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Electric dipole polarizability of 58Ni
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The electric dipole strength distribution in 58Ni between 6 and 20 MeV has been determined from proton
inelastic scattering experiments at very forward angles at RCNP, Osaka. The experimental data are rather well
reproduced by quasiparticle random-phase approximation calculations including vibration coupling, despite a
mild dependence on the adopted Skyrme interaction. They allow an estimate of the experimentally inaccessible
high-energy contribution above 20 MeV, leading to an electric dipole polarizability αD(58Ni) = 3.48(31) fm3.
This serves as a test case for recent extensions of coupled-cluster calculations with chiral effective field theory
interactions to nuclei with two nucleons on top of a closed-shell system.
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I. INTRODUCTION

The nuclear equation of state (EOS) governs basic prop-
erties of nuclei [1] and neutron stars [2,3] as well as the
dynamics of core-collapse supernovae [4] and neutron star
mergers [5]. A systematic description of the EOS from nuclear
densities to those in neutron stars is a central goal of current
physics. A wealth of new data is available at high densities
from observations on the properties of neutron stars and neu-
tron star mergers but the present experimental constraints on
the EOS around the saturation density n0 of nuclear matter are
still insufficient.

The EOS of symmetric nuclear matter is rather well con-
strained [1] in contrast to the properties of neutron-rich matter.
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The latter depends on the symmetry energy, which can be
parametrized in an expansion around n0 by the symmetry
energy at saturation density J (n0) and its density dependence
L = 3n0∂J (n0)/∂n. Higher-order terms are expected to be
small. There are many experimental methods [6] providing
constraints on J and L based on a model-dependent correlation
between L and the neutron-skin thickness rskin in nuclei with
neutron excess [7–10]. For a recent summary, see Ref. [11].
The electric dipole polarizability, αD, has also been identified
as a key observable for constraining EOS parameters [9,12].
Proton inelastic scattering at incident energies of several hun-
dred MeV at extreme forward angles has been developed as
a new experimental tool exactly for the study of αD [13] and
results have been provided for a wide range of nuclei [14–18].

Two theoretical approaches have been used to describe
αD and derive constraints on the symmetry energy parame-
ters: energy density functional theory (DFT) [1,19,20] and
ab initio calculations [21–23] starting from chiral two- and
three-nucleon interactions [24,25]. A correlation of the form
αD · J ∝ L, suggested by the droplet model, has been well
studied in DFT [12,26]. In the ab initio context, comparing ex-
perimental determinations of αD with theoretical predictions
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allows to validate constraints on nuclear matter properties
from chiral forces.

In such efforts, coupled-cluster (CC) theory [21] plays a
prominent role. Successful comparisons between CC predic-
tions and experimental data in 40,48Ca [16,18] and 68Ni [27]
have established this approach as an ideal tool to describe αD

in closed-shell, medium-mass nuclei. The same method has
also been applied at the dripline to study the low-energy dipole
strength and polarizability of 8He [28,29]. Very recently,
the reach of coupled-cluster calculations of αD has been
extended beyond closed-shell nuclei [30]. This new devel-
opment has focused on two-particle-attached (2PA) systems,
characterized by two nucleons outside a closed-shell nucleus.
Combining closed-shell and 2PA coupled-cluster predictions,
Ref. [30] enabled an analysis of the evolution of the dipole
polarizability along the oxygen and calcium isotopic chains.

In this article, we present a measurement of the dipole
polarizability of 58Ni. Having two neutrons outside the doubly
magic 56Ni, it serves as a test case for the newly developed
2PA method. A study of 58Ni is also of interest to system-
atically explore the theoretically predicted dependence on
neutron skin thickness when combined with data for 64Ni
(presently under analysis) and 68Ni [31].

II. EXPERIMENT

The 58Ni(p, p′) reaction has been measured at RCNP, Os-
aka, at an incident proton energy of 295 MeV in a laboratory
scattering angle range 0.4◦–5.15◦ and for excitation energies
in the range 5–25 MeV. An energy resolution of 22 keV (full
width at half-maximum) was achieved applying dispersion
matching techniques. The experimental techniques and the
raw data analysis are described in Ref. [32]. Further details
of the 58Ni experiment are described in Ref. [33] present-
ing a state-by-state analysis of electric and magnetic dipole
transitions for excitation energies up to 13 MeV. These data
provide information on the isovector spin-flip M1 resonance
and candidates for a toroidal E1 mode in nuclei [34].

The top panel of Fig. 1 presents representative energy
spectra measured at laboratory scattering angles �lab =
0.40◦, 2.38◦, and 5.15◦. The cross sections above 10 MeV
show a broad resonance with a maximum at about 18 MeV
and cross sections strongly decreasing with scattering an-
gle. The angular dependence is consistent with relativistic
Coulomb excitation of E1 transitions. Thus, we identify this
resonance structure as the isovector giant dipole resonance
(IVGDR).

The various contributions to the spectra were separated us-
ing a multipole decomposition analysis (MDA) as described,
e.g., in Ref. [35]. Theoretical angular distributions for the
relevant multipoles were obtained from distorted wave Born
approximation calculations with transition amplitudes from
quasiparticle-phonon-model calculations, cf. Ref. [33]. Since
only spectra at seven angles were available, the number of
multipoles that can be considered in the MDA was limited.
Following the method described in Refs. [35,36] and using the
experimental E0 and E2 strength distributions in 58Ni from
inelastic α scattering [37], the contributions to the spectra
due to excitation of the isoscalar giant monopole (ISGMR)

(a)

(b)

FIG. 1. (a) Spectra of the 58Ni(p, p′) reaction at E0 = 295 MeV
and scattering angles �lab = 0.40◦, 2.38◦, and 5.15◦. (b) Example
of the MDA of the spectrum at �lab = 0.4◦ in 200 keV bins (blue)
and decomposition into contributions of E1 (orange), M1 (green),
multipoles λ > 1 (purple), and an empirical background (red). Con-
tributions from the ISGMR and ISGQR were subtracted prior to the
MDA as described in the text.

and quadrupole (ISGQR) resonances were subtracted prior
to the MDA. Additionally, an empirical background (most
likely due to quasifree scattering) was considered. Its angular
dependence was taken from experiments on heavier nuclei
[14,35], which showed a momentum-transfer dependence ap-
proximately independent of nuclear mass.

Results for the most forward angle measured are presented
in the bottom part of Fig. 1 as example, where the spectra
was rebinned to 200 keV. E1 cross sections dominate over the
whole excitation energy range. At energies up to 13.5 MeV,
the spin-flip M1 resonance makes sizable contributions. The
two strongest M1 transitions (cf. Ref. [33]) were subtracted by
hand because they lead to large uncertainties in the MDA for
the respective energy bins. The background becomes relevant
on the high-energy flank of the IVGDR. Above 20 MeV, the
uncertainties of the E1/background decomposition become
very large due to the similarity of their angular distributions.
Contributions from higher multipoles are negligibly small.

III. EXTRACTION OF THE DIPOLE POLARIZABILITY

The E1 cross sections resulting from the MDA were con-
verted into equivalent photoabsorption cross sections using
the virtual photon method [40]. The virtual photon spectrum
was calculated in an eikonal approach [41] to Coulomb ex-
citation, integrated over the distribution of scattering angles
covered in the solid angle of each angular bin as described
in Ref. [35]. The resulting photoabsorption cross sections are
displayed as blue circles in Fig. 2(a).
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(a)

(b)

FIG. 2. (a) Photoabsorption cross sections of 58Ni derived from
the spectrum at a scattering angle of 0.40◦ using the virtual photon
method (blue circles). The red curve shows a QRPA calculation
including qPVC [38] with the KDE033 interaction [39] normalized
to the data. (b) Electric dipole polarizability αD derived from the
photoabsorption cross sections. The blue and red bands band show
the present data and the contribution at excitation energies >20 MeV
based on the theoretical estimate explained in the text with their
uncertainties, respectively.

The electric dipole polarizability αD is related to the pho-
toabsorption cross sections by

αD = h̄c

2π2

∫
σγ

E2
x

dEx. (1)

The experimental result for the energy region 6–20 MeV is
plotted as blue curve in Fig. 2(b) and amounts to αD =
2.57(28) fm3. The uncertainty band considers the systematic
errors of the experimental cross sections (cf. Ref. [33]) and
the MDA (as described in Ref. [35]). Statistical uncertainties
are negligible.

Photoabsorption data from the (γ , xn) reaction are avail-
able for excitation energies up to 33 MeV [42], but in contrast
to heavy nuclei the unknown (γ , p) channel is expected to be
significant. Thus, αD contributions at energies Ex > 20 MeV
were estimated with a theory-aided procedure using energy
density functionals. Previous analyses of this type [17,31]
were based on the folding of quasiparticle random-phase
approximaton (QRPA) calculations with interactions repro-
ducing the IVGDR centroid with a Lorentzian fitted to the
experimental data. Here, we go beyond and include quasi-
particle vibration coupling (qPVC) which has recently been
shown to permit not only a reproduction of the width of the
ISGMR [38,43], but also resolve the discrepancies between
208Pb and lighter nuclei in theoretical attempts to extract the
compressibility from the energy centroid of the ISGMR [44].

FIG. 3. Photoabsorption cross sections of 58Ni from the present
work compared with QRPA calculations including qPVC [38], based
on the KDE033 (solid red line) [39], SV-bas (dashed orange line)
[45], and SLy5 (short-dashed green line) [46] interactions. The inset
shows the high-energy flanks normalized to each other at 20 MeV.

QRPA calculations including qPVC with the approach de-
scribed in Ref. [38] are shown in Fig. 3 for Skyrme forces
KDE033 [39], SV-bas [45], and SLy5 [46]. The photoabsorp-
tion cross sections predicted with KDE033 (solid red line)
provide a very good description of the centroid and width
of the IVGDR, but the total strength is somewhat underes-
timated. Calculations with SV-bas (dashed orange line) give
a similar width and reproduce the maximum cross section,
but the centroid energy is about 1 MeV too low. Finally, the
SLy5 result (short-dashed green line) shows a much stronger
fragmentation and an even lower energy centroid. Since all
calculations require an adjustment to the data, the absolute
values of the different models for the high-energy (>20 MeV)
contribution to the polarizability becomes very dependent on
the assumptions made in the normalization procedure.

For a quantitative estimate of the high-energy contribu-
tion to the polarizability, we choose a normalization to the
results obtained with the KDE033 interaction. As illustrated
in Fig. 2(a), it provides a very good description of the IVGDR
after adjusting the absolute height. The corresponding contri-
bution to the polarizability for excitation energies >20 MeV
is displayed in Fig. 2(b) as red curve. The polarizability is
integrated up to 50 MeV, where saturation is reached.

The model dependence due to the choice of specific inter-
actions is estimated from the variation of the three calculations
after normalization to each other at 20 MeV. As demonstrated
in the inset of Fig. 3, then the theoretically predicted high-
energy tails become similar in shape and magnitude. The
similar energy dependence might look surprising at first sight
but can be understood from the following argument: struc-
tures on the low-energy side of the IVGDR are related to the
coupling to individual collective phonons, which leads to the
phenomenon of fine structure [47,48]. At higher excitation
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energies stochastic coupling [49] predominates, i.e., the
strength distribution is mainly determined by the density of
states and an average coupling matrix element between the
particle-hole and more complex states.

The theoretically predicted contribution to the polariz-
ability amounts to αD(Ex > 20 MeV) = 0.91 fm3 with an
uncertainty of 0.04 fm3 due to the normalization. As pointed
above, a model-dependent error is estimated from the vari-
ation of the three calculations (0.13 fm3). The parameter
dependence of the individual calculations for the different
forces was estimated from variations of the cutoff energy
of the single-particle spectrum and the minimum strength of
phonons considered in the qPVC and found to be negligibly
small. Assuming that all above-discussed error contribu-
tions are independent, we find for the dipole polarizability
αD(58Ni) = 3.48(31) fm3.

IV. COUPLED-CLUSTER CALCULATIONS

The electric dipole polarizability of Eq. (1) is a sum rule of
the photoabsorption cross section, which can be itself written
in terms of the dipole response function

R(Ex) =
∑

μ

| 〈	μ|�|	0〉 |2δ(Eμ − E0 − Ex) , (2)

where |	0〉 and |	μ〉 are ground and excited state of the
nucleus with energies E0 and Eμ, respectively, while � is the
dipole operator. The sum over μ in Eq. (2) runs over bound
and continuum excited states of the nucleus. This makes the
calculation of response functions particularly challenging, be-
cause of the presence of unbound configurations arising from
the break-up of the nucleus into fragments. To avoid this,
one can resort to the Lorentz integral transform (LIT) method
[50], which is based on an integral transform of the response
function with a Lorentzian kernel as

L(σ, �) = �

π

∫
dEx

R(Ex)

(Ex − σ )2 + �2
. (3)

Calculating the latter requires “only” the solution of a bound-
state problem. Because the Lorentzian kernel tends to a Dirac
delta function as � → 0, one has that

L(σ, � → 0) =
∫

dEx R(Ex)δ(Ex − σ ) = R(σ ) , (4)

which effectively means that in this limit the LIT becomes
the response function, where the variable Ex is renamed to
σ . Such a response function is discretized in the sense that
excited states in the continuum are represented by bound
pseudostates. Nevertheless, Eq. (4) can be used to compute
the nth moments from the response function as

mn =
∫

dEx En
x R(Ex) =

∫
dσ σ nL(σ, � → 0) . (5)

Given that sum rules can be written as expectation values
on the ground state, the utilization of bound pseudostates
in such a calculation is mathematically valid [51]. With this
reasoning, the electric dipole polarizability is simply related
to the inverse energy-weighted sum rule of the dipole response

function as αD = 2αh̄cm−1, where m−1 is calculated using
Eq. (5), and α is the fine structure constant.

Merging the LIT approach [50] with the coupled-cluster
theory [52] for closed-(sub)shell nuclei led to a method
dubbed LIT-CC, which is based on the following steps [53].
First, the ground state is constructed starting from a Slater
determinant (�0) and imprinting correlations on top of it via
an exponential ansatz |	0〉 = eT |�0〉. The cluster operator T
can be expanded in terms of a sum of n-particle–n-hole excita-
tions. Second, the Hamiltonian and the excitation operator are
similarity transformed to H = e−T HeT and � = e−T �eT , re-
spectively. Third, excited states of a closed-(sub)shell nucleus
are computed as |	μ〉 = RμeT |�0〉, where the operator Rμ is
also expanded in terms of particle-hole excitations, by solving
an equation of motion. Finally, αD can be computed with the
prescription described above.

While the LIT-CC method has been very successfully used
for closed-shell nuclei [16,18,21,22,28,53,54], recently it has
been extended to nuclei that have two nucleons on top of
a closed shell system using the two-particle attached (2PA)
technique [30]. In this case, excited states of 2PA nuclei can
be obtained with the following ansatz:∣∣	 (A+2)

μ

〉 = RA+2
μ

∣∣	 (A)
0

〉 = RA+2
μ eT

∣∣�(A)
0

〉
, (6)

where A is the mass number of the closed-(sub)shell system
and the excitation operator RA+2

μ involves the net creation of
the two extra nucleons on top of the closed-(sub)shell system

RA+2
μ = 1

2

∑
ab

rab
μ a†

aa†
b + 1

6

∑
abci

rabc
i,μ a†

aa†
ba†

cai . (7)

In this work we adopt the particle-hole expansion of Eq. (7),
including two-particle zero-hole (2p-0h) and three-particle
one-hole (3p-1h) contributions. The addition of higher-order
terms is at the moment prohibitive. In Ref. [30], this method
was employed to study αD in oxygen and calcium isotopes.
Here, we apply it to a larger mass number by studying the
58Ni nucleus, starting from the 56Ni closed-shell neighbor.

We perform our calculation using the chiral nucleon-
nucleon and three-nucleon interactions 1.8/2.0 (EM) [24],

NLOGO(450), and 
NNLOGO(450) [55]. The chiral force
1.8/2.0 (EM) yields accurate binding energies in medium-
mass and heavy nuclei [56], and it contains two-nucleon
forces up to next-to-next-to-next-to-leading order, softened
via similarity renormalization group transformation at a scale
of 1.8 fm−1, and three-nucleon forces at next-to-next-to-
leading order, with a momentum cutoff of 2.0 fm−1. The
interactions 
NLOGO(450) and 
NNLOGO(450) contain the

 isobar as an explicit degree of freedom, and they are given
at next-to-leading order and next-to-next-to-leading order,
respectively.

Our 2PA calculations of αD start from an Hartree-Fock
reference state, expanded on a harmonic oscillator basis of
up to 13 major shells. We studied the convergence of our
results varying the underlying harmonic oscillator frequency
h̄� between 12 and 16 MeV. An additional energy cut at
E3,max = 16h̄� is applied on three-body contributions.

In Fig. 4, in the upper panel we show the discretized re-
sponse function versus the excitation energy calculated with
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FIG. 4. (a) Discretized response function of 58Ni calculated with
the 1.8/2.0 (EM) interaction (solid line), and the corresponding curve
obtained shifting the response to the experimental IVGDR energy of
18 MeV (dotted line). (b) αD running sums for the 1.8/2.0 (EM) and

-full interaction models, in comparison to experiment. αD predic-
tions obtained by shifting the response to the experimental IVGDR
energy are shown on the right-hand side as diamonds with dotted
error bars.

the 1.8/2.0 (EM) interaction. We clearly see one peak located
below 10 MeV, while the four largest peaks which constitute
the IVGDR are found at high energy, beyond 30 MeV. In the
lower panel we compare instead the theoretical and experi-
mental running sum rules, defined as in Eq. (1), where the
integral is performed up to a maximum upper limit, which is
varied from 0 to 50 MeV. The experimental data are shown
with a hatched band, while in case of the theoretical results,
we present three different interactions: the 1.8/2.0 (EM) in
blue, the 
NLOGO(450) and 
NNLOGO(450) in green and
red, respectively.

Interestingly, we see that experiment and theory agree
with each other at low energy. Considering the interaction
dependence and the many-body truncation error, estimated
according to the recipe devised in Ref. [30], we find 0.1 <

αD < 0.3 fm3 below 11 MeV of excitation energy, in good ac-
cordance with the corresponding experimental result of 0.2 <

αD < 0.3 fm3 obtained from the MDA analysis. At higher
energies, however, the rise of the experimental running sum
rule is much faster than that of the theoretical calculations.
The reason for this behavior lies in the fact that the IVGDR
pseudostates are found at higher energies with respect to the
experiment, approximately 20 MeV too high. We have already
observed such effect in other isotope chains [30] and it is
most likely related with the truncation of Eq. (7) at the 3p-1h

level, which does not grasp all the necessary correlations. To
gauge the possible role of missing higher-order correlations,
we can compare the share of the pseudostates’ norm in 2p-0h
configurations to the corresponding total norm. As a rule of
thumb, if the 2p-0h contribution to the norm is around 90%,
the nuclear state of interest has a simple 2PA structure and an
accurate description of it can be achieved employing the 3p-1h
approximation [57,58]. In the case of 58Ni, the 2p-0h contribu-
tion to the total norm is above 70% for the first excited states
at around 10 MeV, where the theoretical running sum agrees
with experiment. At higher energies, instead, it falls quickly
below 50%, suggesting the need of higher order contributions
to the 2PA expansion. This is reflected by the extent of the
theoretical error band shown in grey. It contains the many-
body truncation uncertainty, which is clearly dominating over
the potential dependence indicated by the difference of the
three colored curves.

In order to check that the major rise of the experimental
running sum is given by the IVGDR states, we took the theo-
retical discretized response functions and shifted all peaks by
around 20 MeV, so that for each interaction the largest peak
is located at the same energy as the experimental IVGDR. By
doing so, αD is clearly enhanced to a value compatible with
the experimental result, as shown by the dotted error bars at
the right of the lower panel of Fig. 4.

V. CONCLUSIONS

We have determined the electric dipole polarizability of
58Ni from 295 MeV inelastic proton scattering experiments at
very forward angles. The extraction is limited to an excitation
energy of 20 MeV due to the quasifree continuum background
which shows a similar angular distribution as the Coulomb
excitation cross sections. QRPA calculations including qPVC
provide a good description of the energy centroid and width
of the IVGDR in 58Ni, permitting an estimate of the experi-
mentally inaccessible strength above 20 MeV.

The resulting value of αD serves as a test case for ab
initio–based coupled cluster calculations with the newly de-
veloped 2PA method to describe nuclei with two particles
outside closed-shell systems. At the present level of the CC
expansion the low-energy E1 strength can be predicted well,
but the IVGDR is found at an excitation energy about 20
MeV too high resulting in correspondingly small theoretical
αD values. This points to the need for higher order many-body
correlations in the 2PA expansion in order to achieve a more
accurate description of the IVGDR contribution to the polar-
izability. To address this issue, alternative approaches could
also be pursued in the future, such as coupling the LIT method
to coupled-cluster calculations employing axially symmetric
reference states [59–62].
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