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ABSTRACT 
Working memory is a fundamental cognitive process enabling short-term maintenance and 
manipulation of information. In recent years, behavioral studies have revealed biases affecting 
working memory contents. It has been observed that information maintained in our working memory 
buffer (e.g., spatial location, color, auditory frequency) shifts towards previously observed positions, 
an effect known as serial dependency bias, and its magnitude correlates with conditions as 
schizophrenia and NMDAR encephalitis. This project sought to characterize the neural correlates 
of working memory and serial dependency biases using intracranial electroencephalography 
(iEEG), an invasive technique with high temporal and spatial resolution. Nevertheless, iEEG 
analyses present several challenges associated with the signal’s nature that need addressing. In 
this TFG, multiple artifact detection and cleaning methods were developed and evaluated on two 
criteria: how many trials and electrodes it preserved, and how accurately it detected current trial 
information and serial biases from preceding trials. The custom automated approach provided 
marginally higher decoding accuracy at the cost of greater data loss, whereas the manual cleaning 
delivered equivalent performance while preserving more data, rendering it preferable for whole-
brain analyses. After artifact removal, multiple analyses confirmed that information regarding both 
current stimuli and past trials could be decoded from distributed iEEG patterns. Although limited by 
a small epilepsy cohort, these findings offer practical guidance for future iEEG studies by 
demonstrating the trade-offs between data preservation and signal clarity and suggesting that serial 
dependency signals may be distributed across brain regions. This project represents the first 
investigation of working memory’s mechanisms using human iEEG. 

Key words: Intracranial electroencephalography, electrophysiological signal preprocessing, 
artifact detection, serial dependencies, neural decoding, working memory. 
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RESUM 
La memòria de treball és un procés cognitiu que permet el manteniment i manipulació d'informació 
a curta durada. Recentment, estudis conductuals han revelat biaixos que afecten continguts de la 
memòria de treball. S'ha observat que la informació mantinguda al nostre buffer de memòria de 
treball (localització espacial, color, freqüència auditiva) es desplaça cap a posicions observades 
prèviament, un efecte conegut com a biaix de dependència serial, i la seva magnitud correlaciona 
amb condicions com esquizofrènia i encefalitis per NMDAR. Aquest projecte pretenia caracteritzar 
correlats neurals de memòria de treball i biaixos de dependència serial utilitzant 
electroencefalografia intracranial (iEEG), una tècnica invasiva amb alta resolució temporal i 
espacial. Tanmateix, els anàlisis d'iEEG presenten diversos reptes associats amb la naturalesa del 
senyal. En aquest TFG, es van desenvolupar i avaluar múltiples mètodes de detecció i neteja 
d'artefactes segons dos criteris: quants assajos i elèctrodes preservava, i amb quina precisió 
detectava informació de l'assaig actual i biaixos serials d'assajos precedents. L'enfocament 
semiautomàtic proporcionà precisió de decodificació marginalment superior a costa de major 
pèrdua de dades, mentre que la neteja manual oferí rendiment equivalent preservant més dades, 
resultant preferible per anàlisis de cervell complet. Després de l'eliminació d'artefactes, múltiples 
anàlisis confirmaren que es podia decodificar informació sobre estímuls actuals i assajos passats 
de patrons d'iEEG distribuïts. Malgrat les limitacions d'una petita cohort d'epilèpsia, aquests 
resultats ofereixen orientació pràctica per futurs estudis d'iEEG demostrant compromisos entre 
preservació de dades i claredat del senyal, i suggereixen que els senyals de dependència serial 
poden estar distribuïts en regions cerebrals. 

Paraules clau: Electroencefalografia intracranial, preprocessament de senyals electrofisiològics, 
detecció d'artefactes, dependències serials, decodificació neural, memòria de treball. 
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1. INTRODUCTION 

Despite decades of research, the human brain continues to elude comprehensive characterization, 
and no artificial project has yet replicated its integrative cognitive capacities. As James D. Watson 
once said: “The brain is the last and grandest biological frontier, the most complex thing we have 
yet discovered in our universe.”  

Modern neuroscience has made significant advances allowing for a better understanding of mental 
processes from a scientific point of view, although, its societal impact remains constrained by the 
challenge of harmonizing and reconciling our humanity and essence together with the way of work 
of the brain [1].  

Initially, Aristoteles explained how the brain was a radiator that kept the heart from overheating, in 
the 16th century the first sketch of the nervous system was created by Andreas Vesalius, but it was 
not until the early 1900s that Santiago Ramón y Cajal and Camillo Golgi identified the neurons as 
the building blocks of the brain, even showing that there exist different types [2].  

Research over the past century, specially within cognitive psychology, has helped explaining and 
characterizing various cognitive processes that support human intelligence, including attention, 
perception, learning and memory. Progress in neuroimaging techniques has further elevated 
cognitive and systems neuroscience by providing increasingly detailed descriptions of how these 
processes are incorporated in the brain. Among these cognitive functions, memory stands out as 
particularly inclined to such integrative study, since it combines both neural dynamics and 
observable behavioral outcomes. Within the broader domain of memory, this work will focus on 
working memory: a cognitive system accountable for the temporary storage and manipulation of 
information necessary for tasks ranging from simple calculations to complex problem solving, and 
its capacity correlates with measures of humane intelligence. 

Recent work has demonstrated that working memory representations are influenced by previous 
information held in the memory, in other words, current mnemonic content is biased toward past 
contents. Whitney and Fischer (2014) provided empirical support by presenting participants with a 
series of stimuli and observing how their reports were consistently drawn toward features of earlier 
items. These history-dependent distortions, often termed as serial dependency biases, may 
degrade working memory fidelity, but are thought to serve as an adaptative function which stabilize 
our interpretation of environmental stimuli, and exploit the natural temporal correlation of sensory 
events integrating what we perceived in the past with what we are perceiving right now.  

This thesis will start off by reviewing notable findings and theoretical foundations related to working 
memory, and it will be followed by the findings obtained during the empirical research. This research 
aims to investigate the neural bases of serial biases, as they have been linked to mental disorders. 
We know that electrophysiological markers of these biases can be found in EEG signals, but it 
remains unclear whether specialized brain regions exist for this function in humans, to address this 
gap, this work will employ iEEG signals. Although iEEG affords exceptional temporal and spatial 
resolution compared to scalp recordings, it is quite vulnerable to a range of signal quality issues: 
high-amplitude stimulation or movement-related artifacts, line noise, electrode impedance 
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fluctuations and common noise between contacts, and nonstationary drifts can cover genuine 
neural activity [3]. Since reliable measurements and analyses of iEEG require exceptionally clear 
neural signals, this thesis will mostly focus on developing and comparing multiple preprocessing 
pipelines for artifact rejection while preserving as much data as possible. After determining the 
optimal cleaning strategy, human intracranial recordings will be shortly analyzed to corroborate that 
serial biases can also be found from inside the human brain. 

A better understanding of the mechanisms behind working memory can help in educational 
practice, developing new treatments for cognitive disorders, and extending the theoretical 
understanding of human cognition. The brain indeed boggles the mind, serving as a reminder of 
the endless possibilities that lie when curiosity and innovation are combined.  

1.1. Motivation 

This project starts off from the research done by Compte Lab based on working memory. Thanks 
to the collaboration of IDIBAPS with the epilepsy unit led by Dr. Mar Carreño at the Hospital Clinic, 
we can get intracranial EEG measurements from patients suffering from epilepsy. Up to this 
moment, serial biases have been studied through scalp EEG in humans and intracranial EEG in 
monkeys. Thereby, this is an incredible opportunity which will allow us to get a far better 
understanding in the working memory and its serial biases. However, iEEG are notoriously 
susceptible to noise and artifacts as explained earlier, consequently, the principal aim of this work 
is to identify and validate the preprocessing strategy that maximizes the trade-off between data 
retention and artifact rejection. Establishing such pipeline is not only a technical exercise but also 
a fundamental prerequisite to accurately map cortical circuits integrating both current and past 
stimuli [3]. By refining artifact detection and signal cleaning, this research will both advance 
theoretical models of working memory and lay the groundwork to target cognitive deficits linked to 
serial biases in clinical populations. 

1.2. Objectives 
The study will be organized in three objectives closely related one to another that address both 
methodological and mechanistic gaps in our understanding of working memory. The first aim 
concerns the preprocessing of iEEG recordings, which lacks a consensus on whether non 
conservative artifact removal or minimal filtering yields the most faithful representation of neural 
signals. To solve this debate, we will implement a simple manual cleaning function that depends 
on the researcher expertise in detecting artifacts, a semi-automatic pipeline, and a fully automated 
algorithm, which will all be compared allowing us to quantify the impact of each approach on signal 
quality and posterior analyses. The second aim is to establish the presence neural correlates of 
serial biases in human intracranial measurements using different information decoding techniques. 
Building on these foundations, the third and final objective is to set a solid groundwork to localize 
the brain regions that support working memory and serial biases in humans. Altogether, these 
objectives will refine iEEG preprocessing methodology and show how our past experiences flow 
through the brain, shaping each moment of thought.   
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1.3. Limitations 
To conduct this research, a few limitations were determined: 

• As a first limitation, it is important to acknowledge that the data obtained in the iEEG comes 
from patients hospitalized due to an epilepsy treatment. We are lucky enough to be able 
to talk to them and obtain measurements, but all electrodes placed in the brain are 
implanted in a strategic location because of previous suspicion that the corresponding 
section is causing the seizures. This means that the data will not be as clean as desired, 
and a previous filtering process will need to be applied so that we can extract the best 
measurements possible from all channels and the location of serial biases in the brain will 
be influenced too. As an added limitation to data, environmental conditions must be 
mentioned since they are not controllable and may add variability to the data. To try to fix 
this, the experiment shall be always observed so that notes can be taken if necessary for 
post-processing.  

• The fact that this project is a bachelor’s thesis comes together with a big drawback, time. 
A deadline will be present and a lot of data collecting and processing still must be done.  

• Sample size plays a crucial role in this research. It is hard to get iEEG recordings from 
humans, thanks to the Hospital Clinic, we can obtain them with the consent and 
participation of the patients, but still, the number of measurements is limited.  

• Finally, the extent to which findings from the study can be generalized to broader 
populations may be limited by the specific characteristics of the sample or experimental 
conditions.  

1.4. IDIBAPS and Hospital Clínic 
This research will be carried out mainly in three places. All data is collected in the Epilepsy Unit 
from the Hospital Clinic of Barcelona so that it can be processed at the Institut d’Investigacions 
Biomèdiques August Pi I Sunyer (IDIBAPS), more specifically in the Compte Lab. This is the place 
where meetings take place and most of the data processing and analyzing is performed too, 
although a lot of it will be done independently at home or similar working places too. 

2. BACKGROUND 

2.1. General concepts 

2.1.1.  Working memory: 

It is a brain function that works as a very short-term memory system, it provides temporary storage 
and processing of information needed to perform cognitive tasks, such as learning or reasoning. It 
also plays a role in language comprehension, it holds on to the words in a sentence long in off so 
that we can give sense to what we are listening to, but after not very long, we will not be able to 
perfectly recall the words we just heard. Another useful example of an application of working 
memory is how the brain can maintain continuity in a constantly changing world, the visual system 
uses recent past inputs to inform perception in the present, harnessing the self-repeating nature of 
events in the visual environment [4].  
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2.1.2. Activity-based memory maintenance 

When information is retained in the working memory through sustained neural activity of specific 
brain regions, we talk about activity-based memory maintenance. It often involves continuous firing 
of neurons responding to external stimuli or other internal cognitive processes, this allows to 
consciously hold information to be used immediately or in ongoing tasks [5, 6].  

2.1.3.  Activity-silent memory maintenance 

Activity-silent memory maintenance puts forward that transient alterations in synaptic efficacy, 
rather than continuous spiking activity, support the retention of information in the working memory. 
In this context, stimulus-induced short-term synaptic plasticity in prefrontal circuits can transiently 
store mnemonic content when neuronal firing recedes [7]. These synaptic traces usually exhibit a 
decay time constants on the order of seconds, allowing information to persist across brief delays 
without requiring persistent neural activity. Studies have shown that, although prefrontal spiking 
returns to baseline after the stimulus offset, the encoded information remains latent and can be 
reactivated by proper cues, suggesting that synaptic modifications constitute the basis for this silent 
storage [8]. Therefore, this activity-silent mechanisms provide a plausible account of how the 
prefrontal cortex (PFC) sustains working memory representations during inter-trial intervals and 
contributes to serial biases observed in working memory tasks [9]. 

2.1.4.  Short-term synaptic plasticity 
It comprises transient, use-dependent modifications of synaptic strength that take place for 
hundreds of milliseconds to a few seconds, and are mediated by presynaptic changes in 
neurotransmitter release probability and postsynaptic receptor dynamics [10]. In the context of WM, 
it is related to activity-silent mechanisms, whereby information is stored in the altered state of 
synaptic weights rather than in sustained neuronal firing, remains latent through inter-trial intervals 
and can be reinstated by nonspecific afferent inputs [11]. 

2.1.5.  Encoding and decoding models 
Encoding models characterize how stimuli or cognitive variables give rise to neural responses, 
whereas decoding models invert this logic, and use neural activity to predict or reconstruct those 
stimuli or variables. Consequently, encoding analyses are often used to characterize response 
tuning, and decoding analyses probe the fidelity and temporal dynamics of information available 
for perceptual or mnemonic processes. 

 

Figure 1. Encoding versus decoding schematic [12]. 
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2.1.6.  Univariate and multivariate analyses 
Univariate analyses examines each neural feature individually, whether a single electrode’s 
amplitude, power or firing rate, to assess how one signal correlates with experimental variables. 
Instead, multivariate analyses consider the joint activity across multiple sensors, time points or 
neurons as a high-dimensional pattern. Multivariate approaches show the advantage of capturing 
distributed representations and interactions that univariate tests cannot reveal, although univariate 
analyses allow us to determine significant decoding regions of interest (ROIs). 

2.2. State of art 

This project starts from the research performed and findings obtained about the WM by IDIBAPS, 
more specifically by Compte Lab, with Albert Compte as team leader, and aims to expand the 
knowledge in this field. Therefore, during this section I will dig in into recent discoveries, mostly 
from Compte Lab, related to WM and serial biases.  

2.2.1.  Introduction to serial dependency bias in perception  
Vision must coordinate two seemingly opposing demands, firstly, the need to detect sudden 
changes in the environment with high sensitivity, and secondly, maintain a stable representation of 
visual inputs, which often arrive as noisy and discontinuous inputs, despite the physical world being 
generally stable. Classical studies have demonstrated how prolonged exposure to a particular 
visual stimulus property such as orientation may lead to negative aftereffects, thereby enhancing 
sensitivity but introducing repulsive biases in perception [13]. Fischer and Whitney tested whether 
perceptual reports are attracted towards stimuli previously experienced seconds earlier, a 
phenomenon they termed “serial dependence” [14]. 

In a series of psychophysical experiments, participants observed randomly oriented Gabor patches 
at suprathreshold contrast, and after several seconds, adjusted a response bar to the perceived 
orientation. Reported orientations were robustly drawn towards the orientation of previous stimulus, 
showing an attractive bias of ±8º, when the difference between successive orientations was close 
to 28º. It was also seen how the bias persisted, although diminished, for stimuli two and three trials 
back (≈ 15𝑠). Control conditions ruled out contributions from motor repetition, explicit memory, 
priming or expectation [14]. 

Fischer and Whitney’s finding revealed a previously unrecognized operator in human vision, a 
spatiotemporal continuous field that attracts perceptual estimates towards recent history mediated 
by attention and spatial proximity. By integrating past and present inputs, serial dependence may 
serve as an adaptative mechanism to stabilize perception, while still permitting sensitivity to 
genuine change. The bias vanishes when successive orientations differ markedly, and its gating 
attention dissociates it from change blindness arising from inattention [14]. 

2.2.2.  The interplay between serial dependence and working memory 
Fritsche, Mostert and de Lange (2017) challenged the Fischer and Whitney view by which serial 
dependency effects consisted of perceptual biases. They aimed to disentangle the contributions of 
perceptual and post-perceptual to the biases induced by recent events. To do so, they alternated 
between two types of tasks, which distinguished between perceptual (a change in how you see the 
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stimulus) and working memory (a change in how the information used to make a response is store 
in short term memory) biases. In some trials, observers adjusted a response bar to the remembered 
orientation, in others, they made a quick decision about which of two options was closer to the 
previous stimulus or whether both orientations were the same [15]. 

They demonstrated how attractive biases do not originate at the level of sensory encoding, but 
instead arises during post-perceptual stages. The magnitude of positive biases incremented as the 
retention interval lengthened, indicating that working-memory representations drift towards prior 
decisions over time. This temporal dependence implicated mnemonic dynamics rather than altered 
perceptual encoding. Conversely, the repulsive perceptual aftereffect was highly spatially specific, 
thereby linking it to early sensory pathway. It was speculated how these opposite effects could 
arise from different goals, where perception optimizes change detection, and decision processes 
integrate information over time to form stable representations, hence, differentiating between 
perceptual and post-perceptual effects [15]. 

This dual-mechanism suggests that the nervous system balances sensitivity to new information 
with the need for representational stability through distinct perceptual and mnemonic processes. 
By dissociating these contributions Fritsche, Mostert and de Lange lay the groundwork for future 
investigations in neural circuits and successfully link serial dependence with the working memory 
[15]. 

2.2.3.  Neural mechanisms of serial dependency bias  
Mechanisms of working memory maintenance have long been attributed to persistent spiking 
activity in recurrent cortical circuits, particularly within the prefrontal cortex (PFC), where sustained 
firing rates delay periods correlate with mnemonic precision. Although recent proposals argue for 
an alternative approach based on ‘activity-silent’ substrates, plausibly mediated by short-term 
synaptic plasticity or intrinsic cellular processes, thus permitting subsequent reactivation of latent 
activity [11].  

Barbosa et al. 2020 defied this belief by proposing how attractor dynamics that control neural 
spiking interact with the activity-silent mechanisms in the PFC. Researchers combined intracranial 
recordings in four monkey’s dorsolateral prefrontal cortex, human EEG decoding and transcranial 
magnetic stimulation to demonstrate that, following a period of undetectable delay-period firing, 
latent synaptic traces maintain previous-trial information during the inter-trial interval (ITl). This 
information is reactivated just prior to the presentation of new stimuli and the strength of the 
reactivation correlates with the magnitude of serial biases in spatial working memory [11]. 
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Figure 2. In human EEG, the delay code also reactivates in the fixation period. Where a) is the serial bias representation is human 
participants, b) is a temporal generalization of previous stimulus from previous trial onset (Sn-1) and response (Rn-1), to current trial 
fixation period (Fn) and stimulus onset (Sn), c) shows the decoding of previous stimulus during previous-trial delay (left), response 
(middle) and current-trial fixation period (right) for decoders trained during previous-trial delay. Finally, d) represents the de-meaned 
reconstruction of tuning to the previous stimulus at different epochs for the delay decoder, marked in c [11]. 

Figure 2a shows that human observers exhibit serial bias. Furthermore, Figure 2b and 2c prove 
that a decoder trained on delay-period alpha-band topographies can track the previous trial’s 
stimulus not only during its maintenance and response epochs but also reactivates in the fixation 
period of the following trial. The tuning curves reconstructions in Figure 2d reveal significant 
selectivity for the previous stimulus during the delay and the subsequent fixation, mirroring the 
monkey PFC data, while showing no tuning at the time of response, thereby demonstrating that an 
activity-silent synaptic trace holds the retention and reinstatement of spatial working memory 
across trials [11]. Interestingly, this reactivation at the time of fixation in the task is absent in patients 
with anti-NMDAR encephalitis and schizophrenia [16], in line with their reduced attraction serial 
dependence [17]. 

The study proposes a bump attractor model with short-term plasticity (STP) to explain these 
findings. In this model, memory is held as an activity bump during the delay period, imprinted on 
neural synapses as a latent activity-silent trace during the ITI. This latent bump can be reactivated 
by nonspecific anticipatory signals, influencing subsequent memory and behavior. Overall, these 
findings suggest a dynamic interplay for memory storage and serial biases in spatial WM [11], but 
cannot specifically identify what brain areas are responsible for memory reactivations. This is the 
question that motivated the investigation of intracranial signals during this task in this TFG. 

2.2.4.  Clinical manifestations: Reduction of serial dependence in NMDAR encephalitis 
and schizophrenia 

Autoimmune encephalitis (AE) gathers a variety of non-infectious, immune-mediated inflammatory 
conditions affecting the brain, where anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis 
makes an appearance as a leading type. This condition is due to the appearance of autoantibodies 
targeting the NMDAR NR1 subunit [18]. In the other hand, schizophrenia is chronic mental disorder 
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which impacts nearly 1% of the global population. Evidence suggests that disturbances in excitatory 
signaling, particularly the hypofunction of the N-methyl-D-aspartate receptor (NMDAR), play a role 
in the disease's progression. Although both share similar features such as cognitive deficits in 
working memory and psychosis, the former is distinguished by prominent movement disorders and 
seizures, and misdiagnosis is common in early stages [17, 19]. 

Stein et al. 2020 showed how when spatial working memory performance is examined, healthy 
individuals exhibit and increasing attractive bias towards previously viewed locations, reflecting 
serial dependence. In contrast, patients with schizophrenia display a repulsive bias away from past 
stimuli, whereas those recovering from anti-NMDAR encephalitis show an attenuated attraction 
similar in direction to controls but of markedly reduced magnitude.	 Across all groups, recall 
precision diminishes with longer delays, and follow-up testing in encephalitis patients reveals that 
as clinical symptoms remit, their serial-dependence biases normalize toward control levels [17]. 

Short-term synaptic plasticity temporarily retains stimulus-specific information during intervals 
lacking sustained focus, such as inter-trial intervals (ITIs), thereby influencing memory recall in 
subsequent trials. The underactivity coming from the NMDAR, could potentially decrease STP, 
which would indeed lead to reduced reliance on past stimuli in memory processes [17]. 

2.2.5.  Preprocessing strategies and the current debate on their impact 
Neuroscientists have long believed that removing noisy or artifactual observations from 
electrophysiological recordings enhances statistical power to find subtle patterns or relationships, 
however, pure distinction between low-level noise and genuine neural data is often unachievable, 
therefore forcing us to find a balance between sensitivity and specificity. In particular, although 
standard techniques readily eliminate well-defined interference, such as 50/60 Hz mains hum, 
many contaminating spectral and spatial features overlap with true neural activity, leaving 
researchers without a clear criterion for data cleaning. To address this ambiguity, a recent study 
applied both statistically-driven, automated pipelines and manual expert reviews to iEEG 
recordings. They tested both methods using univariate and multivariate methods and found no 
difference between both, which let them to suggest that to improve further analysis, we should 
focus on incrementing sample size, rather than data cleaning [20]. 

Another study by Delorme revealed that high-pass filtering exerts the greatest influence on 
downstream sensitivity for scalp EEG. To compare filtering cutoffs, artifact-rejection algorithms, 
referencing schemes and baseline they used a task-relevant metric, which mostly consisted of the 
number of channels showing significant evoked responses. They demonstrated that employing a 
high-pass cutoff between 0.1 Hz and 0.75 Hz can increase the number of significant channels by 
up to 57%, whereas conventional line-noise removal via notch filtering or spectral methods and 
fully automated ICA-based cleaning yielded no consistent gains and often reduced sensitivity. 
Among the pipelines used for data processing, EEGLAB, Brainstorm, MNE, Fieldtrip… were tested 
[21]. 

In large-scale evaluation of iEEG, neither automated statistical filters nor manual rejection 
enhanced the power to detect broadband signatures of episodic memory encoding, instead, artifact 
detection pipelines often sacrificed more trials than any gain in sensitivity, thereby challenging the 
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assumption that data cleaning inherently improves posterior analysis [20]. Delorme corroborates 
these results showing how notch filtering, re-referencing schemes, and advanced artifact-rejection 
algorithms yielded negligible or even detrimental effects, with high-pass cutoff filters being the only 
beneficial methodology. Together, these findings suggest that expanding sample sizes or within-
subject trial counts, rather than investing disproportionate effort in elaborate preprocessing, 
represents the most effective strategy for bolstering statistical power in electrophysiological studies 
[21].  

3. MARKET ANALYSIS 

3.1. Market overview 

Brain disorders are a leading and growing cause of disability worldwide and cause death second 
to cardiovascular diseases. Due to our growing and aging population, the currency of this disorders 
has increased significantly by a 48% since 1990s. Neurological and neuropsychiatric disorders are 
responsible for 9 million and 8 million annual deaths, respectively. It has been analyzed that the 
GNM was worth $612 billion in 2022, with a 73% coming from non-drug therapies, and it is expected 
to grow up to $721 billion by 2026, returning an aggregate compound annual growth rate of 4.2 
percent across segments [22].  

 

Figure 3. Neuroscience market revenue for drug and non-drug therapeutic techniques and diagnostic tools [17]. 

3.2. Target market 
The main beneficiaries of advances in cognitive-task decoding and preprocessing comparison are 
healthcare systems, brain-machine interface development companies, and academic and research 
institutions. 
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3.2.1.  Healthcare professionals and hospitals 
Improved insights into cognitive processes allow for more accurate diagnostic tools and therapeutic 
methods for conditions such as the discussed above in Section 2.2.4. Thereby translating into 
better personalized care and treatment and advanced neurorehabilitation techniques. This said, 
the research benefits healthcare providers and hospitals addressing complex problems with a much 
greater precision and efficacy. 

3.2.2.  Brain-machine interface development 
Deciphering how the human brain encodes and manipulates information remains a challenge in 
neuroscience, yet it is precisely this that motivates the creation of algorithms capable of translating 
neural activity into actionable commands. Recent advances in intracranial recordings and machine 
learning decoding have motivated projects as Neuralink and Cognixion to develop brain-machine 
interfaces aimed at restoring cognitive and motor functions. Within this context, our project’s focus 
is especially pertinent. By refining preprocessing and decoding pipelines that accurately isolate and 
classify multivariate EEG patterns we contribute to the technological necessities for these types of 
interfaces which can reincorporate impaired cognitive processes.  

3.2.3. Academic and research institutions 
Academic and research institutions are the main target audience in the short term for advanced 
neural data pre-processing and decoding solutions. Universities and dedicated neuroscience 
research centers focus deeply on state-of-art electrophysiological platforms and software pipelines 
to broaden the knowledge about the neural mechanisms supporting cognition, publishing in high 
profile journals and secure competitive grants. The increasing availability of large, open-access 
intracranial datasets and the need for reproducible, shareable analysis tools have amplified the 
demand for flexible, transparent preprocessing frameworks that can be adapted to diverse 
experimental designs. By providing a rigorous comparison of manual, semi-automatic and 
automatic pre-processing strategies for artifact rejection alongside decoding analyses, our project 
meets the needs of academic labs seeking both methodological rigor and ease of implementation 
in collaborative, multi-site studies. 

3.3. Market competition 
As seen and explained earlier, neuroscience is a growing market with lots of opportunities intriguing 
many people around the globe, there is no doubt then that everyone will want a piece of it.  

 

Figure 4. Number of articles written yearly found in Pubmed by using advanced search mechanisms. 

It is appreciated in Figure 4 the exponential growth involving neuroscience. This result was obtained 
thanks to the following query: ("iEEG" OR "intracranial EEG" OR "electrocorticography" OR "EEG") 
AND (preprocessing OR "artifact rejection" OR filtering OR referencing) AND (decoding OR 
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classification OR "pattern analysis") and a total of 704 results are obtained, with 99 articles 
published in 2024 and currently 61 in 2025. 

4. CONCEPT ENGINEERING 
In this section, all methods and steps needed to proceed with the project will be considered and 
discussed, including other possible options that could have been used. Although, prior to explaining 
the range of possibilities considered for this project, it is necessary to present an overview of our 
approach to concept engineering. Initially, raw neurophysiological data undergo preprocessing and 
artifact removal through three different methods: a fully automated algorithm, a semi-automatic 
pipeline, and a manual evaluation. Following this systematic cleaning, we subject the processed 
datasets from each pipeline to both univariate and multivariate analyses, thereby enabling the 
identification of serial biases and the bump-attractor theory in iEEG, delineation of candidate 
regions of interest associated with serial biases, and most importantly, a quantitative comparison 
of cleaning efficacy across pipelines. Finally, as a preliminary result, we built an encoding model 
using the subject whose data showed the best performance, these preliminary results will serve as 
a foundational framework for subsequent investigation into neural investigations.  

 

Figure 5. Concept engineering schematic summary. 

4.1. Data acquisition 
Since the people participating in the research have been hospitalized in the Hospital Clinic of 
Barcelona to find the area of the brain causing their epileptic seizures, there are not many options 
to choose how to take the corresponding measurements and brain images. Nevertheless, the 
methods used provide us with precious information, where in other scenarios, they could not have 
been carried out and are the driving force behind the motivation of the project. Three types of 
information are distinguishable among our data. All three will be reviewed in the following 
subsections, explaining the method used, other possible methods, reasonings and process for data 
acquisition.  

In total, the dataset is composed of 15 new subjects. Due to time constrains, for this study only 5 
subjects will be analyzed. 

4.1.1.  Electrophysiological and behavioral measurements  

To take the electrophysiological measurements necessary, only one option was considered, since 
it is most likely the best and a big motivation behind this research. Thanks to the advances in 
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technology of the Hospital Clinic, it is one of the few centers in Spain qualified to perform iEEG 
registers, therefore many patients who suffer from epilepsy and need a more sophisticated 
diagnosis attend the hospital.  

Thanks to the cooperation of the Hospital Clinic and the patients hospitalized, we can take these 
recordings of electrophysiological activity from inside the brain, offering much more information 
than regular EEG. Therefore, iEEG is the technique used.  

Participants will be playing a small game of 2 sections, 45 minutes each, each one divided in 6 
small blocks of 50 trials, while recordings are taken. Each trial commences with a central fixation 
point displayed in the center of the screen for 1.1 seconds. Followed by this, a circle shows for 0.25 
more seconds randomly at any of the 360 degrees angular possible positions. After this stimulus is 
presented, there is a delay period, also randomly selected between 1 to 3 seconds, during which 
only the fixation square remained visible. Then, patients are asked to click with the cursor the 
remembered position of the stimulus. After the response, the cursor goes back to the fixation dot 
to initiate a new trial (ITI). The error is computed as the angular distance between response and 
the actual site of the stimulus.  

 

Figure 6. Task schematic representation that participants will be performing while recordings are taken. 

The reason behind dividing the experiment in 2 sections is to study statistical learning. During the 
first block, all stimuli have a uniform probability of appearance among the 360 degrees. Although, 
in the second section, stimuli have a higher probability of appearance to show in specific places.  

During fixation, cue and delay periods participants must be looking all the time at the fixation dot, 
to ensure that this happens, an eye tracker device is needed. At the budget end, there are webcam-
based eye trackers, which offer limited accuracy and speed in tracking eye movements. Moving up 
the ladder, portable eye trackers come next, although they have been discarded for this study since 
they are worn in the patient’s heads, making hard to combine it together with the implanted 
electrodes. Following these are screen-mounted eye trackers, employing infrared technology for 
highly accurate eye movement tracking. Finally, as the option that could potentially be the best, 
although also the most expensive, there are eye trackers which use retinal photography or corneal 
mapping.  

For the study we ended up choosing the screen-mounted eye trackers, being the most equilibrated 
option. Although it is important to consider that light differences along the trial or the use of glasses 
can difficult its use too.  
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For the design of the experimental game, Psychopy on Python was used. Other platforms that also 
show themselves as good alternatives are OpenSesame, which can also run on Python, it is a free 
and open-source with very good capabilities and friendly-user interface. E-Prime on the other hand 
has an extensive built-in functionality and offers a very strong technical support, although it is less 
flexible compared to open-sources options and requires licensing fees.  

While Psychopy offers flexibility, open-source availability, and a large user base, other programs 
like OpenSesame and E-Prime provide alternative options with varying levels of user-friendliness, 
functionality, and cost.  

4.1.2.  Anatomical imaging 

As explained in the previous sections, there is not much room for variability of methods used when 
acquiring the data. The anatomical images that we obtain are the ones that the doctor considers 
necessary to offer the best possible diagnosis. That being CT and T1 MRI images.  

4.1.2.1. Location of implanted electrodes 
Many programs are available for the location of electrodes, in this section they will be briefly 
discussed, and our selection will be explained.  

• FieldTrip toolbox: It is free and open-sourced in MATLAB, very useful when analyzing 
neuroimaging data, including EEGs. It even also provides tools for source reconstruction 
and statistical analysis, although it is mostly used to reconstruct 3D models for scalp EEG 
rather than localizing intracranial electrodes [23].  

• iELVis: Which is short for Intracranial Electrode Visualization is a software toolbox 
consisting of MATLAB and Bash scripts for intracranial localization and visualization. It is 
well tailored for iEEG depth and grid electrodes and integrates FSL and Freesurfer. 
Although it is command-line oriented with no dedicated GUI [24]. 

• Brainstorm: It posed a big chance to being the selected option due to its fully interactive 
GUI and popularity. Brainstorm is also integrated with Freesurfer and returns useful 
coordinates as MNE and RAS, although despite its fully interactive GUI, its steep learning 
curve made us go for the last and next option [25]. 

• YAEL: It stands for Your Advanced Electrode Localizer. This is the option we went for. Its 
main use is for iEEG and by installing YAEL, two popular tools for co-registering the MRI 
and CT datasets are automatically installed, Advanced Normalization Tools (ANTs) and 
Nifty Reg. YAEL is also an open-source option which offers a friendly-user GUI interface, 
very easy to use, with a lot of potential which directly assigns MNE and RAS coordinates 
to the localized electrodes, together with labels according to the brain region the shafts 
have been implanted [26].  

4.2. Data pre-processing 
As introduced in the beginning of this work, a current debate in computational neuroscience is: How 
much benefit do we gain by preprocessing our neural data before running decoding analyses? To 
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answer this, we will implement and compare a set of preprocessing pipelines with different 
characteristics. Each pipeline’s output will then be used in identical decoding frameworks; by 
systematically evaluating each method we aim to provide concrete, data-proven guidance on when 
and how to preprocess neural recordings. 

4.2.1. Common groundwork 
All our preprocessing pipelines share a set of common steps, filtering out AC interference and re-
referencing of electrodes. The following sections will expand on these two topics and the reasoning 
behind their solutions. 

4.2.1.1. Filtering out AC interference 
Electrophysiological measurements are routinely affected by narrowband interference at the AC-
mains frequency, 50Hz in Europe, and its harmonics. If not handled properly, it can distort 
significantly both time-domain waveforms and spectral estimates. To suppress this artifact, we 
utilized a second-order digital notch filter centered at 50Hz, 100Hz, 150Hz and 200Hz. Notch 
filtering in this configuration offers significant advantages. Firstly, its narrow stop-band design 
minimizes distortion of neighboring frequencies, and secondly, the use of standard IIR topology 
ensures computational efficiency. However, fixed frequency notch filters can underperform if the 
mains interference drifts outside the nominal center frequency, which usually happens if a power 
system has unstable loads [27]. 

Several alternatives that could help fixing this drifting issue include broadband band-stop filters, 
which achieve the suppression of the entire 48-52Hz, at the cost of attenuating physiologically 
relevant signal components near the margins [28]. Inverted band pass filters con be used to 
construct a comb filter, they reject the power-line frequency and its harmonics in one step by 
summing delayed versions of the signal, placing zeros on the unit circle at 50Hz, 100Hz, 150Hz 
and 200Hz [29]. While they have proven to be highly effective for our situation, notch filter is better 
integrated into the MNE-Python library, hence being our final decision. 

4.2.1.2. Bipolar re-referencing  
Bipolar re-referencing involves computing the difference between two adjacent electrodes, the 
anode and the cathode, thereby creating a new bipolar virtual electrode where shared noise 
between neighboring contacts is attenuated. Because intracranial channels often exhibit volume-
conduction and common-mode artifacts, the subtraction enhances the detection of real local 
fluctuations and improves the specificity of downstream spectral or time-domain analysis. 

Although popular toolboxes as EEGLAB offer re-referencing via its pop_reref function, where pairs 
of channels can be defined interactively or scripted, we chose to implement all referencing steps 
with the MNE-Python environment. To do so we developed a function that prepares data into a set 
of consecutive anode-cathode electrode contacts to be fed to MNE’s set_bipolar_reference 
function, which generates the new virtual channels while preserving the montage [30, 31]. 

Beyond bipolar derivations, alternative referencing methods deserve to be mentioned. The 
common-average reference (CAR) subtracts the mean across all intracranial shafts individually to 
each electrode contact, thereby offering a global baseline. Building upon this idea, the adaptative 
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common-average reference (ACAR) integrates CAR with an adaptive noise-cancelling (ANC) filter 
in a convergent feedback loop, such that the CAR output serves as the reference for the ANC 
stage, which in turn refines the CAR estimate. This method has proven to outstand CAR, and even 
on some occasions, show better results than independent component analysis [32]. More recently, 
the Reference Electrode Standardization Technique (REST) has been proposed to approximate a 
neutral reference at infinity, reducing bias introduced by any single physical reference [33]. During 
this work we will primarily focus on bipolar derivation due to their ease of interpretation in 
intracranial scenarios and support within MNE-Python, ensuring that the entire pipeline remains 
harmonized under a single open-source platform. 

4.2.2.  Manual pre-processing 
In our first preprocessing strategy we follow the traditional “by-hand” approach to neural data 
cleaning. This method starts with a preliminary global inspection of the recording, during which we 
usually identify and drop channels exhibiting excessive noise or artifacts. Once all channels are 
revised the common groundwork is applied and we segment the remaining data into epochs around 
events of interest.  

At this stage, there are two alternative approaches: 

1. Epoch-by-epoch visual inspection: The procedure consists of examining each 
epoch and rejecting trials that show residual noise or movement artifacts. While 
this method maximizes the trade-off between sensitivity and specificity if 
performed correctly, it is extremely time-consuming for large datasets and strongly 
subjective. Therefore, due to the limited amount of time available in this work and 
the little experience reading iEEGs, this method was not chosen. 

2. Hybrid Visual Reject Toolkit: To mitigate the labor burden and human bias of 
epoch review, we developed the Visual Reject Toolkit. This set of functions 
integrates three components, a flexible quantitative metric calculator (for variance, 
peak-to-peak amplitude, kurtosis…), an interactive GUI and auxiliary 
visualizations for outlier detection. 

By choosing option two, rather than spending hours of scanning every single epoch, researchers 
review only those segments that exceed certain thresholds, this hybrid approach introduces 
objective statistics into the manual method to guide human decisions. 

4.2.3.  Automatic and semi-automatic methods 
Automatic and semi-automatic artifact-rejection routines identify and exclude contaminated trials 
by applying different statistical thresholding criteria depending on the algorithm. Thresholds can be 
learned by the model if fully automatic, and are usually inferred directly from the data, often via 
cross-validation or robust estimation techniques, thus ensuring objective data-driven decisions that 
frequently surpasses manual judgments in consistency and sensitivity. In contrast, semi-automatic 
pipelines combine algorithmic candidate selection with user-defined thresholds, affording precise 
control over the balance between artifact removal and signal preservation. 

EEGLAB again poses great advantages, being a popular choice for most people since the early 
2000s ( Delorme & Makeig, 2004). Its modular plugin architecture allows integration of advanced 



 Biomedical Engineering Alberto Hurtado Morell 

 26 

preprocessing algorithms, including those for automated channel rejection, rejection of noisy 
epochs and Independent Component Analysis (ICA) decomposition. Although as previously 
mentioned, MNE-Python methods are prioritized. In that sense, Autoreject appears, a fully 
automated method which employs cross-validation to optimize sensor specific peak-to-peak 
thresholds [34]. While Autoreject has proven outstanding results in scalp EEG, for which it was 
designed, its performance in iEEG is still under debate, although with the proper considerations it 
might turn out to perform decently. 

Despite the fact that we did not adopt it in our pipelines, the PREP framework offers a compelling 
example of how Random Sample Consensus (RANSAC) can be leveraged for robust channel-
quality assessment. Bigdely-Shamlo et al. 2015 proposes and implementation methodology, over 
50 iterations, the algorithm samples 25 % of electrodes as provisional inliers, reconstructs the full 
multichannel signal via spherical-spline interpolation, and computes the point-wise median. 
Channels whose correlation with this median falls below 0.75 for more than 40 % of the recording 
are flagged as bad and interpolated, yielding a common-average reference resilient to spatially 
correlated noise. 

Staresina et al. (2015) describes a semi-automatic pipeline for artifact rejection based on three 
scores: amplitude, gradient and frequency envelope. It applies morphological operations to dilate 
artifact segments, remove small runs of clean data in between marked clusters, a zero-phase FIR 
filter, and finally the main body of the pipeline, where each score is calculated and measured 
against a common threshold for artifact detection.  

For our study, we chose to adapt Staresina’s approach with a few modifications which will be 
explained in Section 5 alongside with Autoreject’s fully automated algorithm. By preprocessing the 
dataset with a manual, a semi-automatic, and an automatic method, we achieve a comprehensive 
evaluation of each pipeline’s efficacy in balancing artifact suppression and preservation of genuine 
neural signals, thereby informing optimal choices for subsequent decoding analyses. 

4.3. Data analysis 

4.3.1.  Univariate and multivariate decoding 
In our univariate analysis, we sought to assess the relationship between single neural features and 
the experimental variable of interest, thereby quantifying the decoding significance of each channel. 
To this end, we used circular-linear correlation, which are well studied to quantify associations 
between angular data and a continuous predictor. To establish a statistical threshold that accounts 
for the non-Gaussian nature of data, we implemented a non-parametric permutation test in which 
labels were randomly reassigned to neural data. By repeating this procedure for multiple 
permutations, we can obtain the null distribution of circular correlation coefficients at each location 
for a determined frequency band.  

Despite the fact that we chose to go for circular correlation, alternative univariate strategies could 
have been employed. Fields and Kuperberg et al. 2020 explain the use of mass univariate statistics 
for Event-Related Potential (ERP) data analysis to enhance flexibility and power. Their approach 
calculates separate statistical tests at multiple time points and electrodes individually, followed by 
a multiple comparisons correction to control the Type 1 error, falsely rejecting the null hypothesis 
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when it is actually true. The method uses specialized corrections like Falsely Discovery Rate (FDR) 
and resampling procedures to estimate the null distribution. One of the main advantages of this 
method is a greater flexibility in detecting effects across space and time and better control over 
false positives, but they can complicate precise temporal and spatial interpretation and may 
underestimate effect duration. And as explained earlier, one of the objectives of univariate analysis 
is to locate spatially significant decoding channels, this being the reason this method did not fit our 
goals as much as circular correlation [35]. 

In parallel, our multivariate analyses were designed to use joint information contained across 
multiple channels to predict the experimental variables. We adopted a Support Vector Machine 
(SVM) classifier from the multichannel neural patterns at different time windows of interest by 
computing the Power Spectral Density (PSD) at different frequency ranges. This classifier again 
used permutation tests to accumulate the null distribution of errors over numerous repetitions. We 
chose to perform this analysis using PSD features since it allowed us to summarize oscillatory 
activity over a given window, thus reducing the dimensionality and noise associated with raw time-
resolved signals. Additionally, by performing time-frequency analysis, we can gain more information 
on how different brain waves relate to our analysis. 

We preferred SVM over Linear Discriminant Analysis (LDA) because SVM does not assume 
Gaussian distributions or equal covariance across classes, instead, it finds the maximum-margin 
hyperplane that best separates conditions, which makes it more robust to high-dimensional PSD 
features and outliers. 

4.3.2.  Forward encoding model analysis 
Forward encoding models (or inverted encoding models) represent a widely adopted strategy for 
modeling how stimulus features give rise to neural responses. They work by creating a set of 
hypothetical neural channels, each one tuned to a specific value along a continuous stimulus 
dimension, which in our case consists of a particular remembered stimulus orientation. By 
measuring how strongly each channel is activated during a task, we can obtain tuning curves, a 
profile showing the relative response magnitude of all channels across the stimulus space 
continuously in time. These curves can give us information as how sharply or diffusely this 
population is tuned to a particular feature [36]. 

In contrast to standard classifiers, which simply categorize neural patterns into discrete labels, 
forward encoding provides a continuous reconstruction. In multivariate classifiers, we can obtain 
information of whether a particular feature is being decoded or not if the returned output beats 
chance level, but this information does not tell us how the representation is distributed or biased 
[36]. 

Moreover, Alexis Perez’s publicly available toolbox facilitates the fitting of forward encoding models, 
thereby providing validated routines to construct basis functions and estimating weight matrices 
without extensive coding. Consequently, since forward encoding delivers a more refined depiction 
of neural representations, rather than a simple correct or incorrect label, it was the option chosen 
for this final preliminary analysis. 
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5. DETAILED ENGINEERING 
Previously, in section 4 Concept Engineering, the rationale behind the chosen steps and alternative 
approaches was discussed. In this section, Detailed Engineering, each of those steps will be 
thoroughly analyzed, including the underlying logic and implementation details. 

5.1. Initial data preparation and structuring 
As a first step in preparing the data for publication, the raw iEEG recordings together with their 
associated behavioral data (metadata) were organized and standardized. This involved defining 
subject and session identification, concatenating the relevant EDF files, and loading the 
correspondent electrode coordinate files. Electrode labels were cleaned and matched to the 
recording channels in the raw EDF files to ensure consistency in the analysis and proper posterior 
localization. Only relevant recording channels were kept, together with the TRIG channel, which 
contains the events occurring during the experiment, needed to extract the epochs.  

The channels dropped consist of generic non-informative channels (C1 to C256), which could 
correspond to ground or diagnostic outputs from the recording device, or unused amplifier 
channels. It is common for clinical systems to list all possible channels the system can handle, even 
if only a subset of them is connected to electrodes. Therefore, they may contain flat, noisy, or empty 
data which could mess with our analysis.  

Additionally, physiological monitoring data not relevant to our neural data study was also dropped, 
including channels as oxygen saturation (OSAT), pulse rate (PR), plethysmograph (Pleth) and 
electrocardiogram leads (EKGL/EKGR).  

Subsequently, experimental events were extracted from the trigger channel and added to the raw 
data as annotations. Channel types were defined according to their corresponding function (SEEG 
and simulation), and the dataset was converted to the BIDS (Brain Imaging Data Structure) format 
to facilitate standardization and reproducibility using the MNE-BIDS framework. Anatomical images 
(defaced ACPC-aligned T1 weighted MRI and CT scans) were also included to support future 
localization and coregistration.  

5.2. Data cleaning and preprocessing pipeline 
Along this section, the three chosen methods for data preprocessing (simple manual cleaning with 
visual reject, Autoreject, and custom artifact detection algorithm) will be explained in detail. All 
alternatives share common groundwork, that being a first visual inspection to drop clearly bad 
channels, the application of a notch filter, bipolar re-referencing, extracting epochs and adding 
metadata. 

5.2.1. Common groundwork 

5.2.1.1.  Notch filter 
A fundamental aspect of the data cleaning pipeline consists of the application of a notch filter to 
remove power line interference, a common source of narrowband noise in electrophysiological 
recordings. A notch filter is a type of band stop filter made from a combination of both high-pass 
and low-pass filters, they are extremely effective at removing interfering signals at specific 
frequencies. They are also referred as band-rejection filters. In this case, it was applied at 50 Hz 
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and its harmonics (100 Hz, 150 Hz, 200 Hz), which correspond to the frequency of AC mains 
electricity in the recording environment. 

Power line noise can distort spectral estimates and obscure neural signals. In contrary to a common 
band-stop filter, a notch filter is specially tuned to only suppress the undesired frequency 
components, while preserving nearby ones, thereby minimizing the attenuation of neural activity. 
From an engineering point of view, this filter allows us to increase the signal-to-noise (SNR) ratio, 
without introducing significant phase distortion or degrading temporal resolution [37]. 

This operation follows a second-order transfer function, commonly represented as: 

H(s) = 	H!
s" +w#

"

s" +w!
Q s + w!

"
 

Equation 1. Notch filter second-order transfer function (Analog Devices, 2006). 

Where w0=2pf0 is the angular notch frequency and Q is the quality factor defining the bandwidth of 
the notch. This form is specially well suited for biomedical engineering applications since it provides 
for targeted attenuation while preserving the phase and magnitude of neighboring neural 
frequencies. There are three types of notch filters determined by the relationship between zero 
frequency (wz) and the pole frequency (w0). In our case, we used a standard notch filter, where wz 

= w0, and a sharp attenuation at the frequency is created. Alternatively, there are two more cases, 
a lowpass notch (wz > w0) and high-pass notch (wz < w0), in those cases attenuation favors lower 
or higher frequencies, behaving as an elliptical low-pass or high-pass filter respectively. Although 
these last two options did not suit the application we were looking for [38].  

 

Figure 7. Standard, Low-pass and High-pass Notches (Analog Devices, 2006). 

Harmonics of 50 Hz were filtered out too since non-linear loads and devices on the power system 
caused harmonic distortion in the current and voltage. An ideal linear system receives a sine wave 
at 50 Hz and gives a sine wave back. Although, when a non-linear system receives a sine wave, it 
can generate distorted waveforms that break down into a sum of sine waves at multiples of the 
original frequency, harmonics. Therefore, a slightly non-linear amplifier, converter or medical device 
can distort the original signal and create multiples of it [39]. These extra frequencies can overlap 
with real high-frequency neural signals such as high-gamma.  
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Figure 8. Power Spectral Density (PSD) before notch filter in the left and after notch filter in the right. 

Afterwards, raw data was resampled from 2048 Hz to 500 Hz for storage and code optimization 
purposes, while keeping all essential frequency ranges of neural activity. According to Nyquist 
theorem, 500 Hz allows for time-frequency analysis up to 250 Hz, which includes all neural data 
frequency ranges we were aiming to study.  

5.2.1.1. Bipolar re-referencing 
In intracranial EEG (iEEG) recordings signals are often acquired in a referential montage, this 
means that all electrode contacts are recorded against a common reference. This reference is 
usually a surface electrode, a distant intracranial contact or even sometimes a dedicated wire. If 
the reference electrode picks up physiological noise, electrical interference or activity from distant 
neural sources, it will be embedded in all channels. The brain signal at the reference location might 
not be zero, which may contaminate the true measurements and hide local activity introducing 
common-mode signals. To mitigate these effects a bipolar re-referencing function was designed 
and applied. 

Bipolar referencing consists of computing the voltage different between two adjacent contacts on 
the same electrode shaft, hence transforming the dataset from a referential montage to a bipolar 
montage. Mathematically, for two neighboring contacts Ci and Ci+1, a new virtual bipolar signal (Vbip) 
is defined as: 

V$%&(t) = V'!(t) − V'!"#(t) 

Equation 2. Virtual signal after bipolar referencing. 

Therefore, if any common noise between both contacts was present it will be eliminated improving 
spatial resolution and emphasizing local neural activity changes between closely spaced contacts. 
It effectively increases the SNR for local field potentials and improves the detectability of high 
frequency artifacts as seizure patterns. 

To implement this transformation computationally, electrode contacts were grouped based on the 
electrode label prefix, which is commonly shared between each contact of the same shaft, and 
sorted numerically based on their suffix, thus ensuring anatomical order. Once adjacent contacts 
were paired, the MNE-Python set_bipolar_reference() function was used to generate these new 
virtual bipolar signals. 

5.2.1.2.  Epoch extraction and metadata addition 
At this stage of the code, preprocessed brain recordings are carved into small sized segments of 6 
seconds surrounding each task event of interest. These raw data segments are called epochs, and 
are extracted from the fixation point event, 1.5 seconds before and 4.5 seconds after, just about 
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enough time to answer our questions and see if previous trial information can be decoded in the 
current trial and cover the longest possible 3 second delay. In parallel, we assemble all the trial-by-
trial behavioral measures, such as stimulus parameters, participant’s responses, delay period, and 
the relationship of each trial to its neighbors, into a single table, which is then added to each epoch’s 
metadata.  

By slicing the data in events and enriching it with its own metadata, simple raw sensor 
measurements now turn into a highly structured dataset where brain signals and behavioral activity 
can be analyzed and decoded. 

Up to this step, all iEEG cleaning methods shared a common set of steps. In the following sections, 
each method will be explained individually. 

5.2.2.  Visual reject 
The Visual Reject toolkit consists of a collection of custom functions built around three 
complementary concepts: a flexible metric calculator, an interactive GUI for artifact or outlier 
marking both in channels and trials, and auxiliary visualization for both Autoreject and MNE plotting. 
All together, these functions combine a basic solution for cleaning iEEG epochs by combining both 
quantitative outlier detection and subjective human decision-making.  

5.2.2.1. Metric calculation 
The metric calculation routine reduces each epoch’s full time series into scores per trial and 
channel, thereby allowing us to rank or threshold them by how “noisy” or “outlying” they appear. 
We begin with a 3D array matrix of shape (nº of epochs, nº of channels, nº of time points per epoch). 
Let: 

𝐷(,*,+,		0 ≤ 𝑛 < 𝑁, 0 ≤ 𝑐 < 𝐶, 0 ≤ 𝑡 < 𝑇 

Denote the voltage at time t in channel c and epoch n. Since Visual Reject may also be used in 
other preprocessing pipeline, where possible NaNs might have been introduced after artifact 
cleaning, the code firsts scans D for any NaN entries. If any are found, it will flag the user, but it will 
not crash subsequent calculations. Different scores are calculated for data visualization, including 
variance and standard deviation: 

𝜎*,(" =
1
𝑇′A(𝐷(,*,+	 − 𝜇(,*

-

+./

)" 

Equation 3. Variance of the signal in channel c and epoch n, computed over the non-NaN samples. 

Where 𝜇(,* =
/
-0
∑ 𝐷(,*,+	+ is the mean over the non-NaN samples and T’ is the count of valid non-

NaN time points. In the code this calculation is incorporated via np.nanvar(…, axis=1). Standard 
deviation is also available and is calculated in NumPy Python via np.nanstd(…, axis = 1). Both 
indicate how widely the signal varies around its mean. If the desired, the inverse of the variance 
can be shown too, where a small 𝜀 = 1012!3	protects the code against the rare case of a division 
by zero due to a completely flat epoch: 
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𝑀*,( =
/

4$,&' 5ℰ
, 

Equation 4. Inverse-variance metric with a small constant ℰ to prevent division by zero. 

For robustness against rare high-amplitude spikes, we also support median absolute deviation 
(MAD): 

𝑀𝐴𝐷*,( = 𝑚𝑒𝑑𝑖𝑎𝑛(L𝐷(,*,+ −𝑚𝑒𝑑𝑖𝑎𝑛+M𝐷(,*,+NL) 

Equation 5. Mean absolute deviation mathematical formula for a channel c and epoch n. 

And kurtosis: 

𝑘*,( =
𝔼|(𝐷 − 𝜇)7|

𝜎7 − 3 

Equation 6. Excess kurtosis of the signal in channel c and epoch n. 

In Python, these measures are implemented thanks to the Scipy Stats package, via the 
median_abs_deviation() and kurtosis() functions respectively.  

In practical terms, variance delivers a computationally efficient estimate of signal power, its 
simplicity, stability and fast convergence on iEEG windows make it our go-to metric in 
preprocessing. Kurtosis may be a good alternative in cases where more data is available, and 
researchers are willing to try more computationally expensive methods. 

Simpler measures are also available, as peak-to-peak voltage, or maximum and minimum. 
Although they might not reflect as good as variance potential outliers by possibly confusing them 
with clean data. 

5.2.2.2. Interactive artifact-rejection interface 
Users get full access control over which trials and channels to exclude via a single function that 
spawns an interactive window combining quantitative summaries with click-and-drag selection. The 
function requires an MNE.epochs object, once received, it extracts all relevant data channels into 
a three-dimensional array (epochs x channels x times) and computes the chosen metric score. This 
interactive interface consists of 4 subplots; an initial metric matrix displayed as a heatmap, with 
channels as the y-axis and epochs as the x-axis, two accompanying scatterplots show the 
“badness” score per channel and per trial (averaged over non-rejected channels or trials 
respectively), and finally a spectrum panel displaying the average power-spectral density (PSD) of 
all currently “good” data. As we reject trials and channels genuine oscillatory peaks of physiological 
bands as alpha and beta remain stable, while artifactual frequencies diminish, thereby 
demonstrating effective cleaning choices. When the user closes the window, the function returns 
two sorted lists, rejected trials and channels. 

5.2.2.3. Spectrum-based sanity check 
As said above, the spectrum panel is an indicator of the cleaning quality, since artifact rejection 
here is driven by the user and not an automated threshold, it serves as a real-time sanity check 
guiding manual selections. It is computed using the Welch’s method, which in contrary to a Full 
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Fast Fourier Transform (FFT), it returns a smoother spectral decomposition which is easier to 
interpret. The Full FFT performs the Fourier Transform over the entire duration of the signal, thereby 
it is more sensitive to noise, since artifacts will affect the whole signal. Instead, Welch’s method 
computes the Fourier Transform over small time-windows of tapered data, therefore smoothing 
noise, since one artifact will not affect the entire signal, but only a small number of time-windows 
[40].  

To apply Welch’s method, the continuous time-series is broken down into M overlapping chunks of 
length L. In our code, L = min(T,256) samples, with a 50% overlapping between successive 
windows. Each chunk of data is multiplied by a Hamming window w[n]: 

𝑤[𝑛] = 0.54 − 0.46 cos Y
2𝜋𝑛
𝐿 − 1] ,				0 ≤ 𝑛 < 𝐿 

Equation 7. Mathematical definition of the Hamming window of length L. 

By tapering the edges, we suppress spectral leakage smoothly bringing the edges of each segment 
to zero. This way, after applying the discrete Fourier Transform, no high-frequency components 
will be introduced from abrupt jumps at the boundaries. Then, for each window segment xi[n] = w[n] 
· segmenti[n], the DFT is computed: 

𝑋8[𝑘] = 	∑ 𝑥8[𝑛]𝑒19":;( <⁄<1/
(.! , 

Equation 8. Discrete Fourier transform of the ith windowed segment. 

And form the raw periodogram: 

𝑃8[𝑘] = 	
1
𝑈𝐿

|𝑋8[𝑘]|" 

Equation 9. Normalized periodogram of the ith windowed segment at frequency bin k. 

Where the normalizing constant 𝑈 = /
<
∑ 𝑤"[𝑛]<1/
(.!  corrects the window’s energy loss. Finally, 

the PSD estimate at each frequency bin k is the arithmetic mean of the M periodograms: 

𝑆c[𝑘] = 	 /
>
∑ 𝑃8[𝑘]>
8./ . 

Equation 10. Power spectral density estimate via Welch's method. 

Averaging reduces the variance estimate, hence returning a smoothed curve where true oscillatory 
components stand out clearly. One main drawback Welch’s method faces is a reduced spectral 
precision when compared against “Full” FFT, this disadvantage resides in the fact that when the 
continuous time signal is divided into many time-windows, we reduce the number of time points for 
each DFT, thereby reducing resolution [41]. 
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Figure 9. Visual Rejection interactive screen. From left to right a) Before bad channel and trial selection b) After bad channel and 

trial selection. 

In Figure 9, the heatmap in the top-left represents the current channel and trial selection. In the 
top-right and bottom-left corners we can find the channel and trial “badness” scores respectively. 
Finally, in the bottom-right side of the screen, the spectral panel is shown, it can be seen, how after 
cleaning, the two high-frequency peaks most likely representing artifacts are gone. 

5.2.3.  Custom artifact detection algorithm 
Our custom artifact detection pipeline brings together three complementary stages; spectral 
filtering, outlier marking, and morphological cleanup, into a single Python implementation inspired 
by Staresina et al. (2015). Prior to feature extraction, data is optionally segmented and run through 
a zero-phase FIR Filter, allowing low-pass, high-pass, band-pass or notch responses depending 
on cutoff parameters. This first step ensures that the gradient and high frequency envelope metrics 
are computed on spectrally tailored data without edge artifact or phase distortion [42]. Next, rather 
than relying on mean and standard deviation, we normalize each channel’s signal by its median 
and median-absolute-deviation (MAD), this way the detector becomes inherently resistant to 
outliers and therefore more robust. Artifacts are detected through a median/MAD-based “z-scoring” 
threshold of amplitude, slope, and high-frequency envelope.  

Once artifacts are flagged, we now adapt two more concepts explained by the paper, segment 
expansion and gap-filling. EEG artifacts might corrupt nearby clean data, to ensure this does not 
happen, a segment expansion function called Padding is created, this padding routine dilates each 
contiguous artifact cluster by a fixed number of samples on both sides. Afterward, small clean data 
gaps between larger artifacts are also flagged as noise, thus preventing small holes of data from 
slipping through [42]. 

5.2.3.1. Padding 
We begin with a binary artifact mask sequence defined as 𝑑 = (𝑑/, 𝑑", … , 𝑑-), 𝑑- ∈ {0,1}. 
Where 𝑑+ = 1 means that the corresponding sample t has been marked as an artifact and 0 clean 
data. Our objective is to expand each contiguous run of ones by a fixed integer padding radius 
𝓅 > 0 and 𝓅 ∈ ℕ", which indicates how many samples before and after the artifact run do we 
want to mark. 

𝑑# = )1, 𝑠𝑎𝑚𝑝𝑙𝑒	𝑡	𝑖𝑠	𝑓𝑙𝑎𝑔𝑔𝑒𝑑	𝑠	𝑎𝑛	𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡,0, 𝑎𝑚𝑝𝑙𝑒	𝑡	𝑖𝑠	𝑐𝑙𝑒𝑎𝑛. 			 



 Biomedical Engineering Alberto Hurtado Morell 

 35 

Equation 11. Precise definition of the binary artifact mask. 

The first step in the padding function is to define a set of all originally marked artifact sample indices 
as 𝑆 = {𝑡: 𝑑+ = 1}, mathematically, S is decomposed into its connected components, in other 
words, runs of consecutive integers 𝐶?. Formally, there is a unique partition: 

𝑆 = = 𝐶$

%

$&'

 

Equation 12. Decomposition of the artifact set into M maximal contiguous clusters. 

Each cluster is a maximal interval run of integers in S, which can be denoted as 𝐶? =
{𝑎?, 𝑎?5/, … , 𝑏?}, where 𝑎? = 𝑚𝑖𝑛𝐶? and 𝑏? = 𝑚𝑎𝑥𝐶?. By construction, each run 𝐶? 
lives entirely inside the set of artifact-marked samples S, such that each 𝑑+ = 1 for 𝑡 ∈ 	𝐶?. These 
runs are maximal in the sense that you cannot extend them one step further without leaving S. For 
each run the algorithm creates two intervals for both left and right padding. Left padding is described 
by: 

𝐿$ = {𝑎$ − 𝑝,… , 𝑎$ − 1}⋂{1,… , 𝑇}, 

Equation 13. Mathematical definition of the left-padding interval of radius p, clipped to the valid sample range. 

This is the block of p samples immediately before the run, but clipped so that it never goes below 
the first sample, similarly, the right padding interval is defined as: 

𝑅$ = {𝑏$ + 1,… , 𝑏$ + 𝑝}⋂{1,… , 𝑇}. 

Equation 14. Mathematical definition of the right-padding interval of radius p, clipped to the valid sample range. 

So that the padded runs can be assembled from the overall padded artifact set:  

𝑆()* = ⋃ (𝐶$%
$&' ⋃𝐿$ ⋃𝑅$). 

Equation 15. Expanded artifact set after dilation by padding. 

Finally, the padded binary mask is produced following the definition below: 

𝑑L# = )
1, 𝑡 ∈ 𝑆()* ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

Equation 16. Padded binary mask (𝑑#!) returned by the padding routine. 

5.2.3.2. Remove small segments 
Intuitively, this routine follows a similar logic to the padding function. We start again with a binary 
mask where 𝑑+ = 1 marks an artifact and 𝑑+ = 0 clean data. A clean sample set is defined as 
𝐶 = {𝑡 ∶ 	 𝑑+ = 0}, just as the reasoning above, C can be decomposed into K maximal contiguous 
runs of connected components: 

𝐶 ==𝐸+ ,						𝐸𝑘 = {𝑐𝑘, 𝑐𝑘+1, … , 𝑑𝑘},
,

+&'
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Equation 17. Decomposition of a clean sample set into K maximal contiguous clusters. 

Where 𝑐; = 𝑚𝑖𝑛𝐸;, 𝑑; = 𝑚𝑎𝑥𝐸;, and 𝑑+ = 0 for 𝑡 ∈ 	𝐸;. Each run’s length is defined as: 

ℓ; = 𝑑; − 𝑐; + 1 

Equation 18. Length of the kth clean segment. 

Given a user-specified minimum segment length L>0, we identify all too short clean runs as 
𝒦C?DEE = {𝑘 ∶ 	 ℓ; < 𝐿}. We then convert each one of the marked segments into artifacts by 
defining the filled artifact set: 

𝒮F8EE = q 𝐸;
G∈𝒦()*++

 

Equation 19. Set of all samples in undersized clean gaps. 

And assemble the post-processed artifact set 𝒮(JK = {	𝑡 ∶ 	 𝑑+ = 1}⋃𝒮F8EE .	Ultimately, the output 
mask is: 

𝑑L# = ) 1, 𝑡 ∈ 𝒮𝑛𝑒𝑤,0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

Equation 20. Final binary mask after removal of small gaps. 

5.2.3.3. EEG Filter 
Before any artifact metrics are computed, each channel’s raw trace is run through a zero-phase 
FIR filter configurable by the user. For it, two Python functions are used firwin to create the FIR 
filter coefficients and filtfilt to avoid phase distortion.  

Initially, parameters are validated, and the filter order is selected. Both low-cutoff and high-cutoff 
frequencies are allowed as function parameters. In the beginning of the routine, 4 important 
parameters are defined, the Nyquist frequency, a filter order scaling factor (set to 3) to ensure the 
filter is neither too short or too large, a minimum filter order (set to 15) and a transition band width 
controller (set to 𝛿 = 0.15). Next, we validate the cutoff frequencies so that 0 ≤ 𝑓EO ≤ 𝑓P8 ≤
𝑓QRS. If no explicit filter order is given, it is computed as: 

𝑀 = max Y𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑓𝑖𝑙𝑡𝑒𝑟	𝑜𝑟𝑑𝑒𝑟, 𝑠𝑐𝑎𝑙𝑖𝑛𝑔	𝑓𝑎𝑐𝑡𝑜𝑟	 ×	
𝑓C
𝑓*T+

] 

Equation 21. Filter order M chosen as the greater of a minimum order. 

FIR filter, especially when using filtfilt, which applies the filter forward and backward, need a buffer 
of data around the edges to prevent artifacts from originating. To avoid them, filtfilt first reflects data 
by padding the data at both ends by a length called padlen which can be defined as: 

𝑝𝑎𝑑𝑙𝑒𝑛 = 3 × (𝑓𝑖𝑙𝑡𝑒𝑟	𝑙𝑒𝑛𝑔𝑡ℎ − 1) 

Equation 22. Length of the edge-padding buffer required by zero-phase FIR filtering. 
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Therefore, we divide each channel’s time sample trace into segments of length L, requiring that 
𝐿 ≥ 3𝑀. The filter taps are built via firwin using a simplified version of the Hamming window. 
Depending on whether both or only one cutoff frequency are specified the desired amplitude 
response vector is designed. For example, for a band-pass filter where both cutoffs are given by 
the user we define a vector [0, 0, 1, 1, 0, 0]	at frequencies [0, 𝑓EO(1 − 𝛿), 𝑓EO , 𝑓P8 , 𝑓P8(1 +
𝛿), 𝑓QRS). The main function incorporates one more parameter which the user can select, revfilt, 

if set as True, we invert the response to get a notch filter. Each filter is convolved forwards and then 
backwards with the FIR taps, canceling all phase delay. 

5.2.3.4. Artifact detection 
The artifact detection function is the core of our pipeline, here is where artifacts are detected, and 
the other three functions are integrated all together. It implements three sequential stages: robust 
feature extraction, adaptative thresholding and morphological cleanup. Unlike traditional 
approaches that rely on a single mean/STD threshold (as in Staresina et al., 2015) or peak-to-peak 
limits (as in Autoreject). This algorithm computes three independent z-score metrics per channel; 
amplitude, slope, and high-frequency envelope, each normalized by the channel’s median and 
MAD. Because median/MAD estimators are far less influenced by extreme outliers than mean/STD, 
the detector will remain stable even when very large artifacts are present. For a more in depth 
understanding, let us denote a single channel’s time series by 𝑥[𝑛], 𝑛 = 1,… ,𝑁, and define three 
separate z-score measurements: 

𝑧D?U[𝑛] = 	
V[(]1?JY8D((V)

>\](V)
, 

𝑧^_DY[𝑛] = 	
∆V[(]1?JY8D((∆V)

>\](∆V)
, 

𝑧J(a[𝑛] = 	
J[(]1?JY8D((J)

>\](J)
. 

Equation 23. From top to bottom: a) Amplitude based z-score of the raw signal 𝑥[𝑛]	normalized by its median and MAD, b) Slope-
based z-score where ∆𝑥[𝑛]	denotes the first derivative of 𝑥[𝑛], also normalized by median and MAD, c) Median/MAD 

normalized high-frequency envelope. 

In Equation 23 c) 𝑒[𝑛] = Lℋ�𝑥PU�[𝑛]L is the analytic signal envelope of the Hilbert transform of 
the 240Hz high-pass filtered original signal. Each sample n is the initially flagged if any of: 

𝑧D?U[𝑛] > 𝜏D?U,						𝑧^_DY[𝑛] > 𝜏^_DY ,						𝑧J(a[𝑛] > 𝜏J(a 

Equation 24. Initial artifact flagging condition. 

Where 𝜏D?U, 𝜏^_DY , 𝜏J(a are user defined thresholds in MAD units. Subsequent steps prune 
spuriously short decisions, unless they contain a giant spike controlled by an overshoot factor also 
determined by the user, dilate the remaining clusters by 𝓅 samples on each side (padding), and 
clean any short gaps shorter than a minimum duration. After these steps the final artifact mask is 
applied to the data.  
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As a special note, the artifact detection algorithms return the original MNE dataset as a NumPy 
array, hence, another function to convert it back to its original format is implemented after the data 
cleaning. 

 
Figure 10. Artifact detection output for a time for a 10ms time window and 1.8mV scale. Starting from the left a) Original iEEG 

signal b) Processed iEEG signal. 

Figure 10 clearly demonstrates the dual efficacy of our tuned artifact detector. In the middle virtual 
bipolar channels, it is appreciable how subtle low-level drifts that often evade simple thresholding 
are blanked out and removed from the data. HP1-HP2, HP7-HP8 and HP9-HP10 show bigger-
sized artifacts, which are also successfully detected. By combining robust median/MAD 
normalization with independent amplitude, slope, and envelope thresholds, the algorithm is capable 
of adapting to both extremes: small-sized blips no longer accumulate over time, and major spikes 
no longer contaminate the analysis. 

5.2.3.5. Trial rejection 
During the application of the artifact mask to the original uncleaned signal, the marked regions are 
converted into NaNs. For further analysis those NaNs must be eliminated. Unfortunately, due to 
the large number of channels per subject, it is highly probable that for each epoch, there is at least 
one NaN present in one of the channels, hence, if we limit ourselves to just dropping all trials with 
NaNs, we will lose almost all data.  

In an effort to prevent this, one more step is added to the pipeline, trial rejection. The first step of 
trial rejection is applying Visual Reject explained in Section 5.2.2, this collection of functions offers 
a versatile approach that fits in diverse pipeline to ensure a proper cleaning of borderline before 
any hard trial exclusion decisions are made.  

Subsequently, the relative amount of NaNs per channel is computed. By first excluding channels 
whose NaN rate exceeds a predefined threshold and then removing only those epochs that still 
contain NaNs, we minimize the total number of trials discarded. This procedure involves a delicate 
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trade-off: sacrificing a subset of channels to preserve a larger number of valid epochs, rather than 
vice versa. 

5.2.4.  Autoreject 
Traditional EEG cleaning is often based in peak-to-peak amplitude, applied either globally to all 
sensors or thresholding per channel. This process is time-consuming and prone to experimenter 
bias. Autoreject automates such tedious procedure by using K-fold cross-validation to automatically 
learn optimal rejection cutoffs directly from data. For each fold, candidate thresholds minimizing 
the error are calculated. This process can be applied either to the entire sensor-by-time matrix or 
to each channel independently. Each trial is marked as “bad” by any channel whose peak-to-peak 
exceeds its learned cutoff. Trials with too many bad channels are discarded, while those with only 
a few sensors flagged get interpolated from their neighbors. This interpolation might maximize data 
retention in scalp EEG, but as explained in section 4 Concept Engineering, Autoreject is not fully 
suited for our iEEG case, meaning that it might not work as it should [43].  

5.2.4.1. Threshold learning 
To explain it in detail, let our data matrix be 𝑋 ∈ ℝ-·/, where N is the number of trials and P is the 
number of features. For a global threshold 𝑃	 = 	𝑄 × 𝑇 (all Q sensors over T time points), whereas 
if threshold is computed channel by channel 𝑃 = 𝑇. To simplify the notation, trials are denoted as 
𝑋0 = (𝑋0', 𝑋01, … , 𝑋0/). Where its across-trial mean is defined as 𝑋S and its median is 𝑋T. Finally, 
each trial’s peak-to-peak amplitude is measured by: 

𝑝𝑡𝑝(𝑋0) = max(𝑋0) − min(𝑋0) 

Equation 25. Peak-to-peak amplitude for trial i. 

To learn a global cutoff threshold, a K-fold cross-validation is carried out. In each K fold, N trials 
are divided into train and validation, peak-to-peak amplitudes for all trials X in the training set are 
computed and stored as 𝐴 = {𝑝𝑡𝑝(𝑋0)	|	𝑖 ∈ 𝑡𝑟𝑎𝑖𝑛+}, and finally a subset of “good” trials 𝐺E is 
defined for those under a candidate threshold 𝜏E ∈ ℝ as 	𝐺2 = {𝑖 ∈ 𝑡𝑟𝑎𝑖𝑛+ 	|	𝑝𝑡𝑝(𝑋0) < 𝜏2 	}. Once 
this is determined, the error metric for one CV fold for a particular threshold is computed through 
the RMSE as: 

𝑒+2 =	_𝑋S3" − 𝑋T4)2#_567  

Equation 26. Fold-wise error: Forbenius norm between mean of good training trials and median of validation trials. 

𝑋�b+   is the mean of good training trials and 𝑋�aDE,  the median of trial in the validation fold, using the 
median makes the algorithm more robust to outliers ‖·‖c_O	is the Frobenius norm: 

‖𝑀‖567 = bc𝑀0,9
1

0,9

 

Equation 27. Definition of the Forbenius norm. 

CV will find the optimal threshold that does not eliminate or keep too many trials while having the 
smallest error. The threshold with the minimum mean error is selected as the global threshold: 
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𝜏⋆ =	𝜏2⋆ 	𝑤𝑖𝑡ℎ	𝑙⋆ = 𝑎𝑟𝑔𝑚𝑖𝑛2
1
𝐾
c𝑒+2

,

+&'

 

Equation 28. Optimal global threshold minimizing mean CV error. 

5.2.4.2. Consensus voting 
A single global cutoff often misses channel-specific noise patterns, so instead we learn one optimal 
threshold 𝜏⋆

S per sensor q, remember that as explained in the beginning, now P = T. Each sensor 
then votes a trial as bad if its 𝑝𝑡𝑝 > 𝜏⋆

S, at the end, any trial with at least a user-defined number 
of bad sensors is rejected [43]. 

Cross-validation assumes each sensor has at least some clean trials to learn from, if all trials a 
bad, it will not be able to establish a baseline. To rescue such channels, data is augmented by 
creating one “clean” copy of each trial per sensor, interpolating that time-series sensor from its 
neighbors. Hence, we obtain an augmented matrix, with 2N rows, where half of them represent raw 
trials and the other half are the interpolated “cleaned” ones, this new matrix can be defined as 	
𝑋) ∈ 	ℝ1-·; . Just as a quick reminder, this method is designed for scalp EEG, we are doing iEEG, 
this interpolation technique would be “ideal” if done within each shaft of electrode contacts, and not 
globally for all shafts. The algorithm then finds for each sensor j its optimal peak-to-peak cutoff 𝜏9∗. 
Henceforward, sensor j believes that trial i is bad if that trial’s amplitude on sensor j exceeds 𝜏9∗ 
[43]. 

An indicator matrix 𝐶	 ∈ 	 {0,1}-·< whose entries Ci,j is formed according to the rule: 

𝐶0,9 = e
0, 𝑖𝑓	𝑝𝑡𝑝f𝑋0,9g ≤ 𝜏9∗

1, 𝑖𝑓	𝑝𝑡𝑝f𝑋0,9g > 𝜏9∗	
 

Equation 29. Indicator of whether a sensor j in trial i exceeds its learned cutoff. 

That is, we take a consensus among the sensors and mark a trial as bad only if the consensus is high 
enough. Good trials G are given by 𝒢 = k𝑖	l	∑ 𝐶0,9 < 𝑘<

9&' o, in other words: “keep trial i if fewer than 
k sensors flagged it as bad”. Rather than choosing k as an absolute count, it’s often more robust to 
set it as a fraction of all sensors 𝑘 𝑄�  [43].  

5.2.4.3. Interpolation rescue 
After consensus rejection, trials with only a few rejection votes are rescued by interpolating to a 
maximum of ρ sensors per trial. If a trial has ≤ 𝜌 bad sensors, all will be interpolated. Instead, if it 
has > ρ, but still ≤ 𝑘, so that the trial itslef was not rejected), only the ρ worst sensors ranked 
based on peak-to-peak amplitude will be interpolated. With this, a score is set, si,j, which is -∞ if 
the sensor is good and equal to the peak-to-peak amplitude if the sensor is bad: 

𝑠0,9 = e
−∞, 𝑖𝑓	𝐶0,9 = 0

𝑝𝑡𝑝(𝑋0,9), 𝑖𝑓	𝐶0,9 = 1	 

Equation 30. Ranking score per sensor: infinite penalty if clean, else its peak-to-peak. 
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This leads us to the following rule for interpolating a sensor: 

𝑋0,9 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑖𝑛𝑡𝑒𝑟𝑝f𝑋0,9g, 𝑖𝑓	(0 < c 𝐶0,9> ≤ 𝜌)	𝑎𝑛𝑑	(𝐶0,9 = 1)

<

9%&'

𝑖𝑛𝑡𝑒𝑟𝑝f𝑋0,9g, 𝑖𝑓	(𝜌 < c 𝐶0,9> ≤ 𝑘)	𝑎𝑛𝑑	(𝑠0,9 > 𝑠0(-@A))
<

C%&'
𝑋0,9 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 31. Final Autoreject per-sensor output. 

Denote 𝑏8 = ∑ 𝐶8,90
f
g-./ , the number of bad sensors in a trial. The optimal values for the 

parameters 𝑘⋆ and 𝜌⋆ are estimated using grid search for the same error metric seen earlier in 
Equation 26. 

Autoreject results in a fully automated algorithm requiring no manual intervention, particularly useful 
for large-scale experiments. It also implies that the analysis pipeline is free from experimenter’s 
bias while rejecting trials.  

5.2.4.4. Application to our dataset 
In implementing this function to our intracranial data, we decided to take two decisions which 
ultimately will affect the algorithms performance. These considerations were chosen to preserve 
data integrity and size. Firstly, we disabled per-trial interpolation, as previously mentioned, unlike 
scalp EEG, where electrode layout is standardized and interpolation might perform well, our shaft-
based contacts have variable locations. Moreover, we preferred to avoid introducing synthetic data 
in an already limited dataset. 

Secondly, we set the consensus threshold to 𝑘 𝑄� = 0.3, in an effort to find a balance between 
aggressive cleaning and maximal trial retention. At this level around an 80% of trials per subject 
were maintained. Each function returns a cleaned data array and two interactive RejectLog figures, 
where dropped and marked trials are highlighted, thus allowing for visual inspection if desired [44]. 

 

Figure 11. RejectLog visualization for the bipolar virtual channels after Autoreject. 
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The first flagged epoch in channel L3-L4 exhibits only small, ambiguous deflections, so slight that 
a human rater would most likely classify it as clean but having fewer than 30% “bad” votes across 
channels, it is not discarded. Likewise, the final flagged trial of the same channel represents a clear 
artifact, although it also fails to meet the consensus threshold, and it is retained. This illustrates 
how consensus balances sensitivity and data preservation. 

As illustrated in Figure 11, Autoreject seems to continue to perform robustly even with iEEG data 
after disabling interpolation. It shows to be highly sensitive to low-level artifacts, which occasionally 
leads to the false identification of clean trials. However, because we employ a consensus threshold, 
isolated false positives are not automatically discarded, conversely, genuine artifacts that fail to 
reach the voting threshold will also remain in the dataset.  

5.3. Data analysis 

5.3.1.  Univariate circular correlation 
The quantification of the relationship between neural signals and circular behavioral variables 
needs for special methods that respect the circular nature of the data. In this study univariate 
circular correlation is used to assess channel-by-channel whether frequency power in intracranial 
recordings covaries systematically with stimulus orientation. Behind this procedure there are three 
main steps: firstly, the mathematical formulation of linear circular correlation between neural 
features and an angular variable, secondly, the estimation of spectral power via the multi-taper 
method and its normalization to isolate the high-frequency band, and lastly the construction of an 
empirical null distribution through permutation testing to evaluate statistical significance. Below, 
each of these three key steps is explained in higher detail: 

5.3.1.1. Mathematical foundations of linear-circular correlation 
The code implements a linear-circular correlation that relies on separate Pearson correlations with 
the sine and cosine projections of the angular variable. Let us denote 𝛼 = [𝛼/, 𝛼", … , 𝛼Q]- the 
vector of stimulus orientations for N trials, and by 𝑋	 = 	𝑁	𝑥	𝑃 a matrix where each column is a 
linear predictor P. The first step is to project each orientation onto its orthogonal components: 𝑢8 =
sin(𝛼8) and 𝑣8 = 𝑐𝑜𝑠(𝛼8). Then for a given neural feature vector 𝑋U of length 𝑁, the Pearson 
correlation coefficients 𝑟V,C,U = 𝑐𝑜𝑟𝑟(𝑋U, 𝑢) and  𝑟V,*,U = 𝑐𝑜𝑟𝑟(𝑋U, 𝑣) are computed alongside 
the scalar 𝑟*,C = 𝑐𝑜𝑟𝑟(𝑣, 𝑢). Through these three variables we can obtain the squared linear-
circular correlation following the equation 8.5.3 (p.187) of Jammalamadaka and SenGupta (2001): 

𝑅U" =
_.,$,/' 5_.,(,/' 1"_.,$,/_.,(,/_$,(

/1_$,('
, 

Equation 32. Squared linear-circular correlation formula. 

Because this formula may return a negative value if the arrangement of signs in the numerator 
suggests an inverted association, the code then uses the signed-square-root convention by 
computing: 

𝑅C8^(JY = 𝑠𝑖𝑔𝑛M𝑟V,CN𝑠𝑖𝑔𝑛M𝑟V,*N𝑅,					𝑅" = �(𝑅C8^(JY)". 

Equation 33. Signed-square-root convention. 
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Finally, under the null hypothesis of no association the p-value is computed by showing that 
𝑁𝑅",U follows a chi-square distribution with two degrees of freedom: 

𝑝U = 1 − 𝐹V''(𝑁𝑅",U), 

Equation 34. Nominal p-value formula. 

Where 𝐹V''(·) is the cumulative distribution function of 𝑋" with two degrees of freedom. 

5.3.1.2. Extraction and normalization of PSD 
The extraction and normalization of the PSD was achieved by using the multi-taper method 
explained in Chapter 7 of Percival, D. B., and B. J. Walden (1993). Spectral Analysis for Physical 
Applications: Multitaper and Conventional Univariate Techniques. Specifically, for each trial i and 
channel j, the raw time series xi,j(t) is multiplied by a series of discrete tapers hp(t) using the Fourier 
Transform: 

𝑋8,9,U(𝑓) = AℎU(𝑛)𝑥8,9(𝑛)1":8F( F(⁄
-

(./

,					𝑝 = 1,…𝐾, 

Equation 35. Tapered Fourier Transform. 

And PSD: 

𝑆c8,9(𝑓) =
1
𝐾AL𝑥8,9,U(𝑓)L

"
G

U./

, 

Equation 36. Multi-taper PSD estimate. 

Then, to normalize the 𝑆c8,9(𝑓) power 𝑃8,9 , over a target frequency band [flow,fhigh], it is divided by a 
total broader power 𝑃8,9+O+, additionally, to stabilize ratios a small constant 𝜀 = 101/! was added: 

𝑦8,9 = log/! �
𝑃8,9 + 𝜀
𝑃8,9+O+ + 𝜀

� , 

Equation 37. PSD normalization for a specific frequency band. 

5.3.1.3. Permutation-based construction of the null distribution 
Because trial-by-trial covariations between neural data and stimulus angular orientation could be a 
product of coincidence, it is necessary to assess significance against an empirical null distribution. 
Let 𝑦9 = [𝑦/,9 , … , 𝑦Q,9]" denote the vector of normalized PSD for channel j, and let 𝜃 =
[𝜃/, … , 𝜃Q]- be the original sequence of stimulus orientations. The true circular correlation for 
channel j is computed as 𝑟9,+_TJ = 𝑐𝑖𝑟𝑐_𝑐𝑜𝑟𝑟(𝑦9 , 𝜃). Then, to generate the null distribution for 
channel j, we construct M random permutations of {𝜃(𝑚):𝑚 = 1,… ,𝑀} by applying random 
shuffles to 𝜃. For each permuted angle vector 𝜃(𝑚), one computes 𝑟9(𝑚) =
𝑐𝑖𝑟𝑐_𝑐𝑜𝑟𝑟(𝑦9 , 𝜃(𝑚)). Because the analysis uses squared correlations, the code stores 
𝑅9,+_TJ" 	and {𝑅9"(𝑚)}, to then calculate a one-sided p-value for each channel j as: 
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𝑝9 =
1
𝑀 A 1[

>

?./

𝑅9"(𝑚) ≥ 𝑅9,+_TJ" 	]. 

Equation 38. Null distribution and p-value computation. 

Where 1 is the indicator function. Conceptually, if only a small fraction of permuted R2 values 
exceed the observed R2 the channel is statistically significant. 

5.3.1.4. Anatomical localization of significant channels 
To properly capture the dynamics of frequency bands, the analysis is partitioned into four temporal 
windows (pre-fixation, fixation, cue and delay), for each subject and time window, each epoch is 
cropped to isolate the periods of interest, then the resulting subset of data undergoes the process 
explained above. The frequency band studied goes from 2 Hz to 12 Hz, this being the previously 
studied frequency band of interest by Compte Lab. 

Usually for most studies, a p-value under 0.05 is considered significant, although for ours we chose 
a stricter threshold of 0.001 to avoid false positives and maximize significance. Once these 
channels are found, electrode metadata from the previous localization in RAVE containing 
FreeSurfer labels is merged, so that each channel is associated with an anatomical region. It is 
important to note that white matter areas were previously removed from the dataset. Regions of 
Interest (ROIs) are plotted through the aparc.a2009s+aseg atlas offered by FreeSurfer and a count 
of significant channels per region is tabulated to identify hotspots. 

5.3.1.5. Univariate analysis results 
This univariate circular correlation is applied to each one of the three preprocessing methods, 
where the one detecting higher number of significant ROIs would prove to be better for decoding. 
To turn this comparison into a fair game, the number of channels per method is firstly reduced to 
only the channels that the three methods have in common. 

 

  

 

 

 

 

 

Figure 12. Total number of channels and epochs per method before equilibration. 

The table below shows the total number of channels (Ch) per region of interest after reducing the 
total number of channels only to the ones all methods have in common. 
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ROI Ch ROI Ch ROI Ch 

G_precentral (L) 8 G_temp_sup-Lateral (L) 2 G_and_S_cingul-Ant 
(L) 

1 

S_intrapariet_and_P_trans 
(L) 

7 G_precentral (R) 2 G_and_S_cingul-
Mid-Ant (L) 

1 

G_pariet_inf-Supramar (L) 5 G_front_sup (R) 2 G_and_S_paracentr
al (L) 

1 

G_temporal_middle (R) 5 S_oc-
temp_med_and_Lingu
al (L) 

2 G_and_S_subcentra
l (L) 

1 

S_precentral-sup-part (R) 5 Lat_Fis-post (L) 2 G_cingul-Post-
ventral (L) 

1 

S_postcentral (L) 5 S_circular_insula_sup 
(L) 

2 G_front_inf-Triangul 
(L) 

1 

S_central (L) 4 G_occipital_middle (R) 2 G_temp_sup-
G_T_transv (L) 

1 

G_and_S_cingul-Mid-Post 
(R) 

4 Left-Amygdala 1 G_and_S_cingul-
Mid-Ant (R) 

1 

S_oc_middle_and_Lunatus 
(R) 

3 G_front_sup (L) 1 S_interm_prim-
Jensen (L) 

1 

S_temporal_sup (R) 3 S_oc-temp_lat (L) 1 S_cingul-Marginalis 
(L) 

1 

G_parietal_sup (L) 3 S_circular_insula_inf 
(L) 

1 S_front_inf (L) 1 

G_precuneus (L) 3 S_front_sup (L) 1 S_calcarine (L) 1 

G_temp_sup-Plan_tempo (L) 3 S_temporal_inf (L) 1 G_front_inf-Orbital 
(R) 

1 

S_calcarine (R) 3 G_oc-temp_med-
Lingual (R) 

1 Pole_occipital (R) 1 

S_postcentral (R) 3 Lat_Fis-post (R) 1 S_oc-temp_lat (R) 1 

S_front_sup (R) 3 S_cingul-Marginalis (R) 1 
  

Table 1. 47 ROIs, 105 total channels. L=Left hemisphere, R=Right hemisphere. ROIs names simplified (ctx_lh/rh prefixes 
removed). 

Additionally, since this work also aims to study serial dependencies, the univariate circular 
correlation will be applied both to current stimulus angles, and to previous trial orientations, this 
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way we cannot only see which brain regions are working on the current stimulus, but also whether 
there are ROIs working in the previous one, and if so, which ones.  

 

Figure 13. Significant ROIs for univariate circular correlation decoding for the current stimulus. 

In Figure 13, decoding performance for each method is assessed by examining the presence of 
significant ROIs during each of the time windows. During the fixation period no ROIs surpass the 
significance threshold, indicating an absence of decodable activity as expected. The accompanying 
histograms in the right panel illustrate quantitively the efficacy of each method: the artifact detection 
approach finds the highest number of significant ROIs, with manually cleaned data to a close 
second. In contrast, the Autoreject pipeline consistently yields fewer ROIs in every temporal 
window, suggesting that its automated rejection criteria may not be optimally tuned for iEEG 
recordings. 

 
Figure 14. Significant ROIs for univariate circular correlation decoding for the previous stimulus. 
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Figure 14 depicts the spatial distribution of significant ROIs when decoding the orientation of the 
previous stimulus, including a pre-fixation interval to highlight baseline activity. Across all time 
windows the Autoreject method continues to underperform in comparison to the rest. Importantly, 
during the fixation period manual cleaning identifies two ROIs (the right calcarine sulcus and the 
right middle occipital-lunatus sulcus), and artifact detection uncovers three ROIs (the left subcentral 
gyrus and sulcus, the right anterior occipital sulcus, and the left lateral posterior fissure). In contrast, 
no decoding is present during the cue time window, and one different ROI per method is found in 
the delay period, which might represent false positive due to the different location of each one. This 
slight activation in the fixation period when decoding for past trial’s orientations follows the logic 
proposed by the bump-attractor model explained in Section 2.2.3. 

With respect to the decoding of current stimulus in Figure 13, the two most common significant 
ROIs among all methods and time windows are the right middle temporal gyrus and the right 
superior frontal gyrus. These anatomical results must be interpreted considering the implantation 
bias explained during Section 1.3, electrodes were placed according to clinical necessity rather 
than uniform sampling, so regions that fail to appear as often as others may lack coverage.  

Although artifact detection shows slightly higher decoding results than manual cleaning, the 
improvement is minimal, and when applied across all global channels it does not produce a clear 
global benefit, many channels and epochs are discarded to remove artifacts, which at the end limits 
the possible results if more brain regions are covered. Artifact removal might pose a significant 
advantage with respect to manual cleaning when analyses focus on a small subset of channels, 
since with fewer channels, the chance that any single epoch contains an artifact is reduced, so 
more clean data is retained despite NaN detection, resulting in a better trade-off between signal 
quality and data retention. 

 

Figure 15. Proportion of decoding channels per method and subject. 

Finally, Figure 15 illustrates how participant s01 is the most influential in this decoding since it has 
the highest proportion of decoding channels. This result comes from the fact that it has more than 
a thousand epochs. It can also be seen how participant s06 is not showing any decoding, which 
suggests the noisy nature of this subject’s signal, despite the previous cleaning, impedes its proper 
decoding.  
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5.3.2. Multivariate Support Vector Machine 
As explained in earlier sections, multivariate decoding differs from univariate since all channels for 
an epoch are considered when decoding, instead of channel-by-channel, we now look at the 
combination of all of them. Despite this difference, multivariate SVM starts as the previous 
univariate method does, by computing the PSD and normalizing it using the same methodology. 

Later, to assess decoding accuracy, the function implements k-fold cross-validation with k=5 by 
default using Scikit-Learn’s k-fold with shuffling controlled by the provided random state. The SVM 
pipeline is all incorporated within one same function, although an additional routine is defined within 
it.  

This additional routine parts the feature matrix and angular labels into training and testing sets. 
Later, in order to prevent any channel from dominating learning due to scale differences a 
StandardScaler is fit on Xtrain, which computes per channel means and standard deviations to 
normalize it using z-scoring. Because the target angle 𝜃8 is circular, standard support-vector 
regression must be adapted to respect angle wrapping. To do so, we construct a Scikit-Learn’s 
pipeline using the following line: make_pipeline(AngularRegression(clf=LinearSVR())), where 
LinearSVR() fits a linear model: 

𝜙� = 𝑤-𝑥 + 𝑏, 

Equation 39. Linear fit for the support-vector regressor. 

Where 𝑥 ∈ ℝh  is a vector of normalized channel powers. The AngularRegression wrapper 
ensures that training and prediction account for circular distance. For each trial, the prediction error 
is computed via the circular difference: 

∆𝜃8 = ∠ 𝑒8ijk01j0l¡. 

Equation 40. Prediction error computed via circular difference. 

The mean absolute error across the test fold is appended to a list, and the average error over all k 
folds is returned as the single-trial decoding error 𝜀_JDE . Once the true error is obtained, we proceed 
to run the same code for nperm independent permutations {𝜃(𝑚)} of the original angle vector, and 
the empirical p-value is computed as the fraction of permuted errors that are less than or equal to 
the true decoding error. 

5.3.2.1. Multivariate analysis results 
This decoder was only applied to the manually cleaned data and to the artifact detection’s data, 
since Autoreject has already been discarded in the previous decoder. Previous studies of serial 
biases in humans had only been conducted through scalp EEG, therefore our iEEG dataset was 
giving us an opportunity to explore different frequency bands from what we have already seen, 
nevertheless, the target 2 Hz – 12 Hz showed similar or better results to the other high-frequency 
bands tested. Figures 16 and 17 below show the null distribution of errors for subjects s01 and s08, 
the best performers so far. The results for the other subjects can be found in the Annex A.  
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Figure 16. Null distribution histograms of mean angular error using the multivariate SVM for subject s01 and PSD computed for a 
frequency range of 2 Hz to 12 Hz for 1000 permutations. The first row corresponds to the fixation period decoding for the previous 
trial stimulus orientation, instead the next two rows (cue and delay) are decoded for the current trial information. Within each panel, 
the blue bars represent the null distribution of mean angular errors and the red vertical line indicates the actual mean angular error 
computed on unshuffled data, if the red line appears in the far-left side of the panel away from the null distribution, it means that the 
actual mean error beats chance level and the decoding is significant. 

 

Figure 17. Null distribution histograms of mean angular error using the multivariate SVM for subject s08 and PSD computed for a 
frequency range of 2 Hz to 12 Hz for 1000 permutations. The first row corresponds to the fixation period decoding for the previous 
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trial stimulus orientation, instead the next two rows (cue and delay) are decoded for the current trial information. Within each panel, 
the blue bars represent the null distribution of mean angular errors and the red vertical line indicates the actual mean angular error 
computed on unshuffled data, if the red line appears in the far-left side of the panel away from the null distribution, it means that the 
actual mean error beats chance level and the decoding is significant. 

We chose to decode the fixation period time window using the previous trial stimulus orientation to 
look for serial dependency biases and support the bump-attractor model explained in the 
Background Section. As seen in the figures above, for the fixation period, despite s01’s larger trial 
count and stronger univariate modulations, its multivariate decoding lags behind s08’s, possibly 
due to differences in spatial coherence between more than one channel or variability of informative 
sources. Instead s08’s channels may give richer covariance structure for the linear regressor. Both 
show good decoding results for the cue period time window, although subject s08 shows worst 
decoding performance for the delay period, possibly due to the same reasons as s01 did in the 
fixation time window. The results found in subject s08’s multivariate fixation period decoding 
suggest that there are neural correlates of serial dependence mechanisms in iEEG, since when 
decoding for the previous angle, the true error beats overall chance level indicating that the 
decoding activity is significant, although the results returned by subject s01 challenge this 
observation. In order to verify the existence of neural correlates we then applied in Section 5.3.3 a 
forward encoding model aiming to solve this contradiction. 

As for the preprocessing methods, both show similar results, although for this analysis, all channels 
available for each pipeline were used, therefore manual cleaning’s decoding was performed with 
higher number of data. Taking this advantage into account, it suggests that these results are 
consistent with the ones obtained in Section 5.3.1.5, supporting the solution proposed in that same 
section, where for a decoding study where we want to study as many ROIs as we can, manual 
cleaning offers the best results, although for an analysis of only a small subset of channels or a 
specific ROI, the custom artifact detection pipeline might offer better results. 

5.3.3. Forward encoding 
The forward encoding model applied here is designed to work with time-resolved raw data, 
therefore for this last evaluation no PSD will be computed. Furthermore, this model is meant to 
show preliminary results only and set a reference point from where this research can continue in 
the future, therefore, the forward encoding model was only used for the two best performing 
subjects, s01 and s08. 

5.3.3.1. Data partitioning and weight estimation 
Firstly, neural data is divided into k=3 k-folds. The forward encoding model assumes that, at each 
discrete time point t, the multichannel sensor data arises from a linear combination of C hypothetical 
orientation channels. For each trial n, sensor amplitudes are extracted as 𝑌(,F,+ for sensors 𝑓 =
1,… , 𝐹 and presented orientations are stored in degrees as 𝜙( ∈ [0,360). All orientations are 
firstly binned in C equally spaced bins 𝐺( ∈ {0,… , 𝐶 − 1}, and each trial’s orientation 𝜙( is used 
to construct a C-dimensional design vector via a von Mises function. Concretely, if 𝜇* = 180𝑐 𝐶⁄  
is the preferred angle of channel c, we can define the difference: 

∆(,*= (𝜙( − 𝜇*)
:
/3!

, 

Equation 41. Angular difference conversion of presented and preferred orientations to radians. 
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Through which we can compute the von Mises tuning function: 

𝐷(,* =
𝑒𝑘𝑐𝑜𝑠(2∆&,$)

":m3(;)
, 

Equation 42. Normalized von Mises tuning functions for channel c on trial n. 

With a concentration parameter kappa of k=4, which controls how sharp is the tuning function’s 
peak around ∆(,*=0, and 𝐼!(𝑘) denotes the modified Bessel function of the first kind. We then 
design a matrix 𝑋 by stacking these row-vectors over the training trials and a new sensor matrix 𝑌 
containing the transposed amplitudes of neural data for those trials.  

This model is built on the idea that the pattern of activity across all sensors arises from the activation 
of C hypothetical orientation channels, plus some noise, which can be mathematically described 
as: 

𝑦 = 𝑊-𝑥 + 𝑒, 

Equation 43. Channel activity as a linear combination of orientation-channel activations plus noise. 

Where x is a C dimensional vector of channel activations and W is a matrix of unknown weights. In 
a training set of many trials, we know which is the target activation of the channels, so we find a 
set of spatial filters W that best predict each sensor’s value from those channel activations. More 
specifically, for each channel we perform a linear regression of that channel’s known activity onto 
the recorded sensors, then adjust those weights by applying a shrinkage parameter to the leftover 
noise. Once this is done and we have W, decoding is simple, we just take the filter’s rows, normalize 
them and stack them into a matrix 𝑊¦ . Therefore, for any new neural data measurement y our 
estimate of the channel activations is simply 𝑥§ = 𝑊¦ 𝑦, which when concatenated across all folds 
returns 𝑋�DEE. 

5.3.3.2. Accuracy assessment 
To evaluate reconstruction accuracy at each time point t, we compute a channel centered tuning 
matrix 𝑀 ∈ ℝh×h .  In this matrix, the cth column is the average of all decoded channel response 
vector after rotating them so that the true channel c appears in the first position. In essence, this 
matrix answers the following question: When the true channel was c, on average how much did 
channel c respond (row 0 of this column), how much did channel one step away respond (row 1), 
etc.? 

𝑧( = ∑ 𝑒8V4: /3!⁄ 𝑋�DEE,_,(h1/
_.! ,							𝑥_ = 𝐺(

2o!
h

, 

Equation 44. Estimated channel responses aggregated into a complex vector. 

So that 𝜃( = arg	(𝑧() is the decoded orientation in degrees. The accuracy measure is: 

𝑟 = ª𝔼( «𝑒8(j&1p&)
/3! :q ¬ª. 

Equation 45. Decoding accuracy of the circular average of angular errors between decoded and true orientations. 
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Where 𝔼( is the average taken over all trials n. A value of r approaching 1 means almost perfect 
alignment between decoded and actual orientations on every trial, whereas a value closer to 0 
indicates chance-level performance. 

5.3.3.3. Forward encoding results 
During the Detailed engineering  section, only the results for subject s01, the one who had more 
data to train the model, will be shown. Nevertheless, the corresponding results to subject s08 can 
be found in Annex B.  

Once the forward encoding finishes, we obtain both the time-resolved accuracy r and the mean 
tuning curves along time. These results provide us with two different types of information. Firstly, 
the accuracy measurement is an indicator of the temporal profile of decodable information, it 
reveals when neural activity carries reliable information and how strong it is. Secondly, the mean 
tuning curves, plotted both as a heatmap and as a specific time slice, characterize the shape and 
sharpness of channel-specific responses, they reflect the fidelity of reconstruction. 

This analysis was performed decoding both for the current and the previous orientation stimulus, 
this way we could observe the decodable information in current trials, and whether there is or not 
decodable information of previous ones too. 

 

Figure 18. Forward encoding for subject s01's manual cleaning dataset. Where a) and c) represent the time-resolved accuracy 
during the decoding of the raw manually cleaned signal for the current and previous stimuli respectively. And b) and d) show the 
tuning curves of the model across time as a heatmap in the left panel, and as a time slice in the right panel. Each time slice 
corresponds to the dashed line in the heatmap. 

As seen in Figure 18, there is decodable information in both cases. When decoding for the current 
trial, neural activity rises when the cue is presented and is maintained all along the delay period as 
expected. In contrast, neural activity when decoding for the previous trial shows something 
different, right before the trial starts with the fixation point, there is a sudden burst of decodable 
information, which slightly fades away to then reappear in the delay period. These findings directly 
corroborate the reactivation of previous information right before the beginning of a new trial in 
consistence with the bump-attractor model predictions, explained along Section 2.2.3 [11]. We also 
observed a shift in the tuning curve of forward model channels (Figure 18d), which suggests that 
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stimulus information is encoded differently when it's reactivated from the previous trial. This might 
indicate a coding strategy that allows multiplexing multiple stimuli with different neural codes and 
minimal interaction. However, this is a preliminary interpretation and should be taken with caution.  

 

Figure 19. Forward encoding for subject s01's artifact detection dataset. Where a) and c) represent the time-resolved accuracy 
during the decoding of the raw artifact detection signal for the current and previous stimuli respectively. And b) and d) show the 
tuning curves of the model across time as a heatmap in the left panel, and as a time slice in the right panel. Each time slice 
corresponds to the dashed line in the heatmap. 

We observed that when using the artifact detection method with the forward encoding model, there 
seems to be no significant neural activity involved related to the previous stimulus. This observation 
suggested that some of the channels removed during the artifact cleaning were precisely those 
conveying the serial bias signals of interest. After this finding, we thought of a possible future 
method to localize brain regions responsible for maintaining or reactivating information from the 
previous trial, which consisted of grouping channels within the same ROI and systematically 
remove one ROI at a time for each analysis from the manual cleaning dataset. By comparing the 
time course and magnitude of decodable information for both current and previous stimuli under 
each ROI-omission condition we can infer which anatomical region contributes more to the 
representation of past-trial information. 

This new methodology was only preliminarily applied to subject s01 from the channels missing in 
the artifact detection dataset. When channels within the intraparietal ROI were excluded from the 
decoding analysis in subject s01, we observed that the burst of decoding activity in the fixation 
period still emerged, but subsequently diminished and diffused compared to the intact-channel 
condition, although decoding activity was still present, this can be seen in Figure 20 down below. 
This small attenuation suggests that intraparietal contact carried a small partial component of the 
serial-bias signal, yet their removal did not abolish decoding activity completely, only diminished it. 
Thus, although intraparietal cortex appears to contribute slightly to the maintenance or reactivation 
of previous trial information, it is unlikely to be the sole focus of serial influences. Other ROIs 
missing from the artifact detection dataset that were also suppressed and made no difference are: 
middle cingulate, somatosensory,  superior temporal, medial parietal and primary motor. Only the 
intraparietal modified the observed accuracy decoding, unfortunately, no PFC regions were 
available for this subject.  
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Most importantly, the ROI-suppression approach provides an initial pathway for localizing the brain 
regions responsible for serial bias in human iEEG. Because these results come from a single 
subject with biased electrode implantation, these results remain preliminary. Nevertheless, the fact 
that intraparietal removal produced a measurable, though incomplete, reduction of decodable past 
information, indicate that futures studies could implement this method to pinpoint the neural circuits 
responsible for serial biases. 

 

Figure 20. Forward encoding for subject s01's manual cleaning dataset with no intraparietal channels. 

6. TECHNICAL VIABILITY 
Regardless of the results obtained in the work, to conduct a proper analysis of the technical viability 
of the project, a SWOT analysis will be carried out. This analysis will identify and develop all 
parameters that affect the strengths, opportunities, weaknesses, and threats of the project. It is a 
simple yet powerful tool that helps identify competitive improvement opportunities and work towards 
enhancing both the project and the team. 

Int
er

na
l 

Strengths Weaknesses 
 

v Institutional collaboration and 
multidisciplinary team 

 
v Access to clinical iEEG data and 

tested intracranial hardware  
 

v Solid foundation of previous 
research 
 

v Mature, open-source Python 
ecosystem 

 
v Scalable batch jobs on cluster 

 

 
v Limited time 
 
v Small sample size 

 
v Complexity in data anaysis 

 
v Dependance on advanced 

tecnologies 
 

v Heterogeneity of electrode 
coverage 
 

v Variable data quality 
 

Ex
ter

na
l Opportunities Threats 

 
v Clinical and scientific relevance 

 

 
v Economic factors 

 



 Biomedical Engineering Alberto Hurtado Morell 

 55 

v Therapeutic applications 
 

v Strengthening collaborative 
networks 
 

v Technological innovation 
 

v External competition 
 

v Pandemics and health crisis 
 

v Technical risks 
 

 

In the following subsections, we will analyze each of these points in more detail. 

6.1. Strengths 
Strengths refer to the internal initiatives that work well. By analyzing these areas, we can 
understand what is already functioning correctly. Next, we will analyze the strengths of the project. 

• Institutional collaboration and multidisciplinary team: The project will be carried out in 
collaboration with IDIBAPS and Hospital Clínic, enabling access to a large quantity of 
clinical data and advanced technologies. The involvement of professionals from various 
disciplines (doctors, engineers, scientists) enables a comprehensive and detailed 
approach to the problems being investigated. 

• Access to clinical iEEG data and tested intracranial hardware: There are intracranial 
EEG equipment and other advanced medical devices, already tested in previous studies. 
This significantly reduces the cost of the project, allowing the use of highly tested and 
efficient technological devices. 

• Solid foundation of previous research: The project is based on prior research performed 
by the Compte lab, published in high-impact journals. 

• Mature, open-source Python ecosystem: For the preprocessing pipeline development, 
many well-established Python libraries as MNE-Python, NumPy and SciPy among others 
are used, which allows for a faster and safer development of the script. 

• Scalable batch jobs on cluster: Once a reproducible automated pipeline for one subject 
is completed, parallel jobs can be sent to work in the cluster for the rest of the subjects. 

6.2. Weaknesses 
Weaknesses refer to internal initiatives that are not functioning adequately. Identifying them 
provides a starting point for improving the project. 

• Limited time: The project's timeframe as an undergraduate thesis imposes significant 
restrictions, limiting the possibility of conducting long-term studies and defining a specific 
deadline.  

• Small sample size: The limited availability of patients who can participate in the study, 
either due to a lack of willingness from the patients or a lack of financial resources from 
the researchers, can affect the accuracy of the results.  
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• Complexity in data analysis: The processing and analysis of intracranial EEG data is 
complex and requires significant time and resources. 

• Dependence on advanced technologies: The high costs and potential lack of specialized 
equipment may delay the project or hinder its continuity. 

• Heterogeneity of electrode coverage: Since each patient has different implantation 
targets, analysis may not be completely directed towards brain areas of interest for this 
project.  

• Variable data quality: Intracranial recordings often contain high-amplitude artifacts due to 
movement, muscle twitches, line noise and even epileptic activity in our situation, hence 
requiring extensive cleaning, slowing the pipeline and losing the little data available. 
Despite noise being qualified as a weakness, it is also a big motivation behind this project 
and one of the main objective drivers. 

6.3. Opportunities 
Opportunities are the strengths and weaknesses, along with any external initiatives that will place 
us in a stronger competitive position. These are factors that can benefit the project's development. 
They might include weaknesses to be improved, or other areas not identified in the first two stages 
of the analysis. 

• Clinical and scientific relevance: The study of working memory and serial biases in 
patients with neuropsychiatric disorders is a growing and highly interesting field of 
research. 

• Therapeutic applications: The project's findings could help identify new therapeutic 
targets and treatment strategies to improve cognitive deficits in patients with schizophrenia 
and anti-NMDAR encephalitis.  

• Strengthening collaborative networks: Collaboration with prestigious institutions, such 
as Hospital Clínic and IDIBAPS, can open doors to future research projects and funding 
opportunities.  

• Technological innovation: The use of advanced techniques and the potential to develop 
new methodologies can position the research team as a leader in the field. 

6.4. Threats 
Threats refer to areas that have the potential to cause problems and jeopardize the success of the 
project. They differ from weaknesses in that threats are external and generally beyond our control. 

• Economic factors: The high costs associated with the use of advanced equipment and 
the possible need for maintenance or replacement can affect the project’s budget.  

• External competition: Other research groups with access to broader resources and larger 
datasets could produce more accurate and quicker results.  

• Pandemics and health crises: Situations like the COVID-19 pandemic can disrupt patient 
access, data collection, and coordination among the professionals involved. 
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• Technical risks: The possibility of technical errors in the intracranial EEG equipment or 
data analysis platforms can cause significant delays. 

7. EXECUTION SCHEDULE 

An execution plan is essential in any project. It provides a detailed and structured guide to reach 
the project’s objectives in an efficient and effective way. An execution schedule clearly defines the 
needed steps to complete the project. It helps to break down complex tasks into simpler ones, 
allowing a better comprehension and execution. It also helps to assign resources, including time, 
personnel and budget. Additionally, with tools like PERT or GANTT diagrams, time can be 
managed and monitored effectively.  

7.1. WBS Dictionary 

By breaking down work into smaller, manageable and approachable tasks productivity is optimized. 
For projects, the Work Breakdown Structure (WBS) is the tool that uses this technique and is one 
of the most important project management documents. It integrates scope, cost and schedule 
baselines ensuring that project plans are in alignment. In Figure 21, the WBS made for this project 
is shown.  

 

Figure 21. WBS Diagram. 

A thorough analysis of each task has been conducted to create the WBS dictionary. A detailed 
description of each task can be found in the Annex C. 

7.2. PERT Diagram 
It is important to know which tasks are dependent on other ones and how much time does it take 
to complete each one of them. A PERT chart is a network diagram that allows project managers to 
create project schedules. They’re used in the Program Evaluation Review Technique (PERT) to 
represent a project’s timeline, estimate the duration of tasks, identify task dependencies and find 
the critical path of a project. To do the diagram, the different tasks defined in the WBS and the 
dependencies between them are represented in the following table. 
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Task Code Letter Duration (days) Precedents 
Background 1.1 A 5 - 

PERT+GANTT 1.2 B 4 D 
SWOT diagram 1.3 C 1 D 
WBS dictionary 1.4 D 3 - 

Legal aspects 1.5 E 2 D 
Install necessary programs 2.1 F 1 D 

Setting up the cluster 2.2 G 1 F 
Data acquisition 3.1 H 60 E 

Data organization 4.1 I 5 G, H 
Electrode localization 4.2 J 30 I 
iEEG signal cleaning 4.3 K 60 I 
Univariate decoding 

analysis 
5.1 L 30 J, K 

Multivariate decoding 
analysis 

5.2 M 30 K 

Encoding analysis 5.3 N 30 J, K 
Final results 5.4 O 5 L, M, N 

Table 2. Identification, precedents and timing of tasks. 

Subsequently, using Table 2, we can create a PERT diagram which will help identify the critical 
path. This process requires the identification or early and late times for each activity. Following the 
forward pass, we can determine the early start time, which indicates the earliest an activity can 
start, and early finish time, the earliest it can end based on our schedule. Then, thanks to the 
backward pass, we can get the late start and late finish, the latest an activity can start or finish 
without increasing the duration of the entire project. It can be seen in Figure 22, that the late finish 
and early finish in activities D, E, H, I, K, L, M, N and O is the same, which implies that these tasks 
correspond to the critical path, meaning that if we were to delay any of them, we would have to 
increase the entire duration of the project, this critical path is highlighted in the arrows in red. 

 

 
Figure 22. PERT Diagram. 
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7.3. GANTT Diagram 
Thanks to the GANTT Diagram, we are able to control tasks of the project over time, thereby 
facilitating following and tracking activities. Time is represented on the x-axis and the activities 
appear in the y-axis. In Figure 23, the GANTT diagram for our project is represented. 

 

Figure 23. GANTT Diagram 

8. ECONOMICAL VIABILITY 
For the correct development of the project, the consideration of multiple costs is required. These 
costs can be categorized in the following groups: 

• Material and infrastructure resources. 

• Subject related resources 

• Human resources. 

8.1. Materials and infrastructure resources 
Firstly, we will analyze the physical and infrastructure elements needed to carry out the project. 
This includes equipment, programs and software licenses: 

 Item Units Price / unit (€) Total price (€) 

Material 
resources 

Implantable 
electrodes 

10u x 15 
subjects = 150 2.500€ 375.000€ 

EEG receptor and 
amplifier 1 25.000€ 25.000€ 

Eye tracker 1 5.000€ 5.000€ 
Laptop 1 950€ 950€ 
Screen 1 200€ 200€ 

Infrastructure High-performance 
computing cluster 1 38.985€ 38.985€ 

 Total  414.700€ 
Table 3. Material and software prices broken down. 

Additionally, all data preprocessing and analyses were performed on the laboratory’s previously 
acquired high-performance computing cluster, it is included in the pricing list for reference, although 
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it did not suppose an additional expense for project, therefore it will not be considered for the overall 
total costs. 

8.2. Subject related resources 
In a clinical trial, it is crucial to consider the costs related to subjects. For this calculus, we will 
consider that we are going to be studying 15 subjects, even though at the end we only analyzed 5 
of them. Also, each patient remains hospitalized an average of 3 weeks in the hospital, that being 
a total of 504 hours. 

Activity Hours/subject Total hours Cost/hour 
(€) 

Total cost 
(€) 

Compensation to 
subjects 
(volunteer) 

5 5h * 15 = 75h 0 0 

Patient 
maintenance in 
the hospital 

504 504h * 15 = 7560h 20 151.200 

Experimental 
session 5 75h 10 750 

Total  151.950 
Table 4. Subject related expenses. 

8.3. Human resources 
Finally, the cost of the personal involved in the project also needs to be considered. The costs for 
the thesis student have been allocated according to the average salary of a project engineer, which 
is approximately 35,000€ per year, moreover, the standardized time schedule to complete a 12 
ECTS consists of 300 official hours. 

Item Total hours Cost/hour (€) Total cost 
(€) 

Thesis director 100 20 2.000 
Thesis tutor 100 20 2.000 
Technical staff 40 15 600 
Thesis student 300 12 3600 
Total  8200 

Table 5. Total hours and hourly pay for human resources, including total cost in euros. 

8.4. Total costs 
After examining the various expenses, we will aggregate them to determine the total funds required 
to complete the project. These details are shown in Table 6. It is important to recognize that this is 
a budget estimate for conducting the work from beginning to end under normal conditions. 
However, much of the equipment used had already been acquired for previous experiments and 
will be utilized in future tests as well. Additionally, as mentioned before, the costs for the 
professionals involved in the project are approximate estimates. 
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Item Total cost 
(€) 

Material  414.700 
Subject related 
resources 

151.950 

Human 
resources 

8200 

Total 574.850 
Table 6. Total costs for the project divided in sections and summed up. 

9. REGULATIONS AND LEGAL ASPECTS 
The development of this project involves compliance with various regulations and laws that ensure 
the ethics, safety, and legality of the research, especially considering that it involves sensitive data 
and human patients. Below are the main regulations and legal aspects applicable, and in Annex D 
we can find the consent form given to the participants. 

9.1. Ethical and clinical investigation regulations 
To comply with ethical principles for biomedical research in human subjects, including respect for 
all individuals and protection of their health by ensuring informed consent and patient well-being, 
every study involving human subjects must adhere to various guidelines. These include the 
Declaration of Helsinki, the Biomedical Research Law (Ley 14/2007) [45], which states that all 
biomedical studies must obtain approval from a Research Ethics Committee (CEI). Also significant 
are the guidelines of Good Clinical Practice, international standards of ethical and scientific quality, 
and the Clinical Trials Law (Real Decreto 1090/2015) [46], which regulates the conduct of clinical 
trials in Spain. 

9.2. Regulations on data and technology usage 
Considering that our study involves dealing with sensitive patient data, it is mandatory to comply 
with regulations such as the General Data Protection Regulation (GDPR, Regulation (EU) 
2016/679) [47], originating from the EU and regulating the protection of personal data and 
individuals' privacy. The Organic Law on Data Protection and Digital Rights Guarantee (LOPDGDD, 
Ley Orgánica 3/2018) [48], an extension of the GDPR, must also be considered. Additionally, 
specific regulations on the use of medical devices and healthcare technologies, such as the CE 
marking for medical devices in Europe, must be followed. These regulations are provided by 
Regulation (EU) 2021/2282 [49]. Considering that our study will involve various medical 
technologies, such as iEEG equipment, among others, we must ensure that such equipment 
complies with the regulations, ensuring their safety and effectiveness. 

In summary, the project must adhere to a strict regulatory framework that ensures the ethics and 
legality of the research. Compliance with these laws and regulations not only ensures the protection 
of participants but also strengthens the validity and credibility of the results obtained. 



 Biomedical Engineering Alberto Hurtado Morell 

 62 

10. CONCLUSIONS AND FUTURE LINES 
This study aimed to evaluate the efficacy of three preprocessing strategies in optimizing iEEG data 
for decoding: manual cleaning or eye-guided artifact removal, a custom artifact-detection, and the 
Autoreject pipeline. Although the primary focus was the previously studied 2 Hz – 12 Hz frequency 
band, all available frequency ranges were studied to determine whether supplemental bands would 
offer reliable decoding, although they returned similar or worse results. A further aim was to 
corroborate the presence of serial dependencies in human intracranial studies and set a roadmap 
for future investigations to localize the brain regions controlling them. 

In summary, the custom artifact detection approach returned marginally superior univariate results 
compared to the manual cleaning method in both the target low-frequency band and the high-
gamma band, which demonstrated enhanced sensitivity to both current-trial and residual past-trial 
information. However, the gains afforded by artifact detection did not overwhelmingly outweigh the 
ones offered by a simpler manual hybrid cleaning to compensate for the amount of trials and 
channels lost. If when using the artifact detection method we prefer to conserve more data, it would 
be necessary to increase significantly the median absolute deviation threshold, at the risk of 
decreasing sensitivity. Autoreject’s-consensus based thresholds proved insufficiently flexible to 
accommodate the spatial heterogeneity of human iEEG configurations. These results indicate that 
aggressive automated rejection is not always best when a broad, global study of all ROIs is desired. 
Applying an automated cleaning pipeline can result more favorable when only a small subset of 
channels or a specific ROI is studied, this way more data is kept while enhancing the signal-to-
noise ratio. 

The most robust neural signatures of the present stimuli in the univariate circular correlation 
emerged within the temporal and frontal regions for current trials, whereas residual information 
reappeared in occipital and parietal cortices during fixation periods. These observations, together 
with the results offered by the forward encoding model, align with the bump-attractor model of 
working memory by revealing a reactivation of latent synaptic representation shortly before the 
fixation period. When the forward encoding model was restricted to a set of ROIs, decodable traces 
of previous-trial information were slightly attenuated, in particular when the intraparietal region was 
omitted for subject s01. This findings might imply that serial-dependency signals might be 
distributed rather than localized exclusively to a single cortical locus. 

Two main limitations apply to this study which avoid the generalization of these findings. Firstly, 
reliance on data from epileptic patients introduce a sampling bias, clinical considerations 
determined electrode placements, limiting coverage across all cortical regions. Second, the small 
number of usable subjects, owing in part to data quality and recording issues, constrains statistical 
power. 

Future studies should therefore adopt flexible, context-dependent preprocessing strategies. For 
investigations that aim to study distributed cortical substrates across multiple ROIs, manual eye-
guided cleaning remains the preferred approach, as it preserves the maximal number of channels 
and epochs without sacrificing performance. Instead, when the research questions are confined to 
a single ROI or a small subset of channels, artifact detection may be preferable, since it has been 
proven that it slightly improves decoding accuracy. It has also been seen how participants with a 
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larger number of trials perform significantly better in decoding studies, this results also align with 
the previous research explain is Section 2.2.5, where it is explained how prioritizing obtaining more 
data may be preferable to focusing on cleaning the already existing one. Expanding the patient 
cohort with more diverse electrode implantations will be essential to validate the anatomical regions 
behind serial biases. Systematic application of ROI-suppression with a larger sample will clarify 
whether regions such as the intraparietal sulcus consistently mediate reactivation of past 
information or whether a boarder network of parietal, frontal or temporal areas contributes in a 
subject specific manner.  

Ultimately, by balancing data preservation and signal fidelity, and by preliminarily delineating the 
ROIs implicated in serial dependencies, this study both advances in current decoding approaches 
and defines a clear path for future efforts to discover the brain regions and mechanisms behind it. 
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12. ANNEXES 

Annex A. Multivariate SVM results for subjects s03, s04 and s06 
 

 

Figure 24. Null distribution histograms of mean angular error using the multivariate SVM for subject s03 and PSD computed for a 
frequency range of 2 Hz to 12 Hz for 1000 permutations. The first row corresponds to the fixation period decoding for the previous 
trial stimulus orientation, instead the next two rows (cue and delay) are decoded for the current trial information. Within each panel, 
the blue bars represent the null distribution of mean angular errors and the red vertical line indicates the actual mean angular error 
computed on unshuffled data, if the red line appears in the far-left side of the panel away from the null distribution, it means that the 
actual mean error beats chance level and the decoding is significant. 

 

Figure 25. Null distribution histograms of mean angular error using the multivariate SVM for subject s04 and PSD computed for 
a frequency range of 2 Hz to 12 Hz for 1000 permutations. The first row corresponds to the fixation period decoding for the previous 
trial stimulus orientation, instead the next two rows (cue and delay) are decoded for the current trial information. Within each panel, 
the blue bars represent the null distribution of mean angular errors and the red vertical line indicates the actual mean angular error 
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computed on unshuffled data, if the red line appears in the far-left side of the panel away from the null distribution, it means that the 
actual mean error beats chance level and the decoding is significant. 

 

Figure 26. Null distribution histograms of mean angular error using the multivariate SVM for subject s06 and PSD computed for 
a frequency range of 2 Hz to 12 Hz for 1000 permutations. The first row corresponds to the fixation period decoding for the previous 
trial stimulus orientation, instead the next two rows (cue and delay) are decoded for the current trial information. Within each panel, 
the blue bars represent the null distribution of mean angular errors and the red vertical line indicates the actual mean angular error 
computed on unshuffled data, if the red line appears in the far-left side of the panel away from the null distribution, it means that the 
actual mean error beats chance level and the decoding is significant. 
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Annex B. Forward encoding model results for s08 

 

Figure 27. Forward encoding for subject s08's manual cleaning dataset. Where a) and c) represent the time-resolved accuracy 
during the decoding of the raw manually cleaned signal for the current and previous stimuli respectively. And b) and d) show the 
tuning curves of the model across time as a heatmap in the left panel, and as a time slice in the right panel. Each time slice 
corresponds to the dashed line in the heatmap. 

 

Figure 28. Forward encoding for subject s08's artifact detection dataset. Where a) and c) represent the time-resolved accuracy 
during the decoding of the raw artifact detection signal for the current and previous stimuli respectively. And b) and d) show the 
tuning curves of the model across time as a heatmap in the left panel, and as a time slice in the right panel. Each time slice 
corresponds to the dashed line in the heatmap. 
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Annex C. WBS Dictionary 
 

WBS code Package name 

1.1 Background 

Description 

Current state of research developed related with our project. Research on similar precedents 
to the proposed project. Where does the need to develop the project come from? 

Estimated time 5 days 
 

WBS code Package name 

1.2 PERT 

Description 

Definition of the agreed-upon times to be allocated to tasks. Determination of the project's 
critical path using PERT and forecast of its schedule in JIRA. 

Estimated time 4 days 
 

WBS code Package name 

1.3 SWOT Diagram 

Description 
Brief description of the specifications and technical features with the aim of studying the 

feasibility of carrying out the project. These specifications will be classified into what defines 
the strengths and weaknesses of the project, as well as its opportunities and threats. 

Estimated time 1 day 
 

WBS code Package name 

1.4 WBS Dictionary 

Description 
Document that divides and describes each work package at its minimum level and explains in 

detail how it should be done, with what criteria, and the appropriate deliverable. It will also 
include costs, delivery dates, and responsible parties. 

Estimated time 3 days 
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WBS code Package name 

1.5 Legal aspects 

Description 
It involves addressing the legal considerations associated with conducting research involving 

human participants and handling sensitive medical data. It encompasses ensuring compliance 
with relevant laws, regulations, and ethical guidelines to protect the rights, privacy, and 

confidentiality of the participants and their data.  

Estimated time 2 days 
 

WBS code Package name 

2.1 Installing necessary programs 

Description 
This task involves the installation of software programs required for the project's execution. It 

includes identifying the specific programs needed based on project requirements and ensuring 
they are correctly installed on the relevant devices together with all their dependencies. 

Estimated time 1 day 
 

WBS code Package name 

2.2 Setting up the cluster 

Description 
The cluster will allow us to work with very heavy files for prolonged periods of time, in addition 

to offering large amounts of storage space which a computer would have not been able to 
handle. 

Estimated time 1 day 
 

WBS code Package name 

3.1 Data acquisition 

Description 
It consists of visiting the new hospitalized patients in the Unit of Epilepsy of the Hospital Clinic 
every 3 to 4 weeks to collect data. It is important to note that this process have been going on 

for a long time, although I have only been present for it for approximately 60 days. 

Estimated time 60 days 
 

WBS code Package name 
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4.1 Data organization 

Description 
Organizing the acquired iEEG data into a structured format suitable for analysis, which 

corresponds to BIDS format. The organization process ensures that the data is ready for 
further analysis in subsequent tasks. 

Estimated time 5 days 
 

WBS code Package name 

4.2 Electrode localization 

Description 
Determining the precise localization of electrodes used for intracranial EEG (iEEG) 

measurements. This process includes identifying the specific brain regions or structures 
targeted by each electrode and mapping their coordinates within the brain. Electrode 

localization is essential for accurately interpreting the recorded neural activity and 
understanding its relationship to cognitive processes. 

Estimated time 30 days 
 

WBS code Package name 

4.3 iEEG signal cleaning 

Description 
Preprocessing and cleaning of the intracranial EEG (iEEG) signals obtained from patients with 
epilepsy. This process aims to enhance the quality of the recorded signals by removing noise, 
artifacts, and physiological interferences while retaining relevant neural activity. It is a core part 
of the project, as one of the objectives is to compare the results to a simple manual cleaning. 

Estimated time 60 days 
 

WBS code Package name 

5.1 Univariate decoding analysis 

Description 
Univariate decoding analysis aims to find the relation channel by channel to the participant’s 

responses, this way it is possible to filter by channel significance (p-value) and localize 
particular brain areas participant in the working memory process. 

Estimated time 30 days 
 

WBS code Package name 
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5.2 Multivariate decoding analysis 

Description 

During the multivariate decoding analysis, we will look on how the overall signal through all 
channels correlates to the responses. 

Estimated time 30 days 
 

WBS code Package name 

5.3 Encoding analysis 

Description 
Encoding analysis works the other way around, we will get accuracy reconstruction measures 

from responses to neural data and look for previous trial information reactivation in current 
trials. 

Estimated time 30 days 
 

WBS code Package name 

5.4 Final results 

Description 
Compiling, analyzing, and interpreting the results obtained from the research conducted on 

working memory, serial biases, and statistical learning. This task marks the culmination of data 
collection, processing, and analysis, providing insights into the relationship between these 
cognitive phenomena. The final results encompass findings, conclusions, and implications 

derived from the empirical research. 

Estimated time 5 days 
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Annex D. Participant consent form 
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Annex E. iEEG processing, cleaning and analysis code 
 

Since the code is too long for these annexes, the full preprocessing and analysis pipeline is publicly 
available as a GitHub repository at: 
https://github.com/AlbertoHurtadoMorell/iEEG_Cleaning_Analysis 

https://github.com/AlbertoHurtadoMorell/iEEG_Cleaning_Analysis

