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I 

ABSTRACT 

The accurate classification of discharge diagnoses is a critical step in clinical decision-making, as 

it has direct effect on patient care, hospital management, and administrative tasks. Traditionally, 

diagnostic coding has been a manual and time-consuming process, typically done after a patient 

is discharged, which could lead to delays for subsequent processes such as billing, reporting, and 

care optimization. Recently, the Hospital Clínic de Barcelona has integrated a structured list of 

health problems coded in SNOMED CT into the Electronic Health Record (EHR) from the beginning 

of the patient’s hospitalization. This development has enabled the reuse of structured clinical data 

throughout the care process and has opened the door for predictive tools using Machine Learning 

(ML).  

The goal of this research is to determine whether there’s a significant relationship between reported 

health problems and the final ICD-10 discharge diagnoses. To explore this, data obtained from the 

Hospital Clínic de Barcelona was analysed, incorporating information from various clinical sources, 

such as demographics, laboratory results, prescriptions, and admissions records. Feature 

engineering was also carried out and methods based on decision trees, along with ANOVA tests, 

were used to identify the most relevant input variables. Subsequently, several supervised ML 

models, including Decision Trees (DTs), Random Forest (RF), and XGBoost were trained and 

evaluated. 

The best performing model, a Decision Tree classifier, achieved an accuracy of 69.8%, with a recall 

and F1-score of 0.68, and an AUC of 0.83. While no single variable served as a dominant predictor, 

the results show that health problems coded in SNOMED CT, combined with other clinical and 

demographic data, can significantly improve the model’s ability to classify discharge diagnoses.  

 

Keywords: Machine Learning, SNOMED CT, ICD-10-CM, Supervised Learning, Multiclass 

Classification.  
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1 INTRODUCTION 

In the healthcare sector, accurate diagnoses and treatments are crucial for improving patient 

outcomes and optimizing hospital resources. This is because diagnostic accuracy is essential to 

ensure patients receive timely care and minimize the likelihood of medical errors, which can have 

a significant impact on health outcomes. However, healthcare systems are facing significant 

challenges due to the increasing complexity of diseases, the volume of data generated, and the 

need for quick evidence-based decision-making.  

In this context, the use of Machine Learning (ML) to predict discharge diagnoses presents itself as 

a promising tool to improve both the accuracy and efficiency of the diagnostic process. By 

integrating advanced computational methods, hospitals may be able to reduce diagnostic errors, 

accelerate treatment plans, and better manage their resources. 

1.1 Motivation 

Traditionally, hospitals have relied on manual processes to code medical diagnoses and 

procedures, typically only assigning codes based on discharge reports. This practice presents 

significant limitations, the most notable one is the delay in assigning these codes, which can often 

take up to a month after discharge. Such delays leads to inefficiencies, especially in settings where 

quick decision-making and resource allocation is critical. Moreover, the lack of early coding limits 

the ability to adjust patient care plans in real time. 

Recently, at the Hospital Clínic de Barcelona, a list of health problems coded by physicians using 

the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) has been integrated 

into the Electronic Health Record (EHR) system from the beginning of the care process. This 

innovation enables the assignment of standard codes from the very beginning of the patient care 

process, eliminating the need to wait until discharge. This development allows for the creation of a 

catalog of clinical entities that can be processed by information systems, thereby providing precise 

semantic meanings. These advances present a significant opportunity for the reuse of clinical 

information for both primary and secondary purposes. A particularly intriguing and novel aspect of 

this initiative is the exploration of whether health problems coded with SNOMED CT at the time of 

hospitalization can help predict discharge diagnoses, coded with the International Classification of 

Diseases, 10th Revision, Clinical Modification (ICD-10-CM), through the application of ML 

methodologies.  

The implementation of ML algorithms to these coded health problems could uncover complex 

patterns and relationships among multiple clinical and demographic variables that are not easily 

observable to clinicians. Consequently, this approach may enhance the accuracy of predicting 

discharge diagnoses, thereby potentially reducing the incidence of misdiagnoses, improving patient 

outcomes, and facilitating more efficient resource allocation. 
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1.2 Objectives 

The primary objective of this research is to explore the correlation between reported health 

problems and the final diagnoses issued at the time of hospital discharge. This research aims to 

determine whether a significant relationship exist between these two variables, thereby improving 

the understanding of how health problems may influence diagnostic decisions.  

Furthermore, the study will compare the ability of various ML models to classify discharge 

diagnoses coded in ICD-10-CM, using health problems coded with SNOMED CT during 

hospitalization, along with other clinical data. By training these models with data from the Hospital 

Clínic de Barcelona, the study will investigate how well SNOMED CT coded health problems serve 

as predictors of ICD-10-CM discharge diagnoses. 

Secondary objectives include evaluating model performance using a wide range of metrics, 

including accuracy, sensitivity, specificity, and more. 

Finally, the study aims to identify the most effective model and the most significant input variables 

for optimizing classification performance. Special attention will be placed on clinical and 

demographic variables, including age, sex, vital signs, prescriptions, and laboratory results, to 

identify which variables have the most significant impact on the predicted diagnoses. 

1.3 Scope  

The scope of the project is limited to the analysis of clinical data collected at the Hospital Clínic de 

Barcelona over a specific period. The primary objective is to classify discharge diagnoses using 

various ML models, with the goal of exploring the potential of these tools to support clinical decision-

making and improve the efficiency of hospital workflow. The study does not include the evaluation 

of post-discharge treatments or interventions. 

At the spatial level, the study will be conducted solely on data from the Hospital Clínic, although 

the techniques developed could be replicated in other hospital settings. 

1.4 Methodology 

The methodology followed for this project can be divided into four main parts. First, a 

comprehensive literature review is conducted to understand the background and context in which 

this project is situated. This includes an overview of the challenges in SNOMED CT to ICD-10-CM 

mapping, as well as the role of ML in healthcare.  

Once the data is obtained, a data pre-processing phase follows, during which the raw data is 

cleaned, formatted, and prepared for model training. In the next stage, suitable ML models are 

selected and trained to analyse the pre-processed data. Finally, the results are evaluated and 

discussed, offering insights into the performance of the different models and their implications for 

the study.  
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2 BACKGROUND 

2.1 Electronic Health Record 

An Electronic Health Record (EHR) is a digital representation of a patient’s medical history, that is 

continuously updated and managed by healthcare professionals. It includes essential clinical and 

administrative information pertinent to a patient’s care, including demographics, vital signs, 

diagnoses, treatment plans, medications, past medical history, allergies, immunizations, radiology 

reports, and laboratory and test results [1]. The implementation of EHR systems facilitates efficient 

access to information, potentially enhancing the workflow of clinicians [2]. 

2.2 Problem-Oriented Medical Record 

A problem-oriented approach is one of the possibilities to organize a medical record. In the 1960s, 

Dr. Lawrence Weed introduced the Problem-Oriented Medical Record (POMR), also known as the 

Problem-Oriented Record (POR) [3], [4]. This structured method revolutionized clinical 

documentation by emphasizing the identification and management of individual health issues, 

allowing for more systematic and organized care.  

A health problem is defined as any condition affecting a person’s physical, psychological, or social 

well-being that requires medical attention or may impact the patient’s quality of life [5]. Dr. Weed 

described a health problem as “anything that requires diagnosis, further management, or interferes 

with quality of life, perceived by the patient.” [3]. 

The fundamental component of the POMR is the problem list which can be defined as a dynamic, 

continually updated record that includes all past and present identified problems, as well as the 

time of occurrence and whether the problem was resolved, and links to further information on each 

entry in the list [6]. This structure ensures that all observations, assessments, and healthcare plans 

are grouped by patient problem, promoting clarity and continuity in patient care. 

To further enhance data organization and communication, progress notes are often written in the 

Subjective-Objective-Assessment-Plan (SOAP) format [7]: 

- Subjective: the patient’s reported symptoms and concerns.  

- Objective: observable and measurable clinical findings. 

- Assessment: clinician’s evaluation or diagnosis. 

- Plan: recommended next steps in care or treatment plans. 

2.3 Clinical coding systems 

Medical coding is a key process in healthcare administration, as it allows for the classification and 

organization of patient clinical information using standardized systems. This structured data 

facilitates effective communication, analysis, and reporting across healthcare systems. 
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Two of the most widely used coding systems worldwide are SNOMED CT and ICD-10. While 

SNOMED CT is widely used in daily clinical documentation due to its ability to capture specific 

details about diagnoses, symptoms, and procedures in real time, ICD-10 is especially used at the 

time of patient discharge and supporting healthcare operation such as billing [8]. 

2.3.1 SNOMED CT 

SNOMED CT is the most comprehensive and multilingual clinical terminology, encompassing over 

360.000 concepts [9]. It is a coding system that offers a structured and detailed representation of 

clinical information, covering a wide range of healthcare elements such as diagnoses, symptoms, 

procedures, medications, and other concepts relevant to healthcare. This system is widely used in 

clinical documentation due to its benefits, including [10], [11]: 

- Granularity and specificity: SNOMED CT offers precise descriptions of clinical concepts, 

allowing clinicians to document information in a very detailed manner, which improves 

accuracy in healthcare documentation. 

- Interoperability: the system is designed in a way that it can be integrated with other 

healthcare systems and EHRs, facilitating the exchange of standardized information 

between different care providers and improving communication and continuity of care. 

- Data analytics: by offering structured and computable health data, SNOMED CT supports 

advanced data analysis and clinical research.  

- Continuous evolution: SNOMED CT is regularly maintained and updated to include new 

clinical terms and concepts. This ensures that the terminology remains current and aligned 

with ongoing advances in healthcare. 

2.3.2 ICD-10 

ICD-10 is a coding system developed by the Word Health Organization (WHO) that organizes 

health data into standardized categories for a wide range of clinical, administrative, and research 

purposes. It assigns unique alphanumeric codes to various health-related terms, including 

diseases, signs and symptoms, procedures, and abnormal findings. This system facilitates the 

classification of health information across healthcare systems and countries [12].  

ICD-10 also supports the storage, retrieval, and analysis of diagnostic information which is crucial 

for epidemiological studies, healthcare research, and monitoring of population health [13]. It also 

standardizes the recording and reporting of health data, which is essential for statistical analysis, 

as well as for billing, reimbursement, and resource allocation within healthcare systems [14].  

Some key advantages of this system include: 

- Hierarchical structure: ICD-10 organizes diseases and other health conditions into 

standardized and structured groups for easier management.  

- Administrative efficiency: it enhances coding accuracy for billing and reimbursement 

processes, which reduces administrative workload. 

- Focus on statistics and management: it provides healthcare administrators with 

statistical insights to assess the time and resources spent on treating a medical condition. 
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2.3.2.1. ICD-10-CM 

International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) is a 

modified version of the ICD-10 coding system, that has been specifically adapted and expanded 

with more detailed codes for clinical use in the United States [15]. The translated version of ICD-10-

CM is used at the Hospital Clínic de Barcelona. 

Although ICD-10-CM is essential for health resource management, its focus on disease 

classification and statistical and administrative purposes can lead to the loss of detailed clinical 

information that is captured by SNOMED CT. This difference in coding approach poses challenges 

in using both systems in a complementary manner. 

2.3.3 Current challenges in clinical coding 

Although clinical coding systems offer numerous benefits, there are still several challenges that 

make their implementation and use difficult. 

2.3.3.1. Delayed coding processes 

A significant issue with clinical coding is the delay in assigning codes, particularly for ICD-10-CM. 

In many hospitals, coding is often performed days or even weeks after a patient’s discharge, which 

limits the utility of coded data for real-time decision-making and resource allocation. This delay also 

contributes to inefficiencies in healthcare services [16].    

2.3.3.2. Manual effort and error rates 

Manual code conversion is susceptible to high error rates and inefficiencies. Coders must make 

decisions when interpreting clinical notes and assigning appropriate codes, a process that is time-

consuming and prone to mistakes. These errors in code conversion can lead to significant 

consequences like incorrect billing, denied insurance claims, and inaccurate statistical data, all of 

which can negatively impact patient care and hospital finances [16]. 

2.3.3.3. Limitations of SNOMED CT to ICD-10 mappings 

Mapping between SNOMED CT and ICD-10-CM presents significant challenges due to the 

fundamental differences in their structures and intended use. SNOMED CT offers a much more 

detailed and granular representation of clinical data, while ICD-10-CM is designed more for 

population-level, epidemiological and administrative use, often lacking the level of clinical 

granularity found in SNOMED CT. This discrepancy leads to inconsistencies and difficulties in 

creating accurate mapping, which can complicate the integration of clinical and administrative data 

within healthcare systems.  

Although mapping tools have been developed to address this issue, it only provides a semi-

automated generation of ICD-10-CM classification codes from clinical data encoded in SNOMED 

CT [17]. Moreover, these mapping are partial and fail to address complex cases like n:n mapping, 

where one concept may correspond to multiple other concepts, rather than a simple one-to-one 

mapping. 
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2.4 Artificial Intelligence 

Artificial Intelligence (AI) refers to the development and use of computers systems capable of 

performing tasks that usually require human intelligence. These tasks include learning, problem-

solving, reasoning, perception, and language understanding [18]. In recent years, the availability of 

high-performance computers and the large amount of data generated have led to advancements 

in the application of AI across many fields. This progress has also significantly accelerated the 

development of Machine Learning and Deep Learning, subfields of AI that enable systems to learn 

from data and continuously improve their performance over time without explicit programming 

(Figure 1). 

 

Figure 1: Venn diagram of artificial intelligence (AI), machine learning (ML), neural network, deep learning, and 
further algorithms in each category  [19]. 

 

2.5 Machine Learning 

Machine Learning (ML) is a subset of AI that focuses on the development of algorithms and 

statistical models that enable computers to perform tasks without explicit instructions. Instead, ML 

models learn by identifying patterns, extracting meaningful insights, and continuously improving 

their performance over time through experience [20]. 

ML is typically divided into several categories, with the two most prominent being: 

- Supervised learning: models are trained on labelled data, meaning that each input is 

paired with a known output. This allows the algorithm to evaluate its performance and make 

adjustments during training to improve accuracy [20].  

- Unsupervised learning: models are trained on unlabelled data, allowing the algorithm to 

identify hidden patterns, structures, or relationships within the data without prior knowledge 

of the outcomes [20].  
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2.5.1 Machine Learning applied to healthcare 

ML applications in healthcare are diverse an range from disease prediction to treatment 

optimization. Some relevant applications include [21], [22]: 

- Disease prediction: ML models can analyse historical patient data to identify risk factors 

and predict the likelihood of developing certain health conditions.  

- Medical imaging: ML algorithms are capable of interpreting medical images, such as X-

rays, CT scans, and MRIs, achieving accuracy levels comparable to that of radiologists.  

- Clinical decision support: ML is widely used in Clinical Decision Support Systems 

(CDSS) to assist healthcare professionals in predicting patient outcomes and 

recommending treatments.  

- Workflow optimization: ML can assist hospitals in managing resources more efficiently 

and optimizing administrative processes. 

- Readmission risk prediction: ML models have been used to predict the likelihood of 

patient readmission, demonstrating the potential for improving resource allocation and 

reducing hospital costs [23].  

- Personalized medicine: ML has significantly advanced personalized medicine by 

analysing individual patient data such as genetic information, medical histories, and 

lifestyle factors, to tailor treatments for each patient [24], [25]. 

2.6 State of the art 

The use of ML in healthcare has experienced a rapid growth in recent years thanks to the 

advancements in computational power and the increased availability of data. Recent studies have 

shown that ML models trained on high-dimensional data, especially when supplemented with 

Natural Language Processing (NLP) techniques to extract insights from unstructured text, can 

significantly improve diagnostic predictions [26]. Additionally, developments in Explainable Artificial 

Intelligence (XAI) have made it easier for healthcare professionals to understand model predictions 

and interpret the results [26], [27].  

The use of large and diverse datasets, such as national health databases and specific hospital 

data, has played a key role in improving the generalizability of predictive models. Many studies 

have employed ensemble methods to combine predictions from multiple models, improving 

robustness and minimizing bias [28]. Furthermore, research into transfer learning and federated 

learning has created new opportunities to share data across different institutions while maintaining 

patient privacy [29]. However, challenges still remain in the application of ML in healthcare, including 

concerns about data quality, the ethical use of patient information, and the need for model validation 

in real-world clinical environments [30].  

As this field continues to evolve, future research is expected to focus on refining existing models, 

creating hybrid approaches that combine domain expertise with data-driven insights, and ensuring 

safe and ethical integration of these technologies into clinical practice. Accurately predicting 

hospital discharge diagnoses not only has the potential to improve patient care but also offers 

benefits in resource management, reducing readmissions, and enhancing clinical workflows. 



Use of Machine Learning and SNOMED CT Encoded Health  
Problems to Predict Hospital Discharge Diagnoses 

 

8 

2.6.1 Machine Learning in Discharge Diagnosis Prediction 

ML has shown strong potential in predicting hospital discharge diagnoses by uncovering complex 

patterns in clinical and demographic data. A notable study conducted by Lin et al. (2017) [31] 

explores the application of AI in automating the classification of diagnosis coded from unstructured 

discharge notes. The goal of the study was to evaluate the performance of traditional pipelines 

(NLP paired with supervised ML models) with that of word embedding combined with a 

Convolutional Neural Network (CNN) (Figure 2) in performing a classification task to identify ICD-

10-CM diagnosis codes in discharge notes.  

The results revealed that in 5-fold cross-validation test, the word embedding combined with a CNN 

had higher testing accuracy (mean AUC 0.9696; mean F-measure 0.9086) than traditional NLP-

based approaches (mean AUC range 0.8183 - 0.9571; mean F-measure range 0.5050 - 0.8739). 

Additionally, it showed that the convolutional layers of the CNN successfully identified a significant 

number of keywords and automatically extracted enough concepts to predict the diagnosis codes. 

The research demonstrated its ability to effectively extract and predict diagnosis codes with minimal 

data pre-processing, highlighting the potential of CNNs to automatically capture essential medical 

concepts from unstructured text.  

 

Figure 2: Proposed model’s architecture by Lin et al. (2017) [31]. 
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Another interesting study is the one conducted by Park et al. (2021) [32]. This research focuses on 

creating an optimised ensemble model that combines Deep Neural Networks (DNN) with ML 

algorithms to predict diseases using laboratory test results. Their objective was to develop a model 

capable of accurately predict 39 specific diseases based on laboratory test data. To do so, 

researchers selected 86 laboratory test attributes from datasets, considering factors such as value 

counts, clinical importance, and missing values. Sample datasets on 5145 cases, including 325686 

laboratory test results were collected. These datasets were then used to construct Light Gradient 

Boosting Machine (LightGBM) and Extreme Gradient Boosting (XGBoost) ML models and a DNN 

model. What they found was that the optimised ensemble model achieved a F1- score of 81% and 

a prediction accuracy of 92% for the five most common diseases (Table 1). 

 

Table 1: Ensemble model performance result using F1-score by Park et al. (2021) [32]. 
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3 MARKET ANALYSIS 

3.1 Market sector 

The healthcare sector is one of the largest and most dynamic industries globally, with significant 

contributions to economic growth and societal well-being. In 2024, the global healthcare market 

was valued at 112.9 billion USD and is projected to reach 139.69 billion by 2033, exhibiting a 

Computed Annual Growth Rate (CAGR) of 2.4% (Figure 3) [33]. This growth is driven by several 

factors, including the increasing prevalence of chronic diseases, aging populations, and 

advancements in medical technologies.  

 

Figure 3: Global healthcare services market size estimation for 2033 [33].  

 

3.2 Target market 

The target market for a ML algorithm capable of predicting hospital discharge diagnoses using 

SNOMED CT encoded health problems reaches various sectors within healthcare and medical 

technology.  

Primary markets include hospitals, where there is a growing demand for innovative solutions to 

improve real-time decision-making and optimise resource allocation, particularly in setting where 

timely and accurate diagnoses are critical. The integration of SNOMED CT encoded health 

problems with ML methodologies offers a valuable opportunity to predict discharge diagnoses early 

in the care process. This enables healthcare providers to adjust treatment plans, ultimately 

improving overall patient outcomes.  

Secondary markets include insurance companies that are seeking to predict patients risks, manage 

claims more effectively, and reduce costs associated with misdiagnoses or prolonged hospital 

stays. By predicting discharge diagnoses accurately, insurers can improve their claims processes, 

resulting in cost savings and improved efficiency. 
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3.3 Future perspectives 

In recent years, the growth of AI applications in healthcare has been remarkable. AI-driven 

innovations are being widely applied, with significant advances expected in areas such as medical 

imaging, drug development, disease classification and diagnostics, predictive analytics, and 

personalized medicine, including treatment and prescription [34].  

Key trends and emerging opportunities of clinical coding and predictive analytics in healthcare in 

the future include [35]: 

- Personalized medicine: predictive analytics allows for the customization of treatments 

based on individual patient data, enhancing the effectiveness and efficiency of care by 

tailoring interventions to patient needs. 

- AI and ML in clinical coding: the use of AI and ML in clinical coding is expected to grow 

significantly, driven by the increasing need for real-time coding and the need to minimize 

errors. 

- Natural Language Processing (NLP): NLP technologies play a crucial role in extracting 

structured data from unstructured clinical notes, improving the accuracy of coding, and 

enabling better integration with EHR systems. 

- Real-time clinical decision support: the integration of predictive analytics with real-time 

clinical decision support systems allow clinicians to receive instant recommendations 

during patient care, helping reduce delays and improve patient outcomes.  
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4 CONCEPT ENGINEERING 

To reach the objectives of the research, different stages must be completed. The overall workflow 

of the project (Figure 4) outlines the key steps where different methodologies can be applied. This 

section evaluates the different proposed methods and presents the selected solution.  

 

Figure 4: Overall workflow of the project. 
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4.1 Data acquisition and description 

The data used in this study was obtained from the Hospital Clínic de Barcelona. All information 

originates from the hospital’s institutional data warehouse, which serves as a centralized repository 

for clinical data.  

Access to the data was granted with the approval of the Comité de Ética de la Investigación con 

Medicamentos (CEIm) of the Hospital Clínic de Barcelona. A copy of the ethics approval document 

is provided in Annex A. 

The main sources of information include: 

- Administration events: information related to the administration of treatments to patients. 

It keeps track of various aspects, such as the drugs administered, the method of 

administration, and the amounts involved. 

- Admission and discharge events: contains records related to patient admissions and 

discharges, providing insight into the patient’s entry and exit from healthcare facilities. 

- Care level events: data related to the care levels assigned to patients throughout their 

medical episodes. 

- Clinical records events: contains detailed clinical records and medical results, including 

test results, and measurements taken during patient episodes.  

- Demographic events: contains demographic information about the patients, including 

date of birth, sex, and nationality. 

- Diagnostic events: contains information about hospital discharge diagnoses and other 

diagnostic events, providing valuable insights into the medical conditions and diagnoses 

associated with patient episodes.  

- DRG events: data related to Diagnosis-Related Groups (DRG), a system used to classify 

hospitalized patients into categories that have similar processes of care and require similar 

levels of hospital resources. DRGs are intended to identify the “products” that the hospital 

provides and are mainly used for billing and reimbursement purposes [36]. 

- Encounter events: records detailed information about patient encounters within the 

healthcare system.  

- Episode events: contains important information about the start and end dates of patient 

episodes, which represents a continuous period of care or treatment for a patient within 

the healthcare system. 

- Exitus events: captures critical information regarding patient deaths. 

- Health issues events: contains information about the health problems of the patients.   

- Laboratory events: contains information regarding laboratory test results and associated 

details like the different laboratory test performed. 

- Movement events: tracks patient transfers between different locations or care units within 

the healthcare system. 

- Perfusion events: records information regarding drug infusion treatments administered to 

patients during their episode of care. Infusion treatments involve the slow administration of 

fluids or drugs, typically via an intravenous (IV) line.  
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- Prescription events: contains information regarding patient prescriptions, such as the 

drugs prescribed and the dosage. 

4.2 Data pre-processing 

Data pre-processing is a crucial step in the data engineering process. Given that real-world 

datasets often contain inconsistencies, missing values, and other imperfections, pre-processing 

ensures that the data is clean, consistent, and appropriately formatted for the next steps.  

4.2.1 Missing values 

Missing data is a common issue in clinical datasets and must be carefully handled to maintain data 

quality and avoid introducing bias. Datasets often contain missing values, which are typically 

represented as blanks or NaN (Not a Number). Most ML algorithms cannot handle missing or blank 

values, making it necessary to apply appropriate strategies for dealing with them.  

Some common approaches to handling missing data are [37]: 

- Dropping rows: one straightforward method is to remove rows with missing values. This 

approach is useful when the dataset is large enough that removing records will not 

significantly impact the overall analysis. However, this method can result in the loss of 

valuable data and potentially removing key patterns or relationships from the dataset.  

- Imputing missing values: another strategy is to impute, or fill in, the missing values with 

logical substitutes. There are several imputation techniques: 

o Mean: replaces missing values with the mean of the respective column. It is 

suitable for normally distributed data. 

o Median: fills in missing values with the median value of the column. It is often used 

when the data contains outliers. 

o Mode: replaces missing values with the most frequent value in the column. It is 

often used for categorical features or variables with repeated values. 

o K-Nearest Neighbours (KNN): imputes missing values based on the values of the 

nearest neighbours. It identifies the k most similar rows and fills the missing value 

with the average of the corresponding values from those rows.  

4.2.2 Encoding categorical variables 

Ensuring that data types are correctly assigned is crucial, as various downstream processes 

depend on the data type of features. Categorical features, in particular, contain label values rather 

than numeric values. Since most ML algorithms cannot directly handle categorical data, it must be 

transformed into numeric values before training a model. The most commonly used methods for 

encoding categorical data are [38]: 

- Label encoding: each category is assigned a unique integer value. This method is best 

suited for nominal data where the order doesn’t matter as it does not respect the order of 

the categories.  
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- Ordinal encoding: this method is used when categories have a clear, defined order but 

not necessarily evenly spaced intervals. For example, “Low”, “Medium”, and “High” would 

be assigned numerical values reflecting their rank. 

- One-Hot encoding: in this method, each category in a feature is transformed into a 

separate binary feature (1 or 0). This approach is ideal for nominal data as it prevents the 

model from assuming any relationship between the categories.  

4.2.3 Normalization 

Normalization is a technique aimed at rescaling the values of numeric features so they fall within a 

consistent range. This ensures that no single feature dominates due to its scale and help models 

train more effectively and efficiently. Many ML models perform better when the input features are 

within similar value ranges or distributions.  

The most frequently used methods for scaling in ML are [39]: 

- Min-Max normalization: preserves the original distribution of data but scales values to a 

fixed range between 0 and 1. Each value is transformed according to Eq. 1: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1) 

 

- Z-score normalization: transforms the data so it has a mean (μ) of 0 and a standard 

deviation (σ) of 1. The formula is shown in Eq. 2: 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
𝑥 − 𝜇

𝜎
 (2) 

 

4.3 Feature selection 

Feature selection is a crucial step in the ML pipeline. It is a process aimed at identifying the features 

in the dataset that contribute the most in predicting the target variable. Focusing on these selected 

features instead of all the features, not only helps reduce the risk of overfitting but also enhances 

model performance and improves computational efficiency by reducing training time.  

There are many methods for feature selection, some methods to consider are: 

- Tree-Based models: algorithms such as random forest and decision trees can be used 

as tools to estimate feature importance. When building a decision tree, the algorithm 

evaluates features at different nodes to determine the best splits. A feature’s importance 

is based on how much it reduces impurity, which is a measure of how mixed the target 

classes are after the split. Features that consistently reduce impurity are deemed more 

important [40].  

- Analysis of Variance (ANOVA) test: it is a statistical test used to compare the means of 

two or more groups and determine whether they are significantly different. In the context 

of feature selection, the ANOVA F-test evaluates each feature individually by calculating a 
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F-score, which represent the ratio of the variance between groups to the variance within 

groups. Features with higher F-scores are considered more relevant to the target variable 
[41]. 

- Pearson correlation: it measures the strength and direction of the linear relationship 

between two continuous variables. Features that have a strong correlation (positive or 

negative) with the target variable can be considered for selection. However, care must be 

taken to handle multicollinearity, where multiple features are highly correlated with each 

other, potentially leading to redundancy [42].  

4.4 Supervised Machine Learning models 

Supervised machine learning is a subfield of ML where the model is trained on a labelled dataset, 

meaning each training example is paired with a correct output. The objective of supervised machine 

learning is to learn a mapping from inputs to outputs that can generalize well to unseen data. This 

learning paradigm is commonly used for classification and regression tasks, where the model aims 

to predict a category or a continuous value, respectively. 

In supervised learning, the training process involves minimizing a loss function that measures the 

discrepancy between the predicted output and the actual label. Once trained, the model can be 

evaluated on test data to assess its performance using metrics such as accuracy, precision, recall, 

and F1 score, depending on the task.  

In the following subsections, a brief overview of the theorical foundations of the different supervised 

machine learning models considered in this project is provided. 

4.4.1 Logistic Regression 

Logistic Regression (LR) is a fundamental statistical model commonly used for binary classification 

tasks. While it is derived from regression analysis, it is designed to predict discrete outcomes, 

particularly binary or categorical responses. Unlike linear regression, which estimates continuous 

values, LR calculates the probability that a given input belongs to a particular class [43]. Although 

LR is inherently a binary classifier, it can be extended to handle multiclass classification [44]. One of 

the major advantages of this model is its interpretability, which makes it particularly useful in clinical 

settings, where understanding the impact of different features is essential. 

4.4.2 Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning model primary used for classification tasks. 

It works by finding an optimal hyperplane that separates different classes in the data and selecting 

the one that maximizes the margin between classes. The data points that are closest to this 

hyperplane and define its position are known as support vectors [45]. 

Although SVMs are inherently linear classifiers, they can effectively handle non-linear relationships 

in the data by using kernel functions. Commonly used kernels include the Radial Basis Function 

(RBF), polynomial, and sigmoid kernels [46]. These functions project the input features into a higher-

dimensional space where a linear separation becomes possible, allowing the model to learn 
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complex patterns like the ones found in clinical datasets. While SVMs may be less interpretable 

than simpler models such as LR, they are useful in scenarios where intricate and potentially non-

linear relationships exist between features and diagnostic outcomes.   

4.4.3 Decision Trees 

Decision Trees (DTs) are a fundamental machine learning algorithm used for classification and 

regression tasks. Recognized for their intuitive design and ease of interpretation, DTs simulate 

human decision-making by iteratively dividing data into subsets based on feature values. This tree-

like structure makes decision rules easy to visualize, contributing to their widespread use across 

different fields [47]. 

DTs are composed of nodes, each internal node represents a decision based on a feature, each 

branch corresponds to a possible outcome of the decision, and each leaf node assigns a class 

label. The model begins at the root node and splits the dataset by selecting the feature that best 

separates the data according to a chosen criterion, such as Gini impurity, entropy, or log loss. This 

process continues recursively until a stopping condition is met, such as no remaining features, all 

data points at a node belonging to the same class, or a predefined maximum depth [48].  

Despite its simplicity, DTs serve as the foundation for more advanced ensemble models like 

Random Forests and Gradient Boosted Trees, which combine multiple trees to improve predictive 

performance and generalization. 

4.4.4 Random Forest 

Random Forest (RF) is a robust and flexible ensemble learning algorithm commonly used for 

classification and regression tasks. Developed by Leo Breiman in 2001, it enhances the decision 

tree approach by combining multiple trees to generate more reliable, precise, and generalized 

predictions [49]. The algorithm utilizes bagging (bootstrap aggregating), where each tree is trained 

on a random subset of the training data. Additionally, it introduces extra randomness in feature 

selection to minimize overfitting and enhance model performance. In classification tasks, the 

ensemble’s final prediction is obtained by aggregating the predictions of the individual trees, 

typically through majority voting as shown in Figure 5 [50]. 

 

Figure 5: Random Forest trees illustration [50]. 
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4.4.5 Gradient Boosting 

Gradient Boosting is an ensemble learning technique that combines multiple weak learners, usually 

decision trees, to form a more powerful predictive model. The core principle of gradient boosting is 

to train models sequentially, with each new model focusing on correcting the errors made by the 

previous ones. This is achieved by training each new model to fit the residuals, or errors, left by the 

preceding model. In each iteration, a new tree is trained using the negative gradient of the loss 

function concerning the current predictions, progressively minimizing the error [51]. 

4.4.5.1. Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is an optimised and scalable implementation of gradient 

boosting developed to enhance speed, efficiency, and performance. Unlike RF, which build multiple 

decision trees independently and aggregate their outputs, XGBoost builds trees sequentially. In 

this process, each new tree is trained to correct the errors made by the previous ensemble of trees 

by assigning higher weights to misclassified samples as shown in Figure 6 [52]. This focused 

learning process allows the model to capture complex data patterns and improve predictive 

performance over time. 

 

Figure 6: Extreme Gradient Boosting (XGBoost) illustration [53]. 

 

4.4.6 K-Nearest Neighbours 

K-Nearest Neighbours (KNN) is a simple, instance-based supervised learning model used for 

classification and regression tasks. In classification, KNN predicts the class of a new data point by 

identifying the number of neighbours (k) closest samples in the training set, based on a distance 

metric such as Euclidean distance. The class most frequently represented among these neighbours 

is then assigned to the new point [54].  

The choice of k is a critical hyperparameter: a small k may lead to overfitting and noisy predictions, 

while a large k tends to smooth out class boundaries but can cause underfitting [54]. While KNN is 

easy to implement and understand, it struggles with large datasets unless properly optimised, and 

its performance heavily depends on the chosen distance metric and how the data features are 

scaled.  
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4.4.7 Neural Networks 

Deep Learning (DL) is a subset of ML, that uses neural networks composed of multiple layers to 

process and analyse large volumes of data. These layered networks are built to identify patterns 

and generate predictions automatically [55]. As a result, DL has proven to be particularly effective in 

healthcare due to its ability of handling and managing large and complex datasets.  

In the 1950s, the perceptron algorithm was first introduced as one of the firsts attempts to replicate 

how a human neuron works (Figure 7). The perceptron processes an input, applies weights, and 

then uses an activation function to determine if the neuron becomes active and generates an 

output. Although a single perceptron cannot recognize complex patterns, combining multiple 

perceptrons into layered structures, known as Neural Networks (NN), allows the model to capture 

and learn much more complex data [56]. 

 

Figure 7: Diagram of a neuron model [57]. 

 

4.4.7.1. Multilayer Perceptron 

The Multilayer Perceptron (MLP) is a type of NN and one of the most widely used architectures in 

deep learning. A MLP consists of at least three layers: an input layer, one or more hidden layers, 

and an output layer. Each layer, except for the input, is made up of neurons that apply a non-linear 

activation function, allowing the network to learn complex mappings between inputs and outputs. 

The network trains by adjusting the weights of these connections through a process called 

backpropagation, which minimises a loss function typically using gradient descent. For 

classification tasks, the output layer usually contains one node per class [58]. 

MLPs are highly flexible and can model intricate patterns in clinical datasets. However, they also 

come with several challenges. They require large amounts of labelled data to perform well and are 

not easily interpretable which can be a disadvantage in clinical settings, where explainability is 

important.  
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4.5 Model evaluation 

This section describes some of the most widely used metrics to assess the performance of 

classification models. These metrics are essential for comparing the effectiveness of different 

models and for understanding how well a model generalizes to unseen data.  

Confusion Matrix (Figure 8): is a fundamental tool for evaluating the performance of classification 

models. It provides a summary of the model’s predictions compared to the real values of the 

classes. For binary classification, the confusion matrix consists of four components [59]: 

- True Positive  TP): instances where the model correctly predicts the positive class. 

- True Negative (TN): instances where the model correctly predicts the negative class. 

- False Positive (FP): instances where the model predicts a positive class, when the actual 

class is negative.  

- False Negative (FN): instances where the model predicts a negative class, when the 

actual class is positive.  

For multiclass classification, the confusion matrix is extended to an n x n matrix, where n is the 

number of classes. Each row of the matrix represents the actual class, while each column 

represents the predicted class. Diagonal elements indicate correct predictions, while off-diagonal 

elements correspond to misclassifications [59].  

 

Figure 8: Confusion matrix [60]. 

 

The confusion matrix not only helps identifying the types of errors made by the model but also 

serves as the foundation for deriving several other evaluation metrics [61]: 

Accuracy (Acc): represents the proportion of correctly classified instances out of the total number 

of instances. Accuracy can be calculated using the following formula (Eq. 3): 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 
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Precision (𝑃𝑛): refers to the ratio of correctly predicted positive instances to the total number of 

instances that was predicted as positive (Eq. 4).  

𝑃𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

Recall (𝑅𝑐): indicates the proportion of actual positive instances that were correctly identified by 

the model (Eq. 5).  

𝑅𝑐 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑃
 (5) 

 

Sensitivity (𝑆𝑛): represents the model’s ability to correctly identify positive cases (Eq. 6). 

𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

Specificity (𝑆𝑝): measures the proportion of actual negative instances that are correctly identified 

by the model (Eq. 7): 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7) 

 

F-measure: the F1 score is the harmonic mean of precision and recall, providing a balanced 

measure of a model’s accuracy identifying positive cases. The highest F score is 1, which indicates 

perfect precision and recall score (Eq. 8). 

𝐹1 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

 

Area Under the Curve (AUC): quantifies the overall ability of a model to distinguish between 

classes across various threshold settings (Eq. 9). Where 𝐼𝑝 and 𝐼𝑛 represent positive and negative 

data samples, and 𝑅𝑖 represents the rating of the 𝑖th positive samples [61]. 

𝐴𝑈𝐶 =
∑ 𝑅𝑖(𝐼𝑝) − 𝐼𝑝 (

𝐼𝑝 + 1
2

)

𝐼𝑝 + 𝐼𝑛
 

(9) 
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Cohen’s kappa (𝜿): is frequently used to test interrater reliability. It is a metric that measures the 

agreement between two raters or classification models, taking into account the agreement that 

could happened by chance (Eq. 10). Where Pr(𝑎) is the observed proportion of agreement, and 

Pr(𝑒) is the expected proportion of agreement by chance [62].   

𝜅 =
Pr(𝑎) − Pr(𝑒)

1 − Pr(𝑒)
 (10) 

 

Matthew’s correlation coefficient (MCC): unlike accuracy, it provides a balanced measure even 

if the classes are of very different sizes, making it especially useful for imbalanced datasets (Eq. 

11) [63].  

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

 (11) 

 

 

4.5.1 Validation 

To evaluate the generalizability and robustness of the model, appropriate validation strategies must 

be employed. These strategies help reduce overfitting and provide a more accurate estimate of 

model performance. Below are commonly used validation techniques: 

- Hold-Out validation: this strategy involves randomly dividing the dataset into two sets: a 

training set and a test set. The model is trained on the training set and evaluated on the 

test set. This method is straightforward and computationally efficient, making it suitable for 

large datasets. However, its performance estimate can be sensitive to the specific data 

split, potentially leading to high variance in model evaluation. This sensitivity can result in 

misleading performance metrics, especially when the dataset is small or imbalanced [64]. 

- K-Fold Cross-validation: this method addresses the limitations of hold-out validation by 

dividing the dataset into k equal-sized folds. The model undergoes k iterations, each time 

training on k-1 folds and testing on the remaining fold. This process ensures that every 

data point is used for both training and testing, providing a more reliable estimate of model 

performance [65]. 

- Stratified K-Fold Cross-validation: it is an enhancement of k-fold cross-validation that 

ensures each fold maintains the same proportion of each class as the entire dataset 

(Figure 9). This technique is particularly beneficial for imbalanced datasets, where certain 

classes may be underrepresented. By preserving class distribution, this method provides 

a more accurate assessment of model performance across all classes [65]. 

For this project, the stratified k-fold cross validation method is used to ensure each class is 

adequately represented in both training and validation phases. This approach enhances the 

reliability of performance metrics and the development of models that generalize well.  
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Figure 9: Schematic diagram of Stratified K-Fold Cross-validation [66]. 

 

4.6 Hyperparameter tuning 

Unlike model parameters, which are learned directly from the training data, hyperparameters are 

defined externally and play a significant role in model performance. Effective hyperparameter 

tuning is a crucial step in developing a robust ML model. Choosing appropriate hyperparameter 

values can lead to improvements in model performance, generalization, and computational 

efficiency. 

Common strategies used for hyperparameter tuning are [67]: 

- Grid search: this method involves an exhaustive search through a predefined set of 

hyperparameter values. While it is simple to implement, it can be computationally 

expensive, especially when dealing with many hyperparameters or large datasets. 

- Random search: instead of evaluating all possible combinations, this approach explores 

random combinations of hyperparameters. This method is ideal when computational 

resources are limited.  

- Bayesian optimization: this approach uses probabilistic models to estimate the 

performance of hyperparameter combinations and then selects the most promising options 

to evaluate. It is more efficient than grid or random search but it is more complex to 

implement.  
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5 DETAIL ENGINEERING 

The following section provides a detailed overview of each stage of the project execution. It includes 

a structured explanation of the methods applied at each step, the final results obtained, and a 

discussion of the outcomes.  

5.1 Programming environment 

All coding for the project was carried out using the Python programming language because of its 

versatility, ease of use, and extensive ecosystem of data science libraries. Python is widely used 

in data science and ML due to its numerous open-source libraries that streamline the development 

of ML models.  

Pandas and NumPy were used for data manipulation and numerical operations. For data 

visualization, Matplotlib and Seaborn were employed to generate plots and charts that supported 

Exploratory Data Analysis, feature selection, and model evaluation.  

For the implementation of the various supervised ML models, the PyCaret library was used. 

PyCaret is a low-code ML library with an easy-to-use interface that simplifies and automates 

various ML workflows, facilitating efficient model development and experimentation [68]. 

Additionally, Scikit-learn was employed because of its wide array of tools that support algorithm 

implementation, model evaluation, and other essential ML tasks.  

Script development was conducted in Jupyter Notebooks, providing an interactive coding 

environment for both writing and visualizing code. All project notebooks are available in a GitHub 

repository.  

5.2 Data pre-processing 

As described in Section 4.1, the data used in this study was obtained from the Hospital Clínic de 

Barcelona. The dataset consisted of 15 separate files, each containing different clinical and 

administrative information. Each file was first imported and then subjected to a series of data pre-

processing steps to ensure the dataset was clean, consistent, and suitable for training ML models. 

The initial step involved removing duplicate rows across all files to avoid redundancy. Missing 

values were assessed separately for each file. Given the large size of the datasets and the relatively 

low proportion of missing data, rows with missing values were removed using the dropna() function.  

Due to the high number of columns in each file and the limited computational resources, only the 

most relevant features for diagnosis prediction were kept. Non-informative or redundant columns 

were dropped to manage dimensionality and focus on clinically meaningful features. Additionally, 

to enhance consistency and readability, some columns were also renamed across files.  

In certain files, additional columns were generated to improve the dataset’s predictive capacity. For 

example, an age column was computed using the patient’s date of birth and the date of admission. 

https://github.com/cchenche8/EBM_TFG.git
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Furthermore, episode and care level durations were also calculated using the timestamps provided 

in the episode_events.csv and care_level_events.csv files, respectively.  

For the diagnostic_events.csv file, only diagnoses that were not present on admission (poa = 0), 

were selected. This filtering was applied to focus on identifying new diagnoses developed during 

the hospital stay, rather than pre-existing conditions. Additionally, due to the large number of unique 

ICD-10-CM codes, it was necessary to group them into broader diagnostic categories to make the 

classification problem more manageable. Instead of predicting individual ICD-10-CM codes, 

diagnoses were grouped based on ICD-10-CM chapters, as shown in Table 2 [69]. 

Table 2: ICD-10-CM chapters and corresponding code ranges. 

ICD-10-CM Chapter Name Range 

Certain infections and parasitic diseases A00 to B99 

Tumours (neoplasms) C00 to D49 

Diseases of the blood and blood-forming organs and disorders 
affecting the immunological mechanism 

D50 to D89 

Endocrine, nutritional, and metabolic diseases E00 to E89 

Mental and behavioural disorders F01 to F99 

Diseases of the nervous system G00 to G99 

Diseases of the eye and its appendages H00 to H59 

Diseases of the ear and the mastoid process H60 to H95 

Diseases of the circulatory system I00 to I99 

Diseases of the respiratory system J00 to J99 

Diseases of the digestive system K00 to K95 

Diseases of the skin and subcutaneous tissue L00 to L99 

Diseases of the musculoskeletal system and connective tissue M00 to M99 

Diseases of the genitourinary system N00 to N99 

Pregnancy, childbirth, and the postpartum period O00 to O99 

Certain conditions originating in the perinatal period P00 to P96 

Congenital malformations, deformities, and chromosomic anomalies Q00 to Q99 

Abnormal symptoms, signs, and test results not otherwise classified R00 to R99 

Injuries, poisonings, and other consequences of external causes S00 to T88 

Codes for special purposes (ex: COVID-19) U00 to U99 

External causes of morbidity V00 to Y99 

Factors influencing health status and contact with health services Z00 to Z99 
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Reducing the number of classes to predict offered several advantages, including a more 

manageable number of classes for modeling, making it easier to train models, reducing the risk of 

overfitting, and enhancing interpretability. Moreover, grouping diagnoses into broader chapters 

provided a more balanced class distribution and improved model generalization.  

After pre-processing, relevant features from each file were merged into a single unified dataset 

using the patient NHC and episode reference identifiers. The resulting dataset contained 1045984 

rows and 135 columns. Table 3 shows the distribution of diagnosis counts across the ICD-10-CM 

chapters, which was useful for identifying any class imbalances.  

Subsequently, an Exploratory Data Analysis (EDA) was performed to better understand the final 

dataset structure. This included examining data distributions, identifying data types, and detecting 

potential imbalances or biases. The resulting plots are provided in Annex B.  

 

Table 3: Distribution of diagnoses counts across the ICD-10-CM chapters. 

ICD-10-CM Chapter Name Count Percentage 

Factors influencing health status and contact with health services 211968 20.26% 

Diseases of the genitourinary system 111154 10.63% 

Certain infections and parasitic diseases 108634 10.39% 

Diseases of the digestive system 93312 8.92% 

Abnormal symptoms, signs, and test results not otherwise 
classified 

82998 7.93% 

Injuries, poisonings, and other consequences of external causes 74850 7.16% 

Diseases of the respiratory system 59964 5.73% 

Tumours (neoplasms) 55096 5.27% 

Diseases of the blood and blood-forming organs and disorders 
affecting the immunological mechanism 

48742 4.66% 

External causes of morbidity 46363 4.43% 

Diseases of the circulatory system 40953 3.92% 

Endocrine, nutritional, and metabolic diseases 33772 3.23% 

Congenital malformations, deformities, and chromosomic 
anomalies 

29363 2.81% 

Mental and behavioural disorders 16418 1.57% 

Diseases of the nervous system 12700 1.21% 

Diseases of the musculoskeletal system and connective tissue 8305 0.79% 

Diseases of the skin and subcutaneous tissue 6767 0.65% 

Codes for special purposes (ex: COVID-19) 3515 0.34% 

Diseases of the eye and its appendages 585 0.06% 

Pregnancy, childbirth, and the postpartum period 525 0.05% 
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5.3 Feature selection 

Before performing feature selection, all categorical variables were encoded using appropriate 

techniques. Specifically, ordinal variables were encoded using label encoding via the LabelEncoder 

function in sklearn.preprocessing, ensuring that the natural order was maintained. As for nominal 

categorical variables, one-hot encoding was applied using the OneHotEncoder function to avoid 

introducing any ordinal relationships.  

Following the encoding step, feature selection was carried out to identify the most relevant features 

for the classification tasks and generate different subsets for model evaluation. As discussed in 

Section 4.3, there are various methods for feature selection, for this project, two approaches were 

used. The first method involved tree-based feature importance, while the second used univariate 

statistical selection through the ANOVA F-test.  

For the tree-based method, an ensemble of decision trees was constructed using the 

ExtraTreesClassifier class from sklearn. This algorithm builds an ensemble of 100 randomized 

trees, each trained on random subsets of the data which helps improve generalization and reduce 

overfitting. Once the model was trained, feature importance scores were extracted using the 

feature_importances_ attribute. These importance scores measures each feature’s contribution to 

reducing impurity in the classification trees. The top 20 features, ranked from most to least 

important, are presented in Figure 10.  

The second method applied was a univariate feature selection using the ANOVA F-test. In this 

method, each feature was individually evaluated for its statistical significance in relation to the target 

diagnosis variable. The SelectKBest function, using the F-score metric, selected the top 20 features 

with the highest discriminatory power, as shown in Figure 11. 

Both methods produced ranked lists of important features. Detailed results and visualizations for 

both methods can be found in Annex C. 

 

Figure 10: Top 20 most important features based on Decision Trees. 



Use of Machine Learning and SNOMED CT Encoded Health  
Problems to Predict Hospital Discharge Diagnoses 

 

28 

 

Figure 11: Top 20 most important features based on ANOVA F-test. 

 

5.3.1 Definition of the subsets 

To optimise classification performance and evaluate the impact of different groups of features, 

several subsets were generated by combining various input variables. Each subset represents a 

specific selection of features, based on the results of the feature selection methods described 

earlier.  

Table 4 provides an overview of the different subsets generated along with the number of variables 

in each of them. A comprehensive list of all variables included in each subset can be found in Annex 

D.  

 

Table 4: Description of the different subsets and the num.  

Subset Description 
Number of 
variables 

Subset 1 Dataset with all the features 134 

Subset 2 Dataset with the top 20 featured based on decision trees 20 

Subset 3 Dataset with the top 10 featured based on decision trees 10 

Subset 4 Dataset with the top 20 featured based on ANOVA test 20 

Subset 5 Dataset with the top 10 featured based on ANOVA test 10 

Subset 6 
Dataset with only the features that appear in both the top 20 
from decision trees and ANOVA test 

11 

Subset 7 
Dataset with all the features from the top 20 of both decision 
trees and ANOVA test. 

29 
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5.4 Supervised Machine Learning model selection  

After defining the different subsets, the next step was to perform model selection for each subset. 

As outlined in Section 4.4, a range of supervised ML models were considered. To identify the model 

that delivered the best performance for each subset, a comparative analysis of the different models 

was conducted using PyCaret, a library that automates various ML workflows, enabling efficient 

model development, comparison, and tuning.  

The model selection process began with the use of the setup() function, which initializes the 

experiment within PyCaret and establishes the transformation pipeline according to the parameters 

provided. During this step, the data is also split into training (70%) and testing (30%) sets. 

Subsequently, the compare_models() function from the Pycaret library was employed to train and 

evaluate the selected estimators. This function performs a 10-fold stratified cross-validation, 

providing a robust estimate of the model’s performance while preserving the class distribution in 

each fold, which is an important consideration when handling imbalanced datasets. 

The output is a ranked table of models with their corresponding average performance metrics 

across folds. The following tables summarize the comparative performance results of various ML 

models evaluated on the different subsets.   

 

Table 5: Performance of various ML models on Subset 1. 

Model Accuracy AUC Recall Precision F1 Kappa MCC 

DT 0.6602 0.8137 0.6602 0.6603 0.6602 0.6238 0.6238 

XGBoost 0.4619 0.9076 0.4619 0.4709 0.4639 0.4085 0.4089 

KNN 0.3046 0.7567 0.3046 0.3132 0.3053 0.2318 0.2323 

MLP 0.2026 0.5000 0.2026 0.0411 0.0683 0.0000 0.0000 

LR 0.2005 0.0000 0.2005 0.0409 0.0679 -0.0019 -0.0136 

SVM 0.0685 0.0000 0.0685 0.0107 0.0136 0.0000 0.0007 

 

Table 6: Performance of various ML models on Subset 2. 

Model Accuracy AUC Recall Precision F1 Kappa MCC 

DT 0.6627 0.8175 0.6627 0.6632 0.6629 0.6267 0.6267 

XGBoost 0.4538 0.9063 0.4538 0.4662 0.4569 0.4003 0.4008 

KNN 0.3280 0.7748 0.3280 0.3359 0.3287 0.2575 0.2580 

MLP 0.2026 0.5000 0.2026 0.0411 0.0683 0.0000 0.0000 

LR 0.2005 0.0000 0.2005 0.0409 0.0679 -0.0019 -0.0137 

SVM 0.1186 0.0000 0.1186 0.0176 0.0301 0.0000 -0.0002 
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Table 7: Performance of various ML models on Subset 3. 

Model Accuracy AUC Recall Precision F1 Kappa MCC 

XGBoost 0.2823 0.8387 0.2823 0.2833 0.2769 0.2107 0.2114 

RF 0.2710 0.8038 0.2710 0.2688 0.2688 0.1926 0.1928 

DT 0.2707 0.7866 0.2707 0.2737 0.2693 0.1937 0.1941 

KNN 0.2596 0.7178 0.2596 0.2694 0.2608 0.1830 0.1836 

MLP 0.2026 0.5000 0.2026 0.0411 0.0683 0.0000 0.0000 

LR 0.2003 0.0000 0.2003 0.0411 0.0679 -0.0020 -0.0137 

SVM 0.0803 0.0000 0.0803 0.0121 0.0188 0.0001 -0.0002 

 

 

Table 8: Performance of various ML models on Subset 4. 

Model Accuracy AUC Recall Precision F1 Kappa MCC 

DT 0.4429 0.9052 0.4429 0.4431 0.4427 0.3840 0.3841 

RF 0.4429 0.9056 0.4429 0.4417 0.4420 0.3837 0.3837 

XGBoost 0.4282 0.9024 0.4282 0.4428 0.4323 0.3725 0.3731 

KNN 0.3288 0.7588 0.3288 0.3411 0.3306 0.2585 0.2593 

MLP 0.2026 0.5000 0.2026 0.0411 0.0683 0.0000 0.0000 

LR 0.2008 0.0000 0.2008 0.0410 0.0680 -0.0016 -0.0128 

SVM 0.0806 0.0000 0.0806 0.0114 0.0194 0.0002 0.0004 

 

 

Table 9: Performance of various ML models on Subset 5. 

Model Accuracy AUC Recall Precision F1 Kappa MCC 

RF 0.4014 0.8985 0.4014 0.4455 0.4004 0.3450 0.3478 

XGBoost 0.4014 0.8985 0.4014 0.4407 0.3975 0.3445 0.3474 

DT 0.4013 0.8985 0.4013 0.4458 0.4006 0.3453 0.3481 

KNN 0.3960 0.7831 0.3960 0.4836 0.4070 0.3385 0.3437 

MLP 0.3869 0.8854 0.3869 0.4818 0.3779 0.3219 0.3287 

LR 0.2588 0.0000 0.2588 0.1901 0.1916 0.1249 0.1409 

SVM 0.2009 0.0000 0.2009 0.2018 0.1600 0.1068 0.1206 
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Table 10: Performance of various ML models on Subset 6. 

Model Accuracy AUC Recall Precision F1 Kappa MCC 

DT 0.4422 0.9050 0.4422 0.4424 0.4420 0.3832 0.3833 

RF 0.4422 0.9054 0.4422 0.4410 0.4413 0.3829 0.3829 

XGBoost 0.4268 0.9021 0.4268 0.4413 0.4311 0.3710 0.3716 

KNN 0.4099 0.8032 0.4099 0.4242 0.4137 0.3479 0.3486 

MLP 0.2026 0.5000 0.2026 0.0411 0.0683 0.0000 0.0000 

LR 0.2004 0.0000 0.2004 0.0409 0.0679 -0.0020 -0.0151 

SVM 0.0980 0.0000 0.0980 0.0155 0.0261 0.0002 0.0004 

 

 

Table 11: Performance of various ML models on Subset 7. 

Model Accuracy AUC Recall Precision F1 Kappa MCC 

DT 0.6644 0.8185 0.6644 0.6648 0.6646 0.6286 0.6286 

XGBoost 0.4555 0.9065 0.4555 0.4675 0.4584 0.4002 0.4027 

KNN 0.3360 0.7811 0.3360 0.3448 0.3369 0.2662 0.2668 

MLP 0.2026 0.5000 0.2026 0.0411 0.0683 0.0000 0.0000 

LR 0.2007 0.0000 0.2007 0.0410 0.0679 -0.0017 -0.0122 

SVM 0.1186 0.0000 0.1186 0.0176 0.0301 0.0000 -0.0022 

 

After evaluating the performance of the various ML models, the best model for each subset was 

selected based on overall performance metrics. In general, ensemble-based models such as 

decision trees, random forest, and XGBoost were the top performers, this is most likely because of 

their ability to capture complex non-linear relationships and interactions within the data.   

The final selected models for each subset are summarized in Table 12. 

 

Table 12: Final model selected for each subset. 

Subset Selected model 

Subset 1 Decision trees 

Subset 2 Decision trees 

Subset 3 XGBoost 

Subset 4 Decision trees 

Subset 5 Random Forest 

Subset 6 Decision trees 

Subset 7 Decision trees 
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5.5 Hyperparameter tuning 

Following the initial training and evaluation of the best performing model for each data subset, a 

hyperparameter tuning process was conducted to identify the best combination of hyperparameter 

values that maximize model performance. This tuning was performed using PyCaret’s 

tune_model() function, which by default employs RandomGridSearch. This method efficiently 

explores a wide range of hyperparameter combinations by sampling randomly from specified 

distributions. However, in cases where the default random grid search did not lead to performance 

improvements, a more targeted and exhaustive tuning approach was conducted using 

GridSearchCV from sklearn. This allowed the evaluation of specific hyperparameter combinations 

based on a custom-defined parameter grid. 

For decision tree models, the key hyperparameters considered during tuning included: 

- criterion: it determines the function used to evaluate the quality of a split.  

- max_depth: limits the maximum depth of the tree to prevent overfitting. 

- min_samples_leaf: specifies the minimum number of samples required to be present at 

a leaf node. 

- min_samples_split: sets the minimum number of samples needed to split an internal 

node. 

As for random forest, the key parameters included:  

- criterion: it works similarly to the one used in decision trees. 

- max_depth: limits tree depth to reduce overfitting. 

- n_estimators: is the number of trees in the forest. Increasing this value generally improves 

model performance and stability but has a higher computational cost. 

Finally, for XGBoost models, the primary hyperparameters tuned were: 

- learning_rate: also known as eta, controls the step size at each boosting iteration.  

- max_depth: influences the complexity of each individual tree. 

- n_estimators: defines the number of boosting rounds. 

The following tables compare the performance metrics of the selected models for each subset 

before and after hyperparameter tuning.  

 

Table 13: Performance of DT model on Subset 1 before and after hyperparameter tuning. 

 Accuracy AUC Recall Precision F1 Kappa MCC 

Before 0.6602 0.8137 0.6602 0.6603 0.6602 0.6238 0.6238 

After 0.6602 0.8137 0.6602 0.6603 0.6602 0.6238 0.6238 

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 14: Performance of DT model on Subset 2 before and after hyperparameter tuning. 

 Accuracy AUC Recall Precision F1 Kappa MCC 

Before 0.6627 0.8175 0.6627 0.6632 0.6629 0.6267 0.6267 

After 0.6694 0.8213 0.6694 0.6699 0.6696 0.6341 0.6341 

 +0.0067 +0.0038 +0.0067 +0.0067 +0.0067 +0.0074 +0.0074 

 

 

Table 15: Performance of XGBoost model on Subset 3 before and after hyperparameter tuning. 

 Accuracy AUC Recall Precision F1 Kappa MCC 

Before 0.2823 0.8387 0.2823 0.2833 0.2769 0.2107 0.2114 

After 0.2875 0.8398 0.2875 0.2888 0.2827 0.2156 0.2164 

 +0.0052 +0.0011 +0.0052 +0.0055 +0.058 +0.0049 +0.0050 

 

 

Table 16: Performance of DT model on Subset 4 before and after hyperparameter tuning. 

 Accuracy AUC Recall Precision F1 Kappa MCC 

Before 0.4429 0.9052 0.4429 0.4431 0.4427 0.3840 0.3841 

After 0.4429 0.9052 0.4429 0.4432 0.4427 0.3840 0.3841 

 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 

 

 

Table 17: Performance of RF model on Subset 5 before and after hyperparameter tuning. 

 Accuracy AUC Recall Precision F1 Kappa MCC 

Before 0.4014 0.8985 0.4014 0.4455 0.4004 0.3450 0.3478 

After 0.4015 0.8985 0.4015 0.4463 0.4002 0.3449 0.3476 

 +0.0001 0.0000 +0.0001 +0.0008 -0.0002 -0.0001 -0.0002 

 

 

Table 18: Performance of DT model on Subset 6 before and after hyperparameter tuning. 

 Accuracy AUC Recall Precision F1 Kappa MCC 

Before 0.4422 0.9050 0.4422 0.4424 0.4420 0.3832 0.3833 

After 0.4422 0.9050 0.4422 0.4424 0.4420 0.3832 0.3833 

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 19: Performance of DT model on Subset 7 before and after hyperparameter tuning. 

 Accuracy AUC Recall Precision F1 Kappa MCC 

Before 0.6644 0.8185 0.6644 0.6648 0.6646 0.6286 0.6286 

After 0.6698 0.8215 0.6704 0.6704 0.6700 0.6346 0.6346 

 +0.0054 +0.0030 +0.0060 +0.0056 +0.0054 +0.0060 +0.0060 

 

As shown in the performance comparison tables, the models trained on Subsets 2, 3, and 7 

demonstrated the most significant improvements after hyperparameter tuning. This suggest that 

these subsets contained feature combinations particularly sensitive to parameter optimization, 

allowing the models to better capture underlying patterns in the data. In contrast, the remaining 

subsets showed only small improvements, indicating that either the default hyperparameters were 

already nearly optimal or that the feature combinations were less complex, and thus offering limited 

room for improvement. 

Table 20 presents the best performing hyperparameter values identified for each subset.  

 

Table 20: Best hyperparameter values for each subset. 

Subset Best hyperparameters 

Subset 1 

criterion = ’entropy’ 
max_depth = None 

min_samples_leaf = 1 
min_samples_split = 2 

Subset 2 

criterion = ‘log_loss’ 
max_depth = None 

min_samples_leaf = 1 
min_samples_split = 2 

Subset 3 

colsample_bytree = 0.9 
learning_rate = 0.15 

max_depth = 7 
min_child_weight = 3 
n_estimators = 290 

Subset 4 

criterion = ’entropy’ 
max_depth = None 

min_samples_leaf = 1 
min_samples_split = 2 
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Subset 5 
criterion = gini 

max_depth = 15 
n_estimators = 300 

Subset 6 

criterion = ’entropy’ 
max_depth = None 

min_samples_leaf = 1 
min_samples_split = 2 

Subset 7 

criterion = ‘log_loss’ 
max_depth = None 

min_samples_leaf = 1 
min_samples_split = 2 

 

5.6 Model testing 

After optimizing and tuning the hyperparameters for each model, the final step was to evaluate the 

model’s performance on the unseen test set. This step provides a realistic estimate of how the 

model would perform in a real-world setting.  

To carry out this step, the predict_model() function in PyCaret was used. This function applies the 

final tuned model to the previously split test set and computes key performance metrics. These 

metrics provide a comprehensive view of the model’s ability to correctly classify patient diagnoses 

across multiple classes. 

Table 21 presents the final performance metrics for each subset, organized by best overall 

performance. 

 

Table 21: Performance results on the test set. Ranked by best overall performance. 

 Accuracy AUC Recall Precision F1 Kappa MCC 

Subset 1 0.6895 0.8303 0.6895 0.6898 0.6896 0.6564 0.6564 

Subset 7 0.6889 0.8327 0.6889 0.6895 0.6891 0.6556 0.6556 

Subset 2 0.6875 0.8320 0.6875 0.6881 0.6878 0.6541 0.6541 

Subset 6 0.4446 0.9054 0,4446 0.4433 0.4437 0.3856 0.3856 

Subset 4 0.4453 0.9056 0.4453 0.4441 0.4444 0.3864 0.3865 

Subset 5 0.4032 0.8985 0.4032 0.4500 0.3991 0.3457 0.3484 

Subset 3 0.2879 0.8398 0.2879 0.2901 0.2834 0.2164 0.2171 
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5.7 Results and discussion 

After evaluating the final models on the test set, a clear performance distinction can be observed 

across the different subsets. Subsets 1, 7, and 2 show the best overall performance, achieving an 

average accuracy of approximately 68.9%, with similar recall, precision, and F1-scores. These 

subsets also achieved the highest Cohen’s Kappa and Matthew’s Correlation Coefficient (MCC) 

scores, indicating strong agreement beyond chance and balanced performance across multiple 

classes. These results suggest that the feature combinations in Subsets 1, 7, and 2 provide a well-

balanced and informative representation of the patient data, enabling the models to generalize 

effectively on unseen cases.  

Subsets 6, 4, and 5 achieved significantly lower performance, with accuracy values around 40% to 

44%. However, they recorded very high AUC values, indicating that while the model was able to 

rank classes well, its final classification thresholds may not have been optimal, possibly due to 

class imbalance. This discrepancy between AUC and classification metrics suggest the potential 

benefit of threshold calibration or cost-sensitive learning in future work. 

Subset 3, despite requiring XGBoost, one of the most complex models, has shown the lowest 

performance metrics. This poor performance indicates that the feature selection of this subset. Did 

not provide enough discriminatory power, or that the complexity of the model may have led to 

overfitting during training and poor generalization.  

To further analyse the results, several plots were generated, including confusion matrices, 

classification reports, and feature importance visualizations. Together, they provide a clearer 

understanding of which classes are most accurately predicted, where misclassifications occur, and 

which features contribute most to the predictions.  

An analysis of the confusion matrix (Figure 12) and the classification report (Figures 13) for Subset 

1 reveals significant variation in the model’s predictive performance across different classes. 

Specifically, certain classes like Class 14 and Class 8 exhibit high precision and recall, indicating 

strong predictive reliability. In contrast, other classes, like Class 2 and Class 3, are frequently 

misclassified. This suggest that the model struggles to learn their distinct features.  

This discrepancy is not coincidence, instead, it reflects a clear correlation between class distribution 

and model performance. As shown in Table 22, classes with a higher number of samples tend to 

achieve better classification outcomes, whereas classes with fewer samples are more susceptible 

to error. This imbalance introduces bias into the model, making it more likely to favour majority 

classes. 

For this reason, addressing class imbalance during data pre-processing is essential. Future 

improvements could include the use of resampling methods such as Synthetic Minority Over-

sampling Technique (SMOTE), generating synthetic data, or incorporating class-weighted loss 

functions during training. These methods can help the model learn meaningful patterns across all 

classes and improving overall performance.  
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Figure 12: Confusion matrix for DT model of Subset 1. 

 

 
Figure 13: Classification report for DT model of Subset 1. 
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Table 22: Model assigned class numbers and corresponding ICD-10-CM chapter. 

Class ICD-10-CM Chapter Name Count Percentage 

14 
Factors influencing health status and contact with health 
services 

211968 20.26% 

9 Diseases of the genitourinary system 111154 10.63% 

1 Certain infections and parasitic diseases 108634 10.39% 

8 Diseases of the digestive system 93312 8.92% 

17 
Abnormal symptoms, signs, and test results not otherwise 
classified 

82998 7.93% 

15 
Injuries, poisonings, and other consequences of external 
causes 

74850 7.16% 

12 Diseases of the respiratory system 59964 5.73% 

19 Tumours (neoplasms) 55096 5.27% 

5 
Diseases of the blood and blood-forming organs and 
disorders affecting the immunological mechanism 

48742 4.66% 

0 External causes of morbidity 46363 4.43% 

7 Diseases of the circulatory system 40953 3.92% 

13 Endocrine, nutritional, and metabolic diseases 33772 3.23% 

16 
Congenital malformations, deformities, and chromosomic 
anomalies 

29363 2.81% 

18 Mental and behavioural disorders 16418 1.57% 

11 Diseases of the nervous system 12700 1.21% 

10 
Diseases of the musculoskeletal system and connective 
tissue 

8305 0.79% 

4 Diseases of the skin and subcutaneous tissue 6767 0.65% 

2 Codes for special purposes (ex: COVID-19) 3515 0.34% 

6 Diseases of the eye and its appendages 585 0.06% 

3 Pregnancy, childbirth, and the postpartum period 525 0.05% 

 
 

The main objective of this project was to investigate whether health problems coded in SNOMED 

CT (snomed_code variable) can effectively serve as predictors for discharge diagnoses coded in 

ICD-10-CM. Additionally, the project also aimed to identify the most important input features to 

predict discharge diagnoses.  

To explore this, features importance plots from the models obtained from Subsets 1, 7 and 2 were 

computed. These plots provide insight into the relative contribution of each variable to the predictive 

performance of the trained models. For additional performance plots across all subsets, please 

refer to Annex E.    
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Figure 14 shows the top 10 most important features from the model trained on Subset 1. As we 

can see the snomed_code variable ranked 9th, out of a total of 135 variables in the subset. In 

comparison, Figure 15, which corresponds to Subset 2, shows that snomed_code ranked 12th. 

Lastly, Figure 16, which represents Subset 7, places snomed_code at 15th in importance. This 

consistency suggest that while snomed_code is not one of the top predictors, it consistently 

appears across all subsets, indicating moderate importance. Although it is not the most influential 

predictor on its own, it still provides valuable information for predicting final diagnoses and performs 

best when combined with other clinical and demographic features.  

 
Figure 14: Top 10 most important features from DT model on Subset 1.  

 

 

Figure 15: Feature importance from DT model on Subset 2. 
: 
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Figure 16: Feature importance from DT model on Subset 7. 

 

From the feature importance plots, we can see that several variables were repeatedly ranked highly 

across all three models. This suggest their strong relevance in predicting discharge diagnoses: 

- age: could reflect age-related comorbidities and disease patterns. 

- drg_ref: represents Diagnosis Related Group reference, which are clinically grouped 

conditions used mainly for billing and reimbursement purposes. 

- episode_duration: may correlate with illness severity or complexity of treatment. 

- diag_class_ref_S: diagnosis classification level. 

- lab_result_num_mean: average lab test results. 

- adm_drug_dose_mean: average drug administration dose. 

- drg_mdc_ref: Major Diagnostic Category (MDC) 

- care_level_duration: length of the care level. 

Some factors that could explain why snomed_code did not emerge as one of the top predictors for 

ICD-10-CM discharge diagnoses are: 

- Granularity and mapping challenges: as explained in Section 2, SNOMED CT codes 

are highly granular and capture detailed clinical information. However, the target variable, 

corresponds to a broader diagnostic category. The inherent complexity of mapping detailed 

SNOMED CT concepts to generalized ICD-10 codes introduces limitations. 
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- Variation in coding practices: in the clinical setting, healthcare professionals have not 

consistently recorded health problems in SNOMED CT unless required. As a result, there 

is a bias, there are diagnostics with more complete SNOMED CT coding.   

- Lack of standardized use among clinicians: many users, are not yet fully trained or 

incentivised to systematically document health problems using SNOMED CT. This results 

in underreporting or inconsistent coding, which reduces the completeness and reliability of 

the variable across the dataset.  

5.7.1 Limitations 

This section highlights the primary limitations encountered during the project. Acknowledging these 

challenges is important in order to effectively inform and direct future research efforts.   

The first challenge encountered is the dataset size and complexity. Handling data from 15 different 

files, each containing different types of clinical information, required significant effort in terms of 

cleaning, processing, and merging. Clinical datasets are inherently messy, often containing 

incomplete records, and variables that are difficult to interpret without expert knowledge. 

Additionally, healthcare data is subject to a wide range of biases, including missing data, errors in 

coding, and discrepancies between clinical observations and final diagnoses. Despite rigorous pre-

processing, some noise and inconsistency likely remained in the data.  

Another significant challenge was the imbalance of diagnostic categories in the dataset. Some ICD-

10-CM chapters were heavily represented, while others appeared infrequently. This imbalance can 

lead ML models to favour majority classes and reducing sensitivity to less frequent diagnoses. 

Although multiclass classification metrics such as AUC and F1-score were used, class imbalance 

likely affected overall generalizability and may have contributed to biased predictions.  

Finally, processing and analysing high-dimensional healthcare data, especially during pre-

processing, model training and hyperparameter tuning, was computationally intensive. While 

PyCaret streamlined much of the workflow, the underlying algorithms, particularly ensemble 

methods like random forest and XGBoost, still demanded substantial memory and processing time. 

These limitations restricted the number of experiments that could be conducted, for example, during 

hyperparameter grid search, potentially narrowing the optimization of the model’s performance.  
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6 EXECUTION SCHEDULE 

6.1 Work Breakdown Structure 

The Work Breakdown Structure (WBS) is a project management tool that breaks down a project 

into smaller, more manageable components. It provides a structured overview of the fundamental 

elements required for a successful execution of the project. In this case, the WBS is divided into 

four main sections: project preparation, data pre-processing, Machine Learning models, and project 

report. Each of these sections is further divided into specific tasks to provide a detailed 

understanding of the project workflow. Figure 17 illustrates the activities included in each of the 

main sections. A detailed description of these individual tasks, along with their estimated durations, 

is provided below. 

 

Figure 17: Work Breakdown Structure (WBS) diagram of the project. 
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6.1.1 WBS dictionary 

Table 23: WBS dictionary for “Project Preparation” stage. 

1 Project Preparation 

1.1 Project planning Duration: 7 days  

During this phase, the key activities required to complete the project are identified, and a clear 
and structured work methodology is established. With the help of the tutors of the project, the 
project’s goals and scope are also defined. These goals have to be realistic, specific, and 
achievable within the given timeframe and resource constraints.  

1.2 Literature review Duration: 14 days 

A comprehensive literature review is conducted to gather relevant information and insights about 
the project. This includes performing background research to understand the theorical 
foundations of the project, researching previous works, and analysing the current state of the art 
in the field. Alongside this, a market analysis is performed to explore current trends, potential 
applications, and future opportunities related to the project. To manage and organize all the 
consulted sources efficiently, the reference management software Mendeley was used. 

1.3 Machine Learning theory Duration: 14 days 

Reviewing the theoretical background of Machine Learning algorithms relevant to the project by 
researching various ML models and studying their fundamental concepts and principles.  

1.4 Data acquisition Duration: 58 days 

Ask the project’s director for the data and analyse and understand its structure and content. It 
involves reviewing the data format, identifying key features, and consulting with the tutor to clarify 
the meaning of various columns and how to properly handle them during data pre-processing. 

 

Table 24: WBS dictionary for “Data Pre-processing” stage. 

2 Data Pre-processing 

2.1 Data pre-processing Duration: 61 days 

Preparing the data for analysis. This step includes, identifying missing values applying 
normalization or scaling techniques if necessary to avoid introducing inaccuracies or bias. The 
goal is to ensure the final dataset is clean, consistent, and ready for analysis and model training. 

2.2 Exploratory Data Analysis Duration: 3 days 

Conducting an Exploratory Data Analysis (EDA) to understand the main characteristics of the 
dataset and examine how each variable behaves. This step involves applying data visualization 
techniques to identify trends, relationships, and potential correlations.  

2.3 Feature selection Duration: 21 days 

Identifying and selecting the most relevant features that contribute to the predicting the final 
diagnosis. This step involves applying different feature importance techniques to eliminate or 
reduce irrelevant columns.  
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Table 25: WBS dictionary for “Machine Learning Models” stage. 

3 Machine Learning Models 

3.1 Model selection Duration: 7 days 

Identifying and selecting the most appropriate ML models. This step involves comparing different 
models and their performances. This helps determine which model gives best results keeping in 
mind the objectives of the project. 

3.2 Model training Duration: 9 days 

Training the selected model using the training set of the dataset. This step allows the algorithm 
to learn the patterns and relationships between the input features and the target variable.  

3.3 Model evaluation Duration: 5 days 

Asses the performance of the model using different performance metrics such as accuracy, 
AUC, recall, precision, or F1 score. This step helps assess how well the model performs. 

3.4 Hyperparameter tuning Duration: 7 days 

Optimizing the model’s predictive performance and results by adjusting the hyperparameters 
through different techniques such as random search or grid search. The objective of this step is 
to find the best combination of parameters that improve the model’s performance.  

3.5 Model testing Duration: 7 days 

Evaluate the final model on a testing set to evaluate its real-world performance. This provides 
an unbiased assessment of how well the model generalized to unseen data and confirms the 
robustness of the model. 

3.6 Results and discussion Duration: 7 days 

Present and summarize the model’s results, highlighting the key findings and performance 
outcomes. This step also provide an analysis of the results by discussing the limitations of the 
project, interpret the implications of the results, and reflect on what could be improved.  

 

Table 26: WBS dictionary for “Project Report” stage. 

4 Project Report 

4.1 Introduction Duration: 7 days 

Write the introduction section of the project by describing the motivation behind the project, 
defining the clear objectives and scope, and provide an overview of the methodology used to 
carry out the project.   

4.2 Background Duration: 14 days 

Overview of the theorical foundations necessary to understand the context of the project. It 
involves summarizing key concepts and developments related to the project as well as 
identifying current challenges, and limitations of ML in predicting discharge diagnoses. 
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4.3 Market analysis Duration: 7 days 

Analyse the healthcare market sector by identifying the target market and potential customers. 
This section also involves a discussion of future perspectives, emerging trends, and 
opportunities that could arise in this sector.   

4.4 Concept engineering Duration: 19 days 

Description and evaluation of the different methods that could be used to achieve the project 
objectives. This section includes outlining different approaches considered and explaining the 
reasoning behind the chosen method.  

4.5 Detailed engineering Duration: 28 days 

Describe the practical implementation of the project, detailing the steps taken during the project, 
such as data handling, feature selection, model selection, model training, model evaluation, 
hyperparameter tuning, model testing, and the generation of results.  

4.6 Execution schedule Duration: 7 days 

Develop an execution schedule that includes a PERT diagram to identify critical activities that 
must not be delayed, and a GANTT diagram to keep track of the activities that need to be 
completed throughout the project. 

4.7 Technical and economic viability Duration: 4 days 

Assess the project’s technical and economic viability. This step includes the development of a 
SWOT analysis to identify strengths, weaknesses, opportunities, and threats, as well as an 
evaluation of the project’s costs.  

4.8 Regulations and legal aspects Duration: 3 days 

Review relevant regulations, standards, and legal considerations that may affect the project. This 
step also aims to identify any potential legal challenges associated with the project.   

4.9 Conclusions and future steps Duration: 7 days 

Write and summarize the key findings and outcomes of the project. This section discusses the 
lessons learned, limitations encountered, and proposed possible future steps or work to further 
improve the project.  
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6.2 Program Evaluation and Review Technique 

The Program Evaluation and Review Technique (PERT) is a tool used in project management 

designed to analyse and map out the tasks needed to complete a project. In Table 27, the list of all 

project activities, dependencies, and the estimated duration is represented. Based on this 

information, a PERT chart is generated (Figure 18), where each task is represented by an arrow, 

and the connecting points, also known as nodes, indicate key project milestones. The top number 

in each node is its ID, while the bottom numbers represent time metrics: the left number is the 

earliest possible start time (t early), and the right number, is the latest acceptable finish time (t last) 

for preceding tasks without causing project delays. The critical path, highlighted in purple, refers to 

the set of tasks where the margin for delay is zero, meaning that the earliest start and the latest 

finish time is the same. Any delay in these tasks will result in a delay in the entire project.  

Table 27: Activity table for the PERT diagram. 

ID Activity name Dependencies Duration (days) 

A Project planning - 7 

B Literature review A 14 

C Machine Learning theory B 14 

D Data acquisition -  58 

E Data pre-processing D 61 

F Exploratory Data Analysis E 3 

G Feature selection F 21 

H Model selection G 7 

I Model training H 9 

J Model evaluation I 5 

K Hyperparameter tuning J 7 

L Model testing K 7 

M Results and discussion L 7 

N Introduction A 7 

O Background B 14 

P Market analysis B 7 

Q Concept engineering C 19 

R Detail engineering Q 28 

S Execution schedule A 7 

T Technical and economic viability R 4 

U Regulations and legal aspects R 3 

V Conclusions and future steps M, T, U 7 
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Figure 18: PERT diagram of the project. 
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6.3 GANTT diagram 

A GANTT diagram is a visual project management tool that outlines the timeline of tasks and milestones involved in completing a project. It shows the start and 

end dates for each activity involved.  

The project took place from October 2024 to May 2025. The first months were dedicated to bibliographic research and a review of ML theory. After acquiring the 

data, the focus of the project shifted towards developing the model. As it can be seen in Figure 19, a significant portion of that time was dedicated to signal pre-

processing, reflecting its crucial role in ensuring the success of subsequent steps. 

 

Figure 19: GANTT diagram of the project. 
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7 TECHNICAL VIABILITY 

To evaluate the technical viability of the project, a SWOT analysis is conducted (Table 28). This 

approach helps to identify the strengths, weaknesses, opportunities, and threats related to the 

project’s technical aspects, allowing for an assessment of both internal and external factors that 

may impact its success.  

By analysing the strengths, we aim to emphasize the project’s technical expertise, valuable assets, 

and unique resources that provide a strategic advantage over competitors. Identifying these 

strengths allow us to understand what differentiates the project and contributes to its success.  

On the other hand, identifying weaknesses allow us to uncover internal challenges and resources 

limitations that may hinder the project’s development or performance. Early recognition of these 

limitations allows for focused improvements to prevent possible setbacks. 

In the opportunities section, external trends, market changes and developments, and technological 

innovations that the project can capitalize on to enhance growth are examined. This analysis helps 

position the project to take advantage of emerging possibilities.  

Finally, the threats evaluation addresses external risks, such as competitive pressures, regulatory 

changes, or technological disruptions, which could undermine the project’s technical feasibility. 

Acknowledging these threats support strategic planning to reduce their potential impact.  

 

Table 28: SWOT analysis of the project. 

Strengths Weaknesses 

- The dataset is large and contains 
multiple diverse features. 

- Knowledge on ML and Python. 
- Use of automated libraries like 

PyCaret that facilitate model 
development and optimization. 

- Uncover complex patterns in clinical 
data. 

- Imbalance and largeness of the 
dataset. 

- Complexity constraints. 
- Limited computational resources 
- Limited personal experience.  
- Limited interpretability  

 
 

Opportunities Threats 

- Growing market for diagnosis 
prediction.  

- Advancements in AI and ML 
present opportunities to enhance 
accuracy and efficiency of 
predictive models. 

- Integration with clinical workflows. 
 

- Data privacy and security.  
- Compliance with legal and ethical 

standards. 
- Regulatory approval. 
- Bias and fairness. 
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8 ECONOMIC VIABILITY 

The economic viability of the project is evaluated by examining the three main components required 

for its successful execution: data, technical resources, and human resources.  

The dataset used in this study was provided by the Hospital Clínic de Barcelona, so there was no 

data acquisition cost. However, maintaining access to such clinical data typically involves 

administrative efforts and potential expenses related to data governance, privacy compliance, and 

security measures.  

As for technical resources, the project was carried out using a personal computer. The computer 

used required sufficient processing power and memory to handle data pre-processing, model 

training, and evaluation. Using open-source software libraries such as PyCaret and Scikit-learn 

helped minimize software licensing costs. However, advanced ML workflows, especially with larger 

datasets or more complex models, may require investment in high-performance computing 

resources or cloud services, which could increase operational costs.  

Finally, regarding the human resources, the project team consisted of the principal researcher, me, 

and the supervising tutor and project director. The human resources were estimated according to 

the salary of a Biomedical Engineer graduate salary.  

Table 29 shows an estimation of the project costs.  

 

Table 29: Estimation of the project costs. 

 Description Quantity Estimated cost 

Data Data acquisition 1 0 € 

Technical 
resources 

Personal computer 1 800 € 

Visual Studio Code 1 0 € 

Human 
resources 

Biomedical engineer 1 (400 h) 8.40 €/hour 

Project manager 1 (8 months) 2000 €/month 

  TOTAL 20160 € 
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9 REGULATIONS AND LEGAL ASPECTS 

The implementation of ML in healthcare require careful consideration of various legal, ethical, and 

regulatory frameworks, especially when working with sensitive clinical data. This section outlines 

the regulatory challenges that must be considered. 

9.1 Data protection and patient privacy 

The dataset used in this study consist of real patient data obtained from the Hospital Clínic de 

Barcelona. As such, strict adherence to data protection regulations was essential. This study was 

approved by the Ethical comity of the hospital (see Annex A) and all patient identifiable information 

was removed or anonymized before data processing to ensure privacy. Additionally, access to the 

dataset was restricted to authorized individuals involved in the project. 

9.2 Ethical considerations 

Data was used solely for research and model development, with no clinical decisions or 

interventions based on the predictions. However, the models used in the project learn from the 

input data and, as a result, may also reflect any inherent biases present within that data.  

No direct interaction with patients or medical interventions occurred during the study, so no 

additional ethical approval was required. However, future applications of these models in a real-

world clinical setting would require approval from a clinical ethics board. 

9.3 Medical device regulation 

The models generated in this project are intended solely for research purposes. However, if this 

was to be applied into a clinical decision support system, several regulatory and legal aspects 

would need to be addressed. Under the European Medical Device Regulation (MDR) (EU) 

2017/745, any software designed to process, analyse, generate, or modify medical information 

must comply with rigorous standards to ensure safety, performance, and alignment with its intended 

medical use [70].  

AI-driven diagnostic tools may be classified as medical device software, requiring CE marking and 

formal validation. Additionally, clear policies must be established to define accountability for 

decisions made with AI support, especially in the cases of misdiagnosis. Finally, the use of AI in 

clinical environments require a certain level of transparency and explainability to meet both ethical 

standards and professional guidelines.  

  



Use of Machine Learning and SNOMED CT Encoded Health  
Problems to Predict Hospital Discharge Diagnoses 

 

52 

10 CONCLUSIONS AND FUTURE STEPS 

This project aimed to explore the relationship between SNOMED CT encoded health problems and 

discharge diagnoses coded in ICD-10-CM. Using real clinical data from the Hospital Clínic de 

Barcelona, several supervised ML models were trained and evaluated across different subsets, 

achieving promising results. The best performing models achieved accuracies close to 69%, with 

high consistency across other metrics such as AUC, recall, and precision. These finding suggest 

that health problems are not only correlated with final diagnoses but can also serve as valuable 

inputs in data-driven clinical decision support systems.  

Feature importance analysis across subsets revealed that variables such as age, DRG, episode 

duration, lab results, and drug dosage consistently contributed to prediction accuracy. These 

insights determine that demographic data, treatment duration, and ongoing patient monitoring are 

crucial in coding final diagnoses.  

This study demonstrated the potential of ML to support diagnostic decision-making and highlighted 

how it can offer decision support tools that could help improve diagnostic accuracy, resource 

allocation, and overall care quality in hospital environments.  

Despite the promising results, several areas for improvement were identified. The imbalanced 

distribution of classes led to challenges in model sensitivity. Future models could implement 

techniques like SMOTE, or class weighting to better handle imbalanced data. As for interpretability, 

introducing explainability tools such as SHAP or LIME would make them more interpretable to 

clinical users and increase their practical applicability. Furthermore, the use of generative AI 

models, particularly Large Language Models (LLMs), could significantly improve the prediction of 

discharge diagnoses coded in ICD-10 based on health problems initially coded in SNOMED-CT at 

the beginning of the care process. Unlike traditional ML approaches, which often rely on statistical 

correlations and may fail to capture deeper semantic relationships, LLMs possess a more advanced 

ability to model clinical progression and the conceptual connections between symptoms, 

syndromes, and formal diagnoses. This enables more realistic and clinically coherent interferences, 

facilitating the consolidation of care trajectories from early observations to structured diagnoses, 

even when those concepts do not share explicit semantic or hierarchical structures in the source 

terminologies. Moreover, this approach may help address the challenge of mapping between 

SNOMED-CT and ICD-10, where relationships are many-to-many or lack formal correspondences 

altogether. Instead of relying on rigid evidence mapping, LLMs can interpret from contextual 

patterns in data how a SNOMED-CT coded problem, may correspond to an ICD-10 coded 

diagnosis. This is made possible by the semantic proximity and clinical plausibility derived from 

large scale patterns in text or structured data, opening the door to more flexible and intelligent 

terminology bridging. 
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ANNEX B. Exploratory Data Analysis 

 

Figure B.1: Distribution of sex of the dataset. 
 

 

 

Figure B.2: Age distribution of the dataset. 
 

 

 

Figure B.3: Top 10 most common health problems in the dataset. 
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Figure B.4: Top 10 most common ICD-10 chapters in the dataset. 
 

 

 

Figure B.5: Correlation matrix of the numerical features of the dataset. 
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ANNEX C. Feature importance ranking plots 

 

Figure C.1: Rankig of feature importance by Decision Trees. 
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Figure C.2: Ranking of feature importance by ANOVA F-test. 
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ANNEX D. List of variables for each subset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure D.1: List of variable names for Subset 1. 
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Figure D.2: List of variable names for Subset 2 (left) and Subset 3 (right). 

 

 

Figure D.3: List of variable names for Subset 4 (left) and Subset 5 (right). 
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Figure D.4: List of variable names for Subset 6. 
 

 

Figure D.5: List of variable names for Subset 7.  
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ANNEX E. Performance plots across all subsets 

Subset 1 

 

Figure E.1: AUC plot for Subset 1. 
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Subset 2 

 

Figure E.2: Confusion matrix for Subset 2. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure E.3: Classification report for Subset 2.  
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Figure E.4: AUC plot for Subset 2. 

  



Use of Machine Learning and SNOMED CT Encoded Health  
Problems to Predict Hospital Discharge Diagnoses 

 

71 

Subset 3 

 

Figure E.5: Confusion matrix for Subset 3. 
 

 
Figure E.6: Classification report for Subset 3. 
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Figure E.7: AUC plot for Subset 3. 
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Subset 4 

 

Figure E.8: Confusion matrix for Subset 4. 
 

 
Figure E.9: Classification report for Subset 4. 
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Figure E.10: AUC plot for Subset 4. 
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Subset 5 

 

Figure E.11: Confusion matrix for Subset 5. 
 

 
Figure E.12: Classification report for Subset 5. 
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Figure E.13: AUC plot for Subset 5. 
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Subset 6 

 

Figure E.14: Confusion matrix for Subset 6. 
 

 
Figure E.15: Classification report for Subset 6. 
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Figure E.16: AUC plot for Subset 6. 

  



Use of Machine Learning and SNOMED CT Encoded Health  
Problems to Predict Hospital Discharge Diagnoses 

 

79 

Subset 7 

 

Figure E.17: Confusion matrix for Subset 7. 
 

 
Figure E.18: Classification report for Subset 7. 
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Figure E.19: AUC plot for Subset 7. 



 

 

 

 

 

 

 

 


