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The co-occurrence of insulin resistance (IR)-related metabolic conditions with neuropsychiatric disorders is a major public health
challenge. Evidence of the genetic links between these phenotypes is emerging, but little is currently known about the genomic
regions and biological functions that are involved. To address this, we performed Local Analysis of [co]Variant Association (LAVA)
using large-scale (N= 9,725–933,970) genome-wide association studies (GWASs) results for three IR-related conditions (type 2
diabetes mellitus, obesity, and metabolic syndrome) and nine neuropsychiatric disorders. Subsequently, positional and expression
quantitative trait locus (eQTL)-based gene mapping and downstream functional genomic analyses were performed on the
significant loci. Patterns of negative and positive local genetic correlations (|rg|= 0.21–1, pFDR < 0.05) were identified at 109 unique
genomic regions across all phenotype pairs. Local correlations emerged even in the absence of global genetic correlations between
IR-related conditions and Alzheimer’s disease, bipolar disorder, and Tourette’s syndrome. Genes mapped to the correlated regions
showed enrichment in biological pathways integral to immune-inflammatory function, vesicle trafficking, insulin signalling, oxygen
transport, and lipid metabolism. Colocalisation analyses further prioritised 10 genetically correlated regions for likely harbouring
shared causal variants, displaying high deleterious or regulatory potential. These variants were found within or in close proximity to
genes, such as SLC39A8 and HLA-DRB1, that can be targeted by supplements and already known drugs, including omega-3/6 fatty
acids, immunomodulatory, antihypertensive, and cholesterol-lowering drugs. Overall, our findings highlight the complex genetic
architecture of IR-neuropsychiatric multimorbidity, advocating for an integrated disease model and offering novel insights for
research and treatment strategies in this domain.
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INTRODUCTION
Multimorbidity, defined as the co-occurrence of multiple condi-
tions within an individual, poses substantial challenges to

healthcare systems [1]. An example is the observed co-
occurrence of insulin resistance (IR)-related metabolic conditions,
such as type 2 diabetes mellitus (T2DM), obesity, and metabolic
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syndrome (MetS), with neuropsychiatric disorders [2]. This multi-
morbidity contributes to more severe physical and mental health
outcomes, leading to reduced treatment effectiveness and higher
mortality rates [3–5]. Moreover, IR is associated with detrimental
effects on cognitive function, potentially worsening the cognitive
impairment observed in various neuropsychiatric disorders [6].
IR manifests as reduced tissue responsiveness to insulin

stimulation, primarily disrupting blood glucose homeostasis and
inducing long-term micro- and macrovascular complications, as
well as peripheral nervous system damage [7]. Such a metabolic
perturbation is a distinctive feature of T2DM, central obesity, and
MetS [7]. Emerging evidence suggests that IR shares aetiological
pathways with neuropsychiatric disorders, including Alzheimer’s
disease (AD), mood and psychotic disorders [8–10]. The connec-
tion between IR-related conditions and neuropsychiatric disorders
is supported by compelling epidemiological data [2, 11]. Indeed,
bidirectional phenotypic associations have been found between
these two nosological groups [2]. This evidence blurs the
boundaries between traditional disease categories, advocating
for a more integrated approach to research and clinical manage-
ment [4, 12]. Consequently, a deeper comprehension of the
mechanisms underlying this multimorbidity is essential.
Beyond shared environmental risk factors – including poor diet,

sedentary lifestyle, and disturbed sleep [13–15], which could also
be direct manifestations of psychopathology – shared genetic
components have been identified [8]. Both IR-related conditions
and neuropsychiatric disorders are highly heritable and polygenic
[16, 17], with heritability estimates, derived from twin and family
studies, ranging from 40 to 80% [18, 19]. Work by us and others
disclosed global genetic correlations between neuropsychiatric
disorders and IR-related conditions, indicative of shared genetic
bases [8, 10], though the effect directions were not consistent
across all phenotype pairs. Intriguingly, two clusters of neuropsy-
chiatric disorders were identified, wherein the genetics of IR-
related conditions showed opposite directions of genetic correla-
tion. The first included attention-deficit/hyperactivity disorder
(ADHD) and major depressive disorder (MDD), which showed
positive genetic correlations with IR-related conditions; the second
included obsessive-compulsive disorder (OCD), anorexia nervosa
(AN), and schizophrenia, which showed negative genetic correla-
tions with IR-related conditions [8]. Genetic covariance was also
highlighted within gene sets pertinent to insulin processing,
secretion, and signalling, suggesting that several neuropsychiatric
disorders could be reconceptualised as “insulinopathies” of the
brain [8]. Strikingly, certain neuropsychiatric disorders, such as AD
and bipolar disorder (BD), demonstrated no global genetic
correlations with IR-related conditions, despite previous literature
suggested a shared pathophysiology [8, 20]. However, global
genetic correlation only encapsulates the average direction of
genetic sharing across the genome, while the patterns of genetic
correlations at the level of individual genomic regions can vary
significantly [21]. Local genetic correlation can deviate from the
genome-wide average, and regions of strong, local genetic
correlation have been reported for multiple traits even in the
absence of genome-wide genetic correlation [21, 22]. Therefore,
the absence of genome-wide genetic correlations does not
necessarily exclude shared genetics in specific regions, suggesting
the importance to further study the possible genetic overlap
between conditions without global genetic correlation, such as AD
and IR-related traits [8]. Importantly, dissecting the local patterns
of genetic sharing could shed light on specific genetic factors
involved in IR-neuropsychiatric multimorbidity and new potential
therapeutic targets for both groups of conditions. Recent
advances in bioinformatics have facilitated a more detailed
exploration of the genetic overlap across distinct phenotypes.
Traditional global genetic correlation methods, like Linkage
Disequilibrium Score regression (LDSC), assess shared genetic
architecture between phenotypes across the entire genome [23]

but may fail in identifying phenotype pairs that share specific
genomic regions potentially without showing global genome-
wide genetic correlation [23]. Therefore, the utilisation of local
genetic correlation analyses may offer more granular insights into
shared genetic bases [22].
In this study, we aimed to dissect the genetic overlap between

three IR-related metabolic conditions – namely, obesity, T2DM,
and MetS - and nine psychiatric disorders by examining their
pairwise patterns of local genetic correlation throughout semi-
independent regions across the genome. Any shared genomic
region was further explored using positional and expression
quantitative trait locus (eQTL)-based gene mapping techniques.
This was followed by a functional annotation of the mapped
genes, enabling a deeper exploration of biological mechanisms
underlying IR-neuropsychiatric multimorbidity. Lastly, we investi-
gated the shared (likely) causal variants possibly driving the
pathophysiology of this multimorbidity.

MATERIALS AND METHODS
Input datasets
We leveraged publicly available summary statistics from the largest genome-
wide association studies (GWASs) on the three most prevalent IR-related
conditions, namely obesity, MetS, and T2DM (n= 244,890–933,970), and nine
neuropsychiatric disorders, including AD, ADHD, AN, autism spectrum
disorder (ASD), BD, MDD, OCD, schizophrenia, and Tourette’s syndrome
(TS) (n= 9,725–933,970). These neuropsychiatric disorders were chosen
because they are the best genetically characterised by the Psychiatric
Genomics Consortium [24]. Further details, including sample size of each
GWAS, are reported in Table 1. To maintain consistency in genetic data,
analyses were confined to individuals of European ancestry, employing the
human genome build GRCh37/hg19 as a reference. All statistical analyses
were performed using R v4.2.1 (2022-06-23).

Local genetic correlation analyses
We utilised the R package LAVA (Local Analysis of [co]Variant Association)
(https://github.com/josefin-werme/LAVA) to perform pairwise local genetic
correlation analyses between the three IR-related conditions and the nine
neuropsychiatric disorders [22]. Compared to traditional global correlation
analysis methods [23], LAVA estimates the genetic correlation at smaller
genomic loci, which provides a more fine-grained overview of the genetic
overlap between traits. In addition to providing insight into the potentially
heterogeneous nature of the shared association patterns across the
genome, LAVA allows identification of the regions from which the
pleiotropy is originating [22]. Further details regarding the LAVA analytical
steps are provided in the Supplementary information. Given the total
number of bivariate tests performed across all phenotype pairs, local
genetic correlations were deemed as statistically significant at a maximum
acceptable false discovery rate (FDR) of q= 0.05, following the approach of
Hindley, Frei [25].

Positional and eQTL gene mapping
The biomaRt R package (version 2.54.1) (https://doi.org/10.18129/
B9.bioc.biomaRt) [26] was used to annotate single-nucleotide polymorph-
isms (SNPs) within each genetically correlated region and positionally map
them to genes. We used the Ensembl database (release 109, GRCh37/hg19,
homo sapiens) as a reference for gene annotations. We defined filters to
specify the genomic regions of interest based on their location
(chromosome number, start and end positions).
For the eQTL-based gene mapping, the loci2path R package (version 1.3.1)

(https://doi.org/10.18129/B9.bioc.loci2path) [27] was used to identify eQTLs
within the genetically correlated regions that may influence gene expression
in 13 cortical, subcortical, and cerebellar brain regions (i.e., total brain cortex,
frontal cortex BA9, hippocampus, hypothalamus, amygdala, anterior
cingulate cortex BA24, caudate, nucleus accumbens, putamen, cervical
spinal cord, substantia nigra, cerebellar hemisphere, cerebellum). We
obtained the eQTL data from the Genotype-Tissue Expression (GTEx) project
(GTEx V8, GRCh38/hg38) (https://gtexportal.org/home/dataset) and restricted
our analysis to brain tissues due to their relevance to neuropsychiatric
disorders. Prior to the analysis, we lifted the eQTL coordinates to the GRCh37/
hg19 genomic build using the UCSC LiftOver tool (https://genome-
store.ucsc.edu) to align with the used GWAS summary statistics.
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Functional annotation of genetically correlated regions
Functional annotation analyses were conducted separately for each
phenotype pair where genetically correlated regions were found. We
employed the GENE2FUNC module within the Functional Mapping and
Annotation of Genome-Wide Association Studies (FUMA) platform [28],
using default parameters and multiple testing correction [28]. This
approach served to examine important properties of the mapped
genes, such as their tissue-specific and temporal expression profiles,
enrichment in predefined gene sets, potential as drug targets, and
previous trait/disease associations. Detailed information on the meth-
ods applied for these analyses are presented in the Supplementary
information.
To contextualise our findings within the broader landscape of known

disease associations, we also investigated the overrepresentation of the
identified genes within those previously associated with traits or diseases
by querying the NHGRI-EBI GWAS Catalog [29].

Colocalisation analyses
To identify the specific shared causal variants within each region
showing local genetic correlation, we conducted robust Bayesian
colocalisation analyses through the coloc R package [30] and the Sum
of Single Effects (SuSiE) regression framework [31] (https://
chr1swallace.github.io/coloc/articles/a06_SuSiE.html). Notably, these
approaches allow for simultaneous evaluation of multiple causal genetic
variants within a genomic region and are therefore not limited by the
single causal variant assumption that traditional colocalisation methods
use. The input genomic regions were those showing evidence of local
genetic correlation between each pair of IR-related conditions and
neuropsychiatric disorders. The detailed methodology is reported in the
Supplementary information.

Functional annotation of 95% credible sets of shared causal
variants
We employed the SNPnexus web server (https://www.snp-nexus.org/) to
further characterise the functional significance of the likely causal variants
identified by colocalisation [32]. This tool integrates a wealth of genomic
and functional annotation resources to elucidate the potential biological
consequences of variants on gene structure, regulation, and function. The
analysis encompassed several annotation categories, including gene
annotations, regulatory elements (e.g., miRBASE, CpG islands), and non-
coding scoring (i.e., deleteriousness Combined Annotation Dependent
Depletion [CADD] scores), along with pathway enrichment analysis of
credible set variants [32]. A detailed description of these steps is provided
in the Supplementary information.
Finally, the drugs/compounds that target genes mapped to likely

causal variants were sourced from GeneCards, independent from their

approved or investigational status. GeneCards is an online platform
that gathers information from multiple databases including DrugBank,
PharmaGKB, ClinicalTrials, DGIdb, the Human Metabolome Database,
and Novoseek [33].

RESULTS
Local patterns of genetic correlation between IR-related
conditions and neuropsychiatric disorders
For each pair consisting of an IR-related condition and a
neuropsychiatric disorder, bivariate local genetic correlation was
evaluated in all genomic regions for which both phenotypes
exhibited a univariate signal at p < 1 × 10−4, resulting in a total of
2251 tests. Of note, only 19.6% of the regions with significant
local SNP-based heritability (h2SNP) for both phenotypes showed a
bivariate p < 0.05, indicating that significant local h2SNP is often
present without any local correlation signal between neuropsy-
chiatric and IR-related conditions. After FDR correction, moderate
to high degrees of local genetic correlations (|rg|= 0.21–1,
pFDR < 0.05) were identified for 20 of the 27 phenotype pairs
examined, across 109 unique semi-independent genomic regions
(see Fig. 1 and Table 2). Noteworthy, local genetic correlations
also emerged between IR-related conditions and neuropsychiatric
disorders that had not shown significant global genetic correla-
tions, namely AD, BD, and TS [8]. In total, 128 FDR-significant local
genetic correlations were identified, of which 75 with a positive
direction of the effect and 53 with a negative direction (Table 2;
detailed results are provided in Table S1; see also Fig. 1b, c). For
59 (46.1%) of the 128 local correlations, the 95% confidence
intervals (CIs) for the explained variance included the value 1,
consistent with a scenario where the local genetic signal for
those phenotype pairs is entirely shared (Table 2). Interestingly,
exclusively positive local genetic correlations were found
between IR-related conditions and ADHD/MDD, while those
detected between IR-related conditions and AN were all negative.
No local genetic correlation was found between ASD and IR-
related conditions. Conversely, a combination of positive and
negative local genetic correlations was detected between all the
other IR-related and neuropsychiatric conditions (Fig. 1, Table 2),
of which all but MetS-schizophrenia had no previous evidence
of global genetic overlap (see Table 2).
Furthermore, fifteen out of the 109 unique regions were

associated with more than one phenotypic pair (Table S1; we refer

Table 1. Characteristics of genome-wide association study (GWAS) summary statistics used as input for Local Analysis of [Co]variant Association
(LAVA) and follow-up genomic analyses included in this study.

Phenotype Authors Year PMID Ancestry N Cases Controls Neff

MetS Lind 2019 31589552 European 291,107 59,677 231,430 189,772.81

Obesity Watanabe et al. 2019 31427789 European 244,890 9805 235,085 37,649.69

T2DM Mahajan et al. 2022 35551307 European 933,970 80,154 853,816 293,100.50

AD Wightman et al. 2021 34493870 European 762,917 86,531 676,386 306,866.18

ADHD Demontis et al. 2023 36702997 European 225,534 38,691 186,843 128,213.80

AN Watson et al. 2019 31308545 European 72,517 16,992 55,525 52,041.91

ASD Grove et al. 2019 30804558 European 46,350 18,381 27,969 44,366.62

BD Mullins et al. 2021 34002096 European 413,466 41,917 371,549 150,669.89

OCD IOCDF-GC/OCGAS 2018 28761083 European 9725 2688 7037 7,780.14

MDD Howard et al. 2019 30718901 European 500,199 170,756 329,443 449,855.91

Schizophrenia Trubetskoy et al. 2022 35396580 European 130,644 53,386 77,258 126,281.98

TS Yu et al. 2019 30818990 European 14,307 4819 9488 12,783.30

MetS metabolic syndrome, T2DM type 2 diabetes mellitus, AD Alzheimer’s disease, ADHD attention-deficit/ hyperactivity disorder, AN anorexia nervosa, ASD
autism spectrum disorder, BD bipolar disorder, MDD major depressive disorder, OCD obsessive-compulsive disorder, IOCDF-GC/OCGAS International OCD
Foundation Genetics Collaborative/OCD Collaborative Genetics Association Studies, TS Tourette’s syndrome, PMID PubMed ID, N total sample size, Neff effective
sample size [Neff= 4/(1/Cases+ 1/Controls)].
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to these here as hotspots). The major hotspots showing significant
bivariate local rgs between multiple phenotypic pairs were the
chr2:59251997-60775066 (between T2DM-ADHD, MetS-AN, MetS-
MDD), chr6:31320269-31427209 (MetS-AD, T2DM-AD, T2DM-schi-
zophrenia), and chr16:29043178-31384210 genomic regions
(MetS-schizophrenia, obesity-schizophrenia, T2DM-schizophrenia)
(see Table S1 and Fig. S1). Notably, 11.71% of the genetically
correlated regions detected here (15/128) are located in the Major
Histocompatibility Complex (MHC) region (chr6:28477797-
33448354). All rgs detected in the MHC were between T2DM/
MetS and either schizophrenia, AD, or BP, with prevalence of a
negative direction of the effect (Table S1).

Genes underlying insulin resistance-neuropsychiatric
multimorbidity
In the regions where we detected significant local genetic
correlations, we identified a total of 1455 distinct genes through
eQTL-based mapping, and 1495 unique protein-coding genes
through positional mapping across all phenotype pairs (Table
S2–3). Notably, the pseudogene CYP21A1P was recurrently eQTL-
mapped across multiple phenotype pairs (AD-T2DM, AD-MetS,
BD-T2DM, schizophrenia-T2DM). In total, 140 genes were mapped
for at least three phenotype pairs, indicating a potentially broader
relevance in the genetic architecture of IR-neuropsychiatric
multimorbidity (Table S3). Within this subset, 20 genes, all
located within the MHC region, were involved in immune-
inflammation and vesicle metabolism/trafficking (e.g., HLA-B,
MICA, C4A, C4B, AGER, BTNL2, HLA-DRA, HLA-DRB1, HLA-DQA1,
PSMB8, HLA-DRB5, and FLOT1), and four genes were involved in
insulin signalling and secretion (i.e., STX1A, FLOT1, MAPK3, and
PHKG2) (see Table S3).

Functional annotation of the identified regions
Considering the genes mapped to the regions showing local
correlations, 411 gene sets were significantly enriched (Table S4).
Immune-related pathways were prominently represented for
multiple phenotype pairs (i.e., AD-MetS/T2DM, BD-T2DM, TS-
T2DM, schizophrenia-T2DM). Other biological pathways related to
oxygen transport, lipid metabolism (including omega-3 and
omega-6 polyunsaturated fatty acid levels (PUFAs)), embryonic/
placental development, insulin receptor/phosphoinositide
3-kinase (PI3K), and vesicular function/secretion were enriched
across different phenotype pairs (Table S4). Pharmacogenomic
markers, notably genes genome-wide significantly associated

Fig. 1 Local genetic correlations between neuropsychiatric and
insulin resistance-related conditions. a Chord diagram represent-
ing the network of local genetic correlations between insulin
resistance-related conditions and neuropsychiatric disorders. A
higher width of a ribbon reflects a higher number of shared
genetically correlated loci between two phenotypes, highlighting a
substantial polygenic overlap and suggesting potential shared
pathophysiological mechanisms between them. The colours of the
ribbons are used purely for visual distinction and do not imply any
additional significance or categorisation. Labels for insulin
resistance–related conditions are displayed in dark cyan, while
those for neuropsychiatric disorders are shown in black. b Bar plot
presenting the number of local genetic correlations identified
between neuropsychiatric disorders and insulin resistance-related
conditions. Each bar corresponds to a different neuropsychiatric
disorder, segmented by the direction of effect of local genetic
correlations, with blue indicating negative and red indicating
positive local genetic correlations between neuropsychiatric dis-
orders and insulin resistance-related conditions. The height of each
bar reflects the quantity of local genetic correlations detected for
each disorder. c Network visualisation of local genetic correlations
between a spectrum of neuropsychiatric disorders and insulin
resistance-related conditions. Nodes represent distinct phenotypes
for which local bivariate genetic correlations were evaluated; nodes
for insulin resistance–related conditions are labeled in dark cyan,
while those for neuropsychiatric disorders are labeled in black.
Edges connecting the nodes vary in width proportionally to the
number of local genetic correlations identified between phenotype
pairs. Edge colour denotes the direction of the genetic correlation
estimate, with red indicating a positive correlation and blue
indicating a negative correlation. Abbreviations: AD, Alzheimer’s
disease; ADHD, attention-deficit/hyperactivity disorder; AN, anorexia
nervosa; ASD, autism spectrum disorder; BD, bipolar disorder; MDD,
major depressive disorder; MetS, metabolic syndrome, OCD, obsessive-
compulsive disorder; T2DM, type 2 diabetes mellitus; SCZ, schizophrenia;
TS, Tourette’s syndrome.
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with response to metformin (i.e., STX1B, STX4, ZNF668), were
enriched in regions shared between schizophrenia and MetS,
obesity, and T2DM (Table S5).
In a more granular examination, we also evaluated enrichment

of life-stage-specific expression profiles for genes mapped to the
genetically correlated regions (Tables S7–8). Specifically, regions
correlated between schizophrenia and obesity featured genes
upregulated at 19 weeks post-conception. Conversely, regions
associated with the schizophrenia-MetS pair exhibited a distinct
pattern, with genes showing downregulation in brain samples
from individuals at age 11. Furthermore, regions of overlap
between OCD and MetS held genes upregulated in early
adulthood brain tissues, while the genes in the overlapping
regions marking the OCD-obesity pair exhibited gene down-
regulation in late childhood.
Detailed results for gene set analysis, spatio-temporal expres-

sion specificity of the mapped genes, and druggable gene
annotations are reported in Table S4–S10.

Shared causal variants between insulin resistance-related
conditions and neuropsychiatric disorders
Of the 128 regions identified with local rg, colocalisation analyses
successfully pinpointed the likely causal variants driving this
association in 10 regions (see Table S11–12). For comprehensive
functional annotations of the 95% credible set variants within
these 10 regions see Tables S13–S23.
Notably, one region on chromosome 4 and two on chromo-

some 6 showed the highest posterior probability for colocalisa-
tion, linking schizophrenia with MetS and AD with T2DM,
respectively (Table S11–12, Fig. S2–4). The schizophrenia-MetS
relationship implicated the rs13107325 variant in the SLC39A8
gene, which modulates the activity of the miRNA hsa-miR-374b-5p
(Tables S12–S14). For the AD-T2DM pair, the likely causal variants
were rs9271608 and rs9275599, mapped to the HLA-DRB1 and
MTCO3P1 genes, respectively. According to GeneCards, HLA-DRB1
is targeted by immunosuppressive and anti-inflammatory drugs
(e.g., azathioprine, lapatinib, interferons-β, and acetylsalicylic acid),

Table 2. Summary of local genetic correlations between neuropsychiatric disorders and insulin resistance-related conditions.

Neuropsychiatric
disorders

Insulin
resistance-
related
conditions

Previous
evidence of
bivariate
global
genetic
correlation

N loci with
significant
local h2SNP
simultaneously for
both phenotypes
(% of loci tested)

N genetically
correlated locib

(% of loci with
significanta local
h2SNP for both
phenotypes)

N positively
correlated
loci (% of
correlated
loci for the
pair)b

N negatively
correlated
loci (% of
correlated
loci for the
pair)b

N genetic
correlations
estimates whose
confidence
intervals included
1 (% of correlated
loci for the pair)b

AD MetS NO 306 (12.3%) 13 (4.2%) 6 (46.2%) 7 (53.8%) 2 (15.4%)

AD Obesity NO 34 (1.4%) 1 (2.9%) 1 (100.0%) 0 (0.0%) 1 (100.0%)

AD T2DM NO 214 (8.6%) 16 (7.5%) 12 (75.0%) 4 (25.0%) 3 (18.8%)

ADHD MetS YES 94 (3.8%) 10 (10.6%) 10 (100.0%) 0 (0.0%) 9 (90.0%)

ADHD Obesity YES 30 (1.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

ADHD T2DM YES 88 (3.5%) 12 (13.6%) 12 (100.0%) 0 (0.0%) 7 (58.3%)

AN MetS YES 65 (2.6%) 1 (1.5%) 0 (0.0%) 1 (100.0%) 1 (100.0%)

AN Obesity YES 40 (1.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

AN T2DM YES 73 (2.9%) 3 (4.1%) 0 (0.0%) 3 (100.0%) 2 (66.7%)

ASD MetS YES 21 (0.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

ASD Obesity YES 13 (0.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

ASD T2DM YES 12 (0.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

BD MetS NO 121 (4.8%) 10 (8.3%) 6 (60.0%) 4 (40.0%) 0 (0.0%)

BD Obesity NO 53 (2.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

BD T2DM NO 107 (4.3%) 6 (5.6%) 1 (16.7%) 5 (83.3%) 1 (16.7%)

MDD MetS YES 95 (3.8%) 5 (5.3%) 5 (100.0%) 0 (0.0%) 3 (60.0%)

MDD Obesity YES 45 (1.8%) 4 (8.9%) 4 (100.0%) 0 (0.0%) 3 (75.0%)

MDD T2DM YES 83 (3.3%) 8 (9.6%) 8 (100.0%) 0 (0.0%) 4 (50.0%)

OCD MetS YES 71 (2.8%) 3 (4.2%) 0 (0.0%) 3 (100.0%) 2 (66.7%)

OCD Obesity YES 40 (1.6%) 1 (2.5%) 0 (0.0%) 1 (100.0%) 0 (0.0%)

OCD T2DM YES 54 (2.2%) 1 (1.9%) 1 (100.0%) 0 (0.0%) 0 (0.0%)

Schizophrenia MetS YES 200 (8.0%) 10 (5.0%) 2 (20.0%) 8 (80.0%) 6 (60.0%)

Schizophrenia Obesity NO 89 (3.6%) 1 (1.1%) 0 (0.0%) 1 (100.0%) 1 (100.0%)

Schizophrenia T2DM NO 172 (6.9%) 18 (10.5%) 4 (22.2%) 14 (77.8%) 10 (55.6%)

TS MetS NO 57 (2.3%) 1 (1.8%) 1 (100.0%) 0 (0.0%) 1 (100.0%)

TS Obesity NO 27 (1.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

TS T2DM NO 47 (1.9%) 4 (8.5%) 2 (50.0%) 2 (50.0%) 3 (75.0%)

TOTAL 2251 128 (5.7%) 75 (58.6%) 53 (41.4%) 59 (46.1%)

For each neuropsychiatric disorder, the table presents the presence or absence of global genetic correlation with the specific insulin resistance-related
condition, significant loci with h2SNP for both phenotypes tested, and the directionality of local genetic correlations with T2DM, Metabolic Syndrome (MetS),
and obesity. The table further provides the number of local genetic correlations with confidence intervals that include 1, indicating potential for completely
overlapping genetic influences at specific loci.
AD Alzheimer’s disease, ADHD attention-deficit/ hyperactivity disorder, AN anorexia nervosa, ASD autism spectrum disorder, BD bipolar disorder, h2SNP, single-
nucleotide polymorphism (SNP)-based heritability, MetS metabolic syndrome, MDD major depressive disorder, N number of, OCD obsessive-compulsive
disorder, T2DM type 2 diabetes mellitus, TS Tourette’s syndrome.
ap < 1 × 10−4; bFalse discovery rate (FDR) at maximum q= 0.05.
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as well as by statins and psychotropic drugs (e.g., carbamazepine,
clozapine, and lamotrigine) (Table S23).
Further seven regions had good support for colocalisation

(Supplementary information); these regions showed local genetic
correlations for the AD-T2DM, MDD-T2DM, BD-MetS, and
schizophrenia-MetS pairs (Table S11–12). Most of the identified
variants were observed within or near genes pivotal to immune
function, vesicle/small molecules trafficking, lipid metabolism,
organ development, retinoic acid signalling, and DNA repair/
apoptosis (Tables S17–18). The variants often had high CADD
PHRED scores, suggesting highly deleterious effects (Tables S13).
Genes mapping to these variants, like the HLA-DQB1 and FADS1/2
genes, are targeted by existing drugs and supplements, such
as antihypertensive drugs, omega-3/6 PUFAs, and vitamin A
(Table S23).

DISCUSSION
In this study, we examined the genetic relationship between IR-
related conditions - specifically, obesity, T2DM, and MetS - and
nine neuropsychiatric disorders by investigating the pairwise
patterns of local genetic correlation across the genome. At the
same time, we explored the specific genetic factors and biological
mechanisms underlying their multimorbidity. The results pre-
sented here offer novel insights into the shared genetic aetiology
between these phenotypes, unveiling a complex pattern of both
positive and negative local genetic correlations. For the first time,
we demonstrated that even in the absence of global genetic
correlations, significant local correlations exist (i.e., between AD,
BD, TS and IR-related conditions). These findings expand the
results of previous studies [8, 10], with important implications for
understanding the pathophysiology of these disorders and for
developing targeted therapeutic interventions addressing IR-
psychiatric multimorbidity. We identified 128 local genetic
correlations across 109 unique genomic regions. Notably, the
MHC region emerged as a particularly significant contributor in
terms of shared genetic signal, as confirmed by enrichment in
biological pathways related to immune function. In addition,
genes mapped to the genetically correlated regions showed
enrichment in pathways involved in lipid metabolism, insulin
signalling, and vesicular function, among others.
Regarding the directions of the detected genetic correlations,

we observed exclusively positive local genetic correlations for
ADHD and MDD with IR-related conditions, indicating synergistic
genetic effects that predispose to both neuropsychiatric symp-
toms and IR-related conditions. Our enrichment analyses of the
genes mapped to these regions suggest that the genetic overlap
might be mediated by genes involved in extracellular matrix
organisation, vesicle trafficking, and oxygen transport/oxidative
processes. These pathways are involved in both brain function and
metabolic regulation [34–36]. In particular, extracellular matrix
molecules are implicated in synaptic plasticity and homeostasis
[34] and may also influence tissue insulin sensitivity [37]. Similarly,
vesicle trafficking, integral to synaptic function and neurotrans-
mission, could be a central theme where neuronal communication
and insulin signalling intersect, contributing to the multimorbidity
of the conditions [36]. Conversely, we identified exclusively
negative correlations between AN and IR-related conditions.
These results align with the distinct phenotypic characteristics of
AN, including increased insulin sensitivity and metabolic altera-
tions related to undernutrition, which differ markedly from other
neuropsychiatric disorders [38, 39].
While phenotypic overlap of AD and BD with IR-related

conditions has been frequently reported (e.g., Wimberley, Horsdal
[2], Santiago and Potashkin [40])), previous genetic analyses did
not find global genetic correlations between these phenotypes [8].
This may have occurred due to the averaging effect of global
analyses. Our study, which is the first to report significant local

genetic correlations between AD, BD, TS and IR-related conditions,
suggests that positive and negative local correlations could
neutralise each other in global correlation analyses, a phenom-
enon observed in other recent studies [41, 42]. These hetero-
geneous patterns of genetic overlap could also point towards
aetiologically distinct subgroups that warrant further exploration
with deep phenotyping and functional validation. Such analyses
could bring us closer towards precision medicine, offering the
potential for personalised healthcare and improved treatment
success [43].
Multiple genomic regions (15 out of 109) showed significant

correlations for more than one phenotype pairs, implying a
potentially more prominent and ubiquitous role in the IR-
neuropsychiatric multimorbidity. Among the recurring regions,
chr2:59251997-60775066, mapping to the BCL11A gene, was
implicated in the correlation of T2DM with ADHD, MetS with AN,
and MetS with MDD. BCL11A codes for a transcription factor
essential for B cell function and haematopoiesis, as well as for
neuronal development, regulating processes such as neurogen-
esis/axonogenesis, and neuronal migration [44, 45]. BCL11A
variants have also been associated with neurodevelopmental
disorders and impaired cognition, as well as with IR in in vivo and
in vitro studies [45–47]. Among other genes that were mapped
across at least three phenotypic pairs, some (i.e., STX1A, FLOT1,
MAPK3, and PHKG2) are pivotal in insulin signalling and secretion
[48–50]. These findings strengthen a molecular basis for linking
neuropsychiatric disorders to altered insulin function [8, 50, 51]),
which has also been tied to cognitive deficits, anhedonia, and
reward processing alterations [3, 4, 6].
Over 11% of the correlated genomic regions were located

within the MHC region (chr6:28477797-33448354), where
extensive pleiotropy has been demonstrated previously
[22, 52]. This region is renowned for its high gene density,
polymorphism, and involvement in immune-inflammatory
responses [53]. The influence of the MHC region extends
beyond autoimmune and infectious diseases susceptibility,
being also associated with neuropsychiatric disorders, such as
ASD, schizophrenia, and BD [54]. Our findings point to a
plausible genetic link between IR-related metabolic dysfunction,
immune-inflammatory dysfunction, and neuropsychiatric dis-
orders. This is consistent with previous findings indicating that
both central and peripheral inflammation may mediate the link
between IR and neuropsychiatric conditions [55, 56]. Inflamma-
tion may also impair brain insulin signalling, potentially resulting
in neurobehavioural consequences [57]. Notably, most of the
local genetic correlations identified within the MHC region
showed a negative direction of effect. We cannot provide a clear
explanation of this finding, but it may lie in the balance of pro-
inflammatory and anti-inflammatory factors in immune
response, in which MHC genes play a role [54]. Additionally,
MHC class I (MHC-I) molecules, traditionally associated with
immune functions, have also been implicated in synapse
pruning, a process important for refining neural circuits during
development [58]. MHC-I molecules are expressed in neurons
and modulate microglia-mediated synapse elimination by
marking less active synapses for phagocytosis [59, 60]. This
activity-dependent mechanism shapes functional neuronal net-
works and has been implicated in pathological synapse loss in
neurodegenerative conditions [59, 61]. Dysregulated MHC-I
signalling can lead to aberrant synaptic pruning, implicated in
disorders such as schizophrenia and ASD [58]. Hence, the dual
role of MHC-encoded molecules in both immune modulation
and synaptic plasticity, as well as the potential differential
expression of genes in the MHC region across different tissues
and the lifespan may help explain the observed negative
genetic correlations [62]. Experimental validation of our findings
will be necessary to determine the exact functional implication
of the observed genetic associations.
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Relatedly, our study identified multiple genes related to the
human leukocyte antigen (HLA) system, innate immunity, and
immunomodulation (i.e., HLA-B, HLA-DRA, HLA-DRB1, HLA-DQA1,
HLA-DRB5, MICA, C4A, C4B, AGER, PSMB8, and BTNL2), supporting
their possible influence on IR-neuropsychiatric multimorbidity. Of
note, immunomodulatory drugs (e.g., non-steroidal anti-inflam-
matory drugs and monoclonal antibodies) have shown some
efficacy as add-on treatments in psychoses and MDD, and might
have higher efficacy in people with IR-neuropsychiatric multi-
morbidity [63, 64]. Another gene recurrently mapped across
various phenotype pairs was the CYP21A1P pseudogene, located
within the MHC region. Intergenic recombination of CYP21A1P
leads to altered glucocorticoid and androgen production [65];
glucocorticoids have anti-inflammatory/immunosuppressive
effects, and regulate glucose metabolism and the body’s stress
response [66]. Specifically, glucocorticoids counteract insulin by
decreasing peripheral glucose uptake and stimulating hepatic
gluconeogenesis, leading to IR under conditions of excessive
release, such as in chronic stress [67]. Prolonged exposure to
glucocorticoids can induce neurotoxic effects, possibly involved in
the development of psychiatric disorders [68, 69]. These hormones
also modulate the serotonergic system, which is strongly
implicated in psychiatric disorders and insulin signalling [70, 71].
Interestingly, gene set enrichments within correlated regions
between schizophrenia and IR-related conditions were related to
the response to metformin, a frontline oral medication for T2DM.
This implies a potential overlap in therapeutic targets between
schizophrenia and T2DM, which could lead to a reassessment of
treatment strategies for these patients. Previous randomised-
controlled trials (RCTs) confirmed the efficacy of metformin in
counteracting antipsychotic-induced metabolic side effects in
individuals with psychoses [72, 73], while improving psychiatric
and cognitive symptoms in the same population [74].
Another significant finding of this study was the identification

of colocalisation signals. Among the 128 regions demonstrating
local genetic correlation, 10 regions were prioritised for their high
posterior probabilities of harbouring the same causal variants
shared between IR-related conditions and neuropsychiatric
disorders. This was instrumental for further elucidating shared
pathophysiological mechanisms and novel potential drug targets
for IR-neuropsychiatric multimorbidity [75, 76]. The two most likely
shared causal variants were located in the chr4:102544804-
104384534 and chr6:32586785-32629239/chr6:32682214-
32897998 regions, suggesting novel cross-links between schizo-
phrenia and MetS, and AD and T2DM, respectively. The identified
shared causal variant (rs13107325) between schizophrenia and
MetS maps to the SLC39A8 gene, encoding the ZIP8 metal cation
transporter. Previous studies demonstrated its association with
altered brain manganese levels and protein complexity in
schizophrenia, brain morphology and dendritic spine density, as
well as a broader impact on various conditions, including
developmental, neuropsychiatric and cardio-metabolic diseases/
traits [77–80]. Our findings also highlight SLC39A8’s potential as a
therapeutic target via zinc chloride/sulphate [81]. Interestingly,
RCTs have shown beneficial effects of zinc sulphate in reducing
symptoms of ADHD, MDD, and SCZ [82–84], as well as improving
glucose handling in prediabetes [85]. In the AD-T2DM context, the
rs9271608 variant mapping to the HLA-DRB1 gene presented
compelling causal candidacy, pointing to the potential for
immunosuppressive drugs such as azathioprine, lapatinib, and
interferons-β to influence AD-T2DM manifestations. The adminis-
tration of intranasal treatment with interferon-β was shown to
improve anxious/depressive-like behaviours by modulating micro-
glia polarisation in AD rat models [86]. Of note, the rs9271608 also
shows broad biological relevance as it is active as a promoter
across numerous cell types and tissues, including various immune
and neuronal progenitors [87]. The remaining regions of notable
colocalisation underpin associations between AD and T2DM, MDD

and T2DM, BD and MetS, and schizophrenia and MetS, hinting at
potential targetable mechanisms for current drugs and supple-
ments, including antihypertensive drugs, omega-3/6 PUFAs,
vitamin A [81]. Several antihypertensive drugs have been
associated with a reduced risk of depression [88], and omega-3
PUFAs showed beneficial effects on depression symptoms in a
meta-analysis of RCTs [89]. Genes associated with omega-3/
omega-6 PUFAs were enriched when considering the regions
showing correlation between BD and MetS, in line with their
relevance in the multimorbidity. Finally, vitamin A inhibits amyloid
β protein deposition, tau phosphorylation, neuronal degeneration
and improves spatial learning and memory in AD mouse models
[90]. It is worth noting that a significant local genetic correlation
without detectable colocalisation does not necessarily mean that
there are no shared causal variants; this may reflect limitations in
the power of the colocalisation analysis, particularly in scenarios
with complex patterns of associations, which are often observed
in highly polygenic traits [22].
Our study should be viewed considering some limitations.

Although our study may serve as a starting point by highlighting
potential shared causal variants and suggesting biological
mechanisms through which shared genetic regions might
impact both mental and metabolic health, the functional
interpretation of our findings remains largely speculative; future
in vitro and animal model studies will be necessary to validate
our findings and provide clearer mechanistic insights into the
underlying biology. The high linkage disequilibrium in the MHC
region may have led to spurious pleiotropy, not necessarily
implying the presence of the same shared causal SNPs [91]. Rare
genetic variants were not considered, and population-specific
effects may not be adequately captured by our analyses, which
were limited to European ancestry. While the available GWAS
summary statistics were generally obtained in samples of
adequate size for this kind of study, the GWAS summary
statistics for OCD were based on a relatively small sample size,
potentially influencing the number of significant local genetic
correlations detected by LAVA.
In conclusion, our study provides novel insights into the shared

genetic underpinnings of neuropsychiatric and IR-related condi-
tions, challenging traditional notions of their separate pathophy-
siology. Our results support a more integrated disease model, and
the need to move beyond the conventional view of distinct
aetiologies. The implications of our findings extend to clinical
practice, emphasising the need for a holistic approach in the
screening and management of IR-neuropsychiatric multimorbid-
ity. For example, the importance of lifestyle interventions for both
metabolic and psychiatric health, and for developing pharmaco-
logical treatments that target both conditions. The discovery of
shared causal variants, particularly in genes like SLC39A8 and HLA-
DRB1, opens new avenues for targeted therapeutic interventions.
The convergence of genetic findings on mechanisms related to
immune-inflammation, insulin signalling, lipid metabolism, vesicle
trafficking, among others, provides a compelling direction for
future research. Overall, our study not only unveils the shared
genetic landscape of neuropsychiatric and IR-related conditions,
but also establishes a foundation for integrated research and
treatment approaches, contributing to a paradigm shift towards
comprehensive care strategies that address the issue of
multimorbidity.

DATA AVAILABILITY
All analyses in this study were conducted using publicly available summary statistics
from genome-wide association studies (GWASs), as referenced in Table 1. Our analytical
workflow was developed by following the official tutorials and vignettes of the R and
Python packages employed, ensuring methodological rigor and reproducibility (see
URLs and Materials and methods, sections 2.2–2.5). Any custom scripts and code used
for data processing and analysis are available from the corresponding author upon
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reasonable request to facilitate replication and further research. All data generated
during this study are included within this published article and its Supplementary
Materials. URLs Local Analysis of [co]Variant Association (LAVA): https://github.com/
josefin-werme/LAVA; LD SCore (LDSC) https://github.com/bulik/ldsc; biomaRt:
https://bioconductor.org/packages/release/bioc/html/biomaRt.html; LiftOver: https://
genome.ucsc.edu/cgi-bin/hgLiftOver; loci2path: https://www.bioconductor.org/
packages/release/bioc/html/loci2path.html; coloc & SuSiE: https://github.com/
chr1swallace/coloc; SNPnexus: https://www.snp-nexus.org; Functional Mapping and
Annotation of Genome-Wide Association Studies (FUMA): http://fuma.ctglab.nl.
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