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Abstract

Societal structures and memory organization models share network-like features, offering insights
into how information spreads and shapes collective memories. In this study, we manipulated the struc-
ture of lab-created community networks during a computer-mediated recall task using the Deese–
Roediger–McDermott paradigm to test the spreading activation theory of true and false memory for-
mation. We hypothesized that social network structure, whether clustered or not, would influence
memory accuracy. Our results showed that clustered networks reinforced true memories by promot-
ing mnemonic convergence, while non-clustered networks led to more false memories by increasing
widespread cross-activation. These findings highlight how social network topology impacts memory
dynamics and collective knowledge evolution.
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1. Introduction

Human societies are structured as interconnected networks, enabling the exchange of infor-
mation between individuals and groups. How groups share and remember their past shapes
collective narratives, traditions, and identity (Hirst, Yamashiro, & Coman, 2018; Roediger
et al., 2019). Similarly, in cognitive psychology, memory is viewed as a network where the
activation of one node spreads to associated nodes, influencing memory and cognition (Ander-
son, 1983; Collins & Loftus, 1975; McClelland & Rumelhart, 1985). Like individuals in a
community, memories are linked to other elements within their network and can be influ-
enced by concurrent activations. Thus, exploring the shared organizational and propagation
properties between societal and memory structures is a compelling area of study.

One way to explore the interaction between social networks and memory is by examin-
ing how memories are shaped through social communication. Research shows that memo-
ries remain malleable after encoding (Schacter, 2012), and conversational recall can selec-
tively reinforce or weaken memories, aligning them among participants (Coman, Manier, &
Hirst, 2009; Congleton & Rajaram, 2014). As these influences spread through social interac-
tions, they contribute to collective memories (Coman, Momennejad, Drach, & Geana, 2016;
Hirst & Echterhoff, 2012). Clustered networks, with tightly interconnected individuals, tend
to develop more convergent memories, as information is reinforced and propagated within
clusters. In less clustered networks, information can permeate more sparsely across the entire
community network, thereby promoting the coactivation of a broader range of encoded mem-
ories at a collective level (Coman et al., 2016; Hirst et al., 2018). Thus, network structure
influences how information spreads and how collective memories are constructed.

Similarly, the idea of memories as network-like structures, where activating one node
spreads to others, has offered insights into the organization of stored representations and
their interaction with new experiences (Anderson, 1983). For instance, in semantic prim-
ing, recognizing a word (e.g., doctor) is faster if preceded by a related word (e.g., nurse),
compared to an unrelated one (e.g., house) because activation of one memory node directly
influences the activation of a closely related node (Neely, 1977, 1991). However, the activa-
tion of one memory node can spread more broadly through the network influencing not only
directly related nodes but also indirectly related nodes. This can lead to the recall or recog-
nition of items that were never presented (i.e., false memories) but are strongly associated
with the encoded items. Perhaps the most widely used tool to investigate false memories is
the Deese–Roediger–McDermott (DRM) task (Deese, 1959; Roediger & McDermott, 1995).
In this design, participants encode a list of words (e.g., bed, tired, rest, nap, dream, wake,
snooze, blanket, yawn, drowsy) semantically associated with a non-presented critical word
(e.g., sleep) that is falsely recalled in a subsequent memory test by the participants. In the
DRM task, false memories arise from the cumulative activation of a critical word triggered
by encoded words in a semantic cluster. As the number of encoded words increases, the acti-
vation of related concepts spreads more widely within the memory network. This broader
activation enhances the likelihood that non-studied but semantically related words, known
as critical lures, will be mistakenly recalled as if they had been presented during encoding.
This effect occurs because the increased activation makes it more difficult for individuals to
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accurately differentiate between true memories—those based on studied words—and false
recollections triggered by related but non-presented words (Robinson & Roediger, 1997).
Conversely, when fewer words are encoded, memory for the studied items becomes more
precise and robust. With a smaller set of learned words, activation remains more local-
ized, reducing the likelihood of spreading to related but unstudied concepts. As a result,
individuals experience fewer false memories, and the recall of critical lures diminishes
(Robinson & Roediger, 1997). This reduction in activation spread allows for a clearer dis-
tinction between actual memories and intrusions, thereby improving the accuracy of recall.

The interplay between network clustering and memory processes raises distinct but related
hypotheses regarding recall rates and mnemonic convergence. At the individual level, mem-
ory recall in the context of the DRM paradigm is influenced by the extent to which encoded
words activate related concepts, affecting both true and false memories. In highly clustered
social networks, communication between individuals selectively reinforces specific memo-
ries, potentially leading to higher recall rates of true memories and a decrease in false memo-
ries due to more constrained activation spread. Conversely, in less clustered networks, where
information propagates more broadly across the entire community, a larger number of words
may be reinforced, increasing the activation of false memories.

At the collective level, network clustering also influences mnemonic convergence or the
extent to which individuals within a group come to share similar memories after social
interaction. In clustered networks, repeated exposure to the same information within tightly
connected subgroups should promote stronger alignment in what is remembered, leading to
greater convergence on true memories. In contrast, in non-clustered networks, where infor-
mation is exchanged more diffusely, mnemonic convergence may be weaker, particularly for
true memories, as individuals are exposed to a wider range of recalled items, including lures.

To test this hypothesis, we asked 170 healthy individuals to participate in a memory experi-
ment using online recruitment systems from the local institution. Following previous research
(Coman et al., 2016), the experiment included four phases, each of them conducted with net-
work community groups of 10 participants each that completed them on separate computers
(Fig. 1). In the pre-conversational study phase (Phase I), each participant encoded 100 words
presented on a computer. The stimuli included 10 wordlists from different semantic cate-
gories, each associated with a non-presented critical lure word (Table S1). Subsequently, dur-
ing the pre-conversational recall phase (Phase II), each participant was asked to individually
recall the studied words by typing them in a textbox on their computer. This was followed by
the conversational recall phase (Phase III), wherein participants from the 10-member commu-
nities engaged in paired conversations with three partners, collectively recalling the studied
content. These interactions occurred in a chat-like computer-mediated environment where
participants typed their responses in a turn-taking manner. Last, in the post-conversational
recall phase (Phase IV), participants freely recalled the initially studied word lists again.

In the conversational recall phase, each participant completed three conversational free
recalls with three different group members within the network community, pre-arranged
experimentally. They were tasked with collaboratively recollecting as many words as pos-
sible from the studied wordlists. Within the clustered condition (n = 80 participants; eight
10-member networks), interactions followed a network structure with two subclusters.
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Fig. 1. Experimental design. Phases of the experiment involve participants initially learning 10 lists of semanti-
cally related words (Phase I). In the pre-conversational (Phase II) and post-conversational (Phase IV) recall phases,
10 participants individually recollect the learned information. The conversational recall phase (Phase III) includes
participants, indicated by white numbers, in either the clustered (top) or non-clustered (bottom) condition. Partic-
ipants are depicted as circles, and interactions are represented by links. The order of the sequential conversations
between paired participants is indicated by numbers in black.

Conversely, in the non-clustered condition (n = 90 participants; nine 10-member networks),
interactions occurred in a single large cluster. As in Coman et al. (2016) study, the global
clustering coefficient, C (Freeman, 1978; Griffiths, Lewandowsky, & Kalish, 2013), con-
trasted between the clustered condition (C = 0.40) and the non-clustered condition (C =
0.00), thereby setting up an experimental design in which both network conditions were made
comparable regarding factors such as the number of participants per network, the sequence of
conversational interactions, and each participant’s involvement in three conversations within
their respective network.

2. Methods

2.1. Participants

Following previous studies using similar experimental designs, we aimed to recruit 10
groups of 10 participants each for each experimental condition. The statistical power afforded
by this sample size was deemed adequate given the effect sizes obtained in previous stud-
ies using a similar sample size and experimental paradigm (Coman et al., 2016; Vlasceanu,
Morais, Duker, & Coman, 2020). However, due to technical problems with the need to
run the experiment synchronically within groups of 10 people, the final sample included in
the study consisted of 170 healthy participants (78.2% females) with a mean age of 24.7
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(SD = 7.3). All participants were native or highly proficient Spanish speakers. The study
was advertised on a platform for students affiliated with the University of Barcelona or the
University of Granada. Additionally, flyers of the study were posted around the university
campuses and shared on social media. The participants were self-selected and received either
two-course credits or 5 euros as compensation. For each group of 10 participants, an addi-
tional prize draw of 20 euros was conducted. Informed consent was obtained upon familiar-
ization with the experimental procedure before the experiment onset. The study was approved
by the University of Barcelona Ethics Committee.

2.2. Materials

The DRM paradigm was used to collect data in the present study. Ten DRM word lists
used in the paradigm were adopted from Alonso, Fernández, and Díez (2004) and attached
in Table S1. Each list contained 10 words semantically related to a critical non-presented
word—a lure. For example, (translated from Spanish) wind, breathe, fresh, and so forth were
the presented words associated with the critical non-presented word air. The distractor task
consisted of 36 arithmetical problems (e.g., (12 / 4) + 4 = 7) with a “yes” or “no” answer,
each presented for 5 s. The experimental task was programmed using the Qualtrics platform
(Qualtrics.com), specifically its branch SMARTRIQS (smartriqs.com), which allows interac-
tive online experiments to be programmed.

2.3. Design and procedure

The task (Fig. 1) was completed in synchrony in groups of 10 individuals via a computer.
The participants completed it either on-site in the university computer room or remotely. Par-
ticipants who were physically present at the task were seated at individual computers within a
spacious room. They were not provided with information regarding which among the poten-
tial others were also engaged in the same task. Participants received full instructions in person
or via Google Meets, then they provided the consent form, and then they started the task.

Following Coman et al. (2016) study, we defined two network structures—clustered and
non-clustered, each of them including 10 participants. In the non-clustered condition, the
participants were equally connected to all the individuals in the network. In the clustered con-
dition, the network was split into two subclusters of five individuals who were connected by
only one individual from each cluster. In the non-clustered condition, individuals were con-
nected in an unconstrained manner to other individuals in the network. Individuals performed
the task on their computers and interacted with each associated member in the conversational
phase via the chat box that appeared during the conversational phase on each of their com-
puters. Participants knew that 10 other individuals were concurrently engaged in the task, but
they had no direct interaction with anyone except during the conversational phase when using
their computers.

The task started with an encoding phase, followed by a distractor task. In the encoding
phase, the participants were asked to memorize words presented on the screen for 2 s each.
The order of the DRM word lists was random for each participant, but the order of words
within each DRM list was kept constant. In the distractor task, the participants were asked
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to indicate whether the arithmetical problem solution was correct or incorrect by clicking
the corresponding button. After completing the distractor task, the experiment continued
with three distinct recall phases: a pre-conversational individual recall, followed by a con-
versational recall, and a post-conversational individual recall. The participants automatically
entered the pre-conversational individual recall phase after finishing the distractor task. They
were asked to type down all the words they remembered from the encoding phase for a maxi-
mum of 6 min. Subsequently, in the conversational phase, each participant was automatically
paired and connected with another participant. Each participant completed three conversa-
tional recalls with three different group members. The pairs of participants entered a chat
window shown in their individual computers where they were asked to recall words in col-
laboration by taking turns, as false recall was greater in turn-taking groups, compared to
both the free-for-all and nominal groups (Basden, Basden, Bryner, & Thomas, 1997; Meade
& Roediger, 2009; Thorley & Dewhurst, 2007) and when individuals are allowed to free-
flowing collaboration (Barber, Rajaram, & Aron, 2010). Each pair member recalled one word
at a time in their computer and subsequently waited for the other pair member to recall and
share their word. In case they could not remember a word, they had the option to skip the turn
by writing “pass” in the chat. In this phase, the groups of 10 were organized either into the
clustered or non-clustered network. The total time of each conversation was 5 min. After the
chat, the participants entered the post-conversational recall phase, which was identical to the
first individual recall phase. The total duration of the experiment was approximately 45 min.

3. Results

3.1. Social network structure modulates the recall of true and false memories

We first examined whether participants’ recall for studied and non-studied lure words
changed after collaborative recall as a function of network type. To assess for this possi-
bility, we calculated the recall rate for studied and critical lures before and after collaborative
recall between participants of the clustered and the non-clustered network conditions. This
analysis involved quantifying the recall rate for true and false items for each individual at
the pre-conversational (Phase II) and at the post-conversational (Phase IV) recall phase. A
mixed factorial ANOVA, with recall type (true vs. false) and time (pre-conversation vs. post-
conversation) as within-subjects factors and network condition (clustered vs. non-clustered)
as a between-subject factor, revealed a significant main effect of recall type (F(1,168) =
23.08, p < .01, η2 = 0.12) and a main effect of time (F(1,168) = 149.73, p < .01, η2 = 0.47)
but not a significant interaction recall type × time (F(1,168) = 0.14, p < .91, η2 < 0.01).
The results indicated that participants recalled, overall, a greater number of true than lure
words during the experiment but that their recall rate increased for both true and lure words
in the post-conversational (Phase IV) when compared to pre-conversational (Phase II) recall
phase (Table S2). However, we found a non-significant recall type × group (F(1,168) = 0.31,
p = .58, η2 = 0.002) nor time × group (F(1,168) = 0.53, p = .47, η2 = 0.003) or a recall
type × time (F(1,168) < 0.01, p = .91, η2 < 0.001) interaction but a significant triple recall
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(a) (b)

Fig. 2. Memory performance in pre- and post-conversational recall phases. Differences in recall rate of (a) true
and (b) lure words (false memories) in post-conversational compared to pre-conversational recall phase. The mean
difference between the clustered and the non-clustered group is shown in this Gardner–Altman estimation plot (Ho,
Tumkaya, Aryal, Choi, & Claridge-Chang, 2019). Both groups are plotted on the left axes; the mean difference is
plotted on a floating axis on the right as a bootstrap sampling distribution. The mean difference is depicted as a
dot; the 95% confidence interval is indicated by the ends of the vertical error bar.

type × time × network condition effect (F(1,168) = 3.93, p = .049, η2 = 0.02), indicating
that the degree of pre-post conversational recall rate differed for true and false memories as a
function of network condition (Fig. 2).

Separate repeated measures ANOVA for true and false memories showed a significant effect
of time (true memories: F(1,168) = 281.44, p < .01, η2 = 0.63; false memories: F(1,168)
= 55.83, p < .01, η2 = 0.25) but did not show a significant time × group interaction effect
either for true (F(1,168) = 1.34, p = .25, η2 = 0.01) or false memories (F(1,168) = 1.93,
p = .16, η2 = 0.01). However, upon closer examination of the participants’ recall differences
between pre- (phase II) and post-conversational (phase IV) recall phases, we detected outliers
within the dataset (defined by those data points that exceeded above the third or below the
first interquartile range of the data; Fig. 2). Consequently, we implemented a robust linear
regression model to assess for differences between recall phases, as this analysis is less sensi-
tive to outliers than ANOVA (Maechler et al., 2023). We found that true word recall increased
to a greater extent in the post-conversational phase compared to pre-conversational recall
for members in the clustered condition (β = 0.021, SE = 0.011, t(168) = 1.93, p = .053),
whereas the extent of false memories during post-conversational recall increased more in the
non-clustered condition than in the clustered condition (β = 0.045, SE = 0.023, t(168) =
1.918, p = .056). These results underscore the influence of network type on the recall rates of
both true and false memories, with clustered networks enhancing true memory recall in the
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post-conversational phase and non-clustered networks promoting a greater increase in false
memories.

To investigate whether these findings were specific to the studied words and the associated
lures, we also analyzed memory intrusions of non-related words during the two recall phases
(clustered group in phase II: M = 7.42%, STD = 8.19% and in Phase IV: M = 7.70%, STD =
7.35%; non-clustered group in Phase II: M = 7.87%, STD = 10.62% and in Phase IV: M =
9.17%; STD = 12.39%). A repeated measures ANOVA including phase (II vs. IV) as within-
subjects factor and network condition (clustered vs. non-clustered) as a between-subjects fac-
tor, confirmed that memory intrusions for non-related words did not change in either network
group before and after the conversational phase (main effect of phase: F(1,168) = 1.27, p
= .26, η2 = 0.08; phase × network condition interaction effect: F(1,168) = 0.53, p = .47,
η2 = 0.03). Altogether, these effects were in the hypothesized direction but only marginally
significant; thus, we conducted additional analyses to explore the effect of network structure
more precisely on true and false memories.

3.2. Dynamics of memory performance during shared recall

We next examined whether the repeated conversations modulated the memory accuracy
observed at the individual level when comparing pre- and post-conversational recall phases in
our previous analysis. To investigate this issue in our data, we first measured the proportion
of correctly recalled words, and the proportion of lure words recalled in each participant’s
conversation iteration (first, second, and third; Table S3). We implemented a mixed factorial
ANOVA that included conversation iteration (first, second, and third) and type of memory (true
and false) as within-subjects factors and network condition (clustered and non-clustered) as a
between-subjects factor to assess for statistical effects. This analysis confirmed that, in over-
all, participants tended to recall more true than false memories (main effect of type: F(1,168)
= 44.16, p < .001, η2 = 0.21) and that the two types of memories changed throughout conver-
sation iteration (main effect of iteration: F(2,336) = 6.99, p = .001, η2 = 0.04). However, we
found that the degree of memory change throughout conversation iteration varied for true and
false memories as a function of network condition, as indicated by a significant triple interac-
tion type × iteration × network condition (F(2,336) = 3.26, p = .04, η2 = 0.02). A separate
ANOVA for true memories indicated that memory accuracy increased throughout the conver-
sational phase iterations (main effect of iteration: F(2,336) = 9.25, p < .001, η2 = 0.05), but
the increase was similar between members of the two network conditions (network condition
× iteration: F(2,336) = 1.94, p = .15, η2 = 0.01; Fig. 3a). A polynomic contrast confirmed
that the memory accuracy increase was linear (F(1,168) = 14.54, p < .001, η2 = 0.08).
Conversely, the same analysis on false memories indicated a more pronounced increase in
non-clustered than in clustered conditions (main effect of iteration: F(2,336) = 3.32, p = .04,
η2 = 0.02; network condition × iteration: F(2,336) = 2.83, p = .06, η2 = 0.02; Fig. 3b). A
polynomic contrast confirmed that the interaction of the effects was linear (F(1,168) = 5.71,
p = .02, η2 = 0.03). Post hoc contrasts revealed that the rate of false memories was greater
in the second (t(89) = 2.99, p = .004; Cohen’s d = 0.31) and third (t(89) = 2.98, p = .004;
Cohen’s d = 0.34) recall iteration compared with the first recall iteration in the non-clustered
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(a) (b)

Fig. 3. Memory changes during the conversational Phase III. Differences in recall rate of (a) true and (b) lure words
(false memories) between the first and the third conversational recall in Phase III. The mean difference between
the clustered and the non-clustered group is shown in this Gardner–Altman estimation plot (Ho et al., 2019). Both
groups are plotted on the left axes; the mean difference is plotted on a floating axis on the right as a bootstrap
sampling distribution. The mean difference is depicted as a dot; the 95% confidence interval is indicated by the
ends of the vertical error bar.

condition, whereas false memories did not differ significantly between recall iterations in the
clustered condition (all t(79) < 1.5, p > .1). Similar trends were found when differences
between first and third recall performance were analyzed by means of a robust linear regres-
sion model (true memories: β = 0.013, SE = 0.019, t(168) = .65, p = .51; false memories: β

= 0.055, SE = 0.029, t(168) = 1.91, p = .05). These results support the hypothesis that the
conversational network structure influences the emergence of false memories.

3.3. Memory consistency and network mnemonic convergence

Our findings suggest that network structure influences the way memories evolve within
a group, producing opposing mnemonic effects depending on the structure of interactions.
These effects emerge through an iterative process of shared recall, where memory representa-
tions are shaped by the dynamics of conversational exchange. More specifically, we hypothe-
size that a clustered network, characterized by localized and controlled information exchange,
facilitates the preservation of accurate memories at the individual level. This occurs through
the reinforcement of studied items in repeated recall conversations among closely connected
members of the network. The controlled nature of these interactions ensures that recalled
information remains relatively stable, strengthening individual memory traces and reducing
the spread of activation that might otherwise lead to false recollections. In contrast, in non-
clustered network conditions, recall conversations involve a more diffuse and less constrained
flow of information, leading to greater divergence in the items recalled across conversational
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iterations. This increased variability in shared recall interactions coactivates less convergent
memories among network members, making it more difficult to establish a consistent set of
remembered items. As a consequence, the likelihood of false memories increases as activation
spreads more freely across loosely connected concepts, facilitating the erroneous recollection
of critical lures.

To empirically evaluate this hypothesis, we measured the degree of memory consistency
across recall iterations. Specifically, we quantified the overlap in correctly recalled items
between the first and second recall iterations, as well as between the second and the third
iterations for each participant (Fig. 4a). To account for individual differences in initial recall
performance, each of these consistency measures was normalized by the total number of
correctly recalled items in the first recall stage. This approach allowed us to assess how
memory stability evolved over time and whether the network structure influenced the reten-
tion and transformation of recalled information across conversational rounds. Confirming our
hypothesis, the results of a repeated measures ANOVA including iteration (first/second and
second/third) as a within-subjects factor and network condition as a between-subjects fac-
tor, revealed a significant iteration × network condition effect (F(1,168) = 5.98, p = .01,
η2 = 0.034; Fig. 4b). A post hoc analysis comparing memory consistency scores between
the first/second and second/third iterations in the two network groups confirmed that memory
preservation increased to a greater extent in the second/third iteration in the clustered network
group, compared to the non-clustered group (t(168) = 2.45, p = .02, Cohen’s d = 0.36). The
current results indicate that the communication among members in social networks, whether
characterized by clustering or lack thereof, plays a pivotal role in shaping the cognitive mech-
anisms underpinning memory processes.

These findings were specific to the studied words and the associated critical lures as both
groups showed similar patterns of memory intrusions of non-related words during the con-
versational phase (clustered group: M = 26.04%, STD = 20.05%, M = 28.49%, STD =
20.23% and M = 25.41%, STD = 17.85%, for first, second, and third iterations, respectively;
non-clustered group: M = 28.18%, STD = 20.25%, M = 26.72%, STD = 17.37% and M =
25.14%, STD = 18.89%). This was confirmed via a repeated measures ANOVA including iter-
ation and network condition as within and between-subjects factors, respectively (main effect
of iteration: F(2,336) = 1.09, p = .39, η2 = 0.005; interaction iteration × network condition
effect: F(2,336) = 0.70, p = .49, η2 = 0.004).

The greater preservation of true memories among members of clustered networks across
conversational iterations, compared to non-clustered networks, suggests two related conse-
quences at the network level. First, memories in non-clustered networks are likely to become
less similar over time than those shared in clustered networks. This effect should be most
pronounced in the third conversation round, when interactions occur across participant clus-
ters. To evaluate this possibility, we measured the similarity of the five memory recalls in
each conversational iteration, corresponding to the five pairings of the 10 individuals from a
network. This index was obtained by averaging the correlations between memory recall vec-
tors for each pair of recalls within the network and across iterations. Since memory scoring
was binary (word recalled or not recalled), we used the Phi coefficient, a measure designed
for binary categorical data, to quantify recall similarity, where +1 indicates perfect positive
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(a)

(b) (c)

Fig. 4. (a) A graphic summary of the hypothesis of the study. We suggested that in clustered networks, where
information exchange is localized, accurate memories are better preserved due to reinforced related memories
within communities (left). In contrast, non-clustered networks with widespread information exchange may lead to
related false memories. This is because interconnected nodes can coactivate less convergent conceptually related
memories, similar to the cognitive dynamics promoting false memories (right). (b) Changes in the degree of mem-
ory consistency of true memories (words) between first/second and second/third conversational recall iteration
(Phase III) for each member of the two network conditions. (c) Difference of mnemonic convergence scores for
the clustered and non-clustered conditions in the post- compared to the pre-conversational recall phases. The mean
difference between the clustered and the non-clustered group is shown in this Gardner–Altman estimation plot in
(b) and (c) (Ho et al., 2019). Both groups are plotted on the left axes; the mean difference is plotted on a floating
axis on the right as a bootstrap sampling distribution. The mean difference is depicted as a dot; the 95% confidence
interval is indicated by the ends of the vertical error bar.

association and −1 indicates perfect negative association. The average similarity across all
possible recall pairs within a network was then calculated for each iteration. However, this
analysis revealed numerically consistent but statistically inconclusive results. More specifi-
cally, in the clustered condition, mean values were 0.20 (SD = 0.06) in round one, 0.12 (SD
= 0.06) in round two, and 0.21 (SD = 0.13) in round three. In the non-clustered condition,
mean values were 0.19 (SD = 0.07) in round one, 0.16 (SD = 0.04) in round two, and 0.14
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(SD = 0.03) in round three. Nevertheless, a repeated measures ANOVA showed a main effect
of conversation round (F(2,30) = 3.09, p = .06, η2 = 0.17), but a non-significant interaction
conversation round × network condition (F(2,30) = 2.20, p = .13, η2 = 0.13).

A second plausible consequence of the greater preservation of true memories across con-
versational rounds in clustered networks is that individuals in this condition tended to exhibit
greater convergence at the network level after the conversational phase. To account for this
possibility, we calculated a mnemonic similarity score for true and false memories for each
pair of participants in the network by adding the number of items remembered in com-
mon by both participants and then dividing this sum by the total number of items recalled.
Then, following Coman et al. (2016), a network mnemonic convergence score was calcu-
lated by averaging the mnemonic similarity scores among all the pairs of participants in
the network, separately for the pre- and the post-conversational recalls. We found that, in
overall, network mnemonic convergence was higher for true than for false memories (main
effect of type: F(1,15) = 484.54, p < .001, η2 = 0.97). We also found that the degree of
mnemonic convergence increased after conversational recalls (main effect of recall phase:
F(1,15) = 331.34, p < .001, η2 = 0.96) and that this change differed between true than
false memories (type × pre effect: F(1,15) = 213.34, p < .01, η2 = 0.93). However, we
also found a significant type × recall phase × network condition interaction effect (F(1,15)
= 4.71, p = .046, η2 = 0.24), indicating that the change between the pre- and the post-
conversational mnemonic convergence for true and false memories differed between network
conditions.

A separate repeated measures ANOVA for network mnemonic convergence for true and
false memories allowed identifying the source of the triple interaction. More specifically,
the ANOVA including recall phase (i.e., pre- and post-conversation) and network condition
suggested that mnemonic convergence for true items increased more in the clustered than in
the non-clustered network condition (main pre-post effect: F(1,15) = 331.23, p < .01, η2 =
0.96; network condition × pre-post interaction effect: F(1,15) = 4.12, p = .06, η2 = 0.22).
Similar results were found when differences in mnemonic convergence between pre- and post-
conversational recall phases were analyzed with a robust regression model that controlled for
outliers in the data (true memories: β = 0.02, SE = 0.01, t(168) = 2.35, p = .03; Fig. 4c).
Conversely, a similar increase was found in the clustered and the non-clustered groups regard-
ing the mnemonic convergence for lure items (main pre-post effect: F(1,15) = 10.42, p < .01,
η2 = 0.41; network condition × pre-post interaction effect: F(1,15) = 0.82, p = .38, η2 =
0.05). The results suggest that conversational recall fosters greater mnemonic convergence
for true memories, especially in clustered networks, where shared recall strengthens collec-
tive memory consistency.

4. Discussion

In this study, we manipulated the topological structure of lab-created social community
networks during a computer-mediated conversational recall task using a DRM word list
paradigm to examine how network structure affects the formation of true and false memories.
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We found that clustered networks promoted true memories by reinforcing memory conver-
gence among community members, while non-clustered networks led to more false memo-
ries due to widespread cross-activation of non-overlapping memories. These findings provide
empirical evidence that social network structure influences memory dynamics, highlighting
the relationship between network topology and memory processes.

Our findings align with previous studies that showed that conversational remembering is
selective (Marsh, 2007; Rajaram & Pereira-Pasarin, 2010), susceptible to errors (Schacter,
2022), capable of altering the memories of the interlocutors (Hirst & Echterhoff, 2012), and
shaped by the degree of clustering network of the community structure (Coman et al., 2016).
They also align with the notion that these effects can be explained by cognitive processes that
take place during collaborative recall, such as memory reinforcement (Roediger, Zaromb,
& Butler, 2009) and social contagion (Maswood & Rajaram, 2019; Meade & Roediger,
2009; Roediger, Meade, & Bergman, 2001). What distinguishes the current study from prior
research is that it explored the potential that a general information transmission principle,
based on the modularity of a network structure, could elucidate the nature of how memories
are represented at the cognitive level. Specifically, collective memories are believed to arise
from the exchange of information among engaged members of a community, with influence
indirectly transmitted through connected peers (Yamashiro & Hirst, 2014). Cognitive models
explaining memory representation suggest that a comparable process underlies the intercon-
nection of memories sharing common content, facilitating the development of abstract and
semantic-based representations (McClelland, McNaughton, & Lampinen, 2020). Our find-
ings support this idea, showing that members of a clustered community tend to align their
memories, strengthening and converging on shared items. In contrast, recall among members
of a non-clustered community promotes memory divergence, increasing the likelihood of
semantic-based false memories. These findings indicate that social network structures shape
the nature of memory representations by inducing cognitive processes that occur at the indi-
vidual level.

Our results highlight the dynamic nature of memory, where information is actively recon-
structed and reorganized by the brain. This is consistent with the notion that memories are
stored and retrieved through interconnected neural networks in the brain and false memories
occur when these networks overlap during recall, distorting recollections (Kurkela & Dennis,
2016; Wing et al., 2020; Ye et al., 2016). However, while neuroimaging-supported empir-
ical studies (e.g., Chadwick et al., 2016) provide valuable evidence supporting the role of
mnemonic neural network activation in the brain, there are persisting limitations in our ability
to mechanistically examine and precisely capture the correspondence of memory representa-
tions at the neuronal level. Our research contributes to this field by leveraging the analogy
that these interconnected memory networks can be likened to a social network, where each
node represents a community member engaged in dynamic interactions. This analogy pro-
vides a novel perspective, demonstrating empirically that memories are indeed significantly
influenced by the cross-coactivation of associated nodes. In doing so, our study advances our
understanding of the complex interplay between cognition and social networks, opening new
avenues for research in this multidisciplinary field.
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It is important to acknowledge that even though our study isolated the effects on true and
false memories associated with network structure, these effects assumed that all individual
members of the community and their impact at the network-wide level are of equal signifi-
cance. However, not all individual members possess equal potential to influence the network’s
collective memory. For instance, individuals who connect between clusters have a signifi-
cant influence on the network (Derex & Boyd, 2016), especially if their shared recall takes
place at the early stages of other dyadic-level conversations within the network community
(Momennejad, Duker, & Coman, 2019). Interpersonal factors, such as source credibility (part-
ners vs. strangers; French, Garry, & Mori, 2008), perception of power (influential vs. weak;
Skagerberg & Wright, 2009), and confidence (competitive vs. cooperative; Wright, Gabbert,
Memon, & London, 2008; see for a review, Maswood & Rajaram, 2019) influences social
contagion and likely the emergence of false memories.

Another important consideration in our study is that, unlike naturally occurring clustered
networks, where close and trusting relationships may influence memory transmission, our
clusters consisted of strangers interacting via computers. This lack of pre-existing social
bonds could impact the likelihood of adopting false memories, as trust and familiarity may
influence whether individuals accept or reject information introduced by others. Thus, system-
atic manipulations involving different temporal arrangements of shared conversations within
members within the network topology and the inclusion of relationship characteristics of the
members of the community will likely reveal meaningful network dynamics involving the
formation of true and false collective memories.

While our study provides lure recall frequency, differences in recall structure must be
considered when comparing our findings to classic DRM studies, where individuals study
and recall independently. The turn-taking recall process introduces social dynamics that
may influence false memory formation differently. A key distinction from the classic DRM
paradigm is that, in our conversational setup, a lure memory can emerge either because a
speaker spontaneously recalls it or because it is introduced by another participant and sub-
sequently adopted. This interactive process contrasts with individual recall settings, where
lure memories arise solely from an individual’s internal memory reconstruction. The con-
sequences of false memories as a function of whether a specific lure is reinforced by the
repeated mentioning by others or by one’s recall spontaneously remains unclear. As such, a
direct comparison between our DRM-like setup and the classic DRM paradigm should be
approached with caution. Future research should further explore how these interactive recall
structures affect memory convergence, the transmission of errors, and the mechanisms that
drive false memory propagation in social networks.

The impact of information transmission within social communities is an important topic of
research as it reaches a large-scale societal impact, from attitudes and beliefs (Hirst & Echter-
hoff, 2012), with ramifications for political (Bakshy, Messing, & Adamic, 2015; Frenda,
Knowles, Saletan, & Loftus, 2013) and health-related attitudes (Centola, 2010). One concern-
ing aspect is the potential for these strategies to inadvertently foster false beliefs. Mitigating
the emergence of false beliefs in society is challenging because attitude-congruent false events
promote feelings of recognition and familiarity, which in turn interfere with source attribu-
tions (Johnson, Hashtroudi, & Lindsay, 1993). Our research suggests that an effective strategy
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may be to structure dissemination efforts based on social network design, controlling infor-
mation spread within distinct communities rather than broadly through social networks or
media. However, the relevance of this approach to real-world recall scenarios requires further
investigation.

While false memories might seem like flaws in memory, many researchers argue they result
from adaptive processes, reflecting gist-based thinking that aids generalization and abstraction
(Gallo, 2010; Roediger & McDermott, 1995). False memory generation is linked to divergent
thinking—generating multiple ideas—and convergent thinking—selecting the best ones—
both essential to creativity (Thakral, Devitt, Brashier, & Schacter, 2021; Dewhurst, Thorley,
Hammond, & Ormerod, 2011). Creativity, a key aspect of human development, is a major
focus in education (Patston, Kaufman, Cropley, & Marrone, 2021), yet training creativity in
schools remains challenging (DeHaan, 2011). Investigating the potential of novel educational
strategies based on non-clustered information exchange in classrooms to promote creative
thinking could be an intriguing research avenue.

Our findings underscore the intricate interplay between network topology, memory dynam-
ics, and the construction of collective memories. This not only enriches our understanding of
the cognitive processes underlying memory but also provides a lens through which we can
examine the intricate relationships between social network structure, memory representation,
and the evolution of collective knowledge.
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