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Abstract

This paper investigates the mathematical and cryptographic principles under-
lying elliptic curves and their critical role in modern secure communication sys-
tems. It begins with an exploration of elliptic curves and their group properties,
emphasizing their utility in cryptography through problems like the discrete log-
arithm. The discussion transitions to the Pinocchio protocol, a zero-knowledge
succinct non-interactive argument of knowledge (zk-SNARK), detailing its use of
Rank-1 Constraint Systems (R1CS), Quadratic Arithmetic Programs (QAPs), and
cryptographic commitments. The final section delves into practical implemen-
tations, employing CIRCOM for circuit definition and testing, with specific ap-
plications to ECDSA and BLS signature schemes. Through this comprehensive
approach, the paper bridges theoretical cryptographic advancements with practi-
cal implementation, offering insights into the efficiency, security, and application
of elliptic curve-based protocols.

2020 Mathematics Subject Classification. 11G05, 11G10, 14G10
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iv Introduction

Introduction

The development of secure communication systems has been driven by the
dual forces of advancing mathematical theory and technological innovation. Among
the fundamental pillars of modern cryptography, Elliptic Curve Cryptography
(ECC) stands out for its ability to provide strong security guarantees with high
efficiency. By exploiting the algebraic properties of elliptic curves, ECC achieves
levels of security comparable to classical systems such as RSA, but with signifi-
cantly smaller key sizes. This efficiency has made it a cornerstone of secure digital
communication in the era of ubiquitous connectivity.

This thesis focuses on the theoretical and practical aspects of elliptic curve
cryptographic systems. It begins by exploring the mathematical foundations of
elliptic curves, emphasizing their group structure and applications in cryptogra-
phy, particularly in the construction of efficient and secure protocols. The dis-
cussion then moves on to the Pinocchio protocol, a cryptographic proof system
that exploits the properties of elliptic curves to provide concise computational
verification. Finally, the paper looks at practical implementations using CIRCOM,
highlighting its use in defining and testing circuits for cryptographic schemes such
as ECDSA and BLS signatures.

Through this analysis, the thesis underscores the critical role of elliptic curves
in modern cryptography and demonstrates how their theoretical foundations trans-
late into practical tools for securing digital interactions. By combining mathemati-
cal rigor with computational feasibility, this work provides insights into the design
and application of elliptic curve-based cryptographic protocols.



Chapter 1

Elliptic Curves

Elliptic curves are mathematical objects of profound significance in fields such
as number theory, algebraic geometry, and cryptography. In particular, elliptic
curve cryptography (ECC) has become a cornerstone of modern cryptographic
systems, offering strong security guarantees while maintaining computational ef-
ficiency. The power of ECC lies in its ability to leverage the mathematical proper-
ties of elliptic curves, particularly their group structure, to construct secure cryp-
tographic protocols. By relying on the computational infeasibility of problems like
the elliptic curve discrete logarithm problem, ECC achieves security levels compa-
rable to classical systems such as RSA, but with significantly smaller key sizes. To
provide a rigorous foundation for the subsequent discussion of cryptographic ap-
plications, this first chapter explores some mathematical theory of elliptic curves.

Most of the contents in this chapter is primarily based on the material from
Lawrence C. Washington’s Elliptic Curves: Number Theory and Cryptography (2008)
[Was08].

1.1 Definition

Definition 1.1 (Elliptic Curve). An elliptic curve E is the graph of an equation of the
form

E : y2 “ x3 ` Ax ` B,

where A and B are constants. The previous equation is referred to as the short Weier-
strass form for an elliptic curve.

An elliptic curve is required to be non-singular. To avoid singularities we must
ensure that there are no multiple roots. More specifically, if the roots of the cubic
are r1, r2, r3, then the discriminant is

ppr1 ´ r2qpr1 ´ r3qpr2 ´ r3qq2 “ ´p4A3 ` 27B2q

Therefore, we must add the following condition to our definition of elliptic curve:

4A3 ` 27B2 ‰ 0.

1



2 Elliptic Curves

We will need to specify which field A, B, x and y belong to. In our case they
will be taken to be elements of a finite field Fp for a prime p or of a finite field Fq

where q “ pk with k ě 1.
In general, if K is a field with A, B P K, then we say that E is defined over K

and we denote the points of this elliptic curve by the following way:

EpKq “ t8u Y tpx, yq P K ˆ K | y2 “ x3 ` Ax ` Bu.

Note that we can not draw elliptic curves over most fields but, for intuition,
it is useful to think draw them over the field of real numbers R. These have two
basic forms, depicted in Figure 1.1.

E1 : y2 = x3 − 2x + 2
E2 : y2 = x3 − x

Figure 1.1: Examples of Elliptic Curves on R.

1.2 The Group Law

First, we describe a inner operation between points of the elliptic curve, which
is commonly known as addition and, consequently, denoted by `. This addition
differs from simply adding their coordinates. Consider P1 “ px1, y1q and P2 “

px2, y2q P EpKq. The sum P1 ` P2 is determined as follows: First, draw the line
that intersects P1 and P2. This will generally intersect the curve E at a third point,
namely P1

3. Reflect P1
3 across the x-axis changing the sign of the y-coordinate to

obtain another point P3. We will define the addition of the points P1 and P2 to be
the point P3.

Let us now describe the coordinates of P3 depending on the coordinates of both
P1 and P2. Let’s take a look at the different cases. We will assume that P1, P2 ‰ O.

Basic case: P1 ‰ P2 and x1 ‰ x2. This is visually depicted in Figure 1.2. Let
ℓ : y “ m px ´ x1q ` y1 be the line that crosses P1 and P2. We substitute y in the
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•
P1

•
P2

•
P′

3

•
P1 + P2

Figure 1.2: Basic case of adding points on a Elliptic Curve.

curve equation in order to find the intersection of the line with E:

pmpx ´ x1q ` y1q2 “ x3 ` Ax ` B.

This can be rearranged to the form 0 “ x3 ´ m2x2 ` ¨ ¨ ¨ . The roots of this cubic
are the 3 points of intersection of ℓ with E and we already know two of them:
x1, x2, since P1 and P2 are points on both ℓ and E. If we have a cubic polynomial
x3 ` ax2 ` bx ` c with roots x1, x2, x3, then:

x3 ` ax2 ` bx ` c “ px ´ x1qpx ´ x2qpx ´ x3q “ x3 ´ px1 ` x2 ` x3qx2 ` ¨ ¨ ¨ .

That is, the x2 therm coincide with the sum of the roots in negative. Therefore,
x1 ` x2 ` x3 “ ´a. Since we already know x1 and x2, we can express x3 as x3 “

a ´ x1 ´ x2. Then, we compute P3 “ P1 ` P2 “ px3, y3q with the following formula.

x3 “ m2 ´ x1 ´ x2, y3 “ mpx1 ´ x3q ´ y1, where m “
y2 ´ y1

x2 ´ x1
.

In certain cases, the line passing through two points on the curve may fail
to intersect a third point on the curve. This issue arises particularly when the
line is vertical or tangent to the curve. To overcome this limitation and define the
operation consistently, it is necessary to introduce the point at infinity. It is easiest
to regard it as a point O, sitting at the top and the bottom of the y-axis. Namely,
we think of the ends of the y-axis as wrapping around and meeting in the point O.
By incorporating the point at infinity, the curve acquires a well-defined operation
applicable to all scenarios, which will allow us to define the group law. The
extension from the affine plane to the projective plane will be further developed
in Section 1.4.
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Different points P1 ‰ P2 with x1 “ x2. If x1 “ x2, but y1 ‰ y2, the line trough P1
and P2 is vertical, which therefore intersect E in O. Reflecting O across the x-axis
yields the same point O (this is why we put O at the top and the bottom of the
y-axis). In this case, P1 ` P2 “ O as we can observe in Figure 1.3.

•
P1

•
P2

Figure 1.3: Adding points on a Elliptic Curve where P1 ‰ P2 but x1 “ x2.

Doubling: P1 “ P2. Now consider the case where P1 “ P2 “ px1, y1q. When two
points on a curve are very close to each other, the line through them approximates
a tangent line (see Figure 1.4). Therefore, when the two points coincide, we take
the line ℓ through them to be the tangent line. Implicit differentiation allows us to
find the slope m of ℓ:

2y
dy
dx

“ 3x2 ` A, so m “
dy
dx

“
3x2

1 ` A
2y1

.

If y1 “ 0 then the line is vertical and we set P1 ` P2 “ O, as before. Note that
if y1 “ 0, then the numerator 3x2

1 ` A ‰ 0, excluding the case 0{0. This is because
the curve has to remain non-singular. If 3x2

1 ` A “ 0 and y1 “ 0, then both partial
derivatives of the curves defining equation vanish simultaneously:

BF
Bx

“ 3x2 ` A “ 0,
BF
By

“ 2y “ 0.

This would indicate a singular point at px1, x2q, compromising the smoothness
condition of an elliptic curve.

Therefore, assume that y1 ‰ 0. The equation of ℓ is

y “ mpx ´ x1q ` y1,
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as before. We obtain the cubic equation

0 “ x3 ´ m2x2 ` ¨ ¨ ¨ .

This time, we know only one root, namely x1, but it is a double root since ℓ is
tangent to E at P1. Therefore, proceeding as before, we obtain

x3 “ m2 ´ 2x1, y3 “ mpx1 ´ x3q ´ y1.

•

•P

•
P + P

Figure 1.4: Adding points on a Elliptic Curve where P1 “ P2.

Edge Case: P1 “ O or P2 “ O. Let’s suppose P2 “ O. The line through P1 and
O is a vertical line that intersects E in, P1

1 the reflection of P1 across the x-axis, as
showed in Figure 1.5. When we reflect P1

1 across the x-axis to get P3 “ P1 ` P2, we
are back at P1. Therefore,

P1 ` O “ P1

for all points P1 on E. Of course, we extend this to include the case O ` O “ O.
Le’s summarize all this:

Definition 1.2 (The Group Law). Let E be an elliptic curve defined by y2 “ x3 ` Ax `

B. Let P1 “ px1, y1q and P2 “ px2, y2q be points on E with P1, P2 ‰ O. Define
P3 “ P1 ` P2 “ px3, y3q as follows:

1. If x1 ‰ x2, then:

x3 “ m2 ´ x1 ´ x2, y3 “ mpx1 ´ x3q ´ y1, where m “
y2 ´ y1

x2 ´ x1
.

2. If x1 “ x2 but y1 ‰ y2, then P1 ` P2 “ O.
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•
P1 = P1 +O

•
P′

1

Figure 1.5: Adding points on a Elliptic Curve where P2 “ O.

3. If P “ P1 “ P2 “ px1, y1q and y1 ‰ 0, then:

x3 “ m2 ´ 2x1, y3 “ mpx1 ´ x3q ´ y1, where m “
3x2

1 ` A
2y1

.

4. If P “ P1 “ P2 “ px1, y1q and y1 “ 0, then P ` P “ O.

Moreover, define P ` O “ P for all points P on E.

We now have a well-defined operation to build the group law:

Theorem 1.3. The addition of points on an elliptic curve E satisfies the following proper-
ties:

1. P1 ` P2 P E for all P1, P2 P E. (closure)

2. P1 ` P2 “ P2 ` P1 for all P1, P2 on E. (commutativity)

3. P ` O “ P for all points P on E. (existence of identity)

4. Given P on E, there exists P1 on E such that P ` P1 “ O. (existence of inverses)
This point P1 is usually denoted as ´P.

5. pP1 ` P2q ` P3 “ P1 ` pP2 ` P3q for all P1, P2, P3 on E. (associativity)

In other words, the points on E form an additive abelian group with O as the identity
element.
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Proof. The commutativity is obvious, either from the formulas or from the fact that
the line through P1 and P2 is the same as the line through P2 and P1. The identity
property of O holds by definition. For inverses, let P1 be the reflection of P across
the x-axis. Then P ` P1 “ O.

Finally, we need to prove associativity. This is by far the most subtle and non
obvious property of the addition of points on E. It is possible to define many
laws of composition satisfying p1q, p2q, p3q for points on E, either simpler or more
complicated than the one being considered. But it is very unlikely that such a law
will be associative. In fact, it is rather surprising that the law of composition that
we have defined is associative. After all, we start with two points P1 and P2 and
perform a certain procedure to obtain a third point P1 ` P2. Then we repeat the
procedure with P1 ` P2 and P3 to obtain pP1 ` P2q ` P3. If we instead start by adding
P2 and P3, then computing P1 ` pP2 ` P3q, there seems to be no obvious reason that
this should give the same point as the other computation. The associative law can
be verified by calculation with the formulas. There are several cases, depending
on whether or not P1 “ P2, and whether or not P3 “ pP1 ` P2q, etc., and this makes
the proof rather messy. However, we prefer a different approach, which we give
in Section 2.4.

Example 1.4. 1. On the curve with equation

y2 “
xpx ` 1qp2x ` 1q

6

we have

p0, 0q ` p1, 1q “

ˆ

1
2

, ´
1
2

˙

,
ˆ

1
2

, ´
1
2

˙

` p1, 1q “ p24, ´70q .

2. On the curve with equation
y2 “ x3 ´ 25x

we have

2 p´4, 6q “ p´4, 6q ` p´4, 6q “

ˆ

1681
144

, ´
62279
1728

˙

,

p0, 0q ` p´5, 0q “ p5, 0q ,
2 p0, 0q “ 2 p´5, 0q “ 2 p5, 0q “ O.

Scalar Multiplication. Every commutative group admits the structure of a Z-
module. This means that the operation of scalar multiplication is well-defined in
these groups. Specifically, if G is a commutative group with an additive operation,
and P P G is an element, then for any integer n P Z, the scalar multiplication nP
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can be defined as the repeated addition of P to itself n times. This operation is
expressed as:

nP “ P ` P ` ¨ ¨ ¨ ` P
loooooooomoooooooon

n

,

where n is a natural number. The group of points on an elliptic curve, being
abelian, allows the definition of this operation.

At first glance, computing nP in this manner appears to require n successive
additions. If the cost of a single addition is Op1q, this direct approach would result
in an algorithm with a complexity of Opnq. However, such an algorithm is far from
being optimal.

A more efficient algorithm for doing scalar multiplication is called Double
and Add. The key idea is to express the scalar n in binary, double the point P
iteratively and add P selectively based on the binary representation of n. This
reduces the complexity from Opnq to Oplog nq.

More specifically, let us suppose that the binary representation of n is

pbkbk´1...b1b0q2,

where bk P t0, 1u and bk´1 is the most significant bit. Therefore

n “

k´1
ÿ

i“0

bi2i,

and n has k bits. First of all, let us define Q “ O. Then, for each bet bi in the
binary decomposition of n, starting from the most significant bit (i “ k ´ 1, . . . , 0),
we do the following. First, we double the Q point Q Ð 2Q and, if bi equals to 1,
we add P to the result Q Ð Q ` P. After processing all the bits of n, we output Q
as the result of nP.

Example 1.5. Let’s see it with an example. Suppose n “ 13 and P is a point on the
curve. The binary representation of 13 is p1101q2.

1. Begin with Q “ O.

2. First bit, which is 1. We double Q (still O) then add P ùñ Q “ 2O ` P “ P.

3. Second bit, which is 1. We double Q “ 2P then add P ùñ Q “ 3P.

4. Third bit, which is 0. We double ùñ Q “ 6P

5. Fourth bit, which is 1. We double Q “ 12P then add P ùñ Q “ 13P, which
is the final output, as expected.

Conversely, if we are working over a large finite field and are given points P
and nP, it is very difficult to determine the value of n. This is called the dis-
crete logarithm problem for elliptic curves and is the basis for the cryptographic
applications.
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1.3 Points on a Elliptic Curve

In fact, since we are doing cryptography, we are specifically interested on el-
liptic curves defined over finite fields Fq where q “ pk and q ą 3. This ones are
fundamental in number theory and cryptography. These curves are described by
the equation:

EpFqq “ tpx, yq P Fp ˆ Fq | y2 “ x3 ` Ax ` Bu Y tOu,

where O is the point at infinity. A natural question arises: how many points lie
on such curves?

Initial estimates provide simple bounds for the total number of points. Since
each x P Fq corresponds to at most two values of y, the number of points is less
than 2q, that is, |EpFpq| ă q2. However, more precise results can be obtained
using the Hasse-Weil Theorem, which states that the number of points satisfies
the inequality

|EpFqq| P
“

q ` 1 ´ 2
?

q, q ` 1 ` 2
?

q
‰

.

Equivalently, this can be expressed as |EpFqq| “ q ` 1 ´ t, where t, known as the
Frobenius Trace, satisfies |t| ď 2

?q.
To compute the exact number of points on an elliptic curve over a finite field,

an efficient but complex method called the Schoof Algorithm is commonly used.
For any point P on the curve, the order n of the point satisfies the relation

P ` P ` ¨ ¨ ¨ ` P
loooooooomoooooooon

n

“ O.

If the total number of points on the curve is denoted by n, that is, |EpFqq| “ n,
then Lagranges theorem implies n “ h ¨ r, where r is the largest prime factor of n,
and h is known as the cofactor.

In cryptographic applications, the security of elliptic curve systems depends on
the size of the largest prime order subgroup. This requires r to be sufficiently large,
typically Á 256 bits, to ensure resistance to cryptographic attacks. The careful
design of elliptic curves with such properties is critical for secure implementations.

1.4 Projective Space

We all know that parallel lines meet at infinity. Projective space allows us to
make sense out of this statement and also to interpret the point at infinity on an
elliptic curve. Let K be a field. Two-dimensional projective space P2

K over K is
given by equivalence classes of triples px, y, zq with x, y, z P K and at least one of
x, y, z nonzero. Two triples px1, y1, z1q and px2, y2, z2q are said to be equivalent if
there exists a nonzero element λ P K such that

px1, y1, z1q “ pλx2, λy2, λz2q.
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Equivalently, the two dimensional projective space consists on all the lines through
the origin of K3. We write px1, y1, z1q ” px2, y2, z2q. The equivalence class of a triple
only depends on the ratios of x to y to z. Therefore, the equivalence class of px, y, zq

is denoted px : y : zq, called homogeneous coordinates.
If px : y : zq is a point with z ‰ 0, then px : y : zq “ px{z : y{z : 1). These are

the “finite” points in P2
K. However, if z “ 0 then dividing by z should be thought

of as giving O in either the x or y coordinate, and therefore the points px : y : 0q

are called the points at infinity in P2
K. The point at infinity on an elliptic curve will

soon be identified with one of these points at infinity in P2
K.

The two-dimensional affine plane over K is often denote A2
K “ tpx, yq P K ˆ Ku.

We have an inclusion
A2

K ãÑ P2
K

given by
px, yq ÞÑ px : y : 1q.

In this way, the affine plane A2
K is identified with the finite points in P2

K.
Adding the points at infinity to obtain P2

K can be viewed as a way of "compactify-
ing" the plane.

Now lets look at the elliptic curve E given by y2 “ x3 ` Ax ` B. Its homo-
geneous form is y2z “ x3 ` Axz2 ` Bz3. The points px, yq on the original curve
correspond to the points px : y : 1q in the projective version. To see what points
on E lie at infinity, set z “ 0 and obtain 0 “ x3. Therefore x “ 0, and y can be any
nonzero number (recall that p0 : 0 : 0q is not allowed). Rescale by y to find that
p0 : y : 0q “ p0 : 1 : 0q is the only point at infinity on E. As we saw above, p0 : 1 : 0q

lies on every vertical line, so every vertical line intersects E at this point at infinity.
Moreover, since p0 : 1 : 0q “ p0 : ´1 : 0q, the “top” and the “bottom” of the y-axis
are the same.

1.5 Pairings

Elliptic curve pairings, such as the Weil and Tate pairings, have become a
cornerstone of modern cryptographic systems by enabling protocols that extend
the possibilities of traditional elliptic curve cryptography. These bilinear maps,
which combine elements from elliptic curve groups to produce values in a finite
field, are the foundation of pairing-based cryptography. Their bilinearity and
non-degeneracy allow for operations like efficient key agreement, identity-based
encryption, and attribute-based encryption, providing tools to address problems
that were previously intractable in cryptography.

To construct pairings, it is essential to have a well-defined structure on the
elliptic curve, which is where torsion points and divisors become indispensable.
Torsion points are required because pairings operate on elements of finite order,
ensuring that the resulting map has the necessary algebraic properties. Divisors,
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in turn, provide a framework for defining these maps rigorously, linking the arith-
metic of points on the curve with the field elements they map to.

1.5.1 Torsion Points

Let E be an elliptic curve defined over a field K. Let n be a positive integer. We
are interested in the set of points of order n of EpKq, where K denotes the algebraic
closure of K. This set, denoted Erns, is defined as:

Erns “ tP P EpKq|nP “ Ou.

The point P is said to be a torsion point. The set Erns of torsion points form
a finite subgroup of EpKq. These points are defined over K because their coordi-
nates satisfy polynomial equations derived from the elliptic curve equation and
the condition rnspPq “ O. These equations may have roots in algebraic extensions
of K and not in K.

Theorem 1.6. Let E be an elliptic curve over a field K and let n be a positive integer. If
the characteristic of K does not divide n, or is 0, then

Erns » Zn ‘ Zn

If the characteristic of K is p ą 0 and p|n, write n “ prn1 with p ∤ n1. Then

Erns » Zn1 ‘ Zn1 or Zn ‘ Zn1

Proof. This proof can be found in Section 3.2 of Washington’s Elliptic Curves:
Number Theory and Cryptography [Was08].

1.5.2 Divisors

Torsion points P P Erns on an elliptic curve play a fundamental role in the
construction of divisors. Specifically, they often appear as the support of divisors
on the curve.

Let E be an elliptic curve over K. A divisor D is a formal sum of points on the
curve:

D “
ÿ

PPE

nP ¨ P, nP P Z,

where only finitely many coefficients nP are nonzero.
For a rational function f on E, its principal divisor is defined as:

divp f q “
ÿ

PPE

vPp f q ¨ P,

where vPp f q denotes the order of f at P:

• vPp f q ą 0: f has a zero of order vPp f q at P,
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• vPp f q ă 0: f has a pole of order |vPp f q| at P,

• vPp f q “ 0: f is regular at P (neither zero nor pole).

The divisor of f encodes the points where f has zeros and poles, and its degree
is always zero:

degpdivp f qq “
ÿ

PPE

vPp f q “ 0.

When a rational function f is constructed such that its zeros and poles lie
entirely on the torsion points Erns of the curve, its associated divisor is said to be
supported on the torsion points. Formally, such a divisor can be written as:

divp f q “
ÿ

PPErns

vPp f q ¨ P,

where P P Erns and vPp f q is nonzero only for torsion points.
For example, the divisor associated with a torsion point P P Erns can be ex-

pressed as:
DP “ P ` p´Pq ´ 2O.

A divisor is called symmetric if it remains invariant under negation of the
points. This property arises naturally with divisors supported on torsion points, as
these points inherently satisfy the symmetry P ` p´Pq. For instance, a symmetric
divisor associated with P P Erns has the form:

D “ P ` p´Pq ´ 2O.

In order to be able to construct the Weil pairing in the next section, we need to
state the following theorem:

Theorem 1.7. Let E be an elliptic curve. Let D be a divisor on E with degpDq “ 0. Then
there is a function f on E with

divp f q “ D

if and only if
sumpDq “ O.

1.5.3 The Weil Pairing

Pairings, such as the Weil pairing and the Tate pairing, leverage the structure
of torsion points and divisors to construct bilinear maps that are fundamental to
cryptographic protocols. These pairings are defined algebraically, using divisors
and their associated functions, and geometrically, via properties of elliptic curves.
In this paper I am going to focus on explaining the Weil Pairing.

The Weil pairing on the n-torsion on an elliptic curve is a major tool in the
study of elliptic curves. For example, it is used to prove Hasses theorem on the



1.5 Pairings 13

number of points on an elliptic curve over a finite field and to attack the discrete
logarithm problemfor elliptic curves.

Let E be an elliptic curve over a field K and let n be an integer not divisible by
the characteristic of K. Then Erns » Zn ‘ Zn. Let

µn “ tx P K|xn “ 1u

be the group of nth roots of unity in K. Since the characteristic of K does
not divide n, the equation xn “ 1 has no multiple roots, hence has n roots in
K. Therefore, µn is a cyclic group of order n. Any generator ξ of µn is called a
primitive nth root of unity. This is equivalent to saying that ξk “ 1 if and only if
n divides k.

The goal of this section is to construct the Weil pairing. Recall that n is an
integer not divisible by the characteristic of the field K, and that E is an elliptic
curve such that Erns Ď EpKq. We want to construct a pairing

en : Erns ˆ Erns Ñ µn,

the assumption Erns Ď EpKq forces µn Ă K.
Let T P Erns. By Theorem 1.7, there exists a function f such that

divp f q “ nrTs ´ nrOs

.
Choose T P Ern2s such that nT “ T . Well use Theorem 1.7 to show that there

exists a function g such that

divpgq “
ÿ

RPErns

prT ` Rs ´ rRsq.

We need to verify that the sum of the points in the divisor is O. This follows
from the fact that there are n2 points R in Erns. The points R in

ř

rT ` Rs and
ř

rRs cancel, so the sum is n2T “ nT “ O. Note that g does not depend on the
choice of T1 since any two choices for T differ by an element R P Erns. Therefore,
we could have written

digpgq “
ÿ

nT2“T

rT2s ´
ÿ

nR“O
rRs.

Let f ˝ n denote the function that starts with a point, multiplies it by n, then
applies f . The points P “ T ` R with R P Erns are those points P with nP “ T. It
follows from Theorem 1.7 that

divp f ˝ nq “ n

˜

ÿ

R

rT1 ` Rs

¸

´ n

˜

ÿ

R

rRs

¸

“ divpgnq.
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Therefore, f ˝ n is a constant multiple of gn. By multiplying f by a suitable
constant, we may assume that

f ˝ n “ gn.

Let S P Erns and let P P EpKq. Then

gpP ` Sqn “ f pnpP ` Sqq “ f pnPq “ gpPqn.

Therefore, gpP ` Sq{gpPq P µn. In fact, gpP ` Sq{gpPq is independent of P.
The proof of this is slightly technical: In the Zariski topology, gpP ` Sq{gpPq is
a continuous function of P and E is connected. Therefore, the map to the finite
discrete set µn must be constant.

Now we can define the Weil pairing by

enpS, Tq “
gpP ` Sq

gpPq

Since g is determined up to a scalar multiple by its divisor, this definition is
independent of the choice of g. Note that the equation is independent of the choice
of the auxiliary point P. The main properties of en are given in the following
theorem:

Theorem 1.8. Let E be an elliptic curve defined over a field K and let n be a positive
integer. Assume that the characteristic of K does not divide n. Then, there is a pairing

en : Erns ˆ Erns Ñ µn,

called the Weil pairing that satisfies the following properties:

1. en is bilinear in each variable. This means that

enpS1 ` S2, Tq “ enpS1, TqenpS2, Tq

and
enpS, T1 ` T2q “ enpS, T1qenpS, T2q

for all S, S1, S2, T, T1, T2 P Erns.

2. en in nondegenerated in each variable. This means that if enpS, Tq “ 1 for all
T P Erns then S “ O and also that if enpS, Tq “ 1 for all S P Erns then T “ O.

3. enpT, Tq “ 1 for all T P Erns.

4. enpT, Sq “ enpS, Tq´1 for all S, T P Erns.

5. enpσS, σTq “ σpenpS, Tqq for all automorphisms σ of K such that σ is the identity
map on the coefficients of E (if E is in Weierstrass form this means that σpAq “ A
and σpBq “ B).

6. enpαpSq, αpTqq “ enpS, Tqdegpαq for all separable endomorphisms of E. If the co-
efficients of E lie in a finite field Fq , then the statement also holds when α is the
Frobenius endomorphism ϕq.



Chapter 2

Pinocchio Protocol

2.1 Probabilistic Proofs

For centuries, the foundation of mathematics has been the creation of rigorous
proofs: clear and logical sequences of steps that leads to an undeniable conclu-
sion. Traditionally, the verification of such proofs has relied on deterministic algo-
rithms, which always produce the same output when given the same input. This
deterministic approach underpins the concept of NP problems, a class of prob-
lems where solutions can be efficiently verified, even if finding those solutions is
computationally challenging or infeasible with current resources. For example, if
a statement claims that a graph contains a Hamiltonian cycle, the witness for this
statement would be the cycle itself. Given the cycle, verifying its correctness is
straightforward, even though it might require significant computational effort.

With the rise of probabilistic polynomial-time algorithms, randomisation has
been introduced into the verification process, leading to faster methods with mini-
mal trade-offs. This idea culminated in 1985, when Goldwasser, Micali, and Rack-
off [GMR85] proposed the concept of probabilistic proofs. These proofs incorpo-
rate randomness into verification, enabling efficient checks with a bounded prob-
ability of error. While the idea of a verification process that is not always correct
might seem counterintuitive, the error rate can be reduced to negligible levels,
making such systems practically reliable.

Probabilistic proof systems must satisfy two key properties: completeness,
meaning true statements are always provable, and soundness, meaning false state-
ments cannot be proved except with a very small probability of error. By in-
corporating randomness, these systems relax the classical notion of mathemati-
cal proofs, where absolute certainty is replaced by near-certainty. To strengthen
soundness, many systems also meet the proof of knowledge (PoW) requirement,
which asserts that any prover capable of convincing the verifier of the truth of a
statement (with a probability exceeding the soundness error) must know a valid
witness for that statement.

One example of probabilistic proof systems is Interactive Proofs (IPs)[GMR85].

15
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They allow a prover P to convince a verifier V that a computation has been cor-
rectly executed. To do so, the prover and the verifier engage in a sequence of inter-
actions by exchanging several messages. The verifier’s messages are influenced by
its internal randomness. This sequence of interactions is called the transcript. At
the end of the exchange, also known as the protocol, the verifier decides whether
to accept or reject the prover’s claim, based on the transcript and its internal ran-
domness.

Probabilistic proofs can also exhibit the property of zero-knowledge [GMR85],
where a prover demonstrates the truth of a statement without revealing any ad-
ditional information. For instance, a zero-knowledge proof could confirm that a
person knows the private key corresponding to a public key without disclosing
the key itself. Such systems, known as Zero-Knowledge Proofs (ZKPs), rely on
reasonable complexity assumptions, such as the existence of one-way functions, to
guarantee security. Research has shown that every NP problem can be equipped
with a zero-knowledge proof system, enabling a wide range of practical applica-
tions [G`08].

Efficiency in proving systems is critical, focusing on reducing both communi-
cation costs and verifier computation. The concept of succinct proofs addresses
these goals, where the size of the proof and the verifiers workload grow only
logarithmically with the complexity of the statement. Probabilistically Check-
able Proofs (PCPs) [FKST94, AS92] achieve succinctness by allowing the verifier
to inspect only a few randomly chosen parts of the proof while maintaining high
confidence in its validity. Although PCPs reduce communication costs, they im-
pose significant computational demands on the prover, who must generate a large,
structured proof for randomised verification.

In contrast to the statistical soundness of probabilistic proofs, argument sys-
tems focus on computational soundness, ensuring security against polynomial-
time adversaries. Argument systems leverage cryptographic primitives, enabling
properties like reusability and public verifiability, and can convert interactive pro-
tocols into non-interactive ones using the Fiat-Shamir transformation. These sys-
tems form the foundation of Succinct Non-interactive Arguments (SNARGs),
which achieve succinctness and computational soundness. When coupled with
zero-knowledge, they become zk-SNARGs, widely used in privacy-preserving ap-
plications like zk-SNARKs for blockchains. The literature has numerous instances
of zk-SNARKs, such as those presented in [Gro16], [BGG`18], [GWC19], and
[CHM`19]. Each of these instances is built upon unique cryptographic primitives
and offers varying trade-offs.

One of the most prominent developments in this field is the Pinocchio proto-
col, which is a zero-knowledge succinct non-interactive argument of knowledge
(zk-SNARK) that enables efficient proof generation and verification for arbitrary
computations. This section provides an overview of the protocol’s steps and high-
lights its mathematical foundation.
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2.2 Arithmetization

At the core of Pinocchio’s efficiency lies the process of translating computations
into a mathematical representation amenable to cryptographic proofs. This trans-
lation involves two crucial steps: the arithmetisation of Rank-1 Constraint Sys-
tems (R1CS) and their conversion into Quadratic Arithmetic Programs (QAPs),
which serve as the basis for efficient proof generation and verification.

The first step, the arithmetisation of R1CS, expresses a computation as a set
of linear constraints over a finite field. An R1CS consists of signals, which repre-
sent inputs, outputs, and intermediate variables of the computation, along with
constraints in the form of polynomial equations. Each constraint is expressed as:

Apsq ¨ Bpsq ´ Cpsq “ 0,

where s “ ps1, s2, ..., smq is the vector of all signals (or wires), and A, B, C are
vectors defining the linear combinations of these signals. Specifically, the linear
combinations Apsq, Bpsq and Cpsq are computed as:

Apsq “

m
ÿ

i“1

aisi, Bpsq “

m
ÿ

i“1

bisi and Cpsq “

m
ÿ

i“1

cisi

where ai, bi and ci are coefficients that specify the R1CS constraints. These
coefficients determine how the signals interact and define the relationships that
must hold for the computation to be valid.

More explicitly, s “ ps1, . . . , smq satisfies the constraints if and only if
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pa1,0 ¨ s0 ` ¨ ¨ ¨ ` a1,m ¨ smq ¨ pb1,0 ¨ s0 ` ¨ ¨ ¨ ` b1,m ¨ smq “

c1,0 ¨ s0 ` ¨ ¨ ¨ ` c1,m ¨ sm

. . .
pan,0 ¨ s0 ` ¨ ¨ ¨ ` an,m ¨ smq ¨ pbn,0 ¨ s0 ` ¨ ¨ ¨ ` bn,m ¨ smq “

cn,0 ¨ s0 ` ¨ ¨ ¨ ` cn,m ¨ sm.

Based on the previous explanation, it is important to note that constraints con-
taining isolated constants, such as the constraint ps1 ` s2q ¨ s3 “ 1 are not permitted
in the R1CS formulation. To address the inclusion of constants in constraints, a
new signal s0 is introduced, which is always set to a value of 1. Therefore, the
former constraint can be expressed as

ps1 ` s2q ¨ s3 “ 1 “ s0.

Each column of coefficients in A, B, C is interpolated into polynomials aipXq, bipXq

and cipXq, where i represents the index of a signal. Interpolation is performed over
a chosen domain, such as t1, 2, 3, . . . , nu. This process results in polynomials that
encode the relationships between signals. However, to optimise computational ef-
ficiency, the interpolation domain is replaced with a subgroup of the roots of unity
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in a finite field. Roots of unity enable the use of the Fast Fourier Transform (also
known as FFT) for efficient interpolation and evaluation. The domain is defined
as a subgroup H “ t1, ω, ω2, . . . , ωn´1u, where ω is a primitive n-th root of unity
in the chosen field.

With the polynomials aipXq, bipXq and cipXq, the Quadratic Arithmetic Program
(QAP) identity is constructed as:

ppXq “

˜

m
ÿ

i“0

aipXqsi

¸

¨

˜

m
ÿ

i“0

bipXqsi

¸

´

˜

m
ÿ

i“0

cipXqsi

¸

.

This identity is valid only within the interpolation domain H, meaning ppXq “ 0
for all X P H.

For cryptographic purposes, the signals s are divided into public ps0, . . . , sℓq
and private psℓ`1, . . . , smq signals. The QAP identity is structured to ensure that
the verifier can verify the correctness of the computation using only the public
inputs. The private signals are exclusively possessed by the prover, who uses
them to compute the necessary polynomials aipXq, bipXq and cipXq, i P t0, . . . , mu.
The design of the verification process ensures that the verifier does not need direct
access to these private signals. Instead, the verifier evaluates the QAP identity
by checking whether the prover’s claimed results satisfy the required polynomial
relationships, which inherently incorporate the private inputs. This separation of
roles ensures privacy: the private signals influence the proof but remain concealed
from the verifier, who only interacts with publicly available information and the
polynomials derived by the prover.

Example 2.1. Inside the field F41 consider the following system of R1CS constraints, for
which the values of the satisfying signals are s1 “ 5, s2 “ 3, and s3 “ 2:

$

’

’

&

’

’

%

p2 ¨ s1 ` 0 ¨ s2 ` 1 ¨ s3q ¨ p1 ¨ s1 ` 3 ¨ s2 ` 0 ¨ s3q ´ p0 ¨ s1 ` 0 ¨ s2 ` 2 ¨ s3q “ 0,
p1 ¨ s1 ` 3 ¨ s2 ` 2 ¨ s3q ¨ p0 ¨ s1 ` 4 ¨ s2 ` 0 ¨ s3q ´ p0 ¨ s1 ` 3 ¨ s2 ` 1 ¨ s3q “ 0,
p0 ¨ s1 ` 7 ¨ s2 ` 2 ¨ s3q ¨ p2 ¨ s1 ` 1 ¨ s2 ` 2 ¨ s3q ´ p3 ¨ s1 ` 0 ¨ s2 ` 0 ¨ s3q “ 0,
p3 ¨ s1 ` 2 ¨ s2 ` 0 ¨ s3q ¨ p0 ¨ s1 ` 0 ¨ s2 ` 5 ¨ s3q ´ p0 ¨ s1 ` 1 ¨ s2 ` 1 ¨ s3q “ 0.

Interpolating the Polynomials We start by interpolating the coefficients into polyno-
mials over an initial domain t1, 2, 3, 4u. For example, the coefficients of a1pXq correspond
to the points p1, 2q, p2, 1q, p3, 0q, p4, 3q. Interpolation yields to the following polynomial:

a1pXq “ 2X3 ` 29X2 ` 19X ` 38.

Similarly, other polynomials aipXq, bipXq, cipXq are constructed.

Switching to Roots of Unity We have established that it is preferable to choose a
group of roots of unity as the interpolation domain to enable FFT interpolation, which is
significantly faster. To identify this domain, we first determine the primitive roots of unity
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for subgroups of, for example, Z41, where p ´ 1 “ 23 ¨ 5. It can be verified that 6 is a
generator of Z˚

41 since 6p40{2q mod 41 “ 40 ‰ 1 and 6p40{5q mod 41 “ 10 ‰ 1. Thus,
ω4 “ g

p´1
n “ 6

40
4 mod 41 “ 32 is a primitive 4th root of unity and serves as a generator

for the subgroup H of order 4:

H “ tω0
4, ω1

4, ω2
4, ω3

4u “ t1, 32, 40, 9u.

Therefore, this subgroup H is the interpolation domain of interest. So now the coeffi-
cients of a0pXq correspond to the points p1, 2q, p32, 1q, p40, 0q, p9, 3q. Interpolation over
Z41 yields to the following polynomial:

a1pXq “ 5X3 ` 20X2 ` 37X ` 22.

Constructing the QAP Identity Using the satisfying signals s1 “ 5, s2 “ 3, and
s3 “ 2, the prover computes:

ppXq “

´

a1pXqs1 ` a2pXqs2 ` a3pXqs3

¯

¨

´

b1pXqs1 ` b2pXqs2 ` b3pXqs3

¯

´
´

c1pXqs1 ` c2pXqs2 ` c3pXqs3

¯

.

This results in:

ppXq “ 38X6 ` 31X5 ` 3X4 ` 3X2 ` 10X ` 38,

which evaluates to zero for all X P H, confirming that the QAP identity holds.

2.3 Random Evaluation of Polynomials

A cornerstone of Pinocchio’s design is the handling of polynomials, which
are used to encode computational constraints. This involves evaluating, encrypt-
ing, and committing to polynomials while ensuring their integrity and privacy.
This section delves into the foundational concepts, including the Schwartz-Zippel
lemma, random polynomial evaluations, encrypted commitments, and the trusted
setup process.

The Schwartz-Zippel lemma is a result in algebra that bounds the probability
of a polynomial evaluating to zero over randomly chosen inputs. Formally:

Lemma 2.2 (Schwartz-Zippel). Let ppx1, . . . , xnq be a non-zero multivariate polyno-
mial of degree d over Fp, then the probability of ppα1, . . . , αnq “ 0 for randomly chosen
pα1, . . . , αnq P Zn

p is at most d{p.

This lemma is particularly useful for polynomial equality testing. For exam-
ple, given two single-variable polynomials p1pxq and p2pxq, we can test whether
p1pxq ´ p2pxq “ 0 by evaluating at a random point α P Zp. If the polynomials are
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identical, the equality holds for all inputs. Otherwise, the equality holds with a
probability of at most maxpd1, d2q{p, where d1 and d2 are the degrees of p1pxq and
p2pxq.

In the context of Pinocchio, this lemma underpins the soundness of polynomial
commitments, ensuring that any deviation from the committed polynomial can be
detected with high probability.

Polynomial Commitment Polynomials in zk-SNARKs encode computational con-
straints, but verifying their validity requires representing them in a compact and
secure way. One way to achieve this is by evaluating the polynomial at a random
point.

Example 2.3. For example, consider the polynomial:

f pXq “ 7X3 ` 2X2 ` X ` 1.

Evaluating f pXq at a randomly chosen point X “ τ ensures the polynomial’s properties
can be tested without revealing its entire structure. However, if the random evaluation
point τ is revealed to the prover, they could build a different polynomial f̃ pXq ‰ f pXq that
coincides with f pXq at τ.

For instance, if τ “ 15 in F41, a malicious prover could construct:

f̃ pXq “ 27X3 ` 28X2 ` 17X ` 6,

such that f p15q “ f̃ p15q “ 24. This demonstrates the need for cryptographic protection
in random evaluations.

To prevent tampering, the Pinocchio protocol employs elliptic curve cryptography
(ECC) to encrypt polynomial evaluations. The protocol creates a cryptographic commit-
ment to the polynomial, denoted as F, which securely represents the polynomial without
revealing its structure.

For the polynomial f pXq “ 7X3 ` 2X2 ` X ` 1, the commitment is:

F “ f pτq ¨ G1 “ p7τ3 ` 2τ2 ` τ ` 1q ¨ G1,

where G1 is a generator point on an elliptic curve. The challenge lies in enabling the
prover to compute F without knowledge of τ. This is resolved by providing the prover with
encrypted powers of τ, specifically:

tH0 “ τ0 ¨ G1, H1 “ τ1 ¨ G1, H2 “ τ2 ¨ G1, H3 “ τ3 ¨ G1u.

Using these encrypted powers, the prover computes:

F “ 7H3 ` 2H2 ` H1 ` H0.

This cryptographic commitment ensures the polynomial cannot be altered, while the secret
τ remains secure.
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The Trusted Setup The Trusted Setup generates the encrypted powers of τ, also
known as Structured Reference String (SRS), enabling commitments to polynomials
of degree less than n.

In the trusted setup process, a trusted entity selects a random secret τ and
computes the powers of τ within the elliptic curve group as follows: H0 “ τ0 ¨ G1,
H1 “ τ1 ¨ G1, up to Hn “ τn ¨ G1, where G1 is a generator point on the curve. After
generating the set tH0, H1, . . . , Hnu, the trusted entity must securely discard τ, a
value often referred to as the toxic value ensuring it is inaccessible to any party to
preserve the system’s security.

The Structured Reference String (SRS) possesses several key properties that
make it essential for zk-SNARK protocols. Firstly, it is universal, meaning it can
be used for any polynomial of degree less than n. This universality extends to sup-
porting circuits with fewer than n R1CS constraints. Secondly, the SRS is shared
among all participants, including provers and verifiers, and acts as a public re-
source for cryptographic commitments.

2.4 Knowledge of Commitment

In the Pinocchio protocol, the verifier seeks to verify the validity of a quadratic
arithmetic program (QAP) commitment succinctly and without access to the pri-
vate si values. Specifically, the verifier aims to ensure that the following equation
holds:

ˆ ℓ
ÿ

i“0

aipXqsi `

m
ÿ

i“ℓ`1

aipXqsi

˙

¨

ˆ ℓ
ÿ

i“0

bipXqsi `

m
ÿ

i“ℓ`1

bipXqsi

˙

´

ˆ ℓ
ÿ

i“0

cipXqsi `

m
ÿ

i“ℓ`1

cipXqsi

˙ˇ

ˇ

ˇ

ˇ

XPH
“ 0.

The challenge is that the si values for i “ ℓ ` 1 to m are secret, meaning the
prover cannot reveal them to the verifier. Instead, the goal is to demonstrate that
the polynomial:

f pXq “

m
ÿ

i“ℓ`1

aipXqsi

is correctly constructed as a linear combination of the public aipXq polynomi-
als, which define the topology of the circuit. This ensures the prover’s adherence
to the QAP’s constraints without revealing private information.

Notation 2.4. From now on the following notation is going to be used, where G1 and G2
are the group generators for G1 and G2 respectively.

r¨s1 : Z Ñ G1

z ÞÑ z ¨ G1.
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r¨s2 : Z Ñ G2

z ÞÑ z ¨ G2.

The prover must first commit to the aipXq polynomials, which are public, using
the powers of τ generated during the trusted setup. These commitments, denoted
Ai, are computed as:

Ai “ aipτqG1 “ raipτqs1,

where G1 is a generator of the chosen elliptic curve group. These Ai commit-
ments are publicly available and are precomputed by the Trusted Setup during
the circuit setup phase. The prover then uses these commitments to create the
polynomial commitment πA for f pXq, defined as:

πA “

m
ÿ

i“ℓ`1

Aisi.

The verifier’s task is to ensure that πA is computed as a valid linear combina-
tion of the public commitments Ai, using a set of si values that the prover knows
but does not reveal.

To validate πA and ensure it represents a legitimate linear combination, the ver-
ifier employs a "random shift" method: the trusted setup generates an additional
toxic random value αA, which is used to enforce the knowledge of commitment.
Specifically, the random shift transforms the commitments Ai into shifted com-
mitments A1

i “ αA Ai, provided during the trusted setup. The verifier checks the
commitment πA by comparing:

αA

˜

m
ÿ

i“ℓ`1

Aisi

¸

“

m
ÿ

i“ℓ`1

A1
isi,

using an asymmetric pairing

e p¨, ¨q : G1 ˆ G2 Ñ GT.

For this reason, the selected curve for performing this check must be pairing
friendly. The pairing equation is expressed as:

epπA, rαAs2q “ epπ1
A, r1s2q,

where π1
A “

řm
i“ℓ`1 A1

isi and rαAs2 is the random shift encrypted in the second
elliptic curve group G2, also provided by the trusted setup. This ensures that the
prover’s commitment πA corresponds to a valid combination of the Ai commit-
ments.
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Soundness of the Random Shift The soundness of the random shift approach
lies in its prevention of unauthorised commitments. A malicious prover would
need to produce a valid pairing check for a commitment like:

πA “ A1s1 ` A2s2 ` Ds3,

where D is a point not derived from the Ai commitments. The verifier detects
this because the trusted setup does not include a shifted version of D, and the
prover cannot compute D1 “ αAD without knowledge of D in terms of the public
Ai.

This technique is known as the "knowledge of exponent argument" (KEA),
ensuring that the prover can only produce a valid commitment by knowing the
exponents si used in the linear combination of Ai.

Risks of Toxic Randomness The trusted setup must securely delete the toxic
values τ and αA. If these values are compromised, an adversary could forge valid
commitments. For example:

a) Knowing αA allows an arbitrary point D to be combined into a valid commit-
ment D1 “ αAD, bypassing the linear combination restriction.

b) Knowing τ, allows computing aipτq´1 and from A1
1, which is aipτqαA G1. From

here, aipτq´1A1
1 “ αA G1 “ rαAs1 can be computed, and finally, generate an

arbitrary point D “ dG1 and compute D1 “ drαAs1 and again pass the pairing
check without actually committing to a linear combination of Ai.

This highlights the critical importance of securely removing toxic randomness
during the trusted setup.

Per-Circuit Trusted Setup The random shift method requires a trusted setup
specific to each circuit. This setup comprises two phases:

The first phase is the Universal Phase. The trusted setup generates the powers
of τ, applicable to any polynomial of degree less than n. The second phase is the
Circuit-Specific Phase, where the shifted commitments tA1

i, B1
i , C1

iu are generated
for the specific circuit, based on its polynomials. This means that if the circuit
changes, the second phase of the setup must be re-executed.

Multi-Party Computation (MPC) To mitigate the risks of toxic randomness, trusted
setups are often implemented as Multi-Party Computations (MPCs), commonly re-
ferred to as “ceremonies”. In an MPC, multiple participants collectively generate
the toxic values, ensuring that no single party possesses them entirely. Addition-
ally, powers of τ must be created for both elliptic curve groups G1 and G2.
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2.5 Proving the QAPs

Recall that Pinocchio is a Probabilistically Checkable Proof (PCP), which is a
proof that can be verified by a randomised algorithm using a limited amount of
randomness and checking a limited number of bits of the proof. Formally:

Definition 2.5 (PCP). A PCP is a proof that can be checked by a randomised algorithm,
which accepts valid proofs and rejects invalid ones with very high probability, while re-
quiring minimal interaction with the proof.

Pinocchio and Groth16 are among the most efficient and widely used PCP
systems for proving Quadratic Arithmetic Programs (QAPs). As we have seen
before, a QAP is defined by a polynomial identity constrained to a domain H, of
the form:

˜

ℓ
ÿ

0

aipXqsi `

m
ÿ

ℓ`1

aipXqsi

¸

¨

˜

ℓ
ÿ

0

bipXqsi `

m
ÿ

ℓ`1

bipXqsi

¸

´

˜

ℓ
ÿ

0

cipXqsi `

m
ÿ

ℓ`1

cipXqsi

¸

“ 0 for X P H.

The prover is tasked with demonstrating knowledge of the public signals
(s0, s1, . . . , sℓ) and private signals (sℓ`1, . . . , sm) that satisfy this QAP.

2.5.1 QAP Divisibility

The Quadratic Arithmetic Program (QAP) divisibility property is a key mech-
anism for verifying that a polynomial ppXq satisfies the constraints encoded in a
circuit. Instead of directly verifying that ppXq “ 0 for all X P H (where H is a
cyclic group of roots of unity), the goal is to demonstrate that ppXq is divisible by
the vanishing polynomial zHpXq, defined as:

zHpXq “ Xn`1 ´ 1.

The prover must demonstrate the following identity:

ppXq

zHpXq
“ hpXq where X P F,

or equivalently:
ppXq “ hpXq ¨ zHpXq,

where hpXq is a polynomial of degree d ă n.
In zk-SNARKs, ppXq is constructed using circuit polynomials aipXq, bipXq, and

cipXq, which define the topology of the circuit, as well as public (s0, . . . , sℓ) and
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private (sℓ`1, . . . , sn) signals, as we have seen in the previous section:

ppXq “

˜

ℓ
ÿ

i“0

aipXqsi `

m
ÿ

i“ℓ`1

aipXqsi

¸

¨

˜

ℓ
ÿ

i“0

bipXqsi `

m
ÿ

i“ℓ`1

bipXqsi

¸

´

˜

ℓ
ÿ

i“0

cipXqsi `

m
ÿ

i“ℓ`1

cipXqsi

¸

.

To verify this, the computation is evaluated at an encrypted random point X “

τ, ensuring the integrity of the witness polynomials while maintaining privacy for
the private inputs. That is, we evaluate on the powers of tau as explained in 2.3.

Example 2.6. Following the example in Example 2.1, we had

ppXq “ 38X6 ` 31X5 ` 3X4 ` 3X2 ` 10X ` 38 “ 0

Then, we know by construction that the polynomial ppXq has the following form:

ppXq “ pX ´ ω0q ¨ ¨ ¨ pX ´ ω3q ¨ hpXq

Where zHpXq “ pX ´ ω0q...pX ´ ω3q “ X4 ´ 1. The prover can compute h(X), of degree
d ă n, in this example 2 ă 3:

hpXq “ ppXq{zHpXq “ 38X2 ` 31X ` 3

If p(X) is not zero at H, then, dividing ppXq by zHpXq, we will not obtain
a polynomial hpXq but a fraction of polynomials, for which we cannot create a
commitment.

As we have seen, now the prover must verify the following equation:

ppXq “ hpXq ¨ pXn`1 ´ 1q.

At a random point X “ τ, the QAP equation becomes:

˜

ℓ
ÿ

i“0

aipτqsi `

m
ÿ

i“ℓ`1

aipτqsi

¸

¨

˜

ℓ
ÿ

i“0

bipτqsi `

m
ÿ

i“ℓ`1

bipτqsi

¸

´

˜

ℓ
ÿ

i“0

cipτqsi `

m
ÿ

i“ℓ`1

cipτqsi

¸

“ hpτq ¨ pτn`1 ´ 1q.

However, direct computation in polynomial space is not possible due to elliptic
curve multiplications. Instead, the verification is performed using asymmetric
pairings.
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The verification process leverages pairings to evaluate the relationships be-
tween commitments:

e pG1, G2qp
řℓ

0 aipτqsi`
řm

ℓ`1 aipτqsiq¨p
řℓ

0 bipτqsi`
řm

ℓ`1 bipτqsiq´p
řℓ

0 cipτqsi`
řm

ℓ`1 cipτqsiq

“ e pG1, G2q
hpτq ZHpτq

ðñ

e pG1, G2qp
řℓ

0 aipτqsi`
řm

ℓ`1 aipτqsiq¨p
řℓ

0 bipτqsi`
řm

ℓ`1 bipτqsiq

“ e pG1, G2q
hpτq¨ZHpτq

¨ e pG1, G2qp
řℓ

0 cipτqsi`
řm

ℓ`1 cipτqsiq ðñ

e

˜

ℓ
ÿ

0

Aisi`

m
ÿ

ℓ`1

Aisi,
ℓ

ÿ

0

Bisi`

m
ÿ

ℓ`1

Bisi

¸

“

e
`

prhpτqs1, rzHpτqs2
˘

¨ e

˜

ℓ
ÿ

0

Cisi `

m
ÿ

ℓ`1

Cisi, r1s2

¸

.

Note that we do as much group operations as possible in G1, as operations in
this group are approximately 3.5 times faster than in G2. Additionally, the SRS
includes powers of τ in G2 for commitments to bipXq and zHpXq, so we need
them.

The pairing check can be rewritten as:

e
´

vkA
x ` πA, vkB

x ` πB

¯

“ e pπh, vkzq ¨ e
´

vkC
x ` πC, r1s2

¯

vkA
x “

ℓ
ÿ

0

Aisi πA “

m
ÿ

ℓ`1

Aisi vkB
x “

ℓ
ÿ

0

Bisi πB “

m
ÿ

ℓ`1

Bisi

vkC
x “

ℓ
ÿ

0

Aisi πC “

m
ÿ

ℓ`1

Cisi πh “ rhpτqs1 vkz “ rzHpτqs2

Where πA, πB, πC, and πh, are points provided by the prover. The point
vkz is provided by the trusted setup (for verifiers). Finally, vkA

x , vkB
x and vkC

x are
computed by the verifier for the given public signals.

Limitations of QAP Divisibility While the QAP divisibility check is a founda-
tional element in ensuring the correctness of zk-SNARKs, it alone does not guar-
antee complete soundness. Specifically, it is possible to construct valid-looking
equations that satisfy the QAP divisibility property but do not adhere to the in-
tended circuit constraints. This occurs because we are not checking that πA, πB,
and πC are linear combinations of the committed polynomials aipXq, bipXq, and
cipXq, respectively.

Example 2.7. Consider the following example:

pXn`1 ´ 1q ¨ X2 “ Xn ¨ X3 ´ X2,
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or equivalently:
zHpXq ¨ hpXq “ apXq ¨ bpXq ´ cpXq.

This equation can pass the QAP divisibility check:

epvkA
x ` πA, vkB

x ` πBq “ epπh, vkzq ¨ epvkC
x ` πC, r1s2q,

with the following commitments:

vkA
x ` πA “ rτns1,

vkB
x ` πB “ rτ3s2,

vkC
x ` πC “ rτ2s1,

πh “ rτ2s1.

As we can observe, while QAP divisibility ensures ppXq satisfies the QAP con-
straints, it is not sufficient for soundness. Two additional checks are required:

1. Knowledge of commitments: The prover must demonstrate that πA, πB,
and πC are linear combinations of the committed polynomials aipXq, bipXq,
and cipXq, respectively, and that the prover knows the coefficients.

2. Same coefficients: The prover must show that the same coefficients si were
used to compute πA, πB, and πC.

These checks are implemented using toxic random values introduced during
the trusted setup phase.

2.5.2 Knowledge of Commitments Check

Since we check the same coefficients we can simplify the divisibility check by
only exposing publics in the Ai part:

epvkx ` πA, πBq “ epπh, vkzq epπC, r1s2q

With vkx “
řℓ

0 Aisi πA “
řm

ℓ`1 Aisi πB “
řm

0 Bisi πC “
řm

0 Cisi,
The trusted setup provides vkA “ rαAs2, which is a point encoding the toxic

randomness αA and Ai and A1
i “ Ai ¨ αA for i P tℓ ` 1, . . . , mu, points derived from

the circuit-specific polynomials.
Using these, we verify the provers commitment πA through pairings:

epr1s1, r1s2qαA
řn

i“ℓ`1 Aisi “ epr1s1, r1s2q
řm

i“ℓ`1 A1
i si .

This can be expressed as:

epπA, rαAs2q “ e

˜

m
ÿ

i“ℓ`1

A1
isi, r1s2

¸

,
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or equivalently:
epπA, vkAq “ epπ1

A, r1s2q,

where π1
A “

řn
i“ℓ`1 A1

isi.
Similarly, we extend the pairing check to the commitments πB and πC:

epvkB, πBq “ epπ1
B, r1s2q,

epπC, vkCq “ epπ1
C, r1s2q.

Here, the trusted setup provides:

vkB “ rαBs1, π1
B “

m
ÿ

i“0

B1
isi,

vkC “ rαCs2, π1
C “

m
ÿ

i“0

C1
isi.

Note that, for efficiency, π1
B is defined in G1 rather than in G2. This choice

minimises computational overhead, as operations in G1 are faster than in G2.
By implementing these checks, we ensure that the commitments πA, πB, and

πC are valid linear combinations of the circuit-specific polynomials aipXq, bipXq,
and cipXq.

2.5.3 Same Coefficients Check

The "same coefficients" check ensures that the same set of coefficients s0, s1, . . . , sn
are used consistently across the commitments Ai, Bi, and Ci, i.e., in vkx ` πA, πB,
and πC. This section outlines the rationale and implementation of the check.

Let us consider a triplet of points A0, B0, C0. The prover might construct a
linear combination such as:

sA
0 A0 ` sB

0 B0 ` sC
0 C0.

If A0 ‰ B0 ‰ C0, the only way to achieve a common factor is to use the same
coefficient, sA

0 “ sB
0 “ sC

0 “ s0, yielding:

s0pA0 ` B0 ` C0q.

We extend this idea to construct a pairing-based check. The prover is required
to provide four points:

P1 “ s0 A0, P2 “ s0B0, P3 “ s0C0, P4 “ s0pA0 ` B0 ` C0q.

The verifier checks:
epP1 ` P2 ` P3, r1s2q “ epP4, r1s2q.
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However, this approach is vulnerable since the prover can fabricate valid points
without using consistent coefficients or the original points A0, B0, C0.

To enforce the usage of A0, B0, C0, and A0 ` B0 ` C0 with consistent coefficients,
a random shift is introduced. The trusted setup provides a toxic randomness β
and defines:

K0 “ βpA0 ` B0 ` C0q.

The verifier checks:

eps0pA0 ` B0 ` C0q, rβs2q “ eps0K0, r1s2q,

where K0 “ βpA0 ` B0 ` C0q is shared with the prover, rβs2 is shared with the
verifier, and β itself is destroyed.

To address cases where Ai “ Bi “ Ci for some i, we randomize the points using
toxic random values ρA and ρB. The randomized linear combination becomes:

psA
0 ρA A0 ` sB

0 ρBB0 ` sC
0 ρAρBC0qβ “ s0pρAβA0 ` ρBβB0 ` ρAρBβC0q.

This extends naturally to all Ai, Bi, and Ci, resulting in:

m
ÿ

i“0

psiρAaipτq ` siρBbipτq ` siρAρBcipτqqβ “

m
ÿ

i“0

sipρAβaipτq ` ρBβbipτq ` ρAρBβcipτqq.

Implementing the Check The above equation is converted into a pairing-based
check:

e

˜

m
ÿ

i“0

Aisi `

m
ÿ

i“0

Cisi, rβs2

¸

¨ eprβs1,
m

ÿ

i“0

Bisiq “ e

˜

m
ÿ

i“0

Kisi, r1s2

¸

,

where:

Ai “ rρAaipτqs1, Bi “ rρBbipτqs2, Ci “ rρAρBcipτqs1,
Ki “ rpρAaipτq ` ρBbipτq ` ρAρBcipτqqβs1.

Avoiding Issues with Encrypted Shifts To prevent a malicious prover from ex-
ploiting the provided encrypted shifts rβs1 and rβs2, an additional random value
γ is introduced. The check is modified to:

epvkx ` πA ` πC, vk2
βγq ¨ epvk1

βγ, πBq “ epπK, vkγq,

where vk1
βγ “ rβγs1, vk2

βγ “ rβγs2, and vkγ “ rγs2.
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2.6 Summary of the Pinocchio SNARK

1. The TS provides a proving key p⃗k to provers, where

p⃗k “ ttHiu
n
0 , tAiu

m
0 , tBiu

m
0 , tCiu

m
0 , tA1

iu
m
l`1, tB1

iu
m
0 , tC1

iu
m
0 , tKiu

m
0 u

Hi “ rτis1

Ai “ rρA aipτqs1 Bi “ rρB bipτqs2 Ci “ rρAρB cipτqs1

A1
i “ rαA ρA aipτqs1 B1

i “ rαB ρB bipτqs2 C1
i “ rαC ρA ρB cipτqs1

Ki “ rpρA aipτq ` ρB bipτq ` ρAρB cipτqq βqs1

The TS also provides a verifying key for verifiers

v⃗k “ tvkZ “ rzHpτq ρA ρBs2, vkA “ rαAs2, vkB “ rαBs1, vkC “ rαCs2, vk2
βγ, vk1

βγ, vkγ “

rγs2u.

2. Prover computes Π with p⃗k: 8 points πh, πA, πC, π1
A, π1

B, π1
C, πK in G1 and

πB in G2.

πh “
řn´1

i“0 ch
i Hi

πA “
řm

i“l`1 Ai si πC “
řm

i“0 Ci si π1
A “

řm
i“l`1 A1

i si π1
C “

řm
i“0 C1

i si π1
B “

řm
i“0 B1

i si

πK “
řm

i“0 Ki si πB “
řm

i“0 Bi si

3. The verifier computes the verification part of the public inputs:

vkx “
řl

i“0 Ai si

Then, the verifier checks 5 equations with 12 pairings to accept the proof:

epvkx ` πA, πBq “ epπh, vkzq epπC, r1s2q

epπA, vkAq “ epπ1
A, r1s2q

epvkB, πBq “ epπ1
B, r1s2q

epπC, vkCq “ epπ1
C, r1s2q

epvkx ` πA ` πC, vk2
βγq ¨ epvk1

βγ, πBq “ epπK, vkγq

2.7 From a SNARK to a zk-SNARK

The SNARK described thus far does not provide zero-knowledge. The authors
of Pinocchio were primarily focused on verifiable computation rather than zero-
knowledge (ZK); however, transforming the Pinocchio SNARK into a zk-SNARK
is relatively straightforward.

One of the reasons for this is that in the proof, the prover is required to provide
πA, πB, and πC, which are linear combinations of Ai, Bi, and Ci using the witness
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set of signals s = ts0, s1, . . . , smu. This process inadvertently leaks certain infor-
mation to the verifier, as the verifier cannot compute these linear combinations
independently without knowledge of s.

To ensure zero-knowledge, the prover introduces three random values, δA, δB,
and δC, to create perturbed versions sπA, sπB, and sπC. These modified terms are no
longer linear combinations of the witness evaluated at known points.

Perturbing the Linear Combinations The perturbation is achieved by adding a
randomised version of zHpXq to πA, πB, and πC. This adjustment does not affect
the identity being checked at roots of unity since zHpXq evaluates to zero at H.
The perturbed values are:

sπA “

m
ÿ

i“l`1

Ai si ` rzHpτq ρAs1 δA ` 0 sm`2 ` 0 sm`3

sπB “

m
ÿ

i“0

Bi si ` 0 sm`1 ` rzHpτq ρBs2 δB ` 0 sm`3

sπC “

m
ÿ

i“0

Ci si ` 0 sm`1 ` 0 sm`2 ` rzHpτq ρA ρBs1 δC

Shifted Versions with α The same approach is applied to the shifted versions
sπ1

A, sπ1
B, and sπ1

C, incorporating randomisation with α terms:

sπ1
A “

m
ÿ

i“l`1

A1
i si ` rzHpτq ρA αAs1 δA ` 0 sm`2 ` 0 sm`3

sπ1
B “

m
ÿ

i“0

B1
i si ` 0 sm`1 ` rzHpτq ρB αBs2 δB ` 0 sm`3

sπ1
C “

m
ÿ

i“0

C1
i si ` 0 sm`1 ` 0 sm`2 ` rzHpτq ρA ρB αCs1 δC

Updating the Trusted Setup Parameters The parameters from the trusted setup
must be expanded to include the new values, resulting in an updated public key:

p⃗k “ ttHiu
n
0 , tAiu

m`3
0 , tBiu

m`3
0 , tCiu

m`3
0 , tA1

iu
m`3
l`1 , tB1

iu
m`3
0 , tC1

iu
m`3
0 , tKiu

m`3
0 u

Where:

Am`1 “ rZHpτq ρAs1, Bm`2 “ rZHpτq ρBs2, Cm`3 “ rZHpτq ρA ρBs1

Am`2 “ Am`3 “ Cm`1 “ Cm`2 “ Bm`1 “ Bm`3 “ O
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A1
m`1 “ rZHpτq ρA αAs1, B1

m`2 “ rZHpτq ρB αBs2, C1
m`3 “ rZHpτq ρA ρB αCs1

A1
m`2 “ A1

m`3 “ C1
m`1 “ C1

m`2 “ B1
m`1 “ B1

m`3 “ O

This process ensures that the Pinocchio SNARK becomes a zk-SNARK while
maintaining the original functionality and efficiency.



Chapter 3

Circuits

A digital signature scheme is a cryptographic primitive used to ensure the
authenticity and the integrity of digital messages or documents. It serves as the
digital equivalent of a handwritten signature or a stamped seal, but is much more
secure due to its reliance on mathematical tools. Digital signatures are a funda-
mental component in modern cybersecurity, particularly in secure communica-
tions, financial transactions, and software distribution.

The digital signature process can be divided into three stages. It begins with
key generation, where the signer, typically referred to as Alice, creates a pair of
cryptographic keys. The first is a private key, which is kept secret and only known
to Alice, and the second is a public key, which is publicly known and can be used
by anyone to verify her signature. The next stage is signing the message. When
Alice wishes to sign a message, she uses her private key along with a crypto-
graphic algorithm to generate a digital signature. This signature is uniquely tied
to the specific message being signed and cannot be reused or applied to any other
message. The cryptographic algorithm ensures that even the slightest alteration to
the message will invalidate the signature, thereby safeguarding the message’s in-
tegrity. Finally, in the verification stage, the recipient of the message, often called
Bob, uses Alice’s public key to confirm the authenticity of the signature. Bob veri-
fies whether the signature matches the original message and checks for any signs
of tampering. If the verification process succeeds, Bob can trust that the message
originated from Alice and has not been altered in transit. This robust mechanism
guarantees the authenticity, integrity, and non-repudiation of the communication,
making digital signatures a cornerstone of secure interactions in the digital world.

Digital signature algorithms employ many diverse schemes fit for different use
cases and security requirements. One of the earliest and well-known is the RSA
(Rivest-Shamir-Adleman) algorithm, a method for creating and verifying signa-
tures based on the modular arithmetic and number theory of large prime num-
bers. While being quite older, it finds its wide application in secure email com-
munication and software signing. Another one is the very popular DSA (Digital
Signature Algorithm) which is a product of the U.S. Digital Signature Standard

33
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(DSS). Building on the mathematical basis of discrete logarithms, DSA promises
similar security assurances as RSA but with differing performance. Variants like
the Elliptic Curve Digital Signature Algorithm (ECDSA) have been coming into
play in recent times. ECDSA enhances DSA through elliptic curve cryptography,
enabling the use of smaller key sizes and leading to faster computations, thus,
making ECDSA recently the preferred candidate in blockchain networks like Bit-
coin and Ethereum. EdDSA (Edwards-Curve Digital Signature Algorithm) is a
modern alternative to ECDSA. Built on twisted Edwards curves, EdDSA offers
improved performance and resistance to certain types of side-channel attacks. It
is increasingly adopted in privacy-focused applications, including secure messag-
ing protocols and in distributed systems requiring high efficiency. The ElGamal
signature scheme is another fundamental algorithm based on discrete logarithms.
Although not commonly used anymore, serves as a stepping stone for other cryp-
tographic signature developments. The influence can be seen in later designs such
as BLS (Boneh-Lynn-Shacham) signatures, which offer large efficiency through
signature aggregation, considerably popular in mega-scale systems like Ethereum
2.0 and decentralized storage networks.

In this chapter, we dive into two widely adopted digital signature schemes:
ECDSA and BLS signatures, which are cornerstones of modern cryptography with
significant applications in blockchain and secure communication systems. These
cryptographic protocols not only provide authentication and integrity but also
enable advanced features like aggregation and threshold signatures, making them
indispensable in distributed systems.

3.1 CIRCOM

Circom is a novel domain-specific language designed for defining arithmetic
circuits that can be used to generate zero-knowledge proofs. The Circom com-
piler, developed in Rust, generates an R1CS file with a set of associated constraints
and a program (written in either C++ or WebAssembly) to efficiently compute a
valid assignment for all circuit wires, as we can observe in Figure 3.1. One of
Circom’s key features is its modularity, which allows programmers to define pa-
rameterisable circuits known as templates. These templates can be instantiated
to create larger circuits, simplifying the processes of testing, reviewing, auditing,
and formally verifying large and complex Circom circuits [ic23]. Additionally,
Circom users can create custom templates or use templates from Circomlib, a
publicly available library that includes hundreds of circuits such as comparators,
hash functions, digital signatures, binary and decimal converters, and more. To
bridge theory and practice, this work focuses on testing Circom libraries designed
for signature verification circuits. Rather than developing new circuits, we will
utilise existing implementations and perform rigorous testing to validate their cor-
rectness and performance. Using JavaScript, we will interact with these Circom
circuits to generate comprehensive test cases that simulate realistic scenarios, en-
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Figure 3.1: The process of generating and validating a ZK proof involves the following
steps: First, create a JSON file with inputs. This file is passed to a C++ or WebAssembly
program generated by the circom compiler, which produces a binary witness file. After
compiling the circuit and running the witness calculator with the inputs, two files are gen-
erated: a .wtns file containing computed signals and an .r1cs file with circuit constraints.
Using these files, ZK proofs can be computed and verified with snarkjs.

Source: [BMIMT`23]

suring circuit reliability under diverse conditions. This approach aims to establish
a robust workflow for assessing signature verification circuits and their integration
into broader cryptographic systems.

3.2 ECDSA Signature

The ECDSA (Elliptic Curve Digital Signature Algorithm) is a cryptographic
scheme that enhances the traditional DSA by utilizing elliptic curve cryptography
(ECC). ECC operates over elliptic curves defined over finite fields, providing the
same level of security as traditional algorithms like RSA and DSA but with sig-
nificantly smaller key sizes and faster computations. These features make ECDSA
particularly attractive for applications in constrained environments, such as IoT
devices, mobile platforms, and blockchain networks. The algorithm is defined
generically to work with any elliptic curve that satisfies cryptographic security
requirements. Such a curve, denoted as EpFpq is defined over a finite field Fp,
which is commonly known as base field. In addition to the field and equation
of the curve, we need G, a base point of (large) prime order q on the curve. This
point will serve as a pivot between the scalar space and the EC space, by means of
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the transformation provided by the scalar multiplication

Fq Ñ EpFpq

z ÞÑ z ¨ G.

where q denotes the order of G. The field Fq is also known as the scalar field of
the curve.

Key Generation Phase Alice wants to sign a document m, represented as an
integer. Typically, instead of signing m directly, she signs its hash Hpmq for added
security. To achieve this, Alice selects an elliptic curve EpFpq defined over a finite
field Fp and chooses a base point G on the curve with order q.

Next, Alice randomly generates a secret integer a, which serves as her private
key. She computes her public key A by performing scalar multiplication in the
elliptic curve space:

A “ a ¨ G.

Finally, Alice publishes the tuple pFp, E, q, G, Aq, which includes the parame-
ters of the elliptic curve and her public key.

Message Signing Phase Alice also selects a random k PR t1, . . . , q ´ 1u and com-
putes K “ k ¨ G “ pKx, Kyq and r “ Kx (if r ě q, we repeat this step). In addition,
Alice has to compute a integer s P t1, . . . , p ´ 1u that satisfies the following equa-
tion,

Hpmq ” k ¨ s ´ r ¨ a mod q

where m is the message to be signed. Then, the signature of the message is the
tuple pr, sq.

Verification Phase Bob, who wants to verify that the signature is correct, has
the following information: the signature pr, sq, the public key A “ a ¨ G, the hash
of the message Hpmq, and the parameters of the elliptic curve, which include the
generator of the group G, the order of the finite field p, and the order of the group
generated by G, denoted by q. The verification procedure in order to check if the
signature is correct can be derived as follows:

First, multiply both sides by the generator G:

Hpmq ¨ G “ k ¨ s ¨ G ´ r ¨ a ¨ G

Then, isolate the random point K “ k ¨ G:

K “ pHpmq ¨ G ` r ¨ Aq ¨ s´1

Finally, Bob has to check the following equation:
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pHpmq ¨ G ` r ¨ Aq ¨ s´1|x ” r mod q

If the message is signed correctly, the verification equation holds. Observe that
Bob has all the information needed to check the last equation.

The secp256k1 elliptic curve One of the most widely recognized elliptic curves
used with ECDSA is secp256k1. This curve is particularly famous for its role in
cryptocurrency systems, such as Bitcoin and Ethereum. It is part of the Standards
for Efficient Cryptography (SEC) group of recommended curves. The curve op-
erates over the prime field Fp, where p “ 2256 ´ 232 ´ 977, a large prime number
which ensures that the field size provides robust security. The equation of the
curve is y2 “ x3 ` 7 mod p, distinguished by its simplicity.

The curve secp256k1 is specifically chosen in blockchain due to its efficient
implementation and relatively simple structure. It allows for fast key generation,
signature creation, and verification, which are critical for high-performance sys-
tems with a high volume of transactions. The curves parameters ensure secure
operations against known cryptographic attacks, such as those exploiting weak
curve structures.

3.2.1 CIRCOM Circuits

In this section, we want to test the CIRCOM template for the ECDSA signature
verification present in the 0xPARC repository [xc23]. In order to explain the signa-
ture test itself, we must first consider several circuits that are necessary to perform
the test.

First of all, we must take into account that the ECDSA signature involves two
primary types of operations. The first type consists of group operations on the
points of the secp256k1 elliptic curve, which has order q, and the second type
involves operations in Fp, the finite field where the coordinates of the points on
the curve reside.

However, it is crucial to note that the proving system typically imposes a spe-
cific field, often the BN128 prime field due to the Groth16 backend. This require-
ment mandates that all signal values lie within this field. Since circuit values
must conform to the BN128 field, and there is frequently a mismatch between this
field and the two operations previously defined, inputs are divided into multiple
fixed-length chunks to ensure compatibility.

In analogy with programming languages, a number represented in this manner
is referred to as a BigInt. To manage these numbers effectively, most templates
are parameterised by two values: n, representing the number of bits in each chunk,
and k, the total number of chunks.

The templates used for ECDSA signature verification can be categorised into
three main groups, each serving a distinct purpose:
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• Templates designed for handling BigInt operations.

• Templates for performing operations on the secp256k1 elliptic curve.

• Templates specifically related to the ECDSA Signature. These include one
for deriving the public key from a private key and another for verifying the
signature itself.

Now, I will focus on developing the two last templates that relate to the sig-
nature itself. On one hand, we have the template in charge of derivate the public
key pubkey from a private key privkey, named ECDSAPrivToPub template. The
computation to be carried out is

pubkey “ privkey ¨ G,

being ¨ the scalar multiplication over the secp256k1 curve. The scalar multiplica-
tion is performed using a specific algorithm known as the Windowed Algorithm
for Elliptic Curve Scalar Multiplication.

This algorithm works by expressing the private key in base 28, dividing it into
32 blocks, each containing 8 bits. Instead of calculating multiples of G dynamically
during the execution, the algorithm precomputes these values. This allows to
efficiently retrieve and sum the corresponding precomputed multiples for each
block, significantly reducing the computational cost by converting complex point
multiplications into simpler point additions. Then, multiplexers are employed in
the circuit to select the appropriate multiples of G for each block of bits. These
values are then progressively accumulated, block by block, to compute the final
public key.

The following operations are carried out during the algorithm:
At first, decompose the privkey in base 28, that is,

privkey “

31
ÿ

i“0

ji ¨ 28i

with ji P t0, 1, . . . , 28 ´ 1u “ t0, 1, . . . , 255u.
The computation that we want to perform is the following

˜

31
ÿ

i“0

ji ¨ 28i

¸

¨ G “

31
ÿ

i“0

ji ¨ 28i ¨ G.

The idea is to precompute all the scalar multiplications

ji ¨ 28i ¨ G,

for i P t0, 1, . . . , 31u and ji P t0, 1, . . . , 255u.
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The final step is to sum all the corresponding precomputed values to produce
the result, requiring at most 32 additions to perform the required scalar multipli-
cation:

31
ÿ

i“0

ji ¨ 28i ¨ G.

Observe that we need to precompute a table of 32 ˆ 256 “ 8192 values.
Let’s see it with a simple example. Imagine we want to calculate n ¨ G where

n “ 29. For sake of simplicity, we will work with blocks of 2 bits, instead of 8, so
we will have to compute the base 22 “ 4 representation of the private key:

29 “ p131q4 “ 1 ¨ 24 ` 3 ¨ 22 ` 1.

Then, we want to compute

29 ¨ G “

´

1 ¨ 24 ` 3 ¨ 22 ` 1
¯

G “ 1 ¨ 24 ¨ G
looomooon

precomputed

` 3 ¨ 22 ¨ G
looomooon

precomputed

` 1 ¨ G
loomoon

precomputed

.

On the other hand, we have the template responsible for verifying the ECDSA
signature, named ECDSAVerifyNoPubkeyCheck, takes as inputs the signature com-
ponents r and s, the public key pubkey and the hash of the message msghash.
By leveraging the operations defined in the templates of the other two groups,
the template produces an output, result, which is 1 if the signature inputs are
valid and 0 otherwise. Its important to note that this template does not check that
pubkey is valid from a given private key.

This can be seen in the diagram corresponding to 3.2. The following tem-
plates are employed: BigMultModP, which performs the modular multiplication of
two large integers and reduces the result modulo p; Secp256k1AddUnequal, which
adds two points on the elliptic curve under the assumption that the points are dis-
tinct; Secp256k1ScalarMult, which computes the scalar multiplication of a curve
point by a given scalar; ECDSAPrivToPub, a template discussed in detail later; and
IsEqual, which verifies if the input value matches a predefined parameter.

3.2.2 ECDSA Signature Test

After having introduced some of the templates, we can now move on to what
is the ECDSA Signature Test.

To generate the appropriate inputs, we need to utilise the @noble/secp256k1
package, which provides a range of operations for the secp256k1 elliptic curve.
Among these, the sign function is used to generate an ECDSA signature for a
given message and private key. From the Point class, which represents a point
on the secp256k1 curve, we use the fromPrivateKey() function to derive the
pubKey from a private key. The CURVE module contains various curve parameters,
including the base field prime (CURVE.P). Additionally, the utils module provides
utilities for generating a random privKey and hashing messages with sha256.
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BigMultModP BigMultModP ECDSAPrivToPub

Secp256k1
ScalarMultBigMultModP Secp256k1

AddUnequal

IsEqual

Figure 3.2: This diagram shows the EDSAVerifyNoPubkeyCheck template flow. Each box
represents a template designed to perform a specific operation, taking an input param-
eter and producing the result of that operation as output. This interconnected flow of
templates works collectively to enable the verification of the signature.

Since various parts of the code require inputs and outputs in specific formats,
three functions are used to facilitate format conversion. The bigint_to_array
function converts a BigInt into k chunks of n bits. Additionally, the bigint_-
to_Uint8Array function converts a BigInt into a Uint8Array (an array of 8-bit
unsigned integers) in big-endian format, where the most significant byte appears
first. Conversely, the Uint8Array_to_bigint function transforms a Uint8Array in
big-endian format back into a BigInt, treating each byte as part of the big-endian
representation of the number.

The ECDSA Signature Test is divided in two tests: the PrivToPub Test for
testing that the obtained public key is the correct one and the Verify Test for
verifying the signature, both are written in JavaScript.

ECDSAPrivToPub Test

Before running tests, the circuit ecdsa_priv2pub.test.circom (see Listing 1)
is compiled. This test circuit instantiates the ECDSAPrivToPub template, selecting
4 chunks of 64 bits each, allowing the representation of up to 256-bit values as
inputs.

pragma circom 2.0.2;
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include "../../ circuits / ecdsa . circom ";

component main { public [ privkey ]} = ECDSAPrivToPub (64 , 4);

Listing 1: ecdsa_priv2pub.test.circom

Five random test cases are generated as we can observe in Listing 2, from
line 13 to 17. The privateKey for each test case is also randomly generated us-
ing the utils.randomPrivateKey() function provided by the @noble/secp256k1
library. The corresponding pubKey is derived from the private key using the
Point.fromPrivateKey(privateKey) function. Each test_case array includes
the privateKey and the two coordinates of the public key: pubKey.x and pub-
Key.y. These components are then converted into the required input format, con-
sisting in four chunks of 64 bits each.

1 describe("Test ECDSAPrivToPub", function () {
2

3 this.timeout(1000 * 1000);
4

5 let circuit; // Variable to store the compiled circuit.
6 let test_cases = []; // Array to store generated test cases.
7

8 before(async function () {
9 circuit = await wasm_tester(path.join(__dirname, "test",

10 "circuits", "ecdsa_priv2pub.test.circom"));
11 });
12

13 for (var test = 0; test < 5; test++) {
14 let privateKey = utils.randomPrivateKey();
15 let pubKey = Point.fromPrivateKey(privateKey);
16 test_cases.push([privateKey, pubKey.x, pubKey.y]);
17 }
18

19 var test_priv2pub_instance = function (test_case, idx) {
20 n = 64;
21 k = 4;
22

23 let privKey = Uint8Array_to_bigint(test_case[0]);
24 let pubKeyX = test_case[1]; // Public key x-coordinate.
25 let pubKeyY = test_case[2]; // Public key y-coordinate.
26

27 var privKey_tuple = bigint_to_array(n, k, privKey);
28 var pubKeyX_tuple = bigint_to_array(n, k, pubKeyX);
29 var pubKeyY_tuple = bigint_to_array(n, k, pubKeyY);

Listing 2: Obtaining public and private keys of each test case using the @noble/secp256k1
library

Next, we verify that the coordinates of the pubKey calculated by the ECDSAPriv-
ToPub template, using the witness calculator in WASM, match the public key co-
ordinates generated by the @noble/secp256k1 library, which are assumed to be
correct (see Listing 3). At the end, we check that all the imposed constraints
within the circuit are satisfied for this witness, in order to ensure consistency.
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1 it(`Test ${idx}: Correct ECDSAPrivToPub.`, async function () {
2

3 let witness = await circuit.calculateWitness({"privkey":
4 privKey_tuple});
5

6 expect(witness[1]).to.equal(pubKeyX_tuple[0]);
7 expect(witness[2]).to.equal(pubKeyX_tuple[1]);
8 expect(witness[3]).to.equal(pubKeyX_tuple[2]);
9 expect(witness[4]).to.equal(pubKeyX_tuple[3]);

10 expect(witness[5]).to.equal(pubKeyY_tuple[0]);
11 expect(witness[6]).to.equal(pubKeyY_tuple[1]);
12 expect(witness[7]).to.equal(pubKeyY_tuple[2]);
13 expect(witness[8]).to.equal(pubKeyY_tuple[3]);
14

15

16 await circuit.checkConstraints(witness);
17 });

Listing 3: Checking that the public keys are correct and constraints.

ECDSAVerify Test

Before running tests, the circuit ecdsa_verify.test.circom (see Listing 4) is
compiled. This test circuit instantiates the ECDSVerifyNoPubkeyCheck template,
selecting 4 chunks of 64 bits each, allowing the representation of up to 256-bit
values as inputs.

pragma circom 2.0.2;

include "../../ circuits / ecdsa . circom ";

component main { public [r, s, msghash , pubkey ]} =
ECDSAVerifyNoPubkeyCheck (64 , 4);

Listing 4: ecdsa_verify.test.circom

Given the large size of the circuit used to verify the ECDSA signature, we opti-
mise the witness computation process by employing the C implementation of the
witness computation program, which necessitates the use of c_tester. In Listing
5 we can observe that to streamline testing and avoid recompiling the circuit for
each test, the circuit is precompiled and stored in its designated path (test/bin),
where it is assigned to the circuit variable. With the circuit precompiled, the
configuration is set to compile: false, recompile: false.

1 const c_tester = circom_tester.c;
2 // ...
3 before(async function () {
4 circuit = await c_tester(
5 path.join(__dirname, "test", "circuits", "ecdsa_verify.test.circom"),
6 {
7 output: path.join(__dirname, "test", "bin"),
8 compile: false,
9 recompile: false

10 }
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11 );
12 });

Listing 5: Precompiling the circuit with C

The strategy involves generating five random private keys, deriving their cor-
responding public keys, and signing a predefined message (see Listing 6). Each
message is hashed using the sha256 function, with the resulting hash reduced
modulo the curve’s base field, CURVE.P, to ensure it falls within the valid range.
For simplicity, the message to be signed corresponds to the index of each private
key in the array of test cases. As the signature output is a concatenation of the
r and s values, these components will be split into separate values for further
processing.

1 var test_ecdsa_instance = function (test_case, idx) {
2 let n = 64;
3 let k = 4;
4 let privKey = test_case[0];
5 let pubKeyX = test_case[1];
6 let pubKeyY = test_case[2];
7

8 it(`Test ${idx}: Correct ECDSA Signature.`, async function () {
9 let msghash_bigint =

10 Uint8Array_to_bigint(await utils.sha256(idx.toString()))%CURVE.P
11 let msghash = bigint_to_Uint8Array(msghash_bigint);
12 let sig = await sign(msghash, privKey,
13 {canonical: true, der: false})
14 let r = sig.slice(0, 32);
15 let r_bigint = Uint8Array_to_bigint(r);
16 let s = sig.slice(32, 64);
17 let s_bigint = Uint8Array_to_bigint(s);
18

19 let r_array = bigint_to_array(n, k, r_bigint);
20 let s_array = bigint_to_array(n, k, s_bigint);
21 let msghash_array = bigint_to_array(n, k, msghash_bigint);
22 let pub0_array = bigint_to_array(n, k, pubKeyX);
23 let pub1_array = bigint_to_array(n, k, pubKeyY);
24 }
25 }

Listing 6: Obtaining the inputs for testing a correct signature.

In Listing 7 the signature is validated. For testing a valid signature case, we set
the output signal to 1 and store it in a variable named res, which will be modified
to 0 for the incorrect cases. We then compute the witness for the given input
values and confirm that the circuit’s (ECDSAVerifyNoPubkeyCheck) output signal,
result, matches the expected value of 1. Finally, as with all cases, we ensure that
all constraints imposed within the circuit are satisfied for this witness.

1 let res = 1n;
2

3 let witness = await circuit.calculateWitness({
4 "r": r_array,
5 "s": s_array,
6 "msghash": msghash_array,
7 "pubkey": [pub0_array, pub1_array]
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8 });
9

10 expect(witness[1]).to.equal(res);
11 await circuit.checkConstraints(witness);
12 });

Listing 7: Checking the signature via the ECDSAVerifyNoPubkeyCheck template.

In the final part of the test (Listing 8), an incorrect signature is verified to ensure
that the test appropriately responds when the signature is invalid.To evaluate the
circuit’s behaviour with an incorrect signature, we generate an invalid signature
and set the expected result to 0 by modifying the res variable. To invalidate the
signature, we increment the r value by 1, making it incorrect. The witness is then
computed for the modified input values, and we verify that the circuit’s output
signal, result, correctly matches the expected value of 0.

1 it(`Test ${idx}: Incorrect ECDSA Signature.`, async function () {
2 let msghash_bigint =
3 Uint8Array_to_bigint(await utils.sha256(idx.toString()))%CURVE.P
4 let msghash = bigint_to_Uint8Array(msghash_bigint);
5 let sig = await sign(msghash, privKey,
6 {canonical: true, der: false})
7 let r = sig.slice(0, 32);
8 let r_bigint = Uint8Array_to_bigint(r);
9 let s = sig.slice(32, 64);

10 let s_bigint = Uint8Array_to_bigint(s);
11 let r_array = bigint_to_array(n, k, r_bigint + 1n);
12 // Modified 'r'(incorrect)
13 let s_array = bigint_to_array(n, k, s_bigint);
14 // Keep 's' unchanged.
15 let msghash_array = bigint_to_array(n, k, msghash_bigint);
16 let pub0_array = bigint_to_array(n, k, pubKeyX);
17 let pub1_array = bigint_to_array(n, k, pubKeyY);
18 let res = 0n;
19

20 let witness = await circuit.calculateWitness({
21 "r": r_array,
22 "s": s_array,
23 "msghash": msghash_array,
24 "pubkey": [pub0_array, pub1_array]
25 });
26

27 expect(witness[1]).to.equal(res);
28 await circuit.checkConstraints(witness);
29 });

Listing 8: Testing an incorrect ECDSA signature.

3.3 BLS Signature

The BLS signature is a digital signature algorithm that uses bilinear pairings
and is typically implemented using the BLS12-381 elliptic curve, which is opti-
mised for pairing operations. BLS12-381 is a pairing-friendly elliptic curve de-
signed for pairing-based cryptography. Over the past two decades, this field has



3.3 BLS Signature 45

enabled innovations such as compact, aggregatable digital signatures, identity-
based cryptography, and efficient polynomial commitment schemes like KZG com-
mitments. Pairing-friendly curves are rare and require specific properties, such as
a favourable embedding degree and a large prime-order subgroup. This curve is
defined over a finite field of prime order q, where q is a 381-bit number.

3.3.1 Pairing Based Cryptography

Recall that a pairing is a function that maps two elements from specific groups
to an element in a target group, enabling complex cryptographic operations. For-
mally, a pairing is defined as a function

e : G1 ˆ G2 ÝÑ GT,

where G1, G2 and GT are cyclic groups of the same prime order r. These groups
are typically derived from elliptic curves in cryptographic contexts.

The pairings used in cryptography are the bilinear pairings, and must satisfy
the following properties:

1. Bilinearity: The pairing is linear in both inputs, meaning for all P P G1, Q P

G2, and scalars a, b P Zp:

epaP, bQq “ epP, Qqab

This property ensures that scalar multiplications on the inputs are preserved
in the pairing’s output.

2. Non-degeneracy: The pairing is non-trivial, meaning there exist P P G1 and
Q P G2 such that

epP, Qq ‰ 1GT

This guarantees that the pairing conveys meaningful information.

3. Efficient Computation: It is computationally feasible to evaluate epP, Qq for
all P P G1 and Q P G2.

Cryptographic pairings are typically constructed using pairing-friendly elliptic
curves, which possess specific characteristics to enable efficient pairing computa-
tions. These curves are defined over a base field Fq, which is a finite field of
large prime order q. The elliptic curve EpFqq includes a subgroup of prime order
r, where r divides pqk ´ 1q. Here, k, known as the embedding degree, is a small
positive integer that determines the extension field Fqk in which the pairing is
evaluated.
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In the case of BLS12-381, the elliptic curve is defined over a finite field of prime
order q, where q is a 381-bit number and the embedding degree of the curve is 12.

A bilinear pairing takes as input two points, each belonging to different groups
of the same prime order r, which is a large number. However, our base curve EpFqq

has only one subgroup of order r, making it unsuitable for defining a pairing
directly.

To solve this inconvenience and enable pairing operations, the field is extended
to Fq12 , where the curve has additional subgroups of order r. The value 12 rep-
resents the embedding degree of the curve, which allows for the definition of
pairings.

Arithmetic over Fq12 is computationally expensive. To mitigate this, a twist (a
form of coordinate transformation) is applied, redefining the curve Fq12 over Fq2 .
This transformation simplifies arithmetic while preserving the essential subgroups
of order r.

At the end, we are working with these two groups of order r:

G1 Ă EpFqq,
G2 Ă E1pFq2q,

where E1 denotes the twisted curve.
Hence, in our case, the pairing function is defined as follows:

e : G1 ˆ G2 ÝÑ GT

where GT Ă EpFq12q

3.3.2 The Signature

The signature scheme works as follows:
First, Alice generates her cryptographic keys. She randomly selects her private

key, denoted by x, which is an integer chosen uniformly from the range t1, . . . , q ´

1u. Using this private key, Alice can compute her corresponding public key. This
is achieved by performing scalar multiplication of x with the generator point G1
of the elliptic curve subgroup G1. The result, pk “ x ¨ G1 P G1, is shared as her
public key while the private key x remains secret.

When Alice wants to sign a message m, she first hashes the message to map it
to an element of the elliptic curve subgroup G2. This is done using a cryptographic
hash function H defined as H : t0, 1u˚ Ñ G2, which takes any arbitrary-length
message and produces a point h “ Hpmq P G2.

The signature of the message is then computed using Alices private key X.
Specifically, she multiplies the hash h by her private key to produce the signature
σ “ x ¨ h P G2. This signature σ is a point on the elliptic curve and serves as a
proof that Alice, who knows the private key x, signed the message.
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To verify the signature, anyone with access to Alices public key (pk) and the
signed message m can check its validity using the following pairing-based equa-
tion:

eppk, hq “ epG1, σq.

Where e is the bilinear pairing function that we have described in the previous
subsection.

The correctness of the verification process is guaranteed by the mathematical
properties of the pairing function. Expanding the equation step by step:

eppk, hq “ epx ¨ G1, hq (substituting pk “ x ¨ G1),
“ epG1, hqx (using the bilinearity property of pairings),
“ epG1, x ¨ hq (reapplying bilinearity),
“ epG1, σq (substituting σ “ x ¨ h).

3.3.3 CIRCOM Templates

Now, we want to test the CIRCOM template for the BLS signature verification
present in the Yi-Sun’s pairings repository [Sc23].

To implement the BLS Signature, it is necessary to develop a range of com-
putational templates, each designed to address specific requirements. These com-
ponents are integral to ensuring the cryptographic operations are carried out effi-
ciently and accurately. The different types of templates used are:

First, templates for managing operations with BigInt numbers must be devel-
oped. Handling large integers is a cornerstone of cryptographic systems, as these
numbers underpin operations such as key generation, signature computation, and
verification. These templates will provide the functionality to perform arithmetic
operations, modular reductions, and other necessary manipulations with large
integers.

Secondly, it is essential to implement support for operations in the finite fields
Fq, Fq2 and Fq12 . These fields play a critical role in our specific signature, as the
elliptic curve and pairing computations involve arithmetic in these specific fields.
Each field requires distinct optimisations to ensure operations such as addition,
multiplication, and inversion are performed efficiently.

Additionally, templates must be designed to facilitate efficient interaction with
the BLS12-381 elliptic curve, one of the most widely used curves in modern cryp-
tography. These templates should support basic curve operations, such as point
addition and scalar multiplication, as well as more advanced functionalities, such
as deriving public keys or mapping hash outputs to points on the curve.

Finally, the implementation of the (optimal Ate) bilinear pairing over the
BLS12-381 curve is crucial. As we have seen, the bilinear pairing is the core oper-
ation that enables signature verification in the BLS scheme.
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Each of these components contributes to a robust and efficient implementa-
tion of the BLS Signature, addressing both the mathematical and computational
challenges inherent in the signature test.

CoreVerifyPubkeyG1NoCheck

Another important template is the CoreVerifyPubkeyG1NoCheck. As the name
says, it verifies the signature, but does not ensure that the public key is properly
derived from the private key.

The verification template for the BLS signature scheme is designed to validate
the correctness of signatures using bilinear pairings. It achieves this by leveraging
mathematical properties of pairings to confirm the equivalence between the signed
message and the provided signature. The process and considerations involved are
as follows:

The fundamental idea of the template is to verify the equation epG1, σq ¨ eppk, ´hq “

1 This equation is mathematically equivalent to epG1, σq “ eppk, hq, which serves as
the foundation for signature verification. By confirming this equality, the verifier
can ensure that the signature σ was generated using the private key corresponding
to the public key (pk), for the given message hash h “ Hpmq.

The template accepts three key inputs: the public key (pk), the hash of the
message (Hpmq), and the corresponding signature (σ). The output of the template
is either 1, indicating that the signature is valid, or 0‘, indicating that it is not.

The verification procedure consists of the following steps:

1. The first step involves computing the negation of the message hash, ´h “

´Hpmq. This negation is required for the pairing computation.

2. Next, the bilinear pairings epG1, σq and eppk, ´hq are calculated. These pair-
ings are critical to the verification process, as they encapsulate the relation-
ship between the signature, the public key, and the message hash.

3. The two pairings are then multiplied together, resulting in epG1, σq ¨ eppk, ´hq.

4. Finally, the result of the multiplication is checked against the value 1. If the
equation holds true, the signature is valid; otherwise, it is invalid.

The template operates under specific assumptions, referred to as NoCheck,
which streamline the verification process by relying on the correctness of the in-
puts. These assumptions include the following:

• The elliptic curve points provided as inputs are assumed to correctly belong
to the groups G1 and G2 as required.

• Input arrays are expected to represent valid elements of the finite field Fq.

• The hash of the message, Hpmq, must not correspond to the point at infinity,
as this would invalidate the pairing computations.
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To enhance the robustness of the system, the CoreVerifyPubkeyG1 template
performs additional checks to ensure the validity of the inputs. This goes beyond
simply verifying the signature by confirming that the public key and message hash
adhere to all necessary constraints.

Furthermore, while the implicit checks within the underlying templates for
operations in G1 and G2 may be sufficient to validate the group membership of
the inputs, these additional safety measures act as a safeguard. They help ensure
that the inputs are properly structured and belong to the correct algebraic groups,
thereby mitigating risks associated with malformed or maliciously crafted inputs.

In conclusion, this verification template combines the mathematical rigour of
bilinear pairings with practical input validation to provide a robust and efficient
mechanism for validating BLS signatures. Its design ensures that both the crypto-
graphic computations and the integrity of the inputs are adequately addressed.

3.3.4 BLS Signature Test

Again, before running tests, the circuit bls_signature.test.circom (see List-
ing 9) is compiled. This circuit initiates the CoreVerifyPubkeyG1NoCheck template,
selecting 7 chunks of 55 bits each, allowing the representation of up to 385-bit val-
ues as inputs.

include "../../ circuits / bls_signature . circom ";

component main = CoreVerifyPubkeyG1NoCheck (55 , 7);

Listing 9: bls_signature.test.circom

The testing strategy for the implementation is similar to that used in ECDSA
and involves the following steps:

To begin, the circuit is also compiled with C for optimizing the witness com-
putation process, like we did with the ECDSA Test. Then, five random private
keys are generated, as we can observe in lines from 17 to 20 in Listing 10. For each
private key, the corresponding public key is derived, and a predefined message
is signed using the js package @noble/bls12-381. This package provides func-
tionalities specifically designed for the BLS12-381 elliptic curve and operates in a
manner similar to @noble/secp256k1, which is commonly used for ECDSA on the
secp256k1 curve.

The computed private keys, public keys, and signatures are then used as inputs
for the CIRCOM circuit.

Finally, the outputs of the CIRCOM circuit are verified to ensure they match
the expected results (see line 24 in Listing 11).

1 describe("Test Correct BLS Signature", function () {
2

3 let circuit;
4 let test_cases = [];
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5

6 before(async function () {
7 circuit = await c_tester(
8 path.join(__dirname, "test", "circuits", "bls_signature.test.circom"),
9 {

10 output: path.join(__dirname, "test", "bin"),
11 compile: false,
12 recompile: false
13 }
14 );
15 });
16

17 for (var test = 0; test < 5; test++) {
18 let privateKey = utils.randomPrivateKey();
19 let pubKey = point_to_bigint(PointG1.fromPrivateKey(privateKey));
20 test_cases.push([privateKey, pubKey[0], pubKey[1]]);
21 }

Listing 10: Precompiling the circuit with C and generating the test cases

In order to simplify the testing process, the message to be signed is chosen as
the idx (index) of each private key within the array of test cases. This approach
ensures simplicity and consistency across the test cases.

The PointG2.hashToCurve() function is used to map the message bytes deter-
ministically to a point on the elliptic curve in G2. This function serves as the hash
function Hp¨q, producing the message hash required for signature generation.

To maintain compatibility with the input requirements of the CIRCOM circuit,
the inputs must be divided into smaller chunks. This chunking process ensures
that the large numerical values can be handled appropriately within the circuit’s
constraints (lines 5 to 14 in Listing 11). Subsequently, in lines 16 to 20, the pro-
cessed values, now in the correct format, are provided as inputs to the CIRCOM
circuits.

It is important to note that, because elements of G2 are represented within the
finite field extension Fq2 , two coordinates are required to fully describe each point
in G2.

1 it(`Test ${idx}: Correct BLS Signature.`, async function () {
2 let res = 1n;
3 let Hm = await PointG2.hashToCurve(utils.stringToBytes(idx.toString()));
4 let signature = await sign(Hm, privKey);
5 let pubKeyXArray = bigint_to_array(n, k, pubKeyX);
6 let pubKeyYArray = bigint_to_array(n, k, pubKeyY);
7 let HmX = bigint_to_array(n, k, Hm.toAffine()[0].c0.value);
8 let HmXi = bigint_to_array(n, k, Hm.toAffine()[0].c1.value);
9 let HmY = bigint_to_array(n, k, Hm.toAffine()[1].c0.value);

10 let HmYi = bigint_to_array(n, k, Hm.toAffine()[1].c1.value);
11 let signatureX = bigint_to_array(n, k, signature.toAffine()[0].c0.value);
12 let signatureXi = bigint_to_array(n, k, signature.toAffine()[0].c1.value);
13 let signatureY = bigint_to_array(n, k, signature.toAffine()[1].c0.value);
14 let signatureYi = bigint_to_array(n, k, signature.toAffine()[1].c1.value);
15

16 const input = {
17 "signature": [[signatureX, signatureXi], [signatureY,
18 signatureYi]],
19 "Hm": [[HmX, HmXi], [HmY, HmYi]],
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20 "pubkey": [pubKeyXArray, pubKeyYArray]
21 };
22

23 const wtns = await circuit.calculateWitness(input);
24 expect(wtns[1]).to.equal(res);
25 });

Listing 11: Testing a correct BLS signature.

To verify an incorrect signature let’s look at Listing 12, a distinct approach is
utilised to generate a signature that is invalid while maintaining the mathematical
integrity of the elliptic curve point. Instead of directly altering the signature, the
incorrect signature is derived using a different message hash, referred to as BadHm.
This hash does not correspond to the original message intended for signing.

The incorrect hash BadHm is produced by hashing the index incremented by
1 (see line 4 in Listing 12), rather than the original index associated with the
message. This ensures that the resulting signature is based on a different input
while still adhering to the rules of the hashing and signing process.

Unlike in ECDSA, where adding a value to one of the signature’s coordinates
can create an invalid point, this approach avoids such direct alterations. Modifying
the coordinates of a point in G2 would result in a point that no longer belongs to
the group G2, invalidating the test entirely since group membership checks would
fail.

Instead, using BadHm generates a signature that appears well-formed mathe-
matically but does not correspond to the correct message. When this signature is
verified, the output will correctly return 0, indicating that the signature is invalid
for the given public key and message hash. This method ensures robust testing of
the signature verification process.

1 it(`Test ${idx}: Incorrect BLS Signature.`, async function () {
2 let res = 0n;
3

4 let badHm = await PointG2.hashToCurve(utils.stringToBytes((idx + 1).toString()));
5 let Hm = await PointG2.hashToCurve(utils.stringToBytes(idx.toString())
6 );
7 let signature = await sign(badHm, privKey);
8

9 // Same code as before
10

11 const input = {
12 "signature": [[signatureX, signatureXi], [signatureY,
13 signatureYi]],
14 "Hm": [[HmX, HmXi], [HmY, HmYi]],
15 "pubkey": [pubKeyXArray, pubKeyYArray]
16 };
17

18 const wtns = await circuit.calculateWitness(input);
19

20 expect(wtns[1]).to.equal(res);
21 }

Listing 12: Testing an incorrect BLS signature.



Conclusion

This project has provided a comprehensive exploration of elliptic curve cryp-
tography, emphasizing both its theoretical foundations and practical applications.
The mathematical structures underlying elliptic curves, particularly their group
properties, have proven instrumental in constructing secure and efficient crypto-
graphic protocols. These properties are not only elegant in theory but also highly
effective in real-world systems, as demonstrated through the analysis of ECDSA
and BLS signature schemes.

The exploration of the Pinocchio protocol has added another dimension to this
work, showcasing how advanced cryptographic proof systems can leverage ellip-
tic curve properties for succinct and verifiable computations. Understanding the
principles behind Rank-1 Constraint Systems (R1CS) and their practical applica-
tion within Pinocchio has been a valuable part of this research, illustrating the
potential for these techniques to enhance privacy and efficiency in various com-
putational contexts.

At the same time, the practical implementation of these concepts has been
an enriching learning experience. Working with tools like CIRCOM to define
and test cryptographic circuits has deepened my understanding of the precision
and optimization required to build secure systems. This practical aspect of the
work has allowed me to connect abstract mathematical principles with tangible
applications, reinforcing the importance of bridging theory with practice.

In summary, this project has not only advanced my knowledge of elliptic curve
cryptography and cryptographic proof systems but also provided valuable in-
sights into the broader interplay between mathematics and technology.
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