ∈ Z+, the Segre variety ΣN1,N2 can be described as

ΣN1,N2 =
{
[· · · : cij : · · · ] ∈ PN | cijckl = cilckj, ∀i ̸= k, ∀j ̸= l

}

=

zero locus of all 2× 2 minors of

 c00 · · · c0N2
...

. . .
...

cN10 · · · cN1 N2


 .

Proof. Let N1 and N2 be two arbitrary positive integers. Consider the Segre va-
riety ΣN1,N2 ⊂ PN , where N = (N1 + 1)(N2 + 1) − 1. Note that the projective
coordinates of every point in PN can be indexed like [z00 : · · · : z0N2 : · · · : zN1 N2 ].

Let us take one arbitrary point p = [c00 : · · · : cN1 N2 ] from PN .
First of all, suppose that p ∈ ΣN1,N2 . By definition of bipartite-type Segre

variety, ∃q1 = [a0 : · · · : aN1 ] ∈ PN1 and ∃q2 = [b0 : · · · : bN1 ] ∈ PN2 such that

p = ΞN1,N2(q1, q2) = [a0b0 : · · · : a0bN2 : a1b0 : · · · : aN1 bN2 ].

Therefore, we have that [c00 : · · · : cN1 N2 ] = [a0b0 : · · · : aN1 bN2 ]. This happens
if and only if (c00, . . . , cN1 N2) = λ(a0b0, . . . , aN1 bN2) for some λ ∈ C∗. With this, the
projective coordinates of p satisfy

cijckl − cilckj = λ2aibjakbl − λ2aiblakbj = 0,

∀i, k = 0, . . . , N1 and ∀j, l = 0, . . . , N2. In particular, this happens ∀i ̸= k and
∀j ̸= l.

On the other hand, now consider that the projective coordinates of p have the
property that cijckl = cilckj, ∀i ̸= k and ∀j ̸= l. By definition of projective point,
∃ck′ l′ ̸= 0 for some k′ = 0, . . . , N1 and l′ = 0, . . . , N2. Then we have that

cij =
cil′ck′ j

ck′ l′
, ∀i ∈ {0, . . . , N1}\{k′} and ∀j ∈ {0, . . . , N2}\{l′}.

After replacing the corresponding projective coordinates of p with this expression
and multiplying every one with the constant ck′ l′ ∈ C∗, we obtain

cij =
cil′ck′ j

ck′ l′
−→ cil′ck′ j ∀i ∈ {0, . . . , N1}\{k′} and ∀j ∈ {0, . . . , N2}\{l′}

cil′ −→ cil′ck′ l′ ∀i ∈ {0, . . . , N1}\{k′}
ck′ j −→ ck′ l′ck′ j ∀j ∈ {0, . . . , N2}\{l′}
ck′ l′ −→ ck′ l′ck′ l′

In summary, note that cij has become cil′ck′ j, ∀i, j. Therefore, we have another
possible representation of p:

p = [c00 : · · · : cij : · · · : cN1 N2 ] = [c0l′ck′0 : · · · : cil′ck′ j : · · · : cN1l′ck′N2 ]
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With that in mind, let be ar = crl′ for all r = 0, . . . , N1 and bs = ck′s for all
s = 0, . . . , N2. Note that, as ak′ = bl′ = ck′ l′ ̸= 0, then q1 := [a0 : · · · : aN1 ] ∈ PN1 and
q2 := [b0 : · · · : bN2 ] ∈ PN2 are well-defined projective points. Using this notation,
from the last expression of p we have that p = [a0b0 : · · · : aN1 bN2 ] = ΞN1,N2(q1, q2),
so p ∈ ΣN1,N2 .

It is easy to check that cijckl = cilckj ∀i ̸= k and ∀j ̸= l is equivalent to the fact
that all 2× 2 minors from the matrix c00 · · · c0N2

...
. . .

...
cN10 · · · cN1 N2


are zero. Indeed, given i ̸= k ∈ {0, . . . , N1} and j ̸= l ∈ {0, . . . , N2} arbitrariness
integers,

cijckl − cilckj = 0⇔
∣∣∣∣∣ cij cil

ckj ckl

∣∣∣∣∣ = 0,

which is clearly a minor from the matrix of above. By changing the indexes we
run over all possible 2× 2 minors.

In respect of the previous proposition, the total number of 2× 2 minors existing
in that matrix is given by

ξN1,N2 :=
N1(N1 + 1)N2(N2 + 1)

4
. (2.2)

Example 2.7. The simplest Segre variety is

Σ1,1 =
{
[c0,0 : c0,1 : c1,0 : c1,1] ∈ P3 | c0,0c1,1 = c0,1c1,0

}
.

Another two Segre varieties which we will see very often in the next chapter
are the following:

a) Σ1,3 =

{
[c0,0 : · · · : c1,3] ∈ P7| all 2× 2 minors of

(
c0,0 · · · c0,3

c1,0 · · · c1,3

)
are zero

}

b) Σ3,1 =

[c0,0 : · · · : c3,1] ∈ P7| all 2× 2 minors of


c0,0 c0,1

c1,0 c1,1

c2,0 c2,1

c3,0 c3,1

 are zero


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Generalized Segre embedding

The Segre embedding from Definition 2.4 can be generalized by considering
more than two projective Hilbert spaces.

First of all, let us define a function that sets a relation between the dimensions
of the projective spaces involved, like in Definition 2.4 but in a generalized way:

N (N1, . . . , Nm) := (N1 + 1) · · · (Nm + 1)− 1, ∀m ≥ 1. (2.3)

Definition 2.8. Let PN1 , . . . , PNm be m ≥ 3 projective spaces, where the respec-
tive dimensions are N1 . . . , Nm ∈ Z+. The generalized Segre embedding is the map
defined as:

ΞN1,...,Nm : PN1 × · · · × PNm −→ PN (N1,...,Nm)(
[a1

0 : · · · : a1
N1
], . . . , [am

0 : · · · : am
Nm

]
)
7−→ [· · · : a1

i1 · · · a
m
im

: · · · ]

where 0 ≤ ij ≤ Nj for all j = 1, . . . , m and N (N1, . . . , Nm) is the function given by
(2.3).

Definition 2.9. The generalized Segre variety ΣN1,...,Nm is the image of the corres-
ponding generalized Segre embedding:

ΣN1,...,Nm := Im (ΞN1,...,Nm) .

With these definitions, given a state [φ] ∈ PN and a Segre embedding ΞN1,...,Nm

such that N (N1, . . . , Nm) = N, if [φ] ∈ ΣN1,...,Nm then there exist m smaller states
[φ1] ∈ PN1 , . . . , [φm] ∈ PNm such that [φ] is a product state in terms of these m
states:

[φ] = ΞN1,...,Nm ([φ1], . . . , [φm])←→ |φ⟩ = |φ1⟩ ⊗ · · · ⊗ |φm⟩ .

In contrast with the bipartite-type Segre variety from Definition 2.5, the gene-
ralized one can not be described in terms of homogeneous quadratic polynomial
equations. Despite of that, from Definition 2.8 it is direct to deduce that general-
ized Segre maps can be described in terms of some bipartite ones:

Lemma 2.10. If ΞN1,...,Nm : PN1 × · · · × PNm −→ PN (N1,...,Nm) is a generalized Segre
embedding, then it can be written as a successive composition of m− 1 functions of the
form

IÑ1
× · · · × IÑi−1

× ΞÑi ,Ñi+1
× IÑi+2

× · · · × IÑm̃
,

where the value of m̃ is different for each function involved in the composition, going from
m to 2. For a function of this form with value m̃, for all i = 1, . . . , m̃:

i) IÑi
is the identity map of the projective space PÑi ,
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ii) ΞÑi ,Ñi+1
: PÑi ×PÑi+1 −→ PN (Ñi ,Ñi+1) is the bipartite-type Segre embedding,

iii) min{N1, . . . , Nm} ≤ Ñi < N (N1, . . . , Nm).

For instance, for any generalized Segre embedding with m = 3, i.e. ΞN1,N2,N3 ,
we have the following diagram:

PN1 ×PN2 ×PN3 PN (N1,N2) ×PN3

PN1 ×PN (N2,N3) PN (N1,N2,N3)

ΞN1,N2×IN3

IN1×ΞN2,N3

ΞN1,N2,N3 ΞN (N1,N2),N3

ΞN1,N (N2,N3)

The dashed arrow represents the generalized Segre map, while the continuous
arrows correspond to the maps from Lemma 2.10. Note that these together form a
square, i.e. a 2-hypercube as defined in Definition 3.16. Regarding the dimensions
of the projective spaces involved in the diagram, it can be verified that

N (N (N1, N2), N3) = (N (N1, N2) + 1) (N3 + 1)− 1

= (N1 + 1)(N2 + 1)(N3 + 1)− 1 = N (N1, N2, N3),

and similarly for N (N1,N (N2, N3)).

Example 2.11. Let us consider the following generalized Segre embedding:

Ξ1,1,1 : P1 ×P1 ×P1 −→ P7.

This one has just two possible decompositions in terms of bipartite-type Segre
embeddings:

• On one hand, Ξ1,1,1 = Ξ3,1 ◦ (Ξ1,1 × I1), because:

P1 ×P1 ×P1 P3 ×P1 P7Ξ1,1×I1 Ξ3,1

• On the other hand, Ξ1,1,1 = Ξ1,3 ◦ (I1 × Ξ1,1), because:

P1 ×P1 ×P1 P1 ×P3 P7I1×Ξ1,1 Ξ1,3

For a deeper understanding of the result from last Lemma, one may refer
to the end of Chapter 3, where several (n − 1)-hypercubes constructed by Segre
embeddings of the latter form are presented. The projective spaces involved are
of the form P2k−1, where 1 ≤ k ≤ n.



Chapter 3

Characterization of quantum
entanglement in qubits

This chapter is based on the work of [CST21] as well. Here, it will be only
considered quantum states of particles systems acting as qubits. First of all, we
will implement the Segre’s theory to this type of states. Thanks to that, we will be
able to easily characterize its entanglement, or equivalently its decomposability.
We will see in addition a function that quantifies how entangled a state is. Finally,
it is shown that all Segre embeddings that may be performed in a n-qubit state
can be illustrated with an (n− 1)-hypercube.

3.1 Segre embedding in qubits

According to the introduction made in Section 1.4 about qubits, it is of relevant
importance studying how much entanglement has any state of n ≥ 2 qubits. For-
tunately, in this section we may see that Segre embeddings may be a useful tool
for achieving this objective.

Let |ψ⟩ be a state of n particles. As we have already seen, this state lives in a
2n-dimensional Hilbert space, or equivalently, its projective point [ψ] belongs to a
projective Hilbert space P2n−1. We will use the following notation:

Mn := 2n − 1 = N (1, (n). . ., 1).

The first question one might consider is if [ψ] is a product state. Applying
the concepts introduced in Section 2.3, this state is a product state if and only if
there exist one state of n1 particles [ψ1] ∈ PMn1 and another [ψ2] ∈ PMn2 of n2

particles such that ΞMn1 ,Mn2
([ψ1], [ψ2]) = [ψ]. The positive integers Mn1 and Mn2

17
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must satisfy N (Mn1 , Mn2) = Mn. Note that

N (Mn1 , Mn2) = (Mn1 + 1)(Mn2 + 1)− 1 = 2n1+n2 − 1 = Mn ⇔ n1 + n2 = n.

This result aligns with the physical principle that the number of particles must
be preserved. Therefore, imposing that n2 = n− n1 is equivalent to the condition
N (Mn1 , Mn2) = Mn.

All in all, it is possible to give a more simplest way of characterizing a product
state:

Lemma 3.1. A state [ψ] ∈ PMn of n particles is a product state if and only if exists a
positive integer l ∈ {1, . . . , n− 1} such that [ψ] ∈ ΣMl ,Mn−l .

Now we can understand why it is called bipartite-type Segre embedding: for
determining if it is a product state, it is enough by finding one bipartition of
the n particles satisfying the previous Lemma. The partitions are indexed by the
l parameter and there are a total of n − 1 different partitions. Therefore, it is
important to consider all possible Segre embeddings of the form

ΞMl ,Mn−l : P2l−1 ×P2n−l−1 :−→ P2n−1, ∀l = 1, . . . , n− 1; (3.1)

as well as the corresponding Segre varieties

ΣMl ,Mn−l = Im
(
ΞMl ,Mn−l

)
, ∀l = 1, . . . , n− 1; (3.2)

which we already know their structure thanks to Proposition 2.6.

Example 3.2. Consider a qubit-system formed by 3 particles in the state

|B1⟩ABC =
1√
2
(|000⟩ABC + |011⟩ABC)←→ [B1]ABC = [1 : 0 : 0 : 1 : 0 : 0 : 0 : 0],

where A, B and C are three observers, one for each particle. There are only two
possible partitions:

l = 1 l = 2

•
A

•
B

•
C

•
A

•
B

•
C
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In the left partition (l = 1), we have two different subsystems: the system
of A with one particle P1

A and the system of B and C with two particles P3
BC.

Meanwhile, in the right partition, we get the subsystems P3
AB and P1

C.
For checking if the state [B1] is a product state of one state in PA and another

of PBC we may see if [B1] ∈ Σ1,3 =: ΣA⊗BC. According to Example 2.7, we know
that

ΣA⊗BC =

{
zero locus of all 2× 2 minors of

(
c0,0 c0,1 c0,2 c0,3

c1,0 c1,1 c1,2 c1,3

)}
.

In our case, we have c0,0 = c0,3 = 1 and the rest of the projective coordinates are
zero. So, we have to check if all the 2× 2 minors of the following matrix are zero:(

1 0 0 1
0 0 0 0

)
.

It is easy to see that there is a total of 6 minors —a number that can be computed
with (2.2)— and all of them are zero. Therefore, [B1] ∈ ΣA⊗BC and it is a product
state. In fact, we could also noticed that

|B1⟩ABC = |0⟩A ⊗
1√
2
(|00⟩BC + |11⟩BC)

On the other hand, by doing the same for the left partition (l = 2) we obtain
[B1] /∈ ΣAB⊗C because there exists a non-zero minor in the matrix

1 0
0 1
0 0
0 0

 .

One might wonder that there may be more than two partitions, for example in one
side the observer B while in the other one A and C. Nevertheless, this partition
is not possible in our case, let us see why. In order to perform this partition, we
have to consider the order BAC by permuting the particles A and B on the state
from before —and therefore permuting the basis of P7. The result is a different
state from |B1⟩:

|B2⟩ABC =
1√
2
(|000⟩ABC + |101⟩ABC)←→ [B2]ABC = [1 : 0 : 0 : 0 : 0 : 1 : 0 : 0],

where the names of the observers A and B have been exchanged after reordering
the basis. Doing the same as before, [B2] /∈ ΣA⊗BC ∪ ΣAB⊗C.
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3.2 Decomposability and separability

Another interesting aspect of study is the possibility of the state |ψ⟩ not only
being a product state of two states but of three or more states.

Definition 3.3. Let |ψ⟩ be a state of n ≥ 2 particles. |ψ⟩ is said to be q-partite if
there exist q states of ni particles |ψi⟩ such that

|ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψq⟩

where 2 ≤ q ≤ n and n1 + · · ·+ nq = n.

This definition provides a way for classifying entangled and product states:

|ψ⟩ is a product state ⇐⇒ |ψ⟩ is q-partite for some 2 ≤ q ≤ n.

It seems very interesting for characterizing quantum states in this way. Hope-
fully, Segre embeddings could be a valuable tool for this purpose. Before explain-
ing how this works, it is crucial to introduce some important concepts.

Definition 3.4. Let [ψ] ∈ PMn be an n-particle state, n ≥ 2 and 2 ≤ q ≤ n. [ψ] is
q-decomposable if there exist q positive integers n1, . . . , nq such that

[ψ] ∈ ΣMn1 ,...,Mnq

where n1 + · · ·+ nq = n.

Note that if [ψ] is q-decomposable, then there exist ni-particle states [ψi] ∈ PMni

with i = 1, . . . , q such that

ΞMn1 ,...,Mnq

(
[ψ1], . . . , [ψq]

)
= [ψ].

In other words, [ψ] can be separated within q states, i.e. |ψ⟩ is q-partite. With this,
one can observe that there is a strong correlation between Definitions 3.3 and 3.4:

Lemma 3.5. Given an integer 2 ≤ q ≤ n, one n-particle state |ψ⟩ is q-partite if and only
if its corresponding projective point [ψ] is q-decomposable.

According to this last result, |ψ⟩ is a separable state if and only if [ψ] is n-
decomposable. That is if it is a point in the generalized Segre variety of the form
Σ

1,(n)... ,1
.
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Lemma 3.6. For n ≥ 3, if [ψ] is q-decomposable for some 2 < q ≤ n, then it is (q− 1)-
decomposable.

Proof. Let [ψ] be q-decomposable. Then, there exist [ψi] ∈ PMni for i = 1, . . . , q
such that

[ψ] = ΞMn1 ,...,Mnq

(
[ψ1], . . . , [ψi−1], [ψi], [ψi+1], [ψi+2], . . . , [ψq]

)
.

Because q > 2, then ΞMn1 ,...,Mnq
is one generalized Segre embedding. According to

Lemma 2.10, this Segre map can be written as a composition of two functions of
the form

PMn1 × · · · ×PMnq

PMn1 × · · · ×P
Mni+ni+1 × · · · ×PMnq PMn

IMn1
×···×ΞMni ,Mni+1

×···×IMnq
ΞMn1 ,...,Mnq

ΞMn1 ,...,Mni+ni+1
,...,Mnq

for some i = 1, . . . , q− 1. Let be ñ = ni + ni+1, therefore

[ψ] = ΞMn1 ,...,Mñ,...,Mnq

(
[ψ1], . . . , [ψi−1], [ψ̃], [ψi+2], . . . , [ψq]

)
Note that [ψ] ∈ ΣMn1 ,...,Mñ,...,Mnq

and the following q− 1 positive integers satisfy

n1 + · · ·+ ni−1 + ñ + ni+2 + · · ·+ nq = n.

Lemma 3.7. If [ψ] is q-decomposable for some 2 ≤ q ≤ n, then it is 2-decomposable.

According to the reciprocal of the last Lemma, if [ψ] is not 2-decomposable,
then it is not q-decomposable for all 2 ≤ q ≤ n. The next definition is motivated
on this result:

Definition 3.8. A state [ψ] is indecomposable if it is not 2-decomposable.

Lemma 3.9. The state |ψ⟩ is entangled if and only if its corresponding projective point
[ψ] is indecomposable.
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We will see the decomposability of a state [ψ] can be described only by means
of bipartite-type Segre varieties. In [CST21] the reader can find an extended and
detailed proof of the following result:

Theorem 3.10. (Generalized Decomposability) Let n ≥ 2 and 2 ≤ q ≤ n be two
integers. The state [ψ] ∈ PMn is q-decomposable if and only if the state can be separated
within q− 1 different bi-partitions. In other words,

[ψ] is q-decomposable ⇐⇒ ∃1 ≤ l1 < · · · < li < · · · < lq−1 ≤ n− 1 such that

[ψ] ∈ ΣMli
,Mn−li

, ∀i = 1, . . . , q− 1.

This theorem is very useful as it means that decomposability of states is fully
characterized only by Segre varieties of the form (3.2). More specifically, it offers
a method for classifying entangled and separable n-particle states:

|ψ⟩ entangled ⇐⇒ [ψ] /∈
n−1⋃
l=1

ΣMl ,Mn−l

|ψ⟩ separable ⇐⇒ [ψ] ∈
n−1⋂
l=1

ΣMl ,Mn−l

Example 3.11. Some cases for determining the decomposability of states:

a) [ψ] ∈ P7 is 2-decomposable⇔ [ψ] ∈ Σ1,3 ∪ Σ3,1;

b) [ψ] ∈ P15 is 3-decomposable⇔ [ψ] ∈ (Σ1,7 ∩ Σ3,3)∪ (Σ1,7 ∩ Σ7,1)∪ (Σ3,3 ∩ Σ7,1) .

It is already possible to give the characterization of separability depending on
n. For instance, for smaller states we have

a) 2-particle states are separable⇔ [ψ] ∈ Σ1,1,

b) 3-particle states are separable⇔ [ψ] ∈ Σ1,3 ∩ Σ3,1,

c) 4-particle states are separable⇔ [ψ] ∈ Σ1,7 ∩ Σ3,3 ∩ Σ7,1,

d) 5-particle states are separable⇔ [ψ] ∈ Σ1,15 ∩ Σ3,7 ∩ Σ7,3 ∩ Σ15,1.

Example 3.12. Let’s consider again the 3-particle states

[B1]ABC = [1 : 0 : 0 : 1 : 0 : 0 : 0 : 0] and [B2]ABC = [1 : 0 : 0 : 0 : 0 : 1 : 0 : 0].

We have already seen in Example 3.2 that [B1] ∈ ΣA⊗BC := Σ1,3. Conversely,
[B1] /∈ ΣAB⊗C := Σ3,1. Thus, according to Theorem 3.10 this state is 2-decompo-
sable, or equivalently, it is a 2-partite (bipartite) state, meaning that it can be sepa-
rated within two different states. On the other hand, [B2] /∈ ΣA⊗BC ∪ ΣAB⊗C, so
[B2] is an entangled state.
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3.3 Measurement of entanglement

We have already seen that for characterizing the separability of a n-particle
state it is sufficient by analyzing if its corresponding projective point lies in Segre
varieties of the form ΣMl ,Mn−l , where 1 ≤ l ≤ n− 1 and Ml = 2l − 1.

Let |ψ⟩ be an n-particle state and consider the family of observables defined as

Jn,l (|ψ⟩) := 4
ξMl ,Mn−l

∑
i=1

|Mi (|ψ⟩) |2, ∀1 ≤ l ≤ n− 1, (3.3)

where Mi are the 2× 2 minors determining the zero locus of ΣMl ,Mn−l defined as
functions H2n → C of the form

Mi




x0

x1
...

xMn


 :=

∣∣∣∣∣ xi0 xi1
xi2 xi3

∣∣∣∣∣ = xi0 xi3 − xi1 xi2

and ξMl ,Mn−l is the total number of these type of minors (take a look at Proposition
2.6). From these set of observables, there is a result —which can be found in
[CST21]— that settles a connection between geometry and physics:

Theorem 3.13. Given an integer 1 ≤ l ≤ n− 1,

Jn,l (|ψ⟩) = 0⇐⇒ [ψ] ∈ ΣMl ,Mn−l .

Given this, if we desire to know if one n-particle state is separable in a certain
partition l, one option is to look if the observable Jn,l acting on the state vanishes.

A particular case of study are the 2-particle states. Their general quantum
state is |ψ⟩ = a0 |00⟩+ a1 |01⟩+ a2 |10⟩+ a3 |11⟩ with the corresponding projective
point [ψ] = [a0 : a1 : a2 : a3]. These type of states only can be of two types:
2-decomposable or indecomposable (i.e. separable or entangled, respectively) as
there is just one possible partition. For characterizing them, it is enough by only
considering the Segre variety of the form Σ1,1. According to Proposition 2.6,

[ψ] ∈ Σ1,1 ⇔ a0a3 − a1a2 = 0⇔
∣∣∣∣∣ a0 a1

a2 a3

∣∣∣∣∣ =M1 (|ψ⟩) = 0⇔ |M1 (|ψ⟩) |2 = 0

⇔ 0 = 4
1

∑
i=1
|Mi (|ψ⟩) |2 = J2,1 (|ψ⟩) .

From this, we easily see that

J2,1 (|ψ⟩) = 4|a0a3 − a1a2|2. (3.4)
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Instead of the expression of Jn,l from (3.3), it can be shown that the value of
this family of observables can be computed in terms of the Pauli matrices from
(1.9):

Jn,l(|ψ⟩) = 2−
(

1
2l−1

3

∑
i1,...,il=0

| ⟨ψ| σi1 ⊗ · · · ⊗ σil ⊗ I2n−l |ψ⟩ |2
)

. (3.5)

The sum runs over all possible sets {i1, . . . , ij, . . . , il}, where ij = 0, 1, 2, 3. This
form may be more comfortable for computing the values of {Jn,l} than the for-
mer introduced. For a more detailed explanation about these observables consult
[CST21].

In general, every function from the family {Jn,l} ranges from 0 to 1. For states
consisting of three or more particles, its exact value does not provide important
physical information. Despite of that, according to Theorem 3.13 it is possible to
extract from them interesting equivalences:

i) Jn,l(|ψ⟩) = 0⇐⇒ |ψ⟩ is a product state and it can be separated in respect of
the l system partitioning, so it is at least 2-partite.

ii) Jn,l(|ψ⟩) > 0⇐⇒ |ψ⟩ is not separable.

On the other hand, instead of considering only one observable Jn,l , we may
compute the values of all the members of the family {Jn,l} on the state. After that,
let j be the cardinal of the set

j := |{l | Jn,l(|ψ⟩) = 0 and 1 ≤ l ≤ n− 1}.

Taking a look again to the Generalized Decomposability theorem, we can affirm
that |ψ⟩ is (j+ 1)-partite, or equivalently that [ψ] is (j+ 1)-decomposable.

Therefore, the separability (or decomposability) of any n-particle state is fully
determined by measuring only (n− 1) observables. We may define the observable
Jn that calculates the average value of the set {Jn,l(|ψ⟩)} acting on n-particle
states:

Jn(|ψ⟩) :=
1

n− 1

n−1

∑
l=1
Jn,l(|ψ⟩). (3.6)

For states of n < 5 particles, the values of this new observable range from 0
to 1. In contrast, this is a good measure of entanglement as it is proven in the
work already mentioned. The values of Jn acting on several states have already
been computed and compared to other measurement methods, generally with
great success. As bigger they are, more entangled the states. Moreover, it is able
to provide a definition of maximally entangled which frequently agrees with the
literature:
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Definition 3.14. A smaller state |ψ⟩, typically of n ≤ 4 qubits, is maximal entangled
if Jn(|ψ⟩) = 1.

All in all, let us make a compilation of the physical results provided by the
observable Jn defined in (3.6):

Jn(|ψ⟩) = 1 ⇐⇒ |ψ⟩ is maximally entangled (j = 0)

Jn(|ψ⟩) = 0 ⇐⇒ |ψ⟩ is separable (j = n− 1)

0 < Jn(|ψ⟩) < 1 ⇐⇒ 0 < j < n− 1

For the latter case, one can observe that the observable Jn does not give much
information about the state: we only know that it is neither maximally entangled
nor separable, but it could still be either a product state or an entangled state. In
order to characterize if a state is product, we must dispose of the values of each
observable from the family {Jn,l} and check if some of them vanishes. If it is not,
then |ψ⟩ is entangled. Therefore, even product states may have a certain level of
entanglement, which might be counter-intuitive.

On the other hand, the fact that for a given n-particle state the value of the
observable is 0 < Jn(|ψ⟩) < 1 is interesting because it means that there exists
a partition l such that Jn,l(|ψ⟩) > 0. Thus, if we perform such system partition
on this state, entanglement phenomenons may arose between the resulting two
states —even for product states. This may be interesting when performing quan-
tum teleportation of more than one qubit, where the particles involved must be
separated and placed in different locations (see Chapter 4).

To end this section, let us compute the entanglement of the state |W⟩ as an
example of how these observables work.

Example 3.15. Let us study the entanglement of the state

|W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩)←→ [W] = [0 : 1 : 1 : 0 : 1 : 0 : 0 : 0]

by computing the values of J3,l(|W⟩) for the partitions l = 1 and l = 2 using the
expression from (3.5). In respect of the partition l = 1,

J3,1(|W⟩) = 2−
(

1
21−1

3

∑
i1=0
| ⟨W| σi1 ⊗ I23−1 |W⟩ |2

)
= 2−

3

∑
i=0
| ⟨W| σi⊗ I4 |W⟩ |2 =

8
9

.

Note that J3,1(|W⟩) > 0. Indeed, [W] /∈ ΣM1,M2 = Σ1,3 because there exists one
non-zero 2× 2 minor of the matrix(

0 1 1 0
1 0 0 0

)
.



26 Characterization of quantum entanglement in qubits

On the other hand, about the l = 2 partition, we get

J3,2(|W⟩) = 2− 1
2

3

∑
i1,i2=0

| ⟨W| σi1 ⊗ σi2 ⊗ I2 |W⟩ |2 =
8
9

.

Again, the value of this observable is grater than zero. Furthermore, we can easily
observe that the point [W] does not lie in the Segre variety ΣM2,M1 = Σ3,1 either.

Finally, the amount of entanglement in |W⟩ is

J3(|W⟩) =
1
2
(J3,1(|W⟩) + J3,2(|W⟩)) =

8
9

.

In conclusion, the values of J3,1 and J3,2 are grater than zero, so the state |W⟩
is 1-partite (entangled). However, even 8/9 is so close to one, the state is not
maximally entangled.

3.4 Entanglement of small states

In this section, we will summarize the results obtained in this chapter by ap-
plying them to states consisting of n = 2, 3, 4, 5 particles. Furthermore, we will
expose the values of {Jn,l} and Jn for some states of 2 ≤ n ≤ 4 qubits. They have
been computed according to (3.3) using the Python code in [Lap] Some of these
states appear in [YC06] and [CST21].

Before doing so, we will briefly introduce how Segre embeddings on n-qubit
systems provide (n-1)-hypercubes, offering a more illustrative way to understand
the separability of states.

Definition 3.16. The k-hypercube is the set of points in the euclidean space Rk such
that

{(x1, . . . , xk) ∈ Rk | xi ∈ [0, 1] ∀i = 1, . . . , k}.

In other words, it is the extension of the idea of a square in R2 to Rk. For exam-
ple, the square is the 2-hypercube, meanwhile the 3-hypercube and 4-hypercube
are the cube and the tesseract, respectively.

For any hypercube of dimension k, there are 2k vertices, a total of k2k−1 edges
and k edges concurrent at every single vertex. We will deal with directed hypercubes,
which all of their edges have an orientation settled.

In our case, if we have an n-qubit system, then an (n− 1)-dimensional directed
hypercube can be constructed as following:

1. Considering as vertices the categorical product of projective Hilbert spaces
of the form PMn1 × · · · ×PMnm , where 1 ≤ m ≤ n and n1 + · · ·+ nm = n.
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2. Considering as directed edges the Segre maps of the form given by Lemma
2.10, connecting the latter projective spaces.

In this sense, there is a starting vertex P1 × (n)· · · × P1 which all the n − 1 edges
concurrent at this point are outgoing represented by the maps I× Ξ1,1 × I. Mean-
while, in the finishing one every edge is ingoing and this vertex is PMn = P2n−1.
These last edges are described by all possible bipartite-type Segre maps, ΞMl ,Mn−l .

Once the (n− 1)-hypercube is constructed, we obtain a global vision of all the
partitions from P2n−1 to P1×· · ·×P1 obtained by taking bi-partitions sequentially.

Two-particle states

The general form of the projective point of state formed by two qubits is

[ψ] = [a0 : a1 : a2 : a3] ∈ P3.

In order to study its separability, we can focus on the decomposability of [ψ] by
considering all possible bipartite-type Segre varieties. Because there is only one
possible bi-partition of the system, we only have to check if [ψ] ∈ Σ1,1. This
can be done by computing the minors given in Example 2.7 or by measuring the
observable J2,1(|ψ⟩) = 4

C2 |a0a3− a1a2|2, where C = |a0|2 + · · ·+ |a3|2. If its value is
zero, then [ψ] is 2-decomposable (product, in particular separable). If it is not, [ψ]
is indecomposable (entangled). In respect of measuring its entanglement, we can
use the observable (3.6) which in this case is the same as J2,1. Thus, the possible
results are:

J2(|ψ⟩) = 0⇔|ψ⟩ is product and also separable,

0 < J2(|ψ⟩) < 1⇔|ψ⟩ is entangled,

J2(|ψ⟩) = 1⇔|ψ⟩ is maximally entangled.

In this cases, a part for quantifying the entanglement, J2 fully determines if the
state is product or entangled.

For this states, there is only one Segre embedding Ξ1,1 characterizing the sepa-
rability of states. This one generates a 1-hypercube in R1, which is simply a
segment:

P1 ×P1 P3Ξ1,1
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Two-particle states J2

[ϕi] ∀i = 0, . . . , 3 1

[1 : ±1 : 0 : 0] 0

[1 : 1 : 1 : 0], [1 : 0 : 1 : 1], [1 : 1 : 0 : 1], [0 : 1 : 1 : 1] 4/9

[cos θ : sin θ : ± sin θ : ∓ cos θ] ∀θ ∈ [0, π) 1

[± cos θ : ∓ sin θ : sin θ : cos θ] ∀θ ∈ [0, π) 1

Table 3.1: Measurement of entanglement of some 2-particle states.

Three-particle states

The general form of these states is

[ψ] = [a0 : a1 : a2 : a3 : a4 : a5 : a6 : a7 :] ∈ P7

Their decomposability is fully characterized by Σ1,3 and Σ3,1:

[ψ] is indecomposable⇔ [ψ] /∈ Σ1,3 ∪ Σ3,1 ⇔ J3,1(|ψ⟩),J3,2(|ψ⟩) > 0,

[ψ] is 2-decomposable⇔ [ψ] ∈ Σ1,3 ∪ Σ3,1 ⇔ J3,1(|ψ⟩) = 0 or J3,2(|ψ⟩) = 0,

[ψ] is 3-decomposable⇔ [ψ] ∈ Σ1,3 ∩ Σ3,1 ⇔ J3,1(|ψ⟩) = J3,2(|ψ⟩) = 0.

For measuring their entanglement, one can use the observable J3 =
1
2
(J3,1 + J3,2).

The hypercube related to these states is the two dimensional one, which repre-
sents a square in R2:

P1 ×P1 ×P1 P1 ×P3

P3 ×P1 P7

I1×Ξ1,1

Ξ1,1×I1 Ξ1,3

Ξ3,1
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Three-particle states J3,1 J3,2 J3

[Sep] = [1 : 0 : 0 : 0 : 0 : 0 : 0] 0 0 0

[B1] = [1 : 0 : 0 : 1 : 0 : 0 : 0 : 0] 0 1 1/2

[W] = [0 : 1 : 1 : 0 : 1 : 0 : 0 : 0] 8/9 8/9 8/9

[GHZ] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 1] 1 1 1

Table 3.2: Measurement of entanglement of some 3-particle states.

Four-particle states

These states are represented with projective points in P15:

[ψ] = [a0 : · · · : a15].

In this case, there are three Segre varieties that determines the decomposability:
Σ1,7, Σ3,3 and Σ7,1. They are connected with the observables J4,1,J4,2,J4,3, respec-
tively. The 3-hypercube (a cube) describes all possible Segre embeddings.

P3 ×P1 ×P1 P3 ×P3

P1 ×P1 ×P1 ×P1 P1 ×P1 ×P3

P7 ×P1 P15

P1 ×P3 ×P1 P1 ×P7

I3×Ξ1,1

Ξ3,1×I1

Ξ3,3

Ξ1,1×I1×I1

I1×I1×Ξ1,1

I1×Ξ1,1×I1

Ξ1,1×I3

I1×Ξ1,3

Ξ7,1

Ξ1,3×I1

I1×Ξ3,1

Ξ1,7

Four-particle states J4,1 J4,2 J4,3 J4

[D4,1] = [0 : 1 : 1 : 0 : 1 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0] 3/4 1 3/4 5/6

[D4,2] = [0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 0 : 0] 1 1 1 1

[D4,3] = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0] 3/4 1 3/4 5/6

[ζ0] = [1 : 0 : 0 : −1 : 0 : −1 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] 0 1 1 2/3

[ζ1] = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1] 0 1 1 2/3

Table 3.3: Measurement of entanglement of some 4-particle states.
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Five-particle states

Their corresponding projective points are from P31. The bipartite-type Segre
varieties we must consider here are Σ1,15, Σ3,7, Σ7,3 and Σ15,1, or the respective
observables J5,1 . . . ,J5,4. We only focus on showing one way of drawing a 4-
hypercube in R3. This four-dimensional space is also known as tesseract.

P3 × P1 × P1 × P1 P3 × P1 × P3

P1 × P1 × P1 × P1 × P1 P1 × P1 × P1 × P3

P7 × P1 × P1 P7 × P3

P1 × P3 × P1 × P1 P1 × P3 × P3

P15 × P1 P31

P1 × P7 × P1 P1 × P15

P3 × P3 × P1 P3 × P7

P1 × P1 × P3 × P1 P1 × P1 × P7

I3×I1×Ξ1,1

Ξ3,1×I1×I1

I3×Ξ1,1×I1

Ξ3,1×I3

I3×Ξ1,3

Ξ1,1×I1×I1×I1

I1×I1×I1×Ξ1,1

I1×Ξ1,1×I1×I1

I1×I1×Ξ1,1×I1

Ξ1,1×I1×I3

I1×Ξ1,1×I3

I1×I1×Ξ1,3

I7×Ξ1,1

Ξ7,1×I1

Ξ7,3

Ξ1,3×I1×I1

I1×I3×Ξ1,1

I1×Ξ3,1×I1

Ξ1,3×I3

I1×Ξ3,3

Ξ15,1

Ξ1,7×I1

I1×Ξ7,1

Ξ1,15

Ξ3,3×I1

I3×Ξ3,1

Ξ3,7

I1×Ξ1,3×I1
Ξ1,1×I3×I1

I1×I1×Ξ3,1

I1×Ξ1,7

Ξ1,1×I7



Chapter 4

Quantum teleportation of one
qubit

4.1 Problem statement

For explaining quantum teleportation (QT) it is commonly used three people,
like in [Pre01], named Alice, Bob and Charlie. One day, Alice and Bob met and
prepared one maximally entangled state of two qubits, |Φ⟩. After that, Alice
took one of the particles and Bob grabbed the other one, and then they moved
away from each other. For this reason, it is convenient to assign one observer
for each particle: we will say that the observer of Alice’s particle is labeled with
the letter A, meanwhile Bob’s observer is B. Therefore, we will represent the
maximally entangled state shared between Alice and Bob as |Φ⟩AB. It is important
to remark that, despite the distance between Alice and Bob (which can be from
one centimeter to light years), both are still connected by one classical channel1.

After a certain period of time, Charlie prepares a 1-particle state |ψ⟩C, i.e. a
qubit, where C represents the observer associated to this system. He desires to
send his qubit to Bob but he has no communication at all with him. Fortunately,
he is able to transfer his qubit to Alice through a preexisting quantum channel,
hoping that she might find a way to use the classical channel to relay the qubit to
Bob. However, Alice can only send Bob bits of information. Furthermore, she is
not able to know Charlie’s particle state because if she does any measurement on
his qubit, some information about it will be lost. Therefore, how can she manage
to teleport one qubit under these conditions?

We will see that Alice may undertake some measurement on the two particles

1A classical channel represents a communication medium where classical messages (bits) can be
sent from one point to another. With a quantum channel, instead, one can transfer qubits.

31
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she is in possession of. This action, because of the existing entanglement between
particles A and B, would change in some way the state of Bob’s. The measure-
ment outcome gotten by Alice can be transferred to Bob using bits via the classical
channel. Depending on this message, Bob would perform a certain local transfor-
mation on his qubit, resulting on an identical state like Charlie’s original qubit.
For a clearer understanding of this process, refer to the diagram in Figure 1 in the
Introduction.

4.2 Using a Bell state

Let us take into account the Bell basis, which is a vector basis of a 4-dimensional
Hilbert space generated by the four Bell states |ϕ0⟩, |ϕ1⟩, |ϕ2⟩ and |ϕ3⟩ already in-
troduced in Example 2.3. These are states of two qubits— and all of them have the
property that are maximally entangled, i.e. J2(|ϕi⟩) = 1 ∀i = 0, . . . , 3.

Taking back to the situation from before, let us suppose that the shared state
between Alice and Bob is one of the Bell states, for example

|Φ⟩AB = |ϕ0⟩AB =
1√
2
(|00⟩+ |11⟩) .

At this point, we have two states: |Φ⟩AB ∈ H4
AB and |ψ⟩C ∈ H2

C, where the
general form of Charlie’s qubit is |ψ⟩C = α |0⟩ + β |1⟩, being α and β complex
numbers such that |α|2 + |β|2 = 1. We can consider the composite system of the
three particles, which its state is |Ψ⟩CAB = |ψ⟩C ⊗ |Φ⟩AB ∈ H2

C ⊗H4
AB = H8

C⊗AB.
Let’s compute this state:

|Ψ⟩CAB = (α |0⟩C + β |1⟩C)⊗
1√
2
(|00⟩AB + |11⟩AB)

=
1√
2
(α |000⟩CAB + α |011⟩CAB + β |100⟩CAB + β |111⟩CAB) .

Once Charlie has given Alice his qubit, then she is in possession of both parti-
cles A and C. She may perform a measurement on these ones, so it is convenient
to write |Ψ⟩CAB in terms of a basis in H4

CA ⊗H2
B. More precisely, she will make a

Bell measurement: a projection of her two qubits onto one of the four Bell states2.
For this reason, instead of using the standard basis {|000⟩ , |001⟩ , . . . , |111⟩}CAB,
we will change to {|ϕ0⟩ |0⟩ , . . . , |ϕ3⟩ |0⟩ , |ϕ0⟩ |1⟩ , . . . , |ϕ3⟩ |1⟩}CAB. We can do this
since the four Bell states are orthogonal. To achieve this, we must apply the fol-

2See Section 4.3 for an explanation of how it is done.
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lowing relations:

|00⟩ = 1√
2
(|ϕ0⟩+ |ϕ3⟩) |01⟩ = 1√

2
(|ϕ1⟩+ |ϕ2⟩)

|10⟩ = 1√
2
(|ϕ1⟩ − |ϕ2⟩) |11⟩ = 1√

2
(|ϕ0⟩ − |ϕ3⟩)

(4.1)

Therefore, what we have is

|Ψ⟩BCA =
1
2
[|ϕ0⟩CA (α |0⟩B + β |1⟩B) + |ϕ1⟩CA (β |0⟩B + α |1⟩B)]

+
1
2
[|ϕ2⟩CA (−β |0⟩B + α |1⟩B) + |ϕ3⟩CA (α |0⟩B − β |1⟩B)] .

Note that if we perform the Pauli transformations (1.9) on |ψ⟩ = α |0⟩+ β |1⟩,
the resulting four states are

σ0 |ψ⟩ =
(

α

β

)
, σ1 |ψ⟩ =

(
β

α

)
, σ2 |ψ⟩ =

(
−iβ
iα

)
and σ3 |ψ⟩ =

(
α

−β

)
.

We can apply these results into the last expression of |Ψ⟩ and what we get is

|Ψ⟩CAB =
1
2
|ϕ0⟩CA σB

0 |ψ⟩B +
1
2
|ϕ1⟩CA σB

1 |ψ⟩B

+
1
2
|ϕ2⟩CA (−iσB

2 ) |ψ⟩B +
1
2
|ϕ3⟩CA σB

3 |ψ⟩B
(4.2)

With this final expression, we can see that after Alice projects the state of
her two particles |Φ̃⟩CA onto one of the four Bell states, then Bob’s state changes
immediately to a state |φ⟩B depending on her outcome. As described in [YC06], if

|Φ̃⟩CA → |ϕi⟩CA for some i = 0, . . . , 3, then |φ⟩B =
CA ⟨ϕi | Ψ⟩CAB
∥CA ⟨ϕi | Ψ⟩CAB ∥

, so there are

four possibilities:

CA ⟨ϕ0 | Ψ⟩CAB =
1
2

σB
0 |ψ⟩B

CA ⟨ϕ1 | Ψ⟩CAB =
1
2

σB
1 |ψ⟩B

CA ⟨ϕ2 | Ψ⟩CAB =
−i
2

σB
2 |ψ⟩B

CA ⟨ϕ3 | Ψ⟩CAB =
1
2

σB
3 |ψ⟩B


⇒ |φ⟩B =


σB

0 |ψ⟩B if |Φ̃⟩CA → |ϕ0⟩CA
σB

1 |ψ⟩B if |Φ̃⟩CA → |ϕ1⟩CA
−iσB

2 |ψ⟩B if |Φ̃⟩CA → |ϕ2⟩CA
σB

3 |ψ⟩B if |Φ̃⟩CA → |ϕ3⟩CA

where ∥CA ⟨ϕi | Ψ⟩CAB ∥ = 1/2 for all i = 0, . . . , 3. Let |φi⟩B be each of these
possible states when |Φ̃⟩CA → |ϕi⟩CA, for each i.

All together, after the Bell measurement performed by Alice, the state of qubits
A and C is one Bell state |ϕi⟩CA, while Bob’s state is |φi⟩B, for some i = 0, . . . , 3.
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Therefore, the global state of the three particles |Ψ⟩CAB changes to the quantum
state |Ψ̃⟩CAB = |ϕi⟩CA |φi⟩B with a probability Pi that is computed from (4.2) as

Pi :=
∣∣∣CAB ⟨Ψ̃ | Ψ⟩CAB

∣∣∣2 =

∣∣∣∣12
∣∣∣∣2 =

1
4

, ∀i = 0, . . . , 1.

Note that all outcomes are equiprobable.
From |Ψ̃⟩CAB we can already extract an interesting aspect: this state is a pro-

duct of two states |ϕi⟩CA and |φi⟩B. Therefore, after the measurement performed
by Alice, qubits A and B have lost totally the entanglement they had before, be-
coming two independent qubits. On the other hand, qubits A and C both started
being independent states but now they are maximally entangled.

At this point, Bob’s qubit has changed to the state |φ⟩B = |φj⟩B = eiθj σB
j |ψ⟩B for

some3 j = 0, . . . , 3, where θ0 = θ1 = θ3 = 0 and θ2 = 3π
2 . This happened because

of the fact that qubits A and B were entangled: if two particles are entangled, a
change on one state causes modification on the other one. Note that Bob’s qubit
is very close to the original state of Charlie’s: he only needs to perform the Pauli
transformation σj to his qubit and this one will be equivalent to |ψ⟩ 4. The problem,
however, is that he is unaware of which of the four possible states his qubit has
been transformed into. In particular, he does not even realize that his state has
been modified. Despite of that, it is enough for Bob to know what state |Φ̃⟩CA
Alice has obtained:

if |Φ̃⟩CA = |ϕj⟩CA =⇒ |φ⟩B = |φj⟩B and σB
j |φj⟩B = eiθj |ψ⟩B . (4.3)

Fortunately, thanks to the existing classical channel, Alice is able to send her
outcome to Bob via a classical message: as there are only four possibilities, it is
only needed two bits for codifying Alice’s measurement. First of all, it is required
that Alice and Bob had agreed (before QT) what code to use. For example, they
could set up the following one —which is the one that we will always consider in
this chapter:

′′00′′ ↔ |ϕ0⟩ , ′′01′′ ↔ |ϕ1⟩ , ′′10′′ ↔ |ϕ2⟩ , ′′11′′ ↔ |ϕ3⟩ .

With all this already explained, let us go back and suppose that, after the Bell
measurement, Alice’s state is |ϕj⟩CA for some j = 0, 1, 2, 3. Then, the state of
Bob’s particle is projected onto |φj⟩B. Alice sends a message to Bob with the j-
th outcome written in binary. After that, according to (4.3), he performs the Pauli
transformation σj to his qubit, obtaining a state such that σB

j |φj⟩B = eiθj |ψ⟩B. Note

3We have changed the index i to j to avoid confusion with the complex number i =
√
−1.

4We should recall that σ2
i = I for all i = 0, . . . , 3.
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that σB
j |φj⟩B ∼ |ψ⟩B. Therefore, at the end of the process Bob is in possession

of one quantum state with the same physical properties than |ψ⟩C, successfully
achieving the objective.

The equivalence between both states from before can be described also in terms
of the fidelity of the quantum teleportation. This is computed as

F = | ⟨φ̃ | ψ⟩ |2, (4.4)

where |φ̃⟩B is Bob’s state at the end of the experiment. It is satisfied that

F = | ⟨φ̃ | ψ⟩ |2 = 1⇐⇒ |φ̃⟩ = eiθ |ψ⟩ ⇐⇒ |φ̃⟩ ∼ |ψ⟩ . (4.5)

The value of the fidelity F also represents the probability of the state |φ̃⟩ to be
equivalent to |ψ⟩.

In our case, σB
j |φj⟩B ∼ |ψ⟩B, so effectively

F = | ⟨φj | σj | ψ⟩ |2 = 1.

Observations on quantum teleportation

From the theoretical experiment we have already explained, it is possible to
get to know some important aspects about QT.

At the beginning of the experiment, we could also use another Bell state instead
of |ϕ0⟩ as the one shared between Alice and Bob. Nevertheless, the algebraic
process to follow is always the same. The only thing that might change are the
instructions Λ that Bob has to follow when applying a transformation on |φ⟩B.
These transformations will be denoted as Λ := {Λ0, Λ1, Λ2, Λ3}, where Λj ∈ U(2),
and are used as follow: if he gets the message ′′00′′ then he must use Λ0; if it is
′′01′′, then Λ1, and so on. Therefore, in the case from before, we have that Λi = σi

for all i = 0, . . . , 3. The instructions corresponding to each Bell state are:

|Φ⟩AB Λ0 Λ1 Λ2 Λ3

|ϕ0⟩ σ0 σ1 σ2 σ3

|ϕ1⟩ σ1 σ0 σ3 σ2

|ϕ2⟩ σ2 σ3 σ0 σ1

|ϕ3⟩ σ3 σ2 σ1 σ0

Table 4.1: Transformations
of the instructions Λϕi , where
|ϕi⟩ are the four Bell states.
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Secondly, we can already confirm that quantum teleportation always works if
the shared state between Alice and Bob is one of Bell’s. More generally, it is known
that if this state is maximally entangled then the process always goes well, but if
it is not one Bell state the algorithm might change.

Moreover, the instructions Λ that Bob follows are always the same even though
Charlie’s state |ψ⟩C is completely arbitrary. Therefore, Λ is fully determined by the
shared state |Φ⟩AB. This makes sense because Alice and Bob remain unaware of
Charlie’s state at all times, so quantum teleportation must work for any |ψ⟩C. This
is why Λ can not depend on Charlie’s qubit. So, we must write ΛΦ for specifying
that the instructions are associated to the state |Φ⟩AB.

4.3 Performing Bell measurement on two qubits

In the previous section, one may have noticed that one fundamental step for
achieving QT is the Bell measurement performed by Alice on her two qubits.
Therefore, we will explain how this process works. However, before exploring this
part, it is important to be familiar with the concepts introduced in Section 1.3.

Observables involved

Given an arbitrary 2-qubit state |ψ⟩O1O2
= a0 |00⟩+ a1 |01⟩+ a2 |10⟩+ a3 |11⟩,

the Bell measurement on this one is the projection of |ψ⟩ onto one of the four Bell
states |ϕ0⟩ , . . . , |ϕ3⟩. They constitute a base of maximally entangled states in H4.

This measurement is given by the following two observables, which are asso-
ciated to the parity of states (if the total number of qubits at the state |1⟩ is even or
odd) and the relative phase between states. In the standard basis {|00⟩ , . . . , |11⟩}
of H4, these observables are represented by the matrices:

A1 := σO1
1 ⊗ σO2

1 =

(
0 σ1

σ1 0

)
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

A2 := σO1
3 ⊗ σO2

3 =

(
σ3 0
0 −σ3

)
=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

The Pauli transformations σOi
1 and σOi

3 , where i = 1, 2, act on the Hilbert space
of the observer Oi (see (1.8)). Indeed, Ai are observables: both are hermitian
operators on a 4-dimensional Hilbert space.
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In order to project |ψ⟩ onto one of the four Bell states, we must measure the
observables A1 and A2. Note that these both commute: A1A2 = A2A1. For this
reason, the measurements can be taken simultaneously. In other words, physical
properties do not change if we measure first A1 or A2 and later the other one.

Measurements of observables are given by the Born rule. Therefore, first of all
is convenient to find the spectral decomposition of both observables:

1) The eigenvalues of A1 are λ
(1)
1 = 1 and λ

(1)
2 = −1. The eigenvectors of

the former live in a 2-dimensional subspace of H4 generated by the two
states |1, 1⟩ = |ϕ0⟩ and |1, 2⟩ = |ϕ1⟩. Similarly, for the latter eigenstate its
corresponding eigenspace is spanned by |−1, 1⟩ = |ϕ2⟩ and |−1, 2⟩ = |ϕ3⟩.
Then the associated projectors are

Π(1)
1 = |ϕ0⟩ ⟨ϕ0|+ |ϕ1⟩ ⟨ϕ1| =

1
2


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 ,

Π(1)
2 = |ϕ2⟩ ⟨ϕ2|+ |ϕ3⟩ ⟨ϕ3| =

1
2


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 ,

so A1 can be written as A1 = Π(1)
1 −Π(1)

2 .

2) With regard to A2, we have λ
(2)
1 = 1 and λ

(2)
2 = −1 as well. The eigenspace

of the former is generated by |1, 1⟩ = |00⟩ and |1, 2⟩ = |11⟩, meanwhile for
the other is spanned by |−1, 1⟩ = |01⟩ and |−1, 2⟩ = |10⟩. Therefore, what
we have at the end is A2 = Π(2)

1 −Π(2)
2 with

Π(2)
1 = |00⟩ ⟨00|+ |11⟩ ⟨11| ,

Π(2)
2 = |01⟩ ⟨01|+ |10⟩ ⟨10| .

Note, indeed, that for both observables their eigenvalues are real numbers and
their eigenstates form a basis of H4.

Measurement of the observables

We will first measure A1 and then A2 (the reverse process is performed in the
same way). According to the Born rule, after measuring the observable A1 on
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|ψ⟩ we obtain as outcome one of its eigenvalues: λ
(1)
1 = 1 with probability P1 or

λ
(1)
2 = −1 with P2. We compute these probabilities using (1.5):

P1 : = P|ψ⟩(A1 : λ
(1)
1 ) = ⟨ψ | Π(1)

1 | ψ⟩ = 1
2

(
a0 · · · a3

)
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1




a0
...

a3


=

1
2

(
1 +

3

∑
i=0

aia3−i

)
,

P2 : = P|ψ⟩(A1 : λ
(1)
2 ) = ⟨ψ | Π(1)

2 | ψ⟩

=
1
2

(
a0 · · · a3

)
1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1




a0
...

a3

 =
1
2

(
1−

3

∑
i=0

aia3−i

)
.

Note that it is satisfied the fact that P1 + P2 = 1.

a) If we obtain λ
(1)
1 = 1, |ψ⟩ has changed to (or has been projected onto) the

state

|ψ1⟩ =
Π(1)

1 |ψ⟩∥∥∥Π(1)
1 |ψ⟩

∥∥∥ =
1

2
√

P1


a0 + a3

a1 + a2

a1 + a2

a0 + a3

 = b0 |00⟩+ b1 |01⟩+ b1 |10⟩+ b0 |11⟩ ,

where b0 =
a0 + a3

2
√

P1
and b1 =

a1 + a2

2
√

P1
. We have used that

∥∥∥Π(1)
1 |ψ⟩

∥∥∥ =

√∥∥∥Π(1)
1 |ψ⟩

∥∥∥2
=

√
⟨ψ | Π(1)

1 | ψ⟩ =
√

P1.

We can check that, in fact, ∥ |ψ1⟩ ∥ = 2|b0|2 + 2|b1|2 = 1. One may observe
that |ψ1⟩ = b0

√
2 |ϕ0⟩+ b1

√
2 |ϕ1⟩. Indeed, after this measurement, |ψ⟩ has

been projected to the subspace spanned by the eigenstates of λ
(1)
1 . We may

recall that the probability of this projection, |ψ⟩ → |ψ1⟩, is the same as P1.

Hereafter, we measure A2 on |ψ1⟩ and we obtain again only one of its eigen-
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values with respective probabilities (both computed using bra-ket notation):

P1,1 : = P|ψ1⟩(A2 : λ
(2)
1 ) = ⟨ψ1 | Π(2)

1 | ψ1⟩
= ⟨ψ1 | 00⟩ ⟨00 | ψ1⟩+ ⟨ψ1 | 11⟩ ⟨11 | ψ1⟩
= | ⟨00 | ψ1⟩ |2 + | ⟨11 | ψ1⟩ |2 = 2|b0|2,

P1,2 : = P|ψ1⟩(A2 : λ
(2)
2 ) = ⟨ψ1 | Π(2)

2 | ψ1⟩
= ⟨ψ1 | 01⟩ ⟨01 | ψ1⟩+ ⟨ψ1 | 10⟩ ⟨10 | ψ1⟩ = 2|b1|2;

both together satisfying P1,1 + P1,2 = 1.

a.1) If we get λ
(2)
1 = 1 with probability P1,1, then the state |ψ1⟩ has become

one generated by |00⟩ and |11⟩:

|ψ1,1⟩ =
Π(2)

1 |ψ1⟩∥∥∥Π(2)
1 |ψ1⟩

∥∥∥ =
1√
P1,1

(|00⟩ ⟨00 | ψ1⟩+ |11⟩ ⟨11 | ψ1⟩)

=
b0√
P1,1

(|00⟩+ |11⟩) = 1√
2

√
b0

b∗0
(|00⟩+ |11⟩) = eiθ

√
2
(|00⟩+ |11⟩)

= |ϕ0⟩ ,

where at the end we have used the polar form b0 = |b0|eiθ for some
θ ∈ R.

a.2) In turn, if the outcome is λ
(2)
2 = −1, then the resulting state must be

one state in a superposition of |01⟩ and |10⟩. Effectively,

|ψ1,2⟩ =
Π(2)

2 |ψ1⟩∥∥∥Π(2)
2 |ψ1⟩

∥∥∥ =
1√
P1,2

(|01⟩ ⟨01 | ψ1⟩+ |10⟩ ⟨10 | ψ1⟩)

=
b1√
P1,2

(|01⟩+ |10⟩) = 1√
2

√
b1

b∗1
(|01⟩+ |10⟩) = |ϕ1⟩ .

b) On the other hand, if we get the other possible outcome after measuring A1,
λ
(1)
2 = −1, then |ψ⟩ has been projected onto

|ψ2⟩ =
Π(1)

2 |ψ⟩∥∥∥Π(1)
2 |ψ⟩

∥∥∥ =
1

2
√

P2


a0 − a3

a1 − a2

a2 − a1

a3 − a0

 = c0 |00⟩+ c1 |01⟩ − c1 |10⟩ − c0 |11⟩ ,
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where c0 =
a0 − a3

2
√

P2
and c1 =

a1 − a2

2
√

P2
. Again is satisfied that ∥ |ψ2⟩ ∥ = 1. We

can see that |ψ⟩ → c0
√

2 |ϕ3⟩+ c1
√

2 |ϕ2⟩ as we could expect. The outcome
probabilities of measuring A2 on |ψ2⟩ are

P2,1 : = P|ψ2⟩(A2 : λ
(2)
1 ) = ⟨ψ2 | 00⟩ ⟨00 | ψ2⟩+ ⟨ψ2 | 11⟩ ⟨11 | ψ2⟩ = 2|c0|2,

P2,2 : = P|ψ2⟩(A2 : λ
(2)
2 ) = ⟨ψ2 | 01⟩ ⟨01 | ψ2⟩+ ⟨ψ1 | 10⟩ ⟨10 | ψ1⟩ = 2|c1|2.

It is easy to see that P2,1 + P2,2 = 1.

b.1) If we obtain λ
(2)
1 = 1, then we have

|ψ2,1⟩ =
Π(2)

1 |ψ2⟩∥∥∥Π(2)
1 |ψ2⟩

∥∥∥ =
1√
P2,1

(|00⟩ ⟨00 | ψ2⟩+ |11⟩ ⟨11 | ψ2⟩) = |ϕ3⟩ ;

b.2) or if it is λ
(2)
2 = −1, the state we get is:

|ψ2,2⟩ =
Π(2)

2 |ψ1⟩∥∥∥Π(2)
2 |ψ1⟩

∥∥∥ =
1√
P1,2

(|01⟩ ⟨01 | ψ2⟩+ |10⟩ ⟨10 | ψ2⟩) = |ϕ2⟩ .

In conclusion, after measuring the observables A1 and A2 on the state of two
qubits |ψ⟩, i.e. performing a Bell measurement, this can end up being one of the
four Bell states:

|ψ⟩ → |ϕ0⟩ with probability P(|ψ⟩ → |ϕ0⟩) = P1P1,1 =
|a0 + a3|2

2
,

|ψ⟩ → |ϕ1⟩ with probability P(|ψ⟩ → |ϕ1⟩) = P1P1,2 =
|a1 + a2|2

2
,

|ψ⟩ → |ϕ2⟩ with probability P(|ψ⟩ → |ϕ2⟩) = P2P2,2 =
|a1 − a2|2

2
,

|ψ⟩ → |ϕ3⟩ with probability P(|ψ⟩ → |ϕ3⟩) = P2P2,1 =
|a0 − a3|2

2
.

Another way of understanding Bell measurement

The process just explained for projecting our original state to one Bell state
illustrates how this is achieved experimentally: by obtaining specific measurement
values, we can determine with certainty the resulting state of our physical system.

Fortunately, from a theoretical perspective, it is not necessary to follow all
those steps. In fact, as Bell states form a base of H4, then every 2-qubit state can
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be written in terms of these states. Using the same generic state |ψ⟩ as before and
the relations (4.1), this one can be written as

|ψ⟩ = a0 + a3√
2
|ϕ0⟩+

a1 + a2√
2
|ϕ1⟩+

a1 − a2√
2
|ϕ2⟩+

a0 − a3√
2
|ϕ3⟩ .

This can be interpreted as |ψ⟩ being in a superposition of the four Bell states. After
Bell measurement, our state will be projected onto one of the Bell states |ϕi⟩ with
probability

P(|ψ⟩ → |ϕi⟩) = | ⟨ϕi | ψ⟩ |2, ∀i = 0, . . . , 3.

Note that these probabilities align with those computed before. Therefore, using
this approach is entirely correct and much easier to compute. In fact, this is the
method applied in Section 4.2.

4.4 Using an arbitrary two-qubit state

In this last section, we will consider performing quantum teleportation with an
arbitrary two-particle state, which could be both product or entangled then. First
of all, we will develop the algebra of Section 4.2 but with a random shared state
and we will discuss its consequences. After that, the work we have done in our
Physics Final Degree Project [LSC25] will be briefly introduced, as well as a short
explanation about the results obtained there.

4.4.1 Generalization of quantum teleportation

Let |Φ⟩AB = a0 |00⟩AB + a1 |01⟩AB + a2 |10⟩AB + a3 |11⟩AB represent an arbitrary
2-qubit state, and let |ψ⟩C = α |0⟩C + β |1⟩C be a random qubit. From now on, we
will avoid using the observers’ notation, while carefully preserving the order of
the basis in H8

CAB. The state of the composite system is:

|Ψ⟩ = |ψ⟩ |Φ⟩ = αa0 |000⟩+ αa1 |001⟩+ αa2 |010⟩+ αa3 |011⟩
+ βa0 |100⟩+ βa1 |101⟩+ βa2 |110⟩+ βa3 |111⟩
(4.1)
=

1√
2
|ϕ0⟩ [(αa0 + βa2) |0⟩+ (αa1 + βa3) |1⟩]

+
1√
2
|ϕ1⟩ [(αa2 + βa0) |0⟩+ (αa3 + βa1) |1⟩]

+
1√
2
|ϕ2⟩ [(αa2 − βa0) |0⟩+ (αa3 − βa1) |1⟩]

+
1√
2
|ϕ3⟩ [(αa0 − βa2) |0⟩+ (αa1 − βa3) |1⟩]

(4.6)
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After the Bell measurement is performed, the state |Ψ⟩ is projected onto one

state of the form |Φ̃⟩ ⊗ |φ⟩, where |Φ̃⟩ = |ϕi⟩ and |φ⟩ = |φi⟩ =
⟨ϕi | Ψ⟩
∥ ⟨ϕi | Ψ⟩ ∥ for

some i = 0, . . . , 3. Thus, the possible states |φi⟩ are

|φ0⟩ =
1√
2C0

(
αa0 + βa2

αa1 + βa3

)
=

1√
2C0

(
a0 a2

a1 a3

)(
α

β

)
= A0 |ψ⟩

|φ1⟩ =
1√
2C1

(
αa2 + βa0

αa3 + βa1

)
=

1√
2C1

(
a2 a0

a3 a1

)(
α

β

)
= A1 |ψ⟩

|φ2⟩ =
1√
2C2

(
αa2 − βa0

αa3 − βa1

)
=

1√
2C2

(
a2 −a0

a3 −a1

)(
α

β

)
= A2 |ψ⟩

|φ3⟩ =
1√
2C3

(
αa0 − βa2

αa1 − βa3

)
=

1√
2C3

(
a0 −a2

a1 −a3

)(
α

β

)
= A3 |ψ⟩

(4.7)

where Ci = ∥ ⟨ϕi | Ψ⟩ ∥2 and Ai ∈ M2(C), which can not be null. The probability
of |Ψ⟩ → |ϕi⟩ |φi⟩ is given by

Pi = |(⟨ϕi| ⟨φi|) |Ψ⟩|2 =

∣∣∣∣ 1√
2

1√
2Ci

2Ci

∣∣∣∣2 = Ci.

Then, these probabilities are of the form

P0 =
1
2
(
|αa0 + βa2|2 + |αa1 + βa3|2

)
P1 =

1
2
(
|αa2 + βa0|2 + |αa3 + βa1|2

)
P2 =

1
2
(
|αa2 − βa0|2 + |αa3 − βa1|2

)
P3 =

1
2
(
|αa0 − βa2|2 + |αa1 − βa3|2

)
.

(4.8)

Note that at least one of them may be zero and we could not calculate the
corresponding state |φ⟩. Nevertheless, when Pi = 0 the state |φi⟩ does not exist,
so there is no need for considering it. In this context, let us define the set

Υ := {i | Pi ̸= 0, where 0 ≤ i ≤ 3}.

Afterwards, only one transformation must be applied on the state |φ⟩, which
depends on |Φ̃⟩, for completing the process. This transformation is a 2× 2 unitary
matrix U of the form (1.10). Suppose that |φ⟩ = |φj⟩ for some j ∈ Υ. Then the
experiment is successfully finished if and only if there exists a matrix Uj ∈ U(2)
such that the fidelity is F = | ⟨φj | U †

j | ψ⟩ |2 = 1 (see (4.5)). With this in mind,

F = 1⇔ Uj |φj⟩ ∝ |ψ⟩ ⇔ eiωUj |φj⟩ = |ψ⟩ ⇔ eiωUj Aj |ψ⟩ = |ψ⟩
⇔ Bj Aj |ψ⟩ = |ψ⟩ ⇔

(
Bj Aj − I

)
|ψ⟩ = 0,

(4.9)
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where ω is some real constant and Aj is one of the matrices from above. Note that
Bj = eiωUj is a unitary matrix as well, and therefore B−1

j = B†
j . However, it is a

complex problem to deduce from the last expression what conditions must satisfy
the matrix Aj or what is the form of Bj. But it is clear that if the latter is known,
then we can choose Uj = Bj, which is determined up to a global phase. Indeed,
let be Bj ∈ U(2) s.t.

(
Bj Aj − I

)
|ψ⟩ = 0. If we suppose that Bob performs the

transformation Uj = eiµBj for some µ ∈ R, then we have(
e−iµUj Aj − I

)
|ψ⟩ = 0⇒ e−iµUj Aj |ψ⟩ = |ψ⟩ ⇒ e−iµUj |φj⟩ = |ψ⟩

⇒ Uj |φj⟩ = eiµ |ψ⟩ ∝ |ψ⟩ ⇒ F = | ⟨φ | U †
j | ψ⟩ |2 = 1.

On the other hand, in order to ensure that QT of |ψ⟩ works perfectly, we must
contemplate each possible Alice’s outcome. Let us consider the fidelity defined
as Fψ

j := | ⟨φ̃j|ψ⟩ |2 for each j ∈ Υ, where |φ̃j⟩ is Bob’s state at the end of the ex-
periment when Alice’s outcome is j. The teleportation of |ψ⟩ would be performed
successfully if and only if Fψ

j = 1 for each j ∈ Υ. This is equivalent to the existence
of Uj ∈ U(2) such that (4.9) is satisfied for each j ∈ Υ, where |φ̃j⟩ = Uj |φj⟩. In
conclusion, we can stablish the following criteria:

|Φ⟩ is perfect for teleporting |ψ⟩ de f⇐⇒ ∃Uj ∈ U(2) s.t.
(
Uj Aj − I

)
|ψ⟩ = 0, ∀j ∈ Υ.

In this case, the instructions Bob must follow are Λj = Uj for each j ∈ Υ, which
are defined up to a global phase.

Example 4.1. The following state is perfect for teleporting |ψ⟩ = 1√
2
(|0⟩+ |1⟩):

|Φ⟩ = 1
2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) = 1√

2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩).

Indeed, from (4.6) we get |Ψ⟩ = 1√
2
|ϕ0⟩ |ψ⟩+ 1√

2
|ϕ1⟩ |ψ⟩. Therefore, the probabili-

ty outcomes defined in (4.8) are P0 = P1 = 1
2 and P2 = P3 = 0. We must find two

matrices U0,U1 ∈ U(2) such that[
U0

(
1
2

1
2

1
2

1
2

)
− I

]( 1√
2

1√
2

)
=

(
0
0

)
and

[
U1

(
1
2

1
2

1
2

1
2

)
− I

]( 1√
2

1√
2

)
=

(
0
0

)
,

which are the same matrix equation. It is easy to see that U0 = U1 = I satisfy both
relations. Thus, |Φ⟩ is perfect for teleporting the qubit |ψ⟩ with the instructions
ΛΦ

0 = ΛΦ
1 = I, while the other two can be any. This result makes sense actually.

Note that |Φ⟩AB = |ψ⟩A ⊗ |ψ⟩B, so the shared state is product and Bob posses
the state |ψ⟩B, which is the same state as Charlie’s, |ψ⟩C. Because of |Φ⟩ being
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product, then the measurement performed by Alice does not alter in any way
Bob’s state. Therefore, |φ0⟩B = |φ1⟩B = |ψ⟩B, so Bob does not need to apply any
transformation on his state as he already have Charlie’s state |ψ⟩.

An observation about this example is that it may not be considered a result
of quantum teleportation. The reason is because the measurement of Alice and
the message of her outcome are irrelevant for the experiment to be successful. In
fact, Bob could apply just at the beginning the given instructions on his state and
would obtain the same state as Charlie’s.

What is required in quantum teleportation is that the shared state |Φ⟩ is perfect
for teleporting any qubit. Moreover, as the qubit to be teleported theoretically is
not known, then the instruction ΛΦ that Bob must follow cannot depend on this
one, as we already discussed in Section 4.2. In summary, we will say that:

Definition 4.2. A 2-qubit state |Φ⟩ is perfect for quantum teleportation (PQT) if there
exists a set of unitary matrices ΛΦ = {ΛΦ

0 , ΛΦ
1 , ΛΦ

2 , ΛΦ
3 } ⊂ U(2) (defined up to a

global phase) such that for all |ψ⟩ ∈ H2 is satisfied
(

ΛΦ
j Aj(|ψ⟩)− I

)
|ψ⟩ = 0, for

each j ∈ Υψ. The matrices Aj(|ψ⟩) are the ones from (4.7).

Nevertheless, the matrices Aj(|ψ⟩) can depend on |ψ⟩ because of the probabili-
ties Pi. For this reason, if we do not first impose some conditions on the matrices
Aj, finding the instructions that satisfy the equations

(
ΛΦ

j Aj − I
)
|ψ⟩ = 0 can be

quite challenging.

Some conditions under which a two-qubit state qualifies as PQT

Let us suppose that we desire to teleport a qubit |ψ⟩ with the shared state |Φ⟩
such that Aj(|ψ⟩) ∈ U(2), for each j ∈ Υ. In this case, we can choose Uj = A†

j ,

which is also unitary, so it is satisfied
(

A†
j Aj − I

)
= 0. Therefore, |Φ⟩ is perfect

for teleporting |ψ⟩ and Λj = A†
j . It can be seen that

Aj(|ψ⟩) ∈ U(2)⇐⇒ Aj A†
j = I⇐⇒


|a0|2 + |a2|2 = |a1|2 + |a3|2 = 1/2
a0a1 = −a2a3 and a0a1 = −a2a3

Pj = 1/4

or, on the other hand,

Aj(|ψ⟩) ∈ U(2)⇐⇒ A†
j Aj = I⇐⇒


|a0|2 + |a1|2 = |a2|2 + |a3|2 = 1/2
a0a2 = −a1a3 and a0a2 = −a1a3

Pj = 1/4
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Considering the last relations between the coefficients of |Φ⟩ and implementing
them onto (4.8), we obtain Pj = 1/4 which does not depend on |ψ⟩ = α |0⟩+ β |1⟩.
Thus, we get the following simplified equivalence for each j ∈ Υ:

Aj ∈ U(2)⇐⇒
{
|a0|2 + |a1|2 = |a2|2 + |a3|2 = 1/2
a0a2 = −a1a3 and a0a2 = −a1a3

(4.10)

Let us analyze the consequences of this last result. If the coefficients of the
state |Φ⟩ satisfy these conditions, then Pj = 1/4 for all α, β ∈ C and Aj ∈ U(2).
On the one hand, the sum over all Pj must be one, so Υ = {0, 1, 2, 3} for any
qubit to be teleported. On the other hand, from (4.7) one may notice that the
matrices Aj do not depend on α and β because of the probabilities Pj ≡ 1/4.
Furthermore, we have observed just above that we can choose ΛΦ

j = A†
j and we

get
(

A†
j Aj − I

)
|ψ⟩ = 0 for all |ψ⟩ ∈ H2. Therefore, the state |Φ⟩ is PQT.

It could be appropriate to define from (4.10) the following subset of 2-qubit
states in H4:

A :=

{
a0 |00⟩+ a1 |01⟩+ a2 |10⟩+ a3 |11⟩ ∈ H4

∣∣∣∣∣ |a0|2 + |a1|2 = |a2|2 + |a3|2 = 1
2

a0a2 = −a1a3 ∧ a0a2 = −a1a3

}
(4.11)

All in all, we can already confirm the next result:

Proposition 4.3. Let |Φ⟩ = a0 |00⟩+ a1 |01⟩+ a2 |10⟩+ a3 |11⟩ be a 2-qubit state.

If |Φ⟩ ∈ A =⇒ |Φ⟩ is PQT.

In this case, the instructions ΛΦ are of the form (up to a global phase)

ΛΦ
0 =
√

2

(
a0 a1

a2 a3

)
ΛΦ

1 =
√

2

(
a2 a3

a0 a1

)

ΛΦ
2 =
√

2

(
a2 a3

−a0 −a1

)
ΛΦ

3 =
√

2

(
a0 a1

−a2 −a3

)
and the outcomes of the Bell measurement are all equiprobable, i.e. Pj = 1/4 for all
j = 0, 1, 2, 3 and for any teleported state |ψ⟩ ∈ H2.

Besides that, it is possible to establish a connection between these conditions
and the observable J2 from (3.6):

Proposition 4.4. Let |Φ⟩ = a0 |00⟩+ a1 |01⟩+ a2 |10⟩+ a3 |11⟩ be a 2-qubit state.

If |Φ⟩ ∈ A =⇒ J2(|Φ⟩) = 1.
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Proof. From (3.4) we have that J2(|Φ⟩) = J2,1(|Φ⟩) = 4|a0a3 − a1a2|2. Because of
the hypothesis, from (4.10) we know that Aj ∈ U(2) for all j = 0, 1, 2, 3. So these
matrices satisfy |det Aj| = 1. Considering the Proposition 4.3, then the outcome
probabilities are Pj = 1/4 for all j, so from the determinants of the matrices (4.7)
we get

|det Aj| = 2|a0a3 − a1a2| = 1 =⇒ 4|a0a3 − a1a2|2 = 1.

Therefore, J2(|Φ⟩) = 1, as we wanted to see.

Example 4.5. The 2-qubit states |ϕi⟩ and |ϕ0,2(θ)⟩ = cos θ |ϕ0⟩+ sin θ |ϕ2⟩ belong
to the set A defined above. Therefore, according to Propositions 4.3 and 4.4, we
already know both states are PQT and maximally entangled. Effectively, we can
observe in Table 3.1 that J2(ϕi) = J2(|ϕ0,2(θ)⟩) = 1, for all i = 0, 1, 2, 3 and for all
θ ∈ [0, π).

For the Bell states |ϕi⟩, we already know the corresponding instructions (see
Table 4.2). Besides, Proposition 4.3 provides as well the matrices of Λϕi . For
instance, for the state |ϕ0⟩ we can see that these only differ from the Pauli matrices
(1.9) in a global phase:

Λϕ0
0 =

√
2

( 1√
2

0

0 1√
2

)
= σ0 Λϕ0

1 =
√

2

(
0 1√

2
1√
2

0

)
= σ1

Λϕ0
2 =

√
2

(
0 1√

2
− 1√

2
0

)
= ei 2π

3 σ2 Λϕ0
3 =

√
2

( 1√
2

0

0 − 1√
2

)
= σ3

For the other states, which are of the form

|ϕ0,2(θ)⟩ =
1√
2
(cos θ |00⟩+ sin θ |01⟩ − sin θ |10⟩+ cos θ |11⟩) ,

the set Λϕ0,2(θ) is constituted by

Λϕ0,2(θ)
0 =

(
cos θ sin θ

− sin θ cos θ

)
Λϕ0,2(θ)

1 =

(
− sin θ cos θ

cos θ sin θ

)

Λϕ0,2(θ)
2 =

(
− sin θ cos θ

− cos θ − sin θ

)
Λϕ0,2(θ)

3 =

(
cos θ sin θ

sin θ − cos θ

)

Physical considerations about the conditions from A

We have already shown that for any two-qubit state |Φ⟩ we have the following
result:

If |Φ⟩ ∈ A =⇒ |Φ⟩ is PQT and J2(|Φ⟩) = 1,
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where A is the subset of states in H4 defined as (4.11).

One may wonder if there exists a direct connection between PQT states and
states with maximum value of the observable J2 (which theoretically are maxi-
mally entangled).

On the one hand, if we manage to find the unitary matrices Uj such that(
Uj Aj − I

)
|ψ⟩ = 0 for all |ψ⟩ ∈ H2 and for each j ∈ Υψ, then we might settle

the exact conditions —if they exist— for which the state |Φ⟩ is PQT. Afterwards, it
could be possible to proof that if |Φ⟩ satisfies these hypothetical properties, then
J2(|Φ⟩) = 1. This is because, experimentally, it is well known that one of the re-
quirements for a state to be PQT is that it must be maximally entangled: when two
particles are maximally entangled then there exists a perfect correlation between
the measurements performed on one particle or the other.

On the other hand, it may be a bit fuzzy that J2(|Φ⟩) = 1 implies |Φ⟩ to
be PQT. It is important to emphasize that the Definition 4.2 is based on the fact
that Alice always performs a Bell measurement. However, it could be possible
that for carrying out QT with a specific 2-particle maximally entangled state, the
measurement must be different and related to this state. Therefore, we could have
one state such that J2(|Φ⟩) = 1 and not being PQT according to the definition
from above.

From the results we have already obtained, we can confirm that 2-qubit states
satisfying the conditions of the set A are perfect for carrying out quantum telepor-
tation of any qubit. Furthermore, the instructions Bob must follow are perfectly
known and they are fully determined, up to a global phase, by the shared state in-
volved. Theoretically, these states must be maximally entangled. Indeed, besides
being PQT, we have seen that the observable J2 acting on these type of states re-
turns a maximum value, in agreement with the theory developed in Section 3.3.
This strengthens the fact that the observables Jn defined in [CST21] are actually a
good measurement of entanglement, in particular for 2-qubit states.

Nevertheless, there may exist PQT states which do not belong to the subset
A ⊂ H4. For these ones, it has not been possible to find the general form of the
instructions Λ. Even more, there could be maximally entangled states that are not
PQT (that is, it is required another measurement different from the Bell one). In
addition, 2-qubit states with J2 < 1 are not from A, so it is unclear if they are PQT
or not. Despite that, the fact that the observable on these states is not maximal
suggests that they are not actually maximally entangled states. Therefore, they
must not be capable of teleporting any qubit with any kind of measurement.

For all the states just described, which are the ones that do not lie in the set A
from (4.11), then it is unclear if they are PQT. In addition, if some of them are ac-
tually PQT, then it may be complex to find their corresponding instructions. All in
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all, in these cases it may be interesting to search for the instructions which provide
better teleportation results under Bell measurement (i.e. higher fidelity values). In
our physics work we have provided a method for achieving this objective.

4.4.2 Optimizing instructions for quantum teleportation

Let us explain briefly the problem statement, the implemented algorithms and
the results obtained in our Bachelor’s Thesis in Physics [LSC25].

Let |Φ⟩ represent an arbitrary two-particle state and let us suppose that the
instructions for doing QT with it are unknown. The thing we do know is that the
general form of ΛΦ

j is (1.10) for all j = 0, . . . , 3. Therefore, ΛΦ
j = ΛΦ

j (α, β, γ), so
they are determined, up to a global phase, by a set of points χΦ

j ⊂ [0, 2π)×3.
In this sense, if we try to teleport one qubit |ψ⟩ with that state, we obtain that

the fidelities of each possible outcome j ∈ Υψ can be expressed like

Fψ
j =

∣∣∣∣⟨φj |
(

ΛΦ
j (α, β, γ)

)†
| ψ⟩

∣∣∣∣2 = Fψ
j (α, β, γ),

as |φj⟩ only depends on |ψ⟩ and j. Therefore, in order to find the best Λj for tele-
porting |ψ⟩ we must look for the points (α, β, γ) which give the maximum value
of Fψ

j . However, these ones may depend on |ψ⟩, and so Λj. We will try to avoid
this dependence by considering a set of m arbitrary qubits Ω = {|ψ1⟩ , . . . , |ψm⟩}
and defining the following error fidelity:

Fj(α, β, γ) :=
m

∏
k=1

Fψk
j (α, β, γ), ∀j = 0, . . . , 3. (4.12)

Given this, the main goal is to find the points χΦ
j which maximize Fj for a given

state |Φ⟩, for each j = 0, . . . , 3. Note that we are considering all possible outcomes
j but we could have |Υψk′ | < 4 for some k′ = 1, . . . , m. When this happens, for
the missing outcome j′ in Υψk′ , we will impose that Fψk′

j′ ≡ 1 because for |ψk′⟩ the
transformation Λj can be any (because it is never used by Bob). If this is another
value less than one, it would affect inappropriately on the result of Fj. On the
other hand, since (4.12) is an error-type function, it is more convenient to find the
probability density function ρj of the points (α, β, γ), instead of looking for the
maximums of Fj.

Let us fix one arbitrary outcome j. In our physics work, we consider the
function f j = − ln Fj ∈ [0, ∞). We know that there exists a density function
ρT(x) ∝ exp(− f j(x)/T) =: gT(x), where T > 0 is a scale parameter. Observe
that the modes of ρT match the minimums of f j, which are the same as the maxi-
mums of Fj. With the purpose of modeling ρT, we base our work on Markov Chain
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Monte Carlo (MCMC) methods [Ser11]. In particular, we use an algorithm that is
known as Multiple Correlated-Try Metropolis (MCTM) [CL07]. The reader can find
in S.A.I the version of this method we implement.

Once this method is written and executed enough times in [Lap], we get perfect
results for the cases when the shared state |Φ⟩ is any of the four Bell states. The
interested reader can find in S.A.II the representations of the corresponding 2D
marginal densities for each outcome when |Φ⟩ = |ϕ0⟩ in Figure 4.1.

After the guarantee that the MCTM algorithm works well in our problem, we
focus on analyzing the states of the form |Φ(θ)⟩ = cos θ |00⟩ + sin θ |11⟩, where
θ ∈ [0, π). They are interesting because they are the result of applying one 4× 4
unitary matrix on the Bell state |ϕ0⟩. Moreover, according to (3.4), the amount of
their entanglement varies with θ like 4 cos2 θ sin2 θ.

For all the angles different from π
4 and 3π

4 , the states do not belong to the set
A defined in (4.11) and also they are not maximally entangled states(J2 < 1), so
they must be not PQT. Therefore, it seems useful to implement MCTM for these
angles and see how ΛΦ(θ) varies. After carrying out this method for some values
of θ, the conclusions we extract are that for angles in

(
0, π

2

)
the instructions Bob

must follow are Λϕ0 , meanwhile in
(

π
2 , π

)
these are Λϕ3 . On the other hand, if

θ ∈
{

0, π
2

}
—the only cases in which |Φ(θ)⟩ is product— ΛΦ(θ) can be both of

them. For a illustrative deduction of this conclusions, we suggest to take a look at
Figure 4.2 in S.A.II.

We have used these instructions to study how the fidelity results vary when at-
tempting QT using the shared states |Φ(θ)⟩, in relation to the values of J2(|Φ(θ)⟩).
A consistent dependence is observed between the values of this observable and
the success of QT (see Figure 4.3 in S.A.II), suggesting that if |Φ⟩ is PQT, then
J2(|Φ⟩) = 1. This aligns with Jn being a good entanglement measure. Further-
more, as noted in [Pre01], for cases where J2 < 1, Alice could follow an alternative
process to achieve maximum fidelities of 2

3 . Using our method, we improve these
results for cases where J2 > 0.125.
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Summary and conclusions

The enigmatic nature of entanglement and its valuable role in technology have
captured the interest of researchers worldwide. To better understand and imple-
ment this phenomenon, various mathematical frameworks and theories, based on
complex geometric algebra, have been developed to provide structure and intu-
ition about quantum entanglement.

In this work, we have seen that the entanglement of pure states can be analyzed
using a complex geometrical approach based on Segre embeddings of projective
Hilbert spaces. This offers a geometric and intuitive perspective on quantum states
and their separability, as well as a practical tool for quantifying entanglement.
We refer the interested reader to [CST21, Gat14] for deepen in such topic or to
[BBC+19] for a more general understanding of geometry in quantum mechanics.

Among the most significant applications of quantum entanglement is quantum
teleportation. We have shown that this phenomenon can be rigorously described
through the algebraic principles of quantum mechanics. In the attempt to provide
a general description of quantum teleportation, we have proposed a set of condi-
tions useful for determine whether a given two-qubit state is suitable for quantum
teleportation. Future research in this area could focus on looking for the exact
properties that make a state perfect for teleporting any arbitrary qubit. Addi-
tionally, exploring alternative measures on two-qubit states different from the Bell
measurement may enhance the efficiency and versatility of quantum teleportation
protocols.

Implementing entanglement in order to teleport qubits from one point to an-
other could lay the foundation for a global-scale quantum internet, offering more
security and computational power. However, preserving the properties of en-
tanglement unaltered and enabling the transmission of multiple qubits are very
challenging problems, so there is still so much to explore and develop in this
promising field.
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Supplementary appendix

In this last part, the reader can find some supplementary work that may need
in order to fully understand some concepts or steps mentioned before in this work.
Each section refers to some specific content related on the context where the refe-
rence S.A.# appears in the project.

S.A.I. One version of the Multiple Correlated-Try Metropolis
(MCTM)

The main objective is to look for the form of the target density ρT, such that
ρT(x) ∝ exp(− f j(x)/T) =: gT(x) We could try to compute

∫
x∈V gT(x)dx, but this

integral is too complex. Fortunately, [CL07] provides an accelerated version of the
Metropolis-Hastings method for estimating ρT without computing any integral at
all. This algorithm is called Multiple Correlated-Try Metropolis (MCTM). Being one
Markov Chain Monte Carlo method, it generates random numbers from the known
function gT, which produces a Markov chain {xt}N

t=1 such as its invariant density
function matches with our target density ρ ∝ gT.

The version of the MCTM method we have used generates a Markov chain
{xt}N

1 following these steps:

1. We choose a random point in V as the first member of the chain, x1, such as
f j(x1) ̸= ∞.

2. For t ≥ 1, let x := xt be the last point of the chain. From a Gaussian
distribution N ((xT, (k). . ., xT)T, Σ3k), we generate k trial proposals y1, . . . , yk.
The covariance matrix Σ3k is of the form

Σ3k =


Σ Γ · · · Γ
Γ Σ Γ Γ
· · · · · · · · · · · ·
Γ Γ · · · Σ


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where Σ = σ2I3 and Γ = σ2

1−k I3 for some σ2. We will use values of σ2 around
10 − 20. Moreover, the work [CL07] indicates that for that version of the
MCTM a number of k = 7 trial proposals is a good one.

3. We compute gT(yl) for each l = 1, . . . , k, and then we select one of these
points y with probability proportional to gT(y).

4. We generate x̃1, . . . , x̃k points from the same Gaussian distribution from be-
fore, but with y instead of x and conditioning that x̃k = x.

5. We compute the acceptance probability:

A(y, xt) = min
{

1,
gT(y1) + · · ·+ gT(yk)

gT(x̃1) + · · ·+ gT(x̃k)

}
.

6. The following point of the chain xt+1 is y with probability A(y, x) or x with
probability 1−A(y, x).

7. The steps 2− 6 are repeated with the last point of the chain xt+1, until xN is
reached.
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S.A.II. Results from our Physics Final Degree Project

For a clearer understanding of these results, we refer the interested reader to
[LSC25].
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Figure 4.1: For the shared state |Φ⟩ = |ϕ0⟩, we have represented for each Bell mea-
surement outcome the 2D marginal densities ραβ, ρβγ and ργα. These densities have been
computed after implementing the MCTM method. Note that, for each outcome, we can
get to know the modes of the 3D density ραβγ, which effectively agree with the set of

points χ
ϕ0
j determining the instructions Λϕ0 .
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Figure 4.2: Contours of the modes from the densities ρx,y where x, y ∈ {α, β, γ}, for
each outcome. These have been obtained by applying the MCTM algorithm to the states
|Φ(θ)⟩ = cos θ |00⟩+ sin θ |11⟩ for ten different values of θ ∈ [0, π).
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Figure 4.3: Plot of the fidelity results in QT depending on J2. The data have been
obtained from the function FΦ(ψ) := ∑3

i=0 piF
ψ
i . With this one, we have computed for

each θ ∈ [0, π) the mean value of the set {FΦ(θ)(ψ)}ψ for 105 random qubits |ψ⟩. The
shared states are of the form |Φ(θ)⟩ = cos θ |00⟩+ sin θ |11⟩. The plotted red lines SF are
the standard deviation of the mean value.
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