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The development of chimeric antigen receptor (CAR) T-cells, engineered from peripheral T-lymphocytes of a patient with
lymphoma, in order to specifically target tumor cells, has been a revolution in adoptive cell therapy (ACT). As outlined in this review,
ACT was initiated by hematopoietic cell transplantation (HSCT) and re-injection of interleukin-boosted tumor-infiltrating
lymphocytes (TIL). The innovative venture of genetically modifying autologous peripheral T-cells to target them to cell-surface
tumoral antigens through an antibody-derived structure (i.e. independent of major histocompatibility antigen presentation,
physiologically necessary for T-cell activation), and intracytoplasmic T-cell costimulatory peptides, via a novel membrane CAR, has
been an outstanding breakthrough. Here, focusing on B-cell hematological malignancies and mostly non-Hodgkin lymphoma,
attention is brought to the importance of providing an optimal microenvironment for such therapeutic cells to proliferate and
positively develop anti-tumoral cytotoxicity. This, perhaps paradoxically, implies a pre-infusion step of deep lymphopenia and
deregulation of immunosuppressive mechanisms enhanced by tumoral cells. Fludarabine and cyclophosphamide appear to be the
most efficient lymphodepletive drugs in this context, dosage being of importance, as will be illustrated by a thorough literature
review.

Bone Marrow Transplantation (2025) 60:559–567; https://doi.org/10.1038/s41409-025-02539-9

INTRODUCTION
Chimeric antigen receptor T-cell (CAR-T) immunotherapy is a form
of adoptive cell therapy (ACT) consisting of genetically engineered
T-lymphocytes recognizing specific surface targets of tumor cells.
This target is usually CD19 for the treatment of B-lineage non-
Hodgkin lymphomas (NHL). Peripheral T-lymphocytes are col-
lected from the patient, transfected with a CAR construction,
expanded ex-vivo, conditioned and reinfused.
Autologous CAR-T therapy, used in Europe since June 2018, is

standard-of-care treatment for refractory and/or relapsed (R/R)
B-cell NHL (B-NHL). Up to the summer of 2024, four FDA-approved
CAR-T (tisagenlecleucel, [tisa-cel] Kymriah®, axicabtagene ciloleu-
cel, [axi-cel] Yescarta®, brexucabtagene autoleucel, [brexu-cel]
Tecartus® and lisocabtagene maraleucel, [liso-cel] Breyanzi®) have
been developed in this context. They are reinfused in clinical
practice after lymphodepletion (LD) with fludarabine and cyclo-
phosphamide (FluCy) as recommended [1–6].
Although CAR-T represent a major advance in R/R B-NHL [1–3,

5, 7], less than half the patients have durable responses
[2–5, 8–13]. CAR-T resistance is influenced by the construction
and doses of CAR-T [3, 8, 14], high tumor volume [4, 11, 15] and
tumoral intrinsic factors such as antigen loss, immune dysregula-
tion and T-cell exhaustion [16–18], as well as by LD chemotherapy
[19, 20]. The latter facilitates CAR-T engraftment, expansion, and
persistence [21]. The response and durability of CAR-T therapy in

B-NHL CAR-T is conditioned by CAR-T expansion kinetics (peak
and first month area under the curve [AUC]) [2, 3, 22]. Many LD
regimens have been tested, but FluCy is the most used, owing to
its demonstrated superiority [3, 23].
The aim of this review is to present available clinical data on LD,

its impact on ATC therapies, and outcomes in hematological
malignancies, with a focus on NHL.

ACT HISTORICAL BACKGROUND
ACT use cells of the immune system to target and eliminate tumor
cells. This began with hematopoietic stem cell (HSC) transplanta-
tion (HSCT), followed by the reinfusion of tumor-infiltrating
lymphocytes (TIL) and, later, CAR-T. The first transfer of HSC from
a donor to a patient occurred in 1950, and the first allogenic HSCT
(allo-HSCT) was performed in 1957 [24]. TIL were developed in the
1980’s and CAR-T two decades later.
The term “conditioning” for LD designates in HSCT the

preparative regimen administered before HSC infusion. It aims at
providing immunosuppression, favoring engraftment and redu-
cing the risk of graft rejection by the recipient immune system.
Initially, conditioning regimens were myeloablative, involving total
body irradiation and Cy. This provided a potent anti-cancer effect
and optimal engraftment, yet was associated to significant toxicity
(83% mortality by day 100) [24, 25].
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In 1983 [26] the introduction of busulfan and Cy allowed to
alleviate toxicity, yet induced prolonged cytopenias, restricting
HSCT to younger/fit patients. A shift occurred towards non-
myeloablative or reduced-intensity regimens [27], using Flu and
lower doses of alkylating agents [28]. Moreover, an optimal Flu
exposure (AUC 20mg*h/L), is a strong predictor of both non-
relapse mortality and survival after allo-HSCT for hematological
malignancies [29].
ACT using T-lymphocytes was found effective in murine models

of nude rats [30], lacking a thymus and hence T-cells. Moreover, it
was shown in murine models of cancers that LD (irradiation) prior
to T-cell infusion favored their expansion and anti-tumor efficacy
[31]. In the absence of LD, infused T-cells declined rapidly and
failed to produce a response [31]. Moreover, these models showed
that more effector T-cells were needed in the absence of LD,
confirming the role of LD in curative T-cell expansion [31].
Initial studies using LD in TIL therapy were conducted in

metastatic melanoma [32] where, without LD, responses were of
short duration [33]. Yet Cy alone was not potent enough [33],
while FluCy provided better and longer responses [34], after
transient LD.
Although the doses and duration of FluCy varied between trials,

it became clear that profound immune depletion was necessary to
enhance the efficacy of TIL in solid cancer [33].

LYMPHODEPLETION FOR AUTOLOGOUS CAR-T IN NHL
Clinical application of CAR-T was not fully developed until the late
2010’s with tisa-cel approved by 2017 for acute lymphoblastic
leukemia (ALL) [35]. In the field of R/R diffuse large B-cell
lymphoma (DLBCL), the phase II JULIET (Table 1) trial administered
tisa-cel, after various LD regimens of FluCy or bendamustine,
recommended in case of Cy-related grade 4 hemorrhagic cystitis
or demonstrated previous resistance to Cy [36]. LD was not
required in case of leukopenia (1 × 109/L) in the week prior to
infusion. Response rates were similar with FluCy or bendamustine,
but FluCy allowed for a higher overall response rate (ORR; 57,6%
versus 40,9%), 1-year progression-free (PFS; 39,1% vs 21,2%.) and
better overall (OS) survival. Only 2/8 patients who did not receive
LD achieved a response [3, 36].
As shown in Table 1, FluCy at slightly different dosages was

used with axi-cel in ZUMA-1, with tisa-cell in JULIET and ELARA,
with liso-cel in TRANSCEND and with brexu-cel in ZUMA-2 [2,
3, 6, 36–39], in various types of NHL.

EFFECTS OF LYMPHODEPLETION ON HOST AND TUMOR CELLS
(FIG. 1)
Endogenous host cells can impact the functionality of ACT by
competing for homeostatic and activating cytokines or exerting
an immunosuppressive activity. Indeed, successful ACT relies on
the differentiation of infused T-cells into functional, long-lived
memory cells, facilitated by interleukin (IL)-7, IL-12 and IL-15
through the JAK-STAT pathway [40–42], the levels of which
are increased by LD. The removal of regulatory T-cells (Tregs),
that would tamper these activities is one of the key mechanisms
of LD.
At the tumoral level, LD downregulates the expression of

indoleamine 2,3-dioxygenase (IDO) [43], an intracellular enzyme
metabolizing tryptophan in derivates inhibiting T-cell activity and
cytokine production. CAR-T therapy indeed showed no efficacy in
a xenograft murine model of IDO-positive NHL cells [44, 45].
LD, particularly with low Cy doses, induces the conversion of

suppressive tumor-promoting M2 macrophages into M1 pro-
inflammatory and antigen-presenting cells (APC). LD positively
influences the production of oxygen radicals through innate
immunity [46].

LD activates dendritic cells (DCs), the most potent professional
APCs [40, 47], notably liver and spleen DCs during the early phase
of lymphopenia. DCs maturation is crucial for them to participate
to anti-tumoral immunity. It is triggered, via Toll-like or other
receptors by the uric acid issued tumor cell apoptosis [40] and by
translocation of the microbiota upon LD-induced damages to
mucosal barriers.
A less positive effect of LD, although controversial, is that they

could increase the levels of myeloid-derived suppressor cells
(MDSCs), liable to impair CAR-T efficacy, through mobilization of
hematopoietic progenitor cells from the bone marrow
[16, 20, 43, 48, 49].

EFFECT OF LYMPHODEPLETION ON CAR-T KINETICS
LD significantly impacts the expansion of CAR-T (i.e. peak level and
persistence), higher peaks/AUC being associated with better PFS
and OS [50, 51], notably through higher levels of LD-induced IL-15
[49]. In the same line, high baseline cytokine levels correlate with
those after LD and CAR-T peak [16]. Moreover, CAR-T express high
levels of receptors for key homeostatic cytokines, providing them
with an advantage over other cell types [41]. Compared to no LD,
Flu-based LD was shown to positively impact the kinetics of tisa-
cel in DLBCL [19]. In a retrospective study of axi-cel [52], strong
expanders had more objective ORR at day30 (91% vs. 40%) and
better PFS. Similarly, after liso-cel, higher CAR-T expansion resulted
in better overall response and CR rate [37, 53].
The next chapter examines the impact of drug type and

dosages used for LD.

LYMPHODEPLETION REGIMENS AND CD19-AUTOLOGOUS
CAR-T IN HEMATOLOGICAL MALIGNANCIES
High dose cyclophosphamide
Several studies, primarily in ALL, have demonstrated the
advantage of using high doses of Cy [54, 55]. Comparing CAR-T
therapy in patients with R/R chronic lymphocytic leukemia (CLL) or
ALL [54], split in two cohorts respectively without LD or with Cy
alone, it was shown that peripheral CAR-T were respectively
undetectable at 1 month vs. still detected at 5 weeks. Cy moreover
provided a longer B-cell aplasia (BCA), a good sign of CAR-T
efficacy. Another trial in R/R ALL using Cy at two doses (1.5 or
3.0 g/m2) [55] found a better lymphodepletion after 3 g/m² Cy,
followed by a higher peak of CAR-T in responders (13 days vs 1).
This highlights the importance of achieving a profound lympho-
depletion and high post-infusion CAR-T peak, in patients with
minimal pre-treatment disease burden, in order to achieve clinical
response and longer OS [55, 56].

Addition of fludarabine improves CAR-T KINETICS and
response. (Table 1)
Although the first CAR-T LD with FluCy in NHL occurred in 2010
[57], protocols only began to incorporate Flu in conditioning for
hematological malignancies from 2016 on, owing to the report of
improved CAR-T expansion after Flu-based LD [57, 58].
In a phase I clinical trial in ALL [14], FluCy, Cy alone, or

etoposide-based LD were used, showing 100% engraftment after
FluCy, i.e. detectable peripheral CAR-T, development of BCA and
MRD-negative remission, with a median time to peak of 10 days.
The peak and AUC were significantly higher after FluCy compared
to Cy alone or etoposide, and BCA lasted longer (6,4 months
vs 2.1).
In a CLL trial [59], patients receiving Flu-based LD achieved the

lowest lymphocyte nadir and greatest peak expansion of CAR-T.
In a trial of liso-cel for B-NHL, FluCy conditioning was also

associated to greater CAR-T expansion, higher response rates (50%
CR, 72% ORR) and better PFS compared to Cy alone (8% CR, 50%
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ORR) [23]. Another trial with higher FluCy LD intensity in NHL
comparing two dosages of Cy [60] found that Cy 60mg/kg/d was
associated with a favorable cytokine profile correlating with better
PFS than Cy 30mg/kg/d. However, not all patients with high
intensity LD achieved such a favorable cytokine profile, indicating
that biological individual factors may be also determinant [60].
Using Flu 30 mg/m2 and 3 daily doses of Cy 300mg/m2 in a phase
I first-in-human trial in NHL, yielded an ORR of 70% [61]. Similar CR
rates were observed in ALL patients treated with Cy 3 g/m2 alone
as LD [62].
Flu is currently dosed based on body surface area and

administered IV as a monophosphate prodrug (F-ara-AMP),
converted to the circulating metabolite F-ara-A, mainly cleared
by the kidney. In ALL, fludarabine exposure is measured by an F-
ara-A assay [29], and correlates with leukemia-free survival, CAR-T
expansion and better duration of BCA [63]. These results were
confirmed in a retrospective real-world analysis of 152 patients
with ALL treated by tisa-cel [56], as well as in another with axi-cel
in NHL, where optimal Flu exposure correlated with improved PFS
[64].

Other agents than flucy
Shortage of Flu in the USA [65] has led to search alternative
regimens, bendamustine being a viable option [66, 67]. This
alkylating agent offers anti-lymphoma activity, potent lymphode-
pleting effects, and good tolerability [68]. Moreover, it is
metabolized in the liver and not excreted in the kidney, making
it appropriate for patients with impaired renal function [66].
A small study in CLL used pentostatin combined with Cy in five

patients, bendamustine alone in six, and FluCy in three, without
difference in response rates [69].
For tisa-cel, a retrospective multicenter comparison between

bendamustine and FluCy resulted in similar efficacy, with lower
rates of CRS, neurotoxicity, and hematological toxicity in the
bendamustine arm [67]. ORR and PFS were similar with 50% ORR
after bendamustine and 42.9% after FluCy. Median PFS were 3.26
and 3.06 months respectively. CRS of any grade were higher in the
FluCy group (66.7% versus 40%), without differences in severe
CRS. ICANS of any grade were present in 7.8% of patients with
bendamustine versus 21.4% for FluCy, severe in 1.1% vs. 9.5%.
There were respectively 15.6% and 50% of infections, possibly
related to grade 3 neutropenia (28.9% and 90.5%).
For axi-cel, with bendamustine vs FluCy, no differences were

seen in PFS and OS, yet there was a lower incidence of ICANS and
severe neutropenia with bendamustine [68, 70]. Lymphocyte
counts decreased of similar rates after LD. The best ORR/CR were
77.8%/48.1% with bendamustine and 81.0%/50.0% with FluCy. Six-
month PFS were 43.8% and 55.6% and 6-month OS 81.5% and
90.4%. Grade ≥3 CRS were observed in 3.7% vs. 4.8% of the
patients, grade ≥3 ICANS in 19% vs. 31% and grade ≥3
neutropenia in 68% vs. 100%, while grade 3 infections were
similar at 24% vs. 19% respectively [68]. This differs from data
obtained with axi-cel in another bendamustine vs. FluCy trial, that
reported more febrile neutropenia (13.6% vs. 78.4%) and
infections (27.3% vs. 78.4%) [70] with FluCy.
The role of the hypomethylating agent decitabine is currently

investigated in CAR-T therapy, with regard to the abnormal
hypermethylation in lymphoma. Under decitabine, there is an
increased expression of CD19, less T-cell exhaustion, more T-cell
activation and modification the tumor microenvironment [71].
Lymphoma cell-lines exposed to decitabine also increase CD19
expression and show no impairment of CAR-T efficacy [71]. Two
patients with NHL, conditioned with decitabine and FluCy,
achieved optimal responses [71].
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Clofarabine has also been used with Cy or bendamustine before
tisa-cel or ARI-0001 in pediatric ALL [72–74].

TOXICITY RELATED TO LYMPHODEPLETING REGIMENS
Cytopenias and subsequent infections are the most common
adverse effects of LD, causing an initial drop in leukocyte counts
within the first two weeks [74]. Hematology toxicity is an early and
long-lasting complication with a biphasic pattern [75] which may
require blood or platelet transfusions or the use of granulocyte-
colony stimulating factor (G-CSF) [50, 76–78]. Neutropenia is the
most common cytopenia (72%) after CAR-T, followed by
thrombopenia [79]. Early neutropenia is mostly related to LD
while persisting neutropenia beyond day 28 post infusion can be
related to the CAR-T construct, CRS or ICANS [79]. EBMT (European
group for bone marrow transplantation) recommendations con-
sider using prophylactic G-CSF in neutropenic patients from day
+5, although earlier use has no effect on immunotoxicity, CAR-T
expansion nor prognosis, yet reduces febrile neutropenia [77, 78].
High dose LD (Flu 125 mg/m2, Cy 60 to 120mg/kg) has been

reported to result in 67% of patients needing platelet transfusion
versus 1% after low-dose LD (Flu 90 mg/m2, Cy 300mg/m2) [68].
As reported above, bendamustine seems less toxic than FluCy
[67, 68, 70].
LD, while not being the main factor, might also influence CRS and

ICANS. FluCy conditioning has been correlated with the severity of
CRS [80]. For axi-cel in DLBCL and follicular lymphoma, any-grade CRS
occurred in 91.9% of the patients after FluCy vs. 72.7% after
bendamustine, and any-grade neurotoxicity in 45.9% vs18.2% [70].
Flu was initially thought to be related to the neurotoxicity of

CAR-T, as it may lead to reversible somnolence and peripheral
neuropathy at the time of infusion. However, the evidence to date
does not support a direct role for Flu in ICANS, although it could
be a contributing factor in case of impaired renal function [81].

LD IN OTHER CONTEXTS: ANTI-CD30, DUAL AND ALLOGENIC
CAR-T. (TABLE 2)
For the treatment of R/R Hodgkin lymphoma (HL) with anti-CD30
CAR-T, different regimens have been evaluated, mostly bend-
amustine alone, bendamustine and fludarabine or FluCy [82].
Although bendamustine is a potential therapy in R/R HL, it is
unlikely to enhance post-CAR-T responses. The combination of Flu
with bendamustine promoted a favorable homeostasis of IL-7 and
IL-15 compared with FluCy or bendamustine alone, leading to
higher antitumor activity and longer CAR-T persistence. However,
the 94% 1-year OS did not differ between these regimens [82]. In a
phase I trial for CD30-expressing NHL, FluCy allowed for a CAR-T
peak in some patients, but all progressed within 6 months, which
precluded further development [83].
Dual CAR-T directed to both CD19 and CD22 are under

investigation to overcome antigen escape. LD consists of
decitabine and FluCy and, so far, some transient grade 3/4
neutropenias have been observed [84].
Allogenic “off-the-shelf” CAR-T, currently used in clinical trials,

are generated from healthy donor T-cells. TRAC and CD52 genes
are inactivated using TALEN® gene editing to minimize the risk of
graft-versus-host disease and improve the compatibility and
persistence of CAR-T. For conditioning, alemtuzumab (anti-CD52)
may be added in some circumstances. In R/R ALL, UCART19 is
under phase I evaluation with a FluCy conditioning with or
without alemtuzumab [85]. In R/R aggressive DLBCL, a 3-day LD
with FluCy and alemtuzumab has been used [86]. Alemtuzumab
seems to be necessary in combination with FluCy before UCART19
[87] for positive IL-7 exposure and UCART19 kinetics, but higher
toxicities are expected [74]. In ALL, peripheral UCART19 was
detectable from D7, with peak expansion in 72% of the patients
between D10 and D17, and a median persistence duration of 28

days. No expansion was observed in 5/18 patients, 3 of whom did
not receive alemtuzumab. However, the definitive LD regimen and
its impact on UCART19 expansion are currently investigated [85].
Dual allogenic CAR-T against CD19 and CD22 (UCART20x22) are
also in phase I/IIa study in R/R NHL with FluCy and alemtuzumab
[88]. Preliminary results showed expansion in 3/3 patients with
initial detection on day 7 followed by peaks between days 9-14,
predominantly CD8+ [88].
Several studies stress the importance of administering LD

before each CAR-T infusion, if the procedure needs to be repeated
[89, 90]. Better responses have been observed in B-cell
malignancies if FluCy was administered before both CART1 and
CART2, although an increased dose of CART2 was also needed
[88]. In ALL, pre-CAR-T2 intensified LD yielded 71% responders
with higher CART2 expansion (yet lower than with CAR-T1) than
after standard LD [90].
Another approach is to use NKT-cells which are also potent

cytotoxic cells of the innate immune system [91]. In this context,
FluCy is being used. Preliminary results indicate responses at day
30 with high peaks [92].
Fourth generation CAR-T or TRUCKs :“T-cells redirected for

antigen-unrestricted cytokine-initiated killing” could avoid LD.
Indeed, tumor targeting and CAR-T activation and cytotoxicity is
completed by the transfection of cytokine genes yielding
endogenous production that self-promotes their survival, pro-
liferation and activation [93].

PERSPECTIVES
Many questions regarding LD and its future remain unanswered
and clinical randomized trials are needed. LD is nonetheless an
important factor that significantly affects CAR-T kinetics and
response with the goal of achieving the lowest lymphocyte nadir
and greatest peak expansion. Flu exposure seems to be a major
part of LD, easily modifiable. Moreover, the importance of a
personalized approach using PK-directed dosing, based on weight,
renal function and drug monitoring, has been stressed, to achieve
better outcomes with minimal toxicities [75, 82]. In terms of
toxicity, bendamustine appears interesting as LD with a favorable
profile, reducing treatment costs and hospitalization duration.
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