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ABSTRACT

The accurate classification of discharge diagnoses is a critical step in clinical decision-making, as
it has direct effect on patient care, hospital management, and administrative tasks. Traditionally,
diagnostic coding has been a manual and time-consuming process, typically done after a patient
is discharged, which could lead to delays for subsequent processes such as billing, reporting, and
care optimization. Recently, the Hospital Clinic de Barcelona has integrated a structured list of
health problems coded in SNOMED CT into the Electronic Health Record (EHR) from the beginning
of the patient’s hospitalization. This development has enabled the reuse of structured clinical data
throughout the care process and has opened the door for predictive tools using Machine Learning
(ML).

The goal of this research is to determine whether there’s a significant relationship between reported
health problems and the final ICD-10 discharge diagnoses. To explore this, data obtained from the
Hospital Clinic de Barcelona was analysed, incorporating information from various clinical sources,
such as demographics, laboratory results, prescriptions, and admissions records. Feature
engineering was also carried out and methods based on decision trees, along with ANOVA tests,
were used to identify the most relevant input variables. Subsequently, several supervised ML
models, including Decision Trees (DTs), Random Forest (RF), and XGBoost were trained and
evaluated.

The best performing model, a Decision Tree classifier, achieved an accuracy of 69.8%, with a recall
and F1-score of 0.68, and an AUC of 0.83. While no single variable served as a dominant predictor,
the results show that health problems coded in SNOMED CT, combined with other clinical and
demographic data, can significantly improve the model’s ability to classify discharge diagnoses.

Keywords: Machine Learning, SNOMED CT, ICD-10-CM, Supervised Learning, Multiclass
Classification.
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1 INTRODUCTION

In the healthcare sector, accurate diagnoses and treatments are crucial for improving patient
outcomes and optimizing hospital resources. This is because diagnostic accuracy is essential to
ensure patients receive timely care and minimize the likelihood of medical errors, which can have
a significant impact on health outcomes. However, healthcare systems are facing significant
challenges due to the increasing complexity of diseases, the volume of data generated, and the
need for quick evidence-based decision-making.

In this context, the use of Machine Learning (ML) to predict discharge diagnoses presents itself as
a promising tool to improve both the accuracy and efficiency of the diagnostic process. By
integrating advanced computational methods, hospitals may be able to reduce diagnostic errors,
accelerate treatment plans, and better manage their resources.

1.1 Motivation

Traditionally, hospitals have relied on manual processes to code medical diagnoses and
procedures, typically only assigning codes based on discharge reports. This practice presents
significant limitations, the most notable one is the delay in assigning these codes, which can often
take up to a month after discharge. Such delays leads to inefficiencies, especially in settings where
quick decision-making and resource allocation is critical. Moreover, the lack of early coding limits
the ability to adjust patient care plans in real time.

Recently, at the Hospital Clinic de Barcelona, a list of health problems coded by physicians using
the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) has been integrated
into the Electronic Health Record (EHR) system from the beginning of the care process. This
innovation enables the assignment of standard codes from the very beginning of the patient care
process, eliminating the need to wait until discharge. This development allows for the creation of a
catalog of clinical entities that can be processed by information systems, thereby providing precise
semantic meanings. These advances present a significant opportunity for the reuse of clinical
information for both primary and secondary purposes. A particularly intriguing and novel aspect of
this initiative is the exploration of whether health problems coded with SNOMED CT at the time of
hospitalization can help predict discharge diagnoses, coded with the International Classification of
Diseases, 10th Revision, Clinical Modification (ICD-10-CM), through the application of ML
methodologies.

The implementation of ML algorithms to these coded health problems could uncover complex
patterns and relationships among multiple clinical and demographic variables that are not easily
observable to clinicians. Consequently, this approach may enhance the accuracy of predicting
discharge diagnoses, thereby potentially reducing the incidence of misdiagnoses, improving patient
outcomes, and facilitating more efficient resource allocation.
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1.2 Objectives

The primary objective of this research is to explore the correlation between reported health
problems and the final diagnoses issued at the time of hospital discharge. This research aims to
determine whether a significant relationship exist between these two variables, thereby improving
the understanding of how health problems may influence diagnostic decisions.

Furthermore, the study will compare the ability of various ML models to classify discharge
diagnoses coded in ICD-10-CM, using health problems coded with SNOMED CT during
hospitalization, along with other clinical data. By training these models with data from the Hospital
Clinic de Barcelona, the study will investigate how well SNOMED CT coded health problems serve
as predictors of ICD-10-CM discharge diagnoses.

Secondary objectives include evaluating model performance using a wide range of metrics,
including accuracy, sensitivity, specificity, and more.

Finally, the study aims to identify the most effective model and the most significant input variables
for optimizing classification performance. Special attention will be placed on clinical and
demographic variables, including age, sex, vital signs, prescriptions, and laboratory results, to
identify which variables have the most significant impact on the predicted diagnoses.

1.3 Scope

The scope of the project is limited to the analysis of clinical data collected at the Hospital Clinic de
Barcelona over a specific period. The primary objective is to classify discharge diagnoses using
various ML models, with the goal of exploring the potential of these tools to support clinical decision-
making and improve the efficiency of hospital workflow. The study does not include the evaluation
of post-discharge treatments or interventions.

At the spatial level, the study will be conducted solely on data from the Hospital Clinic, although
the techniques developed could be replicated in other hospital settings.

1.4 Methodology

The methodology followed for this project can be divided into four main parts. First, a
comprehensive literature review is conducted to understand the background and context in which
this project is situated. This includes an overview of the challenges in SNOMED CT to ICD-10-CM
mapping, as well as the role of ML in healthcare.

Once the data is obtained, a data pre-processing phase follows, during which the raw data is
cleaned, formatted, and prepared for model training. In the next stage, suitable ML models are
selected and trained to analyse the pre-processed data. Finally, the results are evaluated and
discussed, offering insights into the performance of the different models and their implications for
the study.
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2 BACKGROUND

2.1 Electronic Health Record

An Electronic Health Record (EHR) is a digital representation of a patient’s medical history, that is
continuously updated and managed by healthcare professionals. It includes essential clinical and
administrative information pertinent to a patient's care, including demographics, vital signs,
diagnoses, treatment plans, medications, past medical history, allergies, immunizations, radiology
reports, and laboratory and test results ['. The implementation of EHR systems facilitates efficient
access to information, potentially enhancing the workflow of clinicians [I.

2.2 Problem-Oriented Medical Record

A problem-oriented approach is one of the possibilities to organize a medical record. In the 1960s,
Dr. Lawrence Weed introduced the Problem-Oriented Medical Record (POMR), also known as the
Problem-Oriented Record (POR) B, [ This structured method revolutionized clinical
documentation by emphasizing the identification and management of individual health issues,
allowing for more systematic and organized care.

A health problem is defined as any condition affecting a person’s physical, psychological, or social
well-being that requires medical attention or may impact the patient’s quality of life 1. Dr. Weed
described a health problem as “anything that requires diagnosis, further management, or interferes
with quality of life, perceived by the patient.” B,

The fundamental component of the POMR is the problem list which can be defined as a dynamic,
continually updated record that includes all past and present identified problems, as well as the
time of occurrence and whether the problem was resolved, and links to further information on each
entry in the list 8. This structure ensures that all observations, assessments, and healthcare plans
are grouped by patient problem, promoting clarity and continuity in patient care.

To further enhance data organization and communication, progress notes are often written in the
Subjective-Objective-Assessment-Plan (SOAP) format [71:

- Subjective: the patient’s reported symptoms and concerns.
- Objective: observable and measurable clinical findings.

- Assessment: clinician’s evaluation or diagnosis.

- Plan: recommended next steps in care or treatment plans.

2.3 Clinical coding systems

Medical coding is a key process in healthcare administration, as it allows for the classification and
organization of patient clinical information using standardized systems. This structured data
facilitates effective communication, analysis, and reporting across healthcare systems.
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Two of the most widely used coding systems worldwide are SNOMED CT and ICD-10. While
SNOMED CT is widely used in daily clinical documentation due to its ability to capture specific
details about diagnoses, symptoms, and procedures in real time, ICD-10 is especially used at the
time of patient discharge and supporting healthcare operation such as billing [l.

231 SNOMED CT

SNOMED CT is the most comprehensive and multilingual clinical terminology, encompassing over
360.000 concepts ¥, It is a coding system that offers a structured and detailed representation of
clinical information, covering a wide range of healthcare elements such as diagnoses, symptoms,
procedures, medications, and other concepts relevant to healthcare. This system is widely used in
clinical documentation due to its benefits, including [0, [111:

- Granularity and specificity: SNOMED CT offers precise descriptions of clinical concepts,
allowing clinicians to document information in a very detailed manner, which improves
accuracy in healthcare documentation.

- Interoperability: the system is designed in a way that it can be integrated with other
healthcare systems and EHRs, facilitating the exchange of standardized information
between different care providers and improving communication and continuity of care.

- Data analytics: by offering structured and computable health data, SNOMED CT supports
advanced data analysis and clinical research.

- Continuous evolution: SNOMED CT is regularly maintained and updated to include new
clinical terms and concepts. This ensures that the terminology remains current and aligned
with ongoing advances in healthcare.

23.2 ICD-10

ICD-10 is a coding system developed by the Word Health Organization (WHO) that organizes
health data into standardized categories for a wide range of clinical, administrative, and research
purposes. It assigns unique alphanumeric codes to various health-related terms, including
diseases, signs and symptoms, procedures, and abnormal findings. This system facilitates the
classification of health information across healthcare systems and countries (2],

ICD-10 also supports the storage, retrieval, and analysis of diagnostic information which is crucial
for epidemiological studies, healthcare research, and monitoring of population health [3. It also
standardizes the recording and reporting of health data, which is essential for statistical analysis,
as well as for billing, reimbursement, and resource allocation within healthcare systems [14],

Some key advantages of this system include:

- Hierarchical structure: ICD-10 organizes diseases and other health conditions into
standardized and structured groups for easier management.

- Administrative efficiency: it enhances coding accuracy for billing and reimbursement
processes, which reduces administrative workload.

- Focus on statistics and management: it provides healthcare administrators with
statistical insights to assess the time and resources spent on treating a medical condition.
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2.3.2.1. ICD-10-CM

International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) is a
modified version of the ICD-10 coding system, that has been specifically adapted and expanded
with more detailed codes for clinical use in the United States ['3]. The translated version of ICD-10-
CM is used at the Hospital Clinic de Barcelona.

Although ICD-10-CM is essential for health resource management, its focus on disease
classification and statistical and administrative purposes can lead to the loss of detailed clinical
information that is captured by SNOMED CT. This difference in coding approach poses challenges
in using both systems in a complementary manner.

2.3.3 Current challenges in clinical coding

Although clinical coding systems offer numerous benefits, there are still several challenges that
make their implementation and use difficult.

2.3.3.1. Delayed coding processes

A significant issue with clinical coding is the delay in assigning codes, particularly for ICD-10-CM.
In many hospitals, coding is often performed days or even weeks after a patient’s discharge, which
limits the utility of coded data for real-time decision-making and resource allocation. This delay also
contributes to inefficiencies in healthcare services [161,

2.3.3.2. Manual effort and error rates

Manual code conversion is susceptible to high error rates and inefficiencies. Coders must make
decisions when interpreting clinical notes and assigning appropriate codes, a process that is time-
consuming and prone to mistakes. These errors in code conversion can lead to significant
consequences like incorrect billing, denied insurance claims, and inaccurate statistical data, all of
which can negatively impact patient care and hospital finances (161,

2.3.3.3. Limitations of SNOMED CT to ICD-10 mappings

Mapping between SNOMED CT and ICD-10-CM presents significant challenges due to the
fundamental differences in their structures and intended use. SNOMED CT offers a much more
detailed and granular representation of clinical data, while ICD-10-CM is designed more for
population-level, epidemiological and administrative use, often lacking the level of clinical
granularity found in SNOMED CT. This discrepancy leads to inconsistencies and difficulties in
creating accurate mapping, which can complicate the integration of clinical and administrative data
within healthcare systems.

Although mapping tools have been developed to address this issue, it only provides a semi-
automated generation of ICD-10-CM classification codes from clinical data encoded in SNOMED
CT [17], Moreover, these mapping are partial and fail to address complex cases like n:n mapping,
where one concept may correspond to multiple other concepts, rather than a simple one-to-one

mapping.
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2.4 Artificial Intelligence

Artificial Intelligence (Al) refers to the development and use of computers systems capable of
performing tasks that usually require human intelligence. These tasks include learning, problem-
solving, reasoning, perception, and language understanding ["8l. In recent years, the availability of
high-performance computers and the large amount of data generated have led to advancements
in the application of Al across many fields. This progress has also significantly accelerated the
development of Machine Learning and Deep Learning, subfields of Al that enable systems to learn
from data and continuously improve their performance over time without explicit programming
(Figure 1).

Artificial intelligence

Logistic
regression

Machinelearning

SVM

Neural network

DT
Deep learning

CNN BN

Figure 1: Venn diagram of artificial intelligence (Al), machine learning (ML), neural network, deep learning, and
further algorithms in each category [,

2.5 Machine Learning

Machine Learning (ML) is a subset of Al that focuses on the development of algorithms and
statistical models that enable computers to perform tasks without explicit instructions. Instead, ML
models learn by identifying patterns, extracting meaningful insights, and continuously improving
their performance over time through experience 201,

ML is typically divided into several categories, with the two most prominent being:

- Supervised learning: models are trained on labelled data, meaning that each input is
paired with a known output. This allows the algorithm to evaluate its performance and make
adjustments during training to improve accuracy 201,

- Unsupervised learning: models are trained on unlabelled data, allowing the algorithm to
identify hidden patterns, structures, or relationships within the data without prior knowledge
of the outcomes (20,
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2.51 Machine Learning applied to healthcare

ML applications in healthcare are diverse an range from disease prediction to treatment
optimization. Some relevant applications include [21], [22I:

- Disease prediction: ML models can analyse historical patient data to identify risk factors
and predict the likelihood of developing certain health conditions.

- Medical imaging: ML algorithms are capable of interpreting medical images, such as X-
rays, CT scans, and MRIs, achieving accuracy levels comparable to that of radiologists.

- Clinical decision support: ML is widely used in Clinical Decision Support Systems
(CDSS) to assist healthcare professionals in predicting patient outcomes and
recommending treatments.

- Workflow optimization: ML can assist hospitals in managing resources more efficiently
and optimizing administrative processes.

- Readmission risk prediction: ML models have been used to predict the likelihood of
patient readmission, demonstrating the potential for improving resource allocation and
reducing hospital costs 1231,

- Personalized medicine: ML has significantly advanced personalized medicine by
analysing individual patient data such as genetic information, medical histories, and
lifestyle factors, to tailor treatments for each patient [24], [25],

2.6 State of the art

The use of ML in healthcare has experienced a rapid growth in recent years thanks to the
advancements in computational power and the increased availability of data. Recent studies have
shown that ML models trained on high-dimensional data, especially when supplemented with
Natural Language Processing (NLP) techniques to extract insights from unstructured text, can
significantly improve diagnostic predictions 1261, Additionally, developments in Explainable Artificial
Intelligence (XAl) have made it easier for healthcare professionals to understand model predictions
and interpret the results 28], [27],

The use of large and diverse datasets, such as national health databases and specific hospital
data, has played a key role in improving the generalizability of predictive models. Many studies
have employed ensemble methods to combine predictions from multiple models, improving
robustness and minimizing bias [28l. Furthermore, research into transfer learning and federated
learning has created new opportunities to share data across different institutions while maintaining
patient privacy 129 However, challenges still remain in the application of ML in healthcare, including
concerns about data quality, the ethical use of patient information, and the need for model validation
in real-world clinical environments [30],

As this field continues to evolve, future research is expected to focus on refining existing models,
creating hybrid approaches that combine domain expertise with data-driven insights, and ensuring
safe and ethical integration of these technologies into clinical practice. Accurately predicting
hospital discharge diagnoses not only has the potential to improve patient care but also offers
benefits in resource management, reducing readmissions, and enhancing clinical workflows.
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2.6.1 Machine Learning in Discharge Diagnosis Prediction

ML has shown strong potential in predicting hospital discharge diagnoses by uncovering complex
patterns in clinical and demographic data. A notable study conducted by Lin et al. (2017) B1]
explores the application of Al in automating the classification of diagnosis coded from unstructured
discharge notes. The goal of the study was to evaluate the performance of traditional pipelines
(NLP paired with supervised ML models) with that of word embedding combined with a
Convolutional Neural Network (CNN) (Figure 2) in performing a classification task to identify ICD-
10-CM diagnosis codes in discharge notes.

The results revealed that in 5-fold cross-validation test, the word embedding combined with a CNN
had higher testing accuracy (mean AUC 0.9696; mean F-measure 0.9086) than traditional NLP-
based approaches (mean AUC range 0.8183 - 0.9571; mean F-measure range 0.5050 - 0.8739).
Additionally, it showed that the convolutional layers of the CNN successfully identified a significant
number of keywords and automatically extracted enough concepts to predict the diagnosis codes.
The research demonstrated its ability to effectively extract and predict diagnosis codes with minimal
data pre-processing, highlighting the potential of CNNs to automatically capture essential medical
concepts from unstructured text.

[4:¢50] 10

[(n=2)x1]x15

[m=ax1]es

Word embedding matrix | I Convolving filters I | Feature maps I Feature vector ] I Logistic output

Keywords fuzzy matching Bag of words Classification

Figure 2: Proposed model’s architecture by Lin et al. (2017) /31,
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Another interesting study is the one conducted by Park et al. (2021) 132, This research focuses on
creating an optimised ensemble model that combines Deep Neural Networks (DNN) with ML
algorithms to predict diseases using laboratory test results. Their objective was to develop a model
capable of accurately predict 39 specific diseases based on laboratory test data. To do so,
researchers selected 86 laboratory test attributes from datasets, considering factors such as value
counts, clinical importance, and missing values. Sample datasets on 5145 cases, including 325686
laboratory test results were collected. These datasets were then used to construct Light Gradient
Boosting Machine (LightGBM) and Extreme Gradient Boosting (XGBoost) ML models and a DNN
model. What they found was that the optimised ensemble model achieved a F1- score of 81% and
a prediction accuracy of 92% for the five most common diseases (Table 1).

Table 1: Ensemble model performance result using F1-score by Park et al. (2021) 132,

precision  recall fl-zcore Accuracy (TOP1)  Accuracy (TOPS)
macro avg  0.78 0.88 0.81 0.646259 0.924198
weighted 4 g4 0.92 0.93 - -
avg
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3 MARKET ANALYSIS

3.1 Market sector

The healthcare sector is one of the largest and most dynamic industries globally, with significant
contributions to economic growth and societal well-being. In 2024, the global healthcare market
was valued at 112.9 billion USD and is projected to reach 139.69 billion by 2033, exhibiting a
Computed Annual Growth Rate (CAGR) of 2.4% (Figure 3) [¥3l. This growth is driven by several
factors, including the increasing prevalence of chronic diseases, aging populations, and
advancements in medical technologies.

Global Healthcare Services Market Size 139.69
2033 (USD Billion)

1 “‘\ “‘\ “‘\ |||| |||| “‘\

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

Figure 3: Global healthcare services market size estimation for 2033 133,

3.2 Target market

The target market for a ML algorithm capable of predicting hospital discharge diagnoses using
SNOMED CT encoded health problems reaches various sectors within healthcare and medical
technology.

Primary markets include hospitals, where there is a growing demand for innovative solutions to
improve real-time decision-making and optimise resource allocation, particularly in setting where
timely and accurate diagnoses are critical. The integration of SNOMED CT encoded health
problems with ML methodologies offers a valuable opportunity to predict discharge diagnoses early
in the care process. This enables healthcare providers to adjust treatment plans, ultimately
improving overall patient outcomes.

Secondary markets include insurance companies that are seeking to predict patients risks, manage
claims more effectively, and reduce costs associated with misdiagnoses or prolonged hospital
stays. By predicting discharge diagnoses accurately, insurers can improve their claims processes,
resulting in cost savings and improved efficiency.

10
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3.3 Future perspectives

In recent years, the growth of Al applications in healthcare has been remarkable. Al-driven
innovations are being widely applied, with significant advances expected in areas such as medical
imaging, drug development, disease classification and diagnostics, predictive analytics, and
personalized medicine, including treatment and prescription [341,

Key trends and emerging opportunities of clinical coding and predictive analytics in healthcare in
the future include [39%;

- Personalized medicine: predictive analytics allows for the customization of treatments
based on individual patient data, enhancing the effectiveness and efficiency of care by
tailoring interventions to patient needs.

- Aland ML in clinical coding: the use of Al and ML in clinical coding is expected to grow
significantly, driven by the increasing need for real-time coding and the need to minimize
errors.

- Natural Language Processing (NLP): NLP technologies play a crucial role in extracting
structured data from unstructured clinical notes, improving the accuracy of coding, and
enabling better integration with EHR systems.

- Real-time clinical decision support: the integration of predictive analytics with real-time
clinical decision support systems allow clinicians to receive instant recommendations
during patient care, helping reduce delays and improve patient outcomes.

11
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4 CONCEPT ENGINEERING

To reach the objectives of the research, different stages must be completed. The overall workflow
of the project (Figure 4) outlines the key steps where different methodologies can be applied. This
section evaluates the different proposed methods and presents the selected solution.

DEIE]
acquisition

DEIE]
pre-processing

Feature
selection

Model
selection

Model
training

Model
evaluation

Hyperparameter
tuning

Model
testing

Results and
discussion

Figure 4: Overall workflow of the project.
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41 Data acquisition and description

The data used in this study was obtained from the Hospital Clinic de Barcelona. All information
originates from the hospital’s institutional data warehouse, which serves as a centralized repository
for clinical data.

Access to the data was granted with the approval of the Comité de Etica de la Investigacion con
Medicamentos (CEIm) of the Hospital Clinic de Barcelona. A copy of the ethics approval document
is provided in Annex A.

The main sources of information include:

- Administration events: information related to the administration of treatments to patients.
It keeps track of various aspects, such as the drugs administered, the method of
administration, and the amounts involved.

- Admission and discharge events: contains records related to patient admissions and
discharges, providing insight into the patient’s entry and exit from healthcare facilities.

- Care level events: data related to the care levels assigned to patients throughout their
medical episodes.

- Clinical records events: contains detailed clinical records and medical results, including
test results, and measurements taken during patient episodes.

- Demographic events: contains demographic information about the patients, including
date of birth, sex, and nationality.

- Diagnostic events: contains information about hospital discharge diagnoses and other
diagnostic events, providing valuable insights into the medical conditions and diagnoses
associated with patient episodes.

- DRG events: data related to Diagnosis-Related Groups (DRG), a system used to classify
hospitalized patients into categories that have similar processes of care and require similar
levels of hospital resources. DRGs are intended to identify the “products” that the hospital
provides and are mainly used for billing and reimbursement purposes 361,

- Encounter events: records detailed information about patient encounters within the
healthcare system.

- Episode events: contains important information about the start and end dates of patient
episodes, which represents a continuous period of care or treatment for a patient within
the healthcare system.

- Exitus events: captures critical information regarding patient deaths.

- Health issues events: contains information about the health problems of the patients.

- Laboratory events: contains information regarding laboratory test results and associated
details like the different laboratory test performed.

- Movement events: tracks patient transfers between different locations or care units within
the healthcare system.

- Perfusion events: records information regarding drug infusion treatments administered to
patients during their episode of care. Infusion treatments involve the slow administration of
fluids or drugs, typically via an intravenous (IV) line.

13
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- Prescription events: contains information regarding patient prescriptions, such as the
drugs prescribed and the dosage.

4.2 Data pre-processing

Data pre-processing is a crucial step in the data engineering process. Given that real-world
datasets often contain inconsistencies, missing values, and other imperfections, pre-processing
ensures that the data is clean, consistent, and appropriately formatted for the next steps.

421 Missing values

Missing data is a common issue in clinical datasets and must be carefully handled to maintain data
quality and avoid introducing bias. Datasets often contain missing values, which are typically
represented as blanks or NaN (Not a Number). Most ML algorithms cannot handle missing or blank
values, making it necessary to apply appropriate strategies for dealing with them.

Some common approaches to handling missing data are ©7!:

- Dropping rows: one straightforward method is to remove rows with missing values. This
approach is useful when the dataset is large enough that removing records will not
significantly impact the overall analysis. However, this method can result in the loss of
valuable data and potentially removing key patterns or relationships from the dataset.

- Imputing missing values: another strategy is to impute, or fill in, the missing values with
logical substitutes. There are several imputation techniques:

o Mean: replaces missing values with the mean of the respective column. It is
suitable for normally distributed data.

o Median: fills in missing values with the median value of the column. It is often used
when the data contains outliers.

o Mode: replaces missing values with the most frequent value in the column. It is
often used for categorical features or variables with repeated values.

o K-Nearest Neighbours (KNN): imputes missing values based on the values of the
nearest neighbours. It identifies the k most similar rows and fills the missing value
with the average of the corresponding values from those rows.

4.2.2 Encoding categorical variables

Ensuring that data types are correctly assigned is crucial, as various downstream processes
depend on the data type of features. Categorical features, in particular, contain label values rather
than numeric values. Since most ML algorithms cannot directly handle categorical data, it must be
transformed into numeric values before training a model. The most commonly used methods for
encoding categorical data are [38l;

- Label encoding: each category is assigned a unique integer value. This method is best
suited for nominal data where the order doesn’t matter as it does not respect the order of
the categories.

14
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- Ordinal encoding: this method is used when categories have a clear, defined order but
not necessarily evenly spaced intervals. For example, “Low”, “Medium”, and “High” would
be assigned numerical values reflecting their rank.

- One-Hot encoding: in this method, each category in a feature is transformed into a
separate binary feature (1 or 0). This approach is ideal for nominal data as it prevents the
model from assuming any relationship between the categories.

4.2.3 Normalization

Normalization is a technique aimed at rescaling the values of numeric features so they fall within a
consistent range. This ensures that no single feature dominates due to its scale and help models
train more effectively and efficiently. Many ML models perform better when the input features are
within similar value ranges or distributions.

The most frequently used methods for scaling in ML are [3I:

- Min-Max normalization: preserves the original distribution of data but scales values to a
fixed range between 0 and 1. Each value is transformed according to Eq. 1:

X X~ Xmin (1)
norm —
Xmax — Xmin

- Z-score normalization: transforms the data so it has a mean (u) of 0 and a standard
deviation (o) of 1. The formula is shown in Eq. 2:

X =
o

(2)

Xstandard =

4.3 Feature selection

Feature selection is a crucial step in the ML pipeline. It is a process aimed at identifying the features
in the dataset that contribute the most in predicting the target variable. Focusing on these selected
features instead of all the features, not only helps reduce the risk of overfitting but also enhances
model performance and improves computational efficiency by reducing training time.

There are many methods for feature selection, some methods to consider are:

- Tree-Based models: algorithms such as random forest and decision trees can be used
as tools to estimate feature importance. When building a decision tree, the algorithm
evaluates features at different nodes to determine the best splits. A feature’s importance
is based on how much it reduces impurity, which is a measure of how mixed the target
classes are after the split. Features that consistently reduce impurity are deemed more
important (401,

- Analysis of Variance (ANOVA) test: it is a statistical test used to compare the means of
two or more groups and determine whether they are significantly different. In the context
of feature selection, the ANOVA F-test evaluates each feature individually by calculating a

15



[EeS] UNIVERSITATo: Use of Machine Learning and SNOMED CT Encoded Health
) BARCELONA Problems to Predict Hospital Discharge Diagnoses

F-score, which represent the ratio of the variance between groups to the variance within
groups. Features with higher F-scores are considered more relevant to the target variable
[41]

- Pearson correlation: it measures the strength and direction of the linear relationship
between two continuous variables. Features that have a strong correlation (positive or
negative) with the target variable can be considered for selection. However, care must be
taken to handle multicollinearity, where multiple features are highly correlated with each
other, potentially leading to redundancy (21,

4.4 Supervised Machine Learning models

Supervised machine learning is a subfield of ML where the model is trained on a labelled dataset,
meaning each training example is paired with a correct output. The objective of supervised machine
learning is to learn a mapping from inputs to outputs that can generalize well to unseen data. This
learning paradigm is commonly used for classification and regression tasks, where the model aims
to predict a category or a continuous value, respectively.

In supervised learning, the training process involves minimizing a loss function that measures the
discrepancy between the predicted output and the actual label. Once trained, the model can be
evaluated on test data to assess its performance using metrics such as accuracy, precision, recall,
and F1 score, depending on the task.

In the following subsections, a brief overview of the theorical foundations of the different supervised
machine learning models considered in this project is provided.

441 Logistic Regression

Logistic Regression (LR) is a fundamental statistical model commonly used for binary classification
tasks. While it is derived from regression analysis, it is designed to predict discrete outcomes,
particularly binary or categorical responses. Unlike linear regression, which estimates continuous
values, LR calculates the probability that a given input belongs to a particular class 3. Although
LR is inherently a binary classifier, it can be extended to handle multiclass classification 4. One of
the major advantages of this model is its interpretability, which makes it particularly useful in clinical
settings, where understanding the impact of different features is essential.

4.4.2 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning model primary used for classification tasks.
It works by finding an optimal hyperplane that separates different classes in the data and selecting
the one that maximizes the margin between classes. The data points that are closest to this
hyperplane and define its position are known as support vectors (431,

Although SVMs are inherently linear classifiers, they can effectively handle non-linear relationships
in the data by using kernel functions. Commonly used kernels include the Radial Basis Function
(RBF), polynomial, and sigmoid kernels 61. These functions project the input features into a higher-
dimensional space where a linear separation becomes possible, allowing the model to learn

16
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complex patterns like the ones found in clinical datasets. While SVMs may be less interpretable
than simpler models such as LR, they are useful in scenarios where intricate and potentially non-
linear relationships exist between features and diagnostic outcomes.

4.4.3 Decision Trees

Decision Trees (DTs) are a fundamental machine learning algorithm used for classification and
regression tasks. Recognized for their intuitive design and ease of interpretation, DTs simulate
human decision-making by iteratively dividing data into subsets based on feature values. This tree-
like structure makes decision rules easy to visualize, contributing to their widespread use across
different fields (471,

DTs are composed of nodes, each internal node represents a decision based on a feature, each
branch corresponds to a possible outcome of the decision, and each leaf node assigns a class
label. The model begins at the root node and splits the dataset by selecting the feature that best
separates the data according to a chosen criterion, such as Gini impurity, entropy, or log loss. This
process continues recursively until a stopping condition is met, such as no remaining features, all
data points at a node belonging to the same class, or a predefined maximum depth (8,

Despite its simplicity, DTs serve as the foundation for more advanced ensemble models like
Random Forests and Gradient Boosted Trees, which combine multiple trees to improve predictive
performance and generalization.

444 Random Forest

Random Forest (RF) is a robust and flexible ensemble learning algorithm commonly used for
classification and regression tasks. Developed by Leo Breiman in 2001, it enhances the decision
tree approach by combining multiple trees to generate more reliable, precise, and generalized
predictions []. The algorithm utilizes bagging (bootstrap aggregating), where each tree is trained
on a random subset of the training data. Additionally, it introduces extra randomness in feature
selection to minimize overfitting and enhance model performance. In classification tasks, the
ensemble’s final prediction is obtained by aggregating the predictions of the individual trees,
typically through majority voting as shown in Figure 5 [0,

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

Majority Voting / Averaging

Final Result

Figure 5: Random Forest trees illustration 50,
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445 Gradient Boosting

Gradient Boosting is an ensemble learning technique that combines multiple weak learners, usually
decision trees, to form a more powerful predictive model. The core principle of gradient boosting is
to train models sequentially, with each new model focusing on correcting the errors made by the
previous ones. This is achieved by training each new model to fit the residuals, or errors, left by the
preceding model. In each iteration, a new tree is trained using the negative gradient of the loss
function concerning the current predictions, progressively minimizing the error 11,

4.45.1. Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an optimised and scalable implementation of gradient
boosting developed to enhance speed, efficiency, and performance. Unlike RF, which build multiple
decision trees independently and aggregate their outputs, XGBoost builds trees sequentially. In
this process, each new tree is trained to correct the errors made by the previous ensemble of trees
by assigning higher weights to misclassified samples as shown in Figure 6 2. This focused
learning process allows the model to capture complex data patterns and improve predictive
performance over time.

Result

Figure 6: Extreme Gradient Boosting (XGBoost) illustration 53],

44.6 K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a simple, instance-based supervised learning model used for
classification and regression tasks. In classification, KNN predicts the class of a new data point by
identifying the number of neighbours (k) closest samples in the training set, based on a distance
metric such as Euclidean distance. The class most frequently represented among these neighbours
is then assigned to the new point [54],

The choice of ks a critical hyperparameter: a small k may lead to overfitting and noisy predictions,
while a large k tends to smooth out class boundaries but can cause underfitting [54. While KNN is
easy to implement and understand, it struggles with large datasets unless properly optimised, and
its performance heavily depends on the chosen distance metric and how the data features are
scaled.
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4.4.7 Neural Networks

Deep Learning (DL) is a subset of ML, that uses neural networks composed of multiple layers to
process and analyse large volumes of data. These layered networks are built to identify patterns
and generate predictions automatically 5°1. As a result, DL has proven to be particularly effective in
healthcare due to its ability of handling and managing large and complex datasets.

In the 1950s, the perceptron algorithm was first introduced as one of the firsts attempts to replicate
how a human neuron works (Figure 7). The perceptron processes an input, applies weights, and
then uses an activation function to determine if the neuron becomes active and generates an
output. Although a single perceptron cannot recognize complex patterns, combining multiple
perceptrons into layered structures, known as Neural Networks (NN), allows the model to capture
and learn much more complex data [56l,

Dendrites

Output

/4 S Linear Activation
function function
Nucleus

Figure 7: Diagram of a neuron model /57

4.4.7.1. Multilayer Perceptron

The Multilayer Perceptron (MLP) is a type of NN and one of the most widely used architectures in
deep learning. A MLP consists of at least three layers: an input layer, one or more hidden layers,
and an output layer. Each layer, except for the input, is made up of neurons that apply a non-linear
activation function, allowing the network to learn complex mappings between inputs and outputs.
The network trains by adjusting the weights of these connections through a process called
backpropagation, which minimises a loss function typically using gradient descent. For
classification tasks, the output layer usually contains one node per class %81,

MLPs are highly flexible and can model intricate patterns in clinical datasets. However, they also
come with several challenges. They require large amounts of labelled data to perform well and are
not easily interpretable which can be a disadvantage in clinical settings, where explainability is
important.
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4.5 Model evaluation

This section describes some of the most widely used metrics to assess the performance of
classification models. These metrics are essential for comparing the effectiveness of different
models and for understanding how well a model generalizes to unseen data.

Confusion Matrix (Figure 8): is a fundamental tool for evaluating the performance of classification
models. It provides a summary of the model’'s predictions compared to the real values of the
classes. For binary classification, the confusion matrix consists of four components [59;

- True Positive TP): instances where the model correctly predicts the positive class.

- True Negative (TN): instances where the model correctly predicts the negative class.

- False Positive (FP): instances where the model predicts a positive class, when the actual
class is negative.

- False Negative (FN): instances where the model predicts a negative class, when the
actual class is positive.

For multiclass classification, the confusion matrix is extended to an n x n matrix, where n is the
number of classes. Each row of the matrix represents the actual class, while each column
represents the predicted class. Diagonal elements indicate correct predictions, while off-diagonal
elements correspond to misclassifications 91,

Positive Negative
Positive True Positive False Positive
Negative False Negative = True Negative

Figure 8: Confusion matrix 69,

The confusion matrix not only helps identifying the types of errors made by the model but also
serves as the foundation for deriving several other evaluation metrics [61I;

Accuracy (Acc): represents the proportion of correctly classified instances out of the total number
of instances. Accuracy can be calculated using the following formula (Eq. 3):

Tp + Ty
Acc = 3)
Tp +Ty + Fp + Fy
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Precision (Px): refers to the ratio of correctly predicted positive instances to the total number of
instances that was predicted as positive (Eq. 4).

Tp

P, =
" Tp+ Fp

(4)

Recall (Rc): indicates the proportion of actual positive instances that were correctly identified by
the model (Eq. 5).

Tp

Re =1 P ©
Sensitivity (S»): represents the model’s ability to correctly identify positive cases (Eq. 6).
Tp

Specificity (Sp): measures the proportion of actual negative instances that are correctly identified
by the model (Eq. 7):

T
Sy ="
Ty + Fp

(7)

F-measure: the F1 score is the harmonic mean of precision and recall, providing a balanced
measure of a model’s accuracy identifying positive cases. The highest F score is 1, which indicates
perfect precision and recall score (Eq. 8).

Fle 2 x Precision X Recall )
N Precision + Recall

Area Under the Curve (AUC): quantifies the overall ability of a model to distinguish between
classes across various threshold settings (Eq. 9). Where I, and I,, represent positive and negative

data samples, and R; represents the rating of the ith positive samples ©11.

L+1
X Ri(lp) —1Ip (pT) 9)
I +1,

AUC =

21



[EeS] UNIVERSITATo: Use of Machine Learning and SNOMED CT Encoded Health
) BARCELONA Problems to Predict Hospital Discharge Diagnoses

Cohen’s kappa (k): is frequently used to test interrater reliability. It is a metric that measures the
agreement between two raters or classification models, taking into account the agreement that
could happened by chance (Eq. 10). Where Pr(a) is the observed proportion of agreement, and
Pr(e) is the expected proportion of agreement by chance 621,

_ Pr(a) —Pr(e)

1 —Pr(e) 10)

Matthew’s correlation coefficient (MCC): unlike accuracy, it provides a balanced measure even
if the classes are of very different sizes, making it especially useful for imbalanced datasets (Eq.
11) 1631,

T T Fp)(T5 * Fn) (T ¥ Fo) (T T Py )

451 Validation

To evaluate the generalizability and robustness of the model, appropriate validation strategies must
be employed. These strategies help reduce overfitting and provide a more accurate estimate of
model performance. Below are commonly used validation techniques:

- Hold-Out validation: this strategy involves randomly dividing the dataset into two sets: a
training set and a test set. The model is trained on the training set and evaluated on the
test set. This method is straightforward and computationally efficient, making it suitable for
large datasets. However, its performance estimate can be sensitive to the specific data
split, potentially leading to high variance in model evaluation. This sensitivity can result in
misleading performance metrics, especially when the dataset is small or imbalanced ©41.

- K-Fold Cross-validation: this method addresses the limitations of hold-out validation by
dividing the dataset into k equal-sized folds. The model undergoes k iterations, each time
training on k-1 folds and testing on the remaining fold. This process ensures that every
data point is used for both training and testing, providing a more reliable estimate of model
performance (6],

- Stratified K-Fold Cross-validation: it is an enhancement of k-fold cross-validation that
ensures each fold maintains the same proportion of each class as the entire dataset
(Figure 9). This technique is particularly beneficial for imbalanced datasets, where certain
classes may be underrepresented. By preserving class distribution, this method provides
a more accurate assessment of model performance across all classes 51,

For this project, the stratified k-fold cross validation method is used to ensure each class is
adequately represented in both training and validation phases. This approach enhances the
reliability of performance metrics and the development of models that generalize well.
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Figure 9: Schematic diagram of Stratified K-Fold Cross-validation 661,

4.6 Hyperparameter tuning

Unlike model parameters, which are learned directly from the training data, hyperparameters are
defined externally and play a significant role in model performance. Effective hyperparameter
tuning is a crucial step in developing a robust ML model. Choosing appropriate hyperparameter
values can lead to improvements in model performance, generalization, and computational
efficiency.

Common strategies used for hyperparameter tuning are [671;

- Grid search: this method involves an exhaustive search through a predefined set of
hyperparameter values. While it is simple to implement, it can be computationally
expensive, especially when dealing with many hyperparameters or large datasets.

- Random search: instead of evaluating all possible combinations, this approach explores
random combinations of hyperparameters. This method is ideal when computational
resources are limited.

- Bayesian optimization: this approach uses probabilistic models to estimate the
performance of hyperparameter combinations and then selects the most promising options
to evaluate. It is more efficient than grid or random search but it is more complex to
implement.
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5 DETAIL ENGINEERING

The following section provides a detailed overview of each stage of the project execution. Itincludes
a structured explanation of the methods applied at each step, the final results obtained, and a
discussion of the outcomes.

5.1 Programming environment

All coding for the project was carried out using the Python programming language because of its
versatility, ease of use, and extensive ecosystem of data science libraries. Python is widely used
in data science and ML due to its numerous open-source libraries that streamline the development
of ML models.

Pandas and NumPy were used for data manipulation and numerical operations. For data
visualization, Matplotlib and Seaborn were employed to generate plots and charts that supported
Exploratory Data Analysis, feature selection, and model evaluation.

For the implementation of the various supervised ML models, the PyCaret library was used.
PyCaret is a low-code ML library with an easy-to-use interface that simplifies and automates
various ML workflows, facilitating efficient model development and experimentation [68l,
Additionally, Scikit-learn was employed because of its wide array of tools that support algorithm
implementation, model evaluation, and other essential ML tasks.

Script development was conducted in Jupyter Notebooks, providing an interactive coding
environment for both writing and visualizing code. All project notebooks are available in a GitHub
repository.

5.2 Data pre-processing

As described in Section 4.1, the data used in this study was obtained from the Hospital Clinic de
Barcelona. The dataset consisted of 15 separate files, each containing different clinical and
administrative information. Each file was first imported and then subjected to a series of data pre-
processing steps to ensure the dataset was clean, consistent, and suitable for training ML models.

The initial step involved removing duplicate rows across all files to avoid redundancy. Missing
values were assessed separately for each file. Given the large size of the datasets and the relatively
low proportion of missing data, rows with missing values were removed using the dropna() function.

Due to the high number of columns in each file and the limited computational resources, only the
most relevant features for diagnosis prediction were kept. Non-informative or redundant columns
were dropped to manage dimensionality and focus on clinically meaningful features. Additionally,
to enhance consistency and readability, some columns were also renamed across files.

In certain files, additional columns were generated to improve the dataset's predictive capacity. For
example, an age column was computed using the patient’s date of birth and the date of admission.
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Furthermore, episode and care level durations were also calculated using the timestamps provided
in the episode_events.csv and care_level_events.csv files, respectively.

For the diagnostic_events.csv file, only diagnoses that were not present on admission (poa = 0),
were selected. This filtering was applied to focus on identifying new diagnoses developed during
the hospital stay, rather than pre-existing conditions. Additionally, due to the large number of unique
ICD-10-CM codes, it was necessary to group them into broader diagnostic categories to make the
classification problem more manageable. Instead of predicting individual ICD-10-CM codes,
diagnoses were grouped based on ICD-10-CM chapters, as shown in Table 2 69,

Table 2: ICD-10-CM chapters and corresponding code ranges.

ICD-10-CM Chapter Name Range
Certain infections and parasitic diseases A00 to B99
Tumours (neoplasms) C00 to D49
Disea_ses of the blood arIId bIood-forming organs and disorders D50 to D8Y
affecting the immunological mechanism

Endocrine, nutritional, and metabolic diseases E00 to E89
Mental and behavioural disorders FO1 to F99
Diseases of the nervous system G00 to G99
Diseases of the eye and its appendages HO00 to H59
Diseases of the ear and the mastoid process H60 to H95
Diseases of the circulatory system 100 to 199
Diseases of the respiratory system J00 to J99
Diseases of the digestive system K00 to K95
Diseases of the skin and subcutaneous tissue LOO to L99
Diseases of the musculoskeletal system and connective tissue MO0 to M99
Diseases of the genitourinary system NOO to N99
Pregnancy, childbirth, and the postpartum period 000 to 099
Certain conditions originating in the perinatal period P00 to P96
Congenital malformations, deformities, and chromosomic anomalies Q00 to Q99
Abnormal symptoms, signs, and test results not otherwise classified R0O0 to R99
Injuries, poisonings, and other consequences of external causes S00 to T88
Codes for special purposes (ex: COVID-19) U00 to U99
External causes of morbidity V0O to Y99
Factors influencing health status and contact with health services Z00 to Z99
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Reducing the number of classes to predict offered several advantages, including a more
manageable number of classes for modeling, making it easier to train models, reducing the risk of
overfitting, and enhancing interpretability. Moreover, grouping diagnoses into broader chapters
provided a more balanced class distribution and improved model generalization.

After pre-processing, relevant features from each file were merged into a single unified dataset
using the patient NHC and episode reference identifiers. The resulting dataset contained 1045984
rows and 135 columns. Table 3 shows the distribution of diagnosis counts across the ICD-10-CM
chapters, which was useful for identifying any class imbalances.

Subsequently, an Exploratory Data Analysis (EDA) was performed to better understand the final
dataset structure. This included examining data distributions, identifying data types, and detecting
potential imbalances or biases. The resulting plots are provided in Annex B.

Table 3: Distribution of diagnoses counts across the ICD-10-CM chapters.

ICD-10-CM Chapter Name Count Percentage
Factors influencing health status and contact with health services | 211968 20.26%
Diseases of the genitourinary system 111154 10.63%
Certain infections and parasitic diseases 108634 10.39%
Diseases of the digestive system 93312 8.92%
gl;r;gi;rizzl symptoms, signs, and test results not otherwise 82998 7.93%
Injuries, poisonings, and other consequences of external causes 74850 7.16%
Diseases of the respiratory system 59964 5.73%
Tumours (neoplasms) 55096 5.27%
External causes of morbidity 46363 4.43%
Diseases of the circulatory system 40953 3.92%
Endocrine, nutritional, and metabolic diseases 33772 3.23%
gr?gr?;rl}:l malformations, deformities, and chromosomic 20363 2.81%
Mental and behavioural disorders 16418 1.57%
Diseases of the nervous system 12700 1.21%
Diseases of the musculoskeletal system and connective tissue 8305 0.79%
Diseases of the skin and subcutaneous tissue 6767 0.65%
Codes for special purposes (ex: COVID-19) 3515 0.34%
Diseases of the eye and its appendages 585 0.06%
Pregnancy, childbirth, and the postpartum period 525 0.05%
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5.3 Feature selection

Before performing feature selection, all categorical variables were encoded using appropriate
techniques. Specifically, ordinal variables were encoded using label encoding via the LabelEncoder
function in sklearn.preprocessing, ensuring that the natural order was maintained. As for nominal
categorical variables, one-hot encoding was applied using the OneHotEncoder function to avoid
introducing any ordinal relationships.

Following the encoding step, feature selection was carried out to identify the most relevant features
for the classification tasks and generate different subsets for model evaluation. As discussed in
Section 4.3, there are various methods for feature selection, for this project, two approaches were
used. The first method involved tree-based feature importance, while the second used univariate
statistical selection through the ANOVA F-test.

For the tree-based method, an ensemble of decision trees was constructed using the
ExtraTreesClassifier class from sklearn. This algorithm builds an ensemble of 100 randomized
trees, each trained on random subsets of the data which helps improve generalization and reduce
overfitting. Once the model was trained, feature importance scores were extracted using the
feature_importances_ attribute. These importance scores measures each feature’s contribution to
reducing impurity in the classification trees. The top 20 features, ranked from most to least
important, are presented in Figure 10.

The second method applied was a univariate feature selection using the ANOVA F-test. In this
method, each feature was individually evaluated for its statistical significance in relation to the target
diagnosis variable. The SelectKBest function, using the F-score metric, selected the top 20 features
with the highest discriminatory power, as shown in Figure 11.

Both methods produced ranked lists of important features. Detailed results and visualizations for
both methods can be found in Annex C.
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Figure 10: Top 20 most important features based on Decision Trees.
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Figure 11: Top 20 most important features based on ANOVA F-test.

5.3.1 Definition of the subsets

To optimise classification performance and evaluate the impact of different groups of features,
several subsets were generated by combining various input variables. Each subset represents a
specific selection of features, based on the results of the feature selection methods described
earlier.

Table 4 provides an overview of the different subsets generated along with the number of variables
in each of them. A comprehensive list of all variables included in each subset can be found in Annex
D.

Table 4: Description of the different subsets and the num.

Subset Description ":Il::i':;re:f
Subset 1 Dataset with all the features 134
Subset 2 Dataset with the top 20 featured based on decision trees 20
Subset 3 Dataset with the top 10 featured based on decision trees 10
Subset 4 Dataset with the top 20 featured based on ANOVA test 20
Subset 5 Dataset with the top 10 featured based on ANOVA test 10
Subset 6 Dataset \{vilth only the features that appear in both the top 20 1
from decision trees and ANOVA test
Subset 7 t[r):(t:;saert] ;v:f\t;\%lvtzet ;zﬁtures from the top 20 of both decision 29
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5.4 Supervised Machine Learning model selection

After defining the different subsets, the next step was to perform model selection for each subset.
As outlined in Section 4.4, a range of supervised ML models were considered. To identify the model
that delivered the best performance for each subset, a comparative analysis of the different models
was conducted using PyCaret, a library that automates various ML workflows, enabling efficient
model development, comparison, and tuning.

The model selection process began with the use of the setup() function, which initializes the
experiment within PyCaret and establishes the transformation pipeline according to the parameters
provided. During this step, the data is also split into training (70%) and testing (30%) sets.

Subsequently, the compare_models() function from the Pycaret library was employed to train and
evaluate the selected estimators. This function performs a 10-fold stratified cross-validation,
providing a robust estimate of the model’s performance while preserving the class distribution in
each fold, which is an important consideration when handling imbalanced datasets.

The output is a ranked table of models with their corresponding average performance metrics
across folds. The following tables summarize the comparative performance results of various ML
models evaluated on the different subsets.

Table 5: Performance of various ML models on Subset 1.

Model Accuracy AUC Recall  Precision F1 Kappa MCC

DT 0.6602 08137  0.6602 0.6603 06602  0.6238  0.6238
XGBoost | 0.4619 09076  0.4619 0.4709 04639 04085  0.4089
KNN 0.3046 0.7567  0.3046 0.3132 03053  0.2318  0.2323
MLP 0.2026 0.5000  0.2026 0.0411 0.0683  0.0000  0.0000
LR 0.2005 0.0000  0.2005 0.0409 0.0679  -0.0019  -0.0136
SVM 0.0685 0.0000  0.0685 0.0107 0.0136  0.0000  0.0007

Table 6: Performance of various ML models on Subset 2.

Model Accuracy AUC Recall  Precision F1 Kappa MCC

DT 0.6627 08175  0.6627 0.6632 06629  0.6267  0.6267
XGBoost | 0.4538 0.9063  0.4538 0.4662 04569 04003  0.4008
KNN 0.3280 0.7748  0.3280 0.3359 03287  0.2575  0.2580
MLP 0.2026 0.5000  0.2026 0.0411 0.0683  0.0000  0.0000
LR 0.2005 0.0000  0.2005 0.0409 0.0679  -0.0019  -0.0137
SVM 0.1186 0.0000  0.1186 0.0176 0.0301 0.0000  -0.0002
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Table 7: Performance of various ML models on Subset 3.

Model Accuracy AUC Recall  Precision F1 Kappa MCC

XGBoost | 0.2823 0.8387  0.2823 0.2833 02769 02107  0.2114
RF 0.2710 0.8038  0.2710 0.2688 02688  0.1926  0.1928
DT 0.2707 0.7866  0.2707 0.2737 02693  0.1937  0.1941
KNN 0.2596 0.7178  0.2596 0.2694 02608  0.1830  0.1836
MLP 0.2026 0.5000  0.2026 0.0411 0.0683  0.0000  0.0000
LR 0.2003 0.0000  0.2003 0.0411 0.0679  -0.0020  -0.0137
SVM 0.0803 0.0000  0.0803 0.0121 0.0188  0.0001  -0.0002

Table 8: Performance of various ML models on Subset 4.

Model Accuracy AUC Recall  Precision F1 Kappa MCC

DT 0.4429 0.9052  0.4429 0.4431 04427  0.3840  0.3841
RF 0.4429 0.9056  0.4429 0.4417 04420  0.3837  0.3837
XGBoost | 0.4282 0.9024  0.4282 0.4428 04323 03725  0.3731
KNN 0.3288 0.7588  0.3288 0.3411 03306  0.2585  0.2593
MLP 0.2026 0.5000  0.2026 0.0411 0.0683  0.0000  0.0000
LR 0.2008 0.0000  0.2008 0.0410 0.0680  -0.0016  -0.0128
SVM 0.0806 0.0000  0.0806 0.0114 0.0194  0.0002  0.0004

Table 9: Performance of various ML models on Subset 5.

Model Accuracy AUC Recall  Precision F1 Kappa MCC

RF 0.4014 0.8985  0.4014 0.4455 0.4004  0.3450  0.3478
XGBoost | 0.4014 0.8985  0.4014 0.4407 03975 03445  0.3474
DT 0.4013 0.8985  0.4013 0.4458 04006  0.3453  0.3481
KNN 0.3960 0.7831 0.3960 0.4836 04070 03385  0.3437
MLP 0.3869 0.8854  0.3869 0.4818 03779 03219  0.3287
LR 0.2588 0.0000  0.2588 0.1901 01916  0.1249  0.1409
SVM 0.2009 0.0000  0.2009 0.2018 0.1600  0.1068  0.1206

30



- UNIVERSITAT e Use of Machine Learning and SNOMED CT Encoded Health
u BARCELONA Problems to Predict Hospital Discharge Diagnoses

Table 10: Performance of various ML models on Subset 6.

Model Accuracy AUC Recall  Precision F1 Kappa MCC

DT 0.4422 0.9050  0.4422 0.4424 04420 0.3832  0.3833
RF 0.4422 0.9054  0.4422 0.4410 04413 03829  0.3829
XGBoost | 0.4268 0.9021 0.4268 0.4413 0.4311 03710  0.3716
KNN 0.4099 0.8032  0.4099 0.4242 04137  0.3479  0.3486
MLP 0.2026 0.5000  0.2026 0.0411 0.0683  0.0000  0.0000
LR 0.2004 0.0000  0.2004 0.0409 0.0679  -0.0020  -0.0151
SVM 0.0980 0.0000  0.0980 0.0155 0.0261 0.0002  0.0004

Table 11: Performance of various ML models on Subset 7.

Model Accuracy AUC Recall  Precision F1 Kappa MCC

DT 0.6644 08185  0.6644 0.6648 06646  0.6286  0.6286
XGBoost | 0.4555 0.9065  0.4555 0.4675 04584  0.4002  0.4027
KNN 0.3360 0.7811 0.3360 0.3448 03369  0.2662  0.2668
MLP 0.2026 0.5000  0.2026 0.0411 0.0683  0.0000  0.0000
LR 0.2007 0.0000  0.2007 0.0410 0.0679  -0.0017  -0.0122
SVM 0.1186 0.0000  0.1186 0.0176 0.0301 0.0000  -0.0022

After evaluating the performance of the various ML models, the best model for each subset was
selected based on overall performance metrics. In general, ensemble-based models such as
decision trees, random forest, and XGBoost were the top performers, this is most likely because of
their ability to capture complex non-linear relationships and interactions within the data.

The final selected models for each subset are summarized in Table 12.

Table 12: Final model selected for each subset.

Subset Selected model
Subset 1 Decision trees
Subset 2 Decision trees
Subset 3 XGBoost
Subset 4 Decision trees
Subset 5 Random Forest
Subset 6 Decision trees
Subset 7 Decision trees
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5.5 Hyperparameter tuning

Following the initial training and evaluation of the best performing model for each data subset, a
hyperparameter tuning process was conducted to identify the best combination of hyperparameter
values that maximize model performance. This tuning was performed using PyCaret’s
tune_model() function, which by default employs RandomGridSearch. This method efficiently
explores a wide range of hyperparameter combinations by sampling randomly from specified
distributions. However, in cases where the default random grid search did not lead to performance
improvements, a more targeted and exhaustive tuning approach was conducted using
GridSearchCV from sklearn. This allowed the evaluation of specific hyperparameter combinations
based on a custom-defined parameter grid.

For decision tree models, the key hyperparameters considered during tuning included:

- criterion: it determines the function used to evaluate the quality of a split.

- max_depth: limits the maximum depth of the tree to prevent overfitting.

- min_samples_leaf: specifies the minimum number of samples required to be present at
a leaf node.

- min_samples_split. sets the minimum number of samples needed to split an internal
node.

As for random forest, the key parameters included:

- criterion: it works similarly to the one used in decision trees.

- max_depth: limits tree depth to reduce overfitting.

- n_estimators: is the number of trees in the forest. Increasing this value generally improves
model performance and stability but has a higher computational cost.

Finally, for XGBoost models, the primary hyperparameters tuned were:

- learning_rate: also known as eta, controls the step size at each boosting iteration.
- max_depth: influences the complexity of each individual tree.
- n_estimators: defines the number of boosting rounds.

The following tables compare the performance metrics of the selected models for each subset
before and after hyperparameter tuning.

Table 13: Performance of DT model on Subset 1 before and after hyperparameter tuning.

Accuracy AUC Recall  Precision F1 Kappa MCC

Before ‘ 0.6602 0.8137  0.6602 0.6603 06602  0.6238  0.6238
After ‘ 0.6602 0.8137  0.6602 0.6603 06602  0.6238  0.6238
‘ 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000
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Table 14: Performance of DT model on Subset 2 before and after hyperparameter tuning.

Accuracy AUC Recall  Precision F1 Kappa MCC
Before ‘ 0.6627 0.8175  0.6627 0.6632 06629  0.6267  0.6267
After ‘ 0.6694 0.8213  0.6694 0.6699 06696  0.6341 0.6341

‘+0.0067 +0.0038  +0.0067  +0.0067  +0.0067 +0.0074  +0.0074

Table 15: Performance of XGBoost model on Subset 3 before and after hyperparameter tuning.

Accuracy AUC Recall  Precision F1 Kappa MCC
Before ‘ 0.2823 0.8387 0.2823 0.2833 0.2769 0.2107 0.2114
After ‘ 0.2875 0.8398 0.2875 0.2888 0.2827 0.2156 0.2164
‘ +0.0052  +0.0011  +0.0052  +0.0055  +0.058  +0.0049  +0.0050
Table 16: Performance of DT model on Subset 4 before and after hyperparameter tuning.
Accuracy AUC Recall  Precision F1 Kappa MCC
Before ‘ 0.4429 0.9052 0.4429 0.4431 0.4427 0.3840 0.3841
After ‘ 0.4429 0.9052 0.4429 0.4432 0.4427 0.3840 0.3841
‘ 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
Table 17: Performance of RF model on Subset 5 before and after hyperparameter tuning.
Accuracy AUC Recall  Precision F1 Kappa MCC
Before ‘ 0.4014 0.8985 0.4014 0.4455 0.4004 0.3450 0.3478
After ‘ 0.4015 0.8985 0.4015 0.4463 0.4002 0.3449 0.3476
‘ +0.0001 0.0000  +0.0001  +0.0008  -0.0002  -0.0001  -0.0002
Table 18: Performance of DT model on Subset 6 before and after hyperparameter tuning.
Accuracy AUC Recall  Precision F1 Kappa MCC
Before ‘ 0.4422 0.9050 0.4422 0.4424 0.4420 0.3832 0.3833
After ‘ 0.4422 0.9050 0.4422 0.4424 0.4420 0.3832 0.3833
‘ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 19: Performance of DT model on Subset 7 before and after hyperparameter tuning.

Accuracy AUC Recall  Precision F1 Kappa MCC
Before ‘ 0.6644 0.8185  0.6644 0.6648 06646  0.6286  0.6286
After ‘ 0.6698 0.8215  0.6704 0.6704 0.6700  0.6346  0.6346
‘ +0.0054  +0.0030 +0.0060  +0.0056  +0.0054  +0.0060  +0.0060

As shown in the performance comparison tables, the models trained on Subsets 2, 3, and 7
demonstrated the most significant improvements after hyperparameter tuning. This suggest that
these subsets contained feature combinations particularly sensitive to parameter optimization,
allowing the models to better capture underlying patterns in the data. In contrast, the remaining
subsets showed only small improvements, indicating that either the default hyperparameters were
already nearly optimal or that the feature combinations were less complex, and thus offering limited
room for improvement.

Table 20 presents the best performing hyperparameter values identified for each subset.

Table 20: Best hyperparameter values for each subset.

Subset Best hyperparameters

criterion = "entropy’
max_depth = None

Subset 1 . =
min_samples_leaf = 1
min_samples_split = 2

criterion = ‘log_loss’

Subset 2 max_depth = None

min_samples_leaf = 1
min_samples_split = 2

colsample_bytree = 0.9
learning_rate = 0.15

Subset 3 max_depth =7

min_child_weight = 3
n_estimators = 290

criterion = "entropy’

max_depth = None
min_samples_leaf = 1
min_samples_split = 2

Subset 4
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criterion = gini
Subset 5 max_depth =15
n_estimators = 300

criterion = entropy’
max_depth = None

Subset 6 : -
min_samples_leaf = 1
min_samples_split = 2

criterion = ‘log_loss’

Subset 7 max_depth = None

min_samples_leaf = 1
min_samples_split = 2

5.6 Model testing

After optimizing and tuning the hyperparameters for each model, the final step was to evaluate the
model’s performance on the unseen test set. This step provides a realistic estimate of how the
model would perform in a real-world setting.

To carry out this step, the predict_model() function in PyCaret was used. This function applies the
final tuned model to the previously split test set and computes key performance metrics. These
metrics provide a comprehensive view of the model’s ability to correctly classify patient diagnoses
across multiple classes.

Table 21 presents the final performance metrics for each subset, organized by best overall
performance.

Table 21: Performance results on the test set. Ranked by best overall performance.

Accuracy AUC Recall  Precision F1 Kappa MCC
Subset1 | 0.6895 0.8303  0.6895 0.6898 06896  0.6564  0.6564
Subset7 | 0.6889 0.8327  0.6889 0.6895 0.6891 0.6556  0.6556
Subset2 | 0.6875 0.8320  0.6875 0.6881 0.6878  0.6541 0.6541
Subset6 | 0.4446 0.9054  0,4446 0.4433 04437  0.3856  0.3856
Subset4 | 0.4453 0.9056  0.4453 0.4441 04444  0.3864  0.3865
Subset5 | 0.4032 0.8985  0.4032 0.4500 0.3991 0.3457  0.3484
Subset3 | 0.2879 0.8398  0.2879 0.2901 0.2834  0.2164  0.2171
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5.7 Results and discussion

After evaluating the final models on the test set, a clear performance distinction can be observed
across the different subsets. Subsets 1, 7, and 2 show the best overall performance, achieving an
average accuracy of approximately 68.9%, with similar recall, precision, and F1-scores. These
subsets also achieved the highest Cohen’s Kappa and Matthew’s Correlation Coefficient (MCC)
scores, indicating strong agreement beyond chance and balanced performance across multiple
classes. These results suggest that the feature combinations in Subsets 1, 7, and 2 provide a well-
balanced and informative representation of the patient data, enabling the models to generalize
effectively on unseen cases.

Subsets 6, 4, and 5 achieved significantly lower performance, with accuracy values around 40% to
44%. However, they recorded very high AUC values, indicating that while the model was able to
rank classes well, its final classification thresholds may not have been optimal, possibly due to
class imbalance. This discrepancy between AUC and classification metrics suggest the potential
benefit of threshold calibration or cost-sensitive learning in future work.

Subset 3, despite requiring XGBoost, one of the most complex models, has shown the lowest
performance metrics. This poor performance indicates that the feature selection of this subset. Did
not provide enough discriminatory power, or that the complexity of the model may have led to
overfitting during training and poor generalization.

To further analyse the results, several plots were generated, including confusion matrices,
classification reports, and feature importance visualizations. Together, they provide a clearer
understanding of which classes are most accurately predicted, where misclassifications occur, and
which features contribute most to the predictions.

An analysis of the confusion matrix (Figure 12) and the classification report (Figures 13) for Subset
1 reveals significant variation in the model's predictive performance across different classes.
Specifically, certain classes like Class 14 and Class 8 exhibit high precision and recall, indicating
strong predictive reliability. In contrast, other classes, like Class 2 and Class 3, are frequently
misclassified. This suggest that the model struggles to learn their distinct features.

This discrepancy is not coincidence, instead, it reflects a clear correlation between class distribution
and model performance. As shown in Table 22, classes with a higher number of samples tend to
achieve better classification outcomes, whereas classes with fewer samples are more susceptible
to error. This imbalance introduces bias into the model, making it more likely to favour majority
classes.

For this reason, addressing class imbalance during data pre-processing is essential. Future
improvements could include the use of resampling methods such as Synthetic Minority Over-
sampling Technique (SMOTE), generating synthetic data, or incorporating class-weighted loss
functions during training. These methods can help the model learn meaningful patterns across all
classes and improving overall performance.
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Figure 12: Confusion matrix for DT model of Subset 1.
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Figure 13: Classification report for DT model of Subset 1.
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Table 22: Model assigned class numbers and corresponding ICD-10-CM chapter.

Class ICD-10-CM Chapter Name Count Percentage

14 Factprs influencing health status and contact with health 211968 20.26%
services

9 Diseases of the genitourinary system 111154 10.63%

1 Certain infections and parasitic diseases 108634 10.39%

8 Diseases of the digestive system 93312 8.92%

17 Abno.rrlnal symptoms, signs, and test results not otherwise 82998 7939
classified

15 Injuries, poisonings, and other consequences of external 74850 716%
causes

12 | Diseases of the respiratory system 59964 5.73%

19 | Tumours (neoplasms) 55096 5.27%

5 Diseases of the blood and blood-forming organs and

0,
disorders affecting the immunological mechanism e 4.66%

0 External causes of morbidity 46363 4.43%
7 Diseases of the circulatory system 40953 3.92%
13 | Endocrine, nutritional, and metabolic diseases 33772 3.23%
16 aCr(l)gr?]Zﬂgzl malformations, deformities, and chromosomic 99363 2 81%
18 | Mental and behavioural disorders 16418 1.57%
11 Diseases of the nervous system 12700 1.21%

Diseases of the musculoskeletal system and connective

10 . 8305 0.79%
tissue

4 Diseases of the skin and subcutaneous tissue 6767 0.65%

2 Codes for special purposes (ex: COVID-19) 3515 0.34%

6 Diseases of the eye and its appendages 585 0.06%

3 Pregnancy, childbirth, and the postpartum period 925 0.05%

The main objective of this project was to investigate whether health problems coded in SNOMED
CT (snomed_code variable) can effectively serve as predictors for discharge diagnoses coded in
ICD-10-CM. Additionally, the project also aimed to identify the most important input features to
predict discharge diagnoses.

To explore this, features importance plots from the models obtained from Subsets 1, 7 and 2 were
computed. These plots provide insight into the relative contribution of each variable to the predictive
performance of the trained models. For additional performance plots across all subsets, please
refer to Annex E.
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Figure 14 shows the top 10 most important features from the model trained on Subset 1. As we
can see the snomed_code variable ranked 9%, out of a total of 135 variables in the subset. In
comparison, Figure 15, which corresponds to Subset 2, shows that snomed_code ranked 12t
Lastly, Figure 16, which represents Subset 7, places snomed_code at 15t in importance. This
consistency suggest that while snomed_code is not one of the top predictors, it consistently
appears across all subsets, indicating moderate importance. Although it is not the most influential
predictor on its own, it still provides valuable information for predicting final diagnoses and performs
best when combined with other clinical and demographic features.
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Figure 14: Top 10 most important features from DT model on Subset 1.
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Figure 15: Feature importance from DT model on Subset 2.
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Figure 16: Feature importance from DT model on Subset 7.

From the feature importance plots, we can see that several variables were repeatedly ranked highly
across all three models. This suggest their strong relevance in predicting discharge diagnoses:

- age: could reflect age-related comorbidities and disease patterns.

- drg_ref. represents Diagnosis Related Group reference, which are clinically grouped
conditions used mainly for billing and reimbursement purposes.

- episode_duration: may correlate with illness severity or complexity of treatment.

- diag_class_ref_S: diagnosis classification level.

- lab_result_num_mean: average lab test results.

- adm_drug_dose_mean: average drug administration dose.

- drg_mdc_ref: Major Diagnostic Category (MDC)

- care_level_duration: length of the care level.

Some factors that could explain why snomed_code did not emerge as one of the top predictors for
ICD-10-CM discharge diagnoses are:

- Granularity and mapping challenges: as explained in Section 2, SNOMED CT codes
are highly granular and capture detailed clinical information. However, the target variable,
corresponds to a broader diagnostic category. The inherent complexity of mapping detailed
SNOMED CT concepts to generalized ICD-10 codes introduces limitations.
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- Variation in coding practices: in the clinical setting, healthcare professionals have not
consistently recorded health problems in SNOMED CT unless required. As a result, there
is a bias, there are diagnostics with more complete SNOMED CT coding.

- Lack of standardized use among clinicians: many users, are not yet fully trained or
incentivised to systematically document health problems using SNOMED CT. This results
in underreporting or inconsistent coding, which reduces the completeness and reliability of
the variable across the dataset.

5.7.1 Limitations

This section highlights the primary limitations encountered during the project. Acknowledging these
challenges is important in order to effectively inform and direct future research efforts.

The first challenge encountered is the dataset size and complexity. Handling data from 15 different
files, each containing different types of clinical information, required significant effort in terms of
cleaning, processing, and merging. Clinical datasets are inherently messy, often containing
incomplete records, and variables that are difficult to interpret without expert knowledge.
Additionally, healthcare data is subject to a wide range of biases, including missing data, errors in
coding, and discrepancies between clinical observations and final diagnoses. Despite rigorous pre-
processing, some noise and inconsistency likely remained in the data.

Another significant challenge was the imbalance of diagnostic categories in the dataset. Some ICD-
10-CM chapters were heavily represented, while others appeared infrequently. This imbalance can
lead ML models to favour majority classes and reducing sensitivity to less frequent diagnoses.
Although multiclass classification metrics such as AUC and F1-score were used, class imbalance
likely affected overall generalizability and may have contributed to biased predictions.

Finally, processing and analysing high-dimensional healthcare data, especially during pre-
processing, model training and hyperparameter tuning, was computationally intensive. While
PyCaret streamlined much of the workflow, the underlying algorithms, particularly ensemble
methods like random forest and XGBoost, still demanded substantial memory and processing time.
These limitations restricted the number of experiments that could be conducted, for example, during
hyperparameter grid search, potentially narrowing the optimization of the model’s performance.
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6 EXECUTION SCHEDULE

Use of Machine Learning and SNOMED CT Encoded Health
Problems to Predict Hospital Discharge Diagnoses

6.1 Work Breakdown Structure

The Work Breakdown Structure (WBS) is a project management tool that breaks down a project
into smaller, more manageable components. It provides a structured overview of the fundamental
elements required for a successful execution of the project. In this case, the WBS is divided into
four main sections: project preparation, data pre-processing, Machine Learning models, and project
report. Each of these sections is further divided into specific tasks to provide a detailed
understanding of the project workflow. Figure 17 illustrates the activities included in each of the
main sections. A detailed description of these individual tasks, along with their estimated durations,
is provided below.

Use of Machine Learning and SNOMED CT Encoded

Health Problems to Predict Hospital Discharge Diagnoses

Data Project

Report

Project

Preparation Pre-processing

—1| Project planning Data —| Model selection —{ Introduction
pre-processing

— Literature review ——| Model training —{ Background
Exploratory Data
Analysis

Machine — Model evaluation — Market analysis

Learning theory

! Feature selection

i Data acquisition

42

Hyperparameter
tuning

Model testing

Results and
discussion

Concept
engineering

Detail
engineering

Execution
schedule

|

Technical and
economic
viability

Regulations and
legal aspects

Conclusions and
future steps

Figure 17: Work Breakdown Structure (WBS) diagram of the project.
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6.1.1 WBS dictionary

Table 23: WBS dictionary for “Project Preparation” stage.

1.1 | Project planning Duration: 7 days

During this phase, the key activities required to complete the project are identified, and a clear
and structured work methodology is established. With the help of the tutors of the project, the
project’'s goals and scope are also defined. These goals have to be realistic, specific, and
achievable within the given timeframe and resource constraints.

1.2 | Literature review Duration: 14 days

A comprehensive literature review is conducted to gather relevant information and insights about
the project. This includes performing background research to understand the theorical
foundations of the project, researching previous works, and analysing the current state of the art
in the field. Alongside this, a market analysis is performed to explore current trends, potential
applications, and future opportunities related to the project. To manage and organize all the
consulted sources efficiently, the reference management software Mendeley was used.

1.3 | Machine Learning theory Duration: 14 days

Reviewing the theoretical background of Machine Learning algorithms relevant to the project by
researching various ML models and studying their fundamental concepts and principles.

1.4 | Data acquisition Duration: 58 days

Ask the project’s director for the data and analyse and understand its structure and content. It
involves reviewing the data format, identifying key features, and consulting with the tutor to clarify
the meaning of various columns and how to properly handle them during data pre-processing.

Table 24: WBS dictionary for “Data Pre-processing” stage.

Data Pre-processing

21 | Data pre-processing Duration: 61 days

Preparing the data for analysis. This step includes, identifying missing values applying
normalization or scaling techniques if necessary to avoid introducing inaccuracies or bias. The
goal is to ensure the final dataset is clean, consistent, and ready for analysis and model training.

2.2 | Exploratory Data Analysis Duration: 3 days

Conducting an Exploratory Data Analysis (EDA) to understand the main characteristics of the
dataset and examine how each variable behaves. This step involves applying data visualization
techniques to identify trends, relationships, and potential correlations.

2.3 | Feature selection Duration: 21 days

Identifying and selecting the most relevant features that contribute to the predicting the final
diagnosis. This step involves applying different feature importance techniques to eliminate or
reduce irrelevant columns.
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Table 25: WBS dictionary for “Machine Learning Models” stage.

3 ‘ Machine Learning Models

3.1 | Model selection Duration: 7 days

Identifying and selecting the most appropriate ML models. This step involves comparing different
models and their performances. This helps determine which model gives best results keeping in
mind the objectives of the project.

3.2 | Model training Duration: 9 days

Training the selected model using the training set of the dataset. This step allows the algorithm
to learn the patterns and relationships between the input features and the target variable.

3.3 | Model evaluation Duration: 5 days

Asses the performance of the model using different performance metrics such as accuracy,
AUC, recall, precision, or F1 score. This step helps assess how well the model performs.

3.4 | Hyperparameter tuning Duration: 7 days

Optimizing the model’'s predictive performance and results by adjusting the hyperparameters
through different techniques such as random search or grid search. The objective of this step is
to find the best combination of parameters that improve the model’s performance.

3.5 | Model testing Duration: 7 days

Evaluate the final model on a testing set to evaluate its real-world performance. This provides
an unbiased assessment of how well the model generalized to unseen data and confirms the
robustness of the model.

3.6 | Results and discussion Duration: 7 days

Present and summarize the model's results, highlighting the key findings and performance
outcomes. This step also provide an analysis of the results by discussing the limitations of the
project, interpret the implications of the results, and reflect on what could be improved.

Table 26: WBS dictionary for “Project Report” stage.

4 ‘Project Report
41 | Introduction Duration: 7 days

Write the introduction section of the project by describing the motivation behind the project,
defining the clear objectives and scope, and provide an overview of the methodology used to
carry out the project.

4.2 | Background Duration: 14 days

Overview of the theorical foundations necessary to understand the context of the project. It
involves summarizing key concepts and developments related to the project as well as
identifying current challenges, and limitations of ML in predicting discharge diagnoses.
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4.3 | Market analysis Duration: 7 days

Analyse the healthcare market sector by identifying the target market and potential customers.
This section also involves a discussion of future perspectives, emerging trends, and
opportunities that could arise in this sector.

4.4 | Concept engineering Duration: 19 days

Description and evaluation of the different methods that could be used to achieve the project
objectives. This section includes outlining different approaches considered and explaining the
reasoning behind the chosen method.

4.5 | Detailed engineering Duration: 28 days

Describe the practical implementation of the project, detailing the steps taken during the project,
such as data handling, feature selection, model selection, model training, model evaluation,
hyperparameter tuning, model testing, and the generation of results.

4.6 | Execution schedule Duration: 7 days

Develop an execution schedule that includes a PERT diagram to identify critical activities that
must not be delayed, and a GANTT diagram to keep track of the activities that need to be
completed throughout the project.

4.7 | Technical and economic viability Duration: 4 days

Assess the project’s technical and economic viability. This step includes the development of a
SWOT analysis to identify strengths, weaknesses, opportunities, and threats, as well as an
evaluation of the project’s costs.

4.8 | Regulations and legal aspects Duration: 3 days

Review relevant regulations, standards, and legal considerations that may affect the project. This
step also aims to identify any potential legal challenges associated with the project.

4.9 | Conclusions and future steps Duration: 7 days

Write and summarize the key findings and outcomes of the project. This section discusses the
lessons learned, limitations encountered, and proposed possible future steps or work to further
improve the project.
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6.2 Program Evaluation and Review Technique

The Program Evaluation and Review Technique (PERT) is a tool used in project management
designed to analyse and map out the tasks needed to complete a project. In Table 27, the list of all
project activities, dependencies, and the estimated duration is represented. Based on this
information, a PERT chart is generated (Figure 18), where each task is represented by an arrow,
and the connecting points, also known as nodes, indicate key project milestones. The top number
in each node is its ID, while the bottom numbers represent time metrics: the left number is the
earliest possible start time (t early), and the right number, is the latest acceptable finish time (t last)
for preceding tasks without causing project delays. The critical path, highlighted in purple, refers to
the set of tasks where the margin for delay is zero, meaning that the earliest start and the latest
finish time is the same. Any delay in these tasks will result in a delay in the entire project.

Table 27: Activity table for the PERT diagram.

ID | Activity name Dependencies Duration (days)
A | Project planning - 7
B | Literature review A 14
C | Machine Learning theory B 14
D | Data acquisition - 28
E | Data pre-processing D 61
F | Exploratory Data Analysis E 3
G | Feature selection F 21
H | Model selection G 7
| | Model training H 9
J | Model evaluation I 5
K | Hyperparameter tuning J 7
L | Model testing K 7
M | Results and discussion L 7
N | Introduction A 7
O | Background B 14
P | Market analysis B 7
Q | Concept engineering C 19
R | Detail engineering Q 28
S | Execution schedule A 7
T | Technical and economic viability R 4
U | Regulations and legal aspects R 3
V| Conclusions and future steps M,T,U 7
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Figure 18: PERT diagram of the project.
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6.3 GANTT diagram

A GANTT diagram is a visual project management tool that outlines the timeline of tasks and milestones involved in completing a project. It shows the start and
end dates for each activity involved.

The project took place from October 2024 to May 2025. The first months were dedicated to bibliographic research and a review of ML theory. After acquiring the
data, the focus of the project shifted towards developing the model. As it can be seen in Figure 19, a significant portion of that time was dedicated to signal pre-
processing, reflecting its crucial role in ensuring the success of subsequent steps.
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Figure 19: GANTT diagram of the project.
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To evaluate the technical viability of the project, a SWOT analysis is conducted (Table 28). This
approach helps to identify the strengths, weaknesses, opportunities, and threats related to the
project’s technical aspects, allowing for an assessment of both internal and external factors that
may impact its success.

By analysing the strengths, we aim to emphasize the project’s technical expertise, valuable assets,
and unique resources that provide a strategic advantage over competitors. Identifying these
strengths allow us to understand what differentiates the project and contributes to its success.

On the other hand, identifying weaknesses allow us to uncover internal challenges and resources
limitations that may hinder the project’s development or performance. Early recognition of these
limitations allows for focused improvements to prevent possible setbacks.

In the opportunities section, external trends, market changes and developments, and technological
innovations that the project can capitalize on to enhance growth are examined. This analysis helps
position the project to take advantage of emerging possibilities.

Finally, the threats evaluation addresses external risks, such as competitive pressures, regulatory
changes, or technological disruptions, which could undermine the project’s technical feasibility.
Acknowledging these threats support strategic planning to reduce their potential impact.

Table 28: SWOT analysis of the project.

Strengths Weaknesses
- The dataset is large and contains - Imbalance and largeness of the
multiple diverse features. dataset.
- Knowledge on ML and Python. - Complexity constraints.

Use of automated libraries like
PyCaret that facilitate model
development and optimization.
Uncover complex patterns in clinical
data.

Opportunities

Growing market for diagnosis
prediction.

Advancements in Al and ML
present opportunities to enhance
accuracy and efficiency of
predictive models.

Integration with clinical workflows.

- Limited computational resources
- Limited personal experience.
- Limited interpretability

Threats

- Data privacy and security.

- Compliance with legal and ethical
standards.

- Regulatory approval.

- Bias and fairess.
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8 ECONOMIC VIABILITY

The economic viability of the project is evaluated by examining the three main components required
for its successful execution: data, technical resources, and human resources.

The dataset used in this study was provided by the Hospital Clinic de Barcelona, so there was no
data acquisition cost. However, maintaining access to such clinical data typically involves
administrative efforts and potential expenses related to data governance, privacy compliance, and
security measures.

As for technical resources, the project was carried out using a personal computer. The computer
used required sufficient processing power and memory to handle data pre-processing, model
training, and evaluation. Using open-source software libraries such as PyCaret and Scikit-learn
helped minimize software licensing costs. However, advanced ML workflows, especially with larger
datasets or more complex models, may require investment in high-performance computing
resources or cloud services, which could increase operational costs.

Finally, regarding the human resources, the project team consisted of the principal researcher, me,
and the supervising tutor and project director. The human resources were estimated according to
the salary of a Biomedical Engineer graduate salary.

Table 29 shows an estimation of the project costs.

Table 29: Estimation of the project costs.

Description Quantity Estimated cost
Data Data acquisition 1 0€
Technical Personal computer 1 800 €
resources ' vjsyal Studio Code 1 0€
Human Biomedical engineer 1(400 h) 8.40 €/hour
resources ' project manager 1 (8 months) 2000 €/month
TOTAL 20160 €
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9 REGULATIONS AND LEGAL ASPECTS

The implementation of ML in healthcare require careful consideration of various legal, ethical, and
regulatory frameworks, especially when working with sensitive clinical data. This section outlines
the regulatory challenges that must be considered.

9.1 Data protection and patient privacy

The dataset used in this study consist of real patient data obtained from the Hospital Clinic de
Barcelona. As such, strict adherence to data protection regulations was essential. This study was
approved by the Ethical comity of the hospital (see Annex A) and all patient identifiable information
was removed or anonymized before data processing to ensure privacy. Additionally, access to the
dataset was restricted to authorized individuals involved in the project.

9.2 Ethical considerations

Data was used solely for research and model development, with no clinical decisions or
interventions based on the predictions. However, the models used in the project learn from the
input data and, as a result, may also reflect any inherent biases present within that data.

No direct interaction with patients or medical interventions occurred during the study, so no
additional ethical approval was required. However, future applications of these models in a real-
world clinical setting would require approval from a clinical ethics board.

9.3 Maedical device regulation

The models generated in this project are intended solely for research purposes. However, if this
was to be applied into a clinical decision support system, several regulatory and legal aspects
would need to be addressed. Under the European Medical Device Regulation (MDR) (EU)
2017/745, any software designed to process, analyse, generate, or modify medical information
must comply with rigorous standards to ensure safety, performance, and alignment with its intended
medical use [70],

Al-driven diagnostic tools may be classified as medical device software, requiring CE marking and
formal validation. Additionally, clear policies must be established to define accountability for
decisions made with Al support, especially in the cases of misdiagnosis. Finally, the use of Al in
clinical environments require a certain level of transparency and explainability to meet both ethical
standards and professional guidelines.
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10 CONCLUSIONS AND FUTURE STEPS

This project aimed to explore the relationship between SNOMED CT encoded health problems and
discharge diagnoses coded in ICD-10-CM. Using real clinical data from the Hospital Clinic de
Barcelona, several supervised ML models were trained and evaluated across different subsets,
achieving promising results. The best performing models achieved accuracies close to 69%, with
high consistency across other metrics such as AUC, recall, and precision. These finding suggest
that health problems are not only correlated with final diagnoses but can also serve as valuable
inputs in data-driven clinical decision support systems.

Feature importance analysis across subsets revealed that variables such as age, DRG, episode
duration, lab results, and drug dosage consistently contributed to prediction accuracy. These
insights determine that demographic data, treatment duration, and ongoing patient monitoring are
crucial in coding final diagnoses.

This study demonstrated the potential of ML to support diagnostic decision-making and highlighted
how it can offer decision support tools that could help improve diagnostic accuracy, resource
allocation, and overall care quality in hospital environments.

Despite the promising results, several areas for improvement were identified. The imbalanced
distribution of classes led to challenges in model sensitivity. Future models could implement
techniques like SMOTE, or class weighting to better handle imbalanced data. As for interpretability,
introducing explainability tools such as SHAP or LIME would make them more interpretable to
clinical users and increase their practical applicability. Furthermore, the use of generative Al
models, particularly Large Language Models (LLMs), could significantly improve the prediction of
discharge diagnoses coded in ICD-10 based on health problems initially coded in SNOMED-CT at
the beginning of the care process. Unlike traditional ML approaches, which often rely on statistical
correlations and may fail to capture deeper semantic relationships, LLMs possess a more advanced
ability to model clinical progression and the conceptual connections between symptoms,
syndromes, and formal diagnoses. This enables more realistic and clinically coherent interferences,
facilitating the consolidation of care trajectories from early observations to structured diagnoses,
even when those concepts do not share explicit semantic or hierarchical structures in the source
terminologies. Moreover, this approach may help address the challenge of mapping between
SNOMED-CT and ICD-10, where relationships are many-to-many or lack formal correspondences
altogether. Instead of relying on rigid evidence mapping, LLMs can interpret from contextual
patterns in data how a SNOMED-CT coded problem, may correspond to an ICD-10 coded
diagnosis. This is made possible by the semantic proximity and clinical plausibility derived from
large scale patterns in text or structured data, opening the door to more flexible and intelligent
terminology bridging.
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ANNEX B. Exploratory Data Analysis

Distribution of Sex
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Figure B.1: Distribution of sex of the dataset.
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Figure B.2: Age distribution of the dataset.
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Figure B.3: Top 10 most common health problems in the dataset.
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Top 10 Most Common ICD-10 Chapters
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Figure B.4: Top 10 most common ICD-10 chapters in the dataset.
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Figure B.5: Correlation matrix of the numerical features of the dataset.
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ANNEX C. Feature importance ranking plots

Decision Trees Feature Importance

q:lsode duration
e_level_duration

no_i adminisiraton réason_fef
drg_mdc_ref

snomed Ogge
drg

prescription_f fleq_re!

drg_weight
adm_drug_dose_mean
class_ref_S

health_issues

u meas_type_ref
lab_result_num_mean

adm_pm

_given
clinical_records_result_num_mean
prescription_drug_dose_mean
im_route_ref
health_issue_ou_med_ref
deal

drg_rom_ref
adm alc ref NOZBEO1
issue molwe
adm_drug_ref | EQEF5C461C27EF6FE1OODGDDAC1
prescrlpuon Jm
prescription uhfarm ref

adm_drug_ref J A1EQSC4S1CZTEFEFE1000000AC10M55
lab_units_10"9/L

adm_dfug_unit

adm alc rer AQ3FAD1

adm ef CO3CAD1

adm_drug_ref_: 3BBTECAGBUUDBU1EEmDU'ODGlCiODWSﬁ
prescnpl\un adm_route le[

rds_units.
adm_drug_ref_ 9C7F5C4SBDOOBU1EE—TOUDGUO_ACWUPSS
clinical_records_units_mm H

adm_drug_ref DABGSC‘!SBOOOBMEETOD@OOI C100155
adm_drug_ref_FD2CE84A5213D87DE 1000000AC10014C
adm_drug_ref_26795C468000801EE1000000AC100155 -
adm _atc_ref BOSBB91 M.
aic_ref_ BOSXA03 NN
adm_drug_ref STSE50461C27EF6FE1000000AC100155
adm_atc_ref BOSE!AOJ

rc_sap_ref PRESN D
adm_drug_ref BC755C465000801EE1000000AC100‘155
prescription_drug_ref E96F5C461C27EFEFE 1000000AC100155
adm_drug_ref_147E5C468000801EE1000000AC100155
prescription_ atc ref NO2BEO1
adm_atc_ref_NO2BB02
aim a|c ref BO5XAD1
sap_| rerFC EKG

adm_drug_ref_l)1825(3488000801EE1DDDOOOAC100155
rc_sap_ref_FC_OSC
rc sap Tef FR_IP
ref’ NO5BADG
adm_drug_ref_’ 1CTE5C468000E01EETUU@OU?\CIUNSS
dinical_records_units_resp/min
dinical_records_units_%
adm_ac rel_AOGAD

f_BOSBA91
prescnpl\un drug_ref, 676E504BWCZTEFSFE1'D 00001C100155
Im_drug_ref_] E5GDE74AEBF95859E1000000A010014C
f ription_atc_ref BOSBAO3
prescription_drug_ref_FD2CEB4AS: 3DB ETOOOUOOKC’L%O%?

ap_r¢
adm_drug_ref_ DC7F5C466000501EETOOOOOOACWO‘\SS
adm_atc_ref MO1AE17
prescription_atc_ref BO5BB91
lab_sap_ref LAB1309
rc_sap_ref PULSIOX
cription_atc_ref BO5XA03
prescription_drug_ref_DAB05C46 00501EE1’000000(1§E4§01?5
ref

inical reocrds units *C
adm_drug_ref | FGTF5C465000801EEfDOOOGOA"CIOUTSE

ref FREC_RESP
prescription_drug_ref 388750488000501EE1000000A6100155
prescription_atc_ref_CO3CA01

la'b units_fl
adm_drug_ref_; 25745(?468000801EE1OOUOOUAC'1UU155
a:lm alc ref, AOZECUZ

1ol LAB
prescription_drug_ref_ 147E5C4SBDOOEO1EEWOUOUDOACWDWSS
prescription_atc_ref BO5SXA01

lab_sap_ref LAB1312

hb units_mg/dL

rc_sap_ref_ PRESN_SIS

b_sap ref LABT307

lab_sap_ref LAB1310

mgomgi
prescription_drug_unil
lab ref LABT305

% scription atc_ref A04,
prescription_drug_ref_26795C46: onamgmomoﬁmomss

b,

lab_sap_ref_ LAB1300

lab_sap_ref LAB1302
lab_units mEq/L

lab f LAB2
plescript\onidlugJefJCTES(MG&DOOBmEETOOBUOOACi00155
prescription_atc_ref N02BB02
lab_sap_ref LAB2422
lab_sap_ref LAB1313
lab_sap_ref LAB1301
lab_sap_ref_LAB1320
lab_sap_ref_LAB1314
rc_sap_ref_PULSO

fab. umls

cription_atc_ref TM01

prescription_drug_ref | FG7F50468000601EE101JUODUAC1UO155
rc_sap_ref_TEMP_TIM
lab_sap_ref_LABT319
&v’es plion_ att “Tef AD2BCO1
prescription_drug_ref_9C7F5C46: UBU'\EETUUUOOUII'\CWD:EPS

s ref
prescription_drug_ref . 26?45(}468000501EE10008UOAC1T)M55
lab_sap_i [aeg LABWSUE

ni

units
prescription_: atc vsf?\()ZBCO?
dag_class_ref_H

b_units

ref TAB
prescription_drug_ref_ 1CTE5C4GBGUUBU1EE1UDUOUGAC100155 ]
sap_ref LAB2467 I

0.00 0.01 002 0.03 004 0.05 0.06 0.07
Importance

Figure C.1: Rankig of feature importance by Decision Trees.
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Figure C.2: Ranking of feature importance by ANOVA F-test.
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ANNEX D. List of variables for each subset

61 adm_prn
- A7 Subset 1
62 adm_given
0 sex_atr
63 no_administration_reason_ref
1 age
64 adm_drug_ref_26745C468000801EE1000000AC100155
2 death
65 adm_drug_ref_E96F5C461C27EFGFE1000000AC100155
3 episode_duration
66 adm_drug_ref_FD2CE84A5213D87DET000000ACT0014C
4 care level_duration 67 adm_drug_ref A1695C461C27EFSFE1000000AC1 00155
Gl num_heatth_issues 68 adm_drug_ref OC7ESCA680008071EE1000000ACT00T5S
6 ongoing 69 adm_drug_ref DAB05C468000801EE1000000ACT00155
7 health_issue_motive 70 adm_drug_ref 9CTF5C455000801EE1000000ACT00155
& health_issue_ou_med_ref 71 adm_drug_ref_3B875C458000801EE1000000ACT100155
9 snomed_code 72 adm_drug_ref ES6DE74AEBFI8BSIE1000000ACT0014C
10 rc_sap_ref_PULSO 73 adm_drug_ref_F67F5C468000801EE1000000ACT00155
11 rc_sap_ref PRESN_DIA 74 adm_drug_ref_8CT55C468000801EE1000000AC100155
12 rc_sap_ref PRESN_SIS 75 adm_drug_ref_676E5C461C27EF6FET1000000ACT100155
13 rc_sap_ref_TEMP_AXI 76 adm_drug_ref_147E5C468000801EET1000000ACT100155
14 rc_sap_ref PULSIOX 77 adm_drug_ref_01825C468000801EE1000000AC100155
15 rc_sap_ref_FC_OSC 78  adm_drug_ref_1C7E5C468000801EE1000000ACTO0155
16 rc_sap_ref FRIP 79 adm_drug_ref_26795C468000801EE1000000AC100155
17 re_sap_ref FC_EKG 80 adm_drug_dose_mean
18 rc_sap_ref TEMP_TIM 81 adm_drug_unit
19 rc_sap_ref FREC_RESP 82  adm_atc_ref AD2BCO2
20 clinical_records_result_num_mean 83 adm_atc_ref NO2BEQ1
N . 84 adm_atc_ref_BOSBB9I1
21 clinical_records_units_lpm
- B 85 ad 't f_A03FAQT
22 clinical_records_units_mm Hg sam.ate rer
N . 86 adm_atc_ref NOSBADG
23 clinical_records_units_*C
N . 87 adm_atc_ref BOSXAD3
24 clinical_records_units_%
88 adm_atc_ref AQ2BCO1
25 clinical_records_units_resp/min
89 adm_atc_ref_CO3CAQ1T
26 cr_meas_type_ref
90 adm_atc_ref BOSBAS1
Sl 'ab_sap_ref [AB1313 91 adm_atc_ref_ MOTAETT
28  lab_sap_ref LAB1320 92 adm_atc_ref_NO2BBO2
29  lab_sap_ref_LAB1309 93  adm_atc_ref BOSBAQ3
30 lab_sap_ref LAB1316 94 adm_atc_ref BOSXAO1
95  adm_atc_ref ADGAD
31 lab_sap_ref_LAB2507
96 adm_atc_ref AO4AAQ1T
32 lab_sap_ref LAB1314 97 prescription_adm_route_ref
33 lab_sap_ref_LAB1300 98 prescription_prn
34 lab_sap_ref_LAB1302 99 prescription_freq_ref
35 lab_sap_ref_LAB1307 100 prescription_drug_ref E96F5C461C2TEF6FET1000000ACT100155
101  prescription_drug_ref 38875C463000801EE1000000AC100155
36 lab_sap._ref LAB1311 102 prescription_drug_ref 676E5C461C27EFEFE1000000AC100155
37 lab_sap_ref LAB1317 103 prescription_drug_ref FD2CEB4A5213D87DE1000000ACT0014C
38 lab_sap_ref LAB1315 104  prescription_drug_ref 147E5C468000801EE1000000AC100155
39 lab_sap_ref LAB1308 105 prescription_drug_ref 26745C468000801EE1000000AC100155
106  prescription_drug_ref_1C7ESC468000801EE1000000ACT00155
40 lab_sap_ref_LAB1306
107  prescription_drug_ref_26795C468000801EE1000000AC100155
41 lab_sap_ref LAB1305 108 prescription_drug_ref_8C755C468000801EE1000000ACT00155
42 lab_sap_ref_LAB1321 109 prescription_drug_ref_DAB05C468000801EE1000000AC100155
43 lab_sap_ref LAB2457 110 prescription_drug_ref 9C7F5C468000801EE1000000AC100155
111 prascription_drug_ref F67F5C468000801EE1000000AC100155
44 lab_sap_ref_LAB2422
112 prescription_drug_dose_mean
45 lab_sap_ref LAB1323 113 prescription_drug_unit
46  lab_sap_ref LAB1310 114 prescription_atc_ref NO2BEQ1
A7  lab_sap_ref LAB1312 115 prescription_atc_ref_CO3CAOQ1
48 Isb_sap_ref LAB131 116  prescription_atc_ref_BOSBAO3
117 prescription_atc_ref_B0O5BB91
gl 'eb sap ref LAB1301 118 prescription_atc_ref_BOSXAQ1
50 lab_result_num_mean 119 prescription_atc_ref AD2BC02
51 lab_units_1049/L 120 prescrintion atc ref AD4AAD1
121 prescription_atc_ref_ NO2BBO2
52  lab_units_fl .
122 prescription_atc_ref_BOSXA03
53 lab_units_mEqg/L 123 prescription_atc_ref_AD2BCOT
54 lab_units_g/L 124  prescription_atc_ref MO1AE17
55 lab_units% 125  prescription_phform_ref
126 drg_weight
56 lab_units_10"12/L 127 drg_ref
57 lab_units_pg 128 drg_soi_ref
58 lab_units_mg/dL 129 drg_rom._ref
130 drg_mdc_ref
59 lab units L/L 131 diag_class_ref S
60 adm_route_ref 132 diag_class_ref H
133 diag_class_ref P

Figure D.1: List of variable names for Subset 1.
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A7 Subset 2
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Figure D.2: List of variable names for Subset 2 (lef) and Subset 3 (right).

AT Subset 4
0 diag_class_ref S
1 diag_class_ref H

2 health_issue_ou_med_ref
3 drg_rom_ref
4 sex atr
5 drg_mdc_ref
6 drg_soi_ref
7 episode_duration
&  num_health_issues
9 drg_ref
10  drg_weight
11  diag_class_ref P
12 age
13 death
14  care_level_duration
1% clinical_records_result_num_mean
16  ongoing
17 snomed_code
18 re_sap_ref_PRESMN_SIS
19 health_issue_motive

A7 Subset 5
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Figure D.3: List of variable names for Subset 4 (left) and Subset 5 (right).
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A7 Subset 6
0  episode_duration
1  care_level_duration
drg_mdc_ref
age
snomed_code
drg_ref
drg_weight
diag_class_ref_S
num_health_issues

clinical_records_result_num_mean

L e R -2 T 2 B - ¥ R N

—

health_issue_ou_med_ref
Figure D.4: List of variable names for Subset 6.

A7 Subset 7
0 adm_drug_dose_mean
1 adm_given
adm_prn
adm_route_ref
age
care_level_duration
clinical_records_result_num_mean
cr_meas_type_ref
death
diag_class_ref_H

L N o R o I = T ¥ ) T =S #E Ty L

—

diag_class_ref P

—
—

diag_class_ref S

—
[~

drg_mdc_ref

—
(98]

drg_ref

i,

drg_rom_ref

—
(%3]

drg_soi_ref

—
o

drg_weight

-
]

episode_duration

—
=]

health_issus_motive

—
[Le]

health_issue_ou_med_ref

[t
L]

lab_result_num_mean

™)
pry

no_administration_reason_ref

[
S

num_health_issues

[
[#5]

ongeing

=]
=S

prescription_drug_dose_mean

(%]
(%3]

prescription_freq_ref

rc_sap_ref_PRESN_SIS

Mt [t
=l o

sex_atr

[t
oo

snomed_code

Figure D.5: List of variable names for Subset 7.
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ANNEX E. Performance plots across all subsets
Subset 1

ROC Curves for DecisionTreeClassifier

True Positve Rate

of class 1, AUC = 0.79
of class 2,AUC = 0.77
of ciass 3, AUC = 0.95
of class 4, AUC = 0.78
of class 5, AUC = 0,60
— ROC of class 6. AUC = 082
ROC of class 7, ALC = 0.81
— ROC of class B, AUC = 0.89
0C of class 9, AUC = 0.81
of class 10,AUC = 0,88
of class 11,AUC=0.79
of class 12, AUC = 0.89
of ciass 13,AUC = 0.76
of class 14, AUC = 0.84
of cass 15.AUC = 081
of class 16,AUC = 0.85
of class 17, AUC = 0.82
of class 18,AUC =0.76
of class 19, AUC = 0.94
ge ROC curve, AUC = 0.84
ge ROC curve, AUC = 0.83

10
False Posilive Rate

Figure E.1: AUC plot for Subset 1.
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DecisionTreeClassifier Classification Report .
16529
4925
24898
8309
08
22455
63591
10132
17988
08
3810
2492
33348
27994
04
12288
175
14623
2030
02
157
1055
32590
13909
00
£
&

Figure E.3: Classification report for Subset 2.

69



I[Il]] UNIVERSITAT e Use of Machine Learning and SNOMED CT Encoded Health
"l BARCELONA

Problems to Predict Hospital Discharge Diagnoses

o ROC Curves for DecisionTreeClassifier

True Posiive Rate

— ROC of class 0, AUC = 0.77
ROC of class 1, AUC = 0.80
— ROC of class 2. AUC = 0.78
— ROC of class 3, AUC = 092
ROC of class 4, ALIC = 0.78

ROC of class §, AUC = 0.80
— ROC of class 6, AUC = 0.7
ROC of class 7, AUC = 0.80
—— ROG of ciass B, AUG = 0.89
—— ROC of class 9, AUC = 082
ROC of class 10, AUC = 0.69
ROC of ciass 11, AUC =079
— ROC of class 12, AUC = 0.90
ROC of class 13 AUC = 0.76
— ROC of class 14, AUC = 0.84
— ROC of class 15, AUC = 0.81
ROC of class 16, AUC = 0.85
ROC of class 17, AUC = 0.62
— ROC of class 18, AUC = 0.76
ROC of class 19, AUC = 0.95
micro-average ROC curve, AUC = 0.84
macro-average ROG curve, AUG = 0.62

08 08 10
False Posttive Rate

Figure E.4: AUC plot for Subset 2.
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XGBClassifer Contusion Matrec
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Prodiced Class

Figure E.5: Confusion matrix for Subset 3.

XGBClassifier Classification Report

19 0369 0320 0343 16528 "
18 0220 0112 0.149 4925
17 0284 0.300 0292 24898
16 0.207 0.323 0.252 8309
15 0229 0240 0234 22455 *
14 0399 0.308 0348 63591
13 0.165 0.139 0.151 10132
08
" 0162 0.149 0155 3810
10 _ 0.142 0217 2492
9 0261 0373 0.307 33346
8 0273 0257 0.264 27994
7 0.265 0.261 0.263 12286 o
6 0.266 0.286 0275 175
5 0181 0188 0185 14623
4 0152 0.150 0181 2030

02

1 0245 0.193 0216 32590
0 0.168 0.147 0156 13909
00
& @ &
éa" @f &

Figure E.6: Classification report for Subset 3.
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/

ROC Curves for XGBClassifier

True Posiive Rate

—— ROC of class 0, AUC = 0.67
ROC of class 1, AUC = 0.76
— ROC of class 2, AUC = 1.00
— ROC of class 3, AUC = 1.00
ROC of class 4, ALIC = 0.98
ROC of class 5, ALC = 0.88
— ROC of class 6, AUC = 1.00
ROC of class 7, AUC = 0.94

—— ROG of ciass B, AUG = 0.83
—— ROC of class 9, AUC = 0.81
ROC of class 10, AUC = 0.99
ROC of ciass 11, AUC = 0.9
— ROC of class 12, AUC = 0.98
ROC of class 13 AUC = 0.90
— ROC of class 14, AUC = 0.74
— ROC of class 15.AUC = 0.85
ROC of class 16, AUC = 0.94
ROC of class 17, AUC = 0.67
— ROC of class 18, AUC = 0.96
ROC of class 19, AUC = 0.94

micro-average ROC curve, AUC = 0.92
g macro-average ROG curve, AUG = 0.91
00 *

08 08 10
False Posttive Rate

Figure E.7: AUC plot for Subset 3.
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Figure E.9: Classification report for Subset 4.
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ROC Curves for DecisionTreeClassifier

True Posiive Rate

—— ROC of class 0, AUC = 0.90
ROC of class 1, AUC = 052
— ROC of class 2, AUC = 1.00
— ROC of class 3, AUC = 0.99
ROC of class 4, ALIC = 0.99
ROC of class §, AUC = 0.91
— ROC of class 6, AUC = 0.99
ROC of class 7, AUC = 0.96
—— ROG of ciass B, AUG = 0.95
—— ROC of class 9, AUC = 088
ROC of ciass 10, AUC = 1.00
ROC of ciass 11, AUC =0.97
— ROC of class 12, AUC = 0.98
ROC of class 13 AUC = 0.92

— ROC of class 14, AUC = 0.88

— ROC of class 15.AUC = 0,59
ROC of class 16, AUC = 0.96
ROC of class 17, AUC = 0.92

— ROC of class 18, AUC = 0.97
ROC of class 19, AUC = 1.00
micro-average ROC curve, AUC = 0.95
macro-average ROG curve, AUG = 0.94

10
False Posttive Rate

Figure E.10: AUC plot for Subset 4.
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RandorF ocesiClassser Contsson Malrix
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Figure E.11: Confusion matrix for Subset 5.

RandomForestClassifier Classification Report

10
16528
0.071 0119 4925
17 0382 0432 0406 24899
16 0.214 0.402 0.279 8809
08
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Figure E.12: Classification report for Subset 5.
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ROC Curves for RandomForestClassifier

True Posiive Rate

—— ROC of class 0, AUC = 0.89
ROC of class 1. ALIC = 0.60
— ROC of class 2, AUC = 1.00
— ROC of class 3, AUC = 1.00
ROC of class 4, ALIC = 0.99
ROC of class §, ALC = 0.90
— ROC of class 6, AUC = 1.00
ROC of class 7, AUC = 0.96

—— ROG of ciass B, AUG = 0.95
—— ROC of class 9, AUC = 087
ROC of ciass 10, AUC = 1.00
ROC of ciass 11, AUC =0.97
—— ROC of class 12, AUC = 0.98
ROC of class 13.AUC =0.91
— ROC of class 14, AUC = 0.88
— ROC of class 15.AUC = 0,88
ROC of class 16, AUC = 0.95
. ROC of class 17, AUC = 0.92
l — ROC of class 18, AUC = 0.96
o ROC of class 19, AUC = 1.00
micro-average ROC curve, AUC = 0.95
g macro-average ROG curve, AUG = 0.94
00

08 08 10
False Posttive Rate

Figure E.13: AUC plot for Subset 5.
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Figure E.15: Classification report for Subset 6.
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ROC Curves for DecisionTreeClassifier

True Posiive Rate

—— ROC of class 0, AUC = 0.90
ROC of class 1, AUC = 052
— ROC of class 2, AUC = 1.00
— ROC of class 3, AUC = 0.99
ROC of class 4, ALIC = 0.99
ROC of class §, AUC = 0.91
— ROC of class 6, AUC = 0.99
ROC of class 7, AUC = 0.96
—— ROG of ciass B, AUG = 0.95
—— ROC of class 9, AUC = 088
ROC of ciass 10, AUC = 1.00
ROC of ciass 11, AUC =0.97
— ROC of class 12, AUC = 0.98
ROC of class 13 AUC = 0.92

— ROC of class 14, AUC = 0.88

— ROC of class 15.AUC = 0,59
ROC of class 16, AUC = 0.96
ROC of class 17, AUC = 0.92

— ROC of class 18, AUC = 0.97
ROC of class 19, AUC = 0.99
micro-average ROC curve, AUC = 0.95
macro-average ROG curve, AUG = 0.94

10
False Posttive Rate

Figure E.16: AUC plot for Subset 6.
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Figure E.17: Confusion matrix for Subset 7.

DecisionTreeClassifier Classification Report
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Figure E.18: Classification report for Subset 7.
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o ROC Curves for DecisionTreeClassifier

True Posiive Rate

— ROC of class 0, AUC = 0.77
ROC of class 1, AUC = 0.7
— ROC of class 2, AUC = 0.78
— ROC of class 3, AUC = 092
ROC of class 4, ALIC = 0.78
ROC of class §, AUC = 0.80
— ROC of class 6, AUC = 0.74
ROC of class 7, AUC = 0.80

—— ROG of ciass B, AUG = 0.89
—— ROC of class 9, AUC = 082
ROC of class 10, AUC = 0.69
ROC of ciass 11, AUC =079
— ROC of class 12, AUC = 0.90
ROC of class 13 AUC = 0.75
— ROC of class 14, AUC = 0.84
— ROC of class 15, AUC = 0.81
ROC of class 16, AUC = 0.85
ROC of class 17, AUC = 0.63
— ROC of class 18, AUC = 0.76
ROC of class 19, AUC = 0.95
micro-average ROC curve, AUC = 0.84
g macro-average ROG curve, AUG = 0.62
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Figure E.19: AUC plot for Subset 7.
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