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Abstract 

Aging is a complex, multifactorial process marked by physiological decline, increased disease risk, 

and progressive functional deterioration. Fibroblasts, which are essential for maintaining tissue 

structure and repair, exhibit well-documented age-related changes. However, identifying robust, 

quantifiable markers of these changes remains challenging. This project develops a protocol for 

detecting cellular aging using single-cell fluorescence imaging. 

Fibroblasts from young and old mice are immunostained for nuclear and cytoskeletal markers and 

imaged via multichannel epifluorescence microscopy. A computational pipeline is developed to 

segment cells and extract features describing morphology, intensity, texture, and cytoskeletal 

organization. Features that pass a first statistical filter are used to train and validate interpretable 

machine learning models later. Logistic regression is chosen for its balance between interpretability 

and performance, achieving an accuracy of 0.97 on the evaluation set.  

The final protocol provides a reproducible method for detecting fibroblast aging solely from 

microscopy images. It enables both diagnostic through binary classification and mechanistic insight 

into age-related cellular changes, laying the groundwork for future applications in aging clocks, 

guiding biomarker discovery, and the screening of therapies aimed at modulating age-related 

cellular changes. 
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Resum 

L’envelliment és un procés complex i multifactorial caracteritzat per un declivi fisiològic, un augment 

del risc de malalties i un deteriorament funcional progressiu. Els fibroblasts, essencials per 

mantenir l'estructura i la reparació dels teixits, mostren canvis relacionats amb l’edat àmpliament 

documentats. Tot i això, identificar marcadors robustos i quantificables d’aquests canvis continua 

sent un repte. Aquest projecte desenvolupa un protocol per detectar l’envelliment cel·lular 

mitjançant imatges de fluorescència de cèl·lules individuals. 

Els fibroblasts de ratolins joves i vells són immunotenyits per a marcadors nuclears i 

citoesquelètics, i se n’obtenen imatges mitjançant microscòpia d’epifluorescència multicanal. Es 

desenvolupa un mètode computacional per segmentar les cèl·lules i extreure característiques que 

descriuen la morfologia, la intensitat, la textura i l’organització del citoesquelet. Les característiques 

que superen un primer filtratge estadístic s’utilitzen després per entrenar i validar models 

d’aprenentatge automàtic interpretables. Es selecciona la regressió logística per la seva 

combinació d’interpretabilitat i rendiment, assolint una precisió del 0.97 en el conjunt d’avaluació.  

El protocol final ofereix un mètode reproductible per detectar l’envelliment dels fibroblasts només 

a partir d’imatges de microscòpia. Permet tant el diagnòstic a partir d’una classificació binària com 

la comprensió mecanística dels canvis cel·lulars relacionats amb l’edat, i estableix les bases per a 

aplicacions futures com els rellotges d’envelliment, el descobriment de biomarcadors i l’avaluació 

de teràpies orientades a modular aquests canvis. 

 

PARAULES CLAU: ENVELLIMENT CEL·LULAR, FIBROBLASTS, MICROSCÒPIA DE FLUORESCÈNCIA, 

CITOESQUELET, APRENENTATGE AUTOMÀTIC, SEGMENTACIÓ D’IMATGES, EXTRACCIÓ DE 

CARACTERÍSTIQUES, BIOMARCADORS. 
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1 INTRODUCTION 

Aging is a crucial biological process that impacts all living beings, resulting in extensive effects at 

the cellular, tissue, and systemic levels. This project examines aging from a cellular perspective, 

with a particular focus on fibroblasts, which are crucial for tissue maintenance and repair, and how 

their characteristics change with age. 

1.1 Motivation and aim of the project 

Aging is a complex, multifactorial, and time-dependent process that affects organisms at every 

biological level, from molecular to systemic, ultimately leading to increased vulnerability to disease 

and a decline in regenerative capacity1,2. As life expectancy continues to rise globally, 

understanding the mechanisms of aging has become a central focus in biomedical research. In this 

broader context, cellular aging, the gradual decline in function of individual cells, emerges as a key 

contributor to the age-related deterioration of tissue structure and performance3, with a growing 

need to identify reliable and readily employable indicators of cellular aging4. 

Among the various cell types involved in tissue maintenance, fibroblasts are notably impacted by 

aging. As key contributors to the structural and functional integrity of connective tissues, fibroblasts 

support numerous physiological processes essential for tissue homeostasis. However, aging is 

associated with widespread changes in fibroblast behavior and function, which can disrupt tissue 

equilibrium and contribute to the onset of age-related pathologies5. This makes fibroblasts an 

excellent model for assessing cellular hallmarks of aging and investigating mechanisms underlying 

age-related tissue degeneration. 

In this context, this project aims to develop a quantitative and interpretable pipeline to characterize 

age-related phenotypic changes in fibroblasts, focusing on morphology and cytoskeletal 

organization at the single-cell level. By preparing, acquiring, and analyzing fluorescence images of 

primary lung fibroblasts isolated from young and old mice, this study aims to identify cellular 

features that vary with age and can serve as reliable and potentially predictive indicators of the 

aging process.  

This approach provides insights into fibroblast aging, guides identification of potential biomarkers, 

and enhances understanding of structural cellular changes related to aging. It may also assist in 

screening treatments to reverse or modulate age-related alterations and, while still early, paves the 

way for tools to estimate cellular age from visual features, advancing the field of aging clocks. 

1.2 Objectives 

To achieve the project's aims, the work is structured around the following specific objectives: 

• Develop an image analysis pipeline from scratch, including single-cell segmentation and 

the extraction of quantitative features. 

• Train and validate a machine learning classification model to distinguish between young 

and aged fibroblasts based on the extracted features, prioritizing model interpretability. 

• Gain biologically meaningful insights into aging phenotypes by analyzing and interpreting 

the most informative features that contribute to the classification. 
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1.3 Scope and limitations 

This project encompasses all the objectives outlined in the previous section, including sample 

preparation through immunostaining assays, image acquisition, analysis, and classification of 

pulmonary fibroblasts from young and old mice.  

However, it relies on several critical preparatory steps that have not been carried out directly by the 

author. Dissection of lungs for fibroblast isolation has been performed by a licensed technician, due 

to animal handling regulations. At the same time, a lab researcher has managed cell expansion 

and maintenance to accommodate project timelines.  

The project also presents some inherent limitations. These relate primarily to time constraints, 

sample availability, and biological relevance. 

1. Time-intensive processes 

• Fibroblast culture development: Establishing cultures at proper confluency and optimal 

conditions often takes longer than expected, as growth rates differ by batch.  

• Epifluorescence image acquisition: A manually operated microscope is shared among 

users, requiring extended sessions in a dark room and manual setting adjustments, which, 

along with scheduling conflicts, may delay imaging.  

• Computational workload: Training segmentation software, processing hundreds of images, 

and extracting features are computationally intensive tasks needing significant processing 

power. These operations can take several hours and may limit or prevent other 

simultaneous tasks from being completed. 

2. Limited biological material 

• Primary fibroblasts are isolated from a small number of mice, each providing a finite 

number of viable cells. Tissue quality, dissection efficiency, and cell viability introduce 

variability that can reduce the final pool of usable cells. Additional losses during staining, 

mounting, or imaging may further limit the number of analyzable cells and replicates, 

reducing statistical power. 

3. Biological relevance 

• In vitro culture: Fibroblasts are cultured as 2D monolayers on glass, which does not fully 

replicate the 3D architecture, mechanical forces, and cellular context of their native tissue 

environment. This discrepancy can influence cellular behavior and phenotype. 

• Species differences: While murine fibroblasts serve as a valuable model system, they differ 

from human cells in key aspects such as gene regulation, cellular behavior, and responses 

to stimuli. As a result, findings obtained in mouse models may not fully translate to human 

biology and should be interpreted with appropriate caution regarding their broader 

biological relevance. 

1.4 Location and span of the project 

This project is carried out in the Biophysics and Bioengineering Unit at the University of Barcelona, 

which hosts the Mechanobiology of the Cytoskeleton Research Group. The group studies the 
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mechanical behavior of cells and tissues using physical and engineering principles, with a particular 

focus on the pulmonary system. Ongoing projects include characterizing the lung extracellular 

matrix, studying cancer-associated fibroblasts (CAFs), and developing biophysical biomarkers for 

drug screening in lung diseases6. 

The current project benefits from the unit’s established expertise and infrastructure. This includes 

access to specialized equipment, biological materials, and technical guidance, ensuring that all 

phases of the project can be carried out successfully. 

The project timeline runs from February to June 2025, following a 240-hour internship completed 

the previous summer in the same laboratory. This internship was crucial for acquiring technical 

skills, developing laboratory independence, and gaining familiarity with the protocols necessary to 

conduct the experimental aspects of the study. Considering weekends and holidays, the project 

spans approximately 133 days, requiring efficient planning and execution across the experimental 

and computational phases to meet its objectives within the available timeframe. 

2 BACKGROUND 

The background section outlines the current knowledge relevant to the project, focusing on the 

biological role of fibroblasts in tissue maintenance and repair, the structural and functional changes 

they undergo with aging, and the main methods used to study these processes (with a focus on 

the emergence in recent years of data-driven computational approaches).  

Although all fibroblast subsets arise from a common mesenchymal origin, they display substantial 

heterogeneity due to differences in anatomical location, function and cellular state5. This project 

centers on pulmonary fibroblasts, in line with the host laboratory’s research focus; however, 

findings are expected to have broader relevance across tissue types. Accordingly, the background 

draws on examples from various organ systems, not just the lung. 

2.1 Fibroblasts and their main functions 

Fibroblasts are among the most abundant cell types in the body, present in virtually all organ 

systems, alongside endothelial and blood cells. They are the most widespread in connective 

tissues7. Typically spindle-shaped, they exist in both dense connective tissues like tendons, 

ligaments, and fasciae, as well as loose connective tissues, including the dermis, mucosal layers, 

and interstitial spaces between muscle and fat8.  

Fibroblasts play a crucial role in maintaining tissue structure and function, primarily through their 

production and dynamic remodeling of the extracellular matrix (ECM)9, a complex network of 

proteins that includes collagen, elastin, fibronectin, and proteoglycans. This ECM, collectively 

referred to as the matrisome, provides mechanical support, elasticity, and a scaffold for cell 

signaling and migration10.  

Beyond shaping tissue architecture and modulating stiffness, fibroblasts play an active role in tissue 

homeostasis, development, and repair. They secrete and respond to a wide range of growth factors 

and cytokines, facilitating communication with immune, epithelial, and endothelial cells11. As 

mechanosensitive signaling hubs, fibroblasts detect changes in their microenvironment and adjust 

their behavior accordingly, influencing inflammation, angiogenesis, and cell differentiation12. The 

broad range of fibroblast functions is summarized in Figure 1. 



AI-BASED DIAGNOSTIC ALGORITHM FOR CELLULAR AGING:  
USING SINGLE-CELL FLUORESCENCE IMAGING OF THE CYTOSKELETON 

Page 13 of 85 

 

Figure 1 · Overview of fibroblast functions and outputs. 
Fibroblasts contribute to a wide range of physiological processes through diverse functional outputs. These include ECM 

secretion and remodelling (A), secretion of signalling factors for surrounding cells (B), generation of mechanical forces (C), 
metabolic regulation (D), progenitor cells function for lineage maintenance (E), tissue synthesis and repair (F), positional and 

niche signalling (G), and roles in immune regulation and innate immunity (H). Together, these functions highlight the central role 
of fibroblasts in tissue structure, signaling, and homeostasis 8. 

 

One of their best-characterized roles is in wound healing, which progresses through four 

overlapping phases: hemostasis, inflammation, proliferation, and remodeling, as illustrated in 

Figure 2. While fibroblasts are not directly involved in hemostasis, they play a central role in the 

later stages: migrating into wounds, depositing ECM, and differentiating into contractile 

myofibroblasts (characterized by the expression of α-smooth muscle actin (α-SMA)) that assist in 

wound closure. In the final phase, they contribute to remodeling the ECM through enzymes such 

as matrix metalloproteinases (MMPs), ultimately returning to a quiescent state as the tissue 

heals7,13. 

However, dysregulation of fibroblast activity can lead to pathology. Persistent activation, especially 

of myofibroblasts, drives fibrosis, characterized by excessive ECM deposition that stiffens tissues, 

as seen in pulmonary fibrosis or keloids. Conversely, reduced or senescent fibroblast function may 

impair healing and contribute to chronic wounds13. Even regular repair rarely restores full tissue 

strength; for example, healed skin typically recovers only about 80% of its original tensile strength15. 

Given their central role in tissue architecture, mechanical sensing, and regeneration, fibroblasts are 

increasingly recognized as key players in age-related functional decline of tissue and as promising 

targets for regenerative medicine and anti-fibrotic therapies5. 
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Figure 2 · Cellular dynamics and phases of wound healing over time. 
Sequential phases of wound healing: hemostasis, inflammation, proliferation, and tissue remodeling, along with the 
temporal involvement of key cell types. Platelets and polymorphonuclear cells (PMNs) are active early during the 

inflammatory phase, followed by macrophages (MΦs), fibroblasts, endothelial cells (ECs), and keratinocytes. Fibroblasts 
contribute to the inflammatory phase and subsequent phases by releasing cytokines, coordinating immune responses, and 

later supporting extracellular matrix deposition and tissue repair during the proliferative and remodeling phases14.  

 

2.2 Fibroblasts and ageing 

As organisms age, fibroblasts undergo a range of molecular and functional changes that impair 

their ability to maintain tissue homeostasis. These changes include cellular senescence, altered 

morphology and mechanics, disrupted signaling, and reduced regenerative capacity. Together, 

they contribute significantly to the decline in tissue repair and function observed in aged individuals. 

Below, some of the most well-characterized age-related changes in fibroblasts are described. 

Replicative cellular senescence 

Fibroblasts undergo a limited number of divisions before entering cellular senescence, which is an 

irreversible growth arrest during which cells remain metabolically active but can no longer 

proliferate16. A subtype of senescence, known as replicative senescence, is characteristic of 

fibroblasts and arises from the progressive erosion of telomeres during cell divisions and the 

activation of the DNA damage response pathway17.  

In vivo studies show that fibroblasts from older individuals proliferate more slowly and accumulate 

more in a senescent state. Although this process helps prevent cancer and aids temporary wound 

stabilization, chronic accumulation of senescent fibroblasts impairs tissue regeneration and causes 

structural decline5. For instance, studies indicate that in aging skin, the number of active fibroblasts 

sharply declines, impairing their ability to renew the dermal matrix and leading to thinner skin, 

reduced elasticity, and delayed wound healing18. 

Morphological and mechanical changes 

Aged fibroblasts show distinct morphological changes, appearing larger and more flattened with 

irregular nuclear shapes due to chromatin remodeling and nuclear envelope instability.19,20 These 
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changes occur alongside cytoskeletal reorganization. Studies report increased levels of all three 

major cytoskeletal components: Filamentous actin (F-actin), tubulin, and vimentin. In older 

fibroblasts, F-actin and tubulin appear shorter and thinner, while vimentin forms longer, thicker, and 

more bundled fibers. This shift increases cytoskeletal tension and stiffness, reducing 

mechanosensitivity and limiting the cell’s ability to respond to physical cues.21 

Research shows that aged dermal fibroblasts can be 60% stiffer than young ones22. This increased 

stiffness is closely linked to functional impairments, including reduced migration and compromised 

wound repair. In the aging lung, such fibroblast stiffening is further associated with excessive ECM 

deposition and decreased tissue compliance, contributing to fibrotic remodeling characteristic of 

diseases like idiopathic pulmonary fibrosis23. 

Secretory phenotype and inflammaging 

Aged and senescent fibroblasts often adopt a pro-inflammatory secretory profile known as the 

Senescence-Associated Secretory Phenotype (SASP). This includes the release of inflammatory 

cytokines, such as tumor necrosis factor, MMPs, and growth factors, as well as ECM-degrading 

enzymes, which can induce inflammation, alter the tissue microenvironment, and affect neighboring 

cells24. While SASP can play beneficial roles in acute responses, such as wound healing, by 

recruiting immune cells, its chronic expression contributes to a persistent, low-grade inflammation 

known as inflammaging. This state disrupts immune balance and is linked to age-related diseases, 

including fibrosis, osteoarthritis, and certain cancers25,26. 

In aged tissues, the accumulation of SASP-expressing fibroblasts, coupled with reduced immune 

clearance, can drive progressive tissue damage and impaired regeneration. SASP factors can also 

spread senescence to nearby cells and impair immune function, reinforcing a cycle of inflammation, 

ECM degradation, and tissue dysfunction5. 

Reduced migration and wound healing capacity 

Efficient tissue repair requires fibroblasts to migrate into the wound site, where they deposit new 

ECM and coordinate with other cell types to facilitate wound healing. However, research indicates 

that fibroblasts from aged individuals migrate shorter distances, in fewer numbers, and respond 

less effectively to migratory cues such as growth factors27. These impairments have been linked to 

increased cell stiffness and cytoskeletal changes that physically restrict cell movement, as well as 

the altered expression of proteins involved in motility21. 

As a result, wounds in aged tissues often remain in the inflammatory phase for more extended 

periods, heal more slowly, and are at greater risk of developing into chronic, non-healing ulcers28,29. 

In some cases, delayed fibroblast migration may also contribute to excessive fibrosis driven by 

prolonged inflammation30. 

Altered differentiation and ECM production 

Aging fibroblasts exhibit impaired differentiation into myofibroblasts, specialized cells marked by α-

SMA expression that are crucial for wound contraction and ECM remodeling31. Interestingly, α-

SMA expression during aging appears to be context-dependent: it tends to decline during skin 

wound healing32 but may increase in fibrotic conditions, such as pulmonary fibrosis33. This indicates 

a loss of proper regulatory control over fibroblast activation rather than a uniform decline. 
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These changes are further influenced by altered responsiveness to growth factors, particularly 

transforming growth factor-beta (TGF‑β), whose age-related dysregulation promotes fibrosis and 

disorganized ECM remodeling34. Aged fibroblasts also produce less collagen and have a reduced 

ability to assemble and organize ECM components. The collagen produced becomes increasingly 

cross-linked and rigid, leading to diminished tissue elasticity and function35. 

2.3 State of the art: Approaches to studying fibroblast aging 

In recent years, there has been a significant increase in studies utilizing computational methods, 

particularly machine learning (ML) and deep learning (DL), to investigate changes associated with 

fibroblast aging. While fibroblast biology has traditionally been examined through molecular, 

imaging, and mechanical techniques, the recent integration of these methods with data-driven 

computational tools marks a new development.  

Most research using this combined strategy has emerged since 2021, indicating a trend toward 

high-throughput, quantitative, and interpretable analyses of cellular aging. This review categorizes 

the latest state-of-the-art methods for studying fibroblast aging based on their main experimental 

techniques.  

2.3.1 Imaging-based classification 

High-content fluorescence imaging is a powerful tool in fibroblast aging research, enabling 

quantitative analysis of morphological and cytoskeletal changes at the single-cell level. Several 

studies utilize image-based ML to identify structural hallmarks of aging and senescence. For 

example, Welter et al. track senescence progression in human lung fibroblasts by measuring 

features such as increased cell and nuclear size, reduced circularity, and more cytoplasmic 

protrusions36. Similarly, Duran et al. focus on nuclear morphology and chromatin texture to develop 

classifiers that predict senescence in both cultured cells and tissue sections37. 

Building on these approaches, Neri et al. introduce the FAST pipeline, an automated method that 

combines β-galactosidase staining (a standard marker for detecting cellular senescence), EdU 

incorporation (to assess cell proliferation), and nuclear area measurements (related to enlarged 

morphology) to calculate a per-cell senescence score using random forest models38. This system 

is well-suited for large-scale studies and drug screening. Similarly, Hillsley et al. develop a DL 

model that detects α-SMA-positive stress fibers, enabling automated identification of myofibroblast 

activation, a phenotype associated with aging and fibrosis39. 

2.3.2 Transcriptomic and molecular signatures 

Beyond morphology, transcriptomic studies provide complementary insights into the molecular 

programs that drive fibroblast aging. Fleischer et al. perform RNA sequencing (RNA-seq) on human 

dermal fibroblasts from donors aged 1 to 94 years to determine whether aging signatures are 

encoded within the transcriptome. Their machine learning model achieves high accuracy and even 

detects premature aging in patients with progeria, a genetic disorder causing early-onset aging40. 

At single-cell resolution, Yu et al. develop CellBiAge, a pipeline that predicts cell age from single-

cell RNA-seq data using binarized gene expression and ML41. Although initially applied to brain 

tissue, the framework is also adaptable to fibroblast datasets. These studies show that fibroblasts 
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display not only morphological signs of aging but also transcriptional changes, indicating alterations 

in cell function, identity, and regenerative capacity. 

2.3.3 Atomic force microscopy 

Atomic force microscopy (AFM) offers a biophysical perspective on fibroblast aging by enabling 

nanoscale measurements of mechanical properties, such as stiffness, elasticity, and adhesion, at 

the single-cell level. Multiple studies have reported that aged or senescent fibroblasts exhibit 

increased stiffness compared to young fibroblasts, a change generally attributed to cytoskeletal 

remodeling, particularly due to an increased F-actin content42,43.  

While AFM has been extensively used to characterize the mechanical phenotypes of aging cells44, 

its integration with classification workflows, particularly ML-based age or senescence prediction, is 

still relatively limited in the published literature. Although some promising studies exist in related 

contexts (such as cancer vs. normal cells), clear examples applying AFM feature sets for classifying 

fibroblast age or senescence status remain scarce. 

3 Market analysis: The longevity ecosystem 

The longevity ecosystem is a rapidly expanding field focused on extending healthspan, understood 

as the number of years lived in good health, through innovations spanning health technology, life 

sciences, healthcare, and wellness. 

 

Figure 3 · Overview of the Longevity Ecosystem. 
The ecosystem encompasses health tech, life sciences, and care innovations focused on understanding, delaying, or reversing 

the aging process45. (Adapted from Deloitte Analysis) 

 

It includes advances in artificial intelligence (AI) based diagnostics, wearables, and robotics that 

enable early detection of age-related decline and promote independent living. In parallel, 

biomedical therapies are being developed to target core biological mechanisms of aging, such as 

cellular senescence and mitochondrial dysfunction. The ecosystem also encompasses 

regenerative and preventive solutions, including tissue repair technologies and age-tech tools, 
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designed to improve quality of life and mitigate the functional decline associated with aging, as 

illustrated in Figure 3. 

Although still emerging, the longevity field is already attracting growing interest and support from 

investors, universities, and governments. By 2020, the top 50 companies focused on longevity had 

raised over $1 billion in funding, a figure that continues to increase45. This underscores the field’s 

strong potential and promising future. 

3.1 Context and strategic relevance 

Within this ecosystem, aging research has become a central priority in biomedicine and 

biotechnology, driven by increasing life expectancy and the growing impact of age-related 

diseases. As global populations age, healthcare systems face increasing pressure from chronic 

conditions, tissue degeneration, and a decline in regenerative capacity. Therefore, understanding 

the biological mechanisms that contribute to aging is essential for developing new approaches to 

prevent or delay diseases and to improve quality of life in later years2.  

This reflects the central idea of geroscience, which hypothesizes that targeting the biological 

processes underlying aging itself, rather than treating individual age-related diseases, may prevent, 

delay, or reduce the severity of multiple conditions simultaneously. This approach also has the 

potential to extend healthspan46. 

At the same time, public health priorities are shifting toward prevention, early detection, and 

personalized intervention. This has led to growing interest in identifying measurable indicators of 

biological aging that go beyond chronological age. Such indicators are essential not only to improve 

understanding of the aging process but also to tailor medical strategies to individual needs and 

evaluate the effectiveness of emerging therapies46,47. 

In this context, aging is no longer seen as an inevitable decline, but as a process that can be 

studied, monitored, and potentially modified. Tools capable of capturing and measuring changes 

at the cellular and tissue level play a key role in this transformation48. 

3.2 Current players and efforts 

These shifts have given rise to a new wave of research and innovation aimed at developing tools 

to monitor, understand, and intervene in the biological processes of aging. A range of international 

institutions and companies are now driving this transition through focused programs that target 

aging at its cellular and molecular roots. 

At the forefront of this transformation are research centers such as the Buck Institute for Research 

on Aging (USA) and the Max Planck Institute for Biology of Aging (Germany)49,50. These 

organizations have played a crucial role in advancing the understanding of the molecular and 

cellular aspects of aging, including cellular senescence, mitochondrial dysfunction, and impaired 

intercellular communication. Their research has laid the groundwork for identifying measurable 

indicators of aging, which can be used to track biological decline and assess treatment options. 

In parallel, biotechnology companies are investing in strategies to reverse or slow down the aging 

process. Calico Life Sciences (a Google subsidiary) and Altos Labs (supported by major technology 
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investors)51,52 are conducting long-term research into cellular rejuvenation, epigenetic 

reprogramming, and tissue regeneration.  

3.3 Market opportunities and trends 

The aging and longevity market is growing rapidly, with strong interest in tools that can measure 

biological age more accurately, rather than relying solely on chronological age. One of the most 

promising areas is the development of aging biomarkers, features that reflect how cells or tissues 

are aging, often before symptoms appear53. These are essential for early diagnosis, personalized 

treatments, and evaluating the effects of anti-aging interventions. 

A significant trend is the use of AI and ML to analyze large datasets from imaging, transcriptomics, 

and other high-throughput sources47,54. This has enabled the rise of aging clocks, predictive models 

that estimate biological age based on measurable inputs54. Examples include ImAge55, which uses 

gene expression data, and Google’s eyeAge56, which predicts age from retinal images. Therefore, 

these tools show how computational methods are transforming aging research into practical 

diagnostic and clinical tools. 

3.4 Target sectors 

The growing interest in aging research and longevity technologies is creating opportunities across 

several key sectors: 

• Pharmaceuticals are increasingly focused not only on treating age-related diseases such 

as fibrosis, osteoarthritis, neurodegeneration, and metabolic disorders but also on targeting 

the underlying biological mechanisms of aging itself. As aging is now recognized as a major 

driver of chronic conditions, drug development is shifting toward modulating processes 

such as cellular senescence57, chronic inflammation58, and mitochondrial dysfunction59, 

among others.  This opens new avenues for therapies that aim to extend healthspan and 

improve resilience in later life. 

• The cosmetics industry, particularly in anti-aging skincare, is driven by consumer demand 

for products that maintain skin health and appearance. Companies are seeking 

technologies that assess biological aging at the cellular level to support efficacy claims and 

differentiate their products60. Tools that measure cell morphology, senescence markers, or 

extracellular matrix production provide objective ways to evaluate the impact of a product. 

These approaches also open the door to more personalized skincare, where treatments 

are tailored based on an individual’s biological skin profile rather than age alone61. 

• Healthcare is increasingly interested in tools that detect biological aging and early signs of 

decline before clinical symptoms emerge. The identification of aging markers can inform 

preventive care, personalize risk assessments, and track responses to interventions. 

These tools support a shift toward proactive, individualized healthcare, helping to reduce 

the burden of advanced age-related diseases on healthcare systems48,62. 
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4 Concept Engineering 

This section identifies the project's specific needs. Based on these requirements, each workflow 

step is examined in detail, considering alternative approaches and their suitability for the project. 

This process leads to a comprehensive pipeline that supports the study of age-related changes in 

fibroblasts at the single-cell level. 

4.1 Target outcome 

The primary outcome of this project is the development of a comprehensive analysis pipeline that 

leads to a supervised, interpretable machine learning model capable of classifying pulmonary 

fibroblasts as either young or aged based solely on morphological, cytoskeletal, and nuclear 

features extracted from multichannel fluorescence microscopy images. The model is expected to: 

• Identify and rank the most predictive cellular features. 

• Demonstrate generalization across biological replicates and sexes. 

• Support interpretability by revealing how specific cellular structures change with age, 

offering insights that may guide future biomarker discovery. 

This output serves as both a functional classifier and a biological interpretation tool, prioritizing 

feature explainability over raw predictive power. 

4.2 Conceptual workflow design 

The development of the project is organized into three primary stages: building the dataset, 

processing images, and analyzing data. These stages outline the project's conceptual journey.  

It is essential to note that some steps in this workflow are based on protocols that have been 

extensively optimized by the host research group over the years, while others require specific 

adaptation and development within the scope of this project and are described in greater detail. 

4.2.1 Dataset construction 

A key step is generating the dataset, which serves as the foundation for all subsequent analysis. 

Constructing the dataset involves two main stages: sample collection, encompassing all 

procedures up to the establishment of fibroblast cultures, and image acquisition, which includes 

immunofluorescence staining and microscopy required to capture high-quality images for analysis. 

4.2.1.1 Sample collection 

Lung fibroblasts can be obtained from two primary sources: human tissue and animal models. 

While human samples provide direct relevance to human aging, they often pose ethical, logistical, 

and standardization challenges. Animal models, particularly mice, offer greater experimental 

control over variables such as genetics, environment, and treatment exposure. Mice are especially 

useful due to their genetic similarity to humans, susceptibility to many of the same diseases, well-

characterized biology, and short reproductive cycles. In this project, mouse models are selected 

because they are already well-established in the hosting research group, making them the most 

practical and feasible option. 
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Primary fibroblasts isolated from young and old mice are preferred over immortalized commercial 

cell lines because they retain native, age-specific characteristics and better reflect in vivo biology. 

In contrast, immortalized commercial cell lines bypass natural aging processes, offering less control 

over donor age and thereby limiting their suitability for aging studies. While primary cultures 

introduce more variability due to biological and processing differences, this is considered an 

acceptable trade-off for preserving physiological relevance in age-related research. A summary of 

the different fibroblast sourcing strategies is provided in Table 1. 

DESCRIPTION   ADVANTAGES   DISADVANTAGES  

Use freshly isolated human fibroblasts. Direct relevance to human aging 
Ethical and logistical complexity, limited 

availability, variability across donors  

Isolate primary murine fibroblasts. 
A good balance of relevance and feasibility, 

enabling control over age, sex, and 
environment. 

Species differences compared to humans  

Commercial fibroblast cell lines Readily available; standardized 
Typically immortalized and no control over 

the age variable; reduced physiological 
relevance. 

 

 

Table 1 · Comparison of fibroblasts source options considered. 
Summary of the advantages and disadvantages of using freshly isolated human fibroblasts, primary murine fibroblasts, and commercial cell lines, 

with a focus on their relevance to aging research, practical feasibility, and biological limitations. 

 

The animals in this project are part of a larger research initiative and are not sacrificed exclusively 

for this study. As such, the project must adapt to the available population of mice. Cell isolation, 

culture, and seeding follow standardized protocols established by the research group, ensuring 

methodological consistency and aligning the experimental procedures with prior validated 

workflows in the laboratory. 

4.2.1.2 Image acquisition 

To characterize fibroblasts, particularly in the context of age-associated changes, researchers 

commonly employ a wide range of techniques, including molecular profiling (such as 

transcriptomics), biomechanical analysis (such as atomic force microscopy, or AFM), and 

advanced imaging methods (such as fluorescence microscopy). As outlined in the background 

section, each of these approaches offers unique insights into cellular function and aging.  

This project builds on the host research group’s expertise, aiming to derive quantitative features 

that characterize cell structure, particularly in cytoskeletal organization, nuclear morphology, and 

cell shape. Multichannel fluorescence microscopy is selected as the most suitable method for 

achieving this goal. 

Different fluorescence microscopy techniques are available for studying cytoskeletal architecture, 

each with distinct trade-offs in terms of resolution, depth, speed, and complexity63. This project 

selects epifluorescence microscopy, as it is optimized and available in the lab. The research team 

has extensive prior experience with the instrument, and optimal combinations of fluorophores and 

filters for each marker are validated in-house. This setup enables efficient project progression 

without the need for new imaging infrastructure or lengthy calibration times. 
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DESCRIPTION PRINCIPLE   ADVANTAGES   DISADVANTAGES  

Wide-field fluorescence 
microscopy 

Uniform illumination of the 
entire sample; all emitted light 
(in-focus and out-of-focus) is 

collected 

Simple, fast, cost-effective; 
suitable for thin samples and 

high-throughput imaging 

Limited optical sectioning; 
reduced image clarity in thick or 
densely stained samples; High 
background due to out-of-focus 

fluorescence light. 

 

Confocal fluorescence 
microscopy 

Uses a focused laser beam and 
a pinhole to eliminate out-of-
focus light, enabling optical 

sectioning 

High resolution and contrast 
allow 3D imaging and more 

precise visualization of 
cytoskeletal structures. 

Slower acquisition, more 
expensive equipment, higher 

photobleaching risk 
 

Total Internal Reflection 
Fluorescence (TIRF) 

microscopy 

Creates an evanescent wave 
that excites fluorophores within 

~100–200 nm of the glass 
surface 

Very high signal-to-noise ratio; 
ideal for imaging near the basal 

membrane (e.g., focal 
adhesions, cortical actin) 

Limited to near-surface 
structures; cannot image deeper 

cytoskeletal components 
 

Super-resolution microscopy 
(STED, SIM, STORM, PALM) 

Overcomes the diffraction limit 
using structured light patterns, 

depletion, or stochastic 
activation 

Ultra-high spatial resolution (20–
100 nm); reveals fine 

cytoskeletal details not visible 
with conventional methods 

Technically complex, slow 
imaging speed, limited field of 

view; not suitable for high-
throughput analysis 

 

 

Table 2 · Overview of fluorescence microscopy techniques commonly used for cytoskeletal imaging. 
Comparison of wide-field, confocal, TIRF, and super-resolution microscopy methods, summarizing their underlying principles, strengths, and 

limitations in the context of cytoskeletal visualization 63–65. 

 

One limitation of epifluorescence microscopy (as seen in Table 2) is the significant background 

fluorescence caused by out-of-focus light. To address this, a background estimation step is 

implemented post-acquisition, where the background signal is computationally subtracted from the 

original image. This correction ensures that feature extraction relies on the biological signal rather 

than imaging artifacts, making it crucial before the quantitative analysis. 

4.2.1.2.1 Imaging markers for fibroblast characterization 

Cytoskeletal remodeling and nuclear alterations are hallmarks of fibroblast aging, making it logical 

to select biomarkers that reflect changes in cellular architecture. The aim is to visualize components 

indicating age-related differences in morphology and cytoskeletal organization. Therefore, a panel 

of four immunofluorescent markers is utilized to label the nucleus, actin cytoskeleton, contractile 

fibers, and intermediate filaments, allowing for comprehensive structural characterization of 

fibroblasts across age groups. The selected markers (described in Table 3) prioritize three main 

criteria: 

• Biological relevance to aging: Each marker targets a structural component affecting cellular 

aging or senescence. 

• Technical feasibility: Staining protocols are validated within the host lab, ensuring 

reproducibility and efficiency. 

• Complementarity: The four markers provide a comprehensive view of cellular structure, 

including nuclear morphology, cytoskeletal organization, and activation state. 

Although microtubule-related markers (like α-tubulin) or mitochondrial markers (like TOM20) could 

have been considered, they are ultimately not included, as they do not align as well with the three 

main criteria guiding this decision. In conclusion, two separate immunostaining protocols will be 

used: one combining α-SMA, phalloidin, and DAPI, and the other substituting vimentin for α-SMA. 

This approach is necessary due to technical limitations in simultaneously multiplexing all four 
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markers, and it ensures the reliable visualization of both actin- and intermediate filament-related 

features while maintaining image quality and signal specificity. 

MARKER DESCRIPTION 

4’,6-diamidino-2-
phenylindole (DAPI) 

It is a blue-fluorescent stain that firmly attaches to A-T-rich regions of DNA, facilitating precise observation of cell 

nuclei66. This dye is crucial for distinguishing individual cells and assessing nuclear characteristics, such as size, 

shape, and chromatin texture, which often change with age. Typically, aged or senescent fibroblasts exhibit enlarged 

or irregular nuclei and disrupted chromatin organization, indicating senescence or a diminished ability to proliferate67. 

Phalloidin 

It binds specifically to F-actin, allowing visualization of the actin cytoskeleton. F-actin forms structures like stress 

fibers, which support cell shape, force generation, and migration. Aging shifts the actin balance toward disorganized 

and expanded F-actin networks68 and stress fiber formation69, leading to a stiffer, less motile phenotype. In contrast, 

younger fibroblasts exhibit more dynamic actin structures, such as lamellipodia and filopodia70. Phalloidin staining 

effectively reveals these age-related differences in cytoskeletal organization. 

α-SMA 

It is a contractile actin isoform expressed by activated fibroblasts (myofibroblasts) during wound healing and fibrosis. 

Quiescent fibroblasts express little to no α-SMA, but upon activation, it integrates into stress fiber-like structures71,72. 

Staining for α-SMA helps assess whether aged fibroblasts exhibit impaired activation, even in the absence of injury. 

Vimentin 

It is an intermediate filament protein in fibroblasts that forms a cytoskeletal network from the nucleus to the cell 

periphery. It plays key roles in maintaining cell shape, positioning organelles, resisting mechanical stress, and 

facilitating migration, wound healing, and mechanotransduction. It has been seen that aged fibroblasts exhibit 

increased vimentin abundance and thicker, longer vimentin fibers, and their organization and bundling can potentially 

contribute to increased stiffness and impaired motility21. Vimentin staining allows for the visualization of this 

intermediate filament network. 
 

Table 3 · Fluorescent markers used for fibroblast characterization. 
Summary of the function and relevance of DAPI, phalloidin, α-SMA, and vimentin in visualizing nuclear, cytoskeletal, and activation-related changes 

associated with fibroblast aging. 

 

4.2.2 Image processing 

Before quantitative analysis can be performed, the raw fluorescence microscopy images must 

undergo a series of processing steps. For clarity, a brief introduction to the software tools used 

throughout the image processing and data analysis stages is provided on Table 4. 

SOFTWARE TOOLS DESCRIPTION 

 
ImageJ/Fiji 

Java-based open-source software widely used in biological and medical imaging. Offers tools for 

visualization, cropping, intensity adjustments, and measurements. Its plugin-based architecture enables 

flexible and reproducible workflows73,74. 

 
Ilastik 

 Open-source tool for interactive image segmentation using supervised machine learning. 

Supports pixel classification and object tracking through intuitive brush-based annotations, producing 

semantic segmentation maps75.  

 
CellProfiler 

Modular, open-source software for high-throughput biological image analysis. Allows users to build custom 

pipelines for preprocessing, segmentation, and feature extraction, supporting scalable and reproducible 

workflows76. 
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PROGRAMMING LANGUAGES 
AND ENVIRONMENTS 

DESCRIPTION 

 
Matlab 

 High-level programming language and environment for data analysis, image processing, and 

visualization. Offers specialized libraries and interactive tools for building custom workflows in scientific 

research. 

 
R & RStudio 

 High-level language for statistical computing and data analysis. Paired with RStudio, it offers a 

user-friendly environment for scripting, plotting, and managing analytical workflows. 

 

Python & Jupyter 
Notebook 

Versatile, high-level programming language used in scientific computing and image analysis; libraries such 

as OpenCV and scikit-image support automation and custom scripts. Jupyter Notebook provides an 

interactive, reproducible coding environment. 
 

Table 4 · Software tools, programming languages, and environments used in image analysis and data processing. 
Summary of the main platforms employed for image preprocessing, segmentation, feature extraction, and data analysis throughout the project. 

 

4.2.2.1 Segmentation of individual cells 

Once the immunofluorescence images are acquired, the first step in the image processing workflow 

is to split the multichannel images into separate grayscale images for each fluorescent marker. 

This task is performed using a custom MATLAB script developed within the host laboratory, 

ensuring compatibility with the microscope output format and downstream processing pipeline. 

Before channel separation, cells are cropped semi-automatically using a batch process in 

ImageJ/Fiji. This decision anticipates common image quality issues, such as uneven staining, 

partial substrate detachment (which is frequent in aged fibroblast cultures), and overlap between 

neighboring cells. Thus, cells affected by these limitations can be excluded from analysis while 

retaining all morphologically distinct or biologically relevant phenotypes that meet basic quality 

criteria. 

Segmentation strategy 

Before outlining the image processing pipeline, various segmentation strategies frequently detailed 

in the literature are examined to determine their suitability for the generated dataset39,77–80. A 

summary comparison of the three approaches considered is provided in Table 5. 

Threshold-based segmentation in CellProfiler 

An initial approach involves building a comprehensive segmentation workflow in CellProfiler using 

threshold-based methods. Although it produces visually accurate segmentations, it is sensitive to 

slight variations in signal intensity. Consequently, a single set of thresholding parameters cannot 

be consistently applied across the dataset, and manually adjusting parameters for each image is 

time-consuming and not scalable for large-scale processing. 

Hybrid Segmentation Workflow Using Ilastik and CellProfiler 

To improve robustness and scalability, a hybrid approach is used by combining Ilastik with 

CellProfiler. Ilastik performs ML-based image processing through its pixel classification workflow, 
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where users annotate a subset of images to train a classifier that assigns each pixel a probability 

of belonging to a class such as nucleus, cytoplasm, or background. This approach is practical in 

handling signal variability, uneven illumination, and subtle texture differences by using local image 

features, including intensity, edges, and texture. 

The probability maps generated by Ilastik are then used as input in CellProfiler to guide object 

detection and support accurate identification of nuclei and whole cell structures. Relying on 

probability thresholds instead of fixed intensity cutoffs allows for more consistent and automated 

batch processing. CellProfiler produces binary masks that label each pixel as part of a specific 

object, generating one mask for nuclei and another for entire cell bodies. These masks serve as 

the foundation for quantitative feature extraction in later stages of the pipeline. 

Before generating probability maps, an initial evaluation is conducted to determine whether 

preprocessing the input images improves segmentation. This preprocessing includes image 

normalization and background subtraction and is applied only to Ilastik inputs, while CellProfiler 

continues to work with the original raw images. Results show that this step improves segmentation 

accuracy by approximately 20%, and it is therefore integrated into the workflow. 

Deep Learning based segmentation 

Another strategy could involve the use of deep learning-based segmentation models such as U-

Net or Cellpose. These methods are becoming the gold standard in biomedical image segmentation 

due to their ability to learn complex spatial features and handle challenging conditions. However, 

deep learning models are not implemented in this project due to time constraints, limited access to 

annotated training data, and the fact that the combined Ilastik and CellProfiler approach already 

meets the project's accuracy and performance needs.  

DESCRIPTION   ADVANTAGES   DISADVANTAGES  

Threshold-based segmentation in 
CellProfiler 

Simple to implement and does not require 
training data 

Highly sensitive to noise, uneven staining, 
and signal variability; requires extensive 

manual parameter tuning 
 

Hybrid segmentation workflow using Ilastik 
and CellProfiler 

Improved segmentation accuracy; handles 
variable signal intensity well; minimal user 

intervention once trained 

Requires initial annotation and classifier 
training; some tuning of thresholds is still 

needed in CellProfiler 
 

Deep learning-based segmentation 
High segmentation accuracy; handles 
complex morphologies effectively, and 

challenging imaging conditions 

Requires annotated training datasets; 
computationally intensive; not feasible 

under current time constraints; and defined 
project priorities 

 

 

Table 5 · Comparison of segmentation strategies evaluated in the project. 
Summary of the three image segmentation approaches considered: thresholding in CellProfiler, a hybrid workflow using Ilastik and CellProfiler, and 

deep learning-based models; highlighting their main advantages and limitations. 

 

4.2.2.2 Feature extraction 

Two main strategies are considered for this task: using CellProfiler with pre-configured modules for 

feature extraction, and developing custom Python scripts that utilize libraries such as scikit-image, 

mahotas, and OpenCV. CellProfiler offers a straightforward and scalable solution, but it has limited 

transparency in feature computation and less flexibility in parameter settings. Given the project's 



AI-BASED DIAGNOSTIC ALGORITHM FOR CELLULAR AGING:  
USING SINGLE-CELL FLUORESCENCE IMAGING OF THE CYTOSKELETON 

Page 26 of 85 

need for precise measurement interpretation, the Python-based approach is selected for complete 

control over feature definitions and tailored analysis of aging-related phenotypes.  

An alternative approach would be to utilize deep learning models to directly extract latent features 

from images, thereby eliminating the need for explicit definitions. Although this captures complex 

spatial patterns, it is not adopted in this project due to the limited dataset size and the need for 

biological interpretability, which is challenging with high-dimensional representations. A 

comparison of these feature extraction strategies is summarized in Table 6. 

DESCRIPTION   ADVANTAGES   DISADVANTAGES  

Feature extraction using CellProfiler 
Easy to implement; scalable for large 
datasets; widely used in cell biology 

workflows 

Limited control over how features are 
computed; less transparency in feature 

definitions 
 

Feature extraction using custom Python 
scripts 

Complete control over feature definitions; 
high interpretability; tailored to specific 

biological questions 

Requires more development time and 
programming effort; less standardized.  

Deep learning–based feature extraction 
(e.g., CNN embeddings) 

Can capture complex or previously 
unknown patterns; no need for manual 

feature design 

Requires larger annotated datasets; results 
are difficult to interpret biologically; high 

computational cost 
 

 

Table 6 · Comparison of feature extraction strategies. 
Overview of the three feature extraction approaches considered: CellProfiler-based extraction, custom Python scripting, and deep learning methods. 

The table highlights their advantages and limitations in terms of scalability, interpretability, flexibility, and computational requirements. 

 

4.2.3 Data analysis 

The final stage involves analyzing the extracted features to identify patterns associated with cellular 

aging and assess their potential for classification. This analysis includes two main components: 

statistical testing to identify significant and biologically relevant features, and a machine learning 

phase to determine how well these features distinguish between young and aged fibroblasts.  

4.2.3.1 Statistical analysis 

Statistical analyses are conducted using R to facilitate both exploratory data analysis and feature 

filtering. Analysis of variance (ANOVA) identifies features with significant differences between 

young and aged fibroblasts. It is favored over simpler tests, such as the t-test, as the dataset 

comprises both male and female samples. Thus, there is a need to consider sex as a factor and 

isolate age-related differences, leading to more robust and biologically relevant features.  

In parallel, correlation analysis identifies variables that are highly correlated with each other. 

Reducing redundancy among these features helps prevent the overrepresentation of similar 

information, improving both model performance and interpretability. While dimensionality reduction 

methods, such as principal component analysis (PCA), are available, they generate abstract 

components that lack clear biological meaning. The chosen approach prioritizes retaining 

interpretable features while minimizing redundancy. 
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Figure 4 · Overview of the final pipeline developed. 
Summary of each significant step in the workflow, from fibroblast isolation and imaging to feature extraction and data analysis, outlining how 

biological samples are transformed into interpretable, quantitative insights about cellular aging. 

4.2.3.2 Machine learning 

The subset of selected features is then used to train and evaluate supervised ML models using 

Python. Several algorithms will be explored, including81,82: 
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• Decision tree (DT): splits the data based on feature values to form a set of if-then rules that 

are highly interpretable. 

• k-Nearest neighbors (k-NN): classifies new samples based on the majority class among 

their closest feature-space neighbors. 

• Random Forest (RF): builds an ensemble of randomized decision trees and aggregates 

their predictions to improve accuracy and reduce overfitting. 

• Support Vector Machine (SVM): attempts to find the optimal boundary (or hyperplane) that 

separates classes in a high-dimensional feature space. 

• Logistic Regression (LR): models the probability of class membership by applying a logistic 

(S-shaped) function to a linear combination of input features. 

These models offer different trade-offs in terms of complexity, interpretability, and robustness. 

Given the aims of this project, particular attention will be paid to models that provide insights into 

which features contribute most to classification, since interpretability is key for linking quantitative 

patterns back to biological mechanisms related to aging. Although DL models could also be applied, 

this option is not pursued, as simpler, more interpretable approaches are better suited to the scale 

and objectives of this project. 

4.3 Overview of the final pipeline 

Figure 4 summarizes the key decisions made throughout the conceptual design process and 

outlines the final pipeline that will be followed in the project. 

5 Detail Engineering 

This section outlines the practical implementation of the pipeline defined in the conceptual phase, 

including dataset construction, image processing, and data analysis. It covers isolating and staining 

fibroblasts, image acquisition, segmentation, feature extraction, as well as training and evaluating 

predictive models. Finally, the analysis results are discussed in terms of their biological relevance 

for understanding cellular aging. 

5.1 Primary fibroblast isolation and culture  

Primary pulmonary fibroblasts are obtained from a total of twelve C57BL/6 mice, stratified by age 

and sex. The sample includes three young males and three young females at 5 weeks of age, as 

well as three old males and three old females at 74 weeks of age. 

Lungs are extracted by a qualified technician following animal handling protocols. Fibroblasts are 

then isolated using the crawl-out method within the host laboratory. Once obtained, fibroblasts are 

cultured in T25 or T75 flasks, based on their count and growth rate. The culture medium is 

Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 

1% penicillin–streptomycin (PS). Before each medium change, cells are washed with phosphate-

buffered saline (PBS) 1x containing 1% PS to remove debris and impurities, thereby reducing the 

risk of contamination. Cultures are kept under standard conditions (37°C, 5% CO₂) until the desired 

confluence is reached for subsequent steps. During the isolation and culture process, some group-

specific differences are observed: 
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• Young female fibroblasts take longer to adhere and proliferate than those from males. This 

delay may result from excessive carbon dioxide exposure during euthanasia or difficulties 

in tissue handling, as in some instances, lung fragments from young females detached 

before fibroblasts had the opportunity to migrate out. 

• Cultures from older animals show a greater tendency for tissue fragments to detach from 

the wells, possibly indicating age-related changes in tissue integrity or reduced adhesion. 

Additionally, fewer fibroblasts are recovered from old females compared to males, although 

the underlying causes remain unclear. 

Since the fibroblasts are not isolated exclusively for this project, and given that cell growth is 

significantly lower in old samples compared to young ones, it is not possible to include all isolated 

animals in the whole experimental workflow. Notably, old male #1 and old female #2 are excluded 

from further processing due to insufficient cell yield. Their cells are instead cryopreserved for 

potential use in future experiments.  

5.2 Cell seeding and immunostaining 

This section describes the protocol for preparing fibroblast samples for fluorescence imaging, 

including seeding on glass coverslips and staining to label key cellular structures. 

5.2.1 Cell Seeding 

Cell seeding is carried out using 13 mm glass coverslips placed inside 40 mm diameter Petri dishes. 

Each dish contains three coverslips. A total of 10 dishes are prepared for staining with α-SMA, 

phalloidin, and DAPI, and 10 dishes for staining with vimentin, phalloidin, and DAPI. Coverslips are 

first immersed in 70% ethanol for approximately 20 minutes to sterilize them. They are then rinsed 

with PBS 1x and conditioned by adding the cell culture medium DMEM supplemented with 10% 

FBS and 1% PS. 

Cells undergo a trypsinization step to detach them from the culture surface. Before this, they are 

washed with PBS 1x containing 1% PS. For T75 flasks, 1 mL of 0.25% trypsin is used, while 0.5 

mL of the same solution is applied for T25 flasks. Trypsin is neutralized with cell culture medium (5 

mL for T75 and 3 mL for T25), and cells are incubated at 37ºC for approximately 2 minutes. The 

suspension is then centrifuged at 1200 rpm for 5 minutes at 23ºC. After centrifugation, the 

supernatant is discarded, and the pellet is resuspended in 1 mL of cell culture medium. 

To determine the number of cells needed for seeding, cell concentration is measured using a 

Neubauer chamber. Cells are mixed with Trypan Blue in a 1:2 ratio for viability assessment. 

Counting is performed across the four large quadrants in each chamber, and the average is 

calculated between both chambers. The following formula is used to calculate cell concentration: 

𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
= (

𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑐ℎ𝑎𝑚𝑏𝑒𝑟

4
) · 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 · 104 

To achieve a seeding density of 3000 𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 , and knowing that each Petri dish has an area of 

9.2 𝑐𝑚2, the target number of cells per dish is calculated as 3000
𝑐𝑒𝑙𝑙𝑠

𝑐𝑚2 × 9.2𝑐𝑚2 = 27,600 𝑐𝑒𝑙𝑙𝑠. 

From the measured cell concentration, the required volume of cell suspension is calculated and 

used for seeding. After plating, the cells are incubated for approximately 24 hours to allow 
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attachment to the coverslips. Following this period, fixation is performed using 4% 

paraformaldehyde (PFA). 

5.2.2 Immunostaining protocol 

Since the samples are stored at 4°C in PBS until all conditions are seeded and ready for staining, 

a PBS 1x wash is performed at room temperature before beginning the staining protocol. This step 

allows the samples to equilibrate to room temperature before proceeding. A summary of the 

complete immunostaining protocol, including the mounting stage, is provided in Figure 5. 

Permeabilization: To permeabilize the cell membranes and allow antibodies to access intracellular 

structures, a 0.2% Triton X-100 detergent solution in PBS 1x is applied. Each Petri dish containing 

three coverslips receives 2 mL of this solution. The samples are placed on an orbital rotator at 80 

rpm and incubated at room temperature for 20 minutes. After permeabilization, the cells are washed 

three times with PBS 1x to remove any remaining detergent.  

Blocking: To reduce background and prevent nonspecific antibody binding, a blocking buffer (BB) 

made of 10% FBS in PBS 1x is applied to each Petri dish, completely covering the coverslips. Each 

dish is placed on an orbital rotator at 80 rpm and incubated at room temperature for 45 minutes. 

Primary Antibody: While the blocking step is in progress, the primary antibody solutions are 

prepared at the following concentrations: 1:1000 for the mouse monoclonal anti-vimentin antibody 

and 1:500 for the rabbit recombinant monoclonal anti-αSMA antibody. After blocking, 1 mL of the 

corresponding antibody solution is added to each Petri dish. The dishes are then placed on an 

orbital rotator at 80 rpm and incubated overnight at 4°C. 

Secondary Antibody: After three washes with BB, 1 mL of the appropriate secondary antibody 

solution is added to each Petri dish, ensuring the coverslips are fully covered. Anti-rabbit antibodies 

are used for αSMA and anti-mouse antibodies for vimentin, both prepared at a concentration of 

1:500. The dishes are then incubated at 37°C for 2 hours in complete darkness on an orbital rotator 

set to 80 rpm to promote binding between the primary and secondary antibodies. Following 

incubation, the samples are washed three times with PBS 1x. 

Phalloidin: Phalloidin staining is performed using a directly conjugated phalloidin antibody, 

eliminating the need for a separate secondary antibody step. The staining solution is prepared by 

diluting the conjugated antibody at 1:1000 in PBS 1x supplemented with 1% bovine serum albumin 

(BSA). Each Petri dish receives 1 mL of this solution. The dishes are then incubated in the dark at 

room temperature for 45 minutes. After incubation, the samples are washed three times with PBS 

1x to remove excess unbound stain. 

DAPI: For nuclear staining, DAPI is applied at a concentration of 2 drops per mL. One mL of the 

solution is added to each Petri dish. The dishes are then incubated on an orbital rotator at 80 rpm 

for 20 minutes at room temperature, in complete darkness. Following incubation, the samples are 

washed three times with PBS 1x to remove excess reagent. 
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Figure 5 · Schematic overview of the immunostaining and mounting protocol. 
Step-by-step schematic of the two-day protocol used to label fibroblast cytoskeletal and nuclear structures. It includes 
permeabilization, blocking, incubation with primary and secondary antibodies, and staining with phalloidin and DAPI. 
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Mounting: For mounting, clean microscope slides are prepared by placing three drops of the 

mounting medium Fluoromount-G™ on each slide corresponding to a given condition. Three 

coverslips per condition are carefully lifted using tweezers, and any excess liquid is gently removed 

from the edges using absorbent paper. The coverslips are then positioned face down onto the 

mounting medium and sealed in place using clear nail polish. Once mounted, the samples are 

stored at 4°C in complete darkness to preserve fluorescence. 

5.3 Image Acquisition 

Epifluorescence imaging is performed using a Leica SP5 inverted microscope equipped with a CCD 

camera (C9100, Hamamatsu Photonics) and a Nikon CFI Plan Fluor 20x oil immersion objective. 

Fluorescent signals are captured through TXRED, FITC, and UV-2A channels, corresponding to 

the different fluorophores used in the staining protocol.  

Image acquisition is performed using Micro-Manager software, which also exports the images in 

tagged image file format (TIFF) as composite files for analysis. Cells are imaged across various 

regions of each coverslip to ensure representative sampling. Around 150 images are collected per 

condition, with each image typically containing about five cells. All visible phenotypes are included, 

except for cells that appear damaged, detached, or excessively clustered, which are excluded from 

analysis. 

Some samples show suboptimal cell yield or quality. Notably, young male #2 and old male #3 

produce fewer usable cells than expected. In the case of young male #2, many cells appear 

compromised, likely due to technical artifacts during isolation, staining, or mounting. While the exact 

cause is unclear, these limitations are taken into account during image selection and downstream 

analysis to ensure data quality. 

5.4 Image Processing 

This section describes the computational workflow applied to convert raw multichannel 

fluorescence images into quantitative data suitable for analysis.  

5.4.1 Single-Cell Cropping and Channel Splitting 

The image analysis workflow is designed to operate at the single-cell level, as mentioned during 

the concept engineering phase and supported by inspection of the raw images. Several 

experimental limitations affect full-field consistency. Some cells detach during staining, and slight 

unevenness in certain coverslips introduces focal distortions, often seen as a blurred ring near the 

center. Occasional background staining artifacts are also present. These issues reinforce the 

decision to isolate and analyze individual cells, which simplifies downstream processing. 

To achieve this, individual cells are cropped from the images using bounding boxes that are slightly 

larger than each target cell, ensuring full inclusion with minimal interference. Cropping is performed 

in batches using a custom macro in ImageJ/Fiji, which displays images sequentially and enables 

the selection of bounding boxes. Cells are chosen by visual inspection to ensure quality. Detached, 

severely blurred, or unusually small cells are excluded, while all visible morphological phenotypes 

are retained to capture within-group variability. 
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The cropped images are processed using a custom MATLAB script developed in the host lab 

(find_all_cells_UBB.m). This script corrects uneven illumination and separates the composite TIFF 

files into individual grayscale channels for phalloidin, DAPI, and either αSMA or vimentin, 

depending on the staining protocol. 

5.4.2 Segmentation workflow 

This section outlines the workflow used to segment individual cells and nuclei from fluorescence 

images. It combines image preprocessing, pixel classification, and object identification.  

5.4.2.1 Image preprocessing with ImageJ 

First, the individual grayscale images are preprocessed in ImageJ/Fiji to improve their quality and 

facilitate segmentation. These adjustments produce more consistent and visually clear images for 

posterior Ilastik’s pixel classification. Two main steps are applied: 

• Background subtraction is performed using the “Subtract Background…” module with a 

rolling ball radius of 50 pixels, which removes uneven illumination or low-frequency staining 

variations while preserving cellular structures of interest. 

• This is followed by contrast enhancement using the “Enhance Contrast” module, with 2% 

saturation and normalization enabled. The saturation setting excludes the lowest and 

highest 2% of pixel intensities to reduce the influence of outliers, while normalization scales 

pixel values to the [0,1] range, improving contrast uniformly across images. 

5.4.2.2 Pixel classification with Ilastik 

With the preprocessed single-cell images, probability maps are generated using Ilastik’s Pixel 

Classification workflow. This method performs semantic segmentation by assigning a class label 

to each pixel based on categories such as nucleus, cytoplasm, or background. Manual annotations 

are created by painting over representative images to mark each class (Figure 6). A separate model 

is trained for each fluorescence channel: DAPI, phalloidin, and either αSMA or vimentin. Each 

model uses approximately 100 annotated cells to define the regions of interest and background. 

During training, Ilastik calculates a range of image features including intensity, edges, texture, and 

neighborhood statistics at multiple spatial scales. It automatically selects features that minimize 

classification error, prioritizing accuracy even when computational demands are higher. This choice 

supports higher mask quality and better segmentation. Special care is taken to include fine 

cytoskeletal structures like filopodia and lamellipodia in the annotations. In images where 

neighboring cells are close together, thicker background labels are added between them to help 

the model separate adjacent structures and reduce segmentation errors. 

Once the training is completed, the models are applied in batch mode to the complete set of single-

cell images. This process generates one probability map per channel and cell, where each pixel is 

assigned a probability of belonging to the labeled structure.  
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Figure 6 · Pixel classification training examples for each fluorescence channel. 
Representative annotations used to train Ilastik’s pixel classification model for phalloidin, αSMA, vimentin, and DAPI channels. 
Brushstrokes in yellow indicate the structure of interest, while blue marks background regions. These manual labels guide the 
model in learning to distinguish relevant cellular structures from surrounding areas during the generation of probability maps. 

 

5.4.3 Object identification with CellProfiler 

The generated maps are then input into a custom object identification pipeline created with 

CellProfiler (Table 11). This pipeline utilizes its modular framework to outline and connect specific 

processing steps. Each module represents a distinct image operation, enabling the development 

of a customized workflow that detects the objects of interest and produces binary masks for both 

the nucleus and the entire cell. A detail of the pipeline’s modules is available in ANNEX: PIPELINE 

CELLPROFILER, while the full segmentation pipeline can be found in ANNEX: GITHUB. 

The final binary masks are applied to the original raw cropped images rather than the preprocessed 

ones used for probability map generation. This ensures that feature extraction reflects the actual 

signal characteristics of each channel, unaffected by preprocessing. 

 

Figure 7 · Example of single-cell segmentation.  
On the left, a multichannel fluorescence image of fibroblasts is shown, with DAPI (blue), phalloidin (red), and αSMA (green). On 

the right, a magnified view highlights a segmented single cell, showing both the cell boundary and nuclear mask obtained 
through the customized pipeline. 
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To illustrate the pipeline's output, Figure 7 shows a single fibroblast extracted from a field of view, 

with its corresponding cell and nuclear masks overlaid. This reflects the effectiveness of the 

combined workflow in isolating individual cells and preserving fine morphological features. 

This workflow results in a semi-automated pipeline, where most steps are executed automatically 

across batches. However, limited user interaction is still required in specific cases, such as 

manually selecting the correct nucleus when automatic filtering fails, or adjusting thresholding 

parameters when default values do not produce accurate masks. 

 

Figure 8 · Visual summary of the segmentation pipeline.  
The diagram outlines the complete workflow from raw image preprocessing to the generation of binary masks. RGB images are 
split into individual channels using MATLAB, probability maps are generated with Ilastik, and final binary masks for the cell and 

nucleus are created in CellProfiler. For visualization purposes, these masks are shown overlaid on the original grayscale images, 
although this step is performed later during Python-based feature extraction. 
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Within the chosen solution, one potential improvement to the segmentation pipeline involves 

replacing manual nucleus selection with automated heuristics. When multiple nuclei are detected, 

the pipeline could automatically prioritize the object closest to the image center, which is most likely 

to correspond to the target cell. This adjustment would reduce user input and enhance the overall 

workflow efficiency. 

5.4.4 Overview of the segmentation workflow 

Figure 8 provides a visual summary of the full segmentation pipeline, which combines the key steps 

described in the previous sections. It illustrates how MATLAB, ImageJ/Fiji, Ilastik, and CellProfiler 

are used together to generate single-cell and nuclear masks for downstream analysis. 

5.4.5 Quantitative feature extraction 

Once the cell and nucleus masks are obtained through the segmentation pipeline, a custom Python 

script is used to extract a wide range of quantitative features from the original grayscale images. 

This enables the characterization of single-cell morphology, intensity profiles, cytoskeletal 

organization, and texture, resulting in a detailed quantitative description of each cell. 

From this point forward, only samples stained with αSMA are included, as time constraints did not 

allow for complete processing of the vimentin-stained set. 

Intensity correction 

Before any image quantification step, each fluorescence channel undergoes an intensity correction 

to standardize signal levels and compensate for potential inconsistencies due to acquisition 

settings. The correction follows these steps: 

• Mask-based pixel selection: For each cell, pixels inside the corresponding binary mask are 

selected. For the DAPI channel, the nucleus mask is used. For phalloidin and 

αSMA/vimentin channels, the whole cell mask is applied. 

• Percentile-based baseline estimation: Within the selected pixels, the 10th percentile 

intensity value is computed and used as a representative estimate of the local background 

or low-signal region within the structure of interest. 

• Mean intensity of low-end pixels: All pixels in the original image (not just within the mask) 

that are equal to or below this 10th percentile value are extracted. The mean of these pixels 

is then computed, representing the estimated baseline correction factor for the channel. 

• Normalization: The original image is divided by the computed baseline value, thereby 

scaling the image such that the lower-intensity range becomes consistent across cells. 

This correction is applied independently to each channel and each image to standardize signal 

dynamics, allowing downstream intensity and texture features to be computed more consistently 

and improving feature robustness and comparability across the dataset. 

Feature extraction 

Quantitative features are grouped into several families that together provide a detailed 

characterization of single-cell morphology and internal organization. Morphological features 

describe the shape, size, and geometric complexity of cells and nuclei. Intensity features capture 
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the distribution and variation of fluorescence signals within each compartment. Texture features 

quantify spatial patterns in signal variation, reflecting structural organization. Orientation features 

focus on cytoskeletal arrangement, particularly in actin and αSMA-stained images. A detailed list 

of all the features extracted, including explanations, library dependencies, and implementation 

parameters, is provided in ANNEX: EXTRACTED FEATURES, while the complete extraction code 

is available in ANNEX: GITHUB REPOSITORY. 

All feature calculations are performed independently for each cell, and the results are aggregated 

into a single table. Each row in this table corresponds to a cell, and each column represents a 

specific feature. The final output is stored in comma-separated values (CSV) format and used for 

subsequent analysis steps. 

Due to the nature of these feature families, a high degree of correlation between related features 

is expected. This redundancy will be addressed during the data analysis stage to improve 

interpretability and model performance. 

To validate the accuracy of the custom Python pipeline, several features are cross-checked against 

equivalent available outputs from CellProfiler. This parallel measurement approach confirms 

consistency in feature extraction and ensures that key cellular descriptors are accurately captured. 

5.5 Analysis and results 

The feature extraction process generates a high-dimensional dataset, where each cell is 

characterized by numerous quantitative variables, presenting several analytical challenges. Such 

complexity makes the data difficult to manage and interpret. Additionally, having more variables 

than samples increases the risk of overfitting and can compromise the performance and robustness 

of ML models. Many features are also conceptually or mathematically related, leading to high 

collinearity (already anticipated during the feature design stage) that can reduce model robustness. 

To address this, the initial analysis focuses on reducing the number of variables while preserving 

relevant biological information. The goals are to simplify the dataset, avoid overfitting during model 

training, and retain only the most informative and independent features. 

An essential consideration in the analysis is the inclusion of both male and female samples. While 

age-related differences are the primary focus, strong sex-specific effects are not expected based 

on prior knowledge. Treating sex as a separate factor would significantly reduce the sample size 

for each group, limiting statistical power, especially in a dataset of this scale. Instead, the whole 

dataset is used to maximize analytical strength, with the understanding that this may introduce 

some sex-related variability. The analysis is designed to account for this potential noise while 

prioritizing the identification of robust age-associated features that generalize across all samples. 

5.5.1 Class balancing and train/test split 

Before statistical analysis or model training, the dataset is balanced to ensure fair comparisons and 

reduce bias from uneven sample sizes. Balancing is performed across experimental conditions 

(young male, young female, old male, old female), with an effort to distribute samples as evenly as 

possible across individual donors.  

Each cell is assigned to a group defined by age, sex, and donor. The group with the fewest cells 

sets the target sample size, and a round-robin sampling strategy distributes cell selection across 
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donors within each group. Slight variations in donor representation are allowed to preserve equal 

sizes across experimental conditions and maximize the number of usable cells, since donors with 

very few cells would otherwise limit the dataset. This approach helps control inter-animal variability 

and supports reliable downstream comparisons. 

Once balanced, the dataset is split into training and test sets using stratified sampling to maintain 

group representation. 20% of cells from each group are allocated to testing, and the remaining 80% 

are used for training and feature selection. This split is done before any statistical filtering to prevent 

data leakage. Applying feature selection only to the training set ensures that the test set remains a 

valid, independent benchmark. 

Additionally, one donor from each experimental condition is excluded entirely and reserved for a 

final hold-out set. This step provides a rigorous test of whether the selected features and models 

generalize to unseen individuals, rather than capturing donor-specific patterns, thereby 

strengthening the robustness of the analysis.  

The final distribution of single-cell samples across training, test, and hold-out sets, including 

individual donor contributions within each group, is summarized in Table 7. 

TRAIN / TEST [ 1052 ] HOLD-OUT [ 234 ] 

956 234 

YOUNG [ 536 ] OLD [ 516 ] YOUNG OLD 

478 478 117 117 

YF [ 278 ] YM [ 258 ] OF [ 239 ] OM [ 277 ] YF YM OF OM 

239 239 239 239 117 117 

YF1 
[ 143 ] 

YF3 

[ 135 ] 

YM1 
[ 103 ] 

YM3 
[ 155 ] 

OF1 
[ 239 ] 

OM3 
[ 239 ] 

YF2 
[ 94 ] 

YM2 
[ 27 ] 

OF3 
[ 91 ] 

OM2 
[ 26 ] 

119 119 103 136 239 239 94 23 91 26 
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Table 7 · Distribution of samples across training, testing, and hold-out sets. 
Summary of the number of single-cell samples selected per animal and condition across each dataset split. Groups are defined by age and sex: 
young female (YF), young male (YM), old female (OF), and old male (OM). Within each group, samples are evenly distributed across individual 

donors whenever possible.  

 

5.5.2 Statistical filtering: selection of age-related features 

After balancing the dataset and splitting it, a statistical filtering step is performed exclusively on the 

training set to identify the most relevant features associated with age, while explicitly accounting 
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for and controlling potential sex-related effects. This selective filtering ensures that only those 

variables with an independent age-related signal are retained for downstream analysis. 

This step utilizes ANOVA. The process is carried out in two stages, both of which include multiple 

testing correction using the Benjamini–Hochberg (BH) procedure to control the false discovery rate 

(FDR). A significance threshold of α = 0.05 is applied throughout. Before applying the ANOVA tests, 

features with near-zero variance (standard deviation < 1e-6) across the training set are removed, 

since they are unlikely to carry helpful information and help prevent some associated errors during 

the statistical analysis. 

Step 1: Interaction effect filtering 

The first step assesses whether a combined effect between age and sex influences each feature. 

For this, a two-way ANOVA model with an interaction term is fitted: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ~ 𝑎𝑔𝑒 ×  𝑠𝑒𝑥 

This model estimates the individual effects of age and sex, as well as their interaction. The p-value 

associated with the interaction term is extracted and adjusted using the BH method. Features 

showing significant adjusted p-value (≤ 0.05) are discarded at this stage, as they may reflect 

inconsistent or sex-specific age effects. Only features without significant interaction are retained, 

ensuring that the selected features exhibit consistent age-related patterns across both sexes. 

Step 2: Main effect filtering 

In the second step, the retained features from step 1 are tested using a reduced additive two-way 

ANOVA model without interaction: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ~ 𝑎𝑔𝑒 +  𝑠𝑒𝑥 

This model estimates the main effects of age and sex independently. From this model, two p-values 

are obtained, one for the effect of age and another for the effect of sex. Both p-values are corrected 

for multiple comparisons using the BH method. Features are selected only if they show a significant 

age effect (adjusted p-value ≤ 0.05) and a non-significant sex effect (adjusted p-value > 0.05).  

This filtering ensures that the selected features are explicitly associated with age and not 

confounded by sex-related variation. In addition, the F-statistic for the age effect is stored for each 

selected feature. This statistic will later be used as an estimate for effect strength in ranking 

variables or guiding further interpretation. 

5.5.3 Hierarchical clustering: correlation-based feature reduction 

A Pearson correlation matrix is computed between all features that pass the ANOVA filtering stage. 

This matrix quantifies the linear relationship between pairs of variables, helping identify features 

that carry overlapping information. To reduce redundancy, correlation values are transformed into 

distances using 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1−∣ 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∣, which treats both positive and negative 

correlations equally by focusing on the strength rather than the direction of the association. 
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Figure 9 · Hierarchical clustering of selected features. 
Dendrogram showing the similarity structure among the final set of selected features based on their pairwise correlations. Features are grouped using 
hierarchical clustering with complete linkage, revealing clusters of highly related variables that often correspond to the same feature family or channel. 

CORRELATION MATRIX 

 

Figure 10 · Feature correlation matrix and clustering. 
Heatmap showing pairwise Pearson correlations between the selected features, organized by hierarchical clustering. Blocks of high correlation (in 

red) reveal groups of redundant features, which are further delineated by cluster assignments indicated along the axes. 
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Hierarchical clustering is then applied to this distance matrix. This method builds a tree-like 

structure, or dendrogram, by successively merging the most similar features based on their 

pairwise distances. Cutting the dendrogram at a height of 0.2 creates clusters in which every feature 

has an absolute correlation of at least 0.8 with the others in the same cluster. From each cluster, 

only one feature, the one with the highest F-statistic from the previous ANOVA, is retained. This 

results in a compact set of non-redundant and informative features optimized for downstream 

analysis. Figure 9 and Figure 10 summarize the results of this correlation-based feature reduction. 

5.5.4 Machine learning  

Following the feature selection process, the final set of non-redundant and age-informative features 

is used to train and evaluate several supervised classification algorithms. The aim is to determine 

whether these features can effectively distinguish between young and old fibroblasts based on their 

structural profiles. Five commonly used classifiers are considered: Decision tree (DT), k-Nearest 

neighbors (k-NN), Random forest (RF), Support vector machine (SVM), and Logistic regression 

(LR). This section outlines the preprocessing steps, the hyperparameter optimization strategy, and 

the evaluation protocol applied to each model. 

5.5.4.1 Preprocessing and pipeline construction 

Selected features are standardized when required by the classification algorithm. Standard scaling 

adjusts each feature to have a zero mean and unit variance, which is essential for distance- and 

margin-based models, such as k-NN, SVM, and LR. In contrast, DT and RF classifiers are scale-

invariant and do not require normalization, as they operate through threshold-based feature splits. 

Each classifier is integrated into a pipeline that includes a scaling step only when necessary. During 

posterior cross-validation and Bayesian optimization steps, the scaler is fitted exclusively on the 

training data of each fold and subsequently applied to the corresponding validation set. This 

approach prevents data leakage and ensures a fair evaluation of model performance. 

5.5.4.2 Hyperparameter optimization 

Each classifier undergoes hyperparameter tuning using Bayesian optimization combined with five-

fold stratified cross-validation. The optimization metric is the Area Under the Curve (AUC). 

Stratification ensures that each fold preserves the original ratio of young and old fibroblasts, 

maintaining class balance and reducing sampling bias. 

In this setup, cross-validation operates within the Bayesian optimization loop. For each 

hyperparameter set proposed by the optimizer, the model is trained and validated across five 

stratified folds. In each round, four folds are used for training and one for validation, rotating so 

each fold is used once for validation. The average AUC across all folds is used as the performance 

score for that configuration.  

Bayesian optimization uses these scores to update a probabilistic model of the hyperparameter 

space. Instead of searching randomly or exhaustively, it predicts which configurations are likely to 

perform well based on past results. It selects new candidates by balancing exploration of uncertain 

regions and exploitation of promising areas. With each iteration, it refines its model to improve 

future predictions. 
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This approach provides a reliable estimate of model performance while enabling an efficient search 

for optimal parameters. Each classifier is tuned using 30 iterations of Bayesian optimization. 

Detailed descriptions of the best models are provided in ANNEX: BEST MODELS. 

5.5.4.3 Evaluation protocol 

After identifying optimal hyperparameters through Bayesian optimization, each classifier is 

retrained on the whole training set using its best configuration. Performance is then evaluated 

across three data partitions, each capturing a different aspect of generalization.  

 

 

 

Figure 11 · Model comparison across training, test, and hold-out sets.  
Performance of five classification models (Decision Tree, K-Nearest Neighbors, Support Vector Machine, Random Forest, and Logistic regression) 
evaluated on the training set (top), test set (middle), and validation set (bottom). Metrics include sensitivity, specificity, precision, negative predictive 

value (NPV), F1 score, accuracy, and area under the curve (AUC). 
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The training set assesses model fit and helps detect overfitting. The test set, which includes cells 

not used during training or tuning but originating from the same donor pool, evaluates 

generalization to new data under similar conditions. The hold-out set, composed of cells from 

entirely unseen donors, provides the most stringent assessment by testing the model’s ability to 

generalize across biological variability. 

Each classifier is evaluated using multiple metrics, including accuracy, precision, recall, F1 score, 

specificity, sensitivity, and AUC. These results are summarized in Figure 11, while supporting 

visualizations, such as Receiver Operating Characteristic (ROC) curves and confusion matrices, 

are provided in ANNEX: MODEL COMPARISON. To verify the effectiveness of the feature filtering 

process, additional models are trained to predict sex using the same features (ANNEX: SEX 

CLASSIFICATION INABILITY). All models fail to do so, confirming that sex-related information has 

been effectively removed and that selected features are specific to age. 

      

Figure 12 · Learning curves for classifier performance across data subsets. 
Accuracy as a function of training set size for each classification model, evaluated on the training set, internal cross-validation, test set, and hold-out set. 

      

Figure 13 · Model stability as a function of training set size 
Standard deviation of classification accuracy across training sizes for each evaluation set. 

 

To evaluate how model performance scales with data volume, learning curves are generated using 

the optimized classifiers. These plots (Figure 12) show accuracy as a function of training set size 

across four evaluation settings: the training set, internal cross-validation, the test set, and the hold-
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out set reserved from entirely unseen donors. Although models are already configured with their 

optimal hyperparameters, internal cross-validation is included to assess how performance might 

vary with the training data, even under fixed configurations. Note that the number of samples on 

the x-axis represents the number of training samples used within each cross-validation fold, not the 

total training set size. 

The curves help identify tendencies towards underfitting or overfitting. A persistent gap between 

training and validation suggests high variance, while uniformly low scores may indicate high bias. 

Ideally, training and validation curves should converge as more data is introduced. 

To further assess stability, the standard deviation of accuracy is also tracked across all evaluation 

sets and plotted separately (Figure 13). This variability, also represented by the shaded regions in 

the learning curves, provides insight into model robustness. A decreasing standard deviation with 

increasing sample size suggests consistent generalization, while persistent fluctuation indicates 

sensitivity to data subsets or insufficient training volume. 

5.5.4.4 Model selection rationale 

All five classifiers evaluated demonstrate strong predictive performance. This high baseline aligns 

with prior biological intuition. During image acquisition, consistent differences between young and 

old fibroblasts were already visibly appreciable under standard fluorescence microscopy, 

suggesting that aging leaves detectable phenotypic signatures.  

Given this strong overall performance, the goal of model selection shifts from simply identifying the 

most accurate classifier to comparing models in terms of generalization, bias–variance tradeoff, 

interpretability, and robustness to biological variability. 

Model comparison and selection 

The comparison plots in Figure 11 reveal that on the external test set, both sensitivity and negative 

predictive value (NPV) show a modest decline compared to the internal test set. Upon closer 

inspection, nearly all misclassified samples in the external split correspond to cells from a single 

donor: young male #2. This concentration of errors suggests that the performance drop is not due 

to a systematic issue in model training or generalization failure, but instead to potential technical 

variability introduced during the imaging or sample preparation of this specific donor. This 

hypothesis aligns with prior observations made during image acquisition, where subtle 

inconsistencies in this donor’s dataset were noted. Despite this localized effect, the remaining 

metrics (particularly accuracy, F1 score, and AUC) are consistently high across all models in the 

hold-out set, indicating that the classifiers seem to generalize well across independent donors.  

The choice of model depends on the intended purpose. In this project, the objective is not only to 

classify cell age accurately but also to identify which features best reflect aging. The model must 

generalize reliably with new donors and remain stable across different training subsets, while also 

offering interpretable outputs that support biological interpretation. Considering the dimensions of 

generalization, interpretability, and model stability, the subsequent ranking is articulated from most 

to least favorable: 

1. LR offers the best overall balance for this task. Its accuracy improves steadily with 

increasing sample size, and the gap between training and evaluation sets narrows 
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predictably, a sign of good generalization. It also shows low standard deviation across test 

and hold-out sets as more data are added, demonstrating stability. Importantly, the model 

is highly interpretable, assigning weights to individual features that directly inform biological 

insights at both global and single-cell levels. 

2. SVM shows a learning curve pattern similar to LR, with early overfitting that diminishes as 

data grows. The evaluation accuracies increase consistently, and the standard deviation 

steadily declines with more data. Although less interpretable, its linear nature still allows 

for partial transparency through analysis of its weight vector, offering some insight into 

feature relevance. 

3. DT is the most transparent model, offering intuitive, rule-based decision paths. Its learning 

curve shows a rapid initial improvement followed by a slower upward trend, indicating 

limited but continued benefit from additional data. However, it struggles to generalize, and 

it has a higher standard deviation, indicating less stability. It’s useful for exploration but 

suboptimal for robust classification. 

4. RF achieves high accuracy early but shows a persistent gap between training and 

evaluation sets, indicating a tendency to overfit. Its standard deviation is relatively low, 

suggesting stable predictions, but its ensemble structure limits interpretability. Although 

feature importance can be extracted, individual predictions are opaque due to the 

combined influence of multiple decision trees, failing to meet the standards for 

transparency.  

5. k-NN performs worst in this context. The model memorizes training data, resulting in near-

perfect training accuracy but comparatively poor generalization. The accuracy on test and 

hold-out sets remains low, and the standard deviation is high, indicating instability. Its non-

parametric nature and lack of internal feature weighting make it both unpredictable and 

uninterpretable in this setting. 

Based on this evaluation, LR is selected as the final model. It maintains excellent predictive 

performance across all evaluation sets, demonstrates strong cross-donor generalization, and 

enables direct interpretation of feature relevance.  

Final model and feature selection 

To enhance interpretability and reduce feature redundancy, a refined selection step follows the 

initial model optimization. Starting from the complete set of features selected during the pipeline 

search, recursive feature elimination with cross-validation (RFECV) is applied using the same LR 

configuration. This method ranks features by their contribution to classification performance and 

iteratively removes the least informative ones. The optimal subset consists of 10 features, which 

preserve the model’s predictive power while simplifying its structure. 

A new LR model is trained using only this reduced feature set and evaluated on the training, test, 

and hold-out sets. Performance remains consistent across all data, confirming that the essential 

discriminative patterns related to aging are retained. A final accuracy of 0.97 is obtained in the hold-

out set, highlighting the model’s strong generalization capability to previously unseen donor 

samples. 

Global feature relevance is visualized through a bar plot showing the magnitude and direction of 

each coefficient, providing insight into how specific variables influence predictions. Additionally, the 
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model enables interpretation at the single-cell level: by combining each cell’s scaled feature values 

with the corresponding model coefficients, it becomes possible to identify which morphological traits 

contribute most to its classification. This approach is closely related to SHAP values for linear 

models, which similarly decompose individual predictions into feature-wise contributions based on 

the model’s weights. This dual-level interpretability strengthens the model’s value for both 

population-level analysis and individual cell assessment. 

LOGISTIC REGRESSION: Male vs. Female 

  

Classification Report — (TEST - RFE Features) 
              precision    recall  f1-score   support 
 
       Young       0.91      0.95      0.93        96 
         Old       0.95      0.91      0.93        96 
 
    accuracy                           0.93       192 
   macro avg       0.93      0.93      0.93       192 

weighted avg       0.93      0.93      0.93       192 

  

Classification Report — (HOLD-OUT - RFE Features) 
              precision    recall  f1-score   support 
 
       Young       1.00      0.93      0.96       117 
         Old       0.94      1.00      0.97       117 
 
    accuracy                           0.97       234 
   macro avg       0.97      0.97      0.97       234 
weighted avg       0.97      0.97      0.97       234 

 

 

Figure 14 · Final logistic regression model performance after feature selection. 
Confusion matrices, ROC curves, and classification reports for the test and hold-out sets of the final logistic regression model trained with 

features selected via RFECV. 

 

  

Figure 15 · Feature selection using recursive feature elimination 
with cross-validation (RFECV). 

Cross-validation accuracy as a function of the number of features 
selected. The optimal number of features is identified as 10, 
corresponding to the highest average accuracy during cross-

validation. This subset is used in the final logistic regression model. 

Figure 16 · Global feature importance based on logistic regression coefficients.  
Bar plot showing the top 10 features selected by RFECV and their corresponding 
coefficients in the final logistic regression model. Positive values indicate greater 

contribution to the prediction of "old" fibroblast class, while negative values 
contribute to "young" classification. Features are ranked by the magnitude of their 

impact on model predictions. 
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Figure 17 · Feature contributions for an individual fibroblast classified as "old." 
Bar plot showing the top features contributing to the classification decision for a single cell, based on the coefficients from the final logistic regression 

model. Positive values increase the likelihood of an "old" prediction, while negative values support a "young" classification. This interpretation is 
linked to the fluorescence microscopy image of the corresponding cell. 

 

5.5.5 Discussion and biological relevance 

Beyond high classification accuracy, the ML framework developed in this study plays a critical role 

in validating and ranking the features most associated with cellular aging. The LR model, especially 

when combined with RFE, not only identifies which variables carry predictive value in the context 

of aging but also enables clear interpretation of their biological relevance, both at the population 

level and for individual cells.  

This interpretability enhances the model’s utility beyond simple prediction. By revealing how 

specific features contribute to classification, the model serves as an analytical tool for identifying 

and prioritizing the phenotypic traits most strongly associated with aging. It enables researchers to 

transition from what the model predicts to why it makes those predictions, thereby guiding further 

biological investigation.  

Importantly, the features selected through this modeling process are not arbitrary. Their 

discriminative power stems from measurable, biologically grounded changes that have been 

previously assessed through ANOVA. While the correlation filtering step helps reduce redundancy 

by removing collinear variables, each retained feature remains interpretable and retains its original 

meaning. The resulting feature set reflects a compact and biologically coherent representation of 

the aging phenotype, capturing nuclear shape deformation, cytoskeletal remodeling, and changes 

in spatial organization. The following section discusses each family of features identified as 

informative for distinguishing cellular age. 

Quantitative differences between young and aged fibroblasts 

While the features selected by the predictive model are the most informative for this specific 

classification task, it is important to note that the subsequent biological analysis focuses on all 

variables that passed the initial statistical significance threshold. These features are grouped and 

assessed by functional families, as they each show a meaningful association with aging. This 
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approach ensures that biologically relevant patterns are considered beyond the constraints of 

model-driven selection, while excluding variables that do not exhibit clear age dependence under 

the specific experimental conditions of this project. The boxplots showing feature differences 

between young and old samples, based on their means and standard deviations, are available at 

ANNEX: BOXPLOTS.  

Nuclear morphology 

Solidity 

Solidity, the ratio of area to convex hull area, measures how convex a shape is. A value of 1 

indicates perfect convexity, while lower values reflect indentations or invaginations83. In DAPI-

stained nuclear masks, aged cells show reduced solidity, consistent with envelope folds, blebs, or 

irregular nuclear shapes (as illustrated in Figure 18). These deformations align with known age-

related changes in the nuclear lamina and chromatin structure, where reduced nuclear stiffness 

leads to altered nuclear morphology36.  

YOUNG OLD 

   

Figure 18 · Visual representation of age-associated differences in nuclear solidity. 
Comparison of nuclear morphology between young and old fibroblasts, highlighting a reduction in solidity with age. This suggests 

more irregular and deformed nuclear contours in aged cells, consistent with structural decline. 

 

Zernike moments 

Zernike moments, computed up to degree 12, provide a detailed quantification of nuclear shape 

irregularities. These orthogonal descriptors project a binary shape onto a set of complex 

polynomials defined over the unit disk. Lower-order moments capture global traits such as 

circularity, while higher-order moments detect finer features, including wrinkles and lobulations84. 

In aged fibroblasts, numerous higher-order Zernike coefficients show a notable increase, indicating 

the development of localized deformations in the nuclear envelope. This trend suggests a transition 

to more intricate boundary geometries. 

Zernike moments can be regarded as a more expressive generalization of solidity. Both features 

quantify aspects of nuclear shape integrity, and their predictive value in the model supports the 

same biological interpretation: a progressive loss of convexity and regularity in aged nuclei. 
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α-SMA cytoskeletal intensity and distribution 

α-SMA intensity descriptors suggest a complex remodeling of the contractile cytoskeleton in aged 

fibroblasts. Three key metrics, α_std, α_5percentile, and α_mode are all elevated with age: 

• α_std, the standard deviation of background-corrected α-SMA intensity within the cell 

mask, reflects variability in filament density across the cytoplasm. Its increase suggests 

greater heterogeneity, with some regions showing more intense α-SMA staining and others 

less. However, this metric alone does not distinguish whether such variability results from 

a higher overall number of fibers or from fewer but thicker, more intensely stained bundles. 

To clarify the nature of this structural remodeling, additional descriptors are considered. 

• α_5percentile, the intensity value below which 5% of α-SMA pixels fall, increases with age, 

suggesting even the dimmest regions show higher expression and pointing to an elevated 

baseline filament presence. 

• α_mode, representing the most frequent intensity bin, also increases, indicating a general 

upregulation of α-SMA, reflecting more prominent or denser filamentous structures across 

the cell body. 

To determine whether the rise in α_std is due only to overall intensity increases, the coefficient of 

variation (α_CoV) is analyzed. Defined as the ratio between standard deviation and mean intensity, 

it is significantly higher in aged fibroblasts. This confirms that α-SMA becomes more heterogeneous 

both in absolute terms and relative to its average expression. 

In addition, radial standard deviation metrics, calculated both within the innermost 25 percent of 

the cell and across the entire radial extent, show increased variability. This indicates that α-SMA 

heterogeneity is present across both perinuclear and peripheral regions.  

Texture analysis 

To quantify the spatial organization and texture of cellular structures, the Gray-Level Co-

Occurrence Matrix (GLCM) is used. This method captures how often pairs of pixel intensities occur 

in a specific spatial relationship within the image. For each pixel, its intensity 𝑖 is related to that of 

a neighboring pixel 𝑗, located at a defined distance 𝑑 and angle 𝜃. The resulting matrix 𝑃(𝑖, 𝑗|𝑑, 𝜃) 

summarizes the frequency or normalized probability of such pixel pairs across the image85.  

In this analysis, GLCMs are computed at multiple distances and angles to capture texture features 

across a range of spatial scales and orientations. This is particularly important in biological 

structures like actin fibers or chromatin domains, which may exhibit directionality. Unless directional 

effects are specifically studied, GLCMs are averaged across angles to produce rotation-invariant 

descriptors.  

From each GLCM, statistical features are extracted. Two of the most informative are: 

• Contrast, which reflects the intensity differences between adjacent pixels and highlights 

sharp edges or well-defined patterns. 

• Correlation, which quantifies the linear dependence between neighboring pixel values, 

indicating structural regularity. 

These features are part of the broader set of Haralick texture descriptors, a standardized framework 

for texture analysis. By evaluating them across multiple distances, the analysis captures both local 
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and extended structural patterns, providing a detailed view of textural complexity and spatial 

coherence. 

DAPI channel 

Texture analysis of the DAPI channel reveals age-related alterations in chromatin organization. 

Haralick correlation features at distances of 5 and 7 pixels (dapi_haralick_2_d5 and 

dapi_haralick_2_d7) are significantly reduced in aged cells. This decline indicates that chromatin 

intensity values become less correlated at intermediate spatial scales, reflecting a loss of continuity 

in chromatin texture. Rather than exhibiting a smooth and diffuse nuclear pattern, aged nuclei show 

more fragmented and sharply localized high-intensity regions, suggesting a reorganization of DNA 

into more spatially confined domains during aging. 

Phalloidin channel 

In the phalloidin channel, Haralick contrast features (Haralick index 1), such as phall_haralick_1_d1 

and d9, are significantly lower in aged fibroblasts. A reduction in contrast reflects a decrease in the 

sharpness of intensity transitions between neighboring pixels. This suggests that actin bundles 

become less well-defined relative to the surrounding background. Visually, this manifests as a 

smoother and more uniform F-actin signal, with less distinct fiber boundaries and a more 

homogeneous cytoplasmic distribution. 

Biologically, this pattern points to a general disorganization of the actin cytoskeleton during aging. 

In younger cells, actin fibers often appear as thick, well-separated structures with substantial signal 

differences across adjacent pixels. In aged cells, fibers tend to appear thinner, more diffuse, or less 

spatially distinct, resulting in lower contrast values. 

α-SMA channel 

In the α-SMA channel, multiple Haralick texture features decrease with aging: 

• α_haralick_1 (contrast): Reflects the sharpness of intensity differences. Lower values 

indicate less distinction between filament edges and the background. 

• α_haralick_2 (correlation): Indicates how well intensity in one pixel predicts its neighbor's. 

Its reduction implies fragmented α-SMA networks with broken continuity across bundles. 

• α_haralick_11 (IMC1): This feature quantifies the mutual information between neighboring 

pixel intensities, capturing how much knowing one pixel's value informs about its neighbor. 

A lower IMC1 value indicates reduced inter-pixel dependency, reflecting a global decline 

in structural organization and predictability within the filament network. This suggests that 

α-SMA becomes more fragmented and spatially disordered with age. 

Together, these results indicate that although α-SMA is upregulated (as evidenced by intensity and 

mode measures), its textural complexity and long-range organization decline with age. This 

supports the view that aging reorganizes the cytoskeleton into spatially distinct, internally uniform 

patches, each aligned and contractile, but globally disconnected in intensity and texture.  

Cytoskeletal alignment and directionality 

The spatial organization of the α-SMA network is further examined using coherence metrics derived 

from the local structure tensor, which quantify the directional alignment of filaments across the cell. 
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• α_coherence_mean is significantly higher in aged fibroblasts, indicating that α-SMA fibers 

tend to be more directionally aligned, reflecting greater local order within filament bundles. 

• α_coherence_std is also increased with age, showing higher variability in alignment across 

different regions. This suggests the presence of both highly ordered patches and 

disorganized areas within the same cell. 

YOUNG OLD 

   

Figure 19 · Comparison of the cytoskeletal orientation based on aSMA staining. 
Visualization of fiber alignment patterns in young and old fibroblasts. 

 

Together, these metrics reveal a mosaic-like cytoskeletal architecture in aged fibroblasts, where 

local domains of well-aligned filaments coexist with less organized regions, resulting in a spatially 

fragmented yet internally coherent pattern (as shown in Figure 19). This heterogeneity helps 

explain the observed decline in α-SMA Haralick correlation, which reflects reduced predictability of 

intensity relationships due to misalignment between domains.  

Final considerations 

While each extracted feature can be associated with plausible biological interpretations based on 

prior knowledge and visual inspection, these associations remain largely hypothesis-driven. 

Structural and intensity-based descriptors (such as texture metrics, shape moments, or distribution 

measures) are computationally well defined, but their precise biological correlates are not always 

established. As such, the interpretations offered here are biologically grounded and visually 

consistent but should be viewed as informed hypotheses rather than definitive mechanistic 

explanations. 

Despite this limitation, the results consistently point to underlying biological processes that extend 

beyond superficial morphological or cytoskeletal differences. Many of the most predictive features 

likely reflect structural consequences of molecular and regulatory changes associated with aging. 

For example, the prominence of α-SMA-related features highlights the role of contractile 

remodeling, influenced by focal adhesion dynamics and age-sensitive signaling pathways. This 

suggests that the model captures downstream effects of mechanotransduction and cytoskeletal 

regulation. 
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In addition, thanks to the single-cell resolution of this study, some intra-population variability has 

been observed within the same age groups. This cellular heterogeneity suggests the presence of 

distinct fibroblast subpopulations and aligns with previous findings of the host research group, 

reinforcing the value of this approach for capturing subtle, cell-level differences. 

6 TECHNICAL FEASIBILITY 

This section evaluates the technical feasibility of the implemented image-based classification 

pipeline for aging fibroblasts. It is organized around the four SWOT categories (strengths, 

weaknesses, opportunities, and threats) to provide a critical and structured overview of the project's 

technical execution. 
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  • Access to well-equipped imaging and cell culture 

facilities. 

• Established, reliable immunofluorescence protocols. 

• Support from experienced researchers. 

• Use of well-documented, open-source tools. 

• Promotes reproducibility and collaborative 
development. 

• Modular and efficient pipeline structure. 

• Moderate computational requirements allow rapid 
iteration and testing. 
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  • Manual cropping introduces subjectivity and slows 
analysis. 

• Segmentation requires manual annotation and 
validation. 

• Simplified biological model reduces physiological 
relevance. 

• Small number of cells and donors limits variability. 

• Manual imaging introduces inconsistency in focus, 
exposure, and field selection. 

• Lack of automated imaging systems restricts 
throughput and standardization. 
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  • Pipeline adaptable to other cell types with minimal 

changes. 

• Potential for automation using deep learning 
segmentation tools (such as Cellpose or StarDist). 

• Integration of automated acquisition could increase 
dataset size and standardization. 

• Could evolve into a biological age predictor (imaging-
based aging clock). 

• Open-source framework supports future 
collaborations and extensions. 
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  • Rapid development in bioimage analysis tools may 

render the pipeline outdated. 
• Limited translational applicability due to species 

differences (mouse vs. human). 
• Results from in vitro models may not generalize to 

realistic biological environments. 
• Future clinical use would require addressing ethical 

and regulatory barriers. 

 

  

Figure 20 · SWOT diagram of the developed pipeline. 
Summary of the project’s internal strengths and weaknesses, as well as external opportunities and threats. The analysis considers technical, 

biological, and translational aspects relevant to the pipeline's development, applicability, and long-term impact. 

 

6.1 Strengths: Core capabilities 

The project is carried out within a well-equipped research unit that provides access to cell culture 

and fluorescence imaging systems. Established immunofluorescence protocols and support from 

experienced researchers help ensure consistency and reliability in the experimental procedures, 

providing a strong technical foundation for the study. 
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Another key strength is the use of open-source software tools such as ImageJ, Ilastik, CellProfiler, 

R, and Python. These platforms are well-documented and widely adopted in the scientific 

community, promoting reproducibility, enabling future adaptations, and facilitating collaboration. 

Their use also aligns with the principles of open science. 

Importantly, the entire pipeline runs with modest computational requirements. Image processing, 

feature extraction, and model training can be performed efficiently on standard computers, enabling 

rapid iteration and short processing times. This supports high productivity without the need for 

specialized hardware, allowing for flexible testing and refinement within limited timeframes. 

6.2 Weaknesses: Current limitations 

Despite the pipeline’s successful implementation, several limitations affect its scalability and 

generalizability. A key constraint is the manual cropping of individual cells, which introduces 

subjectivity and slows down analysis. While segmentation is partially automated using Ilastik and 

CellProfiler, it still relies on manual annotation and validation, reducing reproducibility and 

complicating large-scale application. Increasing automation is essential for broader deployment, 

and possible solutions are discussed in the concept engineering section. 

Biologically, the experimental model is simplified. Fibroblasts are cultured on rigid glass substrates, 

which facilitate imaging but do not replicate the mechanical complexity of native tissue, potentially 

influencing cellular behavior and limiting physiological relevance. 

Although classification models perform well across training, test, and validation sets, the dataset 

remains limited. The number of usable cells is constrained by the availability of biological material, 

and the small number of donor animals restricts variability, which may impact performance on more 

diverse samples. 

Manual imaging also introduces variability in focus, exposure, and field selection, affecting 

consistency. Post-acquisition strategies have been applied to mitigate these effects; however, the 

absence of automated imaging systems remains a significant limitation. Such systems could 

enhance standardization and throughput but were not accessible within the scope of this project. 

6.3 Opportunities: Future potential 

Despite current limitations, the project offers clear opportunities for both technical and scientific 

advancement. The pipeline’s modular design supports adaptation to other cell types with minimal 

modifications, while its single-cell resolution enables detection of cellular heterogeneity often 

missed by bulk analysis. 

Automation is a key area for improvement. Integrating deep learning-based segmentation tools 

such as Cellpose86 or StarDist87 could enhance accuracy and reduce manual input. Likewise, 

automated image acquisition would improve standardization and substantially increase dataset 

size. 

The approach also holds translational potential. Although currently applied to binary age 

classification, the pipeline could be extended to estimate biological age quantitatively, contributing 

to the development of imaging-based aging clocks. Its open-source framework further facilitates 

collaboration and integration into broader biomedical research. 
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6.4 Threats: External challenges 

Several external threats may limit the long-term feasibility or impact of the pipeline. The field of AI-

driven bioimage analysis is evolving rapidly, and newer tools could soon surpass current methods 

in performance and usability. If the pipeline is not updated accordingly, it risks becoming obsolete. 

Additionally, there are significant challenges in translating results obtained from murine models to 

human biology. Differences in gene regulation, cellular behavior, and aging mechanisms introduce 

uncertainty when applying the same methodology to clinical samples. Furthermore, results 

generated in simplified in vitro conditions may not be reproducible in more complex, physiologically 

realistic settings. 

Finally, expansion into human applications would bring about ethical and regulatory considerations, 

particularly regarding tissue acquisition, patient data management, and diagnostic claims. These 

external factors must be anticipated in future developments of the pipeline. 

7 IMPLEMENTATION SCHEDULE 

This section presents the project timeline, structured around key phases and milestones. It includes 

a Work Breakdown Structure (WBS) to organize tasks, a precedence analysis to define task 

dependencies, and scheduling tools such as PERT and Gantt charts to support planning and 

coordination. 

7.1 PHASES AND MILESTONES 

PHASES AND MILESTONES 

ID PHASE DESCRIPTION MILESTONE 

1 Project Setup and Planning 
Establish the project’s foundation through a focused literature 
review, definition of objectives, and development of the 
execution plan and timeline. 

Project framework and timeline 
defined. 

2 
Sample Preparation and 
Labeling 

Isolate and culture fibroblasts from young and old mice; perform 
immunofluorescence staining to label cytoskeletal structures. 

Labeled cell samples from both age 
groups ready for imaging. 

3 Fluorescence Imaging 
Capture multichannel fluorescence images under standardized 
conditions using epifluorescence microscopy. 

Complete and validated image 
dataset acquired. 

4 
Image Preprocessing and 
Segmentation 

Develop and apply a reproducible workflow for cleaning, 
cropping, and segmenting images at the single-cell level. 

Segmented single-cell image dataset 
finalized. 

5 Feature Extraction 
Extract quantitative features from segmented images, including 
morphology, intensity, and texture. 

Structured feature matrix generated 

6 Statistical Analysis 
Perform exploratory data analysis and dimensionality reduction 
to identify relevant patterns and assess data structure. 

Reduced feature set and initial 
insights obtained 

7 
Model Development and 
Validation 

Train, test, and validate a machine learning model to classify 
fibroblasts by age based on extracted features. 

Model trained and validated with 
performance metrics reported 

8 Feature Interpretation 
Interpret the most relevant features driving classification results 
concerning biological aging processes. 

Biologically meaningful conclusions 
documented 

9 Final Reporting 
Compile, write, and edit the full final degree report, integrating 
all results and interpretations. 

Complete, reviewed, and formatted 
final report submitted. 

 

Table 8 · Project phases and corresponding milestones. 
Overview of the main phases of the project, each with a brief description and associated milestone, outlining the logical progression from initial 

planning to final reporting. 
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The project is divided into distinct phases, each with clearly defined objectives and milestones. This 

structured approach (illustrated in Table 8) ensures systematic progress, with each phase building 

logically on the results of the previous one. From initial background research and planning to 

sample preparation, data acquisition, analysis, and final reporting, the sequence provides a 

comprehensive roadmap for execution. Milestones act as verification points to track progress and 

confirm that the project remains on schedule and aligned with its goals.  

7.2 WBS 

Following the definition of the project’s phases and milestones, this section details the Work 

Breakdown Structure (WBS) (Table 17) and its corresponding dictionary (ANNEX: WBS 

DICTIONARY). The WBS translates the broader project phases into a structured hierarchy of tasks, 

grouped into five main categories: project coordination, experimental setup, data collection, feature 

extraction, and data analysis. This structure mirrors the project's timeline and functional 

organization. 

The WBS Dictionary complements this structure by providing concise definitions for each task. It 

serves as a practical reference to ensure clarity in execution, support time management, and 

enable consistent tracking of progress throughout the project.  

 

Figure 21 · Work breakdown structure (WBS) 
Hierarchical decomposition of the project into manageable working packages. 

 

7.3 PRECEDENCE ANALYSIS AND CRITICAL PATH DIAGRAM (PERT-CPM) 

To determine the logical order of task execution, a precedence analysis is conducted (Table 9). 

This identifies dependencies between activities, ensuring that the sequence aligns with 

methodological requirements and resource availability. The project is planned over a total duration 

of 133 days. 
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Building on this analysis, a Program Evaluation and Review Technique (PERT) diagram is 

developed to map the project’s task network. The PERT diagram helps identify parallelizable tasks, 

estimate realistic timelines, and determine the critical path, that is, the sequence of tasks that 

directly affects the project’s total duration.  

PRECEDENCE ANALYSIS 

ID TASK PRECEDENT TASKS DAYS 

A 1.1 | PROJECT BACKGROUND AND FRAMING            20 

B 1.2 | PROJECT PLANNING            5 

C 1.3 | EXPERIMENTAL WORK LOGGING            47 

D 1.4 | FINAL REPORT WRITING A C         86 

E 2.1.1 | FIBROBLAST ISOLATION AND CULTURE: YOUNG DONORS       15 

F 2.1.2 | FIBROBLAST ISOLATION AND CULTURE: YOUNG DONORS            15 

G 2.2 | LABORATORY TRAINING            7 

H 2.3 | MATERIALS AND METHODOLOGY PLANNING          1 

I 3.1.1 | IMMUNOFLUORESCENCE ASSAY: YOUNG DONORS B E G H     2 

J 3.1.2 | IMMUNOFLUORESCENCE ASSAY: OLD DONORS F G H I     2 

K 3.2.1 | IMAGE ACQUISITION: YOUNG DONORS I         28 

L 3.2.2 | IMAGE ACQUISITION: OLD DONORS J         28 

M 4.1.1 | IMAGE PREPROCESSING AND SEGMENTATION: PROTOCOL DEFINITION K L        10 

N 4.1.2 | IMAGE PREPROCESSING AND SEGMENTATION: PROTOCOL EXECUTION M         20 

O 4.2.1 | IMAGE FEATURE EXTRACTION: PROTOCOL DEVELOPMENT N          6 

P 4.2.2 | IMAGE FEATURE EXTRACTION: PROTOCOL EXECUTION O          1 

Q 5.1 | DIMENSIONALITY REDUCTION AND STATISTICAL ANALYSIS P           20 

R 5.2 | MACHINE LEARNING PIPELINE IMPLEMENTATION Q      15 

S 5.3 | RESULTS INTERPRETATION R      14 
 

Table 9 · Precedence analysis. 
Summary of the main project tasks, their order of execution, and estimated durations. It shows how activities depend on one another to guide 

efficient project scheduling. 

 

7.4 GANTT DIAGRAM 

The tasks defined in the precedence analysis are also visualized in a Gantt chart, which offers a 

clear, time-based representation of the project workflow. This chart outlines the planned start and 

end dates for each task and highlights overlaps where activities run in parallel. It distinguishes 

between flexible tasks, which allow for scheduling delays, and critical tasks, whose timing directly 

affects the overall project timeline. By visualizing dependencies and concurrent processes, the 

Gantt chart serves as an essential tool for monitoring progress and maintaining adherence to the 

project schedule. 
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Figure 22 · Project Evaluation and Review Technique (PERT). 
Project Evaluation and Review Technique (PERT) chart showing the sequence, dependencies, and estimated duration of tasks across the project 

timeline. It visualizes the critical path and supports planning and coordination. 

 

 

 

Figure 23 · Gantt diagram. 
Time-based representation of the project schedule, displaying the start and end dates of each task, their duration, and overlaps. It highlights task 

dependencies and helps monitor progress throughout the project. 
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8 ECONOMIC VIABILITY 

This section assesses the project’s economic feasibility by identifying required resources, linking 

them to specific project phases, and estimating their costs. Table 10 provides an overview of the 

projected expenses, including materials and infrastructure needed for the project’s implementation. 

Quantity Material Description Cost Total 

Fibroblasts isolation and culture 

Murine models (from The Jackson Laboratory) 

3 C57BL/6J Young Male Mice (5 weeks) Animal model for isolating young fibroblasts 
41,39 €  

per mouse 
124,17 € 

3 C57BL/6J Young Female Mice (5 weeks) Animal model for isolating young fibroblasts 
42,33 €  

per mouse 
126,99 € 

3 C57BL/6J Aged Male Mice (74 weeks) Animal model for isolating old fibroblasts 
516,51 €  

per mouse 
1549,53 € 

3 C57BL/6J Aged Female Mice (74 weeks) Animal model for isolating old fibroblasts 
516,51 €  

per mouse 
1549,53 € 

Fibroblasts culture and seeding 

1 
GibcoTM High glucose Dulbecco’s Modified Eagle’s 
Medium (DMEM) 

Cell culture medium used to grow fibroblasts 
30,46 € 

per 500 mL 
30.46 € 

1 GibcoTM Fetal Bovine Serum (FBS) Nutrient-rich supplement for cell culture medium 
449 € 

per 500 mL 
449 € 

1 
Sigma-Aldrich Penicillin-Streptomycin (P/S) 
(10mg/mL) 

Antibiotic mix to prevent bacterial contamination 
22,10 € per 50 

mL 
22.10 € 

1 GibcoTM Trypsin-EDTA (0.25%), phenol red Used to detach adherent cells from the flask 
21,47 € per 100 

mL 
21.47 € 

1 Trypan Blue (0.4%) solution Dye used to assess cell viability during counting 
20,90 € per 20 

mL 
20.90 € 

45 h Cell culture facility (laminar hood and incubator)  
2.68 € / hour 
(price for UB 

users)  
120.60 € 

360 h Cell maintenance  
0.59 € / hour 
(price for UB 

users)  
214.40 €  

Immunofluorescence assay 

1 Sigma-Aldrich Triton™ X-100 solution Detergent used for permeabilizing cell membranes 
101,00 € per 100 

mL 
101 € 

1 
Abcam Recombinant anti-alpha smooth muscle 
Actin (acetyl E3) + ACTG2 (acetyl E3) antibody 
[E184] (ab32575) 

Detects α-smooth muscle actin 
715,00 € per 100 

µL  
715 € 

1 
Abcam Monoclonal Anti-Vimentin antibody [VI-10] 
(ab20346) 

Detects vimentin 
380,00 € per 100 

µg  
380 € 

1 
Abcam Goat Anti-Rabbit IgG H&L (Alexa Fluor® 
488) preadsorbed (ab150081) 

Fluorescent antibody binding to primary α-SMA 
175,00 € per 500 

µg  
175 € 

1 
Abcam Goat Anti-Mouse IgG H&L (Alexa Fluor® 
488) (ab150113) 

Fluorescent antibody binding to primary vimentin 
170,00 € per 500 

µg 
170 € 

1 Phalloidin-iFluor 555 Reagent (ab176756)  Fluorescent dye binding to F-actin 
250,00 € per 300 

tests 
250 € 

1 
NucBlue™ Live ReadyProbes™ Reagent (6 vials 
of 2.5 mL each) 

Fluorescent nuclear stain (DAPI) 186 € per 6 vials 186 € 

1 Clear nail polish  Used to seal mounted coverslips 1,69 € per unit 1,69 € 

1 
Invitrogen by ThermoFisher Scientific 
Fluoromount-G™ Mounting Medium  

Mounting medium preserving the fluorescent 
signal 

93,25 € per 25 
mL 

93,25 € 
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1 
Sigma-Aldrich Phosphate-Buffered Saline (PBS), 
tablet, pH 7.2 – 7.6 (1 tablet / 200 mL) 

Washing buffer for immunostaining and cell 
maintenance 

118,00 €  
per 50 tablets  

118.€ 

1 
ThermoFisher Scientific paraformaldehyde (PFA) 
4% in PBS 

Fixative used to preserve cell structure 
81,90 € per 250 

mL 
81.90 € 

1 Bovine Serum Albumin (BSA) 
Protein used in the blocking buffer to reduce 
nonspecific binding 

418,00 € per 5 g 418 € 

 
Consumables: Serological pipettes (2 mL, 5 mL, 10 mL, 50 mL), Serological pipette tips (100-1000 µL, 5-200 µL, 0.1-10 µL), 40 mm petri dishes, 
13 mm microscope circular glass coverslips, Glass microscope slides, ground edges, frosted end, 75x25 mm, T75 and T25 cell culture flasks with 
filter, Nitrile gloves, Centrifuge tubes (15 mL, 50 mL), Eppendorf (1.5 mL and 2mL), Kimwipes, lens paper. 

Image acquisition 

50 h 

Epifluorescence Microscope (for capturing the 
immunofluorescence images), accounting for the 
microscope itself and the oil immersion objective: 
Nikon CFI Plan Fluor 20× oil immersion objective 

Use and capture of images in the epifluorescent 
microscope 

7,5 € / hour 375 € 

1 
Leica™ Microsystems Immersion Oil for 
microscopes 

Enhances resolution in microscopy with oil 
objectives 

130,00 € per 10 
mL 

130 € 

 µManager software Control and automation of microscope hardware Open source 0 € 

Feature extraction and data analysis 

 MATLAB software For data analysis 
License price 7€ 

(students) 
7 € 

 Ilastik and CellProfiler For cell segmentation Open source 0 € 

 
RStudio (R environment) and Visual Studio Code 
(Python environment) 

For data analysis Open source 0 € 

   TOTAL 7431 € 
 

Table 10 · Project cost overview. 
Detailed breakdown of materials, reagents, equipment usage, and software tools required for fibroblast isolation, immunofluorescence staining, 

imaging, and data analysis 

 

The project benefits from access to institutional infrastructure, including imaging and cell culture 

facilities. Therefore, the prices presented are usage-based estimates calculated based on CCiTUB 

and IIBB service tariffs88,89. Key reagents are included in the cost breakdown due to their significant 

and direct impact on the experimental outcomes. At the same time, standard consumables are 

listed but excluded from the total cost calculation because they are commonly available in 

laboratory settings and represent minor, recurring expenses.  

Based on the retributive tables of the University of Barcelona’s transparency portal90 and in 

accordance with the minimum amounts established by the EPIF, the base monthly salary for a first-

year research assistant is €1,515.04. Given the project’s defined timeframe of 133 days 

(approximately 4.5 months), the personnel costs are estimated accordingly at €6,817.68. 

Although the murine models are not obtained exclusively for this project, their estimated costs are 

included to reflect their contribution within the context of a broader research effort. These models 

account for a significant portion of the total costs due to the need for both young and aged animals 

of both sexes. This cost difference is attributed to the fact that aged mice must be maintained for 

much more extended periods, with young mice being 1 to 2 months old and aged mice being 18 to 

20 months old. 
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9 REGULATIONS AND LEGAL ASPECTS 

The ethical use of animals in scientific research is guided by the principles of the 3Rs: Replacement, 

Reduction, and Refinement. These principles ensure that animal use is justified, scientifically 

necessary, and carried out with the highest standards of care and responsibility. 

Replacement refers to methods that avoid or substitute the use of animals, including computer 

models or the use of less sentient organisms. In this project, replacement is not feasible due to the 

complexity of the biological question and the nature of aging itself, which involves intricate, systemic 

processes that cannot be accurately replicated using alternative models. 

Reduction involves strategies to minimize the number of animals used while ensuring the validity 

of scientific outcomes. This project contributes to the reduction by integrating into an existing, 

previously approved research framework. The animals are not acquired exclusively for this study 

but are used across multiple experiments, maximizing the data obtained from each individual. 

Although this project does not specifically analyze sex differences, it includes both male and female 

samples to maximize the use of available biological material. 

Refinement aims to enhance animal welfare by minimizing pain, stress, and discomfort through 

improved care practices and optimized experimental procedures. All activities follow standardized 

protocols and incorporate appropriate anesthesia and euthanasia methods to ensure the animals' 

well-being during their time in the study. 

The entire research framework, including this project, complies with all ethical and legal 

requirements established by the University of Barcelona. The Bioethics Committee of the University 

of Barcelona (CBUB) is responsible for evaluating research activities that require ethical oversight 

and for promoting bioethics education among researchers. Given the use of murine models, this 

study is subject to the supervision of the Animal Experimentation Ethics Committee of the University 

of Barcelona (CEEA-UB), which ensures that all procedures comply with legal standards and 

uphold animal welfare. 

10 CONCLUSIONS AND FUTURE LINES 

This project establishes a complete experimental and computational pipeline for analyzing cellular 

aging through interpretable, image-based features. From the immunostaining of primary fibroblasts 

to imaging, quantification, and machine learning-based classification, the workflow demonstrates 

that morphological and cytoskeletal descriptors capture meaningful age-associated differences at 

the single-cell level. 

The experimental phase generates high-quality, reproducible image data from young and aged 

donors under controlled conditions. Combined with feature extraction and statistical filtering, this 

dataset provides a strong foundation for building predictive models. The machine learning 

framework achieves high classification performance while also enabling the identification and 

ranking of biologically plausible aging descriptors, particularly those related to nuclear morphology 

and cytoskeletal organization. 

Many of the features retained by the models align with known or hypothesized structural and 

functional changes associated with aging, supporting their potential for guiding biomarker 

discovery. This pipeline also opens several avenues for future work. Its modular and adaptable 
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structure makes it suitable for other cellular systems or experimental conditions, and it provides a 

foundation for applied applications such as high-content screening, detection of senescent 

subpopulations, and the development of image-based aging clocks.  

Although the current dataset provides solid proof of concept, it remains limited in size, particularly 

in terms of donor diversity. Expanding the number of biological replicates will be essential to confirm 

the generalizability of the findings and account for inter-individual variability.  

Future work should also focus on increasing the scale of both the experimental and computational 

components through automation. This would reduce manual variability, improve reproducibility, and 

allow the workflow to be applied in high-throughput contexts. With a larger and more representative 

dataset, the model can evolve from binary classification toward continuous or multi-class 

predictions, thereby better capturing the gradual or intermediate stages of cellular aging. 

This approach lays the foundation for several applied directions, including high-content screening 

of interventions that affect aging, identification of senescent subpopulations, and the development 

of imaging-based aging clocks that estimate biological age from cellular features. These extensions 

would enhance both fundamental research and potential translational applications in the fields of 

aging and regenerative medicine. 
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12 ANNEXES 

The following annexes provide supplementary materials that support and expand upon the main 

content of the report, including technical details, and extended data. 

12.1 ANNEX: GITHUB REPOSITORY 

All the code and data used in the project are available in the following public repository: 

https://github.com/lacxy05/AI-based-aging-diagnostic-algorithm.git. It includes: 

• Data files generated during the feature extraction and statistical filtering steps 

• The image segmentation pipeline implemented in CellProfiler 

• ImageJ macros for single-cell cropping and discarding low-quality images 

• Python notebooks for feature extraction and machine learning. 

• R scripts for statistical filtering based on ANOVA and correlation analysis 

12.2 ANNEX: PIPELINE CELLPROFILER 

PIPELINE CELLPROFILER 

PREPROCESSING OF INPUT PROBABILITY MAPS 

ColorToGray (phalloidin, 
αSMA/vimentin, DAPI) 

Converts RGB probability maps into grayscale images for each fluorescence channel. 

RemoveHoles (phalloidin, 
αSMA/vimentin, DAPI) 

Fills small holes to produce continuous structures in the probability maps. 

MedianFilter (DAPI) Reduces high-frequency noise while preserving key features. 

Morph (fill) (phalloidin, αSMA/vimentin) Applies morphological operations to fill gaps within cellular structures. 

EnhanceOrSuppressFeatures 
(phalloidin, αSMA/vimentin) 

Emphasizes linear and edge-like features to define cytoskeletal organization better. 

MedianFilter (phalloidin, αSMA/vimentin) Further reduces noise and smooths structures. 

OBJECT IDENTIFICATION: NUCLEUS 

IdentifyPrimaryObjects Detects nuclei using adaptive Sauvola thresholding. 

Option A: FilterObjects 
Automatically retains the most prominent nucleus if multiple nuclei are detected and generates a 
binary mask. 

Option B: EditObjectsManually Allows manual selection of the correct nucleus when automatic filtering is not sufficient. 

OBJECT IDENTIFICATION: CELL 

IdentifySecondaryObjects 
(phalloidin, αSMA/vimentin) 

Expands from the nucleus to segment the entire cell using watershed and adaptive thresholding 
(Sauvola). 

CombineObjects 
Merges the two masks obtained from phalloidin and αSMA/vimentin channels into a single cell 
mask. 

ConvertObjectToImage Converts segmented objects into a binary image format. 

Morph (fill) Applies final morphological operations to smooth and complete object outlines. 

RemoveHoles Eliminates residual internal holes to finalize segmentation. 

ConvertImageToObject Converts the cleaned binary mask image back into object format for downstream analysis. 
 

Table 11 · Overview of the CellProfiler segmentation pipeline. 
Summary of the modules used in the custom CellProfiler workflow for object identification. The pipeline processes Ilastik-generated probability maps 

to output binary masks for both the nucleus and the entire cell. 

https://github.com/lacxy05/AI-based-aging-diagnostic-algorithm.git
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12.3 ANNEX: EXTRACTED FEATURES 
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FEATURES DESCRIPTION 

  MORPHOLOGICAL FEATURES 

  SIZE AND AREA DESCRIPTORS 

• • AREA Total pixel count within the segmented region. 

• • CONVEX AREA Area of the convex hull that encloses the object. 

• • EQUIVALENT DIAMETER Diameter of a circle with the same area as the object. 

• • FERET DIAMETER (MAXIMUM) 
Maximum caliper diameter, i.e., the most significant distance between any two 
points along the boundary. 

• • BOUNDING BOX WIDTH Width of the smallest rectangle enclosing the región. 

• • BOUNDING BOX HEIGHT Height of the smallest rectangle enclosing the region 

  SHAPE AND GEOMETRY 

• • PERIMETER Total length of the outer boundary. 

• • ECCENTRICITY Elongation ratio: distance between ellipse foci / major axis. 

• • SOLIDITY 
Ratio of area to the convex hull area. Values near 1 indicate a solid shape with few 
indentations. 

• • EXTENT Ratio of object area to the bounding box area. 

•  ASPECT RATIO Ratio of the major to minor axis length of the fitted ellipse. 

  CIRCULARITY AND STRUCTURAL COMPACTNESS 

• • CIRCULARITY 
4π·𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
. Reflects roundness. Values near 1 indicate a perfect circle. 

•  CONVEXITY Estimated as perimeter² / area. Larger values reflect irregular contours. 

  CELL-NUCLEUS SPATIAL RELATIONS 

• CENTROID DISTANCE Euclidean distance between the centroids of the cell and its nucleus. 

• NORMALIZED CENTROID DISTANCE Centroid distance normalized by the cell’s major axis length. 

• NUCLEUS TO CELL AREA RATIO Ratio of nuclear area to total cell area. 

  ORIENTATION 

• • ORIENTATION Angle between the major axis of the ellipse and the horizontal axis. 

  SHAPE INVARIANCE AND COMPLEXITY 

• • FRACTAL DIMENSION Estimated using a box-counting method, which describes shape complexity. 

• • HU-MOMENTS (1-7)  Scale- and rotation-invariant descriptors of shape. 

 • ZERNIKE MOMENTS (DEGREE 12) 
Advanced invariant shape descriptors, capturing symmetry at multiple spatial 
frequencies. 

 

Table 12 · Morphological features extracted from segmented cells and nucle obectsi. 
Summarizes the quantitative descriptors used to characterize cell and nuclear geometry. 
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 FEATURES DESCRIPTION 

   INTENSITY FEATURES 

   BASIC STATISTICAL MEASURES 

• • • MEAN Average pixel intensity inside the mask. 

• • • MEDIAN 
The middle value of the intensity distribution (less sensitive to outliers than the 
mean) 

• • • STANDARD DEVIATION Dispersion of intensity values around the mean. 

• • • MINIMUM  The lowest intensity value observed within the mask. 

• • • MAXIMUM The highest intensity value observed within the mask. 

   DISTRIBUTION SHAPE DESCRIPTORS 

• • • SKEWNESS Degree of asymmetry in the distribution. Positive skew indicates a long right tail. 

• • • KURTOSIS Measure of peakness or flatness of the intensity distribution. 

• • • COEFFICIENT OF VARIATION (COV) 
Ratio of the standard deviation to the mean intensity, providing a normalized 
measure of dispersion. 

   QUANTILES AND ROBUST STATISTICS 

• • • 5TH PERCENTILE Value below which 5% of pixel intensities fall. 

• • • 95TH PERCENTILE Value above which 5% of intensities fall. 

• • • INTERQUARTILE RANGE (IQR) Difference between the 75th and 25th percentiles. 

• • • 
MEDIAN ABSOLUTE DEVIATION 

(MAD) 
Median of the absolute deviations from the median (alternative to the standard 
deviation). 

   SIGNAL STRENGTH AND CONTRAST 

• • • INTEGRATED INTENSITY Sum of all pixel values inside the mask.  

• • • ENERGY Sum of squared intensities, reflecting overall signal power. 

• • • MODE Most frequently occurring pixel intensity bin. 

   ENTROPY AND UNIFORMITY 

• • • ENTROPY Shannon entropy of the normalized intensity histogram, indicating randomness. 

• • • UNIFORMITY 
Sum of squared probabilities across histogram bins. High uniformity suggests 
homogeneous intensities. 

   NUCLEAR-SPECIFIC METRICS 

•   NUCLEAR DENSITY 
Integrated intensity divided by the estimated nuclear volume (assuming a spherical 
nucleus). 

   RADIAL INTENSITY PROFILES 

• • • 
RADIAL MEAN (AT 25%, 50%, 75%, 

100%) 
Mean intensity within each region defined by a fractional radius of the maximum. 

• • • 
STANDARD DEVIATION (AT 25%, 

50%, 75%, 100%) 
Stf deviation within each region defined by a fractional radius of the maximum. 

 

Table 13 · Intensity features extracted from DAPI, phalloidin, and α-SMA channels. 
Details the statistical, distributional, and spatial descriptors used to quantify fluorescence signal intensity within segmented regions. 

 

 



AI-BASED DIAGNOSTIC ALGORITHM FOR CELLULAR AGING:  
USING SINGLE-CELL FLUORESCENCE IMAGING OF THE CYTOSKELETON 

Page 69 of 85 

D
A

P
I 

P
H

A
L

L
O

ID
IN

 

α
S

M
A

 FEATURES DESCRIPTION 

   TEXTURE FEATURES 

   

GRAY-LEVEL CO-OCCURRENCE MATRIX (GLCM) 

GLCMs measure how often pairs of pixel values occur at a given distance and angle.  

Texture statistics are computed over six distances (1, 2, 3, 5, 7, 9 pixels) and four angles (0°, 45°, 90°, 135°), 

• • • CONTRAST 
Measures local intensity variation. High values indicate strong edges or rough 
textures. 

• • • DISSIMILARITY 
Linear intensity difference between neighbors. Highlights the overall difference 
between neighboring pixel values. 

• • • HOMOGENEITY Measures local uniformity. Higher values indicate smoother textures. 

• • • ENERGY 
Square root of the sum of squared elements. Also known as Angular Second 
Moment, this value is high for uniform textures. 

• • • CORRELATION Measures the linear dependency of gray levels in neighboring pixels. 

• • • ENTROPY 
Shannon entropy of GLCM distribution. Measures the randomness of the texture. 
High values imply complex or disordered patterns. 

   
HARALICK FEATURES 

A comprehensive set of statistical descriptors derived from GLCMs is computed across multiple distances. 

• • • 
HARALICK DESCRIPTORS (1-13, D=1-

9) 

Thirteen standard Haralick descriptors (e.g., contrast, entropy, correlation, variance) 
are calculated and averaged over angles. 

These features provide a compact summary of complex textures such as filament 
bundling or chromatin granularity. 

   

LOCAL BINARY PATTERNS (LPB) 

LBPs encode local texture by comparing each pixel to its neighbors. The LBP histogram describes micro-texture patterns. 
These are calculated for two configurations: P=8,R=1 (fine-grain detail) and P=16,R=2 (Broader texture structures) 

• • • MODE The most frequent local binary pattern. Indicates the dominant structural motif. 

• • • VARIANCE Variability of the LBP histogram. Reflects the diversity of local textures. 

• • • ENTROPY Shannon entropy of the LBP distribution. Captures disorder or irregularity.  

• • • ENERGY Sum of squared LBP histogram values. Higher for more uniform patterns. 
 

Table 14 · Texture features extracted from DAPI, phalloidin, and α-SMA channels. 
Summarizes the metrics used to quantify spatial intensity patterns and structural complexity. 
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 FEATURES DESCRIPTION 

  ORIENTATION FEATURES 

  RADIAL SYMMETRY 

• • RADIAL SLOPE 
Slope of log-log plot of intensity vs. radial distance; reflects intensity decay from 
center. 

• • RADIAL VARIABILITY Std deviation of radial intensity distribution normalized by peak. 

  NUCLEUS–FIBER ALIGNMENT 

• • NUCLEAR VS. FIBER ALIGNMENT 
Cosine of the angular difference between the nucleus orientation and the mean 
fiber orientation. Values near 1 indicate parallel alignment. 

  CIRCULAR ORIENTATION STATISTICS 

• • CIRCULAR MEAN Average orientation angle, using circular statistics. 

• • CIRCULAR VARIANCE Dispersion of fiber orientations (0 = aligned, 1 = disordered). 

• • ORIENTATION RANGE Angular spread between dominant fiber directions. 

• • ORIENTATION FWHM Full width at half-maximum of orientation histogram. 

  ANISOTROPY / COHERENCE 

• • COHERENCE MEAN  Average orientation coherence from image gradients. 

• • COHERENCE STD DEV Standard deviation of coherence values. 

  FRANGI  

• • FRANGI MEAN  Average response of Frangi filter (fiber detection). 

• • FRANGI STD DEV Standard deviation of Frangi response. 

  SKELETON NETWORK METRICS 

• • SKELETON LENGTH Total number of skeleton pixels (estimated fiber network length). 

• • BRANCH POINTS Number of junctions in the skeleton where more than two fibers meet. 

• • NETWORK DENSITY Ratio of branch points to total skeleton length. 
 

Table 15 · Orientation features extracted from phalloidin and α-SMA channels. 
Describes metrics that quantify cytoskeletal fiber alignment, anisotropy, and spatial organization. 
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12.4 ANNEX: BEST MODELS 

MODEL PARAMETERS BEST 

DECISION TREE 

CRITERION ENTROPY 

MAX_DEPTH 4 

MAX_FEATURES LOG2 

MIN_SAMPLES_LEAF 4 

MIN_SAMPLES_SPLIT 10 

KNN 

N_NEIGHBORS 21 

P 1 

WEIGHTS DISTANCE 

RANDOM FOREST 

CRITERION ENTROPY 

MAX_DEPTH 7 

MAX_FEATURES SQRT 

MIN_SAMPLES_LEAF 3 

MIN_SAMPLES_SPLIT 2 

N_ESTIMATORS 200 

SVM 

C 100.0 

GAMMA 0.05577039432971853 

KERNEL LINEAR 

LOGISTIC REGRESSION 
C 5.34024913271107 

PENALTY L1 
 

Table 16 · Optimal hyperparameters for the final classification models. 
Summary of the best-performing parameter configurations selected for each classifier. 
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12.5 ANNEX: MODEL COMPARISON 

DECISION TREE: Young vs. Old 

  

Classification Report — (TRAIN) 
              precision    recall  f1-score   support 
 
       Young       0.92      0.96      0.94       382 
         Old       0.95      0.92      0.93       382 
 
    accuracy                           0.94       764 
   macro avg       0.94      0.94      0.94       764 

weighted avg       0.94      0.94      0.94       764 

  

Classification Report — (TEST) 
              precision    recall  f1-score   support 
 
       Young       0.87      0.94      0.90        96 
         Old       0.93      0.86      0.90        96 
 
    accuracy                           0.90       192 
   macro avg       0.90      0.90      0.90       192 
weighted avg       0.90      0.90      0.90       192 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
       Young       0.99      0.91      0.95       117 
         Old       0.91      0.99      0.95       117 
 
    accuracy                           0.95       234 
   macro avg       0.95      0.95      0.95       234 
weighted avg       0.95      0.95      0.95       234 

 

 

Figure 24 · Decision Tree model performance (Aged vs. Young classification). 
Confusion matrices, ROC curves, and classification reports for the DT model trained with Bayesian-optimized hyperparameters. Results are 

shown for the training, test, and hold-out sets. 
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K-NN: Young vs. Old 

  

Classification Report — (TRAIN) 
              precision    recall  f1-score   support 
 
       Young       1.00      1.00      1.00       382 
         Old       1.00      1.00      1.00       382 
 
    accuracy                           1.00       764 
   macro avg       1.00      1.00      1.00       764 

weighted avg       1.00      1.00      1.00       764 

  

Classification Report — (TEST) 
              precision    recall  f1-score   support 
 
       Young       0.79      0.97      0.87        96 
         Old       0.96      0.75      0.84        96 
 
    accuracy                           0.86       192 
   macro avg       0.88      0.86      0.86       192 
weighted avg       0.88      0.86      0.86       192 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
       Young       0.99      0.88      0.93       117 
         Old       0.89      0.99      0.94       117 
 
    accuracy                           0.94       234 
   macro avg       0.94      0.94      0.94       234 
weighted avg       0.94      0.94      0.94       234 

 

 

Figure 25 · k-Nearest Neighbors model performance (Aged vs. Young classification). 
Confusion matrices, ROC curves, and classification reports for the k-NN model trained with Bayesian-optimized hyperparameters. Results are 

shown for the training, test, and hold-out sets. 
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RANDOM FOREST: Young vs. Old 

  

Classification Report — (TRAIN) 
              precision    recall  f1-score   support 
 
       Young       0.96      0.99      0.98       382 
         Old       0.99      0.96      0.98       382 
 
    accuracy                           0.98       764 
   macro avg       0.98      0.98      0.98       764 

weighted avg       0.98      0.98      0.98       764 

  

Classification Report — (TEST) 
              precision    recall  f1-score   support 
 
       Young       0.90      0.93      0.91        96 
         Old       0.92      0.90      0.91        96 
 
    accuracy                           0.91       192 
   macro avg       0.91      0.91      0.91       192 
weighted avg       0.91      0.91      0.91       192 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
       Young       1.00      0.89      0.94       117 
         Old       0.90      1.00      0.95       117 
 
    accuracy                           0.94       234 
   macro avg       0.95      0.94      0.94       234 
weighted avg       0.95      0.94      0.94       234 

 

 

Figure 26 · Random Forest model performance (Aged vs. Young classification). 
Confusion matrices, ROC curves, and classification reports for the RF model trained with Bayesian-optimized hyperparameters. Results are 

shown for the training, test, and hold-out sets. 
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SVM: Young vs. Old 

  

Classification Report — (TRAIN) 
              precision    recall  f1-score   support 
 
       Young       0.94      0.98      0.96       382 
         Old       0.98      0.93      0.95       382 
 
    accuracy                           0.96       764 
   macro avg       0.96      0.96      0.96       764 

weighted avg       0.96      0.96      0.96       764 

  

Classification Report — (TEST) 
              precision    recall  f1-score   support 
 
       Young       0.90      0.96      0.93        96 
         Old       0.96      0.90      0.92        96 
 
    accuracy                           0.93       192 
   macro avg       0.93      0.93      0.93       192 
weighted avg       0.93      0.93      0.93       192 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
       Young       0.99      0.94      0.96       117 
         Old       0.94      0.99      0.97       117 
 
    accuracy                           0.97       234 
   macro avg       0.97      0.97      0.97       234 
weighted avg       0.97      0.97      0.97       234 

 

 

Figure 27 · Support Vector Machine model performance (Aged vs. Young classification). 
Confusion matrices, ROC curves, and classification reports for the SVM model trained with Bayesian-optimized hyperparameters. Results are 

shown for the training, test, and hold-out sets. 
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LOGISTIC REGRESSION: Young vs. Old 

  

Classification Report — (TRAIN) 
              precision    recall  f1-score   support 
 
       Young       0.93      0.98      0.96       382 
         Old       0.98      0.93      0.95       382 
 
    accuracy                           0.96       764 
   macro avg       0.96      0.96      0.96       764 

weighted avg       0.96      0.96      0.96       764 

  

Classification Report — (TEST) 
              precision    recall  f1-score   support 
 
       Young       0.90      0.93      0.91        96 
         Old       0.92      0.90      0.91        96 
 
    accuracy                           0.91       192 
   macro avg       0.91      0.91      0.91       192 
weighted avg       0.91      0.91      0.91       192 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
       Young       0.99      0.92      0.96       117 
         Old       0.93      0.99      0.96       117 
 
    accuracy                           0.96       234 
   macro avg       0.96      0.96      0.96       234 
weighted avg       0.96      0.96      0.96       234 

 

 

Figure 28 · Logistic Regression model performance (Aged vs. Young classification). 
Confusion matrices, ROC curves, and classification reports for the LR model trained with Bayesian-optimized hyperparameters. Results are 

shown for the training, test, and hold-out sets. 
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12.6 ANNEX: SEX CLASSIFICATION INABILITY 

DECISION TREE: Male vs. Female 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
        Male       0.56      0.43      0.49        46 
      Female       0.54      0.65      0.59        46 
 
    accuracy                           0.54        92 
   macro avg       0.55      0.54      0.54        92 

weighted avg       0.55      0.54      0.54        92 

 

 

Figure 29 · Decision Tree model performance (Male vs. Female classification). 
Confusion matrices, ROC curves, and classification reports for the DT model trained to distinguish male from female fibroblasts using the same 

features extracted for age classification. Results are shown for the test and hold-out sets. 
 

 

 

K-NN: Male vs. Female 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
        Male       0.37      0.30      0.33        46 
      Female       0.41      0.48      0.44        46 
 
    accuracy                           0.39        92 
   macro avg       0.39      0.39      0.39        92 

weighted avg       0.39      0.39      0.39        92 

 

 

Figure 30 · k-Nearest Neighbors model performance (Male vs. Female classification). 
Confusion matrices, ROC curves, and classification reports for the k-NN model trained to distinguish male from female fibroblasts using the 

same features extracted for age classification. Results are shown for the test and hold-out sets. 
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RANDOM FOREST: Male vs. Female 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
        Male       0.50      0.33      0.39        46 
      Female       0.50      0.67      0.57        46 
 
    accuracy                           0.50        92 
   macro avg       0.50      0.50      0.48        92 

weighted avg       0.50      0.50      0.48        92 

 

 

Figure 31 · Random Forest model performance (Male vs. Female classification). 
Confusion matrices, ROC curves, and classification reports for the RF model trained to distinguish male from female fibroblasts using the same 

features extracted for age classification. Results are shown for the test and hold-out sets. 

 

 

SVM: Male vs. Female 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
        Male       0.47      0.30      0.37        46 
      Female       0.48      0.65      0.56        46 
 
    accuracy                           0.48        92 
   macro avg       0.48      0.48      0.46        92 

weighted avg       0.48      0.48      0.46        92 

 

 

Figure 32 · Support Vector Machine model performance (Male vs. Female classification). 
Confusion matrices, ROC curves, and classification reports for the SVM model trained to distinguish male from female fibroblasts using the 

same features extracted for age classification. Results are shown for the test and hold-out sets. 
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LOGISTIC REGRESSION: Male vs. Female 

  

Classification Report — (HOLD-OUT) 
              precision    recall  f1-score   support 
 
        Male       0.43      0.43      0.43        46 
      Female       0.43      0.43      0.43        46 
 
    accuracy                           0.43        92 
   macro avg       0.43      0.43      0.43        92 

weighted avg       0.43      0.43      0.43        92 

 

 

Figure 33 · Logistic Regression model performance (Male vs. Female classification). 
Confusion matrices, ROC curves, and classification reports for the LR model trained to distinguish male from female fibroblasts using the same 

features extracted for age classification. Results are shown for the test and hold-out sets. 
 

 

 

 

 

12.7 ANNEX: BOXPLOTS 

    

    

 



AI-BASED DIAGNOSTIC ALGORITHM FOR CELLULAR AGING:  
USING SINGLE-CELL FLUORESCENCE IMAGING OF THE CYTOSKELETON 

Page 80 of 85 

    

    

    

    

 

 

 



AI-BASED DIAGNOSTIC ALGORITHM FOR CELLULAR AGING:  
USING SINGLE-CELL FLUORESCENCE IMAGING OF THE CYTOSKELETON 

Page 81 of 85 

    

  

  

 

Figure 34 · Boxplots of selected features after statistical and correlation-based filtering. 
Distribution of all variables that passed the initial statistical filtering step, including the correlation threshold criterion. Each boxplot illustrates how the selected 

features vary between young and old fibroblasts, highlighting the structural and morphological differences retained for subsequent model training and 
interpretation. 
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12.8 ANNEX: WBS DICTIONARY 

1 | PROJECT COORDINATION 

1.1 | PROJECT BACKGROUND AND FRAMING 

DESCRIPTION 
Define the scientific and methodological context of the project through a structured literature review, 
identification of knowledge gaps, and the conceptual planning of the project’s aims, approach, and structure. 

ACCEPTANCE CRITERIA 
Clear conceptual framework established and documented; curated and thematically organized reference 
collection prepared. 

DERIVABLES An annotated Mendeley reference library, a written project outline, and defined scope and objectives. 

REQUIRED RESOURCES Internet access, scientific databases, and journal access through CRAI UB. 

DURATION 20 days 

RISKS Incomplete contextualization leading to weak alignment between background and objectives. 

1.2 | PROJECT PLANNING 

DESCRIPTION 
Define the detailed execution plan of the project, including the scheduling of tasks, estimation of durations, 
identification of dependencies, and structuring of the Work Breakdown Structure (WBS), Gantt chart, and 
milestones. 

ACCEPTANCE CRITERIA Project schedule fully defined and approved. 

DERIVABLES Work Breakdown Structure (WBS), Gantt chart, PERT chart, phases, and milestones table. 

REQUIRED RESOURCES Project planning software or templates, calendar, and supervisor input. 

DURATION 5 days 

RISKS Unrealistic duration estimates, overlooked task dependencies, or planning misalignment with actual workload. 

1.3 | EXPERIMENTAL WORK LOGGING 

DESCRIPTION Maintain a daily record of lab activities and observations. 

ACCEPTANCE CRITERIA Log updated consistently with clear, dated entries, including issues or deviations from the planned protocol. 

DERIVABLES Daily lab activity log. 

REQUIRED RESOURCES Notebook. 

DURATION 47 days 

RISKS Incomplete entries, forgotten observations. 

1.4 | FINAL REPORT WRITING 

DESCRIPTION 
Write, edit, and structure the final degree project report, integrating all project phases into a cohesive 
document. 

ACCEPTANCE CRITERIA Complete, properly formatted report reviewed by supervisor and ready for submission. 

DERIVABLES Final written report. 

REQUIRED RESOURCES Computer, Microsoft Word access provided by UB, and supervisor feedback. 

DURATION 86 days 

RISKS Delays are due to overlapping tasks or limited time for revisions. 

2 | EXPERIMENTAL SETUP 

2.1 | FIBROBLAST ISOLATION AND CULTURE 

2.1.1 | YOUNG DONORS 

DESCRIPTION Isolate, culture, and seed primary fibroblasts from young mice lungs according to established lab protocols. 

ACCEPTANCE CRITERIA 
Viable cultures established and expanded; sufficient cells obtained to perform a 3000 cells/m² seeding for each 
donor. 

DERIVABLES Seeded fibroblast samples from young donors, ready for immunostaining. 
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REQUIRED RESOURCES 
Laminar flow hood, reagents (detailed in the Economic Viability Plan), young donor mice, and a licensed 
animal technician accredited to perform procedures involving live animals, in compliance with institutional and 
legal regulations. 

DURATION 15 days 

RISKS Low cell yield, culture contamination. 

2.1.2 | OLD DONORS 

DESCRIPTION Isolate, culture, and seed primary fibroblasts from old mice lungs according to established lab protocols. 

ACCEPTANCE CRITERIA 
Viable cultures established and expanded; sufficient cells obtained to perform a 3000 cells/m² seeding for each 
donor. 

DERIVABLES Seeded fibroblast samples from old donors, ready for immunostaining. 

REQUIRED RESOURCES 
Laminar flow hood, reagents (detailed in the Economic Viability Plan), old donor mice, and a licensed animal 
technician accredited to perform procedures involving live animals, in compliance with institutional and legal 
regulations. 

DURATION 15 days 

RISKS Low cell yield, culture contamination. 

2.2 | LABORATORY TRAINING 

DESCRIPTION Complete hands-on training in cell culture, immunostaining, and fluorescence microscopy protocols. 

ACCEPTANCE CRITERIA Key lab techniques are demonstrated and practiced under supervision. 

DERIVABLES Training completion confirmation. 

REQUIRED RESOURCES Supervisor, laminar flow hood, fluorescence microscope room, training materials. 

DURATION 7 days 

RISKS Limited access or limited time for practice. 

2.3 | MATERIALS AND METHODOLOGY PLANNING 

DESCRIPTION Prepare for lab work by reviewing protocols, organizing materials, and outlining experimental steps in advance. 

ACCEPTANCE CRITERIA Experimental plan and material checklist reviewed and approved by supervisor. 

DERIVABLES Materials checklist and methods plan. 

REQUIRED RESOURCES Access to lab protocols. 

DURATION 1 day 

RISKS Missed items or procedural misunderstandings due to rushed preparation. 

3 | DATA COLLECTION 

3.1 | IMMUNOFLUORESENCE ASSAY 

3.1.1 | YOUNG DONORS 

DESCRIPTION 
Stain seeded fibroblast samples from young donors using immunofluorescence to visualize cytoskeletal 
structures. 

ACCEPTANCE CRITERIA Staining is performed following established protocols. 

DERIVABLES Immunolabeled fibroblast samples (young donors). 

REQUIRED RESOURCES Reagents (detailed in the Economic Viability Plan) 

DURATION 2 days 

RISKS Cell detachment, uneven or weak staining. 

3.1.2 | OLD DONORS 

DESCRIPTION 
Stain seeded fibroblast samples from old donors using immunofluorescence to visualize cytoskeletal 
structures. 

ACCEPTANCE CRITERIA Staining is performed following established protocols. 
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DERIVABLES Immunolabeled fibroblast samples (old donors). 

REQUIRED RESOURCES Reagents (detailed in the Economic Viability Plan) 

DURATION 2 days 

RISKS Cell detachment, uneven or weak staining. 

3.2 | IMAGE ACQUISITION 

3.2.1 | YOUNG DONORS  

DESCRIPTION 
Capture high-resolution fluorescent images of immunolabeled fibroblasts from young donors using an 
epifluorescence microscope. 

ACCEPTANCE CRITERIA At least 150 valid images acquired per condition with appropriate focus, exposure, and staining visibility. 

DERIVABLES Fluorescent image dataset (young donors). 

REQUIRED RESOURCES Epifluorescence microscope, imaging software, data storage system. 

DURATION 28 days 

RISKS Low image quality, inconsistent acquisition settings, and equipment malfunction. 

3.2.2 | OLD DONORS 

DESCRIPTION 
Capture high-resolution fluorescent images of immunolabeled fibroblasts from young donors using an 
epifluorescence microscope. 

ACCEPTANCE CRITERIA At least 150 valid images acquired per condition with appropriate focus, exposure, and staining visibility. 

DERIVABLES Fluorescent image dataset (old donors). 

REQUIRED RESOURCES Epifluorescence microscope, imaging software, data storage system. 

DURATION 28 days 

RISKS Low image quality, inconsistent acquisition settings, and equipment malfunction. 

4 | FEATURE EXTRACTION 

4.1 | IMAGE PREPROCESSING AND SEGMENTATION 

4.1.1 | PROTOCOL DEFINITION 

DESCRIPTION 
Design a reproducible workflow for preprocessing and segmenting fluorescence images using open-source 
tools. 

ACCEPTANCE CRITERIA The protocol reliably produces interpretable masks across various sample conditions. 

DERIVABLES Segmentation protocol. 

REQUIRED RESOURCES Computer, open-source software (e.g., ImageJ, Ilastik, CellProfiler), and development time. 

DURATION 10 days 

RISKS Poor generalization of the protocol may require extensive tuning from image to image, reducing reproducibility. 

4.1.2 | PROTOCOL EXECUTION 

DESCRIPTION Apply the defined preprocessing and segmentation pipeline to all acquired images from both donor groups. 

ACCEPTANCE CRITERIA Complete and consistent segmentation output; masks align correctly with the original images. 

DERIVABLES Segmented image dataset. 

REQUIRED RESOURCES Computer, batch processing time. 

DURATION 20 days 

RISKS Batch failure, incomplete segmentation, and reliance on semi-automated steps. 

4.2 | IMAGE FEATURE EXTRACTION 

4.2.1 | PROTOCOL DEVELOPMENT 

DESCRIPTION Design a protocol to extract quantitative features from segmented images.  
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ACCEPTANCE CRITERIA The protocol generates structured feature tables that are compatible with downstream analysis. 

DERIVABLES Feature extraction protocol. 

REQUIRED RESOURCES Computer, coding environment, processing time. 

DURATION 6 days 

RISKS 
Using features derived from the same family may lead to irrelevant or redundant data in subsequent analysis 
steps. 

4.2.2 | PROTOCOL EXECUTION 

DESCRIPTION Apply the developed feature extraction protocol to all segmented images to generate quantitative descriptors. 

ACCEPTANCE CRITERIA Feature matrix successfully generated across all experimental conditions. 

DERIVABLES Complete feature dataset. 

REQUIRED RESOURCES Computer, feature extraction protocol, segmented image files. 

DURATION 1 day 

RISKS Missing values (NaNs) and low variability between conditions may affect analysis quality. 

5 | DATA ANALYSIS 

5.1 | DIMENSIONALITY REDUCTION AND STATISTICAL ANALYSIS 

DESCRIPTION 
Analyze extracted feature data using statistical techniques, with a primary focus on dimensionality reduction to 
improve interpretability and model performance. 

ACCEPTANCE CRITERIA Dimensionality is successfully reduced while preserving relevant variance and structure. 

DERIVABLES Reduced feature dataset, statistical plots, or summary metrics. 

REQUIRED RESOURCES Computer, R coding environment, relevant libraries. 

DURATION 20 days 

RISKS 
Over-reduction may lead to the loss of meaningful variation; the selection of inappropriate methods could 
distort the data structure. 

5.2 | MACHINE LEARNING PIPELINE IMPLEMENTATION 

DESCRIPTION 
Train, test, and validate a classification model using the extracted features to distinguish between experimental 
conditions. 

ACCEPTANCE CRITERIA The model achieves predefined performance metrics on both the test and validation sets. 

DERIVABLES Trained machine learning model; performance metrics summary. 

REQUIRED RESOURCES Computer, Python environment, scikit-learn library, computing time. 

DURATION 15 days 

RISKS Overfitting due to a small dataset can lead to inconsistent accuracy across different data splits. 

5.3 | RESULTS INTERPRETATION 

DESCRIPTION 
Review statistical outputs and model results to extract biologically meaningful insights related to fibroblast 
aging. 

ACCEPTANCE CRITERIA Interpretations are logically consistent with the data and supported by relevant literature. 

DERIVABLES Summary of key findings and biological interpretation. 

REQUIRED RESOURCES Analysis results, visualizations, and access to scientific literature provided via CRAI UB. 

DURATION 14 days 

RISKS Misidentifying experimental artifacts as biologically meaningful patterns could lead to flawed conclusions. 
 

Table 17 · Work Breakdown Structure (WBS) dictionary. 
Provides detailed descriptions of each task defined in the Work Breakdown Structure. It includes information on objectives, acceptance criteria, 

expected deliverables, required resources, estimated durations, and associated risks. 

 


