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Abstract 

Recurrence in patients with head and neck cancer presents a challenge to clinicians due to its poor 

prognosis. The availability of a single model, user-friendly, and capable of predicting recurrence 

and exitus across different types of head and neck cancer, is clinically valuable, supporting risk 

stratification and personalized decision-making.  

This study aims to develop a robust and generalizable machine learning model for predicting 

recurrence and exitus in head and neck cancer patients, with locoregional tumour involvement with 

no distant lesions suspicious of malignancy, integrating clinical and radiomic data extracted from 

multi-scanner PET images (Discovery ST, Discovery IQ and Discovery MI).  

The process includes tumour lesions and lymph nodes semi-automatic segmentation, followed by 

spatial standardisation. Subsequently, radiomic features were extracted and harmonized.  

To develop the predictive models using clinical and radiomic features, the data was splitted into 

training and testing sets. For the radiomic data, collinearity was eliminated and univariate feature 

selection method was applied to select the most relevant variables. Different machine learning 

algorithms were trained and tested to predict recurrence and exitus outcomes.  

This integrative approach underscores the potential of combining radiomics and clinical data to 

inform clinical decision-making in the management of head and neck cancer. 

Keywords: Head and Neck Cancer; Recurrence; Exitus; Outcome Prediction; Radiomics; Multi-

scanner; Machine Learning 
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Resum 

La recidiva tumoral en pacients amb càncer de cap i coll representa un repte per als professionals 

mèdics a causa del seu pronòstic desfavorable. L'existència d’un únic model, de fàcil ús i capaç 

de predir tant la recidiva com l'èxitus en diferents tipus de càncer de cap i coll, té un gran valor 

clínic, ja que pot donar suport a l’estratificació del risc i a la presa de decisions personalitzades. 

Aquest estudi té com a objectiu desenvolupar un model d’aprenentatge automàtic, robust i 

generalitzable, per predir la recidiva i l’èxitus en pacients amb càncer de cap i coll, amb afectació 

tumoral locoregional i sense lesions a distància sospitoses de malignitat, integrant dades clíniques 

i radiòmiques extretes d’imatges PET, obtingudes mitjançant diferents escàners (Discovery ST, 

Discovery IQ i Discovery MI). 

El projecte inclou la segmentació semiautomàtica de les lesions tumorals i dels ganglis limfàtics, 

seguida d’una estandardització espacial. Posteriorment, s’extreuen i harmonitzen les 

característiques radiòmiques.  

Per desenvolupar els models predictius utilitzant les característiques clíniques i radiòmiques, les 

dades es van dividir en conjunts d'entrenament i de prova; es va eliminar la col·linealitat i es va 

aplicar un mètode de selecció univariable per triar les variables radiòmiques més rellevants. 

Finalment, es van entrenar i provar diferents algoritmes d’aprenentatge automàtic per predir 

recidiva i èxitus. 

Aquest enfocament posa en relleu el potencial de combinar dades radiòmiques i clíniques per 

donar suport a la presa de decisions mèdiques en la gestió del càncer de cap i coll. 

Paraules clau: Càncer de Cap i Coll; Recidiva; Èxitus; Predicció de l’Evolució; Radiòmica; Multi-

escàner; Aprenentatge Automàtic 
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Glossary 

PET  Positron Emission Tomography  

CT  Computerized Tomography 

HNC  Head and Neck Cancer 

HPV  Human Papillomavirus 

EBV  Epstein-Barr Virus 

DNA  Deoxyribonucleic Acid 

18F-FDG 18F-Fluorodeoxyglucose 

ML  Machine Learning 

2D  Two Dimensional 

3D  Three Dimensional  

DICOM  Digital Imaging and Communication in Medicine  

AI  Artificial Intelligence 

SUV  Standarized Uptake Value  

MRI  Magnetic Resonance Imaging 

IoT  Internet of Things 

FDA  Food and Drug Administration 

PVE  Partial Volume Effect 

PVC  Partial Volume Correction 

DL  Deep Learning 

CNNs  Convolutional Neural Networks 

EANM  European Association of Nuclear Medicine  

IBSI  Image Biomarker Standardisation Initiative 

GLCM  Gray Level Co-occurrence Matrix  

GLRLM  Gray Level Run Length Matrix  

GLSZM  Gray Level Size Zone Matrix  

NGTDM  Neighbouring Gray Tone Difference Matrix  

GLDM  Gray Leven Dependence Matrix  

ROI  Region of Interest  

ANOVA  Analysis of Variance 

LASSO  Least Absolute Shrinkage and Selection Operator 

SVM  Support Vector Machine   

DT  Decision Tree   
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RF  Random Forest   

KNN  K-Nearest Neighbours   

LR  Logistic Regression   

CSV  Comma-Separated-Values  

ROC  Receiver Operating Characteristic 

AUC  Area Under the Curve 
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1. Introduction 

This study aims to develop a generalizable machine learning model that integrates clinical and 

radiomic features from multi-scanner PET imaging to predict recurrence and mortality in head and 

neck cancer patients. Accurate early prediction of these outcomes can improve clinical decision-

making. 

1.1. Project Context and Justification 

Head and neck cancer (HNC) presents considerable challenges in clinical oncology due to its 

intrinsic heterogeneity and high mortality rates. This group of cancers accounts for approximately 

3% of all cancers globally, with an estimated 660,000 new diagnoses annually. HNC primarily 

originates from the mucosal linings of the oral cavity, oropharynx, nasopharynx, hypopharynx, or 

larynx [1]. Despite ongoing advancements in surgical techniques, radiation therapy, and systemic 

treatments, the 5-year survival rate for HNC has remained around 50% for several decades. For 

locally advanced disease, this rate can drop to less than 50% [2]. 

Oropharyngeal cancer is a specific type of HNC that originates in the tissues of the oropharynx. 

While tobacco and alcohol consumption remain contributing risk factors, the leading cause is now 

Human Papillomavirus (HPV) infection, particularly HPV-16, HPV-related oropharyngeal cancers 

generally exhibit a better prognosis and are notably more responsive to treatment [3].On the other 

hand, nasopharyngeal carcinoma is a type of HNC that originates in the upper throat 

(nasopharynx), this type of HNC is strongly associated with Epstein-Barr virus (EBV) infection, 

especially in Southern China, Southeast Asia, and North Africa. High levels of EBV DNA in the 

blood are linked to poorer treatment response and a higher risk of tumour spread [4]. 

Outcome prognostication has been marked as one of the approaches to improve management of 

HNC. While traditional staging systems and established clinical factors are important prognostic 

indicators, they often do not fully capture the intricate biological characteristics of individual tumours 

or their spatial complexity. This limitation can lead to variable treatment responses and high rates 

of recurrence and distant metastasis, which are common causes of treatment failure and death. 

Radiomics builds upon this foundation by extracting high-dimensional, objective quantitative 

features from medical images, revealing subtle intratumoral heterogeneity that is invisible to the 

human eye, thereby offering a more nuanced understanding of tumour behaviour beyond 

conventional clinical assessment [5]. 

Positron Emission Tomography (PET) is a nuclear medicine imaging technique that utilizes 

radioactive tracers, such as 18F-fluorodeoxyglucose ([18F]FDG), to visualize and quantify 

metabolic activity within organs and tissues. This functional imaging capability allows for the precise 

localization of disease processes, as malignant cells typically exhibit altered metabolic rates, such 

as increased glucose uptake. [18F]FDG PET/CT is a highly accurate technique for diagnosing 

primary HNC lesions, particularly those that cannot be seen by radiological modalities [6]. 

Machine learning (ML) is increasingly being integrated into clinical oncology to enhance cancer 

diagnosis, predict patient outcomes, and support treatment planning. Unlike traditional rule-based 

systems, ML algorithms learn complex patterns directly from data, enabling more adaptive and 

data-driven decision-making. The growing availability of rich imaging and molecular datasets has 

further accelerated the application of ML, particularly in linking these multimodal data sources to 
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cancer progression. By uncovering subtle, often imperceptible correlations within large datasets, 

ML holds significant potential to improve the accuracy and personalization of oncologic care. [7] 

Therefore, this project seeks to leverage radiomics and machine learning applied to [18F]FDG 

PET/CT imaging to improve risk stratification and prognostic accuracy in HNC. Such integrative 

approaches are essential for advancing precision oncology and predictive medicine. 

1.2. Objectives 

There is a critical need to identify more precise prognostic factors that indicate tumour 

aggressiveness or the risk of recurrence early in the disease course.  

To support the primary objective, the project also encompasses several secondary objectives that 

focus on the technical and methodological steps: 

• Segmenting tumours and lymphadenopathies from PET/CT images to define regions of 

interest. 

• Transforming DICOM files into numerical matrices and 3D structures corresponding to the 

segmented regions of interest for computational analysis. 

• Develop a software to extract radiomic features from regions of interest. 

• Harmonizing radiomic features across different scanners and acquisition protocols to ensure 

data consistency and model generalizability. 

• Developing and training various classification algorithms to predict recurrence and exitus, using 

both clinical variables and radiomic descriptors as input features, to select the best-performing 

model based on validation metrics. 

1.3. Scope and Limitations 

This project explores the availability of a single machine learning model trained with PET radiomic 

features and clinical data, and capable of predicting recurrence and exitus outcomes across 

different types of head and neck cancer, specifically focusing on oropharyngeal and 

nasopharyngeal carcinomas.  

While the primary objective focuses on model construction and validation, the development of a 

graphical user interface for clinical implementation lies beyond the current scope of this project 

Given the anatomical and pathological similarities among head and neck cancer subtypes, the 

approach is well-positioned for extrapolation to other forms such as hypopharyngeal and laryngeal 

cancers. These subtypes also rely heavily on imaging for diagnosis and treatment planning, making 

them suitable candidates for radiomics-based predictive modelling. In addition to its relevance 

within head and neck oncology, the proposed pipeline is adaptable to a wide range of other 

diseases where medical imaging is central to clinical decision-making. 

This project will be developed within the Nuclear Medicine Department of Hospital Universitari de 

Bellvitge, which provides access to PET scanners from the vendor GE Healthcare, including the 

 
This project aims to develop a robust and generalizable machine learning model for predicting 

recurrence and exitus in head and neck cancer, integrating clinical and radiomic data extracted 

from multi-scanner PET images. 
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Discovery ST, Discovery IQ, and Discovery MI models, each with distinct intrinsic and 

reconstruction characteristics 

However, the study faces notable limitations that must be acknowledged. First, the relatively 

modest sample size of 200 patients, consisting of 122 oropharyngeal and 78 nasopharyngeal 

carcinoma cases. Although sufficient for exploratory analyses, small datasets inherently limit 

statistical power and increase the risk of model overfitting, where algorithms learn spurious 

correlations or noise specific to the training data rather than generalizable patterns. This can lead 

to overly optimistic performance metrics during internal validation, which may not hold when applied 

to external or prospective datasets. Additionally, the integration of such computational pipelines 

into clinical practice presents its own set of challenges. These include the need for interpretability 

and transparency in model outputs, regulatory and ethical considerations surrounding the use of 

AI in healthcare, and the alignment of predictive tools with existing clinical workflows. 
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2. Background 

To carry out this project, it is essential to understand a series of key concepts and the current state 

of the art that support its development. The following section outlines the main theoretical and 

technical foundations. 

2.1. Key Concepts 

2.1.1. PET/CT Imaging 

PET is a nuclear medicine imaging technique that utilizes radioactive tracers to visualize and 

quantify metabolic activity within organs and tissues. Following the administration of a 

radiotracer, positrons emitted from the radionuclide undergo annihilation with electrons, 

resulting in the production of two gamma photons emitted in nearly opposite directions. These 

photons are detected simultaneously by a ring of scintillation detectors, allowing for the precise 

reconstruction of three-dimensional images that reflect the tracer's distribution. This functional 

imaging capability allows for the precise localization of disease processes, as malignant cells 

typically exhibit altered metabolic rates, such as increased glucose uptake.  

PET imaging offers high sensitivity for detecting metabolic activity, making it highly effective for 

identifying functional abnormalities. However, it has relatively low spatial resolution (typically 

4–6 mm), limiting its ability to visualize fine structural details. 

The standardized uptake value (SUV) is a semiquantitative measure used in PET imaging to 

assess radiopharmaceutical uptake, particularly in tumours. It normalizes the activity of a 

region of interest (ROI) by considering the injected activity and a measure of volume of 

distribution, like body weight or lean body mass. SUV values are often used to help differentiate 

between benign and malignant lesions, with higher SUV values generally suggesting increased 

metabolic activity and potentially malignancy [8]. 

When PET is combined with Computed Tomography (CT), the resulting PET/CT scans provide 

detailed three-dimensional images that integrate both metabolic (PET) and anatomical (CT) 

information. This fusion allows for precise localization and characterization of tumours, offering 

a comprehensive view of disease extent and biological behaviour. The core principle of PET/CT 

lies in its ability to fuse functional or metabolic information with anatomical detail. [9] 

In most cases, 18F-fluorodeoxyglucose is used as the radiotracer for PET/CT in patients with 

head and neck cancer. PET involves the injection of a radiopharmaceutical that emits 

positrons, which, upon interacting with electrons, produce gamma photons. This imaging 

modality complements conventional imaging methods such as CT and MRI in treatment 

planning, prognosis, monitoring, and evaluation, due to its ability to provide tumour metabolic 

information through functional imaging [10]. 
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2.1.2. Head and Neck Cancer 

Head and neck carcinoma is a biologically heterogeneous group of cancers arising from the 

mucosal linings of the oral cavity, oropharynx, hypopharynx, and larynx, accounting for about 

3% of all cancers globally with approximately 660,000 new cases annually [11]. 

Recent epidemiological data indicate a notable shift in HNC incidence patterns. Over the past 

two decades, there has been a rising incidence of HNC, particularly observed among elderly 

patients. Projections suggest this trend will continue, with an estimated 1.08 million new cases 

annually by 2030. This increase is particularly pronounced for oral and oropharyngeal cancers 

in women [12]. 

Oropharyngeal cancer is a specific type of HNC that originates in the tissues of the oropharynx, 

encompassing the base of the tongue, tonsils, soft palate, and posterior pharyngeal wall. Most 

of these cancers are squamous cell carcinomas. Common signs and symptoms of 

oropharyngeal cancer include a lump in the neck, a persistent sore throat, a white patch on the 

tongue or lining of the mouth that does not resolve and coughing up blood.  

The epidemiology of oropharyngeal cancer has undergone a significant transformation. While 

tobacco and alcohol consumption remain contributing risk factors, the leading cause is now 

Human Papillomavirus infection, particularly HPV-16. HPV-related oropharyngeal cancers are 

experiencing a drastic increase in incidence, especially among younger populations. HPV-

related oropharyngeal cancers generally exhibit a better prognosis and are notably more 

responsive to treatment [13]. 

Nasopharyngeal carcinoma is a less common type of HNC that originates in the upper throat, 

behind the nose. The clinical features of nasopharyngeal carcinoma can be subtle, often 

leading to advanced-stage diagnosis. Common signs and symptoms at presentation include 

painless neck lumps, nasal obstruction, epistaxis or headache. It is strongly associated with 

Epstein-Barr virus infection, especially the non-keratinizing subtype prevalent in endemic 

regions such as Southern China, Southeast Asia, and North Africa. High levels of EBV DNA in 

the blood are linked to poorer treatment response and a higher risk of tumour spread. Common 

symptoms include palpable lymph node metastases in the neck, hearing loss, ear pain, 

persistent nasal blockages or stuffiness or bloody nasal discharge [14]. 

In the management of head and neck cancer, therapeutic strategies are meticulously tailored 

to the primary tumour site, histological subtype, stage, and crucial prognostic indicators. While 

early-stage disease may often be effectively treated with single-modality therapy, by surgery 

or radiation, advanced stages frequently necessitate a multimodality approach. This typically 

involves combinations of surgery, highly conformal radiation to maximize local control while 

minimizing toxicity to adjacent critical structures, and systemic therapies including 

chemotherapy and increasingly, immunotherapy as frontline or salvage options.  

2.1.3. Radiomics 

Radiomics is a field within medical imaging that extracts high-dimensional, quantitative data 

from medical images. The fundamental aim of radiomics is to identify and quantify complex 

patterns that may not be discernible by the human eye, thereby enhancing the diagnostic, 

prognostic, and predictive potential of imaging data. This data-driven approach enables the 

characterization of lesion properties such as shape, intensity, and heterogeneity. Radiomic 
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features are mainly categorized into four major groups: statistical, model-based, transform-

based, and shape-based features [15]. 

The radiomics workflow is a multi-stage analytical process encompassing image acquisition, 

preprocessing (including normalization, standardization, and discretization), lesion 

segmentation, feature extraction, feature selection, and model training and validation, all aimed 

at generating robust, reproducible, and clinically meaningful predictive models from medical 

imaging data [16]. 

Recent studies have underscored the utility of radiomics in diverse clinical contexts, such as 

non-invasive tumour grading, forecasting treatment toxicity, and stratifying patient survival 

outcomes. However, challenges remain, including the standardization of imaging protocols, 

reproducibility of features, and the need for robust, multi-institutional validation. As it evolves, 

radiomics is expected to play a pivotal role in precision medicine by integrating imaging 

biomarkers into personalized treatment strategies [17]. 

2.2. State of the Art 

The growing presence of Artificial Intelligence (AI) in everyday life, along with disruptive advances 

in the field, poses significant challenges and opportunities both in technological development and 

in social impact. The integration of AI with other domains, such as the Internet of Things (IoT), 

points to a shift toward "connected intelligence," where devices are not only interconnected but 

also intelligent. For example, in the automotive industry, autonomous vehicles rely on AI systems 

to interpret their environment and make safe decisions while in motion, as well as to prevent 

manufacturing errors through image analysis. Similarly, in the field of e-commerce, AI-powered 

recommendation algorithms provide personalized suggestions to consumers, enhancing the online 

shopping experience. These examples illustrate how the integration of AI into different sectors is 

transforming the way we interact with technology and the world around us. 

In the field of health management and prognostics, AI is used to improve efficiency in various tasks 

such as error detection, diagnosis, and decision-making. AI techniques such as supervised and 

unsupervised machine learning, fuzzy systems, and reinforcement learning algorithms are applied 

from data preparation to decision support. AI in surgical robotics enhances precision, control, and 

decision-making during procedures. It enables real-time analysis of medical images and patient 

data to guide robotic movements with high accuracy. AI also assists in preoperative planning, 

predicting complications, and optimizing surgical strategies. Moreover, AI is also used in the 

segmentation of medical images, improving accuracy in the detection of tumours and other 

anomalies [18]. 

Many studies have been published on the implementation of artificial intelligence models for 

predicting tumour evolution in PET/CT images. The following tables provide an overview of the 

most relevant articles, with the models applied according to the type of cancer studied. 
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 Table 1. Title, cancer type studied, and AI model from articles on the implementation of AI for forecasting the 
progression of different types of cancer [19], [20], [21], [22], [23]. 

  

The table above presents various studies that use machine learning algorithms to analyse PET/CT 

images with [18F]FDG in different types of cancer. These studies have applied artificial intelligence 

for predicting tumour progression in various neoplasms, demonstrating the wide range of machine 

learning techniques available for cancer evaluation and prediction. 

It is also essential to examine how these machine learning methodologies have been specifically 

applied within the domain of head and neck cancers. Given the anatomical complexity and 

heterogeneity characteristic of head and neck tumours, the integration of advanced computational 

techniques with [18F]FDG PET/CT imaging offers significant potential for enhancing diagnostic 

accuracy, prognostic stratification, and treatment planning.  

The following table summarizes key studies applying machine learning models to various subtypes 

of head and neck cancers, highlighting their clinical endpoints, dataset sizes, model training 

approaches, and evaluation metrics. 

  

Title Cancer Type Model 

[18F]FDG PET-CT radiomics and machine 

learning in the evaluation of prostate 

incidental uptake 

Prostate Cancer 

5 different algorithms 

(unspecified), with and 

without PCa 

Evaluation of survival of the patients with 

metastatic rectal cancer by staging 18F-

FDG PET/CT radiomic and volumetric 

parameters 

Rectal Cancer 

Naive Bayes, Logistic 

Regression, k-Nearest 

Neighbor, Decision Tree, 

Support Vector Machine, 

Random Forest 

The application of different machine 

learning models based on PET/CT images 

and EGFR in predicting brain metastasis 

of adenocarcinoma of the lung 

Brain Metastasis Logistic Regression 

Prediction of pathological complete 

response to neoadjuvant chemotherapy 

in locally advanced breast cancer by 

using a deep learning model with 18F-

FDG PET/CT 

Breast Cancer 
Convolutional Neural 

Network 

Prediction of lung malignancy 

progression and survival with machine 

learning based on pre-treatment FDG-

PET/CT 

Lung Cancer 
Convolutional Neural 

Network 
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Table 2. Summary of machine learning applications for outcome prediction in head and neck cancer [24]. 

Author, Year of 

Publication 

Head and Neck 

or Subsite 

Application (End 

Point) 

No. of 

Patients 

Model 

Evaluation 

Haider et al., 2020 

(USA, Germany & 

Canada) 

OPSCC 

(Oropharyngeal 

Squamous Cell 

Carcinoma) & 

MLNs (Metastatic 

Lymph Nodes) 

Outcome prediction 

(HPV status) 

741 

(MLNs) / 

435 

(OPSCC) 

AUC: 0.78 

M.D. Anderson 

Cancer Center, 

Head and Neck 

Quantitative 

Imaging Working 

Group, 2018 (USA) 

OPSCC 

(Oropharyngeal 

Squamous Cell 

Carcinoma) 

Outcome prediction 

(local recurrence) 
465 

Discriminating 

value: 94% 

Vallieres et al., 

2017 (Canada) 

HNC (Head and 

Neck Cancer) 

Outcome prediction 

(Locoregional 

Recurrence, Distant 

Metastasis, & 

Overall Survival) 

300 

Locoregional 

recurrence 

AUC = 0.69 

Kaźmierska et al., 

2022 (Poland & 

Canada) 

LAHNC (Locally 

Advanced Head 

and Neck Cancer) 

Outcome prediction 

(Incomplete 

response and 

disease 

progression) 

290 AUC: 0.68 

Kim et al., 2022 

(Republic of 

Korea) 

HNSCC (Head 

and Neck 

Squamous Cell 

Carcinoma) 

Outcome prediction 

(local tumor 

recurrence) 

215 AUC: 0.77 

The previous table emphasize the effectiveness of AI-driven models in predicting clinical outcomes 

across various subtypes of head and neck cancers. The diverse approaches, ranging from HPV 

status prediction to recurrence and survival estimation, demonstrate the adaptability of machine 

learning techniques to different diagnostic and prognostic endpoints.  

2.3. State of the Situation 

This study forms part of a broader research initiative conducted at Nuclear Medicine Department 

of Hospital Universitari de Bellvitge, aimed at integrating radiomic features with clinical and 

metabolic data to enhance the characterization and understanding of head and neck cancer, the 

project seeks to improve diagnostic and prognostic. 

The project started after all preliminary processes had been completed, including approval by the 

ethics committee, patient selection, clinical data extraction, and anonymization of the studies. 

These preparatory steps ensured the foundations for the development of the study. 
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3. Market Analysis 

3.1. Market Evolution 

The market analysis of artificial intelligence algorithms for cancer evolution prediction reveals a 

rapidly growing and relatively recent field (emerging around the 1990s). This growth is driven by 

technological advances and the increasing need for accurate and personalized medical solutions. 

Moreover, the field is shaped by the rising demand for the development of novel biomarkers, which 

are essential for enabling personalized diagnosis and treatment within the framework of precision 

medicine [25]. 

 
Figure 1. Number of publications about prediction of cancer using AI in PubMed per year [25]. 

A growing number of companies are investing in the development of such algorithms, motivated by 

the increasing demand for effective predictive tools and substantial investment in research and 

development. This has led to intense competition and continuous innovation in the sector. However, 

no machine learning algorithms specifically designed for prognosis based on PET/CT imaging of 

head and neck cancer have been identified on the market. 

Some of the products and projects currently being developed by companies in this field include: 

• IBM is developing a range of AI-powered products designed to enhance the medical and 

healthcare sectors. Having precise, up-to-date, and accessible information is essential for 

clinical decision-making. DynaMed and Micromedex with Watson are two of the most 

advanced and reliable tools available to healthcare professionals, integrating artificial 

intelligence with extensive databases to improve the quality of care. 

• Arterys is a company focused on AI-based software solutions aimed at optimizing the 

interpretation of medical imaging by radiologists, generating reports, and facilitating 

information sharing with referring physicians. Their products include automated image 

analysis, with one-click lesion segmentation in CT and MRI images, and configurable AI-

based report generation tools that enhance workflow efficiency and consistency. 

Furthermore, Arterys tools integrate seamlessly with existing systems, including worklists, 

notification systems, and dictation platforms, thereby optimizing clinical workflows and 

facilitating the adoption of AI technologies in medical environments. 
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• Zebra Medical Vision is a pioneering company in the use of artificial intelligence to 

analyze medical images and provide automated diagnostic support. Its platform, 

HealthMinds, offers advanced solutions for the early detection and monitoring of various 

diseases, including cancer. Zebra’s algorithms can analyze X-rays, CT scans, and MRIs 

to identify anomalies indicative of cancer, as well as other conditions such as 

cardiovascular, hepatic, and pulmonary diseases. This technology enables faster and 

more accurate detection, supporting physicians in making informed decisions and 

improving patient outcomes. Zebra Medical Vision is also working on integrating its 

solutions with electronic health record systems to facilitate adoption in hospitals and clinics 

worldwide. 

• Google DeepMind Health, a division of Google, is dedicated to applying artificial 

intelligence in medicine. One of its most notable achievements is the development of 

algorithms for medical image analysis, particularly in radiology and pathology. DeepMind 

has collaborated with various hospitals and medical institutions to create tools capable of 

detecting eye diseases from retinal scans and identifying head and neck cancers in CT 

images. Among its best-known projects is an algorithm for detecting diabetic retinopathy, 

which has shown accuracy comparable to that of human specialists. Additionally, 

DeepMind is working on optimizing hospital workflows by predicting complications such as 

acute kidney injury. 

In the public sector, various institutions are also developing projects in this domain. For example, 

the Catalan Health Institute has developed four proprietary AI algorithms that have improved 

breast cancer diagnosis through the quantification of four biomarkers (HER2, Ki67, estrogen 

receptors, and progesterone receptors). The project aims to drive the digital transformation of 

pathology services. Both histological samples and diagnostic-quality images are being digitized, 

enabling the effective replacement of microscopes with high-resolution screens and allowing all 

hospitals within the network to share high-precision images [26]. 

3.2. Market Sector 

The main potential customers for this head and neck cancer outcome prediction software 

(recurrence and mortality) are healthcare facilities, particularly hospitals. Bellvitge Hospital would 

be the first to implement it, as the algorithm has been specifically designed to integrate with its 

system. Once validated, the software could be applied in any hospital worldwide that uses similar 

techniques for patient diagnosis and follow-up. 

It also represents an opportunity for software companies specializing in medical technology, such 

as GE Healthcare, which could incorporate this tool into their portfolio as a distinctive, innovative 

solution based on artificial intelligence and personalized medicine. Integrating this technology into 

existing clinical systems could enhance efficiency and improve the quality of medical care. 

Finally, the field of biomedical research would also benefit. Academic institutions and research 

groups could use the software to analyse real-world data and identify key factors in cancer 

progression, contributing to the development of new therapeutic strategies and advancing 

knowledge in oncology. 
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4. Concept Engineering 

In this section, the project process is detailed, from the initial conception to the final implementation. 

Various options for carrying out different tasks are considered to select the best possible solution; 

a thorough study of the available solutions is done, and the most suitable one is proposed. 

4.1. Segmentation 

The first step to extract radiomic data from the images is to delineate the regions of interest. To 

achieve accurate segmentation in medical images, especially in the field of medical imaging, 

various methods can be used. Below, different segmentation methods are presented and 

compared, highlighting their advantages and disadvantages, as well as their applicability. 

4.1.1. PET VCAR Software 

PET VCAR (PET Volume Computer Assisted Reading) is a specialized tool for segmenting 

and analysing lesions in PET/CT images. This software uses advanced algorithms to identify 

and quantify regions of interest based on PET tracer signal intensity [27]. 

PET VCAR offers a user-friendly interface that enhances clinical workflow in PET/CT lesion 

segmentation, and seamless integration with other diagnostic and reporting systems. However, 

it also presents notable limitations, such as vendor dependency, as it is designed exclusively 

for GE Healthcare PET/CT systems, restricting its use with other manufacturers' equipment. 

Additionally, while the software automates much of the segmentation process, manual 

adjustments by clinicians may still be necessary for optimal results. Another limitation is that it 

does not allow the export of structures or images. The requirement for specific licenses and 

proprietary GE software may also pose cost and accessibility challenges, potentially limiting its 

broader adoption in clinical settings. 

4.1.2. MIM Software 

MIM (Medical Image Merge) Software is a medical registering and manipulating DICOM 

medical images. Over time, it has evolved into a comprehensive medical image management 

and processing system, as recognized by the FDA. MIM Software has segmentation tools, both 

semiautomated and manual, and multi-modality image integration to enhance accuracy, 

efficiency, and consistency in medical image segmentation. [28] 

MIM Software offers significant advantages, including enhanced accuracy through several 

tools for manual segmentation or multi-modality image fusion, as well as streamlined workflows 

via semi-automatic segmentation algorithms. This segmentation software is also well 

established in Hospital de Bellvitge. However, potential drawbacks include the high 

costs associated with acquisition and maintenance, a steep learning curve due to its 

comprehensive features, and the inherent limitations of automated segmentation 

requiring manual corrections and clinical validation.  
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4.1.3. 3D Slicer 

3D Slicer is a free, open-source, cross-platform software application designed for the 

visualization, processing, segmentation, registration, and data analysis of medical, biomedical, 

and other 3D images and meshes. It has established itself as a widely used platform in the field 

of medical image processing [29]. 

One of the main advantages of 3D Slicer is its cost and accessibility as free, open-source 

software. It provides a wide range of tools and extensions for different PET/CT segmentation 

needs, from manual methods to advanced AI-based techniques. Additionally, 3D Slicer 

supports multiple medical image formats, including DICOM, the standard for PET/CT imaging. 

However, despite its benefits, 3D Slicer has some limitations, such as a steep learning curve 

for new users due to its extensive features and modular interface, as well as potential 

restrictions in clinical certifications or regulatory compliance for direct use in clinical settings 

without additional validation. 

4.2. Image Preprocessing 

Preprocessing standardizes PET/CT scans reducing variability related to acquisition variability 

or failure. It enhances image quality by noise reduction and artifact correction for reliable 

radiomic analysis. It also optimizes images for precise feature extraction from defined regions. 

Various pre-processing steps can be used in nuclear medicine images [30]. 

4.2.1. Partial Volume Correction 

The partial volume effect (PVE) influences the accuracy of PET imaging. Due to the limited 

spatial resolution of these systems, small structures or regions with high tracer uptake appear 

blurred, leading to underestimation of activity in small lesions. To address PVE, partial volume 

correction (PVC) methods are employed, many of which leverage high-resolution anatomical 

data from MRI or CT scans by integrating structural information from these modalities with the 

functional PET data, PVC techniques help refine tracer distribution estimates[31]. But current 

evidence does not support using PVC routinely in PET image analysis [30]. 

4.2.2. Deep Learning in Image Preprocessing 

Deep Learning (DL) techniques are applied to improve the quality of PET images. In PET/CT, 

DL is applied to three key areas [32]: 

• Denoising, where neural networks trained on high and low dose images preserve fine 

details better than classical filters. 

• Deformable image registration, where convolutional neural networks (CNNs) predict 

displacement fields to align PET/CT scans, correcting patient motion and reducing 

artifacts. 

• Super-resolution, enhancing spatial resolution to improve detection of small lesions. 

These techniques enable more accurate quantification and improved diagnostics.  

DL offers a powerful approach to address PET/CT challenges like noise, attenuation, and 

limited resolution, demonstrating significant potential for advancing nuclear medicine imaging. 

Despite significant advances, the clinical use of deep learning for PET/CT preprocessing still 

faces challenges with regulatory approval [33]. 
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4.2.3. Converting PET Voxel Values to Standard Uptake Value (SUV) 

The standardized uptake value (SUV) is a semi-quantitative measure of radiotracer uptake in 

tissues, normalized to the patient's size and the injected dose. SUV is a widely used metric in 

clinical PET/CT to assess metabolic activity, such as in tumours. The general formula for 

calculating SUV is: 

SUV =
(Voxel Activity Concentration)

(
Injected Dose

Patient Weight 
)

 

Standardization of SUV measurements is crucial for PET radiomics, where quantitative imaging 

biomarkers require rigorous reproducibility. To ensure reliable radiomic feature extraction 

guidelines have been established to harmonize all aspects of PET imaging, including SUV 

normalization [34]. 

4.2.4. Filters in Image Preprocessing 

Image filtering is used to modify pixel values in an image to achieve specific objectives, such 

as reducing noise, enhancing edges, or smoothing the image [35]. 

• Smoothing filters: are used in PET/CT imaging to reduce noise while preserving 

important image features. For example, the Gaussian filter applies weighted averaging 

using a bell-shaped Gaussian function, effectively suppressing high-frequency noise 

and creating a smoother appearance. However, excessive smoothing can lead to loss 

of fine details and reduced spatial resolution, which is particularly important for 

detecting small lesions. Simpler alternatives like the mean filter perform basic 

neighbourhood averaging, offering more uniform but potentially less refined noise 

reduction compared to Gaussian approaches. 

• Edge-enhancement filters: have the opposite purpose of smoothing filters. For 

example, Laplacian filters detect intensity changes corresponding to anatomical edges 

and tumour margins. While they are effective for improving tumour delineation, these 

filters have the drawback of simultaneously amplifying image noise.  

A fortiori does not currently provide evidence that pre-processing images with denoising 

provides significant improvement for radiomics application [30]. 

4.2.5. Image Resampling 

Resampling involves modifying the pixel or voxel dimensions of an image, altering its spatial 

resolution or alignment. In PET/CT scans, the native PET and CT images often have different 

resolutions and matrix sizes. Consequently, resampling to a common grid is necessary for 

tasks like image fusion, coregistration, and to reduce any heterogeneity in acquisition voxel 

size. Various resampling techniques are employed in clinical and research settings [36]: 

• Nearest-neighbour interpolation: The simplest method, assigning the value of the 

closest original pixel to the new location. While computationally efficient, it may 

introduce block-like artifacts, particularly with significant resolution changes. 

• Linear interpolation: Bilinear or trilinear interpolation calculates new pixel values 

using weighted averages of neighbouring pixels. Produces smoother results than 

nearest-neighbour but may blur sharp edges. 
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4.3. Radiomics features 

Radiomics is a process that extracts quantitative features from medical images to provide insights 

into underlying pathophysiology. These features are broadly categorized into different types 

depending on their nature and where they come from. 

4.3.1. Radiomics Packages 

Numerous open-source radiomics software packages exist, each varying in user interface, 

adherence to the IBSI standard [37], and capabilities like PET image. While a 

comprehensive list is constantly evolving, commonly utilized tools include Pyradiomics, 

SERA, LIFEx, MITK phenotyping, and CERR. These packages offer researchers and 

clinicians diverse options for extracting quantitative imaging features. 

 

• PyRadiomics: Open-source Python package designed for extracting radiomic 

features from 2D and 3D medical images. It serves as a reference standard for 

radiomic analysis, offering a robust, tested platform to ensure reproducible feature 

extraction [38]. Studies confirm PyRadiomics as IBSI-compliant, it adheres to 

the Image Biomarker Standardisation Initiative, with high standardization in feature 

implementation validated by IBSI phantom tests [39]. 

• ViSERA: Radiomics software tools developed at Johns Hopkins University for 

standardized feature extraction in medical imaging, adhering to the IBSI guidelines. 

Both tools prioritize reproducibility and interoperability, bridging research and clinical 

needs in quantitative imaging [40]. 

• LIFEx: It’s a free, multiplatform, and user-friendly software designed for the analysis 

of molecular imaging data, with a particular focus on PET, SPECT, and MRI for 

quantitative research. Developed for medical imaging professionals, LIFEx doesn’t 

require programming skills. However, while it’s IBSI-compliant, its feature calculations 

may deviate slightly from other platforms due to differences in implementation [41]. 

• MITK Phenotyping: Openly distributed radiomics framework that implements a 

comprehensive set of radiomic features, adhering to the latest international standards, 

including IBSI [42]. MITK Phenotyping has been used in studies involving PET/CT 

images, demonstrating its capability to handle and extract meaningful features from 

PET data in various research contexts [43]. 

• PyCERR: Platform that facilitates batch calculation and visualization of radiomics 

features, providing a structured environment for radiomics metadata. PyCERR was 

developed as a Python-native port of the original MATLAB-based CERR, it maintains 

the flexible and readable data structure of CERR while providing access to relevant 

tools within the Python programming environment [44]: 

4.3.2. Radiomics features 

Radiomics can be categorized into several groups that capture different aspects of the image 

data, such as texture, intensity, and shape-based features. The primary feature categories are 

described in the following table: [45] 
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Table 3. Summary of radiomic feature groups: categories, feature counts, and descriptions. 

Feature Group 
Number of 
Features 

Description 

First Order 
Statistics 

19 
These features describe the distribution of individual voxel 
intensities within the defined region of interest using basic 
statistical measures. 

Shape-based (3D) 16 
This category encompasses features that characterize the 
three-dimensional size and morphology of the ROI, 
independent of the intensity values within it. 

Shape-based (2D) 10 
Like the 3D shape features, this group describes the size 
and shape of the ROI but in a two-dimensional plane, also 
independent of intensity. 

Gray Level Co-
occurrence Matrix 

(GLCM) 
24 

These features analyze the spatial relationships between 
pairs of voxels with specific gray level intensities within the 
ROI, providing insights into the texture of the image. 

Gray Level Run 
Length Matrix 

(GLRLM) 
16 

These features quantify the lengths of consecutive runs of 
voxels with the same gray level along various directions 
within the ROI, offering information about the image 
texture's directionality. 

Gray Level Size 
Zone Matrix 

(GLSZM) 
16 

These features determine the size of connected regions of 
voxels that share the same gray level intensity, it 
measures the texture homogeneity regardless direction. 

Neighbouring 
Gray Tone 

Difference Matrix 
(NGTDM) 

5 

These features quantify the difference in gray level 
between each voxel and the average gray level of its 
neighboring voxels, highlighting local intensity variations 
and texture uniformity. 

Gray Level 
Dependence 

Matrix (GLDM) 
14 

These features quantify the dependencies between a 
voxel and its neighboring voxels based on their gray level 
similarity, providing insights into the size and homogeneity 
of regions with dependent gray levels. 

 

4.4. Harmonization 

Harmonization is an important step in our data pre-processing because we are analyzing PET data 

acquired from three different scanners, variations in equipment can introduce unwanted biases in 

radiomic features. One possible solution is to discard non-robust features, but it risks losing 

potentially useful clinical information. Applying harmonization techniques can help mitigate 

scanner-related variability while preserving predictive biomarkers. Since most radiomic features 

are sensitive to acquisition differences, harmonization offers a more efficient solution than 

aggressive feature elimination. The possible harmonization techniques are now described. 
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4.4.1. EARL 

This harmonization technique standardizes PET/CT quantitative metrics across different 

scanners and institutions to ensure consistency. The EARL accreditation program includes 

quarterly calibration checks and annual phantom tests to validate SUV accuracy and recovery 

coefficients. By following EANM guidelines, accredited centers minimize variability in patient 

preparation, acquisition, and reconstruction. This ensures reliable, comparable image data for 

multicenter studies and clinical practice [46]. 

Some studies tested EARL harmonization using a 3D-printed phantom across different PET/CT 

systems, finding that while EARL harmonization reduced the variability of radiomic features 

across different scanner models and reconstruction settings, a large percentage of radiomic 

features still exhibited significant differences. This suggests that EARL harmonization method, 

though increased the number of comparable features compared to original clinical 

reconstruction, may be insufficient to make all radiomic features usable in such a setting. The 

persistence of differences highlights the need for additional harmonization strategies [30]. 

4.4.2. ComBat 

ComBat is a data-driven method that estimates and corrects for site effects without requiring 

phantom acquisitions. The site effect can be directly derived and adjusted using available 

image feature values from different sites, without the need for additional image processing or 

new measurements. ComBat was initially introduced in the field of genomics and has been 

spread in different fields, like radiomics [47]. ComBat is based on the following formula: 

𝑦𝑖𝑗 = 𝛼 + 𝛾𝑖 + 𝛿𝑖𝜀𝑖𝑗 

• 𝑗 represents a specific measurement of feature y. 

• 𝑖 is the experimental setup or conditions used for that measurement. 

• α is the mean value of the feature y. 

• γ𝑖 is an bias caused by batch effects, like differences in scanners. 

• δ𝑖 is a scaling factor on the standard deviation of y, also caused by batch effects. 

• ε𝑖𝑗 accounts for random noise or error in the measurement. 

This method assumes that any measurement can be affected by two types of errors, additive 

bias and multiplicative bias. For this technique, it is crucial that all measurements were taken 

under the same conditions to share the same biases.  The site effects γ𝑖 and δ𝑖 can be 

corrected using the following formula: 

𝑦𝑖𝑗
𝐶𝑜𝑚𝐵𝑎𝑡 =

𝑦𝑖𝑗 − �̂� − 𝛾𝑖

𝛿𝑖

+ �̂� 

• 𝑦𝑖𝑗 is the original measurement. 

• �̂� is the mean of the feature across all data. 

• 𝛾𝑖 is the estimated additive bias for the scanner. 

• 𝛿𝑖 is the estimated multiplicative bias for the scanner. 
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In the following image you can observe the effect of ComBat harmonization: 

 

Figure 2. Example of ComBat harmonization with 3 site sources. Box plots and feature value distributions are 
shown. (A and D) Plots before ComBat. (B, E, and G) Plots after ComBat by aligning data from sites B and C to 

site A. (C, F, and H) Plots after ComBat by aligning data on virtual site. Bottom graphs show equations of 
transformations. Source: [47]. 

ComBat provides an efficient solution for harmonizing radiomic features across imaging sites, 

though it requires enough data with similar acquisition parameters per batch to reliably estimate 

corrections. Batch differences reflect technical rather than biological variability, so it must be 

validated to avoid removing clinically relevant feature variations [30]. 

4.4.3. Z-Score 

Z-score normalization standardizes the intensity distribution of an image by centering it at a 

mean of 0 and scaling it to a standard deviation of 1. Due to its simplicity and low computational 

demand, Z-score normalization can be easily applied to either whole images or selected ROIs, 

making it a practical choice for intensity standardization in medical imaging [48]. 

 

𝐼(𝑥) =
𝐼(𝑥) − 𝜇

𝜎
 

• 𝐼(𝑥) is the original image. 

• 𝜇 is the mean intensity. 

• 𝜎 is the standard deviation. 

 

Z-score normalization is simple to implement, as it only requires the voxels within the ROI for 

standardization. However, it fails to address scanner and protocol-dependent variations, 

making it insufficient for improving crucial radiomics reproducibility across multi-center studies. 

 

 

 



Nuria González Cuesta 
Clinical-Radiomic Model for HNC Outcome Prediction 

28 
 

4.5. Feature Selection  

In machine learning, feature selection is a critical preprocessing step aimed at identifying and 

retaining the most relevant subset of features from a dataset. This process is essential for 

enhancing model performance, reducing computational complexity, and improving model 

interpretability. Different feature selection methods may identify different features as relevant, and 

the choice of method can affect the performance of the radiomics model. 

4.5.1. Univariate Feature Selection Methods 

Univariate feature selection methods evaluate the relevance of each feature independently 

with respect to the target variable. Among these, Analysis of Variance (ANOVA) is a widely 

used statistical test. 

ANOVA is a statistical method used to determine whether the means of two or more groups 

are significantly different from each other. It operates under the null hypothesis (H₀) that all 

group means are equal, while the alternative hypothesis (H₁) states that at least one group 

mean differs. This method assumes normality, homogeneity of variances, and independent 

samples. ANOVA can handle categorical independent variables and continuous dependent 

variables, making it suitable for analyzing medical imaging data and clinical data [49]. 

4.5.2. Multivariate Feature Selection Methods 

Multivariate methods evaluate features collectively, accounting for interactions, dependencies, 

and redundancies among them to identify the most informative subset with respect to the target 

variable. Various multivariate feature selection techniques are employed to detect the most 

relevant group of features: 
 

• Correlation Matrices: They are widely used in feature selection to identify 

relationships between features and reduce redundancy in a dataset. A correlation 

matrix is a statistical table that measures the relationship between variables, typically 

calculated using Pearson’s correlation for numerical data. When features are highly 

correlated, they tend to carry similar information, which can lead to redundancy [50]. 
• LASSO: It is an embedded method used with linear regression that adds a special 

kind of penalty to the model. This penalty helps reduce the size of the coefficients for 

less important features, often shrinking some of them all the way to zero. When 

features are similar or strongly correlated, LASSO usually keeps just one and sets the 

others to zero. After applying LASSO, the features with non-zero coefficients are the 

selected ones [51]. 

• Random Forest: It works as a bagging method, building multiple unpruned decision 

trees where, at each split in the tree, the algorithm randomly selects a subset of 

features to consider. This method can rank features based on their importance, which 

is measured by how much they reduce impurity across all trees. However, in high-

dimensional datasets where only a few features are truly relevant, identifying those 

key features can be more challenging [51]. 
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4.6. Classification 

A classification method is a statistical or computational technique that assigns elements to specific 

categories or classes based on the observed characteristics of the data. 

4.6.1. Traditional Statistical Methods 

Traditional statistics, whose origins date back to the 16th century, is based on the use of 

parametric models and hypothesis testing. This methodology employs predetermined 

equations, such as linear or logistic regression, to model relationships between variables with 

deductive reasoning. Classical methods such as logistic regression, linear discriminant 

analysis, and quadratic discriminant analysis are widely used for classification and prediction 

tasks. 

These statistical approaches require that the data meet certain assumptions, such as normality 

or independence among predictors, which facilitates the interpretation of results but limits their 

applicability in complex contexts. However, when faced with highly nonlinear data patterns or 

multiple interactions, the structural rigidity of traditional methods may become a disadvantage. 

Their main strength lies in scenarios where phenomena exhibit clear, well-defined relationships 

that can be modeled through established mathematical formulations [52]. 

4.6.2. AI Model 

Machine learning can be broadly defined as the use of computational methods or models that 

learn from experience (data) to improve performance or make accurate predictions [53]. To 

create an accurate Machine Learning model, different types of algorithms can be considered. 

Various options have been analysed: Support Vector Machine (SVM), Decision Tree, Random 

Forest, K-Nearest Neighbours (KNN), Naive Bayes, Logistic Regression, and Linear 

Regression. Below are the pros and cons of each option. 

4.6.2.1. Naive Bayes 

Naive Bayes is a classification algorithm based on Bayes' theorem, which assumes 

independence between predictive features. Advantages of Naive Bayes include its 

simplicity and ease of implementation, the fact that it doesn't require large amounts of 

training data, its high scalability with the number of predictors and data points, its speed, 

and its insensitivity to irrelevant features. However, it has disadvantages such as the 

assumption of feature independence, which rarely holds true in real life, limiting its 

applicability in practical cases. 

4.6.2.2. Support Vector Machines (SVM) 

SVM are supervised classification algorithms that aim to find a hyperplane that optimally 

separates samples from different classes. SVM algorithms are known for being effective in 

high-dimensional spaces, even when the number of dimensions exceeds the number of 

samples, and for their efficient memory management, as they use only a subset of points 

in the decision function. However, they have disadvantages such as being inefficient with 

large datasets due to slow kernel computations. SVMs also do not provide probability 

estimates, and their decision boundary directly depends on the closest values—even if 

they are outliers. Additionally, they are highly dependent on the scale of the data, so proper 

scaling is required.  
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4.6.2.3. K-Nearest Neighbours (KNN) 

KNN is a very simple machine learning classification algorithm that assigns a class label 

to a point based on the class labels of its k nearest neighbours, measured by Euclidean 

distance or another distance metric. The value of k is set beforehand. Advantages of KNN 

include its simplicity and its ability to perform well with high-dimensional data without a 

complex training process. It is also easy to implement and understand. However, it has 

disadvantages such as low efficiency with large datasets—since it must compute the 

distance to all training points for each new sample—and it is highly sensitive to noise and 

irrelevant features in the data [54]. 

4.6.2.4. Decision Tree 

A Decision Tree is a classification model that iteratively splits a dataset into more 

homogeneous subsets, maximizing the purity of the resulting groups. “Purity” refers to how 

homogeneous a group of data is; a group is purer when it mainly contains data from a 

single class. Advantages of decision trees include their ease of interpretation and their 

ability to handle both categorical and numerical data. However, they also have drawbacks 

such as a tendency to overfit, especially with small datasets, and sensitivity to small 

changes in the data, which can lead to very different trees. 

4.6.2.5. Random Forest 

Random Forest is a classification algorithm based on building multiple decision trees from 

random subsets of the training data. Each tree is trained on a random sample with 

replacement, and during each node split, only a random subset of predictive features is 

considered. Each tree votes for the class to be assigned. Advantages of Random Forest 

include its ability to handle large and complex datasets, its robustness against overfitting 

thanks to the ensemble of trees, and its strong performance in a wide variety of 

applications. However, disadvantages include a slight increase in model bias due to the 

introduction of randomness, and difficulty in interpreting results compared to a single 

decision tree [55]. 

4.6.2.6. Logistic Regression 

Logistic Regression is a classification algorithm used to determine the probability of 

success or failure of an event with a binary dependent variable. It learns a linear 

relationship from the dataset and introduces non-linearity through the sigmoid function. Its 

advantages include ease of implementation, interpretation, training efficiency, and fast 

classification of unknown records. Disadvantages include its limitations with non-linear 

problems, the risk of overfitting with few observations, and difficulty capturing complex 

relationships in the data. 

4.6.2.7. Linear Regression 

Linear Regression is an algorithm used for regression tasks. It is primarily used to find the 

relationship between variables and to make predictions. Advantages of linear regression 

include its simplicity of implementation and ease of interpreting the output coefficients. It is 

ideal when the relationship between independent and dependent variables is linear, and it 

is less complex than other algorithms. However, disadvantages include its susceptibility to 

outliers, assumptions of linear relationships and independence among attributes, and a 
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tendency to overfit. Linear regression is useful for analyzing relationships but often 

oversimplifies real-world problems [56]. 

4.7. Proposed solution 

To predict the progression of head and neck cancer using machine learning techniques, it is 

crucial to select appropriate data and algorithms. The following table summarizes the chosen 

option for each step, along with their justifications. 

Table 2. Proposed solution table. 

Step Proposed solution Justification 

Segmentation MIM Software 

MIM was chosen because it is the software 
used in Hospital de Bellvitge, and this 
segmentation step was carried out during an 
internship at the hospital. 

Image 
Preprocessing 

Converting PET Voxel 
Values to SUV and 

Resampling 

Standardization to SUV and image 
resampling are mandatory to ensure data 
comparability. Other preprocessing 
techniques did not improve model 
performance. 

Radiomics 
Features 

PyRadiomics package to 
extract all features 

All radiomics features from PyRadiomics 
were used because they are compliant with 
the IBSI. 

Harmonization ComBat 

Selected as it is a widely established and 
effective method for harmonizing radiomics 
data across different scanners and 
acquisition protocols. 

Feature 
Selection 

Univariate and 
Multivariate Feature 

Selection 

Both univariate and multivariate methods 
were used to ensure that all relevant and 
important features are considered, improving 
model robustness. 

Classification 
SVM, Random Forest, 

and Logistic Regression 

These models were chosen for their strong 
performance in classification tasks, 
interpretability, and ability to handle small 
datasets well. 
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5. Detailed Engineering 

The pipeline of this project includes several critical stages: image segmentation, preprocessing, 

radiomic feature extraction, data harmonization, feature selection and final classification. Each step 

is designed to ensure the accuracy, reproducibility, and robustness of the predictive model. 

 

Figure 3. Workflow of the project. (Based on: [57]) 

5.1. Segmentation 

Before to start the project, 200 patient studies had been previously anonymized in accordance with 

ethical regulations and were readily available for segmentation. 

The first step of the project consists of tumour and lymph node segmentation, this process was 

done during an internship at Hospital Universitari de Bellvitge; it was performed using MIM Software 

because it is the clinical imaging platform routinely used at Hospital Universitari de Bellvitge. 

Among the collected PET/CT scans, the majority comprised a dedicated PET/CT study of the head 

and neck; with a smaller proportion having only whole-body studies that extended to include the 

head and neck. When both options were available, head and neck studies were prioritized for 

segmentation due to their higher spatial resolution and better anatomical detail, which are essential 

for accurate delineation in this region. 

The segmentation process focused on key anatomical targets relevant to prognosis in head and 

neck cancer. These included the primary tumour, a second tumour if present, the largest metastatic 

lymph node, and any additional involved lymph nodes when identifiable. The initial step of 
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segmentation was performed using a fixed threshold approach, applying a Standardized Uptake 

Value (SUV) cutoff of 3. This method isolates hypermetabolic regions by selecting voxels with SUV 

values equal to or greater than 3, a commonly used baseline to distinguish malignant from 

physiologic uptake in oncologic PET imaging. 

 

Figure 4. Segmentation of ROIs by SUV threshold of 3. 

Following this initial thresholding, only the automatically generated contours corresponding to the 

anatomical regions of interest were retained, while non-relevant areas were discarded. To improve 

segmentation accuracy and better define lesion boundaries, a secondary refinement step was 

applied using an adaptive threshold set at 41% of the maximum SUV (SUVmax) of each lesion. 

The 41% threshold method is a reliable approximation of the metabolically active tumour volume, 

helping to mitigate partial volume effects and standardize lesion delineation across patients [58]. 

 

Figure 5. Redefinition with the 41% decay of each lesion. 

All contours generated through automated methods were subsequently reviewed and manually 

adjusted by expert nuclear medicine physicians. Manual corrections were applied when necessary 

to address inaccuracies such as overextension into adjacent structures or under-segmentation of 
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lesions with diffuse uptake. Finally, a composite contour encompassing all tumour and nodal 

regions was created, forming a single total tumour volume. 

5.2. Image Preprocessing 

All PET/CT images underwent preprocessing to ensure consistency across scans. This included 

resampling to a uniform voxel size and applying intensity normalization to reduce inter-scanner 

variability and standardize radiomic feature extraction. 

5.2.1. Read DICOM Files 

The PET/TC studies and the segmentations performed in MIM Software were saved in 

DICOM format, the regions of interest specifically using the RT Structure standard. DICOM 

(Digital Imaging and Communications in Medicine) is the international standard for 

handling, storing, and transmitting medical imaging information. It allows for the integration 

of image data and associated metadata, such as patient information, acquisition 

parameters, and spatial orientation, in a standardized and interoperable format. 

The RT Struct file is a particular DICOM object used to encode contours of segmented 

anatomical structures. It is important to note that RT Struct files do not store the 

segmentations as volumetric masks or voxel-based data. Instead, they represent the 

segmentation as a collection of planar closed polygonal contours (also called structure 

sets) that are drawn over specific slices of the original image. These structures are defined 

relative to the imaging coordinate system, and each contour corresponds to a specific axial 

slice of the associated CT or PET scan. 

The DICOM series for each study were identified by recursively searching directory paths 

for DICOM files associated with a specific imaging study. The RT Struct file was identified 

by scanning for the presence of the ROIContourSequence tag within the DICOM metadata. 

Only one RT Struct file was retained per study, and a warning was issued in cases of 

multiple matches. 

Because RT Struct files store only a geometric representation of the segmented regions, 

a reconstruction process is required to convert these planar contours into 3D binary masks 

or volumetric arrays suitable for computational analysis.  

5.2.2. Construction of Segmented Structures 

Once the appropriate RT Struct files were loaded, the names and indices of all available 

ROIs were retrieved from the DICOM data. The corresponding contour datasets were 

extracted, each contour is represented by a set of 3D physical coordinates (in millimeters), 

which were then converted into 2D pixel coordinates by referencing the appropriate DICOM 

image slice via its image identificator. This mapping required reading the associated image 

file and using the pixel spacing and image origin metadata to perform coordinate 

transformation from physical to image space. 

The contours were then rasterized into binary mask, which converted polygonal 

coordinates into filled 2D Boolean arrays. All masks were stored in a dictionary indexed by 

image identifier, allowing for alignment with the corresponding DICOM image slices. 
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To ensure consistent spatial alignment, image slices were sorted in ascending order based 

on their z-axis positions. Image and mask volumes were constructed by stacking the 2D 

slices in the sorted order, creating 3D volumes suitable for further analysis. 

The entire processing step was developed and executed using Python, leveraging libraries 

such as Pydicom, Numpy, and PIL for DICOM parsing, numerical operations, and image 

manipulation. As a result, 3D binary mask matrices corresponding to the segmented 

regions were successfully generated. 

5.2.3. Converting PET voxel values to SUV   

To convert PET voxel values from arbitrary intensity units to standardized uptake values 

(SUVs), a Python-based pipeline was implemented. This process ensures the resulting 

SUVs are quantitatively meaningful and comparable across patients and time points. The 

approach was implemented using NumPy for array-based operations and follows 

established clinical standards for SUV computation. 

First, patient weight was extracted from the DICOM header and converted from kilograms 

to grams. If the value was missing or zero, a default value of 70 kg was assumed. The scan 

start time was obtained from the SeriesTime field and converted in seconds. 

To compute the decay-corrected injected dose, information from the DICOM data was 

retrieved, including the radionuclide half-life and the total injected dose. The algorithm 

adjusts for radioactive decay from the injection time to the scan time using the standard 

exponential decay formula: 

𝑑𝑒𝑐𝑎𝑦𝑒𝑑 𝑑𝑜𝑠𝑒 = 𝑖𝑛𝑗𝑒𝑡𝑒𝑑 𝑑𝑜𝑠𝑒 × exp [– ln(2) ×
(𝑡𝑠𝑐𝑎𝑛 –  𝑡𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛)

ℎ𝑎𝑙𝑓 − 𝑙𝑖𝑓𝑒
] 

 

Figure 6. Reconstructed 3D binary mask matrices 



Nuria González Cuesta 
Clinical-Radiomic Model for HNC Outcome Prediction 

36 
 

Finally, SUV values were computed voxel-wise by multiplying the PET image by the 

patient’s weight and dividing by the decay-corrected dose: 

𝑆𝑈𝑉 =
(𝑃𝐸𝑇 ×  𝑊𝑒𝑖𝑔ℎ𝑡)

𝑑𝑒𝑐𝑎𝑦𝑒𝑑 𝑑𝑜𝑠𝑒
 

This method yields a three-dimensional matrix of SUV values, which provides a normalized 

metric of radiotracer uptake, essential for quantitative PET analysis. 

5.2.4. Resampling 

To ensure consistency in spatial resolution across PET studies acquired with different 

scanners and anatomical protocols (head and neck and whole-body imaging), volumetric 

data were spatially normalized. Given the heterogeneity of image dimensions, particularly 

in the axial (x) and coronal (y) planes, a conditional resampling step was implemented. 

Specifically, a function was used to reshape the 3D by interpolating it to a fixed resolution 

of 256×256 pixels (corresponds to the transversal resolution of the Discovery IQ scanner), 

while preserving the original number of slices in the z-direction. This rescaling was 

performed using cubic interpolation, implemented to preserve anatomical detail and avoid 

aliasing artifacts. 

 

Figure 7. Cubic convolution representation [59]. 

5.2.5. Morphological Refinement 

Given the potential for multiple disconnected components resulting from automatic or semi-

automatic segmentation algorithms, a filtering procedure was employed to retain only the 

largest contiguous segmented region. This was achieved by labelling connected 

components, computing the voxel count for each labelled region and retaining only the 

region with the maximum volume. This strategy ensured that spurious or fragmented 

regions were excluded from further analysis, thereby improving the anatomical fidelity of 

the segmentation and minimizing downstream errors. 

To enhance anatomical precision in the segmentation, non-relevant regions from the 

masks were removed by superimposing the corresponding CT onto the PET images and 

applying a threshold of -500 Hounsfield Units to the CT scan. In particular, segmented 

regions that extended into exterior parts of the body, such as superficial skin-adjacent 

voxels, were systematically removed. This correction is critical in cases where the tumour 
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is located near the body’s surface, as misclassifications can erroneously include 

background or air-adjacent voxels. Additionally, given the anatomical context of 

nasopharynx and oropharynx cancers, regions of segmentation that overlapped with air-

filled were eliminated. These areas, though spatially contiguous with tumour regions, do 

not contain tissue of interest and can introduce noise into quantitative analyses. 

5.3. Radiomics Feature Extraction 

Radiomic feature extraction was subsequently performed to quantitatively characterize the 

segmented lesions. This process involves computing a wide range of features that describe the 

intensity, shape, and texture patterns within the segmented volumes.  

5.3.1. Pyradiomics Function 

Radiomic features for each lesion type were extracted using the open-source Python 

package PyRadiomics, which provides a standardized framework for high-throughput 

feature extraction from medical images. 

PyRadiomics input consisted of the pre-processed PET images and the corresponding 

binary segmentation masks, which delineated the regions of interest. It also provides a 

wide range of configurable parameters that allow users to tailor the feature extraction 

process to their specific data and research needs. The table below summarizes the most 

relevant customizable parameters available in the PyRadiomics extraction configuration: 

Table 4. PyRadiomics parameter configuration used for radiomic feature extraction [60]. 

Parameter Description 
Default 

Value 

Selected 

Value 

normalize 
Boolean. Enable normalization of the 

image prior to any resampling. 
False False 

resampledPixelSpacing 
List of 3 floats. Defines the spacing to 

resample the images to isotropic voxels 
None None 

minimumROIDimensions 
Integer (1–3). Minimum required 

dimensions of the segmented region. 
2 2 

minimumROISize 
Integer. Minimum number of voxels 
required in the ROI 

1 1 

correctMask 
Boolean. Attempts to realign the mask 

to image geometry if mismatch occurs. 
False False 

LoG 
Laplacian of Gaussian filter. Enhances 
edges by emphasizing grey level 
changes. 

False False 

sigma 
List of floats. Defines scale levels for 

Laplacian of Gaussian filter. 
[1.0, 3.0, 

5.0] 

[1.0, 3.0, 

5.0] 

gradientUseSpacing 
Boolean. Accounts for image spacing in 

gradient magnitude computation. 
True True 
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label 
Integer. Label value used to identify the 

Region of Interest (ROI) in the mask. 
1 1 

binWidth 
Float > 0. Sets the width of histogram 

bins used for gray level discretization. 
25 0.1 

distances 

List of integers. Specifies pixel 

distances for computing texture 

matrices like GLCM. 

[1] [1] 

symmetricalGLCM 

Boolean. Generates symmetrical 

GLCMs considering both i→j and j→i 

transitions. 

True True 

gldm_a 
Float. Alpha cutoff for gray level 

dependence in GLDM. 
0 0 

kernelRadius 
Integer. Radius used to define the 

kernel size for local texture features. 
1 1 

glcmf 
Boolean. Enable extraction of Gray 

Level Co-Occurrence Matrix features. 
True True 

glrlmf 
Boolean. Enable extraction of Gray 

Level Run Length Matrix features. 
True True 

glszmf 
Boolean. Enable extraction of Gray 

Level Size Zone Matrix features. 
True True 

ngtdmf 

Boolean. Enable extraction of 

Neighbouring Gray Tone Difference 

Matrix features. 

True True 

gldmf 
Boolean. Enable extraction of Gray 

Level Dependence Matrix features. 
True True 

 

The parameters selected were optimized to extract radiomic features specifically from PET 

images of head and neck lesions, where ROIs are typically small. A narrow bin width (0.1) 

was chosen to preserve subtle texture variations. 

5.3.2. Extracted Features 

A comprehensive set of radiomic features was computed. From each lesion 350 features 

were extracted, including first-order statistics, shape descriptors, and higher-order texture 

features derived from gray level co-occurrence matrix (GLCM), gray level run length matrix 

(GLRLM), gray level size zone matrix (GLSZM), neighboring gray tone difference matrix 

(NGTDM), and gray level dependence matrix (GLDM). In addition to the radiomic features, 

several basic lesion characteristics, such as voxel-based and physical size, and the 

centroid coordinates in x, y, and z, were calculated, along with the distances from the 

SUVmax location to the lesion centroid and from the SUVmax location to the nearest point 

on the lesion perimeter. All features were extracted in compliance with IBSI guidelines, 
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ensuring reproducibility and comparability across studies. The complete feature set was 

saved in CSV files, with one file generated per lesion type to facilitate organized data 

analysis. 

5.4. Harmonization 

The harmonization of radiomic features was conducted using the ComBat algorithm, a well-

established method originally developed for genomics data but now widely applied in 

radiomics to correct for batch effects introduced by different imaging equipment or 

protocols. In this study, the harmonization process aimed to mitigate the variability arising 

from the use of different PET scanners (Discovery ST, Discovery IQ and Discovery MI), 

ensuring comparability of radiomic features across datasets. 

The workflow began with the compilation of datasets from two lesion sites: oropharyngeal 

and nasopharyngeal. Each dataset integrated radiomic features from tumours and 

lymphadenopathies. After extensive data cleaning, the datasets were merged to create a 

unified matrix for harmonization.  

Prior to applying ComBat, the numeric features were isolated and transposed into a matrix 

format suitable for the algorithm. Variables with excessive missingness or uniform values 

were filtered out to preserve statistical robustness. The ComBat model was then fit using 

a simplified design matrix, treating scanner type as the batch variable.  

 

 

Finally, the harmonized dataset was saved as a CSV file for downstream analysis. This 

approach ensured that radiomic features retained their biological relevance while 

minimizing technical variation. 

In accordance with the recommendations of the IBSI, downstream analyses were also 

performed using the original, non-harmonized radiomic data to assess the impact of batch 

effects. This evaluation revealed a pronounced batch-related bias, with features exhibiting 

significant distributional differences across scanner types. Such heterogeneity errors in 

univariate statistical tests and severely compromised the generalizability of machine 

learning models. Predictive performance deteriorated markedly when training and testing 

were conducted across different scanner domains, underscoring the necessity of 

harmonization.  

Figure 8. Example of harmonization outcome of Minor Axis Length of Tumour feature. 
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5.5. Feature selection 

To improve model performance and reduce overfitting, a feature selection process was 

implemented to identify the most informative and non-redundant radiomic features. Prior to this 

step, a feature scaling process was applied to normalize the range of values across variables, 

which is essential to ensure that models sensitive to feature magnitudes, such as Logistic 

Regression and Support Vector Machines. Additionally, the dataset was partitioned into training 

and testing subsets using a 70:30 split, ensuring that feature selection and model evaluation were 

performed on independent data.  

5.5.1. Data Integration 

A data integration process was performed to consolidate three heterogeneous data 

sources: clinical variables extracted from the electronic health record, including 

demographic and diagnostic information, as well as other relevant patient characteristics 

such as age, sex, and history of previous diseases; metabolic features derived from 

segmented PET images, obtained from MIM Software segmentations, which required 

custom scripts to merge per-lesion metabolic data into a unified patient-level dataset; and 

harmonized radiomic features, harmonized to mitigate scanner-related batch effects.  

This integrative framework enabled a multidimensional representation of each patient, 

facilitating robust statistical analysis and machine learning modelling. 

5.5.2. Multivariate Feature Selection 

Multivariate feature selection was conducted on metabolic and radiomic datasets to 

optimize the quality and relevance of the variables used in subsequent modelling. The 

objective was to reduce redundancy, mitigate multicollinearity, and enhance model stability 

and interpretability. Correlation matrices were computed quantifying linear dependencies 

between features.  

A stringent correlation cutoff threshold of 0.8 was applied; when two or more features were 

found to be collinear above this threshold, only one representative variable was retained, 

based on relevance. The correlation matrix after feature selection is presented in the 

following figure. 

 

 

 

 

 

 

 

 

 

Figure 9. Correlation Matrix after cutoff. 
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5.5.3. Univariate Feature Selection 

Following the multivariate feature selection, ANOVA was conducted to further refine the 

feature set by evaluating the statistical significance of each variable in relation to clinical 

outcomes.  

Two separate ANOVA tests were performed, each targeting a distinct clinical endpoint: 

recurrence and overall survival (exitus). For each outcome, the features were assessed 

individually to determine whether their distributions differed significantly between patient 

groups defined by the presence or absence of the event. The three variables with the 

lowest p-values were selected for predicting recurrence, while the variable with the lowest 

p-value was chosen for predicting exitus. In survival prediction, it is important to select 

fewer variables to reduce the risk of overfitting due to the limited number of positive cases. 

The exact p-value is not required; rather, it serves as a criterion for feature reduction. 

As a result, two subsets of features were obtained, one optimized for predicting recurrence 

and another for predicting mortality. In each subset, the most clinically relevant variables 

for prediction were included alongside the statistically selected. These features served as 

inputs for the subsequent predictive modelling, ensuring both clinical relevance and 

statistical rigor with respect to the targeted endpoints. 

The selected features for predicting recurrence were: p16 presence, alcoholism, sphericity 

of the tumour, total lesion volume (ml), smoker status and maximum 2D diameter. 

The selected features for predicting mortality were: p16 presence, alcoholism and 

sphericity of the tumour. 

5.6. Classification 

For the classification of head and neck cancer recurrence and mortality, supervised machine 

learning algorithms were applied using the selected radiomic, metabolic, and clinical features. 

Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR) were used as 

classifiers. To address class imbalance and ensure adequate learning from both positive and 

negative outcomes, a weighted method was employed during model training. Additionally, repeated 

cross-validation (10 repeats of 7-fold cross-validation) was implemented to tune hyperparameters 

and select the optimal model. 

5.6.1. Statistical analysis 

Statistical analysis was employed to explore and visualize the relationship between the 

selected features and clinical outcomes. This included assessing how individual variables 

correlated with recurrence and survival, providing insight into their potential predictive 

value. Visual tools such as boxplots and bar plots were used to highlight differences in 

feature distributions across outcome groups. In the following figures, you can observe the 

relationship of some related features with the outcome. 
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5.6.2. Random Forest 

Random Forest classifiers were trained to predict both recurrence and exitus outcomes 

using the selected features. Hyperparameter tuning was conducted by optimizing the 

number of variables randomly sampled at each split (mtry) by the best AUC value, obtaining 

the best model with mtry of 1 for predicting recurrence and death.  

Following cross-validation and parameter optimization, the best-performing RF models for 

both outcomes were retrained on the complete training dataset and subsequently 

evaluated on the held-out test set.  

 

 

Figure 10. Boxplots of 3 significant features related with recurrence and 3 related with exitus. 

Figure 11. Confusion matrices for Random Forest models predicting recurrence and exitus. 
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Performance metrics, including accuracy, sensitivity, specificity, and area under the ROC 

curve (AUC), were computed to assess model discriminative capacity. The results 

demonstrated that the optimized models were capable of predict patients with and without 

recurrence or death with moderate performance. 

Table 5. Performance metrics for Random Forest models. 

Metric Recurrence Value Exitus Value 

Sensitivity 0.72 0.66 

Specificity 0.88 0.80 

Accuracy 0.83 0.70 

AUC  0.83 0.86 

To enhance model interpretability, feature importance was extracted from the final RF 
models. This analysis revealed the most influential features contributing to each predictive 
task. In both models, radiomic shape features emerged among the top predictors, clinical 
variables such as alcoholism or p16 presence also showed significant relevance, and the 
variable of the type of tumour was important to differentiate their different behaviour. 

 

 

 

  

 

Figure 13. Feature importance plots for random forest models predicting recurrence and exitus, 

 

Figure 12. ROC curves for Random Forest models predicting recurrence and exitus. 
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5.6.3.  Support Vector Machine Model 

Support Vector Machine (SVM) models were also developed to predict both recurrence 

and exitus. During this process, hyperparameter tuning was performed for the 

regularization parameter C and the kernel width parameter sigma, both of which influence 

the model's ability to delineate complex decision boundaries. A radial basis function kernel 

was employed to capture potential non-linear relationships among the features. 

Optimal parameter configurations (sigma = 0.01 and C = 10 for recurrence, sigma = 0.05 

and C = 0.1 for exitus) were identified and the final SVM models were retrained using the 

full training dataset and subsequently evaluated on the independent testing set.  

The SVM models exhibited moderate classification performance, contingent on the specific 

outcome variable. For recurrence prediction, the model demonstrated high sensitivity and 

AUC. In the case of exitus prediction, the model also achieved elevated sensitivity with 

relatively diminished specificity. 
Table 6. Performance metrics for SVM models. 

Metric Recurrence Value Exitus Value 

Sensitivity 0.73 0.93 

Specificity 0.83 0.70 

Accuracy 0.76 0.76 

AUC  0.85 0.84 

Figure 15. Confusion matrices for SVM models predicting recurrence and exitus. 

Figure 14. ROC curves for SVM models predicting recurrence and exitus. 
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5.6.4. Logistic Regression Model  

Logistic Regression (LR) models were implemented to predict head and neck cancer 

outcomes. The LR models were trained using the generalized linear model framework 

("glm") without hyperparameter tuning. After training, the models were evaluated on the 

independent test set, derived from a prior 70:30 training-test split. 

The LR models exhibited distinct predictive performance across the two clinical outcomes. 

While both models achieved a high area under the ROC curve, the LR model demonstrated 

greater sensitivity in predicting recurrence and higher specificity in predicting exitus. 

Table 7. Performance metrics for Logistic Regression models. 

Metric Recurrence Value Exitus Value 

Sensitivity 0.71 0.66 

Specificity 0.78 0.87 

Accuracy 0.73 0.71 

AUC  0.82 0.84 

 

 

Figure 17. Confusion matrices for Logistic Regression models predicting recurrence and exitus. 

 

Figure 16. ROC curves for Logistic Regression models predicting recurrence and exitus. 
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5.7. Discussion 

The present study outlines a comprehensive and reproducible pipeline for radiomic analysis in head 

and neck cancer, integrating clinical, metabolic, and radiomic features. The process encompasses 

segmentation, feature extraction, harmonization, feature selection, and classification.  

Segmentation represents a key step in the radiomics workflow. Inaccurate or inconsistent 

delineation of lesions introduces significant variability. An undefined or unstandardized 

segmentation pipeline can lead to poorly generalizable models, affecting both the reproducibility of 

features and the robustness of downstream analyses.  

Post-processing corrected variability from PET scanners and radiotracer doses, as differences in 

resolution and acquisition parameters can compromise radiomic feature integrity. Standardizing 

voxel spacing and intensity normalization helps stabilize features across datasets. Additionally, 

ComBat harmonization effectively removed scanner-induced batch effects, which otherwise led to 

biased analyses and reduced model performance. 

Feature importance analysis from the Random Forest models revealed shared predictors for 

recurrence and exitus, reflecting the clinical relationship between these outcomes, since exitus is 

often associated with tumour recurrence. The prediction of exitus involved fewer features, likely 

due to the lower number of positive cases in the dataset. Shape features, particularly sphericity, 

emerged as one of the most influential predictors across both outcomes. Furthermore, the 

integration of radiomic and clinical data significantly enhanced the models’ predictive performance, 

underscoring the value of a multimodal approach in improving prognostic accuracy. 

Clinically recognised variables, such as nationality, known to be relevant in nasopharyngeal cancer, 

offered limited predictive value in our study, likely due to the low representation of non-local patients 

in the Barcelona cohort. Although cancer type remained an important variable, likely due to the 

divergent clinical trajectories and treatment responses associated with different tumour sites. 

The performance of the machine learning models revealed important distinctions in their predictive 

capabilities for recurrence and exitus outcomes. For recurrence, the Random Forest model 

achieved the highest accuracy (0.83) and specificity (0.88), while the SVM obtained the highest 

sensitivity (0.73) and AUC (0.85). Although Logistic Regression showed slightly lower performance 

(AUC of 0.82), it remained consistent across metrics. The AUC, as the most relevant indicator of 

overall model discrimination, suggests that both RF and SVM offer reliable predictions. Depending 

on the clinical objective, models can be adjusted to prioritise specificity, reducing unnecessary 

follow-ups, or sensitivity to minimise missed recurrences. 

In contrast, predictive performance for exitus showed lower precision. The SVM model stood out 

with a notably high sensitivity (0.93) and balanced AUC (0.84), making it suitable for identifying 

high-risk patients. RF, while slightly less sensitive (0.66), showed a strong AUC (0.86) and higher 

specificity (0.80), indicating utility in more conservative clinical settings. LR performed similarly, 

with low sensitivity (0.66), and an AUC of 0.84.  

Future improvements to this pipeline could include the use of deep learning for automated 

segmentation, more advanced harmonization approaches, and external validation on independent 

multicenter datasets.   



Nuria González Cuesta 
Clinical-Radiomic Model for HNC Outcome Prediction 

47 
 

6. Execution Schedule 

To plan a project adequately, it is necessary to define each of its phases, from preparation or 

execution to results. The Work Breakdown Structure (WBS) provides a global visualization of the 

essential task groups that need to be performed to carry out the project, allowing for the 

development of a timeline. 

Table 8. Definition of work blocks and project tasks. 

Project Phases Task ID Task Name 

1. Documentation 1.1. 
1.2. 
1.3. 

Research 
Written Report 
Presentation 

2. Segmentation 2.1. 
2.2. 

Patient Upload 
Segmentation 

3. Image Preprocessing 3.1. 
3.2. 
3.3. 
3.4. 

Open DICOM Files 
Construction of Segmented Structures 
Converting PET Voxel Values to SUV 
Resampling 

4. Radiomics Extraction 4.1. 
4.2. 

Extract Radiomics Features 
Save Radiomics Features 

5. Harmonization 
5.1. 
5.2. 

Harmonization with ComBat 
Save Harmonized Features 

6. Feature Selection 
6.1. 
6.2. 
6.3. 

Multivariate Feature Selection 
Merge Clinical Data 
Univariate Feature Selection 

7. Classification 

7.1. 
7.2. 
7.3. 
7.4. 

Statistical Analysis 
Random Forest Model  
SVM Model 
Logistic Regression Model 

8. Validation 
8.1. 
8.2. 
8.3. 

Segmentation Validation 
Classification Validation 
Total Validation 

 

Below is the detailed hierarchical structure of the project's WBS: 

 

 
Figure 18. Detailed Work Breakdown Structure (WBS) of the Project. 
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In total, 22 tasks have been identified. In the annexes, the previously mentioned tasks are defined; 

a detailed description will be provided, including the required content, deliverables, necessary 

resources, estimated cost, and duration of each task.  

The PERT/CPM diagram shows the time involvement and coordination of the different tasks, 

indicating their respective durations and interdependencies. This can help identify the critical path, 

where any delay could impact the final delivery schedule. With this knowledge, it is possible to plan 

the project workflow more efficiently. As shown in the next figure, even though the report is the 

largest task, it is written during and after the practical work. This makes documentation part the 

critical path and needs special attention. 

 

Figure 19. PERT-CPM diagram. 

In addition to the PERT/CPM diagram, the last tool used to organize the project was the Gantt 

chart, which allows for a clearer view of the timeline of each task. In this diagram, each task was 

assigned to the time specified in the WBS dictionary. This chart shows when tasks should happen 

and when they should be finished. The relationships between the different tasks were specified 

using connecting lines. The segmentation process was carried out during practical sessions; 

because of that, it was the first task to be completed. This information can be seen in in the following 

diagram, thus providing a complete understanding of the project schedule and task 

interdependencies. 

A color-coding system was used to differentiate tasks based on whether they are critical or not: 

1. Critical tasks: These have no slack and cannot be delayed, as this would mean missing the 

project’s final deadline. 

2. Non-critical tasks: These have some slack, meaning they can take slightly longer to complete 

without causing major impact on the overall project. 
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Figure 20. Gantt Diagram of the project. 
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7. Technical Viability 

In the Canvas Model, technical feasibility is a fundamental aspect that assesses whether the project 

can be carried out with the available technological resources. This evaluation includes reviewing 

the technical capabilities of the team, the necessary infrastructure, and the specific knowledge 

required to successfully implement the proposed solutions. Below is the detailed Canvas Model for 

this project. 

 

Figure 21. Canvas Model of the project. 

In the development and implementation of any engineering project, it is essential to understand 

both the internal and external factors that can affect its success and its impact on the market. 

Below, a comprehensive SWOT analysis is carried out to assess the weaknesses, threats, 

strengths, and opportunities. Strengths refer to the internal advantages and resources that give 

the project a competitive edge, such as innovative technology, skilled personnel, or strong 

partnerships. Weaknesses are internal limitations or deficiencies that may hinder progress, 

including lack of funding, technical constraints, or insufficient experience. Opportunities are 

external factors in the environment that the project can exploit to its advantage, such as emerging 

markets, favourable regulations, or advances in related technologies. Threats are external 

challenges or risks that could negatively impact the project's success, including market competition, 

changing customer demands, or economic instability. 
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Figure 22. SWOT chart of the project. 

The CAME analysis is a strategic tool based on the SWOT analysis to define the actions to be 

taken depending on the identified weaknesses, threats, strengths, and opportunities. Below is a 

detailed analysis in different paragraphs, offering a clear action guide focused on improving 

weaknesses, addressing threats, maintaining strengths, and exploring opportunities. 

 

Correct (Weaknesses): 

• Short development time: Implement more efficient project management to optimize time, 

establish clear priorities, and break the project into manageable phases. 
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• Short experience in PET/CT image analysis: Dedicate time to training in this field and 

collaborate with experts for knowledge transfer. 

• Limited experience in segmentation processes: Develop specific protocols and guides 

for segmentation. 

• Restricted financial resources: Leverage resources from the University of Barcelona and 

the Bellvitge University Hospital. 

 

Address (Threats): 

• Susceptibility to regulatory changes: Stay up to date with legal and regulatory updates. 

• Medical professionals unfamiliar with this technology: Provide training and education 

programs for medical professionals. 

• Significant investment by other companies and institutions in developing new AI-

based products: Differentiate our product by highlighting its unique features and specific 

benefits. 

• Approval by the hospital ethics committee: Prepare robust and detailed documentation 

for review by the ethics committee and ensure all practices follow ethical standards. 

• Implementation may be challenging in other hospitals: Develop standardized 

protocols. 

 

Maintain (Strengths): 

• Integration in a multidisciplinary team with experience in head and neck image 

analysis using PET/CT: Maintain and expand joint research activities. 

• Availability of facilities at the Hospital de Bellvitge: Leverage the infrastructure to carry 

out the project. 

• Experience in Machine Learning: Use this experience to develop a complex and precise 

algorithm. 

• Cross-disciplinary knowledge in medicine and technology: Leverage this knowledge 

to efficiently bring technology into the medical field. 

• State-of-the-art PET/TC equipment: Utilize advanced imaging capabilities to ensure 

high-quality data. 

• Support from the University of Barcelona: Maintain strong institutional backing for 

academic and technical resources. 

 

Explore (Opportunities): 

• Increased incidence of Head and Neck Cancer in recent decades: Promote the 

technology so it can be used in other centers. 
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• Political awareness towards health improvement: Take advantage of the situation to 

gain support. 

• Reducing radiation by decreasing the number of tests per patient: Use this as an 

argument to commercialize the technology. 

• Patent possibility: Investigate intellectual property opportunities and patent newly 

developed technologies. 

• No existing products using AI in PET/CT images for Head and Neck Cancer: Conduct 

market studies to identify specific needs and adapt the product accordingly. 

• Possibility to present at conferences: Prepare scientific presentations and participate in 

international conferences to share results. 

• Possibility to publish an article to disseminate the work: Write a scientific article about 

the project and submit it to prestigious journals. 
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8. Economical Viability 

The economic forecast is an essential element in the planning of any project, as it allows for 

estimating the costs and resources needed to carry out the different phases of the project. 

In this project, the direct costs are not significant, as the main expenses depend on human 

resources. It is assumed that an engineering student is working full-time at 12€ per hour, along with 

the partial cost of the computer used for the work. It should also be noted that the student salary 

costs are fully covered by the University of Barcelona, while the remaining expenses are assumed 

by the Hospital Universitari de Bellvitge. 

Table 9. Economical viability of the project. 

CONCEPT DESCRIPTION COST 

HUMAN 

RESOURCES 

Includes time dedicated by a student (paid at 12€/hour) for 

data processing, analysis, and programming tasks; and a 

clinician (paid at 20€/hour) for supervision of segmentations. 

8128€ 

COMPUTER 

A workstation with a computer valued at 850€, amortized over 

8 years. This results in an estimated operational cost of 

approximately 0.012€/hour based on its lifespan. 

7,5€ 

PET/CT IMAGES 

Medical imaging data obtained from patient follow-up studies, 

provided as part of routine clinical care, therefore incurring no 

additional cost for the project. 

0€ 

MIM 

SOFTWARE 

Commercial software used for medical image segmentation, 

requiring a 10,000€/year license. This cost can be 

approximated to about 1€/hour of usage based on typical 

working hours. 

168€ 

PROGRAMMING 

SOFTWARE 

Software tools like R and Python, which are open-source and 

free to use, covering all programming and statistical analysis 

needs for the project. 

0€ 

 

Thus, based on the detailed cost breakdown, the estimated total cost of the project amounts to 

approximately 8303.5 €. Taking all the previous factors into account, we can confidently conclude 

that the project is economically feasible and presents a sound use of available resources. 
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9. Legal Aspects 

The development of this project must be governed by both national and European regulations. This 

includes adherence to Spanish laws and European Union regulations, particularly those related to 

biomedical research and data protection. Additionally, it is crucial to follow the ethical principles of 

medical research, such as those established in the Declaration of Helsinki [60], and to ensure the 

informed consent of all participants.  

This project was formally reviewed and approved by the Bioethical Committee of Hospital 

Universitari de Bellvitge, which evaluated the research protocols to ensure that they meet ethical 

standards, safeguard participant rights, and minimize risks. 

About data management, it is essential to adhere to the internal policies of the hospital, and to 

ensure that the handling of medical data follows established protocols. Additionally, a clear policy 

must be established regarding the duration of data storage, with a retention period that complies 

with relevant regulations and minimizes the risk of patient privacy breaches.  

In compliance with Spanish Law 3/2018 on the Protection of Personal Data and the Guarantee of 

Digital Rights, all data used in this study must be fully anonymized [61]. This means that before any 

data is accessed or analysed, all direct and indirect identifiers—such as names, addresses, 

geographic locations, ethnicity, and other sensitive characteristics—must be removed or masked 

to prevent re-identification of individual participants. Researchers are strictly prohibited from 

visualizing or handling any personal data that could compromise participant privacy.  

Regulation (EU) 2017/745, which applies to general and implantable devices, defines the term 

“Medical Device” as any instrument, apparatus, appliance, software, implant, reagent, material, or 

other article intended by the manufacturer to be used in humans for specific medical purposes, 

such as diagnosis, prevention, monitoring, prediction, prognosis, treatment, or alleviation of 

disease, among others [62]. This means that our current prototype, which is designed to predict 

the progression of head and neck cancer using artificial intelligence, would be considered a Medical 

Device under this legislation, as it has the specific purpose of predicting a disease. Finally, all model 

outputs must undergo rigorous human review before being used in clinical practice, thereby 

ensuring the reliability and safety of the model in the healthcare context. 
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10. Conclusions and Future Perspectives 

This study demonstrates the feasibility of developing predictive models for head and neck cancer 

outcomes, specifically recurrence and mortality, from PET imaging. The proposed models exhibit 

applicability across various head and neck tumour subtypes and PET imaging sources, highlighting 

their potential for broad clinical utility. 

All technical and methodological steps were successfully implemented to develop a robust and 

generalizable machine learning model for predicting recurrence and exitus. The process began 

with systematic segmentation of tumours and lymph nodes to ensure consistent definition of 

regions of interest.  A dedicated software solution enabled the transformation of DICOM data into 

analysable 3D numerical matrices, facilitating comprehensive radiomic feature extraction. To 

reduce scanner-related variability ComBat-based harmonization was applied, resulting in improved 

consistency and reliability across imaging sources. Finally, a structured feature selection strategy 

identified a set of interpretable descriptors that integrated both clinical and radiomic variables, each 

demonstrating relevance to oncological outcomes, and used to create the predictive models. 

Machine learning models demonstrated solid predictive performance for both recurrence and 

exitus, with radiomic features. For recurrence prediction, Random Forest achieved the highest 

accuracy (0.83) and specificity (0.88), while SVM showed the highest sensitivity (0.73) and AUC 

(0.85), making both models strong candidates depending on clinical priorities. 

For exitus, SVM reached the highest sensitivity (0.93) and a strong AUC (0.84), whereas Random 

Forest offered better specificity (0.80) and the highest AUC (0.86). The high AUC values indicate 

robust discriminative ability, and the flexibility in tuning model thresholds supports their integration 

into personalised decision-making pathways. 

Among radiomic features, sphericity has demonstrated significant predictive value in head and neck 

cancer outcome models and should be considered for clinical application as a predictor variable. 

Tumours with lower sphericity often indicate more irregular and invasive growth patterns. 

Incorporating sphericity into clinical practice can improve risk stratification, making it a valuable and 

non-invasive biomarker for guiding personalized patient management in head and neck oncology. 

Furthermore, maximum 2D diameter and total lesion volume are also crucial features for prediction, 

as they provide quantitative measures of tumour size and burden, which are strongly correlated 

with disease extent and overall patient survival. 

In summary, the SVM model demonstrated the highest AUC for recurrence prediction, suggesting 

its strong potential for clinical application in head and neck cancer management. For mortality 

prediction, the Random Forest model showed the most reliable performance, based on the AUC. 

Models with high AUC can be adjusted to prioritise specificity, reducing unnecessary follow-ups, or 

sensitivity to predict potential recurrences. 

The primary limitations of this study include temporal constraints and a limited sample size. Due to 

the restricted duration of data collection, the number of patients included was relatively small, 

thereby limiting the scope of analysis. Extending the study period would allow for the inclusion of a 

larger and more diverse patient cohort, potentially encompassing additional diseases such as 

hypopharynx cancer. Moreover, an increased sample size would enhance the robustness of the 

findings, facilitating more comprehensive insights and stronger statistical validity. 
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Although existing machine learning models for head and neck cancer outcome prediction have 

shown promising results, this study offers a significant advancement by incorporating data from 

different PET scanners. This multi-scanner approach enhances the model’s robustness and 

generalizability by accounting for variability across different imaging devices. Consequently, the 

findings are more applicable to diverse clinical settings. 

Future research should continue to explore the clinical relevance of the selected features, many of 

which reflect key biological and anatomical characteristics of tumour behaviour and treatment 

response. Indeed, features such as tumour sphericity, standardized uptake values, and lymph node 

involvement have been demonstrated in the literature to be closely associated with therapeutic 

outcomes and disease progression. 

The integration of deep learning segmentation methods presents another promising avenue. These 

techniques can significantly reduce inter-observer variability and human error, leading to more 

consistent and reproducible delineation of tumour regions. It directly contributes to the quality of 

radiomic feature extraction, thereby strengthening the predictive power of subsequent models. 

As already emphasized, expanding the dataset is essential for improving model performance, 

generalizability, and robustness. Larger and more diverse cohorts would reduce overfitting, 
enabling more personalized and reliable predictions. 

With a larger dataset, becomes feasible the application of more complex artificial intelligence 

approaches, such as CNNs, as these models can capture complex relationships to enhance 

prognostic accuracy. Future work should explore the integration of such models for end-to-end 

predictive pipelines in head and neck cancer prognosis.  
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Annexes 

1. Documentation 

1.1. Research 

Description 
Collection and analysis of relevant information to establish the 

foundations of the project. 

Deliverable  A research report summarizing key findings and data sources. 

Resources  
- Computer with internet access 
- Human resources 

Estimated cost  481 € 

Estimated duration  10 days (20h) 

1.2. Written Report 

Description Writing a detailed written report about all the project. 

Deliverable  Report file. 

Resources  
- Computer with internet access 
- Human resources 

Estimated cost  1658 € 

Estimated duration  20 days (138h) 

1.3. Presentation 

Description 
Design and preparation of a visual presentation summarizing key 
points from the project. 

Deliverable  PowerPoint presentation. 

Resources  
- Computer with internet access 
- Human resources 

Estimated cost  192 € 

Estimated duration  2 days (16h) 
Table 10. WBS dictionary for 1. Documentation tasks. 

2. Segmentation 

2.1. Patient Upload 

Description Upload studies to MIM Software. 

Deliverable  A folder containing all the studies imported into MIM Software. 

Resources  

- Computer with internet access 
- Studies list 
- MIM Software 
- Human resources 

Estimated cost  48 € 

Estimated duration  1 day (8h) 

2.2. Segmentation 

Description 
Identification and segmentation of the regions of interest (tumour and 
lymph nodes). 

Deliverable  Folder with the structures segmented (RT Structures). 

Resources  
- Computer with internet access 
- MIM Software 
- Human resources 

Estimated cost  1922 € 

Estimated duration  20 days (160h) 
Table 11. WBS dictionary for 2. Segmentation tasks. 
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3. Image Preprocessing 

3.1. Open DICOM files 

Description Development of a script to automate the processing from DICOM files. 

Deliverable  A functional script capable of batch-processing DICOM files. 

Resources  

- Computer with internet access 
- Python 
- Anaconda 
- Human resources 

Estimated cost  288 € 

Estimated duration  4 days (24h) 

3.2. Construction of Segmented Structures 

Description 
Generation of 3D ROIs from RT-DICOM file vectors and correction of 
spatial errors based on CT reference alignment. 

Deliverable  
The code that extracts ROIs from RT-DICOM files, aligns them with 
the CT space, and exports corrected 3D structures. 

Resources  

- Computer with internet access 
- Python 
- Anaconda 
- Human resources 

Estimated cost  72 € 

Estimated duration  1 day (6h) 

3.3. Standardize Images 

Description 
Conversion of PET image pixel values to Standardized Uptake Values 
(SUV), followed by spatial rescaling. 

Deliverable  
Script that reads performs SUV conversion and outputs rescaled 
images. 

Resources  

- Computer with internet access 
- Python 
- Anaconda 
- Human resources 

Estimated cost  144 € 

Estimated duration  2 days (12h) 
Table 12. WBS dictionary for 3. Image Preproocessing tasks. 

4. Radiomics Extraction 

4.1. Extract Radiomics Features 

Description 
Extraction of radiomics features from segmented regions using 

PyRadiomics with custom parameters. 

Deliverable  
Script utilizing PyRadiomics to extract predefined radiomics features 

based on customized parameters, generating a structured dataset. 

Resources  

- Computer with internet access 
- Python 
- Anaconda 
- Human resources 

Estimated cost  216 € 

Estimated duration  3 days (18h) 

4.2. Save Radiomics Features 

Description 
Exporting the extracted radiomics features into a structured CSV file 
for each type of lesion (tumour and lymph nodes). 
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Deliverable  
A CSV file containing the complete set of extracted radiomics features 
for each type of lesion. 

Resources  

- Computer with internet access 
- Python 
- Anaconda 
- Human resources 

Estimated cost  72 € 

Estimated duration  1 day (6h) 
Table 13. WBS dictionary for 4. Radiomics Extraction tasks. 

5. Harmonization 

5.1. Harmonization with ComBat 

Description 
Application of the ComBat algorithm to harmonize radiomics features 

across datasets acquired from different scanners. 

Deliverable  Script implementing the ComBat harmonization method. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  360 € 

Estimated duration  5 days (30h) 

5.2. Save Harmonized Features 

Description 
Export of the radiomics features after ComBat harmonization into a 
structured CSV file. 

Deliverable  A CSV file containing the harmonized radiomics features. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  72 € 

Estimated duration  1 day (6h) 
Table 14. WBS dictionary for 5. Harmonization tasks. 

6. Feature Selection 

6.1. Multivariate Feature Selection 

Description 
Application of multivariate statistical methods to select the most 

relevant radiomics features. 

Deliverable  Script that performs multivariate feature selection. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  144 € 

Estimated duration  2 days (12h) 

6.2. Merge Clinical Data 

Description Integration of clinical variables database with the radiomics database. 

Deliverable  A unified CSV file containing both clinical and radiomics features. 

Resources  
- Computer with internet access 
- R 
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- RStudio 
- Human resources 

Estimated cost  72 € 

Estimated duration  1 day (6h) 

6.3. Univariate Feature Selection 

Description 
Application of univariate statistical methods to select the most relevant 
radiomics features. 

Deliverable  Script that performs univariate feature selection. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  144 € 

Estimated duration  2 days (12h) 
Table 15. WBS dictionary for 6. Feature Selection tasks. 

 

7. Classification 

7.1. Statistical Analysis 

Description 
Perform statistical analysis on the selected radiomics and clinical 

features to identify relationship with outcome. 

Deliverable  Figures of the statistical analysis results. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  144 € 

Estimated duration  2 days (12h) 

7.2. Random Forest 

Description 
Development and training of a Random Forest model using the 
selected features, including hyperparameter tuning and performance 
evaluation. 

Deliverable  
Script implementing the Random Forest model, showing feature 
importance and performance metrics. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  216 € 

Estimated duration  3 days (18h) 

7.3. SVM Model 

Description 
Development and training of a SVM model using the selected 
features, including kernel selection and performance evaluation. 

Deliverable  Script implementing the SVM model, including performance metrics. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 
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Estimated cost  216 € 

Estimated duration  3 days (18h) 

7.4. Logistic Regression Model 

Description 
Development and training of a Logistic Regression model using the 
selected features, including regularization and performance 
evaluation. 

Deliverable  
Script implementing the Logistic Regression model, including 
performance metrics. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  216 € 

Estimated duration  3 days (18h) 
Table 16. WBS dictionary for 7. Classification tasks. 

8. Validation 

8.1. Segmentation Validation 

Description 
Consist of a thorough validation of the segmentation in collaboration 

with an expert nuclear medicine physician. 

Deliverable  Folder with the structures segmented (RT Structures). 

Resources  

- Computer with internet access 
- Studies list 
- MIM Software 
- Expert Clinician 

Estimated cost  640 € 

Estimated duration  4 days (32h) 

8.2. Classification Validation 

Description 
Validate the performance of the Machine Learning model by 
examining the features used, the code, and its accuracy, ensuring 
there is no overfitting. 

Deliverable  Model validation report. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  72 € 

Estimated duration  1 day (6h) 

8.3. Total Validation 

Description 
Validate all aspects of the project to ensure they meet the 
requirements established in the planning. 

Deliverable  Comprehensive validation report. 

Resources  

- Computer with internet access 
- R 
- RStudio 
- Human resources 

Estimated cost  192 € 

Estimated duration  2 days (16h) 
Table 17. WBS dictionary for 8. Validation tasks. 


