
Nucleic Acids Research , 2024, 52 , 6791–6801 
https://doi.org/10.1093/nar/gkae444 
Advance access publication date: 30 May 2024 
Computational Biology 

CGeNAr at e: a sequence-dependent coarse-grained model 

of DNA for accurate atomistic MD simulations of kb-long 

duplexes 

David F ar ré-Gil 1 , Juan P ablo Arcon 

1 , Char les A. Laught on 

2 and Modest o Orozco 

1 , 3 , * 

1 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 
E-08028 Barcelona, Spain 
2 School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK 

3 Department of Biochemistry and Biomedicine, University of Barcelona, E-08028 Barcelona, Spain 
* To whom correspondence should be addressed. Tel: +34 93 40 37156; Fax: +35 93 403 7157; Email: modesto.orozco@irbbarcelona.org 

Abstract 

We present CGeNArate, a new model for molecular dynamics simulations of very long segments of B-DNA in the context of biotechnological or 
chromatin studies. The developed method uses a coarse-grained Hamiltonian with trajectories that are back-mapped to the atomistic resolution 
le v el with e xtreme accuracy b y means of Machine L earning Approaches. T he method is sequence-dependent and reproduces very well not 
only local, but also global ph y sical properties of DNA. The efficiency of the method allows us to recover with a reduced computational effort 
high-quality atomic-resolution ensembles of segments containing many kilobases of DNA, entering into the gene range or e v en the entire DNA 

of certain cellular organelles. 
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NA has been both a topic of interest and a challenge for the-
reticians who faced the formidable problem of simulating a
ultiscale system ranging from the base-pair (bp; Å-scale) to

he meter-long chromatin fiber of developed organisms ( 1 ). At
he highest level of resolution, quantum mechanics (QM) the-
ry provides electronic details of small DNA segments ( 2 ,3 ),
ut most atomistic information of DNA is obtained from the
se of molecular dynamics (MD) coupled to classical force-
elds (FFs). Last generation DNA FFs ( 4–6 ) have achieved a
evel of accuracy comparable with that of experiments ( 7 ), and
ore impressively, have shown predictive power in a variety of

ystems, even far from biological conditions ( 8–12 ). However,
nd despite their success, atomistic simulations are limited in
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the size of the systems to be studied, as the total number of
particles to be simulated scales roughly with the third power
of the length of the duplex, making in practice impossible to
simulate duplexes longer than c.a. 70–100 bp. 

Alternatives to atomistic methods aim to reduce the cost
of the calculation by using simplified solvent models, merg-
ing groups of atoms into beads and representing a Hamil-
tonian by very simple terms. Two families of approaches
have emerged from these ideas: (i) mesoscopic models and (ii)
Cartesian coarse-grained approaches. The mesoscopic mod-
els take advantage of a helical coordinate system that is the
natural one to describe a DNA duplex. In the simplest ver-
sion, bp step (bps) movements are described as 3 transla-
tional (rise, slide, shift) and three rotational (twist, roll, tilt)
. Accepted: May 14, 2024 
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degrees of freedom, and the energy is computed by using
(bps) local harmonic Hamiltonians ( 13 ,14 ), which were fit-
ted to a diverse set of experimentally-determined bps geome-
tries. Second-generation models follow the same physical ap-
proaches, but were fitted to atomistic MD simulations ( 15 )
which allowed them to be parametrized for all the unique
tetramers (i.e. three consecutive bps ( 16–18 )). The latest ver-
sions have been extended to capture non-local effects ( 19–
22 ), non-harmonic deviations ( 17 ), and even base pair dis-
tortions ( 20 , 21 , 23 ). All these mesoscopic methods are accu-
rate and computationally efficient, which allow the simula-
tion of medium sized chromatin fibers ( 24–26 ). However, they
present some intrinsic caveats: (i) no backbone information
is directly available from the ensembles; (ii) the mesoscopic
methods do not couple well with MD algorithms; finally, (iii)
non-bonded terms required to simulate long DNA duplexes
are difficult to introduce. Recent approaches based on learning
the connection between helical coordinates and backbone ge-
ometry in atomistic MD simulations ( 17 ) have partially solved
the first problem ( 27 ), but facing the other two would require
a very important development effort, with little guarantee that
the resulting method will be still computationally efficient. 

Cartesian Coarse-Grained (cCG) models simplify the DNA
representation by grouping atoms into beads, whose inter-
actions are treated by simple equations adapted to trace the
most usual deformations of DNA. The solvent environment
is largely simplified, and sampling is obtained through MD
simulations. Broadly speaking, the myriad of cCG models
available (reviewed in ( 1 )) can be classified based on: (i) the
energy functional, (ii) the number of beads per nucleotide,
(iii) the way in which they account for solvent and (iv) the
type of strategy used to refine the method. The energy func-
tional can be very different considering the number of beads,
the solvent model, and whether cCG is designed to capture
near-equilibrium or large denaturing transitions. The num-
ber of beads per nucleotide is also very variable: for exam-
ple, from just 1 bead in V ercauteren’ s model ( 28 ) or MRG-
CG ( 29 ), 2 in OxDNA ( 30 ,31 ) or Aksimentiev’s models ( 32 ),
3 of de 3SPN ( 33 ), MAD na ( 34 ) or BioModi ( 35 ) and up to
6–8 beads of high resolution models such as SiRAH ( 36 ,37 ),
MARTINI ( 38 ), UNRES ( 39 ) or HiRe-DNA ( 40 ). Despite the
reduction in resolution and the large size of the beads, most
DNA cCG studies tackle only medium sized ( < 10 

2 bp) du-
plexes ( 1 ). The treatment of water and ions can be done ex-
plicitly (like in MARTINI or SiRAH models) or by means of
a continuum model (like in HiRe-DNA or 3SPN, and some
versions of SiRAH). Finally, the fitting of functional can fol-
low two main paradigms (which can be combined ( 1 )): (i)
the top-down, exemplified by OxDNA or SiRAH, where pa-
rameters are refined to reproduce some macroscopic experi-
mental observable, (ii) bottom-up, followed among others by
V ercauteren’ s group or MAD na developers who used atom-
istic MD simulations as reference. The top-down refinement
guarantees accurate average polymer properties, but the lack
of enough experimental reference data precludes careful con-
sideration of sequence effects, and no guarantee exists on the
accuracy of short-scale details. On the contrary, the bottom-
up approach leads to energy functionals that can capture well
short-scale details and sequence-dependent effects, but they
rely on force-fields whose ability to reproduce polymer prop-
erties is not always granted. In summary, there is a plethora
of methods available, and the end user should make a careful
selection based, mainly, on the nature of the problem. 
For biological applications the main challenge of these 
methods is to reproduce very long segments of DNAs (above 
kbase), with accurate sequence specificity. Sampling must be 
fast, but if required, the full atomistic description should be 
recoverable, allowing detailed representation of DNA inter- 
actions. Here we present CGeNArate, a new cCG method 

created to explore the dynamics of long segments of DNA,
approaching those of interest for the representation of chro- 
matin. The method uses implicit solvent, only 1 bead per nu- 
cleotide, a simple energy functional including up to 4th or- 
der bonded terms, coupled with simple long-range electro- 
static and steric functionals. The method, implemented in a ‘de 
novo’ MD code, can easily manage very long oligomers (above 
kb scale) and has been parametrized from all-atom MD simu- 
lations following a bottom-up approach with a tetramer-level 
sequence specificity, but taking also into consideration global 
properties obtained from simulations of long oligomers. It 
shows an unexpected ability to reproduce mechanical and 

dynamical properties of a variety of oligomers which were 
not considered during the parametrization, including circu- 
lar DNAs, kb long duplexes and even entire mitochondrial 
DNA. Additionally, the use of a novel machine learning (ML) 
approach trained with a large dataset of atomistic MD simu- 
lations, allows us to map with astonishing accuracy the cCG 

trajectories into atomistic ensembles for part or the entire du- 
plex. We expect CGeNArate will become a valuable tool to de- 
scribe segments of the chromatin fiber, even substituting state- 
of-the-art mesoscopic models( 17 , 19 , 20 , 23 ). 

Materials and methods 

CGeNArate is intended to simulate duplex DNA, not ex- 
tremely far from the equilibrium geometry (as it happens in 

chromatin). The method uses 1 bead per nucleotide located 

at the C1’ atom position of the sugar, which facilitates the 
Machine-Learning back-mapping to the atomistic level and 

allows a reasonable description of DNA shape. 

Hamiltonian definition 

The energy functional is defined as the addition of sequential- 
dependent (bonded) and remote (non-bonded) terms as de- 
scribed in Eq. ( (1) ): 

E = E seq + E remote (1) 

Following Savelyev and Papoian ( 41 ), the sequential contri- 
bution ( E seq ) is computed considering 11-bead windows (Fig- 
ure 1 ). This means that each bead i in the Watson strand (Fig- 
ure 1 ) interacts with its neighboring beads ( i + 1 and i −1),
with its paired bead ( j ) in the Crick strand, as well as with 5
beads upstream and 5 beads downstream the Crick’s paired 

bead (i.e. j + 1 to j + 5 in one direction and j − 1 to j − 5 in the
other), and the i + 2 i − 2 bead through angle-dependent in- 
teractions (see below). The sequential term is divided into two 

contributions: one is tetramer dependent (E seq −4 mer ) and is cal- 
ibrated from atomistic MD simulations considering sequence- 
dependent properties of DNA (see ‘Fitting the Hamiltonian’ 
section), and the other, which accounts for distant interac- 
tions in the 11-bead window (E seq −distant ) , is calibrated with 

sequence-averaged dynamic information of DNA (see Figure 
1 ); Eq. ( (2) ): 

E seq = E seq −4 mer + E seq −distant (2) 
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Figure 1. Methods ( A ) outline of the seq terms used in the model. Blue arrows correspond to distant terms, while red arrows represent 4mer terms. ( B ) 
Step by step evolution of the All-Atom reconstruction process from the CG duplex. 
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Note that interactions that are present in two tetramers are
btained by averaging between them (e.g. the angle interaction
etween beads i − 1, i , i + 1 is shared by the tetramers i − 2, i
1, i , i + 1 and i − 1, i , i + 1, i + 2, see below). 
Following again Savelyev and Papoian ( 41 ), we consider

Figure 1 ) stacking interactions (i.e. i : i + 1 and j : j − 1) and
ngle interactions ( i : i + 1 : i + 2 and j : j − 1 : j − 2), affect-
ng both Watson and Crick strands and the cross-interactions:
airing ( i : j ) and fan ( i : j − 1, …, i : j − 5 and i : j + 1,…, i :
 + 5). Each interaction is represented by a truncated polyno-
ial expansion. The 2nd order term introduces a basal har-
onicity which is modulated by the 3rd order term, while the
th order term avoids large unrealistic distortions that might
happen under stress conditions; see Eq. ( (3) ,(4) ). 

E stacking ,pairing , fan = 

4 ∑ 

a =2 

K a 
(
l − l 0 

)a (3)

E angle = 

4 ∑ 

a =2 

K a ( α − α0 ) 
a (4)

where K α are the force constants of the interaction, l 0 is the
equilibrium distance between beads and α0 is the equilibrium
angle (see ‘Fitting the Hamiltonian’ section for details on how
they are derived). Note that, by construction, large deforma-
tions leading to base opening or kinks in the fiber are not al-
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lowed, but further versions of the method, where harmonic
terms would be substituted by Morse-like potentials could ac-
count for this type of extreme deformation. 

Thus, E seq −4 mer is determined as shown in Figure 1 and Eq.
( (5) ): 

E seq −4 mer = 

∑ 

Tetramer 

( 

2 ∑ 

E stacking + 

2 ∑ 

E pairing + 

4 ∑ 

E angle + 

8 ∑ 

E fan 

) 

(5)

with the sequential long-term interaction defined as the re-
maining sequential interactions (see Figure 1 ), as described in
a compacted form in (6) ): 

E seq −distant = 

∑ 

index = 

−5 , −4 , 4 , 5 

( ∑ 

i 

E fan 

) 

(6)

The remote term is divided as follows: 

E remote = E LJ + E ele (7)

For further details on the remote terms, see Supplemen-
tary Methods (Remote term specifications). Note that to
avoid double counting interactions, the ‘remote contribu-
tion’ is switched off for interactions between the neighbor-
ing beads within 5 bp in both strands (see Figure 1 ). Note
also that alternative formalisms can be implemented to ac-
count for intermolecular interactions involving charged poly-
electrolytes ( 42 ). 

Fitting the Hamiltonian 

The sequential tetramer (seq-4mer) parameters were re-
fined in an iterative manner, taking equilibrium distances
and angles from atomistic MD simulations. A first set of
sequence-independent parameters was obtained by fitting
force-constants in Eq. (4) to reproduce as close as possible
variances and covariance of the different distances and an-
gles included in the Hamiltonian definition. We perform then
a 1st tetramer-based parametrization, where the seq-4mer
terms are refined sequentially for each tetramer in the con-
text of initial guesses for the parameters of the remaining
tetramers (average parameter of all tetramers). Once 2nd it-
eration parameters are obtained for all the tetramers in the
sequence, the process is repeated until convergence is achieved
(typically, 3–4 iterations are required for convergence). Data
used for fitting was obtained from the thirteen 18-mer du-
plexes of the miniABC dataset ( 16 ) stored in the BigNAsim
database (mmb.irbbarcelona.org / BIGNASim ( 43 )). Parame-
ters were refined using the constrained optimization by lin-
ear approximation (COBYLA) method ( 44 ), which allowed
us to avoid overtraining artifacts that would lead to physi-
cally unrealistic parameters. (see Supplementary Methods Pa-
rameter fitting at tetranucleotide level). The overall optimiza-
tion process leads to a significant improvement in the over-
lap between the distribution of CG and AA observables (see
Supplementary Figure S1 ) 

The seq-distant terms ( i → j ± 4 and i → j ± 5) were obtained
initially from equilibrium values of atomistic MD simulations,
and then re-adjusted by fitting a 40-mer duplex. Standard
annealing procedures increasing and decreasing the ‘effective
temperature’ was used to refine the associated parameters, ac-
cordingly Metropolis-Hasting simulations with different seeds
were computed and the best of the sampled sets were refined 

by conjugate gradient minimizations. The end-to-end distance 
and the associated variance were used as merit functions in the 
fitting. The remote non-bonded electrostatic term (Eqs. (8) and 

(9)) was determined considering q = −1 in each bead, and 

dielectric and inverse distance parameters corresponding to 

100 mM NaCl aqueous solution. Following previous works 
( 17 ,45 ) Lenard Jones parameters σ and εLJ were set to 10 Å
and 0.59 kcal / mol. 

Integration of the equations of motion 

The Hamiltonian above has been implemented in a de novo 

Langevin Dynamics code. Integration of the equations of mo- 
tions was performed using velocity Verlet with an integration 

step of 0.1 ps, which guarantees stability in the trajectory for 
temperatures up to 500 K (see Supplementary Figure S2 ). The 
masses of the beads correspond to those of the nucleotides.
Temperature was maintained constant using Langevin bath 

with standard coupling parameters ( 46 ). Friction terms corre- 
sponding to those of Brownian stochastic forces were gener- 
ated following a Box–Muller transformation ( 47 ). As noted in 

Supplementary Figure S2 , the method is quite robust to small 
perturbation of these parameters. 

All atom rebuilding 

The 1-bead per nucleotide trajectories were back-projected 

to all-atom resolution by using a machine learning (ML) ap- 
proach that takes the CG coordinates through time and the se- 
quence of the duplex as descriptors. The method is developed 

from the GLIMPS ( 27 ) approach, which was originally created 

to rebuild atomistic structures from mesoscopic descriptors.
As shown in Figure 1 , atomic resolution back-projection was 
done in two steps: (i) backbone reconstitution and (ii) gener- 
ation of the A ·T / T ·A and G ·C / C ·G geometries. In all cases,
training was done for all the 10-mer contained in 40-mer tra- 
jectories deposited in our BigNAsim database ( 43 ). The all 
(heavy) atom Cartesian coordinates were the objective values,
while the C1’ CG coordinates (from the same atomistic simu- 
lations) and the duplex sequence were the descriptors. 

Once training is done, all atoms reconstitution is per- 
formed using in general 10-mer blocks. As described above,
we first use one GLIMPS model to rebuild the sequence- 
neutral backbone atom positions for the decamer segment 
from the C1’-atom positions, then use a second, base-pair de- 
pendent, GLIMPS model at each of the 10 base pair steps to re- 
build the base atom positions from the now-established sugar 
and phosphate positions. Finally, as some local distortions ap- 
pear, a short steepest descent minimization is performed using 
the ParmBSC1 force-field. Structural changes introduced by 
these geometry optimization steps are small (typically tenths 
of Å), but steric clashes that might appear during the coarse- 
grained to all-atom decoding are removed (see Figure S3). 

Validation analysis 

All validation analysis was performed using different se- 
quences to those used for the training of the method and using 
when possible both MD-derived and experimental values. De- 
tails of the different sequences and metrics used for validating 
the ensembles are detailed in Supplementary Material. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
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Figure 2. Evaluation metrics of the Coarse-Grained trajectories: ( A ) rmsd distribution between C1’ atoms of simulated Coarse-Grained (CG, blue) and 
all-atom (AA, orange) trajectories against the pdb experimental reference str uct ure indicated in each panel. ( B ) Root mean square inner product (rmsip) 
between CG and AA principal components of trajectories from the test set, ordered by decreasing variance. Each panel corresponds to simulations of 
the f ollo wing str uct ures (see Materials and methods). A: BigNA sim Code CGTG, B: BigNA sim Code AGCT, C: 1zgw, D: BigNA sim Code AGCG, E: 
BigNAsim Code CTAG_flex, F: 2lef, G: 1j5n, H: 2m2c, I: 1naj. 
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Table 1. Global deformation properties of the 13 sequences of the miniABC dataset ( 16 ) 

1 2 3 4 5 6 7 8 9 10 11 12 13 

RMSIP AA to CG 0.87 0.87 0.86 0.89 0.86 0.87 0.88 0.86 0.88 0.88 0.88 0.87 0.87 
PL AA 58 58 62 67 61 72 66 64 68 56 57 60 60 
PL CG 50 50 59 52 55 64 67 56 62 52 49 54 54 
EtE AA 56 56 57 56 57 57 57 56 57 57 57 57 56 
Std 1.6 1.7 1.6 1.6 1.6 1.6 1.5 1.6 1.5 1.6 1.8 2.0 1.6 
EtE CG 58 57 59 58 59 58 59 58 58 58 58 59 58 
std 2.0 2.0 1.8 1.9 1.9 1.8 1.8 2.0 1.8 2.0 1.9 1.9 2.0 

Global deformation properties of CG simulations. 
RMSIP is the inner product between the all-atom (AA) and the coarse-grained (CG) trajectories. PL stands for the persistence length (in nm), EtE is the 
end-to-end distance (in Å) in AA or CG simulations with std being the associated standard deviation (another proxy of flexibility). 

Figure 3. Results from the 56-mer simulations. ( A ) (Top) All-Atom RMSD distribution against AA average from the reconstructed CG structures (blue), 
and from the AA simulation (orange). (B elo w) Mean fluctuation per atom of reconstructed CG simulation (blue), and the AA simulation (orange). The 
atom number ranges through one strand in 5 ′ -to-3 ′ direction, then the other strand in the same direction. ( B ) Root mean square inner product matrix 
between CG and AA principal components extracted from the respective trajectories. ( C ) Helical parameters across each base-pair step for both CG and 
AA trajectories. Lines represent mean values, and shadows represent 1 standard deviation. 
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Figure 4. Results from simulations of Circular DNA. ( A ) Bending Angle 
per base pair from CG simulations, colored by Linking Number difference 
( �Lk). Lines represent mean values, and shadows represent 1 standard 
deviation. Triangles at the top represent kinks / defects in the Atomistic 
simulations, with the same color coding. ( B ) Radius of Gyration 
distribution from the CG Simulation, colored by linking number difference. 
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omputational details 

ll-atom simulations were performed using PARMBSC1
orce-field ( 4 ), explicit solvent (SPC / E ( 48 ) or TIP3P ( 49 ) wa-
er models) and 100–200 mM salt using state of the art simula-
ion conditions ( 16 ,50 ) at room temperature and pressure (see
upplementary Information for additional details). Trajecto-
ies are stored in our BigNAsim database ( 43 ). For compari-
on purposes, additional simulations were done using implicit
olvent MD, using standard AMBER GB / SA implementation
( 51 ); additional details in Supplementary Information). 

esults and discussion 

he coarse-grained trajectories 

he CG method and its associated Hamiltonian presented
ere can provide ensembles which resemble very closely at
he C1’ level those derived from atomistic MD simulations
btained with state-of-the-art force-fields and explicit solvent
epresentation (AA-trajectory). For the 18-mer duplexes in-
luded in the miniABC database( 16 ) the RMSd (C1’) between
ll-atom and CG MD averaged structures is 0.79 Å (i.e. 0.04
× bp), a very small value, within the standard deviation

mplicit to the average (around 1.7 Å). Note that this good
tting is remarkable considering that the training was done
t the 4-mer level, not for the entire duplex, whose global
tructure was not considered at any point of the calibration.
ven more impressively: the results obtained for duplexes out
f the training set are also very accurate, not only in terms
f the reference AA MD trajectory, but also of experimen-
al structures (see Figure 2 ). Interestingly, the histograms of
MSd are quite similar in CG and AA simulations, suggest-
ing that the model captures flexibility well (Figure 2 ). This is
confirmed by the inspection of essential deformation modes,
which are almost identical in CG and AA simulations as noted
in the global overlap between the first ten modes around 0.9
for the miniABC dataset (see Table 1 and selected examples of
eigenvectors overlap in Supplementary Figure S4 ). The perfor-
mance is maintained for duplexes not considered in the train-
ing process (Figure 2 ), which demonstrates that the essential
deformation movement of DNA is very well recaptured by our
method (see Supplementary Figure S5 ). Global flexibility de-
scriptors such as the persistence length, or end-to-end distance
(see Supplementary Methods) are also correct (see Table 1 ), fit-
ting in fact better experimental values than the reference AA
values, something that was also found in mesoscopic models
of DNA ( 42 ). This probably occurs because of some fortuitous
error cancellation related to the neglect of long-range anti-
correlation effects that corrects a tendency of PARMBSC1 to
overestimate DNA stiffness. Finally, and very encouragingly,
the model can accurately capture sequence variability. This
is shown in Figure S6, where the cross RMSds between 500
structures (CG or AA) of the thirteen 18-mer duplexes (i.e.
13 × 500 total structures) are reported. Not only are the low-
est RMSd obtained along the diagonal, reproducing the AA
simulations, but even the out of the diagonal similarities de-
tected in AA-simulations are well reproduced in our CG simu-
lations. This indicates that the model is reproducing sequence-
dependent structural details with a quality similar to AA sim-
ulations. Note again that no training was done using global
structural parameters of the duplex. 

The AA reconstituted trajectories 

When the decoding process is performed, the all-atoms re-
constituted trajectories are surprisingly close to the original
all-atom (AA) trajectories (all heavy atoms RMSd) around
0.102 Å per bp in the mini-ABC database and around 0.095
Å per bp for the different duplexes considered for validation
set. The analysis of a 56-mer duplex available in the Big-
NAsim database (diverse in composition and 3 times larger
than the mini-ABC duplexes) demonstrate that the reconsti-
tuted trajectory (decoding the CG ensemble) and the AA tra-
jectory (not considered at any point during the calibration of
the model) are hard to distinguish (Figure 3 , Supplementary 
Figure S7 ), not only in terms of general structural descriptors,
but also of atomic fluctuations, essential deformation modes,
and sequence-dependent helical parameters. A more in-depth
exploration of Atomistic details, helical and backbone struc-
tures is provided in SI ( Supplementary Figures S8 and S9 ), as
well as further testing of helical parameters on a range of se-
quences ( Supplementary Figures S10 and S11 ). Results sug-
gest a quality beyond the expectations of a C1’-only model,
which indicate that some fine details such as backbone ge-
ometries are somehow (at least partially) captured in the C1’
geometries in a way that ML approaches can capture them.
The most sizeable differences between AA and CG distribu-
tion is for the standard deviations of some helical parameters
(see Figure 3 ), indicating the intrinsic shortcomings of the C1’
representation. Correction of these deviations would require
the addition of extra degrees of freedom. 

Circular DNAs 

In order to test the limits of our model we explored 339 bp
circular DNA, which has been already studied by AA MD
simulation, and for which electron microscopy images are

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
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Figure 5. Coarse-grained simulation of yeast gene YCL020W containing 1317 bp, and Mitochondrial DNA. (A, B) Time e v olution of the radius of gyration 
( A ) and the aspect ratio ( B ) of the str uct ure of the gene. ( C ) Bending angle per base pair of the gene str uct ure, computed with a window of 196 bp, 
colored by simulation fragment, first plot corresponds to the first microsecond of simulation, second corresponds to the second microsecond and so on. 
T he v alues correspond to the a v erage o v er eac h trajectory bloc k. Plots go from bot tom (y ello w) to top (purple), as the simulation blocks increase from 

block 1 to block 50. ( D ) R epresentativ e snapshot showing the all-atom reconstruction of the gene structure. ( E ) Human mitochondrial DNA structure at 
three different scales. Zoom at the top corresponds to a frame near the beginning of the simulation. Zoom at the bottom is after 15 μs of simulation, 
where local distortions are evident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 shows details of a 50-microsecond simulation of YCL020W 
available( 52 ). Starting structures (see Supplementary Meth-
ods for generation scripts) from relaxed DNA quickly con-
verged into the predicted supercoiling, leading to stable tra-
jectories sampling a wide range of conformational space. By
construction, the method is not able to capture kinks, but
those regions where kinks appear in atomistic MD simula-
tions ( 52 ) (for a given supercoiling) are those where higher
bending angles are obtained (Figure 4 ), showing the abil-
ity of the model to identify softer and more flexible re-
gions of the minicircle. The Global descriptors captured from
CG simulations show diversity in structure, related to those
collected from electron microcopy measures (see Figure 4 ,
Supplementary Figure S12 and reference ( 52 )) and a wide sam-
pling of conformational shapes are obtained as visible in the
oscillation of the radii of gyration along the trajectory (see
Supplementary Figure S12 ). Finally, and quite surprisingly,
the ML method, which was trained with linear DNA, main-
tains a good ability to back-map minicircle trajectories to AA
resolution (see Supplementary Figure S12 ). In summary, our
CG model and associated ML-reconstitution algorithm are
not optimal to explore extremely stressed DNAs like those
in minicircles, where the elastic regime might not be valid, but 
they can be very useful to perform massive screenings to ob- 
tain reasonable atomic resolution ensembles from which AA 

MD simulations can be performed. 

Very long systems 

The objective of any CG representation of DNA is to ex- 
pand the size of the systems accessible to simulation. We tested 

here the performance of the method in two large systems: i) 
a 1317-mer long duplex (2.6 kbases in terms of mass) (link,
Supplementary Movie S1 ) bearing the YCL020W gene of Sac- 
charomyces cerevisiae (the TYA retrotransposon coding for 
the TY1 virus-like particle) and ii) the human mitochondrial 
DNA (33 kbases) (link, Supplementary Movie S2 ). Any of 
these two systems is very far away from what is accessible 
to atomistic MD simulations, but can by simulated by our 
model even when using a single processor desktop computer,
providing clues of the DNA flexibility in the polymeric range,
which to our knowledge, were never described before. Figure 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
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Figure 6. ( A ) Distribution of the aspect ratio and ( B ) mean local bending 
angle along the sequence of the duplex DNA (see Supplementary 
Methods for description of the different metrics) for 50-mers with 
repetitive sequences: AA-TT AAAAAAAAAAAAAAAAAAAAAAAAATTTT 
TTTTTTTTTTTTTTTTTTTTT. 
A TA T A TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA TA T, 
T AT A 

A A TA TA AAAAA A TA TA AAAAA A TA TA AAAAA A TA TA 

AAAAA A TA TA AAAAA, T AT A 

T A TA TA TTTTT A TA TA TTTTT A TA TA 

TTTTT A TA TA TTTTT A TA TA TTTTT, CGCG 

A CGCGC AAAAA CGCGC 

AAAAA CGCGC AAAAA CGCGC AAAAA CGCGC AAAAA, CGCGC 

T 

CGCGC TTTTT CGCGC TTTTT CGCGC TTTTT CGCGC 

TTTTT CGCGC TTTTT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ene. It is clear that starting from an unrealistic straight DNA
he trajectory moves to a more compact and curved structure
around 20% decrease in radii of gyration) in the 2–3 mi-
rosecond range to oscillate quite periodically along the trajec-
ory. Analysis of the bending angle (196 bp window; see Fig-
re 5 ) illustrates how the local curvature is propagated along
he sequence, suggesting the existence of a perturbation dy-
amics propagation mechanism ( 53 ), which also agrees with
he structural diversity found in atomic force microscopy ex-
eriments ( 54 ). Finally worth to note that trajectory is still
ot converged, but a parallel version of the code would allow
eaching the multi-millisecond time scale, where convergence
s expected. 

As a final test model, we simulate the entire human mi-
ochondrial DNA (Figure 5 ) at Lk = 0. This system, a dou-
le stranded circular DNA containing more than 16 kb, en-
odes ribosomal and transfer RNA as well as up to 13 pro-
eins, whose malfunction is linked to different rare diseases.
he mitochondrial DNA is found in nucleoids resembling the
rokaryotic ones, probably mimicking phase separation in eu-
aryotic chromatin. Proof of concept simulations under high
alt conditions, even with relatively short times of 15 μs, show
eviations from perfect circularity that are transferred along
he sequence, mimicking linear DNA. Analysis of relative end-
o-end distance and bending angle of the longest coding genes
hows the existence of a quite variable geometrical landscape
see Supplementary Figure S13 ). Simulations are too short to
uarantee the convergence of the results, but illustrate the
ower of the method to analyze complex chromatin in detail.

eproducing elastic properties of repetitive 

equences 

he method was parametrized to reproduce tetramer-based
roperties of DNA as determined by atomistic MD simula-
ion, but quite encouragingly, it shows a good ability to repro-
uce the properties of repetitive sequences where sequence-
ependent effects are maximized. For example, the AA-TT
ligo is expected to be straight and rigid( 55 ) with a discon-
inuity in the central A-T step, which is exactly what is found
n our simulations (Figure 6 ). Similar behavior is expected for
he A T A T oligo, where symmetry hinders any local fluctua-
ion leading to a very rigid and straight segment, as found in
ur calculations (see Figure 6 ). Periodic oscillations in bend-
ng should be recovered when symmetry is broken and the
 T A T A segment is placed in phase (every 10 bp) separated
y A 5 or T 5 linkers, as again it is found in our calcula-
ions (Figure 6 ). Finally, when a more flexible segment such
s CGCGC( 16 , 55 , 56 ) is placed in phase, separated by A 5 or
 5 linkers, large fluctuation in bending can be expected with
axima of bending at the flexible segments, as is in fact shown

see Figure 6 ). So, despite the simplicity and locality of the
odel, it is able to reproduce well the expected behavior of

epetitive sequences. 

omputational performance 

he method is very efficient allowing the simulation of ex-
ended DNA duplexes for significant periods of time. Results
see Supplementary Figure S14 .A) indicate that in just one
PU hour, 10 ns of CG simulations can be obtained for a
317-mer duplex (corresponding to one entire Yeast Gene),
hile we expect simulation times for atomistic MD simula-
tions to be at least 7 orders of magnitude longer. The cost
of the decoding process to generate atomistic trajectories is
very small, for example, reconstituting 5000 snapshots of the
1317-mer duplex implies 20 min of CPU, keeping the sim-
ulation cost nearly unaltered. Note that the method is supe-
rior to implicit solvent GBSA, not only in terms of computa-
tional efficiency, but also of quality of the ensembles. Clearly
atomistic / explicit solvent and CG simulations are indistin-
guishable, while GB / SA diverges, leading to very close CG and
AA structures, while showing a very deformed GB structure
(see Supplementary Figure S14 B, C). 

Conclusion 

We present here a new sequence-depended coarse-grained
method which, thanks to an associated ML algorithm, pro-
vides atomistic resolution trajectories difficult to distinguish
from ‘state of the art’ all-atom simulations, but with a signifi-
cant reduction of computational effort. The method (publicly
available at gitlab) enables the dynamic study of large seg-
ments of chromatin, covering entire genes and providing dy-
namic information with an unprecedented level of quality and
resolution. Our results pave the path to a new generation of
high-quality modeling tools exploring the dynamics of large
chromatin segments coupled to change in the environment,
presence of ligands, protein effectors, or even condensation
phenomena. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae444#supplementary-data
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Data availability 

The data that supports the findings of this study is openly
available in the public repository https://mmb.irbbarcelona.
org/ gitlab/ dfarre/ cgenarate-materials . The executable for
CGeNArate is also available in the public repository https:
// mmb.irbbarcelona.org/ gitlab/ dfarre/ cgenarate-materials . 
Simulation files will be deposited in BigNAsim ( https:
// mmb.irbbarcelona.org/ BIGNASim/ ). The list of accession
numbers is provided in the Supplementary Data. 

Supplementary data 

Supplementary Data are available at NAR Online. 
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