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Abstract
Huntington’s disease (HD) is a neurological disorder caused by a CAG expansion in the Huntingtin gene (HTT). HD 
pathology mostly affects striatal medium-sized spiny neurons and results in an altered cortico-striatal function. 
Recent studies report that motor skill learning, and cortico-striatal stimulation attenuate the neuropathology in 
HD, resulting in an amelioration of some motor and cognitive functions. During physical training, extracellular 
vesicles (EVs) are released in many tissues, including the brain, as a potential means for inter-tissue communication. 
To investigate how motor skill learning, involving acute physical training, modulates EVs crosstalk between cells 
in the striatum, we trained wild-type (WT) and R6/1 mice, the latter with motor and cognitive deficits, on the 
accelerating rotarod test, and we isolated their striatal EVs. EVs from R6/1 mice presented alterations in the small 
exosome population when compared to WT. Proteomic analyses revealed that striatal R6/1 EVs recapitulated 
signaling and energy deficiencies present in HD. Motor skill learning in R6/1 mice restored the amount of EVs 
and their protein content in comparison to naïve R6/1 mice. Furthermore, motor skill learning modulated crucial 
pathways in metabolism and neurodegeneration. All these data provide new insights into the pathogenesis of HD 
and put striatal EVs in the spotlight to understand the signaling and metabolic alterations in neurodegenerative 
diseases. Moreover, our results suggest that motor learning is a crucial modulator of cell-to-cell communication in 
the striatum.
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Introduction
Huntington’s disease (HD) is a neurodegenerative auto-
somal-dominant genetic disorder caused by an abnormal 
CAG (Cytosine-Adenine-Guanine) expansion in the hun-
tingtin (HTT) gene. HTT gene codes for the huntingtin 
protein (htt), which in HD patients, presents an abnormal 
number of glutamine repeats (polyQ > 36). This mutation 
induces an aberrant aggregation and accumulation of the 
mutant htt (mhtt) [1] which causes specific vulnerability 
to medium-sized spiny neurons [2, 3] and impairs the 
synaptic connectivity between the cortex and striatum [4, 
5]. This degeneration results in choreiform movements, 
cognitive deficits, and even psychiatric symptoms [6–8].

Current therapies for HD are directed to treat symp-
toms, as there are no disease-modifying strategies yet [9]. 
However, recent studies have stablished that environ-
mental factors such as physical activity have a significant 
impact in the progression of the disease [10]. For exam-
ple, in mouse models of HD, physical training seems to 
decrease protein aggregation, cell death and mitochon-
drial dysfunction. Moreover, physical training showed an 
improvement in motor function, cognition and slowed 
down disease progression in both HD mouse models and 
in patients. It is important to note that, in these studies, 
the physical activity periods greatly differ between stud-
ies, from 3 days to 5 months (reviewed in [11]). Motor 
skill learning tasks involve at least acute physical training, 
and these intertwined events activate the cortico-striatal 
synaptic pathway [12, 13]. Importantly, the activation of 
this circuitry seems to be beneficial on some symptom-
atology of HD [14].

However, the mechanisms behind the therapeutic 
effects of motor learning and cortico-striatal activation 
are not completely understood. Physical training has sys-
temic consequences on the body, impacting most organs, 
including the brain. It has been shown that, along with 
several classical cytokines an myokines, extracellular ves-
icles (EVs) are released into the circulation during train-
ing as potential means for inter-tissue communication 
[15].

EVs are small membrane-bound vesicles released by 
cells that have been proven as versatile messengers since 
they contain biologically active proteins, RNAs and lip-
ids [16–18]. Although several studies involve EVs in the 
propagation of toxic proteins [19–22], EVs have also been 
shown to be key players in ensuring the physiological 
functions in the brain, as they act as modulators of neu-
rogenesis [23], synaptic plasticity [24] and myelination 
[25].

There are different types of EVs, distinguished by size 
and biogenesis. Among them, exosomes are ∼60 to 
120 nm vesicles produced by the endosomal system and 
secreted by the fusion of multivesicular bodies with the 
plasma membrane. In contrast, microvesicles are bigger 

particles, between ∼100  nm and 1  μm released by out-
ward budding from plasma membrane [26, 27].

EVs participate in training-mediated adaptation pro-
cesses that involve signaling across tissues and organs 
[28]. However, to date, it is unknown how motor learn-
ing, and therefore the activation of cortico-striatal 
pathway, could affect the profile of EVs released in the 
striatum.

For this reason, we investigated the potential effect 
of motor learning in the modulation of the crosstalk 
between cells in the striatum via EVs and how this is 
impaired in a pathologic context. Here, we found that 
R6/1 striatal EVs presented a differential signature in size 
and protein content, confirming alterations in biological 
pathways already described to be affected in HD. Motor 
learning exposure, although insufficient to revert the 
overall HD phenotype, restored striatal R6/1 EVs concen-
tration and protein deficiencies associated to metabolism 
and neurodegeneration.

Materials and methods
Animals
Heterozygous R6/1 transgenic mice, maintained in a 
B6CBA background, were used as a model of HD (RRID: 
IMSR_JAX:006471). WT littermate animals were used as 
the control group. R6/1 mice express exon 1 of human 
mhtt with 115 CAG repeats, which codes for part of the 
N-terminal regions of the protein, including the poly-
glutamine stretch. Transgene expression is driven by the 
human huntingtin promoter. Male animals of 8 weeks of 
age were used. All procedures were carried out in accor-
dance with the National Institutes of Health Guide of the 
Care and Use of Laboratory Animals and approved by the 
local animal care committee of the Universitat de Barce-
lona (315/18 P10), following European (2010/63/UE) and 
Generalitat de Catalunya (10,141-P10) regulations.

Mice were housed under controlled conditions: 22ºC, 
40–60% humidity in a 12  h light/dark cycle) and with 
water and food available ad libitum.

Accelerating rotarod
2-month-old WT and R6/1 mice were subjected to the 
accelerating rotarod test. Mice were placed on a 3 cm rod 
with an increasing speed from 4 to 40 rpm over 5 min, as 
in Martín-Flores, N. et al. (2020) [29], with minor modifi-
cations. Latency to fall from the rod was recorded. Briefly, 
accelerating rotarod test was performed for 3 days, 4 tri-
als per day. Trials 1 to 2 and trials 3 to 4 were separated 
by 15 min. Trials 2 to 3 were separated by 30 min to let 
the animals recover from the physical activity. Naïve ani-
mals’ group were presented to the rotarod the first day 
(they were placed on the rod) but they were not trained. 
1 h and 30 min after the last trial, both naïve and trained 
animals were euthanized by cervical dislocation and both 
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right and left striatum were dissected out and frozen at 
-80ºC until EVs isolation.

Extracellular vesicles isolation from mice tissue
EVs were isolated from the striatal tissue as in Pérez-
Gonzalez R. (2017) [30], with some modifications. Briefly, 
frozen striatum was weighted before starting the EVs 
isolation. Tissue was chopped and chemically digested 
for 15  min at 37 ºC with ~ 20 units of papain solution 
(Labclinics) in Hibernate-A medium (Thermo Fisher 
Scientific). The enzymatic reaction was stopped adding 
cold Hibernate-A supplemented with 1X PhosSTOP™ 
phosphatase inhibitors cocktail, 1X cOmplete™ prote-
ase inhibitors cocktail, 2mM PMSF, 5µM E-64 (all from 
Merk). Tissue was then homogenized and centrifuged 
at 300 x g for 10 min, to eliminate cell debris. Superna-
tant was sequentially filtered out in 0.45 μm filter and in 
0.20 μm filter. Then a 2,000 x g centrifugation for 10 min 
was performed to remove apoptotic bodies (P2000) and 
a 10,000 x g centrifugation for 30  min to pellet large 
microvesicles (P10K). The supernatant was ultracentri-
fuged at 100,000 x g two times for 70 min, to pellet down 
the small EVs (sEVs). The pellet was resuspended in 1X 
PBS and applied to the size-exclusion chromatography 
(SEC) column.

SEC columns were prepared using puriflash columns 
dry load empty (Interchim), loaded with sepharose (GE 
Healthcare) in azide solution, as in Gámez-Valero, A. 
et al. (2016) [31]. The columns were washed in 1X PBS 
before use. The fraction containing sEVs was applied to 
the column and 35 fractions of 500 µL were collected. 
Protein concentration of each fraction was measured 
using the NanoDrop™ One Microvolume UV-VIS Spec-
trophotometer (Thermo Fisher Scientific) and vesicle size 
and concentration with the NanoSight NS300 equipment.

The fractions containing the peak of vesicles were 
pulled together and an ultracentrifugation of 100,000 x 
g for 70 min was performed to pellet the sEVs. All cen-
trifugations were performed at 4 ºC. The pellet was 
resuspended in 1X PBS for NTA analysis and negative 
staining, in 1X RIPA buffer (Cell Signaling Technologies) 
for western blotting (WB) or in 1X lysis buffer (7 M urea, 
2  M thiourea and 50 mM dithiothreitol) for proteomic 
analysis.

Western blotting
The striatal tissue not used for EVs isolation was pro-
cessed as in Pérez-Sisqués, L. (2022) [32] to obtain 
the homogenate, and protein concentration was mea-
sured using Bradford reagent (Bio-rad). P2000, P10K, 
and EVs fractions were resuspended in 1X RIPA buf-
fer (supplemented with 1X PhosSTOP™ phosphatase 
inhibitors cocktail, 1X cOmplete™ protease inhibitors 

cocktail, 2mM PMSF and 5µM E-64) and protein concen-
tration was measured using microBCA™ (Thermo Fisher 
Scientific).

The following primary antibodies were used (1:1,000 
if not stated otherwise): mouse monoclonal anti-Alix 
(Thermo Fisher Scientific, #MA183977, 1:500) mouse 
monoclonal anti-TSG101 (Abcam, #ab83), mouse mono-
clonal anti-Flotillin-1 (BD Bioscience, #610,821), mouse 
monoclonal anti-TOMM20 (abcam, #ab56783), mouse 
monoclonal anti-phospho-p44/42-Thr202/Tyr204 MAPK 
(ERK1/2) (Cell Signaling Technology, #9106), rabbit poly-
clonal anti-ERK (Santa Cruz Biotechnologies, #sc-93), 
rabbit polyclonal anti-phospho-Akt-Ser473 (Cell Signal-
ing Technology, #4060S), rabbit polyclonal anti-phospho-
RPS6-Ser235/236 (Cell Signaling Technology, #4858S), 
rabbit polyclonal anti-Akt (Cell Signaling Technology, 
#4691S) and mouse monoclonal anti-RPS6 (Cell Signal-
ing Technology, #2317).

The loading control was obtained by incubation with 
an anti-α-actin-Peroxidase antibody (1:100,000; Merck, 
#A3854) or with rabbit polyclonal anti-vinculin (Cell 
Signaling Technology, #4650). Horseradish peroxidase-
conjugated goat anti-mouse and anti-rabbit secondary 
antibodies (1:10,000) were obtained from Thermo Fisher 
Scientific (1:10,000, #31,430 and #31,460, respectively).

In the case of gels containing both lysates and EVs 
samples, membranes were cut and lysates and EVs were 
incubated separately with the antibodies, to avoid signal 
sequestration.

Chemiluminescent images were acquired using a 
Chemidoc imager (BioRad) and quantified by computer-
assisted densitometric analysis (ImageJ). All the blots 
used for the figures are shown in Figure S4.

Transmission electron microscopy
For transmission electron microscopy (TEM), the EVs 
pellet was resuspended in 2% paraformaldehyde (PFA, 
Electron Microscopy Sciences) in 1X PBS and deposited 
on Formvar-carbon-coated 400-mesh copper grids for 
25 min until adsorption. Grids were then transferred to 
a ~ 30 µL drop of 2% saturated aqueous uranyl acetate 
as a contrast agent. The excess mixture was removed by 
capillarity using filter paper and grids were washed in 
water. When dried, samples were observed under a JEOL 
JEM-1010 (100  kV) microscope (JEOL, Ltd.) and image 
acquisition was made with a Gatan Orius CCD Camera 
(AMETEK, Inc.) at 200,000x magnification.

Nanoparticle tracking analysis
EVs size and concentration were analyzed by nanopar-
ticle tracking analyses (NTA), using NanoSight NS300 
equipment (Spectris). Samples were diluted in 1X Phos-
phate buffered-saline (PBS) and three videos of 60 s were 
recorded per sample. Videos were analyzed with the NTA 
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Software (NTA v3.4 Build 3.4.4) to determine the size 
and concentration of particles in EVs samples. Settings: 
Camera sCMOS, Laser Blue466, Camera Level 12, Slider 
Shutter 1200, Slider Gain 146, Shutter/ms 30, Frame rate/
fps 25, Syringe Pump Speed/AU 50, Detection Thresh-
old 5, Total Frames analyzed 1498. EVs concentration 
was normalized to the weight of the tissue used for EVs 
isolation.

Proteomics
Samples were processed and analyzed at the Proteomics 
Platform of Navarrabiomed-IdiSNA Center for Biomedi-
cal Research. For sample preparation, protein extracts 
were diluted in Laemmli sample buffer (4%) and were 
then loaded into a 0.75-mm-thick polyacrylamide gel 
containing a 4% stacking gel cast over 12.5% resolving 
gel. To concentrate the entire proteome at the stack-
ing/resolving gel interface, the run was stopped as soon 
as the front entered 3 mm of the resolving gel. Gel was 
then stained using Coomassie Brilliant Blue and bands 
were excised and digested using 1:20 trypsin solution at 
37ºC for 16 h as previously described [33]. Peptide frag-
ments were purified and concentrated using C18 Zip 
Tip Solid Reverse Phase columns (Millipore). Samples 
were then separated by reverse phase LC-MS/MS using 
an UltiMate 3000 UHPLC System (ThermoFisher) fit-
ted with a column in an acetonitrile gradient coupled 
to the Orbitrap Exploris 480 MS (ThermoFisher). Mass 
range was set to 375–1500 ppm. All the other acquisition 
parameters were set as previously described [34]. The 
MaxQuant computing platform v.1.6.17.0 [35]. and the 
environment-integrated Andromeda search engine [36] 
were used to process the raw files. For peptide identifica-
tion, a target-decoy search strategy [37] was performed 
against a target/decoy version of the rat UniProt database 
without isoforms with a maximum peptide mass of 7500 
Da. The false discovery rate limit was set to 1% on both 
the peptide and protein identification levels. The Perseus 
software v.1.6.14.0 [38] was used for statistical and differ-
ential expression analyses. Only proteins with at least two 
identified peptides were considered for further analyses. 
The option “two samples t-test” was used to compare 
experimental conditions. Here, comparisons were statis-
tically different if the following conditions were met: (i) 
Benjamini-Hochberg adjusted p-values under 0.05 and a 
(ii) log2 fold-change over 0.3 and under − 0.3. R (v.4.2.1) 
packages ComplexHeatmap [39], EnhancedVolcano and 
mixOmics [40], were used for multivariate data analysis 
and visualization.

To proceed with dimensionality reduction in the pro-
teomic analyses, partial least square discriminant analy-
sis (PLS-DA) was first used. The variables that contribute 
to a better separation of the classes were selected in each 
projection, using the variable importance projection 

metric (VIP). The variables with a VIP score > 1.5 were 
selected and principal component analysis (PCA) was 
performed as implemented in mixOmics R package [40]. 
All the proteomic and dimensionality reduction analyses 
were performed using the mixOmics R package. For the 
2D and 3D representation, ggplot2 [41], and rgl [42] R 
packages were used, respectively.

Gene site enrichment analysis (GSEA) of the differen-
tial protein sets in the different experimental groups was 
computed using R package gProfileR (v. 0.7.0) [43]. The 
differential proteins with FDR < 5% with positive and neg-
ative fold change in the same analysis were tested. The 
background was set to the input set of proteins detected 
by mass spectrometry. External gene names of the differ-
ential proteins were used as a query. Organism was set 
as a mouse. Electronic annotations were excluded, the 
p-value correction method was set to “fdr” and results 
with FDR < 5% were considered. igraph (v.1.5.0) [44] and 
networkD3 (v.0.4) [45] R packages were used for network 
representation of the results. ggplot2 version R package 
was used for other statistical results representation, such 
as the UpSet plot [41].

Statistics
All experiments were performed with 4 animals per 
group (n = 4) and data was reported as mean ± SEM. 
Normal distribution was considered when all the data 
passed one of the following normality tests: D’Agostino-
Pearson, Shapiro-Wilk, and Kolmogorov-Smirnov. Two-
way ANOVA with Bonferroni’s post hoc test was used to 
compare multiple groups. Values of P < 0.05 were consid-
ered statistically significant.

Results
Isolation and characterization of EVs derived from R6/1 
mouse striatum
To investigate the potential effect of the cortico-striatal 
pathway activation, via motor skill learning, on striatal 
EVs profile, we subjected WT and R6/1 mice to the accel-
erating rotarod test, for 3 consecutive days. Half of the 
animals, grouped as naïve, were presented to the rod the 
first day but no training was performed (Fig. 1A).

Only four animals per group were sufficient to sig-
nificantly reproduce the disease-associated deficits in 
the rotarod task, as expected, in line with our own pre-
vious work. We observed that both WT and R6/1 mice 
improved their performance per day, confirming they 
were properly trained, but the R6/1 mice had motor 
learning deficits, compared to WT, since the latency to 
fall was shorter, as previously described [29] (Fig.  1B & 
C).

Ninety minutes after the last rotarod trial, mice were 
sacrificed, and striatal tissue was dissected out. Then, EVs 
were isolated from the striatum of both WT and R6/1 
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mice, either naïve or trained, by a first step of sequential 
ultracentrifugation followed by a purification by SEC, 
obtaining a final pool of the fractions that correspond to 
the peak of protein (F10-20) (Fig.  2A). We showed that 
the protein peak overlapped the EVs peak, as judged by 
NTA analysis of the particle’s concentration combined 
with the protein measurements (Fig.  2B). Moreover, we 
confirmed the size and shape of small EVs using TEM, 
in our four conditions (WT / R6/1 ± training) (Fig.  2C). 
Furthermore, we characterized the different fractions 
obtained in the purification steps biochemically, by 
WB (homogenates, apoptotic bodies (P2000), large EVs 
(P10K) and small EVs). We confirmed that the EVs frac-
tion was enriched in Alix, Flotillin-1 and TSG101, spe-
cific EVs markers, in comparison to the other fractions. 
Note that Alix and TSG101 are specific markers for 
exosomes, while Flotillin-1 can be found both in exo-
somes and in microvesicles [46]. The EVs fraction was 

also negative for the mitochondrial protein TOMM20 
(Fig.  2D). Importantly, EVs fraction would contain EVs 
derived from all the neural cells naturally present in the 
striatum, cortical afferents, and striatal neurons but also 
astrocytes, oligodendrocytes, and microglia [47].

Motor learning differently modulates the size and the 
concentration of striatal R6/1 EVs in comparison to WTs
To further characterize EVs populations in WT and R6/1 
mice, with or without physical training, we assessed the 
distribution in size and particle concentration of the 
four groups by NTA (Fig.  3A). Although total particle 
concentration did not show differences between groups 
(Fig. 3B), we observed that R6/1 mice presented a lower 
mean size of the EVs particles than WT, and motor train-
ing mildly favored this size alteration in R6/1 (Fig.  3C). 
In the literature, many different types of EVs have been 
described, mostly classified by biogenesis and size as 

Fig. 1 Accelerating rotarod training in WT and R6/1 mice. (A) Schematic representation of the experimental procedure. 2-month-old WT and R6/1 trans-
genic mice were divided in two groups: the naïve group was presented the first day to the rod, but no training was performed, and the trained group was 
physically trained for 3 consecutive days, with 4 trials per day. 90 min after the last trial, the striata was dissected out and kept at -80ºC until processing for 
EVs isolation. (B) Latency to fall at accelerating speeds (4–40 rpm) over 5 min. (C) Latency to fall. Data is represented as the mean of the 4 trials per day. 
Values are represented as mean ± SEM (n = 4). Data were analyzed by two-way ANOVA followed by Bonferroni’s post hoc test. (*P < 0.05, vs. WT)
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oncosomes, apoptotic bodies, microvesicles, large exo-
somes, small microvesicles and exomeres (Fig. 3D) [26]. 
Exclusively considering the size classification, our EVs 
samples mostly contain microvesicles (0.1–1  μm), large 
exosomes (90–120 nm), and small exosomes (60–80 nm), 
as reported by the size distribution of the four groups of 
EVs (Fig.  3A). Considering the particles in the range of 
65 to 85  nm as small exosomes, we observed that R6/1 
mice showed an increase in the concentration of this 
population in the striatum, in comparison to WT mice. 
This alteration was completely corrected when R6/1 mice 
learned the motor task (Fig. 3E). On the other hand, the 
concentration of the large exosome’s population (vesicles 
in the range of 85 nm to 125 nm) was higher in the R6/1 
mice versus WT but was insensitive to motor skill learn-
ing in both genotypes (Fig. 3F).

Striatal EVs proteomic signature reflects the signaling and 
metabolic alterations in R6/1 mice
To investigate whether WT and R6/1 mice striatal EVs 
differ in their protein cargo, we assessed the proteome of 
naïve WT and R6/1 striatal EVs. When we compared the 
whole proteomic signature, we found a significant sepa-
ration of the two groups in the PCA, constructed with 
top variables based on a PLS-DA analysis (Figure S1A). 
Indeed, the heatmap summarizes all the differentially 
expressed proteins in striatal EVs from the two naïve 
groups (Fig.  4A1). Remarkably, the most overexpressed 
proteins in R6/1 striatal EVs were ferritin, dihydropyrim-
idinase-like 3 protein (DPYSL3) and albumin.

Using the KEGG database [48–50] with all the protein 
data, we extracted the biological pathways that were sig-
nificant: long-term potentiation, long-term depression, 

Fig. 2 Isolation and purification of striatal EVs. (A) Schematic overview of EVs isolation from the striata. Striata was chopped and chemically digested, 
then homogenized and, cells, apoptotic bodies and large EVs were discarded by centrifugation. EVs were isolated from the supernatant by differential 
ultracentrifugation. EVs were then purified by SEC, and fractions 10 to 20 (peak in protein and particle concentration) were pulled together and consid-
ered as EV-enriched. (B) SEC elution profile. Total protein (blue) and EVs particle concentration (purple) was measured in each fraction by NanoDrop™ 
Spectrophotometer and NanoSight NS300, respectively. The peak of protein corresponds to the peak of EVs particles. (C) TEM micrographs of the vesicles 
show particles with the characteristic morphology and size of EVs, in the four groups (WT / R6/1 ± training). Images were visualized using negative stain-
ing. (D) Homogenates, apoptotic bodies (P2000), large microvesicles (P10K) and EVs were subjected to WB analysis with antibodies against EVs markers 
(Alix, Flotillin-1 and TSG101). TOMM20 is used as a negative EV control. Actin is used as a loading control for homogenates
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ErbB/ERK signaling pathway, cAMP signaling pathway 
and pathways of neurodegeneration (Fig.  4A2, Supple-
mentary Table 1). Interestingly, the alteration of these 
pathways has a crucial role in the pathogenesis of HD 
[51, 52].

To study the effect of motor learning on R6/1 mice, we 
compared the protein cargo of striatal EVs from naïve 
or trained R6/1 mice. Again, PCA plots revealed that 
motor training was sufficient to modulate the protein 
content of EVs in R6/1 mice (Figure S1B). The heatmap 
showed a general upregulation of differentially expressed 
proteins after the rotarod training in the R6/1 animals 

(Fig.  4B1). In this case, we found significant alterations 
in metabolic pathways (Fig.  4B2, Supplementary Table 
2). Indeed, the proteins that presented higher levels in 
striatal R6/1 EVs were the muscle isoenzyme phospho-
fructokinase (PFKM) and phosphoglycerate mutase 1 
(PGAM1), both involved in the glycolytic pathway. Inter-
estingly, decreased levels of PGAM1 have been found in 
the brain of HD patients (Huntington’s Disease_CNS-
Brain (MMHCC)_GSE857, Harmonizome 3.0), revealing 
a potential beneficial function of motor learning in the 
modulating the molecular composition of striatal EVs.

Fig. 3 Striatal EVs from WT and R6/1 mice are differentially distributed in size and concentration. (A) Representative average curve of size distribution 
and particle concentration of the four different groups (WT / R6/1 ± training), by NTA analysis. Data is represented as the mean of the 4 animals per group 
and normalized by the tissue weight used for EVs-isolation. (B) Quantification of the total EVs particle concentration. (C) Quantification of the mean 
diameter (nm) of EVs particles. (D) Schematic representation of the different types of EVs, classified by size and biogenesis. (E) Vesicles ranging from 65 
to 85 nm were selected (small exosomes) and concentration was represented. (F) Vesicles ranging from 95 to 125 nm were selected (large exosomes) 
and concentration was represented. Values are represented as mean ± SEM (n = 4). Data were analyzed by two-way ANOVA followed by Bonferroni’s post 
hoc test. (*P < 0.05)

 



Page 8 of 16Solana-Balaguer et al. Cell Communication and Signaling          (2024) 22:321 

Fig. 4 Striatal EVs from naïve or trained WT and R6/1 mice present a differential proteomic signature that results in biological pathways’ alterations. (A) 
Pairwise comparison of naïve WT and R6/1 mice striatal EVs. (A1) Heatmap showing the differentially expressed proteins in WT and R6/1 mice derived 
striatal EVs (n = 4 per group). (A2) Network plot show in yellow the significant pathways that are altered considering the proteomic content of EVs. (B) 
Pairwise comparison of naïve R6/1 and trained R6/1 striatal EVs. (B1) Heatmap showing the differentially expressed proteins in naïve R6/1 and trained R6/1 
mice striatal EVs (n = 4 per group). (B2) Network plot show in yellow the significant pathways that are altered considering the proteomic content of EVs. 
(C) Pairwise comparison of trained WT and R6/1 striatal EVs. (C1) Heatmap showing the differentially expressed proteins in WT trained and R6/1 trained 
mice striatum-EVs (n = 4 per group). (C2) Network plot show in yellow the significant pathways that are altered considering the proteomic content of EVs. 
In all cases, statistically significant overexpressed proteins are depicted in red, whereas proteins that are underrepresented are shown in blue. In the right 
annotation the fold change (FC) is displayed in green as a bar plot for each of the proteins (the darker the color, the higher the FC value). FC is calculated 
as 2^(mean1-mean2). Proteins were considered significant when the p value was under 0.05 in a t-test and a FC of less than 0.33 or above 1.7
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Hence, we showed that motor skill learning did not 
mask HD alterations in metabolism [53] in the EVs from 
the trained R6/1 mice.

To investigate whether motor learning could also influ-
ence striatal EVs protein cargo in WT mice, we assessed 
EVs protein content of naïve and trained WT striatal EVs. 
PCA plot revealed that motor learning could not separate 
striatal EVs from naïve or trained WT mice, as judged by 
the lack of sample group clustering (Figure S1C). How-
ever, pairwise comparisons of the proteomic data of naïve 
and trained WT striatal EVs identified several differen-
tially expressed proteins in EVs after the training (Figure 
S2). Although we did not find significant alterations in 
general biological pathways (Supplementary Table 3), we 
observed that after learning the motor task, there was a 
lower expression of proteins involved in protein transla-
tion, such as seryl-aminoacyl-tRNA synthetase (SerRS) 
[54], or in plasticity and metabolism such as synapto-
somal-associated protein 25 (SNAP25), phosphoglycerate 
kinase 1 (PGK1), protein kinase cAMP dependent regula-
tory (PRKAR2B) and nipsnap2 homolog 2 (NIPSNAP2) 
[55–58] (Figure S2).

Interestingly, when we compared trained WT and R6/1 
groups, PCA plot confirmed that the two groups did not 
differ in the protein content (Figure S1D). The heatmap 
revealed mostly upregulated proteins (Fig.  4C1), that 
resulted in an alteration in pathways related with neuro-
degeneration and Parkinson’s disease (Fig.  4C2, Supple-
mentary Table 4).

When we plotted the four groups together (WT / 
R6/1 ± training), the PCA in three dimensions (3D) com-
pletely clustered EVs content per genotype (naïve WT 
and naïve R6/1) but not by motor learning, meaning 
that acquiring the task brings closer the protein content 
of R6/1 EVs to either the naïve or the trained WT EVs 
(Fig. 5).

Indeed, the pairwise comparison of naïve WT and 
trained R6/1 derived striatal EVs showed no clustering 
regarding EVs protein content, suggesting, again, an evi-
dent effect of motor training in R6/1 mice EVs proteomic 
composition (Figure S3).

Motor learning training restores normal levels of ERK2 and 
β-globin proteins in striatal EVs and has a mild effect on 
cell survival and synaptic plasticity pathways
To further investigate the potential beneficial role of 
motor learning via EVs, we assessed the levels of the pro-
teins that were shared between the four groups of study. 
Using an UpSet plot, we reported two proteins that were 
shared in both comparisons of interest, that resulted to 
be ERK2 (Mapk1) and β-globin (Hbb-bs) (Fig.  6A). We 
observed that both proteins were reduced in striatal EVs 
from naïve R6/1 mice, but motor learning reverted their 
levels (Fig.  6B & C). These results highly indicate that 

learning a motor task affects directly the striatal EVs con-
tent and modulate specific ERK2 (Mapk1) and β-globin 
(Hbb-bs) signaling deficits in an HD mouse model.

Since R6/1 mice striatal EVs showed a disruption in 
biological pathways involved in synaptic plasticity and 
cell survival [51, 52] (Fig. 4A2), we investigated whether 
we could observe these effects in the recipient structure, 
the striatum, from the same animals, by WB. We could 
not observe significant differences in survival/plastic-
ity readouts [59–61], such as the phosphorylated levels 
of ERK (Fig. 7A) in the striatal homogenates of the four 
groups (WT / R6/1 ± training). Although the levels of 
phospho-ERK1 remained unaltered between conditions 
(Fig.  7A1), we observed non-significant mild tendencies 
in the recovery of phospho-ERK2 after training in the 
R6/1 mouse group (Fig.  7A2), in line with our observa-
tions of the ERK2 levels in striatal EVs (Fig.  6C). Inter-
estingly, we confirmed the expected elevated levels of 
phospho(S473)-Akt in R6/1 mice striatal lysates [29, 62], 
and this was partially corrected in the R6/1 mice after 
learning a motor skill (Fig.  7B1). Finally, we observed 
that phosphorylation of RPS6 (Ser235/236) was sensitive 
to motor learning in both WT and R6/1 mice, indepen-
dently of their genotype (Fig. 7B2).

These results indicate that motor learning tasks in R6/1 
mice directly influences the striatal EVs composition, 
which could affect their function, and therefore might 
have a resilient impact on cell survival and synaptic plas-
ticity pathways.

Discussion
This study describes for the first time that the R6/1 
mouse model presents a specific striatal EVs profile 
with a proteomic content that reflects both the signal-
ing and the synaptic alterations described in HD. More-
over, exposing R6/1 mice to a motor learning task that 
activates the cortico-striatal pathway using rotarod, sig-
nificantly changed the striatal EVs signature and reversed 
some of the protein deficiencies, highly indicating a resil-
ience-inducing role of motor training in HD via transcel-
lular communication.

Here, we reported that R6/1 mice showed a differ-
ent striatal EVs profile, in terms of size and concentra-
tion. R6/1 striatal EVs presented higher concentrations 
of both small and large exosomes. Although Ananbeh et 
al. (2022) did not find significant differences in the size of 
EVs isolated from blood plasma of pig models of HD [63], 
this difference could be explained by the EVs source, as 
brain-derived EVs might represent only a minority of all 
plasma vesicles [64]. Indeed, this could indicate that this 
size alteration is more specific to neural-EVs derived from 
the striatum. Furthermore, this higher exosome concen-
tration in R6/1 mice striatum, could be due to an increase 
in exosome secretion. Indeed, in neurodegenerative 
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diseases, including HD, the impairment in the endo-
lysosomal pathway results in an increased secretion of 
exosomes [65, 66]. Interestingly, rotarod training of the 
R6/1 mice, nearly palliated EVs-size alterations, highly 
indicating an adaptability of the EVs signature to a physi-
cal training that involves motor learning. Indeed, motor 
learning processes activate the cortico-striatal synaptic 
pathway, and it has been described that neural EVs are 

released in response to synaptic glutamatergic activity 
[67, 68] and have a role modulating synaptic plasticity 
[24].

Our proteomic results also showed that R6/1 mice 
had alterations in the protein content of striatal EVs, 
compared to WT. The most upregulated proteins in 
R6/1 striatal EVs were ferritin, DPYSL3 and albumin. In 
HD patients, there are high levels of ferritin [69], and 

Fig. 5 R6/1 mice striatal EVs get more similar to WT after motor learning. (A) Heatmap showing all the proteins detected in striatum EVs in the four 
animals per condition, with the method used (LC-MS/MS). Overexpressed proteins are depicted in red, whereas proteins that are underrepresented are 
shown in blue. (B) PCA-3D model plot constructed with top variables based on a PLS-DA analysis shows clear clustering of naïve WT (WT_n) and naïve 
R6/1 (R6/1_n) mice striatal EVs, regarding EVs protein composition, but no separation between the other groups. To construct the model, the whole list 
of proteins –whether significantly altered or not between groups– was used. Component 1 stand for an 30% of variance, component 2 for a 19% and 
component 3 for a 9%. In addition, surrounding ellipses represent the 95% confidence interval for each group
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this has been associated with cell death by ferroptosis 
[70]. DPYSL3 has been linked to elevated mhtt levels in 
human fibroblasts samples [71]. Moreover, the presence 
of increased levels of albumin in striatal EVs could be a 
sign of leakage due to a blood-brain barrier permeabil-
ity perturbations [72] or to a microglial activation [73]. 
Interestingly, striatal R6/1 EVs-proteome evoked the 
alterations in synaptic and signaling pathways that have 
been described in HD, such as long-term potentiation 
and depression [74], cAMP signaling pathway [75], ErBB/
ERK signaling pathways [52] and even pathways of neu-
rodegeneration. These results reinforce the idea that EVs 
are active contributors to the pathogenesis of the disease 
[76], as they are sufficient to modulate signaling pathways 
in the neighboring cells due to their content.

Intriguingly, neither htt nor mhtt protein was detected 
in striatal EVs by LC-MS/MS. This could be explained 
by the result of the trypsinization of EVs, that is very 
well influenced by the aggregating nature of this pro-
tein [29, 77]. Ananbeh et al. (2022) [63] found htt pro-
tein in small EVs from plasma of transgenic knock-in 
pig models of HD, and from human HD patients. In line 
with this, Miguez et al. (2023) [22] isolated EVs derived 

from HD-derived human NPCs lines and used them to 
treat mouse primary striatal neurons. After 24  h, they 
observed the presence of soluble mhtt in mouse striatal 
neurons by immunocytochemistry and TEM immuno-
gold. However, in both studies [22, 63], whether mhtt is 
loaded in EVs or co-isolated with EVs remains unknown.

Furthermore, motor learning changed the proteomic 
profile of striatal EVs significantly in the R6/1 mice. We 
included the accelerating rotarod test because it involves 
physical activity and a motor learning curve in contrast 
to the voluntary running wheel, for example, where the 
animals run freely with no control in the period of the 
physical activity. In line with the described alterations in 
oxidative phosphorylation [78], oxidative stress [79] and 
mitochondrial functioning [80] in HD, we found that in 
EVs there were alterations in proteins involved in metab-
olism and in the central carbon metabolism in cancer. In 
physiological conditions, the major pathway to get ATP 
is oxidative phosphorylation. This process is very slow, 
so in pathological conditions, such as in neurodegenera-
tion, cells use a faster way to produce ATP by glycolysis 
[81, 82]. This Warburg-like metabolic transformation 
has been recently reported in other neurodegenerative 

Fig. 6 Motor learning restores normal levels of ERK2 and β-globin in R6/1 mice striatal EVs. (A) UpSet plot shows the number of proteins in striatal EVs 
that overlap among the four comparisons: naïve WT vs. naïve R6/1 (WT_n_R6/1_n), naïve R6/1 vs. trained R6/1 (R6/1_n_R6/1_t); trained WT vs. trained 
R6/1 (WT_t_R6/1_t), and naïve WT vs. trained WT (WT_n_WT_t). The comparison of interest is shown in orange. The table indicates which proteins are 
overlapping in each case. (B) Quantification of ERK2 levels in striatal EVs. (C) Quantification of beta-globin levels in striatal EVs. Values are represented 
as mean ± SEM (n = 4). Data were analyzed by two-way ANOVA followed by Bonferroni’s post hoc test. (*P < 0.05 vs. WT naïve; $$P < 0.01 vs. R6/1 naïve)
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disorders, such as Alzheimer’s disease (AD), and under-
lies neuronal degeneration [83]. Therefore, this observa-
tion of alterations in the central carbon metabolism is in 
accordance with the compensatory shift in brain energy 
metabolism that happens in the striatum of HD patients 
[84, 85].

Overall, we reported upregulated levels of metabolic 
proteins after motor learning in striatal EVs of R6/1 mice, 
which could indicate that R6/1 mice have higher ener-
getic requirements than WT during physical activity. In 
contrast, in WT striatal EVs physical training induced 
a downregulation of proteins involved in metabolism, 
such as SNAP25 [55], PGK1 [56], PRKAR2B [57] and 
NIPSNAP2 [58]. This contrary effect of training in WT 
and R6/1 mice seem to evoke an impaired homeostatic 
response to training in the R6/1 mice.

Strikingly, motor learning seemed to regulate crucial 
pathways of neurodegeneration in the protein content 
of striatal EVs. Considering the proteome profile of stri-
atal EVs, we found that WT and R6/1 derived EVs pro-
files were completely different, but EVs from R6/1 mice 
subjected to rotarod training got closer to WT EVs. 
Again, this reinforces the idea that motor learning could 

interfere effectively the EVs signaling in the striatum. The 
differential content and size of the EVs in this HD mouse 
model at 2 months could be compared with older ani-
mals’ samples to establish a disease progression profile, 
to finally correlate them with eventual peripheral bio-
markers in HD patients. However, it is unknown whether 
this accelerating rotarod effect seen at 2 months old ani-
mals could be reproduced in older ones, mostly because 
their more severe motor deficits could impair the test 
performance.

In addition, we reported reduced levels of β-globin in 
R6/1 mice striatal EVs. HD pathophysiology includes iron 
dysregulation, which can promote iron-deficiency ane-
mia [86]. Neuronal hemoglobin has a crucial role in the 
maintenance of normal mitochondrial functioning in the 
brain [87]. We showed that β-globin levels in striatal EVs 
were completely compensated in R6/1 mice subjected to 
a motor skill learning. This is in line with Dehghan et al. 
(2021), that reported increased levels of β-globin in mice 
brain after physical training [88].

Furthermore, R6/1 striatal EVs showed reduced lev-
els of ERK2 versus WT EVs. Downregulated levels of 
ERK2 have been reported in the striatum of HD human 

Fig. 7 Motor learning mildly restores the physiological Akt phosphorylation in R6/1 mice. Striatal homogenates from naïve or trained WT and R6/1 mice, 
were subjected to WB analysis. Actin or vinculin are used as loading controls. (A) Representative immunoblots show phospho-ERK1/2 Thr202/Tyr204 and 
total ERK. Densitometric analysis of (A1) phospho-ERK1 and (A2) phosphor-ERK2. (B) Representative immunoblots show phospho-Akt Ser473, phospho-
RPS6 Ser235/236, total Akt and total RPS6. Densitometric analysis of (B1) phospho-Akt and (B2) phospho-RPS6. Data were analyzed by two-way ANOVA 
followed by Bonferroni’s post hoc test (*P < 0.05 vs. WT naïve)
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post-mortem brains and in mouse models of the dis-
ease, and is linked to a synaptic dysfunction [89, 90]. 
We observed that this deficiency is transferred via EVs 
in the striatum, and strikingly, physiological levels of 
ERK2 were partially restored in R6/1 mice subjected to 
a motor learning, similar to the synaptic effect of neu-
ral EVs [24, 91]. This is in line with Taylor et al. (2012), 
who showed that training upregulated ERK1/2 signaling 
in skeletal muscle because of hypertrophic adaptations 
[92]. More specifically in neural cells, physical exercise 
has been shown to promote the functional recovery of 
neurons after stroke and inhibits apoptosis in diabetes 
via ERK [93, 94]. As ERK activation has been proposed 
to be protective in HD [52], we suggest that the modu-
lation of its levels in EVs after acute or even long-term 
training might induce resilience for the HD pathology. 
Moreover, since neural EVs mediate synaptic plasticity 
[24], this could even ameliorate the HD-related synap-
tic deficiencies. Setting EVs apart, in striatal cells of HD 
models it has been described that ERK2 phosphoryla-
tion is decreased [90, 95]. Interestingly, we observed a 
non-significant tendency to compensate phospho-ERK2 
decrease after R6/1 physical training. This effect seemed 
to be specific of ERK2, as no tendencies were observed in 
ERK1 phosphorylation.

Furthermore, we reported reduced levels of phospho-
RPS6 in the striatum after motor still learning involv-
ing acute training, as previously described by others in 
the liver [96] and in the muscle [97], but no differences 
were found in R6/1 mice. In the case of Akt, we con-
firmed that R6/1 mice presented an hyperphosphoryla-
tion in the striatum, as observed by Saavedra et al. (2010) 
[62] and Martín-Flores et al. (2020) [29]. This activa-
tion has been suggested to be a short-term pro-survival 
response against mhtt toxicity [98] which could be detri-
mental long-term for cell survival and synaptic function 
[99]. Strikingly, this overactivation of Akt was partially 
reduced in R6/1 mice exposed to motor learning, sug-
gesting again that acquiring a motor skill could con-
tribute to a resilience response and could modulate the 
pathogenesis of HD.

Overall, our results indicate that striatal R6/1 EVs show 
alterations in size and in the proteomic signature, which 
outline the signaling and metabolic alterations present 
in HD, opening subsequent studies to further character-
ize EVs specifically on tissue to acquire a better under-
standing of neurodegeneration. Moreover, our results put 
motor learning processes as modulators of striatal EVs 
profile, which could in turn in harmonize cell to cell com-
munication in the striatum, with the ultimate goal of a 
disease modifying therapeutic approach.
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