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Corrales, González, Soria-Gondek, Martı́nez,
Pellitero, Tarascó, Moreno, Sumoy,
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Interleukin-16 is increased in
obesity and alters adipogenesis
and inflammation in vitro
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David Sánchez-Infantes3,7* and Laura Herrero2,7*

1Endocrinology department, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain,
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Introduction: Obesity is a chronic condition associated with low-grade

inflammation mainly due to immune cell infiltration of white adipose tissue

(WAT). WAT is distributed into two main depots: subcutaneous WAT (sWAT)

and visceral WAT (vWAT), each with different biochemical features and metabolic

roles. Proinflammatory cytokines including interleukin (IL)-16 are secreted by

both adipocytes and infiltrated immune cells to upregulate inflammation. IL-16

has been widely studied in the peripheral proinflammatory immune response;

however, little is known about its role in adipocytes in the context of obesity.

Aim &Methods:We aimed to study the levels of IL-16 in WAT derived from sWAT

and vWAT depots of humans with obesity and the role of this cytokine in

palmitate-exposed 3T3-L1 adipocytes.

Results: The results demonstrated that IL-16 expression was higher in vWAT

compared with sWAT in individuals with obesity. In addition, IL-16 serum levels

were higher in patients with obesity compared with normal-weight individuals,

increased at 6 months after bariatric surgery, and at 12 months after surgery

decreased to levels similar to before the intervention. Our in vitro models showed

that IL-16 could modulate markers of adipogenesis (Pref1), lipid metabolism

(Plin1, Cd36, and Glut4), fibrosis (Hif1a, Col4a, Col6a, and Vegf), and inflammatory

signaling (IL6) during adipogenesis and in mature adipocytes. In addition, lipid

accumulation and glycerol release assays suggested lipolysis alteration.

Discussion:Our results suggest a potential role of IL-16 in adipogenesis, lipid and

glucose homeostasis, fibrosis, and inflammation in an obesity context.
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1 Introduction

Obesity is a chronic, relapsing, and progressive disease with

multifactorial etiology (1, 2). The worldwide incidence of this

obesity has tripled in the last four decades, becoming one of the

most prevalent diseases worldwide (3). It is characterized by an

excessive or abnormal accumulation of adipose tissue in the body,

caused by a long-term energy imbalance between calorie intake and

expenditure (4). Obesity is also a significant risk factor for several

chronic diseases, such as cardiovascular disease (CVD), insulin

resistance (IR), type 2 diabetes (T2D), non-alcoholic fatty liver

disease, some types of cancer, and reduced life expectancy (5–9).

White adipose tissue (WAT) is mainly composed of adipocytes,

fibroblasts, and immune cells, such as macrophages, T and B cells,

and mast cells (10). WAT is not only a depot for lipid storage but

also an endocrine organ responding to metabolic changes. It is

distributed into two main depots: subcutaneous (sWAT) and

visceral (vWAT) (11, 12). In obesity, WAT expansion and

dysfunction are accompanied by immune infiltration (13, 14). IL-

16 is a proinflammatory cytokine that acts as a leukocyte

chemoattractant factor and is secreted by several immune cell

populations (15). The IL-16 pro-molecule is constitutive in T

cells, mast cells, eosinophils, epithelial cells, fibroblasts, and

dendritic cells (15), and requires processing and activation by

caspase-3 cleavage, which releases the biologically active form of

IL-16 (16). Using our data from RNAseq of WAT T lymphocytes

from individuals with obesity, an upregulation of IL-16 was

observed in enriched pathways related to SARS-CoV-2 infection,

poor prognosis, and severe symptoms. The function of IL-16 in the

peripheral proinflammatory immune response has been widely

studied (15, 17–20), however, its role in adipocytes in the context

of obesity is unclear. Therefore, we aimed to study the role of IL-16

in obesity, evaluating its effect on adipocyte biology. IL-16 gene

expression was elevated in vWAT from individuals with obesity and

correlated with inflammatory markers. Moreover, in vitro studies

demonstrated that treatment with recombinant IL-16 decreased the

expression of genes related to inflammation, lipid metabolism, and

adipose tissue remodeling. Finally, IL-16 blunted palmitate-induced

lipid accumulation in 3T3-L1 adipocytes.
2 Methods

2.1 Study participants

The study was approved by the Ethical Committee of the

Hospital Germans Trias i Pujol (Badalona, Spain) and followed

the guidelines of the Declaration of Helsinki. Participants gave

written informed consent prior to clinical data collection.

The cohort included 27 individuals: 13 with severe obesity and

14 with normal weight (Table 1). All individuals were evaluated
Abbreviations: BS, bariatric surgery; BSA, bovine serum albumin; CVD,

cardiovascular disease; ECM, extracellular matrix; IL-16, interleukin-16; IR,

insulin resistance; T2D, type 2 diabetes; sWAT, subcutaneous white adipose

tissue; vWAT, visceral white adipose tissue; WAT, white adipose tissue.
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between October, 2015 and September, 2021 by the same

endocrinologist (S.P.), who followed the institution’s protocol for

bariatric surgery (BS), according to BS criteria (Spanish Position

Statement between Obesity, Endocrinology, Diabetes, and Surgery

Societies). vWAT and sWAT biopsies were taken from individuals

with severe obesity during BS and from individuals with normal

weight at the time of consultation/minor surgery, mainly

cholecystectomy and biopsies that were finally negative for

tumors. Exclusion criteria were having active infectious or

inflammatory pathologies other than those related to obesity,

treatment with immunosuppressant drugs, or suffering from other

forms of immunosuppression.
2.2 Human serological analysis

Serum samples were collected after 12 h fasting on the day of

surgery and 6 and 12 months afterward, and frozen at -20° C. An

ELISA assay was performed at baseline, 6, and 12 months after

surgery (R&D system Bio-Techne D1600). Glucose and insulin

levels, and lipid profiles [total cholesterol, high-density lipoprotein

(HDL) cholesterol, low-density lipoprotein cholesterol, and

triglycerides], were measured in our certified core clinical

laboratory by enzymatic methods.

Homeostatic model assessment of insulin resistance (HOMA–

IR) was calculated as:

HOMA − IR =
½Glu cos e mg

dL ��½Insulin m : u : int
dL �

405
:

TABLE 1 Clinical parameters of the cohort of patients.

Control
(n = 14)

Obesity
(n = 13) P value

Mean ± SD Mean ± SD

Gender (male/females) 0/14 0/13

Age (years) 48.6 ± 8.2 46.2 ± 10.1 ns

Weight (kg) 64.9 ± 9.40 112.2 ± 12.0 P< 0.0001

BMI (kg/m2) 24.7 ± 2.5 43.5 ± 3.9 P< 0.0001

Glucose (mg/dL) 92.7 ± 15.4 106.5 ± 23.5 ns

Insulin (mIU/L) 5.4 ± 1.3 16.5 ± 11.8 ns

HbA1c (%) 4.8 ± 0.8 5.3 ± 1.2 P< 0.01

HOMA–IR (%) 1.3 ± 0.4 4.8 ± 4.2 ns

Triglycerides (mg/dL) 72 ± 28 126 ± 34 P< 0.01

LDL-c (mg/dL) 108 ± 31 91 ± 14 ns

HDL-c (mg/dL) 68 ± 9 42 ± 8 P< 0.0001

Total cholesterol (mg/dL) 190 ± 34 158 ± 18 P< 0.05
fro
The study cohort included 14 controls and 13 patients with severe obesity undergoing
bariatric surgery (all women). BMI, body mass index; HbA1c, glycated hemoglobin, HOMA–
IR, homeostatic model of insulin resistance; LDL-c, low-density lipoprotein cholesterol; HDL-
c, high-density lipoprotein cholesterol. Differences between controls and patients with severe
obesity were assessed using Student’s t-test (normally-distributed) or Mann-Whitney test
(nonnormally-distributed) for unpaired data. Normality was checked using the Shapiro–Wilk
test. ns, not statistically significant, controls vs. patients with severe obesity.
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2.3 Adipose tissue collection and RNA
isolation and processing

Fresh WAT samples collected during surgeries were transferred

to liquid nitrogen and then frozen at –80° C. Total RNA was

extracted from whole adipose samples using a standard column-

affinity-based methodology (NucleoSpin RNA II; Macherey-Nagel).

Next, 500 ng of total RNA was retrotranscribed into cDNA using

random hexamer primers and Multiscribe reverse transcriptase

(TaqMan reverse transcription reagents, ThermoFisher Scientific)

according to the manufacturer ’s instructions. Platinum

Quanti tat ive PCR SuperMix-UDG with ROX reagent

(ThemoFisher Scientific) was used as the master mix reagent and

the expression levels of each gene of interest were assessed using

specific TaqMan probes Hs00913644_m1 for IL-16 and

Hs04194521_s1 for the housekeeping Ppia gene (ThermoFisher).

Gene expression was calculated using the 2-DDCt method.
2.4 Cell culture experiments

All procedures in the cell culture room were performed under a

laminar flow hood. Cells were grown at 37°C with an atmosphere of

95% air, 5% CO2. All reagents used during cell culture procedures

were heated to 37°C in a water bath before use.

The 3T3-L1 murine preadipocyte cell line (CL-173, ATCC) was

used between passages 13 and 15.

To obtain mature adipocytes, 3T3L1 preadipocytes were plated

into 12-well plates and grown to 100% confluency, with the growth

medium being replaced every other day. Two days after 100%

confluency was reached, an induction medium was added (day 0 of

induction for the differentiation period), and cells were incubated for

48 h (day 2 of the differentiation period). The induction medium was

then changed for a differentiation medium (Supplementary Table S1),

and cells were incubated for an additional 48 h (day 4 of the

differentiation period). The differentiation medium was then changed

to a maintenance medium (Supplementary Table S1) until the cells

acquired a mature adipocyte phenotype (day 9 of the differentiation

period). IL-16 treatment was performed using recombinant mouse IL-

16 protein (Invitrogen, RP-8610) at a concentration of 1 or 10 ng/mL

during 3T3-L1 differentiation to evaluate the effect of this cytokine

during in vitro adipogenesis. Differentiated adipocytes were treated for

24 h with the same concentrations of IL-16.

Fatty acid (FA) treatment: Sodium palmitate (Sigma-Aldrich,

P9767) was conjugated with FA-free BSA at a 5:1 ratio (21). Mature

adipocytes were incubated with 1 mM of this solution for 24 h. The

control group was incubated with 0.1% BSA.

Free glycerol was measured using a Serum Triglyceride

Determination Kit (Catalog Number TR0100, Sigma-Aldrich, USA).
2.5 Oil red O staining of 3T3-
L1 preadipocytes

Lipid accumulation was evaluated in 3T3-L1 cells by staining

with Oil Red O (Sigma Aldrich, O0625). The stock solution was
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prepared by adding 300 mg of Oil Red O powder (Sigma Aldrich,

O0625) to 100 ml of 2-propanol (Alfa Aesar, 36644). The solution

was protected from light and stirred overnight. The final solution

was filtered through Whatman paper to remove dye precipitates.

Oil Red O working solution was prepared by mixing three parts of

the Oil Red O stock solution with two parts of distilled water,

incubated for 10 minutes at room temperature protected from light,

and filtered through a syringe filter unit (Merck, SLHV033RB).

Plated cells were carefully washed once with PBS, avoiding

disruption of the cell monolayer. Next, cells were fixed with

500 mL of 4% paraformaldehyde (Sigma-Aldrich, 47608)

diluted in PBS, and incubated for 30 min at room temperature.

Once the cell monolayer was fixed, it was washed twice with

distilled water and then incubated for 5 min with 500 mL of

60% isopropanol. Next, 500 mL of Oil Red O working solution

was added and incubated for 15 min to stain intracellular lipids. The

staining solution was removed and the cell monolayer was washed

three times with distilled water. The cell monolayer was

photographed using a microscope (Leica DM IL LED, Leica

Biosystems) to assess the lipid vesicles in mature adipocytes.

Staining was quantified by extracting the stain with 1 mL of 100%

isopropanol, and 200 mL of this solution was placed in a 96-well

plate (Greiner Bio-one, 655101) to measure the absorbance at 492

nm using a Varioskan LUX Multimode Microplate Reader

(Thermo Scientific).
2.6 Cell RNA extraction and quantification

RNA was extracted from cultured cells using Trizol™ reagent

(Invitrogen, 15596026) according to the manufacturer ’s

instructions. RNA was precipitated using GlycoBlue®
(ThermoFisher, AM9515) in the isopropanol step. Samples were

then left overnight at -20°C and were processed the following day

according to the manufacturer’s protocol. The RNA pellet was

resuspended in 30 µL of nuclease-free water and quantified with

Nanodrop. Next, 1 µg of total RNA was retrotranscribed using M-

MLV reverse transcriptase (Invitrogen, 28025-0113) according to

the manufacturer’s instructions. A LightCycler 480 SYBR Green I

Master (Roche, 4887352001) was used as the master mix reagent,

and expression levels of the genes of interest were assessed using

specific primers (Supplementary Table S2). Gene expression was

calculated using the 2-DDCt method, with Ppia as the housekeeping

gene, and expressed as arbitrary units.
2.7 Statistical analysis

A public database generated by our laboratory (GEO repository:

GSE236145) containing RNAseq from human WAT-infiltrated T

cells was used to decipher the potentially relevant role of IL-16 in

pathways related to immunometabolism in obesity. Once this

function was identified, additional statistical data analyses beyond

these bioinformatic procedures were conducted using GraphPad

Prism 7.01 (GraphPad Software, Inc., La Jolla, CA, USA) and IBM

SPSS 25.0 (IBM, Armond, NY, USA). Data distribution within
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groups was analyzed using the Shapiro–Wilk test, while the

presence of outliers was determined using Tukey’s rule. If data

showed a normal distribution, a Student’s t-test was performed to

assess comparisons between two groups, otherwise, a Mann–

Whitney test was used. For comparison between more than two

groups, a one-way ANOVA test was applied in the case of one

independent variable, and two-way ANOVA when more than two

independent variables were considered, followed by uncorrected

Fisher’s least significant difference (LSD). Likewise, correlations

between the expression levels of IL-16 and selected genes were

conducted using Pearson’s (normally distributed data) or

Spearman’s (non-normally distributed data) correlations. The

statistical significance threshold for all analyses was established at

the two-tailed 5% level (P< 0.05).
3 Results

3.1 IL-16 expression was highest in vWAT
from individuals with obesity and was
related to inflammatory pathways and
serum IL-16 levels were modulated after
bariatric surgery

Individuals with severe obesity showed a higher weight, body

mass index (BMI), % hemoglobin A1c, and elevated levels of

triglycerides. On the other hand, patients with obesity had lower

total cholesterol and HDL-cholesterol concentrations compared

with the control group of normal-weight individuals. This

suggests that they exhibited obesity-associated metabolic

disarray beyond an increase in adiposity (Table 1). IL-16

expression was evaluated in vWAT and sWAT from both groups,

finding that IL-16 expression was increased in vWAT from

individuals with obesity compared with sWAT and vWAT from

normal-weight individuals (P< 0.0001) (Figure 1). Higher serum

levels of IL-16 were observed in patients with obesity compared

with normal-weight individuals, with an increase 6 months after

bariatric surgery that is reverted 12 months after the intervention

(Supplementary Figure S1).
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3.2 IL-16 gene expression was related to
inflammatory and immune cell
activation pathways

Public database analysis from our laboratory (GEO repository:

GSE236145) showed that IL-16 is associated with inflammatory

processes, including regulation of cell activation, immune

system process, adaptive immune response, and regulation of

response to stimulus (Figure 2). This analysis indicated an

association between IL-16 and cell adhesion-positive processes

and cell communication (Figure 2).
3.3 IL-16 altered adipogenesis, fibrosis, and
glucose and lipid metabolism during 3T3-
L1 differentiation

In vitro experiments were performed using 3T3-L1

preadipocytes to evaluate the effect of IL-16 on adipocyte

differentiation and the modulation of key markers involved in

adipocyte biology. First, 3T3-L1 cell differentiation was evaluated

by measuring the accumulation of intracellular lipid droplets and

the mRNA expression of adipocyte differentiation markers

(Supplementary Figure S2). An increase in intracellular lipid

droplets at day 7 and elevated levels of genes involved in fat

storage, such as Perilipin 1 (Plin1) and the adipocyte fatty acid

binding protein (Fabp4), was observed (P< 0.01). Moreover,

markers of adipogenesis, such as adiponectin (AdipoQ) and

peroxisome proliferator-activated receptor gamma (Pparg), also

increased their expression at day 7 (P< 0.01) (Supplementary

Figure S2).

Then, 1 or 10 ng/mL of IL-16 was added to the cells to evaluate

the effects on adipocyte differentiation in vitro. The results showed

that IL-16 did not affect the lipid accumulation profile during

preadipocyte differentiation (Figure 3A). While no changes were

seen in AdipoQ mRNA expression, incubation with IL-16 induced

an increase in Pref1 expression at day 12, independent of the

concentration (1 or 10 ng/mL of recombinant IL-16, P<

0.0001) (Figure 3B).
FIGURE 1

Gene expression of IL-16 in vWAT and sWAT from individuals with normal weight or obesity (n = 25). Data represent mean ± SEM. Data were
analyzed using one-way ANOVA followed by uncorrected Fisher’s least significant difference (LSD). Different letters indicate statistically significant
differences at P< 0.05 within each compared group. Gene expression was assessed using specific TaqMan probes Hs00913644_m1 for IL-16 and
Hs04194521_s1 for the housekeeping Ppia gene. Gene expression was calculated using the 2-DDCt method. *p<0.05, ****p<0.0001.
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3.4 IL-16 altered inflammation, glucose
and lipid metabolism, and remodeling in
mature 3T3-L1 adipocytes

The effect of IL-16 on inflammation, glucose and lipid

metabolism, and remodeling, given their involvement in WAT

during obesity, was analyzed.

In terms of inflammation, Il6 gene expression decreased in

response to 10 ng/mL IL-16 (P< 0.05), while Tnfa and Ccl2 showed

no response to any of the administered doses (Figure 4A).

The expression of genes associated with lipid and glucose

metabolism (Plin1, Cd36, and Glut4) was studied, finding that

incubation with 10 ng/mL of IL-16 decreased mRNA expression

levels of Plin1 (P< 0.01), Cd36 (P< 0.001), and Glut4 (P<

0.01) (Figure 4B).

Finally, incubation with 10 ng/mL of IL-16 decreased the

mRNA expression of Hif1a (P< 0.0001), Col4a (P< 0.01), and

Col6a (P< 0.0001) (Figure 4C); additionally, both 1 and 10 ng/mL

of IL-16 reduced the expression of Vegf (P< 0.0001) (Figure 4C).

Furthermore, increased expression of the metalloproteinase Mmp9

and decreased expression of its inhibitor Timp1 (P< 0.0001) were

found (Figure 4C; Supplementary Figure S3).
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3.5 IL-16 treatment blunted palmitate-
induced lipid accumulation, lipolysis, and
altered inflammation in mature 3T3-
L1 adipocytes

Individuals with obesity are reported to have high levels of

circulating free fatty acids (FFAs), the molecules most associated

with obesity and the development of co-morbidities (22). Palmitate

(C16:0) is frequently used in in vitro models to enhance adipocyte

differentiation and hypertrophy of the mature phenotype (23–25).

On day 7, cells were treated with 1 mM palmitate conjugated to BSA

for 24 h, according to previous protocols established in our

laboratory (21). To corroborate the effect of this treatment, the

mRNA expression of different inflammatory markers was measured

(Supplementary Figure S3). As expected, palmitate treatment

promoted an inflammatory pattern, increasing the expression of

Tgfb, Ccl2, and Il6 (Supplementary Figure S4). Next, lipid

accumulation and lipolysis were evaluated using Oil red

O staining and measurement of secreted glycerol, respectively

(Figure 5). Palmitate treatment of mature adipocytes

increased both lipid accumulation and glycerol release (P<

0.0001) (Figure 5A).
A

B

FIGURE 2

Pathways enriched in genes that correlate with IL16. (A) Genes positively correlated with IL16. (B) Identification of the main cell identity of genes
correlated with IL16.
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Mature adipocytes were co-treated with palmitate (1 mM) and

IL-16 at concentrations of 1 or 10 ng/mL IL-16 for 24 h to study the

impact of IL-16 in the context of obesity. Cells without IL-16

treatment (with and without palmitate) served as controls. The

administration of 10 ng/mL IL-16 mitigated the palmitate-induced

increase in both lipid accumulation and lipolysis (P< 0.05, P< 0.01,

P< 0.0001) (Figure 5B).

Regarding inflammation, IL-16, together with palmitate, exerted

a synergistic effect enhancing the increase in inflammatory markers

Ccl2 and Il6 (P< 0.05, P< 0.01, P< 0.001, P< 0.0001) (Figure 5C). IL-

16 treatment at both doses (1 and 10 ng/mL) did not prevent the

reduction in Plin1, Cd36, and Glut4 caused by palmitate

treatment (Figure 5D).
4 Discussion

Individuals with overweight are reported to have higher IL-16

plasma levels compared with normal-weight individuals; IL-16

levels correlate with body weight, BMI, and waist circumference

(26). Additionally, non-obese mice genetically prone to diabetes are

protected from developing diabetes when treated with an IL-16

neutralizing antibody (27). In this study, our objective was to

elucidate the significance of IL-16 in the context of obesity by

examining its levels in a human cohort of patients with obesity and

assessing its effect on adipocyte biology. In our cohort, IL-16

expression was increased in vWAT from individuals with obesity

compared with sWAT from individuals with obesity and vWAT

and sWAT from normal-weight individuals (Figure 1); similarly,

obese animal models presented higher levels of IL-16 than lean

controls (28). These results suggest that inflammation and

lipotoxicity could induce IL-16 secretion in vWAT. Unexpectedly,

serum IL-16 levels were increased 6 months after bariatric surgery
Frontiers in Endocrinology 06
and then decreased after 12 months to levels similar to those before

the surgery. Metabolic surgery has been described to improve

systemic glucose and lipid homeostasis (29), however,

adipose tissue biology after surgery is still not fully understood.

Some metabolic adaptation related to calorie restriction after

surgery could be involved in this IL-16 modulation and

inflammatory signaling.

vWAT has been linked to an increase in metabolic risk factors

(30–32); therefore, identifying novel candidates involved in the

adipocyte and immune cell crosstalk that promote metabolic

dysregulation would be a turning point in obesity treatment.

Our in vitro study showed that adding recombinant IL-16 to

undifferentiated 3T3-L1 cells increased Pref1 expression, suggesting

potential adipogenesis impairment. This effect seems to be

concentration-independent and was not accompanied by a

reduction in AdipoQ expression or lipid accumulation.

An impaired adipogenesis capacity and reduced fibrotic

signaling in WAT leads to altered lipolysis (33–35), which

contributes to the development of metabolic disturbances (36,

37). Lipolysis is regulated by the MAPK/ERK (MEK)1/2 and

ERK1/2 pathways (38) and can be activated by Pref1 (39), leading

to the downregulation of perilipins (40). It is tempting to think that

IL-16 could play a role in adipogenesis in obesity to promote

fibrosis and alter lipid storage in adipocytes.

Next, inflammation in mature adipocytes was examined; IL-16

treatment showed a tendency toward reduced Tnfa expression.

TNFa is a proinflammatory cytokine whose expression correlates

with adiposity in humans and promotes lipolysis in WAT (41).

Moreover, a significant reduction in Il6 was also observed after

treatment with 10 ng/mL of IL-16. Il6 expression was reported to

decrease without changes in macrophage infiltration during weight

loss (42). Furthermore, IL6 is regulated by Tnfa, and its expression

regulates the activity of lipoprotein lipase (43). This observation
A

B

FIGURE 3

Lipid accumulation and mRNA gene expression in 3T3-L1 cells differentiated in the presence of 1 or 10 ng/mL IL-16. (A) Effect of IL-16 on lipid
accumulation during adipogenesis (Oil red O staining). (B) Effect of IL-16 on the expression of differentiation markers (Pref1 and AdipoQ). Data are
represented as relative mRNA levels (arbitrary units (A.U.)), relative to day 0 of differentiation (#p<0,05), and expressed as mean±SEM; n=4. Data
were analyzed by one-way ANOVA followed by uncorrected Fisher LSD to compared treatments at the same time. *p<0.05, ****p<0.0001.
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could be related to a potential effect of IL-16 in inflammatory

signaling when inflammation is established, aiming to reduce it and

balance the metabolic state.

In terms of lipid and glucose metabolism, the addition of IL-16

produced a reduction in Plin1 and Cd36 gene expression, which

showed significant results at the dose of 10 ng/mL; reduced Plin1

expression has been linked to an increased proinflammatory

response in WAT from lean mice. Thus, this lipid droplet-

binding protein helps to maintain metabolic homeostasis (44),

and similarly, adipocyte Cd36 plays a metabolically protective role
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(45, 46). Finally, 10 ng/mL IL-16 decreased the expression of the

cytokine Glut4, suggesting a role in glucose metabolism signaling by

impairing glucose uptake.

Taken together, our results indicate that IL-16 may be involved

in inflammation, lipid accumulation, and altered glucose signaling,

contributing to the development of metabolic diseases.

Subsequently, markers of hypoxia, fibrosis, and WAT

remodeling were evaluated; surprisingly, a decrease in Hif1a and

Vegf expression was observed. HIF1a is a transcription factor that

contributes to chronic inflammation in obesity (47, 48), and its
A

B

C

FIGURE 4

Gene expression in mature 3T3-L1 adipocytes in the presence of 1 or 10 ng/mL IL-16. (A) Effect of IL-16 on inflammatory markers (Ccl2, Tnfa, and
Il6). (B) Effect of IL-16 on genes related to lipid and glucose metabolism (Cd36, Plin1, and Glut4). (C) Effect of IL-16 on remodeling markers (Hif1a,
Vegf, Col4a, Col6a, Mmp9, and Timp1). Data represent relative mRNA levels (A.U.) and are expressed as mean ± SEM (n = 8/group). Data were
analyzed by one-way ANOVA followed by uncorrected Fisher’s LSD, *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.
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inhibition in adipocytes leads to reduced fibrosis and inflammation

in cell and animal models (49). Moreover, Vegf overexpression

protects against diet-induced obesity and insulin resistance (50),

also, the effect of enhancing VEGF levels on adipose tissue

vasculature and the ensuing metabolic phenotypes was reported

by AlZaim et al. (51). Thus, a reduction in Vegf could be linked to

the establishment of obesity and insulin resistance. Therefore, it is

tempting to think that IL-16 could be promoting the reduction of

Hif1a, which causes a decrease in Vegf in the context of altered

adipose tissue remodeling in obesity. Since changes in genes

associated with extracellular matrix (ECM) remodeling were

observed, we decided to evaluate the expression of Mmp9 and its

inhibitor, Timp1. IL-16 enhanced Mmp9 and decreased Timp1

expression, increasing the Mmp9/Timp1 ratio, suggesting that IL-

16 could inhibit hypoxia but increase ECM remodeling in WAT.

Adipocytes were treated with 1 mM palmitate to mimic obesity

in vitro. Palmitate was found to increase the expression of

proinflammatory genes, as previously described in the literature

(25, 52–55), and promote lipid accumulation and lipolysis. Next,

the concomitant effect of adding palmitate and IL-16 was evaluated.

The addition of 10 ng/mL IL-16 blunted palmitate-induced lipid

accumulation and glycerol release, suggesting that IL-16 may impair

lipolysis, leading to adipocyte hypertrophy in an obesity context.

Surprisingly, IL-16 also promoted the expression of Ccl2 and Il6 in

palmitate-treated adipocytes. Ccl2 is an important factor that promotes

macrophage infiltration and lipid transportation in sWAT in animal
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models (56, 57). On the other hand, in adipocytes, IL-6 induces the

release of FFAs and leptin and blunts obesity-associated metabolic

complications (58). These data may indicate that IL-16 plays a role in

early inflammatory signaling in WAT yet could promote chronic

inflammation, leading to altered systemic metabolism.

The evaluation of the effects of IL-16 on lipid and glucose

metabolism showed that IL-16 treatment could not fully prevent the

reduction in Plin1 and Cd36 caused by palmitate; however, adding

10 ng/ml of IL-16 blunted the palmitate-induced decrease in Glut4

gene expression. These results support the hypothesis that IL-16

may be involved in lipid and glucose metabolism in obesity.
5 Limitations

Our work has several limitations. First, as no specific IL-16

receptor is known in adipocytes, it cannot be concluded that the

effects of recombinant IL-16 are due to direct signaling. Second, the

lack of an in vivo model targeting IL-16 makes it difficult to

postulate the potential role of IL-16 in systemic metabolism.

Third, there was an insufficient number of human WAT samples

from biopsies to measure IL-16 protein levels by western blotting.

Fourth, owing to the relatively low number of patients with

complete clinical data (all women, see Table 1), significant

correlations were not reported nor could the study be split

by gender.
A

B

DC

FIGURE 5

Lipid accumulation, lipolysis, and gene expression in mature 3T3-L1 adipocytes. (A) Hypertrophic and lipolytic effects of palmitate treatment on
mature adipocytes. Mature 3T3-L1 adipocytes were treated for 24 h with palmitate and lipid accumulation and glycerol secretion were measured.
Data represent mean ± SEM (n = 4/group). (B) Hypertrophic and lipolytic effects of IL-16 in an obesity context. Mature adipocytes were treated for
24 h with palmitate and IL-16 and lipid accumulation and glycerol secretion were measured. (C) Effect of IL-16 on inflammatory markers in
palmitate-treated adipocytes (Ccl2 and Il6). Mature 3T3-L1 adipocytes were treated simultaneously with palmitate and increasing doses of IL-16.
Data represent mRNA levels (A.U.) relative to the control group and expressed as mean ± SEM (n = 4/group). (D) Effect of IL-16 on genes related to
lipid and glucose metabolism (Plin1, Cd36, and Glut4). Mature 3T3L1 adipocytes were co-treated with palmitate and increasing doses of IL-16. Data
represent mRNA levels (A.U.) relative to the control group and expressed as mean ± SEM (n = 4/group). Data were analyzed by two-way ANOVA
followed by uncorrected Fisher’s LSD, *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.
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6 Conclusion

In conclusion, our results demonstrate that IL-16 is induced in

obesity, suggesting its involvement in adipogenesis and cellular

homeostasis. This would imply that IL-16 might play a crucial role

in maintaining proper adipocyte biology in the context of obesity.

Future studies should explore in vivo approaches to further evaluate

the role of IL-16 in adipose tissue biology in obesity.
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