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Abstract 
Rectal cancer (RC) is one of the most commonly diagnosed malignant tumours worldwide. Its most 

aggressive form, Locally Advanced Rectal Cancer (LARC), is treated with neoadjuvant 

chemoradiotherapy (nCRT) to downstage the tumour and improve results of the total mesorectal excision 

(TME). Approximately 20% to 25% achieve complete response and may be eligible for a more 

conservative watch and wait strategy. Early prediction of response to nCRT using information from the 

staging MRI could help adjust neoadjuvant treatment andimprove response, potentially avoiding 

surgeries.  

The aim of this project is to develop a machine learning (ML) model capable of predicting response to 

nCRT using clinical data and radiomics characteristics extracted from the pre-treatment MRI. The 

radiomics are extracted from manually delineated tumour masks (Core Tumour Radiomics) and from 

border masks computed from the manual segmentations (Border Radiomics). Nine ML models have been 

optimized and tested across the seven feature set combinations. The models with best performance were 

Random Forest for the core tumour radiomics dataset (Accuracy = 0.77, AUC = 0.70, Sensitivity = 0.67, 

Specificity = 0.86) and Multilayer Perceptron for the dataset with all features (Accuracy = 0.77, AUC = 

0.70, Sensitivity = 0.83, Specificity = 0.71). However, the predictive capability of tumour borders could 

not be confirmed as these models yielded worse performance. Furthermore, via a feature importance 

analysis, it has been concluded that both shape and texture related radiomic features are predictors of 

treatment response although no specific marker has been identified.  
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Resum 
El càncer de recte és un dels tumors malignes més diagnosticats arreu del món. El tipus més agressiu, 

el càncer de recte localment avançat, es tracta amb quimioradioteràpia neoadjuvant per disminuir l’estadi 

del tumor i millorar els resultats de la cirurgia d’excisió total del mesorecte. Aproximadament, del 20% al 

25% dels pacients presenten resposta completa al tractament i poden optar a una estratègia 

conservadora de vigilància activa. Predir la resposta primerenca a la teràpia neoadjuvant utilitzant 

informació obtinguda de la RM d’estadiatge pot assistir en la prescripció del tractament neoadjuvant i 

així millorar la resposta, potencialment evitant cirurgies.  

L’objectiu d’aquest projecte és desenvolupar un model d’aprenentatge automàtic capaç de predir la 

resposta al tractament neoadjuvant utilitzant dades clíniques i característiques radiòmiques extretes de 

la RM pre-tractament. Les variables radiòmiques s’han extret de les segmentacions manuals i de les 

màscares de les vores tumorals. S’han optimitzat i entrenat nou models per cada una de les set 

combinacions de conjunts de variables. Els models amb millors resultats son Random Forest per el 

conjunt de dades radiòmiques extretes de tumor (Exactitud = 0.77, AUC = 0.70, Sensibilitat = 0.67, 

Especificitat = 0.86) i Multilayer Perceptron pel conjunt amb totes les variables (Exactitud = 0.77, AUC = 

0.70, Sensibilitat = 0.83, Especificitat = 0.71). Tanmateix, la capacitat predictiva de les vores tumorals no 

s’ha pogut confirmar, ja que els models amb aquest conjunt de dades han donat els pitjors resultats. 

Addicionalment, mitjançant una anàlisi de la importància de les característiques, s’ha pogut concloure 

que tant les variables radiòmiques de forma com les de textura, en general, prediuen la resposta al 

tractament, tot i que no s’han pogut identificar marcadors concrets. 

PARAULES CLAU: 

Càncer de Recte – Càncer de Recte Localment Avançat – Quimioradioteràpia  Neoadjuvant – 

Ressonància Magnètica  – Radiòmica – Intel·ligència Artificial – Aprenentatge Automàtic – Segmentació 

de tumors – Estratègia de Vigilància Activa – Resposta al Tractament  



 Biomedical Engineering Paula Sanahuja Rosich 

v 
 

Acknowledgments 
The development and completion of this project would not have been possible without the support of the 

team at the Hospital de la Santa Creu i Sant Pau who provided guidance throughout the entire process. 

First, I want to sincerely thank my director Dr. Josep Munuera for his guidance and expertise, without 

which this research could not have been completed. On the same note, I also want to thank my tutor Dra. 

Núria Gavara for the support in the development of this report. 

I would also like to extend my gratitude to the other members of the Radiology Department of the hospital 

who created an exceptional work environment that enabled this research and who encouraged me to 

move forward through this long journey. Particularly, I want to thank Dr. Miguel Angel Rios for his support 

in the medical training required for this work and for correcting the segmentations, and Lucia Borrego for 

her guidance during the data analysis and machine learning steps. Furthermore, I would also like to thank 

Dr. Daniel Selva and Dra. Nataly Reyes, residents from the hospital, for their assistance with the 

segmentation process. 

Last but not least, I would like to genuinely thank all my family and friends who have accompanied me 

and given their unconditional support throughout this final degree project. 

 

  



 Biomedical Engineering Paula Sanahuja Rosich 

vi 
 

List of figures 
Figure 1. T2w MRI of a rectum. R: lumen, Arrows: mucosa and submucosa, Arrowheads: muscularis propria, 

Asterisk: mesorectum. ............................................................................................................................................ 4 
Figure 2. Schematic of the Fast Soin Echo sequence [13]. ...................................................................................... 5 
Figure 3. Short and Long-axis of a rectal tumour. Left: Long-axis of the tumour. Middle: slice in the sagittal 

plane of the tumour with the tumour axes. Right: short-axis of the tumour .......................................................... 5 
Figure 4. DWI sequences b1000 (left) and ADC map (right). Green circle surrounds the tumour. ....................................... 6 
Figure 5. Schematic of the T-staging of rectal cancer [3]. ............................................................................................... 7 
Figure 6. Schematic of a confusion matrix. [72] ........................................................................................................... 20 
Figure 7. Schematic of a ROC curve and its meanings [73]. .................................................................................. 21 
Figure 8. Patient selection diagram. ........................................................................................................................... 22 
Figure 9. Correlation matrix between the extracted clinical features and response. ......................................................... 24 
Figure 10. Short and Long-axis of a rectal tumour located in the high rectum. Left: Long-axis of the tumour. Middle: slice in 

the sagittal plane of the tumour with the tumour axes. Right: short-axis of the tumour ..................................................... 24 
Figure 11. Example segmentations in 3DSlicer. The green area is the segmented tumour. Left: segmentation of a clearly 

defined tumour. Right: segmentation with liquid infiltrations (white), tumour infiltrating nearby tissues and partial volumes 

(bottom part of the segmentation). ............................................................................................................................. 25 
Figure 12. Example of the calculated tumour border mask (top left), the original manual segmentation (bottom left) and an 

overlay of both (right). .............................................................................................................................................. 26 
Figure 13. Example distribution plots of the extracted radiomic variables. ......................................................... 26 
Figure 14. Correlation matrix of the selected core tumour features and response. .......................................................... 29 
Figure 15. Correlation matrix of the selected tumour border features and response. ....................................................... 29 
Figure 16. Confusion Matrix of the best model (Random Forest) for the whole tumour dataset. ....................................... 32 
Figure 17. ROC curve and AUC of the best model (Random Forest) for the whole tumour dataset. .................................. 32 
Figure 18. Confusion Matrix of the best model (XGBoost) for the tumour borders dataset. .............................................. 33 
Figure 19. ROC curve and AUC of the best model (XGBoost) for the tumour borders dataset. ......................................... 33 
Figure 20. Confusion Matrix of the best model (Multilayer Perceptron) for the core tumour + tumour borders dataset. ........ 34 
Figure 21. ROC curve and AUC of the best model (Multilayer Perceptron) for the core tumour + tumour borders dataset. .. 34 
Figure 22. Confusion Matrix of the best model (Decision Tree) for the clinical features only dataset. ................................ 34 
Figure 23. ROC curve and AUC of the best model (Decision Tree) for the clinical features only dataset. .......................... 34 
Figure 24. Confusion Matrix of the best model (Random Forest) for the clinical features + whole tumour radiomics dataset.

 .............................................................................................................................................................................. 35 
Figure 25. ROC curve and AUC of the best model (Random Forest) for the clinical features + whole tumour radiomics 

dataset. .................................................................................................................................................................. 35 
Figure 26. Confusion Matrix of the best model (Multilayer Perceptron) for the clinical features + tumour border radiomics 

dataset. .................................................................................................................................................................. 36 
Figure 27. ROC curve and AUC of the best model (Multilayer Perceptron) for the clinical features + tumour border radiomics 

dataset. .................................................................................................................................................................. 36 
Figure 28. Confusion Matrix of the best model (Multilayer Perceptron) for the clinical features + whole tumour + tumour 

border radiomics dataset. ......................................................................................................................................... 36 
Figure 29. ROC curve and AUC of the best model (Multilayer Perceptron) for the clinical features + whole tumour + tumour 

border radiomics dataset. ......................................................................................................................................... 36 
Figure 30. Feature importance graph of the best model (Random Forest) for the whole tumour dataset............................ 38 
Figure 31. Feature importance graph of the best model (Multilayer Perceptron) for the dataset with all features combined. 

The plot was obtained using the SHAP technique. ...................................................................................................... 40 
Figure 32. Confusion Matrix of the best model (Multilayer Perceptron) for the clinical features (with T and N subcategories) 

+ whole tumour + tumour border radiomics dataset. .................................................................................................... 42 
Figure 33. ROC curve and AUC of the best model (Multilayer Perceptron) for the clinical features (with T and N 

subcategories) + whole tumour + tumour border radiomics dataset ............................................................................... 42 



 Biomedical Engineering Paula Sanahuja Rosich 

vii 
 

Figure 34. Feature importance graph of the best model (Multilayer Perceptron) for the dataset with all features 

combined with T and N subcategories. The plot was obtained using the SHAP technique. ................................. 42 
Figure 35. Schematic structure of the WBS of the project. ............................................................................................ 43 
Figure 36. PERT diagram of the project. .................................................................................................................... 45 
Figure 37. GANTT diagram of the project. .................................................................................................................. 45 
 

  



 Biomedical Engineering Paula Sanahuja Rosich 

viii 
 

List of tables 

Table 1. Description of clinical features. The percentages are with respect to the responders and non-responders subset. 23 
Table 2. Selected significant radiomic features after removing collinearity for both datasets. ........................................... 27 
Table 3. List of hyperparameters tuned for each model. ............................................................................................... 31 
Table 4. Metrics for the best model (Random Forest) for the whole tumour radiomics only dataset. .................................. 32 
Table 5. Metrics for the best model (XGBoost) for the tumour border radiomics only dataset. .......................................... 33 
Table 6. Metrics for the best model (Multilayer Perceptron) for the whole tumour + border radiomics dataset. ................... 33 
Table 7. Metrics for the best model (XGBoost) for the clinical features only dataset. ....................................................... 34 
Table 8. Metrics for the best model (Multilayer Perceptron) for the clinical features + whole tumour radiomics dataset. ...... 35 
Table 9. Metrics for the best model (Multilayer Perceptron) for the clinical features + tumour border radiomics dataset. ..... 35 
Table 10. Metrics for the best model (Multilayer Perceptron) for the clinical features + whole tumour + tumour border 

radiomics dataset..................................................................................................................................................... 36 
Table 11. Summary of the model results for each dataset. ........................................................................................... 37 
Table 12. Metrics for the best model (Multilayer Perceptron) for the clinical features + whole tumour + tumour border 

radiomics dataset. Top row: results with T and N subcategories. Bottom row: original results. ......................................... 41 
Table 13. WBS dictionary with tasks descriptions, deliverables and task duration. .......................................................... 44 
Table 14. PERT diagram table and analysis of precedence. All WBS are assigned a PERT ID. ....................................... 45 
Table 15. SWOT analysis of a radiomics-based AI project to predict tumour prognosis. ..................................... 47 
Table 16. Project budget divided in type of cost. .................................................................................................. 48 
Table 17. Project budget broken down into GANTT diagram tasks. ............................................................................... 49 
Table 18. Machine Learning model results for the Core Tumour Radiomics dataset. ....................................................... 83 
Table 19. Machine Learning model results for the Tumour Border Radiomics dataset. .................................................... 84 
Table 20. Machine Learning model results for the Core Tumour + Tumour Border Radiomics dataset. ............................. 84 
Table 21. Machine Learning model results for the Clinical variables dataset (T and N subcategories). .............................. 85 
Table 22. Machine Learning model results for the Clinical variables dataset. ................................................................. 86 
Table 23. Machine Learning model results for the Clinical variables (T and N subcategories) + core tumour radiomics 

dataset. .................................................................................................................................................................. 86 
Table 24. Machine Learning model results for the Clinical variables + core tumour radiomics dataset............................... 87 
Table 25. Machine Learning model results for the Clinical variables (T and N subcategories) + tumour border radiomics 

dataset. .................................................................................................................................................................. 87 
Table 26. Machine Learning model results for the Clinical variables + tumour border radiomics dataset. .......................... 88 
Table 27. Machine Learning model results for the Clinical variables (T and N subcategories) + core tumour radiomics + 

tumour border radiomics dataset. .............................................................................................................................. 89 
Table 28. Machine Learning model results for the Clinical variables + core tumour radiomics + tumour border radiomics 

dataset. .................................................................................................................................................................. 89 

 

List of equations 

Equation 1. Z-score normalization. ............................................................................................................................ 15 
Equation 2. Accuracy equation. ................................................................................................................................. 20 
Equation 3. Sensitivity (or recall) equation. ................................................................................................................. 20 
Equation 4. Specificity equation. ................................................................................................................................ 20 
Equation 5. Precision equation. ................................................................................................................................. 20 
Equation 6. Negative Predicted Value equation. .......................................................................................................... 20 
Equation 7. F1-score equation. ................................................................................................................................. 20 

  



 Biomedical Engineering Paula Sanahuja Rosich 

ix 
 

List of abbreviations 
LARC: Locally Advanced Rectal Cancer 

AI: Artificial Intelligence 

ML: Machine Learning 

DL: Deep Learning 

LLMs: Large Language Models 

XAI: Explainable Artificial Intelligence 

NLP: Natural Language Processing 

RC: Rectal Cancer 

MRI:  Magnetic Resonance Imaging 

T2w: T2-weighted 

nCRT: neoadjuvant chemoradiotherapy 

TME: Total Mesorectal Excision surgery 

pCR: pathologic complete response 

DWI: Diffusion Weighted Imaging 

ADC: Apparent Diffusion Coefficient 

TNM: Tumour, Node, Metastasis 

TRG: Tumour Regression Grade 

TEM: Transanal Endoscopic Microsurgery 

W&W: Watch & Wait strategy 

TSE: Turbo Spin Echo 

FSE: Fast Spin Echo 

TR: Repetition Time 

DICOM: Digital Imaging and Communications in 
Medicine 

ROI: Region of Interest 

3D: Three dimensional 

IBSI: Imaging Biomarker Standardization 
Initiative 

PCA: Principal Component Analysis 

PC: Principal Components 

LDA: Linear Discriminant Analysis 

CNN: Convolutional Neural Network 

DSC: Dice Similarity Coefficient 

CV: Cross-Validation 

DT: Decision Tree 

RF: Random Forest 

LR: Logistic Regression 

SVM: Support Vector Machine 

RBF: Radial Basis Function 

XGBoost: Extreme Gradient Boosting 

LightGBM: Light Gradient Boosting Machine 

MLP: Multilayer Perceptron 

TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 

PPV: Positive Predicted Value 

NPV: Negative Predicted Value 

SHAP: SHapley Additive Explanations 

FMR: Mesorectal Fascia 

EMVI: Extramural Vascular Invasion 

CEA: Carcinoembryonic Antigen 

MSI: Microsatellite Instability 

ROC curve: Receiver Operating Characteristic 
curve 

AUC: Area Under the Curve 

GLDM: Gray Level Dependence Matrix 

GLRLM: Gray Level Run Length Matrix  

GLCM: Gray Level Co-occurrence Matrix 

GLSZM: Gray Level Size Zone Matrix  

NGTDM: Neighbouring Gray Tone Difference 
Matrix 

CTR: Core Tumour Radiomics 

BR: Border Radiomics 

WBS: Work Breakdown Structure 

PERT: Program Evaluation and Review 
Technique 

CPM: Critical Path Method 

SWOT: Strengths, Weaknesses, Opportunities, 
Threats 

EU-GDPR: EU General Data Protection 
Regulation 

LOPDGDD: Spanish Organic Law on Data 
Protection and Digital Rights 

ESR: European Society of Radiology 

EU-MDR: EU Medical Device Regulat



 Biomedical Engineering Paula Sanahuja Rosich 

x 
 

Table of contents 

Abstract ...................................................................................................................................... iii 

Resum ........................................................................................................................................ iv 

Acknowledgments ......................................................................................................................... v 

List of figures ............................................................................................................................... vi 

List of tables .............................................................................................................................. viii 

List of abbreviations ..................................................................................................................... ix 

1. Introduction ........................................................................................................................... 1 

1.1 Motivation ......................................................................................................................... 1 

1.2 Objectives ........................................................................................................................... 2 

1.3 Methodology and structure.................................................................................................... 2 

1.4 Scope and limitations ........................................................................................................... 3 

2. Background ........................................................................................................................... 4 

2.1 General concepts ................................................................................................................. 4 

2.1.1 Rectal tumour anatomy .................................................................................................. 4 

2.1.2 Imaging Protocol ........................................................................................................... 4 

2.1.3 Tumour Staging, Treatment and Restaging ...................................................................... 6 

2.1.4 Radiomics ..................................................................................................................... 7 

2.1.5 Artificial Intelligence ....................................................................................................... 8 

2.2 State of the art ..................................................................................................................... 9 

2.3 State of the situation ............................................................................................................ 9 

2.4 Market analysis .................................................................................................................. 10 

3. Concept engineering ............................................................................................................ 12 

3.1 Data acquisition ................................................................................................................. 12 

3.1.1 Database features ....................................................................................................... 12 

3.1.2 MRI sequence to segment ............................................................................................ 12 

3.2 Tumour segmentation ........................................................................................................ 13 

3.2.1 Segmentation methods ................................................................................................ 13 

3.2.2 Segmentation programs ............................................................................................... 14 

3.3 Image normalization ........................................................................................................... 15 

3.4 Radiomic feature extraction ................................................................................................ 15 



 Biomedical Engineering Paula Sanahuja Rosich 

xi 
 

3.5 Feature selection ............................................................................................................... 16 

3.5.1 Feature selection ......................................................................................................... 16 

3.5.2 Feature extraction ........................................................................................................ 17 

3.5.3 Proposed pipeline ........................................................................................................ 18 

3.6 Model training .................................................................................................................... 18 

3.6.1 Machine Learning models ............................................................................................ 18 

3.6.2 Evaluation Metrics ....................................................................................................... 20 

3.6.3 Model optimization ....................................................................................................... 21 

3.6.4 Proposed pipeline ........................................................................................................ 21 

4. Detail engineering ................................................................................................................ 22 

4.1 Data acquisition and selection of cases ................................................................................ 22 

4.2 Tumour segmentation ........................................................................................................ 24 

4.3 Image normalization ........................................................................................................... 25 

4.4 Radiomic data extraction .................................................................................................... 26 

4.5 Feature selection ............................................................................................................... 26 

4.6 Model training .................................................................................................................... 30 

4.7 Results ............................................................................................................................. 31 

4.8 Analysis of results and discussion ....................................................................................... 37 

4.8.1 Dataset discussion ...................................................................................................... 37 

4.8.2 Model results discussion .............................................................................................. 38 

5. Execution schedule .............................................................................................................. 43 

5.1 Work Breakdown Structure (WBS) ....................................................................................... 43 

5.2 PERT/CPM Diagram .......................................................................................................... 44 

5.3 GANTT Diagram ................................................................................................................ 45 

6. Technical feasibility .............................................................................................................. 46 

7. Economic feasibility ............................................................................................................. 48 

8. Regulation and legal aspects ................................................................................................ 50 

8.1 EU General Data Protection Regulation (GDPR) (EU Regulation 2016/679) and Spanish Organic 

Law on Data Protection and Digital Rights 3/2018 ...................................................................... 50 

8.2 European Artificial Intelligence Act (Regulation (EU) 2024/1689) ............................................ 50 

8.3 European Union Medical Device Regulation (EU MDR) (EU Regulation 2017/745) .................. 51 

8.4 Spanish Law 14/2007 on Biomedical Research .................................................................... 52 



 Biomedical Engineering Paula Sanahuja Rosich 

xii 
 

9. Conclusions ........................................................................................................................ 53 

10. References ..................................................................................................................... 55 

Annex 1. Tumour staging and restaging systems. .......................................................................... 64 

Annex 2. Normalization and radiomic feature extraction code .......................................................... 66 

Annex 3. Feature selection and model training code ....................................................................... 70 

Annex 4. Machine Learning model results ..................................................................................... 83 



 Biomedical Engineering Paula Sanahuja Rosich 

1 
 

1. Introduction  
Colorectal cancer is one of the most commonly diagnosed malignant tumours worldwide. Although it 

affects mostly people over 50 years of age, cases of people below 50 are increasing in recent years. 

According to the Observatorio del Cáncer de la Asociación Española Contra el Cáncer, in 2024, 41167 

new cases of colorectal cancer were diagnosed, becoming the most common malignant tumour in Spain. 

It is the second most common cancer for men and women, after prostate and breast cancer, respectively. 

It is also an important cause of death as, in 2024, 15401 people died of colorectal cancer in Spain [1].   

Colorectal cancer encompasses both rectal and colon cancers. This project is focused on rectal cancer 

(RC), which are the tumours affecting the last 15 cm of the colon, the rectum. Patients with rectal cancer 

experience changes in bowel habits, such as diarrhoea or constipation, changes in faeces' shape, 

abdominal pain, presence of blood in the stool, unexplained weight loss and fatigue [2].  

There are several risk factors associated with rectal cancer: family or personal history of rectal cancer or 

related cancers such as colon or ovarian cancer, high alcohol intake, smoking tobacco, obesity, old age, 

black ethnicity, a diet low in vegetables and high in red or processed meat or having syndromes or 

diseases related to rectal cancer such as Chron’s disease or Lynch syndrome [2] [3].  

Early diagnosis is crucial to induce a better response to the treatment. Many countries, including Spain, 

have a screening program for populations with a higher risk: people of ages between 50 and 69 years. 

This has yielded a growing number of early diagnosis rectal cancers which may benefit from less invasive 

treatments. Endoscopy is the gold standard in diagnosis of RC although other imaging techniques, 

particularly Magnetic Resonance Imaging (MRI), are routinely used to stage the tumour, assess 

prognosis and treatment response [4]. The most used sequences are high resolution T2-weighted (T2w) 

images and Diffusion Weighted Imaging (DWI) using b-values and ADC maps. 

Staging is carried out using the TNM standard and tumours can be classified into early rectal cancer or 

locally advanced rectal cancer (LARC). The treatment for the latter is neoadjuvant chemoradiotherapy 

(nCRT), to downsize the tumour, prior to the total mesorectal excision (TME) surgery [5]. This project will 

be focused on LARC patients. 

Response to nCRT is assessed in a second MRI using Mandard’s Tumour Regression Grading system 

(TRG) [77]. Patients with TRG1 and TRG2 can be classified as good responders whereas those with 

TRG3, TRG4 and TRG5 can be classified as non-responders to nCRT [6]. 

1.1 Motivation 
It is estimated that around 20% to 25% of LARC patients will have a complete response to nCRT, known 

as pathologic complete response (pCR), and might be eligible to skip surgery and instead opt for a more 

conservative Watch and Wait strategy (W&W) or a less invasive surgery (like transanal endoscopic 

microsurgery (TEM)) with comparable survival outcomes [7]. Avoiding surgery also improves the quality 

of life of the patient as they avoid the morbidity associated with it: stoma creation, risk of sexual 

dysfunction or altered bowel habits.  

Predicting the response to nCRT using data obtained from the staging MRI [8] could potentially help 

professionals personalize the treatment to each patient and improve the outcome of the 
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chemoradiotherapy. If patients that will likely become non-responders are identified early, the doctors 

can adjust the treatment accordingly, reducing potential adverse effects. Identifying which factors are 

significant for tumour outcome can help create more accurate models, improve therapy prescriptions and 

potentially increase the number of pCR.  

Another way of avoiding unnecessary excision surgeries is to improve differentiation between pCR and 

non-responders before the surgery, using information extracted from the second MRI [5].  

1.2 Objectives 

The main objective of the project is to build an Artificial Intelligence model capable of predicting the 

response of LARC after neoadjuvant chemoradiotherapy. This breaks down into several subobjectives: 

i. Determine clinical features//image markers that are key in predicting LARC evolution. 

ii. Verify similar studies already carried out using data obtained from Hospital de la Santa Creu i 

Sant Pau. 

And if the goal is achieved, the result of this project will be the development of a tool to help tailor 

neoadjuvant therapy to each patient. 

The initial hypothesis of the project is that the response to neoadjuvant chemoradiotherapy in patients 

with locally advanced rectal cancer can be predicted using machine learning models that use radiomics 

and/or clinical data. Moreover, the model that is expected to work better is the one combining both 

radiomics and clinical data. 

1.3 Methodology and structure 

The project described in this report follows a methodology similar to a radiomics workflow and an AI 

pipeline. It includes 84 patients diagnosed with LARC that underwent nCRT between June 2018 to 

September 2024. Moreover, all data comes directly from or is derived from the 84 patient’s clinical 

histories of Hospital de Santa Creu i Sant Pau in Barcelona. This study is a proof of concept for validation 

of a methodological approach using a real case database of tumour patients. The database is a 

retrospective cohort of oncological patients acquired from the hospital. This study is under evaluation of 

the Ethical Committee of the hospital. 

The project is divided in four main parts: tumour segmentation, preparation of the databases, model 

training/validation, and analysis of results. Tumours were segmented on the T2w sequence using the 

open-source software 3DSlicer (version 5.6.2). All segmentations were corrected by a senior radiologist. 

Afterwards, the data was extracted. The chosen clinical features were collected from the hospitals 

databases and the radiomics features were extracted from the tumour segmentation masks and the 

calculated tumour border masks. Radiomic extraction was carried out with the Python library 

PyRadiomics after normalizing the MRI studies. To complete the databases, the samples were classified 

as responders or non-responders using the Tumour Regression Grade (TRG) indicator. The most 

relevant radiomic characteristics were selected using dimensionality reduction strategies: Kruskall-Wallis 

non-parametric statistical test and the Spearman’s correlation coefficient. 

Finally, with the post-processed datasets, Machine Learning models were trained. Nine models (Decision 

Tree, Random Forest, Support Vector Machine, Logistic Regression, Naïve Bayes, Multilayer Perceptron, 
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Gradient Boosting, XGBoost, LightGBM) were trained for each of the seven possible feature set 

combinations (only tumour radiomics, only border radiomics, only clinical, tumour + border, clinical + 

tumour, clinical + border, clinical + tumour + border). Each model was optimized using hyperparameter 

tuning via 5-Fold Stratified Cross Validation grid search. Afterwards, the performance metrics and the 

confusion matrix were computed with the validation set, consisting of 15% of the data. For the models 

with the best results, the model’s feature importance plots and ROC curves were calculated. Feature 

importance plots were used to analyse the relevant features and compare with findings from the literature. 

This report is structured in sections that discuss the different steps of the process and the viability of it. 

Firstly, after the present introduction, the general theory concepts necessary to understand the aim of the 

work and a review of the available literature will be discussed in section 2. Afterwards, sections 3 and 4 

discuss the different possible solutions and explain in detail the methodology applied during the project. 

Section 4 also contains the results of every step and the final analysis of results.  

Then, four sections detailing the technical aspects of project management, such as its planning or budget 

will be included.  In section 5, the planning of the project is discussed with the development of a WBS 

dictionary, and PERT and GANTT diagrams. Section 6 contains a SWOT analysis to evaluate technical 

feasibility of the project. Section 7 is dedicated to explaining project budget. Finally, in section 8 the 

different laws and regulations that have to be considered for the development of the project are reviewed.  

To wrap up, section 9 discusses the conclusions of the project. Afterwards the references used during 

the report and the annexes containing additional information will also be included. 

1.4 Scope and limitations   

This project will take place in the imaging centre facilities of Hospital de la Santa Creu i Sant Pau and will 

last 4 months, from February 2025 to May 2025. However, the MRI studies included in the project are 

taken from June 2018 to September 2024.  

This project is focused exclusively on predicting treatment response using features extracted from the 

pre-treatment staging MRI (T2w sequence), prior to neoadjuvant therapy. The project scope includes the 

obtention of patients' data and MRIs, tumour segmentation in pre-nCRT MRI studies and obtention and 

analysis of radiomics data, the design and development of a database storing all the data to train the ML 

models, the development and training of the models and the extraction of conclusions from the models.  

Using genetical, pharmacological or histological characteristics to predict response is outside of the scope 

of this project as it is limited to radiomic characteristics and demographic and staging clinical features. 

As discussed in the motivation, Using the data from both staging and post-nCRT MRIs to be able to 
properly differentiate between pathological complete responders (pCR) and non-responders before the 

surgery can help avoid unnecessary surgeries in cured patients and prescribe excision surgeries, with 

increased confidence, in patients that could have been falsely classified as complete responders elsewise 

[5]. However, the project will not include the segmentation nor analysis of the post-nCRT MRI studies 

thus this research direction is outside of the scope.  
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2. Background 

2.1 General concepts 

In this section, the main background theory to comprehend what is going to be covered throughout this 

project will be explained. Firstly, the basis of rectal tumour anatomy will be explained, later the clinical 

protocols to acquire rectal MRI images and the systems of tumour staging will be discussed. Finally, 

radiomics and Artificial Intelligence will be explained. 

2.1.1 Rectal tumour anatomy 

The normal rectal wall is formed by five layers, from the lumen to outside they are in order: the mucosa 

(containing the epithelium and lamina propria), the muscularis mucosae, the submucosa, the muscularis 

propria (including the circular and longitudinal muscle) and the serosa/perirectal fat (Figure 1). All five 

layers can be seen in an T2w MRI but usually the mucosa and submucosa are seen as a single dark 

layer. Rectal cancers form in the mucosa, usually from existing polyps, and advance radially through the 

layers of the rectal wall. Longitudinal tumour spread is uncommon. If they breach the bowel wall, spread 

continues into the mesorectum, which is the fatty tissue surrounding the rectum that also contains the 

rectal vessels, and after breaching the mesorectal fascia, which surrounds the mesorectum, they advance 

progressively into adjacent pelvic structures, like the prostate or the seminal vesicles, in men, or the 

uterus, in women. Metastases occur via Locoregional lymphatic spread, i.e., spread to the nearby lymph 

nodes, and Hematogenous spread, i.e., spread through the bloodstream to the liver and the lungs, the 

latter mostly in tumours of the lower rectum. Metastases to the brain and skeleton are less common [3]. 

                                                                                                   
Figure 1. T2w MRI of a rectum. R: lumen, Arrows: mucosa and submucosa, Arrowheads: muscularis propria, Asterisk: 

mesorectum. 

2.1.2 Imaging Protocol 

Magnetic Resonance Imaging is the gold standard for rectal tumour staging and assessment of treatment 

response in rectal cancer [9]. MRI detects the realignment of protons with the magnetic field generated 

by the machine, after their alignment is temporarily disrupted by a radiofrequency pulse. The process by 

which the protons return to equilibrium is called relaxation and there are two types: longitudinal relaxation 

(z plane), described by the T1 time constant, and transverse relaxation (x-y plane), described by the T2 

time constant. In MRI, T1-weighted and T2-weighted images measure the T1 and T2 relaxation times of 

the tissues, respectively [10]. 
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Pelvic phased-array multichannel coils are the standard in rectal tumour imaging as they provide good 

signal-to-noise ratio, high spatial resolution and are comfortable for the patient [11]. Regarding bowel 

preparation, using antiperistaltic drugs can be beneficial to reduce motion artifacts related to rectal 

peristalsis [12]. Endorectal filling with gel or contrast is not indicated as, although it can help detect small 

tumours, it compresses mesorectal fat due to rectal distension which may hinder the detection of lymph 

nodes and the estimation of mesorectal fascia infiltration [11]. 

High-resolution scans are taken at a slice thickness of 3 mm or below as higher slice thickness can lead 

to loss of anatomical information [12]. The MRI sequences routinely used in tumour diagnosis and staging 

are T2-weighted Turbo Spin Echo (T2w-TSE), also known as Fast Spin Echo (FSE), and Diffusion 

Weighted Imaging (DWI), which comprise b-values and ADC maps. TSE is an MRI pulse sequence used 

routinely in medical practice which collects multiple echoes during a single repetition time (TR), as 

depicted in Figure 2. 

                                                                 
Figure 2. Schematic of the Fast Soin Echo sequence [13].  

Firstly, T2w images in the axial, coronal and sagittal planes are taken to localize the tumour and its long-

axis. In T2w images, the tumour presents an intermediate signal intensity, a characteristic tone often 

referred as “evil-grey”. Mucinous tumours return a higher signal, appearing whiter, due to their fluid 

content [3]. This can be seen in Figure 3, where the white spots on the tumour in the long-axis image 

(left) are mucus-like material that is surrounded by solid tumour, with its characteristic “evil-grey” signal. 

Then two sequences, parallel (known as long-axis) and perpendicular (known as short-axis) to the axis 

of the tumour, are acquired as shown in Figure 3 [11]. These sequences, especially the perpendicular 

one, help visualize the tumour better and to correctly stage the proximity of the tumour to the mesorectal 

fascia. These sequences can also be used to assess lymph node morphology [3]. 

 
Figure 3. Short and Long-axis of a rectal tumour. Left: Long-axis of the tumour. Middle: slice in the sagittal plane of the 

tumour with the tumour axes. Right: short-axis of the tumour 

DWI images should be taken in the perpendicular plane to the axis of the tumour with the same angulation 

[12]. DWI images measure the diffusion of water molecules, which follows a Brownian motion. Water 

molecules move freely in unconstrained tissues (isotropic movement) and move in a restricted manner 
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in structured environments (anisotropic movement). Since not all structures are oriented in the same 

manner, several directions have to be measured to evaluate diffusion. Diffusion weighting is expressed 

as a b-value (measured in s/mm²), which increases with stronger diffusion weighting. When b-values 

increase, signal from freely moving water is attenuated whereas signal from areas where diffusion is 

restricted is brighter. Apparent Diffusion Coefficient (ADC) maps can be calculated from different b-values 

and provide a visual representation of tissue water diffusivity [10]. Rectal tumours appear bright in images 

with high b-values and dark in ADC maps, as they have restricted water diffusion, as seen in Figure 4 [3].  

 
Figure 4. DWI sequences b1000 (left) and ADC map (right). Green circle surrounds the tumour. 

2.1.3 Tumour Staging, Treatment and Restaging 

Two MRI scans are taken in clinical routine. The first MRI scan is used to stage the tumour before 

neoadjuvant therapy using the TNM (Tumour, Node, Metastasis) staging system to determine the state 

of the tumour and avoid prescription of unnecessary nCRT in patients with early cancer. More detailed 

description of the staging can be found in Annex 1. 

• T is used to describe the size of the tumour and its invasion into adjacent tissues. T0 indicates 

no presence of tumour whereas T4 indicates that the tumour has extended through all the layers 

of the submucosa and invaded the peritoneum or adjacent structures (Figure 5).  

• N indicates the dissemination of cancer to nearby lymph nodes. Lymph nodes act as filters of 

harmful substances, including cancer cells, and are a common site of metastases. The presence 

of cancer cells in these structures is related with worse tumour prognosis. It can take values from 

N0 (no evidence of nodal spread) to N3 (high distal nodal spread).  

• M is used to identify the presence of metastases, the spread of the tumour beyond the regional 

lymph nodes. It can be M0, no presence of metastasis, or M1, evidence of metastasis [14]. 

According to TNM staging, RC can be classified into early rectal cancer (T1–2 and N0), in which the 

standard treatment is surgical excision, and locally advanced rectal cancer or LARC (T3–4 and/or N1-2), 

in which the standard treatment is neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal 

excision surgery (TME) [5]. With the first MRI, other parameters are also assessed related to the 

localization of the tumour, the length of the tumour, extramural venous invasion and the involvement of 

the mesorectal fascia (the latter only in T3 tumours). 
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Figure 5. Schematic of the T-staging of rectal cancer [3]. 

The goal of nCRT in patients with LARC is to downsize and downstage the tumour before the surgery to 

reduce the risk of leaving tumoral tissue behind during the surgery. The response to nCRT is assessed 

in a second MRI using the Tumour Regression Grading system (TRG) which describes the extent of 

tumour in the first MRI that is replaced by fibrosis signal in the second MRI. TRG0 shows no residual 

tumour whereas TRG5 shows predominant tumour in the second MRI [6]. More detailed description of 

TRG can be found in Annex 1. Patients with TRG1 and TRG2 can be classified as good responders 

whereas those with TRG3, TRG4 and TRG5 can be classified as non-responders to nCRT. yTNM, tumour 

staging after nCRT can also be determined in the second MRI after nCRT. Both the TRG and the yTNM 

are later confirmed during the total mesorectal excision surgery (ypTNM) [6]. This surgery includes the 

removal of the whole tumour with the surrounding mesorectum invested in the mesorectal fascia. In TNM, 

the prefix y indicates staging if the patient has had neoadjuvant chemotherapy and the prefix p indicates 

tumour staging applied to the histological specimen, in other words, the tumour that has been removed 

during surgery. It is worth of noting that the TNM staging carried out before nCRT is often referred as 

cTNM, with the c prefix meaning that it is the clinical staging [3]. 

2.1.4 Radiomics 

Traditionally, medical images have been analysed qualitatively by visually assessing the shape, size, 

intensity of tumours or other structures. Radiomics offers an alternative way to analyse the image by 

extracting not only quantitative features related to the shape and size but also histogram related features 

or texture analysis. These features allow the extraction of information that is not apparent to the human 

eye. Some shape features that can be extracted, which are more complex than what visual inspection 

allows, are sphericity, compactness, elongation or axis length. Texture features are statistical 

relationships of voxel intensities within the region of interest (ROI). Thus, radiomics offer a non-invasive 

and cost-effective way to mine big amounts of meaningful data from medical images [15]. 

There are many softwares and libraries capable of extracting radiomic features. In this project, features 

will be extracted using the library PyRadiomics, an open-source Python package [16]. Features are 

extracted from a segmentation mask by calculating single values for a region of interest (“segment-based” 
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extraction) or by generating feature maps (“voxel-based” extraction) [17]. In this project the features 

extracted are First Order Statistics (19 features), Shape-based (3D) (16 features), Gray Level Co-

occurrence Matrix (24 features), Gray Level Run Length Matrix (16 features), Gray Level Size Zone Matrix 

(16 features), Neighbouring Gray Tone Difference Matrix (5 features) and Gray Level Dependence Matrix 

(14 features). More information about which features are extracted, and their meaning can be found in 

the library’s documentation [17]. 

2.1.5 Artificial Intelligence 

The term Artificial Intelligence (AI) was formally proposed in a conference at Dartmouth University in 

1956. Artificial Intelligence is defined as the capability of computer systems to perform complex tasks 

such as decision making or creating content, that would usually require or are associated with human 

intelligence [18]. AI has experienced a big development over recent years although the origins of the 

technology can be traced back to 70 years ago. Nowadays, the amount and dimensionality of data has 

increased, known as big data, enabling the development of more complex AI models. The development 

of advanced hardware capable of supporting the computational power needed to analyse and train the 

algorithms also has enabled the rapid evolution of AI [19].  

Machine Learning (ML) is an important part of AI which refers to the use of an algorithm that learns from 

data. ML’s types of problems are prediction (classification and regression), clustering, and dimensionality 

reduction and the main learning methods are supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning. Supervised learning is when the algorithm learns from 

labelled data, usually to solve a classification or regression problem. When the data is unlabelled, the 

learning method is unsupervised learning, usually used for clustering problems to reveal groups in the 

dataset or for dimensionality reduction problems to reduce the number of features in a dataset. Semi-

supervised learning is a mix of the last two, but it is not used frequently [19]. Lastly, in reinforcement 

learning, the computer explores an environment and interacts with it receiving rewards, either positive or 

negative, from the actions. The algorithm is optimized based on these rewards. This idea comes from 

behavioural psychology and imitates the way that humans and animals learn. Reinforcement learning is 

used to train a computer to perform tasks such as playing different kinds of games or autonomously 

driving a car around a specific track [20].  

Another subset of Machine Learning is Deep Learning (DL) which uses multilayer neural networks, 

inspired by the structure of human neurons, as the architecture for the algorithms. DL can process large 

batches of data, such as images or text, without the need of complex data preprocessing or feature 

engineering [21]. Examples of widely used Deep Learning applications are Large Language Models 

(LLMs), which are capable of understanding and generating human-like text and are used to translate, 

summarize, rewrite, analyse or classify text [21], and Generative AI, which learns patterns from training 

data to generate new content such as text, images, or audio. [22].  

Nowadays, AI is used in multiple industries for various purposes. Natural Language Processing (NLP) 

refers to a technology that enables computers to understand natural human language. It represents an 

intersection between language information processing and artificial intelligence. This involves both written 

text and speech recognition, where the computer hears sounds, converts them into words and then 

extracts the meaning of the message [19]. In the medical industry, AI is used to assist diagnosis, to 
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optimize treatment dosage, to assist in deciding personalized treatments, to predict and assess the risk 

of diseases in big populations, to develop new drugs, among many more [21].  

In imaging AI is widely used in computer vision, which is the ability for computers to understand the world 

with images, similarly to how humans use vision. It is mostly used for facial, pattern and image 

recognition. Specifically, in medical imaging, AI is used to detect lesions in medical images such as 

tumours, fractures, pneumonia or retinal diseases, to plan surgeries by building detailed 3D models 

obtained from medical images or to carry out automatic organ and lesion segmentation [22]. 

2.2 State of the art 

Some sources argue that the methods described in the previous section are not optimal and present 

some disadvantages that have to be considered. Firstly, it is discussed that while the TRG is a good 

predictor of pathologic response with high specificity, it may not be the optimal ground truth as it presents 

low sensitivity [6]. In other words, TRG is good at identifying people without positive response but not at 

identifying subjects with bad response. Moreover, TRG is assessed via visual inspection and the value 

can change based on the experience of the reviewer. The quality of the MRI study also affects this 

parameter [23]. Using response based on the ypTNM as ground truth could help mitigate this error. 

However, it is not yet clear what a good response would be based on the evolution between cTNM and 

ypTNM.  

Another drawback is that since radiomic-based datasets often have a small number of samples and the 

number of extracted features exceeds it; datasets fall into the “curse of dimensionality” and the models 

are prone to overfitting. This is the case for the dataset used in this project. Dimensionality reduction and 

feature selection strategies can be implemented to identify and remove redundant features such as 

ranking features by correlation coefficients, by importance metrics or using methods to transform the 

feature space to a new set of features with reduced dimensionality such as principal component analysis 

(PCA) or linear discriminant analysis (LDA) [15]. The dimensionality reduction strategies implemented 

will be explained in later sections. 

A disadvantage of Artificial Intelligence, particularly important in diagnostic medical applications, is model 

explainability which refers to the techniques used to interpret and understand the model’s decision 

process. In AI, the more complex the model the less self-explainable it is. For instance, models such as 

Decision Trees are already explainable but Neural Networks, which are more complex and provide better 

accuracy, are often regarded as a “black box” meaning the user cannot know the reasons behind the 

predicted output. Explainable AI methods are used to open this box and understand the decision-making 

process [24]. This is important in diagnostic medical applications as the doctors should be able to tell the 

patients the cause of their health problem. Some explainable AI methods (XAI) include feature importance 

methods such as LIME or SHAP or the development of a second model to provide explanations of the 

original model like TREPAN [24]. 

2.3 State of the situation 

Similar studies to this project have been carried out. Several algorithms and methodologies have been 

used in these studies and this section is reviewing some of them. 
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A study used tumour segmentations on pretreatment T2w MRIs to train a Deep Learning model to predict 

survival in patients with rectal cancer. They used three data cohorts: a first cohort used for model selection 

and hyperparameter optimization, a second cohort used as a separate internal test cohort, and a third 

cohort with data collected from a different hospital used as an external test cohort. Patient survival was 

predicted by classifying patients into high or low risk groups based on a fixed cutoff calculated in the 

training set. The best model had a C-index of 0.82 and performance was improved using a multimodal 

model, which also included the pretreatment carcinoembryonic antigen level as input, with a C-index of 

0.86, for the validation set, and 0.67, for the external test set [25].  

Another study used both T2w and clinical features to train a model to predict treatment response of 

patients with LARC at an early stage. Models were trained using radiomics features extracted from the 

tumour core and the tumour border, using clinical features based on T2w images and with both datasets 

simultaneously. The models yielded an AUC of 0.7, 0.684 and 0.793 respectively, showing that when 

using both radiomics data and clinical data, the predictions improve. Moreover, the pipeline used in this 

study is very similar to the one applied in this project, providing a useful benchmark [26]. 

A separate study focused on discriminating non-responders from complete-responders and partial-

responders. Data was extracted from segmentations in the pre-nCRT and during nCRT MRI studies. 

Ratios and differences between these data points were also calculated to obtain extra datapoints. In this 

study, a Random Forest classifier with 2000 decision trees was used to build the model. Despite the 

limited number of patients in the study, 55, the model obtained a main AUC of 0.85 [7]. 

Another single-centre study trained Machine Learning models to assess complete and positive response 

to nCRT with 131 patients. Seven separate models were trained using different features: one with 

exclusively clinical data, one with exclusively tumour radiomics (from T2w), one with mesorectum 

radiomics data (from T2w), one with clinical and tumour data, one with clinical and mesorectum data and 

one with the three datasets. The model with the best performance was the one trained with exclusively 

clinical features, with an AUC of 0.69 for complete response to nCRT and 0.64 for positive response. 

This is uncommon as similar studies, such as the previously explained, found that a combination of 

clinical and radiomics features often yields better results. The authors discussed that the reason is likely 

because of the way that the radiomic regions were segmented, as it is not standardized and the technique 

varies significantly within literature [9].  

An AI radiopathomics model using data form pretreatment MRI and haematoxylin and eosin-stained 

biopsy slides showed that it could predict pCR with high accuracy. The model, called RAPIDS, was 

validated on two cohorts showing accuracies of 0.86 and 0.87, respectively, and an AUC of 0.888 [27]. 

Another study focused in mesorectal fat T2w MRI radiomics showed that these features can predict pCR 

with an AUC of 0.89, local and distant recurrence and post-treatment T and N categories [28]. Another 

study used both T2w and DWI MRI sequences to extract radiomics data and used the surgical 

histopathologic analysis as the ground truth response. They built three models: a T2w, a DWI and a 

merged one. The best model was the T2w, with am AUC of 0.82 [29]. 

2.4 Market analysis 

Since the aim of this project is not to develop a sellable product but an algorithm/software that can be 

used as a predictor of response to therapy, the market is comprised of patients whose quality of life could 
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potentially improve thanks to the software and of hospitals who could reduce expenses in treatment by 

opting for a more conservative treatment approach. 

However, similar technologies capable of detecting lesions in medical images are commercially available 

in the market. Sycai Medical offers a software capable of detecting abdominal cancers at early stages. 

Moreover, it also offers an automatic single-lesion tracking over time, a patented technology [30]. 

SimBioSys has developed a tool that automatically segments breast tumours and surrounding tissues 

from DCE MRIs, creates a 3D model and, using information at the cellular level obtained from the tumour 

biopsy, it creates a digital twin. This twin allows doctors to answer questions related to tumour staging, 

treatment prescription, treatment response and patient survival [31]. Veye Lung Nodules, a product by a 

company called aidence, is a CE certified product used in hospitals in Europe that is able to detect lung 

nodes in lung CT-scans. Furthermore, it quantifies the size and volume of the nodes, it segments them, 

it classifies them into solid or sub-solid nodes and also assesses nodal growth by calculating the growth 

percentage and the volume doubling time. This tool is integrated in the routine clinical workflow without 

adding any workload to the doctors [32]. Lastly, there are also companies dedicated to improving the 

radiology department’s workflow like Enlitic. Some solutions, based on AI, offered by the company are 

ENDEX™, which standardizes DICOM images and data into a universal ontology, ENCOG™, which uses 

Computer Vision and NLP technologies to anonymize patient data from medical imaging data, and 

Migratek®, which facilitates DICOM data migration between platforms. According to the company, these 

systems optimize worklists by showing only relevant patients, automate study routing by assigning 

studies to the appropriate radiologists and allow customized display of studies [33].  

There are also related patented technologies. Informatics radiomics integration system is designed to 

analyse and integrate medical data such as radiomic and clinical data for classification into different 

groups, using machine learning methods, to improve visualization using 3D representations or heatmaps. 

This helps doctors understand better the complexity of the data. It can be used for disease diagnosis and 

staging, personalized medicine and research [34]. Another patented technology is a platform that 

generates 3D models of tumours from 2D medical images segmentations and identifies radiomic features 

that can be used as imaging biomarkers for cancer diagnosis and prognosis, assessment of treatment 

response and personalized therapy design. These features are compared to eliminate redundancies and 

the selected ones are then compared to separate genomic data and/or outcome data [35]. 

In 2025, it is forecasted that 4938 patients will be diagnosed with colorectal cancer in Catalonia, according 

to the Pla contra el Càncer de Catalunya [36]. The price of a standard treatment includes the first MRI 

study, the nCRT, the second MRI and the potential surgery, later post-surgical care and stoma care. By 

tailoring the treatment to each patient, using the predictions of the software developed, patients may be 

eligible to skip surgery and all the post treatment care, reducing overall treatment cost.  
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3. Concept engineering 
In this section, the different possible solutions will be discussed and the best will be chosen to optimize 

the pipeline. 

3.1 Data acquisition 

3.1.1 Database features 

The final dataset will include both radiomics data and clinical data. However, the clinical data has to be 

chosen. According to similar studies [3, 9, 5, 26], the clinical features most commonly associated to nCRT 

response are: the tumour location (high rectum = 3, middle rectum = 2, low rectum = 1), whole tumour 

volume (mm3), tumour cranio-caudal extension (mm), distance from the internal anal sphincter (mm), 

mesorectal fascia infiltration (FMR) (absent = 2, present = 1), extramural vascular invasion (EMVI) 

(absent = 2, present = 1), extramural depth of invasion (mm), T-stage (1–4), N-stage (1–2), overall clinical 

stage (TNM), nCRT to surgery interval, carcinoembryonic antigen (CEA) level, microsatellite instability 

(MSI), KRAS mutation status, statin use, tumour grade (degree of cellular differentiation), nCRT radiation 

dose, age, gender, body mass index, mucinous histology, family history (first or second-degree relative 

with colon or rectal cancer) and the pathological tumour type.  

Whole tumour volume (mm3) was not selected as this feature is already extracted with radiomics. 

Carcinoembryonic antigen (CEA) level is a non-specific blood biomarker that is related to cancer, but it 

is not used to diagnose it, so it was discarded [37]. Microsatellite instability (MSI), detected in 15% of 

colorectal cancers, and KRAS mutation status are genetical variables [38] that are usually tested in 

clinical practice, especially in advanced cancers. They are discarded as this study does not focus on 

genetic factors. Tumour grade (degree of cellular differentiation), mucinous histology and the pathological 

tumour type were discarded as they are histological variables and the study is not focused on tumour 

histology. Statin use refers to the use of statin medications, used to lower cholesterol levels [39], and it 

was discarded because it is not readily available for most patients in the study. Extramural depth of 

invasion (mm), nCRT to surgery interval, nCRT radiation dose, body mass index, and family history were 

discarded, despite being relevant, because of lack of data in the hospital’s databases. The rest of the 

variables were chosen for extraction and were available in the hospital’s databases as they are usually 

part of the staging report. 

Another aspect to consider when building the database is the ground truth. For this project, the ground 

truth can be based on the TRG, of the second MRI, or on the ypTNM, obtained after surgery. As explained 

in the section 2.2, the TRG may not be the best indicator. However, the classification of responders and 

non-responders is clear [6] thus TRG will be used as it is the most straightforward method. 

3.1.2 MRI sequence to segment 

As explained in the background section, during a rectal MRI several sequences are acquired. Selecting 

the proper sequence to segment is a pressing matter in this work. After a bibliography review and expert 

consultation, it was concluded that the most commonly used sequence in clinical practice and 

segmentation is the short-axis plane as it is where the tumour is better visualised. This is also consistent 

with the methodologies of the similar studies reviewed in section 2.3 thus T2w and DWI (ADC + b1000) 



 Biomedical Engineering Paula Sanahuja Rosich 

13 
 

images in the short-axis plane preliminarily were selected for segmentation. This would allow more data 

to be extracted as they are three separate sequences that provide different information.  

However, since this process would require three separate segmentations, registering the images to a 

common space was attempted. Both rigid (only image rotation and translation) and affine (image rotation, 

translation, shearing and scaling) [40] registrations were carried out. After reviewing some registered 

cases, it was concluded that registration was not possible because, although the protocol is to acquire 

DWI images using the same angulation as the T2w short axis [12], most of the available diffusion 

sequences were acquired in a natural axial plane instead. Thus, the images were not correctly 

superposed, and segmentations could not be reused.  

Another difficulty, innate to the rectum, was that it is a very changing organ because, unlike the brain for 

example, it is not constrained in a rigid structure [3] and, since the T2w and the DWI sequences are not 

acquired simultaneously, a gas bubble or a peristaltic movement can change the shape of the rectum [5] 

and render the first segmentation unusable for the other sequences even if they were properly registered. 

Moreover, the slice thickness of the available T2w sequences was of 3 mm whereas for DWI was of 4-5 

mm. Although this should not pose a problem during registration because information would be 

interpolated, it could lead to loss of spatial resolution or interpolation artifacts [40].  

Finally, it was decided that, as most of the studies only use T2w images to extract radiomics data and 

this is the most relevant sequence in routine clinical practice, the T2w short-axis sequence was the only 

chosen sequence for segmentation.  

3.2 Tumour segmentation 

Segmentation in image processing is the process of dividing an image into one or multiple regions of 

interest (ROIs) based on criteria such as region homogeneity or edges between heterogeneous regions 

[41]. There are multiple methods, strategies and programs to carry out this process that will be discussed 

in this section, specifically for medical imaging. 

3.2.1 Segmentation methods 

Segmentations can be carried out manually, in a semi-automatic way or automatically. Manual 

segmentations are executed by experts manually delineating the ROI usually slice by slice. The resulting 

segmentations are very precise as complex cases are evaluated by an expert. However, this method is 

very time-consuming, it is subjective to user variability, and observer bias can be introduced [42].  

Automatic segmentations are carried out by an algorithm. The model, previously trained, automatically 

identifies and delineates the ROI without human intervention. This allows faster processing of large 

datasets and the introduction of real-time segmentation applications. However, segmentations may be 

less accurate and are especially compromised in images with complicated anatomy or poor quality [42]. 

Depending on the training data, bias might also be introduced [43]. 

Semi-automatic segmentation combines user input with an algorithm. There are several methods such 

as placing a seed in the ROI for the algorithm to delineate the rest of the area [42]. These methods are 

faster than manual but slower than automatic. Moreover, the user should have some level of expertise to 
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correct the resulting ROIs. The output also depends on the image quality and the algorithm performance 

[43]. 

Several papers describe developments of automatic methods. One study described a convolutional 

neural network (CNN) architecture based on a densely connected NN to segment LARC in T2w 3D 

images. The method also included a 3D level-set algorithm to refine the contours of the predicted 

segmentations. They reported good results (Dice similarity coefficient (DSC), recall rate (RR), and 

average surface distance (ASD) of 0.8585 ± 0.0184, 0.8719 ± 0.0195, and 2.5401 ± 2.402, respectively) 

when comparing the predictions with the ground truth (segmentations by a radiologist) [44]. In another 

paper they developed a U-net based algorithm to automatically segment the outer rectal wall, lumen, and 

perirectal fat regions on post-nCRT 2D T2w MRI scans. They reported good performance of the algorithm 

(wall DSC = 0.920, lumen DSC = 0.895) in comparison with radiologist segmentation. They reported 

better results than multi-class algorithms, i.e., algorithms that can segment multiple ROIs simultaneously 

[45]. Finally, a different study used a U-net algorithm to segment LARC in DWI images. The results were 

compared with a semi-automatic method based on a grey-level threshold. The U-net showed better 

results (DSC = 0.675 ± 0.144) than the semi-automatic method (DSC = 0.614 ± 0.22) when compared 

with the ground truth segmentations made by radiologists [46]. 

Despite the good results reported by the studies, none of the models is medically approved thus 

segmentations will be carried out manually or, if the segmentation software allows, using assistance of 

semi-automatic tools. This will allow more control and precision of the segmentations over using an 

automatic method. 

3.2.2 Segmentation programs 

Several software programs are used to segment medical images both in research and in clinic. One of 

them is 3DSlicer, an open-source software for image visualization, segmentation, registration, and 

analysis widely used in research projects with medical images. It is important to point out that the software 

is not FDA approved, and it is not intended for clinical use although it can be used in research [47] [48]. 

This software is used in some of the papers reviewed during this report [7, 26, 45]. 

3DSlicer is structured in modules that permit the different functionalities. In the software, multiple image 

planes can be seen simultaneously and overlayed. Moreover, there are statistics modules that allow 

extraction of quantitative data from the images. Most importantly, the software has manual and semi-

automatic segmentation tools, located in the Segmentations and the Segment Editor modules. The 

learning curve of this program is quite steep but there are plenty of tutorials and documentation available. 

Additionally, it has a broad variety of available extensions that add extra functionalities such as a 

radiomics module used to extract radiomics features, based on the PyRadiomics python package [49]. 

Another software is syngo.via by Siemens Healthineers. It is FDA-approved and has a CE-marking, 

making it usable in clinical practice. The platform offers multi-modality reading with a friendly user 

interface with accessibility tools that mark anatomical structures in images. It is also structured in modules 

depending on the specialization: oncology, cardiology, neurology… Moreover, it offers the possibility to 

perform 3D manual segmentations and quantification of the lesions. It is an easy-to-use software and 

requires little training [50]. 



 Biomedical Engineering Paula Sanahuja Rosich 

15 
 

For clinical use, the software is capable of automatically finding similar cases in the hospital database 

references. It is mainly used for diagnostic, clinical report writing and to plan treatments or procedures. 

Image scans can also be rendered into a 3D volume for better visualization. However, this software 

requires a commercial licence to be used which is not free [50]. 

Although it requires more training, the chosen software was 3DSlicer because it is open-source and 

versatile. 

3.3 Image normalization 

Before extracting the features, images have to be normalized, an especially important process in this 

study as the MRIs are taken from five different machines from the hospital. In the reviewed studies, two 

methods of normalization are mainly carried out: Z-score normalization [5] or using the mean intensity of 

the obturator internus muscle as a reference value [7, 45].  

Z-score normalization can be applied using the StandardScaler() function from the Scikit-learn Python 

library [5] and it standardizes the image so that it has a mean intensity of zero and a standard deviation 

of one. This function applies the following equation through all the data 

𝑧 =
𝑥 − 𝜇

𝜎
 

Equation 1. Z-score normalization. 

were x is the non-standardized pixel, µ is the mean intensity, σ is the standard deviation and z is the 

standardized pixel [51].  

The other option, using the mean intensity of the obturator internus muscle, is carried out by drawing a 

specific sized ROI on the muscle, extracting the mean and standard deviation of the intensity and using 

the parameters to normalize the data with an equation like Equation 1. However, in some of the MRI, the 

obturator internus is not visualized well. Thus, the gluteus maximus muscle should be used instead as it 

is quite uniform for all the patients and easy to spot, located on the rear part of the images [3].  

Both methods are very similar, but the latter would increase the workload of the project significantly as 

additional ROIs would have to be drawn on each study and additional parameters would have to be 

extracted. Moreover, the studies where the method was applied had good results, but they were not 

substantially higher than studies that used Z-score normalization. In conclusion, for simplicity and to 

reduce workload the Z-score method was preferred. 

3.4 Radiomic feature extraction 

Regarding radiomic feature extraction, the features will be extracted using the PyRadiomics library [16]. 

The features extracted with this module are in compliance with feature definitions as described by the 

Imaging Biomarker Standardization Initiative (IBSI) [52]. The IBSI looks to provide standardized image 

biomarker nomenclature and definitions to ensure that the extraction of imaging biomarkers can be 

reproductible across different studies [52]. 

As explained, feature extraction can be applied with a 3DSlicer extension or via Python code. For this 

project, the extraction will be coded in Python as it is a faster method that returns a single file with all the 
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features. With the 3DSlicer extension, individual feature files for each segmentation would be obtained 

and they would have to later be merged, increasing time and resource consumption unnecessarily. 

Features can be extracted from different areas apart from the tumour ROI. As reviewed, a study used 

radiomics extracted from the tumour and tumour borders [26], another also used features from the 

mesorectum, apart from the tumour [9], and another used features from the mesorectal fat instead [28]. 

In the present study, the ROI is exclusively drawn on the tumour thus the only extra features that could 

be extracted are tumour borders. These will be calculated from the original tumour segmentations without 

needing to delineate an additional mask. Tumour borders also contain some perirectal tissue, specifically 

from the mesorectum [3], thus the predictive capacity of the surrounding tissues can also be assessed 

with this method. Thus, borders will be included in the extraction because, without much additional 

workload, the predictive capability of tumour borders and surrounding tissues will be assessed. 

To recap this section, the features will be extracted using the library PyRadiomics via a Python script and 

radiomics will be extracted from the segmented tumour mask and the calculated tumour borders. 

3.5 Feature selection 

As discussed in the state of the art section, radiomic based databases often have a large number of 

features and a small number of samples and the database in the present study is not an exception. 

Moreover, these types of datasets are prone to overfitting and may yield models that are not generalizable 

[15]. However, there are several methods to decrease dimensionality that will be discussed in this section. 

In general, the methods can be classified into two strategies: feature selection and feature extraction. 

3.5.1 Feature selection 

Feature selection methods are used to select a subset with the most relevant features from all the dataset 

[15]. Although some of these methods include training a machine learning model with different subsets 

of features to find de optimal subset (wrapper methods) or training a machine learning model with all the 

dataset to find what features the model chose as most important (embedded methods), these are highly 

computationally expensive and model dependent. Model dependency can yield a dataset that is not able 

to generalize well and might not perform effectively with different models [53]. There are other methods, 

independent of machine learning algorithms, known as filter methods. 

Filter methods assess the relevance of features with respect to the target variable using statistical criteria 

such as correlation coefficients, mutual information, or variance. These methods are computationally 

efficient. However, unlike wrapper and embedded methods, they fail to capture interactions between 

features yielding less precise results [53]. 

Variance thresholding is used to remove features with low variance, that is features that only consist of 

noise and therefore have very little variation [54].  

Correlation measures the positive and negative linear relationship between two variables. Features with 

high correlation to the target variable can be considered more relevant. Correlation between feature pairs 

can also be calculated and used to remove highly correlated features. However, this method has 

limitations in capturing non-linear relationships [53]. There are two types of correlation coefficients: 

Pearson’s and Spearman’s. On the one hand, Pearson’s is used when both variables are normally 

distributed. Moreover, it is influenced by extreme values (outliers) which may exaggerate or dampen the 
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strength of relationship. On the other hand, Spearman’s is appropriate when one or both variables are 

skewed and is robust to outliers [55]. 

Mutual information measures the amount of information that two random variables provide about each 

other [56] or the dependency between them. It captures both linear and non-linear relationships. Features 

with higher mutual information scores contribute more to reducing uncertainty about the target variable 

[53]. It is calculated from the joint probability distributions of the feature (independent variable) and the 

ground truth (dependent variable) [56]. 

Finally, statistical tests can also be carried out to find significant features (p-value < 0.05). There are 

several tests to be used depending on the type of data to be analysed. They can be classified into 

parametric and non-parametric tests. In parametric tests it is assumed that the data follows a specific 

distribution (normal distribution is commonly assumed). They are applied in well-known populations and 

are more powerful than their non-parametric counterparts. In non-parametric tests the population’s 

distribution is not known [57]. In radiomics, the distribution of the data cannot be assumed as data is 

usually skewed, with outliers or the datasets are not balanced thus non-parametric tests are often used.  

An example is the Kruskal-Wallis H test, which is the non-parametric version of the one-way analysis of 

variance or F-test. It assesses whether the distribution of a feature is significantly different across the 

data groups by ranking all data together [58]. 

3.5.2 Feature extraction 

In feature extraction methods, the original feature space is transformed into a new smaller set of relevant 

features which are combinations of the original ones [15]. Principal Component Analysis (PCA) is an 

unsupervised learning technique that creates principal components (PC), which are linear combinations 

of the original features that maximally explain the variance of the data [59]. The technique projects the 

original dataset to a new space where the new features or orthogonal axes are the directions of maximum 

variance. The first PC has the highest variance, and the subsequent PCs have decreasing variances 

[60]. 

Linear Discriminant Analysis (LDA) is a supervised learning technique that focuses on finding a new 

feature space that maximizes class separability. It is considered to be more robust than PCA as it uses 

the data labels to compute the new feature space. In LDA, the number of produced components is smaller 

than the number of classes therefore, for binary classification problems, only one new feature will be 

created regardless of the features in the original dataset [60]. 

However, these methods may hinder explainability, which is especially important in healthcare. Since the 

new features are linear combinations of the original ones, it is hard to know exactly how much weight an 

original feature has in the decision of the later trained model [61]. Since one of the goals of this study is 

to identify potential biomarkers and image markers for response, these methods cannot be used as 

extracting which features are actually relevant and their respective importance would be unfeasible. 
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3.5.3 Proposed pipeline 

To decrease the dataset dimensionality, filter methods were preferred because of the low computational 

cost, because they are model independent and because they preserve the original features. From the 

available statistical tests, non-parametric tests will be used due to the nature of radiomic data.  

The proposed process is first to apply the Kruskal-Wallis test to find the radiomic features whose 

distributions differ significantly across tumour response groups, i.e., that they have a p-value below 0.05. 

Afterwards, to avoid selecting features that are highly correlated, the Spearman’s correlation coefficient 

will be used as it is robust to outliers and skewed data [55]. In feature pairs with correlation over 0.8, 

which can be considered as strong correlation [62], the feature with the highest p-value, the least 

significant feature according to the Kruskal-Wallis test, will be removed [63].  

3.6 Model training 

This study consists in a binary classification problem. The two classes are non-responders to 

chemotherapy (0) and responders to chemotherapy (1). 

3.6.1 Machine Learning models 

First, some well-established Machine Learning models used in classification tasks will be considered. 

Most of these are used in the related studies and seem suitable for the current task. A brief description 

of the models is as follows: 

• Decision Tree 

Decision tree (DT) is a supervised learning method used for both classification and regression tasks [64]. 

They are named after their tree-like structure. Decision nodes represent decisions based on input 

features, branches represent the outcome of the decisions and leaf nodes represent the final predicted 

classification label [65]. For splitting decision nodes into branches, the most popular criteria are Gini 

impurity (“gini”) and information gain (“entropy”) [64]. One of the main advantages of using a decision 

tree is that it can generate classification rules that are easy to understand and explain [65]. 

• Random Forest 

A Random Forest (RF) classifier is an ensemble classification technique that fits several decision trees 

in parallel on different dataset sub-samples and uses majority voting (classification tasks) or average 

(regression tasks) to calculate the outcome or final result. It minimizes the overfitting problem of the 

decision trees and increases the prediction accuracy, making it more accurate than a single decision tree 

model. It combines bootstrap aggregation (or bagging), i.e., random sampling of a dataset with 

replacement, and random feature selection to build the series of decision trees [64].  

• Logistic Regression 

Logistic Regression (LR) is a probabilistic statistical model commonly used to solve classification tasks. 

It typically uses a logistic function (sigmoid function) to estimate the probabilities of a given class. 

However, it can overfit high-dimensional datasets but the L1 (Lasso) and L2 (Ridge) regularization 

techniques can be used to mitigate it. The model assumes a linear relationship between the probabilities 
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of the dependent variable and independent variables thus it works well when the dataset can be 

separated linearly [64]. 

• Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning algorithm that constructs a hyperplane or set of 

hyperplanes in a high-dimensional space to separate the data into classes. The best hyperplane is the 

one that achieves a greater separation (margin), i.e., that has the greatest distance from the nearest 

training data points in any class. A larger margin generally leads to better generalization and lower 

classification error. SVM is effective in high-dimensional spaces and behaves differently based on 

different mathematical functions, known as kernels, such as linear, polynomial, radial basis function 

(RBF) or sigmoid. Kernel functions transform the input data into a higher dimensional space where linear 

separation might be possible. However, when the dataset contains noise or overlapping target classes, 

SVM does not perform well as the separation between classes cannot be found [64]. 

• Gradient Boosting, XGBoost and LightGBM 

Gradient Boosting is an ensemble learning method that generates a final model by sequentially combining 

multiple individual weaker models, typically decision trees. Each new model is trained to minimize the 

loss function (mean squared error, cross-entropy…) of its predecessor using gradient descent [64]. In 

every iteration, the algorithm computes the gradient of the loss function with respect to the predictions 

and trains a new weak model to minimize it. The new predictions are then added to the rest (ensemble) 

and the process is repeated until a stopping criterion is met. This iterative approach allows the model to 

progressively correct its own mistakes, improving accuracy [66]. 

Extreme Gradient Boosting (XGBoost) is a form of gradient boosting that takes more detailed 

approximations into account when determining the best model as it computes second order gradients of 

the loss function, apart from the first order gradients already computed by the base model. It also applies 

L1 (Lasso) and L2 (Ridge) regularization, reducing overfitting and improving model generalization [64].  

Light Gradient Boosting Machine (LightGBM) is another form of gradient boosting. It is a framework 

designed by Microsoft to be more efficient, faster and requires less memory usage. It also uses a tree 

level framework. It is faster as it supports parallel, distributed and GPU learning [67]. 

• Naïve Bayes 

The Naive Bayes algorithm is based on the Bayes’ theorem, with the assumption of conditional 

independence between every pair of features given the value of the class variable. The key benefit is 

that, compared to more sophisticated approaches, it needs a small amount of training data to estimate 

the necessary parameters. However, its performance may be affected due to its strong assumptions on 

feature independence. Some variants of this model are Gaussian Naïve Bayes, for continuous features, 

or Multinomial Naïve Bayes, for text data [64]. 

• Multilayer perceptron 

Multilayer Perceptron (MLP), also known as the feed-forward artificial neural network, is the base 

architecture of deep learning. It consists of an input layer, one or more hidden layers and an output layer 

that are fully connected through weighted connections [64]. To optimize the model parameters and learn 
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the complex relationships in data, MLP uses the backpropagation technique via an algorithm such as 

gradient descent. The model computes the error in the prediction and adjusts the model using the 

computed gradients [68]. Furthermore, an activation function (ReLU, sigmoid, tanh…) can also be added 

at the neurons of each hidden layer to introduce nonlinearities to the model [64]. 

3.6.2 Evaluation Metrics 

For a binary classification problem, the labels are usually interpreted as positive or negative results. In 

this case, responders would be considered as positive whereas a non-

responder would be negatives. Thus, the results when comparing the 

label predicted by the model and the true ground-truth labels can be 

classified in four categories: true positives (TP) that are correctly 

predicted positive outcomes, true positives (TN) that are correctly 

predicted negative outcomes, false positives (FP) that are negative 

outcomes wrongly predicted as positive, and false negatives (FN) that 

are positive outcomes wrongly predicted as negative [69]. These 

results can be summarized in a 2x2 matrix called a confusion matrix, 

as seen in Figure 6. The most common classification metrics that 

reflect the model’s performance can be calculated from this matrix [69]: 

• Accuracy: proportion of correctly classified instances in the set of all instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Equation 2. Accuracy equation. 

• Sensitivity (recall): proportion of correct positive predictions out of all positive instances. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 3. Sensitivity (or recall) equation. 

• Specificity: proportion of correct negative predictions out of all negative instances. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Equation 4. Specificity equation. 

• Precision or Positive Predicted Value (PPV): proportion of correct predictions out of all positive 

predicted instances. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 5. Precision equation. 

• Negative Predicted Value (NPV): proportion of correct predictions out of all negative predicted 

instances. 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

Equation 6. Negative Predicted Value equation. 

• F1-score: harmonic mean of precision and recall. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 7. F1-score equation. 

Figure 6. Schematic of a confusion 
matrix. [72] 
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Sensitivity and specificity, on one hand, and precision and NPV, in the other, are usually used as metric 

pairs. Moreover, while accuracy is the most common metric, sensitivity and specificity often give more 

information about the model especially if the dataset is very imbalanced [69]. 

Furthermore, as previously explained, some machine learning 

models classify samples into classes based on numeric 

probabilities and a threshold. Receiver operating characteristic 

(ROC) curves can be obtained by plotting sensitivity on the y-

axis and 1-specificity (or false positive rate) on the x-axis at all 

possible threshold values. From the ROC curve, the area under 

the curve (AUC) can be computed and used as a measure of 

overall model performance and robustness across thresholds. 

Unlike the others, AUC does not depend on the probability 

threshold. It has a value between 0 and 1 but values over 0.5 

indicate increasing discriminative ability of the model [70]. Figure 

7 shows an example of different ROC curves and their meanings.  

3.6.3 Model optimization 

Machine Learning models can be tuned by changing the hyperparameters. Hyperparameters are user 

defined model characteristics that affect the model’s functionality. For instance, hyperparameters are the 

number of decision trees used in a random forest classifier or the number of layers and neurons in each 

layer in a neural network. Hyperparameter tuning is the process of optimizing the model’s 

hyperparameters to find the best performance and reduce overfitting [71].  

The user defines a grid of hyperparameter to test, and the combinations are assessed using several 

methods. Grid search tests all possible combinations of hyperparameters. It is an exhaustive and time-

consuming optimization method. In random search only some random hyperparameter combinations are 

evaluated. Bayesian optimization uses a probabilistic model to choose which combinations to test. First, 

it chooses a random subset of combinations. Based on the performance of the first models, it chooses 

the next combination by taking similar values to the one with best performance [71].  

Regardless of the method, the different combinations are usually tested using k-fold Cross Validation in 

which training data is split into k-folds. Each parameter combination is evaluated by training it using k-1 

folds and testing it using the remaining fold in a way that, after k evaluations, all data has been used once 

to test. After each evaluation the accuracy is computed. Afterwards, the mean accuracy between all k 

evaluations is assigned to the current hyperparameter combination. After all combinations are tested, the 

one with the best average accuracy is chosen as best [71]. Cross Validation can also be applied to the 

model to train and test it across folds without the need for hyperparameter tuning. 

3.6.4 Proposed pipeline 

Based on the literature reviewed and the methodology of the project, the pipeline to train, optimize and 

test the models is: train a set of robust models using 5-fold cross validation, carry out hyperparameter 

tuning via grid search 5-fold cross-validation to optimize the model, train the optimized models with the 

best hyperparameters using 5-fols cross-validation, and compute the performance metrics and feature 

importance analysis of the best models.  

Figure 7. Schematic of a ROC curve and its 
meanings [73]. 
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4. Detail engineering 
In this section, the procedure and results of each step will be explained in detail. 

4.1 Data acquisition and selection of cases 

Before downloading the data, the patients enrolled 

in the study had to be chosen (Figure 8). Firstly, 110 

patients diagnosed with Locally Advanced Rectal 

Cancer (LARC) treated in the hospital between June 

2018 and September 2024 were selected. Given all 

the clinical record numbers of the patients, the MRI 

studies, called RM RECTE/TERRA PELVIS, were 

manually downloaded from the hospital’s application 

Enterprise Imaging Cloud in DICOM format (Digital 

Imaging and Communications in Medicine), the 

standard medical imaging format for handling, 

storing, and transmitting information [74]. During this 

step, 22 patients were found to have unavailable 

MRIs, either pre-nCRT, post-nCRT or both, and 

were removed. Upon revision of the studies, 2 patients had imaging artifacts that impeded the 

visualization and segmentation of the tumour and were also discarded. After looking into the available 

data of the patients, one more patient was discarded as they underwent Transanal Endoscopic 

Microsurgery (TEM) instead. 84 patients remained.  

All the studies were downloaded using the anonymization option in the Enterprise Imaging Cloud to 

ensure that personal data was removed. Afterwards, the chosen clinical features were acquired using 

both the Enterprise Imaging Cloud and the SAP from the hospital. The TRGs were also downloaded and 

later classified into responders (TRG1 and TRG2) and non-responders (TRG3, TRG4 and TRG5) [6] for 

the models’ ground truth. Table 1 shows a description of the clinical features acquired. 

Responders (label = 1) (n=36) (42.86 %) 
Categorical Features Continuous Features 

Feature name Count % Feature name Mean ± std Range 

Sex 
Age at 

diagnosis 
69.44 ± 10.69 [49, 92]     Female 18 50 % 

    Male 18 50 % 

T 

Tumour 
extension 

45.06 ± 12.23 [26, 67] 

    3a 10 27.8 % 

    3b 19 52.7 % 

    3c 4 11.1 % 

    3d 3 8.3 % 

    4a 0 0 % 

    4b 0 0 % 

N 

Sphincter 
distance 

44.17 ± 38.75 [0, 144] 

    0 6 16.7 % 

    1a 5 13.9 % 

    1b 11 30.6 % 

    1c 0 0 % 

    2a 7 19.4 % 

Figure 8. Patient selection diagram. 
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    2b 7 19.4 % 

EMVI 

Anal distance 78.72 ± 38.27 [20, 172]     Absent 26 72.2 % 

    Present 10 27.8 % 

FMR 

 

    Absent 23 63.9 % 

    Present 13 36.1 % 

Localization 

    Low 10 27.8 % 

    Medium 16 44.4 % 

    High 10 27.8 % 
 

Non-Responders (label = 0) (n=48) (57.14 %) 
Categorical Features Continuous Features 

Feature name Count % Feature name Mean + std Range 

Sex 
Age at 

diagnosis 
69.83 ± 13.41 [40, 90]     Female 16 33.3 % 

    Male 32 66.67 % 

T 

Tumour 
extension 

52.29 ± 15.72 [25, 88] 

    3a 10 20.8 % 

    3b 14 29.2 % 

    3c 15 31.3 % 

    3d 2 4.1 % 

    4a 3 6.3 % 

    4b 4 8.3 % 

N 

Sphincter 
distance 

35.04 ± 34.06 [0, 125] 

    0 4 8.3 % 

    1a 9 18.8 % 

    1b 16 33.3 % 

    1c 3 6.3 % 

    2a 12 25 % 

    2b 4 8.3 % 

EMVI 

Anal distance 68.67 ± 35.15 [15, 145]     Absent 27 56.3 % 

    Present 21 43.8 % 

FMR 

 

    Absent 24 50 % 

    Present 24 50 % 

Localization 

    Low 21 43.8 % 

    Medium 17 35.4 % 

    High 10 20.8 % 
Table 1. Description of clinical features. The percentages are with respect to the responders and non-responders subset. 

The correlation matrix representing the correlation of the clinical features between them and with the 

response can be found in Figure 9. 
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Figure 9. Correlation matrix between the extracted clinical features and response. 

After, all anonymized MRI studies were imported into Slicer3D and the short-axis T2w sequences were 

selected for later segmentation. During this process, it was found that depending on the localization of 

the tumour in the rectum; low, middle or high, the short-axis and the long-axis could be confused. In 

tumours located in the low rectum, the short-axis resembles an axial plane sequence and the long-axis 

a coronal plane sequence, as explained in the background section. However, if the tumour is in the high 

rectum, the short-axis resembles a coronal plane and the long-axis an axial plane, as seen in Figure 10. 

This is because of the anatomy of the rectum, and it is not a mistake in sequence acquisition as is. 

Despite this confusion, the selected sequence was always the T2w short-axis. 

 
Figure 10. Short and Long-axis of a rectal tumour located in the high rectum. Left: Long-axis of the tumour. Middle: slice in the sagittal 

plane of the tumour with the tumour axes. Right: short-axis of the tumour 

4.2 Tumour segmentation  

As discussed in the concept engineering section, segmentations were carried out in 3DSlicer (version 

5.6.2) and in the T2w short-axis sequence. The Segmentations and Segment Editor modules of 3DSlicer 

were used to delineate the regions of interest (ROI). Specifically, the tools used from Segment Editor 

were Paint, a circular brush of custom radius, Draw, to draw the tumour contour that the program 

automatically fills, and Erase, a circular brush of custom radius to erase parts of the segmentation.  
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Semi-automatic methods such as Grow from Seeds, Fill Between Slices or Level Tracing are also 

available in the program. In Grow from Seeds the user manually paints a small ROI (seed) and the 

program dilates it to achieve the complete segmentation. In Fill Between Slices the user segments the 

structure in some slices and skips others. The program will fill the skipped slices by interpolating between 

segmentations. Level Tracing is used to find areas where the pixels all have the same intensity. By 

clicking on these areas, they are automatically added to the segmentation. 

However, these methods were not useful as in T2w the colorectal tumours have very heterogeneous 

intensities and similar tones to surrounding tissues. The program would confuse the different regions of 

the image and the segmentations had to be corrected manually either way. These methods would be 

useful to segment structures with homogeneous tone and high contrast in comparison with their 

surroundings, like bone. Thus, the segmentations were carried out using the manual methods.  

The main challenge during the segmentations was understanding rectum anatomy and rectal cancer 

morphology. Segmentation was restricted solely on known tumour regions, excluding regions of 

uncertainty to avoid adding errors. Moreover, in the cases where the tumour would infiltrate nearby 

organs, only the part of the tumour that was inside the rectum was included in the segmentation. Another 

consideration was what are known as “partial volumes”. The MRI slices cover the signal included in a 

depth of 3 mm, but this is not necessarily a uniform area in the real body thus, especially in the areas 

where tumour is starting or ending, the tumour appears with a rough texture with a signal intensity halfway 

between the tumour and healthy tissue. Partial volumes also take place when there are liquid pools inside 

the tumour, common if the tumours are mucinous, or if there is liquid in the rectal lumen. The partial 

volumes of liquid pools would have a light grey tone as liquid appears white in the MRI [3]. Partial volumes 

were not included in the segmentations as it would be including healthy tissue into the tumour ROI, which 

may alter the results. Segmentation examples can be found in Figure 11. Each segmentation was 

validated and corrected by a senior radiologist from the radiology department of the hospital. When 

finished, the segmentation masks were saved in .nrrd format. 

    
Figure 11. Example segmentations in 3DSlicer. The green area is the segmented tumour. Left: segmentation of a clearly defined tumour. 

Right: segmentation with liquid infiltrations (white), tumour infiltrating nearby tissues and partial volumes (bottom part of the segmentation). 

4.3 Image normalization  

Prior to the normalization step, all studies were converted to .nii.gz format using a Python script, to avoid 

errors in processing. Normalization has been carried out on each study before extracting the radiomics 

features. The images were imported, converted to a Numpy array and then they were normalized by 
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applying the .fit_transform() method from StandardScaler() [51]. Finally, the arrays were converted back 

to an image. The conversions and image processing were achieved using the Python’s library SimpleITK, 

used to carry out multi-dimensional image analysis in multiple coding languages [75].  

4.4 Radiomic data extraction 

The code to extract the radiomics features was implemented with Python and its library PyRadiomics. All 

code to extract radiomic features and normalize the images can be found in Annex 2. The code iterated 

over all the MRI scans, saved in a specific folder, checked that their respective segmentation mask was 

available, which were saved in a separate folder, and extracted the features on the mask region using 

the previously initialized RadiomicsFeatureExtractor(), which is the PyRadiomics class used to store the 

radiomics extraction parameters [76]. The extractor was configured so that all available radiomics 

features were extracted, adding up to a total of 110 [17]. The features were saved to a .csv file.  

To extract radiomics from tumour borders, these had to be calculated first. Firstly, a 2 mm dilation and a 

2 mm erosion were applied to the original segmentation mask using the SimpleITK functions 

.BinaryDilate() and .BinaryErode(), respectively. The physical size in millimetres was converted to the 

number of voxels using the voxel spacing of each 

MRI, obtained with the .GetSpacing() method. 

Then, the physical size was divided by the 

spacing in each dimension (x, y and z) to obtain 

the conversion in number of voxels. Finally, the 

eroded mask was subtracted from the dilated 

mask to obtain the tumour masks. With this 

method, the tumour border mask includes the 

outermost part of the tumour and the closest 

surrounding tissues. The masks will usually 

include part of the rectal mucosa or of the perirectal tissues. An example of the process can be found in 

Figure 12. The last step after both datasets were acquired was to manually add the ground truth column, 

which contains the target variable for feature selection and supervised learning. The distributions of the 

radiomic features were plotted. Some did not follow a normal distribution and were skewed (Figure 13).  

    
Figure 13. Example distribution plots of the extracted radiomic variables.    

4.5 Feature selection 

After building the radiomics datasets, the most significant radiomic features have to be selected to 

decrease dimensionality. This process will be carried out with the pipeline proposed in the concept 

engineering section both for the tumour core dataset and the tumour borders dataset. First, the Kruskal-

Wallis test is applied using the kruskal() function from the scipy.stats Python library [78]. This test provides 

a p-value for each feature that signifies whether the distribution of a feature is significantly different across 

Figure 12. Example of the calculated tumour border mask (top left), the 
original manual segmentation (bottom left) and an overlay of both (right). 
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the data groups (separated by tumour response). The features that have p-values below 0.05 are 

considered significant and are kept. Afterwards, to remove collinearity, the Spearman correlation matrix 

is computed and, in feature pairs with an absolute correlation coefficient greater than 0.8, the least 

significant feature is removed. This is carried out using the spearman() function from the scipy.stats 

Python library [78]. The final features are saved in another .csv file. The code can be found in Annex 2. 

As a result, 17 and 10 radiomic features were selected for the tumour core and tumour borders datasets, 

respectively. After removing collinearity only 8 and 4 features remained for the tumour core and tumour 

borders datasets, respectively. Table 2 shows the selected features after removing collinearity for both 

datasets and their p-value and mean. After this step, three datasets were available: one with radiomics 

from the tumour core, one with radiomics from the tumour border and one with clinical features. 

Tumour Core Dataset 

Feature Name 
Mean ± std 

(responders) 

Mean ± std (non-

responders) 
p-value 

Major Axis Length (shape) 

Maximum 2D Diameter Slice (shape) 

Surface Volume Ratio (shape) 

Total Energy (firstorder) 

Dependence Non-Uniformity Normalized (gldm) 

Large Dependence High Gray Level Emphasis (gldm) 

Long Run High Gray Level Emphasis (glrlm) 

Short Run Low Gray Level Emphasis (glrlm) 

40.06 ± 12.52 

34.84 ± 13.90 

0.53 ± 0.13 

1476.88 ± 1748.62 

0.07 ± 0.03 

624.00 ± 336.58 

61.71 ± 44.70 

0.33 ± 0.05 

46.08 ± 15.76 

40.39 ± 14.79 

0.48 ± 0.15 

4264.07 ± 6727.58 

0.09 ± 0.05 

886.64 ± 528.61 

135.47 ± 165.89 

0.29 ± 0.09 

0.038 

0.030 

0.049 

0.014 

0.035 

0.025 

0.021 

0.009 

Tumour Borders Dataset 

Feature Name 
Mean ± std 

(responders) 

Mean ± std (non-

responders) 
p-value 

Maximum 2D Diameter Slice (shape) 

Minimum (firstorder) 

Dependence Variance (gldm) 

Large Dependence Low Gray Level Emphasis (gldm) 

39.48 ± 14.09 

-1.30 ± 0.31 

37.52 ± 4.50 

266.66 ± 120.74 

44.88 ± 14.93 

-1.17 ± 0.32 

35.30 ± 4.64 

211.01 ± 114.68 

0.045 

0.025 

0.034 

0.036 

 

The selected features contain information of the tumour shape, morphology and texture of the region they 

represent. A brief description of each feature, based on PyRadiomics documentations, can be found 

below in order to give meaning to the datasets at hand. The features are classified according to the 

feature class. Firstly, the shape features which are independent of the grey level intensity distribution and 

are extracted from the segmentation mask (and the mesh calculated from it) are the following [17]: 

Table 2. Selected significant radiomic features after removing collinearity for both datasets. 
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• Major Axis Length (shape): It is the measure of the largest axis length of the ellipsoid that 

encloses the segmented ROI. It indicates the tumour orientation and elongation [17]. 

• Maximum 2D Diameter Slice (shape): The largest Euclidean distance between tumour vertices 

in the row-column plane (axial plane). Used to estimate maximum spread [17].  

• Surface Volume Ratio (shape): Defined as the quotient between surface area and volume (A/V). 

A lower value indicates a more compact, sphere-like shape whereas higher values suggest 

irregular shapes [17].  

Next, the features in the first order class are the first order statistics that describe the distribution of voxel 

intensities within the ROI defined by the mask. These are common statistical metrics such as maximum, 

minimum, percentiles, energy, variances, etc [17]: 

• Total Energy (firstorder): Energy is the sum of the squares of the voxel values in an image. A 

larger value means that the image has high intensity voxels overall. Total Energy is the value of 

Energy feature scaled by the volume of the voxel (in mm3). This feature is volume-confounded: 

the higher the volume of the ROI, the higher the energy [17]. 

• Minimum (firstorder): The minimum intensity value of a voxel in the ROI [17]. 

Gray Level Dependence Matrix (GLDM) features quantify grey level dependencies in an image. Grey 

level dependencies are defined as the number of connected voxels within distance δ that are dependent 

on the centre voxel. These features describe the texture homogeneity of a region and the local patterns 

present in it by analysing how similar the intensities of nearby voxels are [17]: 

• Dependence Non-Uniformity Normalized (gldm): Measures the similarity of dependencies 

throughout the image, with a lower value indicating more homogeneity among dependencies in 

the image, i.e., a more uniform texture [17]. 

• Large Dependence High Gray Level Emphasis (gldm): Measures the joint distribution of large 

dependencies with higher grey level values, highlighting how common large homogeneous 

regions with high voxel intensity are in the ROI [17]. 

• Large Dependence Low Gray Level Emphasis (gldm): Measures the joint distribution of large 

dependencies with lower grey level values, highlighting how common large homogeneous 

regions with low voxel intensity are in the ROI [17]. 

• Dependence Variance (gldm): Measures the variance in dependence size in the image. A high 

value suggests heterogeneous texture [17].  

Finally, Gray Level Run Length Matrix (GLRLM) features quantify grey level runs, which are defined as 

the length, in number of pixels, of consecutive, colinear pixels that have the same grey level value in a 

certain direction [17]: 

• Long Run High Gray Level Emphasis (glrlm): Measures the joint distribution of long run lengths 

with higher grey levels. High values suggest uniform texture with large streaks of high grey level 

intensities [17].  

• Short Run Low Gray Level Emphasis (glrlm): Measures the joint distribution of shorter run lengths 

with lower grey levels. High values suggest heterogeneous texture with short streaks of voxels 

with low grey level intensities, such as grainy or speckle-like regions [17]. 
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Gray Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), and Neighbouring 

Gray Tone Difference Matrix (NGTDM) feature classes were also extracted by PyRadiomics [17] but none 

were selected in the statistical tests. 

The correlation matrixes of both feature sets can be found in Figure 14 and Figure 15, which show how, 

after feature selection using statistical tests and the correlation coefficients, features that are highly 

correlated with each other, and thus redundant, are removed. 

 
Figure 14. Correlation matrix of the selected core tumour features and response. 

 
Figure 15. Correlation matrix of the selected tumour border features and response. 
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4.6 Model training 

Nine machine learning models were trained, optimized and tested to assess the predictive capability of 

each of the seven dataset combinations available:  

• One dataset contains only radiomic features from the tumour core (which will also be called whole 

tumour during this work), capturing exclusively the intratumoral characteristics. 

• One dataset contains exclusively tumour border radiomic characteristics, focusing on nearby 

tissues and tumour-patient interface information, to assess the predictive capabilities of the 

surrounding tissues. 

• A third dataset is composed only of the clinical features acquired from the hospital’s database, 

including demographic information and features extracted during tumour staging, to assess non-

imaging predictors. 

• The other four datasets contain all combinations of the previous features: whole tumour + tumour 

borders, whole tumour + clinical features, tumour borders + clinical features, and a final dataset 

containing all data (whole tumour + tumour borders + clinical features). 

This approach was chosen to systematically evaluate all the individual and combined feature sets and 

their contribution to predicting response to neoadjuvant treatment. Each dataset had 84 samples. 15 % 

of these samples, 13 samples, were reserved as a final test set to assess the metrics of the best models 

and avoid data leakage in model assessment. Specifically, out of 13 samples in the test set, 7 were non-

responders and 6 were responders. This data split was carried out using the train_test_split() function 

from the Python package scikit-learn. The hyperparameter stratify was used to have the same percentage 

of samples from each class in the validation set [79]. The remaining set was not split into train and 

validation as the models were trained and optimized using a 5-fold Cross Validation strategy.  

First and foremost, the models were trained using the default hyperparameters with a 5-fold Cross 

Validation strategy. Since almost all showed possible overfitting to training data and mediocre 

performance in test and validation sets, the models were optimized using hyperparameter tuning to try 

and mitigate overfitting, improve generalization and overall performance. 

To optimize the models, a grid of hyperparameters was defined and each combination was tested using 

a gird search 5-fold Cross Validation strategy. This was implemented with the StratifiedKFold() and 

GridSearchCV() functions from scikit-learn. The stratified K-fold function was implemented to have 

balanced classes in each of the train and validation folds [80]. The hyperparameters that were optimized 

for each model and the functions to initialize them can be found in Table 3. All functions are from scikit-

learn except for XGBClassifier() and LGBMClassifier() that are from the xgboost and lightgbm modules, 

respectively. A short list of hyperparameters was chosen to avoid extremely high computational times.  

Model Hyperparameters tuned 

Decision Tree 
    DecisionTreeClassifier() 

Maximum Depth 
Minimum Samples Split 
Minimum Samples Leaf 
Model Criterion 

Random Forest 
    RandomForestClassifier() 

Number of Estimators 
Maximum Depth 
Minimum Samples Split 
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Support Vector Machine 
    SVC() 

Model Kernel 
C 
Gamma 

Logistic Regression 
    LogisticRegression() 

C 
Penalty 
Solver 

Naïve Bayes 
    GaussianNB() 

No hyperparameters to tune 

Multilayer Perceptron 
    MLPClassifier() 

Hidden Layer sizes 
Activation Function 
Alpha 
Learning Rate 

Gradient Boosting 
    GradientBoostingClassifier() 

No hyperparameters to tune 

XGBoost 
    XGBClassifier() 

Number of Estimators 
Maximum Depth 
Learning Rate 
Subsample 
Colsample Bytree 

LightGBM 
    LGBMClassifier() 

Number of Estimators 
Number of Leaves 
Learning Rate 
Boosting Type 
Minimum child samples 

Table 3. List of hyperparameters tuned for each model. 

Radiomic features and continuous clinical features were scaled for training and test using MinMaxScaler() 

and StandardScaler() [51], respectively, that are also functions from scikit-learn. MinMaxScaler() 

transforms data so that all values are within a given range, in this case between [0 1]. This does not 

change de distribution of the data nor the effect of the outliers, conserving information, especially 

important in radiomics data [81]. StandardScaler() performs z-score normalization, as previously 

discussed, scaling data to unit variance and zero mean [51]. The scaling process was applied inside each 

training fold separate from the test set to avoid data leakage. 

The best hyperparameters for each model were the ones that yielded the best average test accuracy. 

After the hyperparameter optimization, the models were retrained with the best configurations using 5-

fold Stratified Cross Validation. During Cross Validation (CV), mean and standard deviations of the 

training and test accuracies were also tracked. Later, the models were assessed using the previously 

reserved test set to calculate the confusion matrix and the evaluation metrics: accuracy, sensitivity, 

specificity, precision, NPV and f1-score. Afterwards, the model with the best performance overall, taking 

into account all of the metrics, was selected for each dataset and the area under the ROC curve and the 

feature importance were calculated. The code for hyperparameter optimization and model training can 

be found in Annex 3. 

4.7 Results 

This section contains the results of the best models for each dataset. The results of all models, used to 

assess which model performed best, are in the Annex 4. Note that label 1 (responders) is considered as 

the positive class whereas label 0 (non-responders) is considered as the negative class for the calculation 

of performance metrics.  

https://scikit-learn.org/
https://scikit-learn.org/
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- Whole tumour radiomics only dataset: 

For this dataset, the model with the best performance is Random Forest as it the best model overall. 

Gradient Boosting, also based on decision trees, has de same validation accuracy, sensitivity, and 

specificity but by taking a look at the CV metrics, it can be seen that the model probably overfits the 

training data and is not able to generalize well to the test data. It fits perfectly to the training data in all 

folds as it has an accuracy of 1.00 ± 0.00. However, the performance decreases with the test folds with 

an average accuracy of 0.56 ± 0.11, which means that the model is barely capable of making predictions. 

Random Forest, on the other hand, shows a training accuracy that is quite high with little variance through 

all folds (0.91 ± 0.02) and an average test accuracy of 0.71 ± 0.11 which is very similar to the validation 

accuracy of 0.77. This shows that, despite some slight overfitting, the model is capable to generalize to 

new data and predict well. The other metrics are summarized below. 

Best 
Model 

Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

AUC Sensitivity Specificity Precision NPV F1-score 

Random 
Forest 

0.91 ± 
0.02 

0.71 ± 
0.11 

0.77 0.70 0.67 0.86 0.80 0.75 0.73 

Table 4. Metrics for the best model (Random Forest) for the whole tumour radiomics only dataset. 

        

Figure 17. ROC curve and AUC of the best model (Random Forest) for 
the whole tumour dataset. 

The confusion matrix shows that only three cases had incorrect predictions and that the model is more 

likely to predict that a new sample is a non-responder. An AUC of 0.70 indicates that the model has 

overall robust performance. 

- Tumour borders radiomics only dataset: 

In this case, the best validation accuracy is 0.62, achieved by four models that also have the same 

sensitivity and specificity values. Multilayer Perceptron, Naïve Bayes and Logistic Regression show 

underfitting as they are not able to reach average CV train accuracies over 0.70. On the other hand, 

XGBoost seemingly shows overfitting as the average train accuracy is 0.99 and the test and validation 

accuracies are much lower. All four models have similar average test accuracies, with values ranging 

from 0.60 to 0.66. Therefore, the choice for the best model comes down to whether underfitting or 

Figure 16. Confusion Matrix of the best model (Random 

Forest) for the whole tumour dataset. 
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overfitting is preferred. XGBoost was chosen because it shows capability to learn the patterns in the data, 

despite having low ability to generalize to new data. The metrics of this model are summarized below. 

Best 
Model 

Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

AUC Sensitivity Specificity Precision NPV F1-score 

XGBoost 
0.99 ± 
0.01 

0.66 ± 
0.08 

0.62 0.54 0.50 0.71 0.60 0.62 0.55 

Table 5. Metrics for the best model (XGBoost) for the tumour border radiomics only dataset. 

      

                  Figure 19. ROC curve and AUC of the best model (XGBoost) for 
the tumour borders dataset. 

Figure 18 shows that 5 cases were predicted wrongly and that the model has a tendency to assign new 

samples as non-responders. An AUC of 0.54 and the ROC curve shape of Figure 19 show that the model 

has poor predictive capability overall. 

- Tumour core + borders radiomics dataset: 

The highest validation accuracy for this dataset is 0.69 and has been achieved by four models. Naïve 

Bayes is discarded as, with a sensitivity of 1.00 and a specificity of 0.43, the model is biased towards 

predicting new samples as responders.  

The other three models have identical validation metrics. XGBoost is discarded because of apparent 

overfitting, with an average CV training accuracy of 1.00 and an average CV test accuracy of 0.55. The 

chosen model is Multilayer Perceptron because it has less gap between training and test accuracies than 

Decision Tree, indicating better generalization. The latter possibly overfits to the training data and has 

smaller test accuracy. However, it is worth to point out that the test accuracies for both models are very 

variable between folds (standard deviations of 0.14 and 0.15 for the Decision Tree and Multilayer 

Perceptron, respectively) indicating that results are very different across folds. 

Best Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

AUC Sensitivity Specificity Precision NPV F1-score 

Multilayer 
Perceptron 

0.71 ± 
0.04 

0.62 ± 
0.15 

0.69 0.67 0.67 0.71 0.67 0.71 0.67 

Table 6. Metrics for the best model (Multilayer Perceptron) for the whole tumour + border radiomics dataset. 

Figure 18. Confusion Matrix of the best model 
(XGBoost) for the tumour borders dataset. 
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           Figure 21. ROC curve and AUC of the best model (Multilayer 

Perceptron) for the core tumour + tumour borders dataset. 

This model presents a performance halfway between the core tumour only and the tumour borders only: 

four cases are wrongly classified, and the AUC has a value of 0.67. It has worse results than the core 

tumour only model likely because of the addition of the border features that perform worse on their own 

and add noise to the data which negatively affects the predictions. 

- Clinical features only dataset: 

There is only one model that has the best accuracy, of 0.69, in this dataset for the validation set, which 

is Decision Tree. It has an average CV training accuracy of 0.77 and test accuracy of 0.57 showing that 

it can still generalize to new data, despite the low accuracy values that seemingly indicate some 

underfitting. The other models have overall poor validation performance, so they are discarded.  

Best Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

AUC Sensitivity Specificity Precision NPV F1-score 

Decision 
Tree 

0.77 ± 
0.02 

0.57 ± 
0.09 

0.69 0.59 0.83 0.57 0.62 0.80 0.71 

Table 7. Metrics for the best model (XGBoost) for the clinical features only dataset. 

           

        Figure 23. ROC curve and AUC of the best model (Decision Tree) 
for the clinical features only dataset. 

This model tends to predict new samples as 

responders as it can clearly be seen in the confusion matrix, 8 predicted as responders vs 5 predicted as 

non-responders, and in the ROC curve, showing that for high sensitivities, the model has lower specificity. 

Figure 20. Confusion Matrix of the best model (Multilayer 
Perceptron) for the core tumour + tumour borders dataset. 

Figure 22. Confusion Matrix of the best model (Decision 
Tree) for the clinical features only dataset. 



 Biomedical Engineering Paula Sanahuja Rosich 

35 
 

- Clinical features + tumour radiomics dataset: 

Three models have the maximum accuracy for this dataset, of 0.69. Naïve Bayes is discarded due to the 

average training and test accuracies of 0.62 and 0.63 that indicate that the model cannot learn the data 

well and underfits. From the other two, Random Forest is chosen over Multilayer Perceptron because of 

higher average CV test accuracy, despite the fact that Random Forest likely shows overfitting.  

Best Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

AUC Sensitivity Specificity Precision NPV F1-score 

Random 
Forest 

0.99 ± 
0.01 

0.73 ± 
0.07 

0.69 0.75 0.50 0.86 0.75 0.67 0.60 

Table 8. Metrics for the best model (Multilayer Perceptron) for the clinical features + whole tumour radiomics dataset. 

             

Figure 25. ROC curve and AUC of the best model (Random Forest) 
for the clinical features + whole tumour radiomics dataset. 

The confusion matrix shows that the model tends to classify new samples as non-responders. The ROC 

curve also shows that the model tends to have higher specificity confirming the fact that it predicts more 

cases as non-responders. Surprisingly, the AUC is very high. This probably because the class 

classification threshold, the probability cut that the model uses to assign a label to each class, might not 

be correct. Since the ROC is calculated across all thresholds, the AUC is high. 

- Clinical features + border radiomics dataset: 

In this case, three models achieve an accuracy of 0.69, the highest for the dataset. However, Multilayer 

Perceptron is chosen because it is the only model with balanced sensitivity and specificity. In the other 

models, Decision Tree and Random Forest, these metrics indicate a bias towards classifying new 

samples as responders and non-responders, respectively. 

Best Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

AUC Sensitivity Specificity Precision NPV F1-score 

Multilayer 
Perceptron 

0.76 ± 
0.03 

0.65 ± 
0.07 

0.69 0.67 0.67 0.71 0.67 0.71 0.67 

Table 9. Metrics for the best model (Multilayer Perceptron) for the clinical features + tumour border radiomics dataset. 

Figure 24. Confusion Matrix of the best model (Random Forest) 
for the clinical features + whole tumour radiomics dataset. 
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Figure 27. ROC curve and AUC of the best model (Multilayer 
Perceptron) for the clinical features + tumour border radiomics 

dataset. 

As explained, the model does not show a clear tendency to predict one of the two classes, confirmed by 

the confusion matrix and the ROC curve. Four validation samples are misclassified.  

- Clinical features + whole tumour radiomics + tumour border radiomics dataset: 

Finally, for the dataset that includes all features, the highest accuracy is 0.77, achieved only by Multilayer 

Perceptron. However, Multilayer Perceptron probably presents overfitting due to the high gap between 

CV train and test average accuracies. Despite this, it is the model that generalizes better to new data and 

has better metrics overall. 

Best Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

AUC Sensitivity Specificity Precision NPV F1-score 

Multilayer 
Perceptron 

0.92 ± 
0.01 

0.63 ± 
0.10 

0.77 0.70 0.83 0.71 0.71 0.83 0.77 

Table 10. Metrics for the best model (Multilayer Perceptron) for the clinical features + whole tumour + tumour border radiomics dataset. 

            

Figure 29. ROC curve and AUC of the best model (Multilayer 
Perceptron) for the clinical features + whole tumour + tumour border 

radiomics dataset. 

This model only predicts three cases as incorrect and has a slight bias towards predicting the positive 

class, as seen in the ROC curve. This cannot be seen clearly using the confusion matrix as the validation 

set only has 13 cases, 7 non-responders and 6 responders. 

Figure 26. Confusion Matrix of the best model (Multilayer 
Perceptron) for the clinical features + tumour border 

radiomics dataset. 

Figure 28. Confusion Matrix of the best model 
(Multilayer Perceptron) for the clinical features + whole 

tumour + tumour border radiomics dataset. 
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Overall, the results are summarised in Table 11. It has been seen that the models with consistently better 

performance are Decision Tree-based or the Multilayer Perceptron. The datasets that achieve the best 

performances are the core tumour radiomics only and the one with all features combined. The border 

radiomics dataset shows the worst performance alone and in combination with other features. However, 

it increases the performance of the tumour radiomics and clinical features model, achieving the best 

accuracy in combination. 

Dataset Best Model 
Validation 
Accuracy 

AUC Sensitivity Specificity 

Core tumour 
radiomics (CTR) 

Random Forest 0.77 0.70 0.67 0.86 

Border radiomics 
(BR) 

XGBoost 0.62 0.54 0.5 0.71 

CTR + BR 
Multilayer 

Perceptron 
0.69 0.67 0.67 0.71 

Clinical Decision Tree 0.69 0.59 0.83 0.57 

Clinical + CTR Random Forest 0.69 0.75 0.50 0.86 

Clinical + BR 
Multilayer 

Perceptron 
0.69 0.67 0.67 0.71 

Clinical + CTR + 
BR 

Multilayer 
Perceptron 

0.77 0.70 0.83 0.71 

Table 11. Summary of the model results for each dataset. 

4.8 Analysis of results and discussion 

4.8.1 Dataset discussion 

Firstly, the results presented in the previous section indicate that a big amount of the tested models 

seemingly present overfitting. There are several reasons behind overfitting such as having noisy training 

data, limited size of the training set, models that are too complex or training and validation sets that are 

not representative [82]. The datasets at hand have a small number of samples (84 in total, split into 71 

to train and 13 to validate) and have unrepresented groups in the clinical features, as seen in Table 1. 

For example, there are notably less high T stages both for responders and non-responders. This is 

because, in clinical practice, lower T stages are more common.  

Moreover, it could be expected that the radiomic datasets have noise that hinders the performance of 

algorithms, especially in the tumour borders dataset. This noise does not necessarily come from the 

image quality or normalization carried out during preprocessing because the core tumour dataset shows 

good performance and the features were extracted from the same images. The noise is likely due to the 

nature of tumour borders. A lot of tissues can be included in them: mesorectal fat (light grey), mucosa or 

submucosa (dark grey), and liquid pools or lumen (very bright) [3]. This heterogeneity probably adds 

noise to the data, and the models are not able to generalize to new samples that might have different 

border tissues (and consequently different radiomic features).  

The dataset also relies on the segmentations. Although they are validated by a professional to avoid 

errors, the segmentation style or technique may not be optimal, introducing noise or inaccuracies that 

hinder the performance. 
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Moreover, the training dataset is not balanced based on ground truth labels. The validation dataset has 

six responders and seven non-responders. However, the train dataset contains 30 responders and 41 

non-responders. This probably pushes the models to predict the non-responders class more, achieving 

higher specificities. This is the case for almost all tested and selected models.  

However, since data is extracted from real clinical cases, the dataset is not expected to be balanced but 

to reflect the situation of current clinical practice in the hospital. Nonetheless, these datasets could be 

balanced by removing samples from overrepresented classes, but this would greatly decrease the 

number of available samples, which could still result in overfitting and poor performance.  

4.8.2 Model results discussion  

Despite the nature of the dataset and the overfitting, some models achieved good results. These are the 

Random Forest from the tumour core radiomics dataset and the Multilayer Perceptron from the dataset 

with all features. Feature importance plots were calculated for the most successful model of each dataset 

to aid in understanding the decision-making process behind the predictions.  

- Whole tumour radiomics only dataset: 

The Random Forest model is the one with best performance in the core tumour radiomics dataset. 

Random Forest models are quite explainable because they consist of an ensemble of Decision Trees, 

which are very explainable on their own [83]. The feature importance can be directly extracted using the 

.feature_importances_ method. The resulting plot is displayed in Figure 30. 

 
Figure 30. Feature importance graph of the best model (Random Forest) for the whole tumour dataset. 

The top four features with most importance are Large Dependence High Gray Level Emphasis (gldm), 

Surface Volume Ratio (shape), Short Run Low Gray Level Emphasis (glrlm), and Major Axis Length 

(shape). Two are related to tumour shape and size and the other two are related to tumour texture.  

One of the ways to see how they predict the response is by looking at the correlation matrix of Figure 14. 

Large Dependence High Gray Level Emphasis (gldm) and Major Axis Length (shape) have negative 

correlations of -0.28 and -0.20, respectively. This means that when these values increase, the response 

value decreases and thus tends to predict non-responders. This could mean that if the tumour is bigger 

in size, because it has a larger major axis length, the patient is less likely to respond. Some studies 

concluded that there is a significant inverse relationship between tumour response and tumour size [84]. 
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On the other hand, if the tumour has more large homogeneous regions with high voxel intensity (bright 

regions), as explained by the large dependence high grey level feature, the patient is also less likely to 

respond. Bright regions on an MRI indicate liquid content or mucinous tumours, which have been 

associated with worse nCRT response by existing literature [85] [86]. 

On the other hand, Surface Volume Ratio (shape) and Short Run Low Gray Level Emphasis (glrlm) show 

positive correlations with response, of 0.17 and 0.28, respectively. Irregular tumours that are not sphere-

like have high surface volume ratio and, according to these results, this may be associated with positive 

response. This is inconsistent with findings reported in literature as tumour surface irregularity is 

commonly associated with worse response [87] [88]. Tumours with high values of short run low grey level 

emphasis have lots of regions with dark speckles which, in MRI, might correspond to areas with fibrotic 

tissue. According to these results, this phenomenon is associated with positive tumour response. 

Literature confirms that tumour fibrosis is associated with improved outcomes as the tumour seems to be 

less aggressive [89]. 

- Tumour border radiomics datasets: 

The models with border radiomics features showed poor results overall, suggesting that tumour borders 

do not have predictive capability for tumour response. However, these findings could be due to the fact 

that the borders were calculated from the tumour ROIs automatically using mathematical operations 

(erode and dilate) and were not manually delineated nor validated. The findings are consistent with some 

studies that found that including tumour borders does not improve the prediction of response and, in fact, 

it decreased predictive capacity due to noisy data coming from the heterogeneous mix in tissues included 

in the border masks [90]. However, another showed that borders enhance predictions [26]. Borders were 

manually delineated in both studies. 

- Clinical feature datasets: 

As reviewed in the background section, clinical features often enhance the performance of the models. 

This, in the present study, is the case for all datasets except the tumour core one.  The best model 

including clinical features is Multilayer Perceptron for the dataset with all features combined. Since 

Multilayer Perceptron is not an explainable model itself, the SHapley additive explanations (SHAP) 

technique has been used to compute feature importance. This technique adds a weight, referred to as 

the shapley value, to each feature in the model which is used to measure its contribution to the final 

prediction [91]. The resulting SHAP plot can be found in Figure 31. The plot shows the features ranked 

by importance from most important on the top to least important on the bottom. The colours show the 

value of each data point (high in red and low in blue) and the x-axis shows the weight of the values of 

each feature on the predictions [92].  
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Figure 31. Feature importance graph of the best model (Multilayer Perceptron) for the dataset with all features combined. 

The plot was obtained using the SHAP technique. 

The top five most important features are Dependence Variance (gldm) from the border radiomics dataset, 

Total Energy (firstorder) from the core tumour dataset, Long Run High Gray Level Emphasis (glrlm) from 

the core tumour dataset, tumour localization from the clinical dataset, and Extramural Vascular Invasion 

(EMVI+) from the clinical dataset. The plot is consistent with the correlation coefficients of each variable: 

when the coefficient is positive, the high feature values in the plot have a positive impact on response, 

contributing to the prediction of the responders class, and vice versa. 

Dependence Variance is a measure of the heterogeneity of the signal texture. According to the plot, more 

texture heterogeneity in the tumour borders, meaning that for instance there are several different tissues 

surrounding the tumour, is an indicator of good response. Studies exploring the relationship between 

tumour border heterogeneity and response were not found. However, literature shows that heterogeneity 

in tumour borders decreases the predictive capabilities of the models [90]. 

Tumours with high total energy have large volumes or high grey level intensity values (lots of bright spots). 

The plot shows that low values of total energy are related to better tumour response, meaning that 

tumours with smaller volumes or darker intensities (fibrosis) respond better. This is consistent with the 

sources found previously related to tumour size and tumour fibrosis, discussing that there is an inverse 

relationship between tumour response and tumour size and that fibrotic tumours seem to be less 

aggressive, which yields better responses [84] [89].  

Tumours with high Long Run High Gray Level Emphasis have lots of large regions of high intensity, 

probably due to liquid infiltrations or mucinous nature. In fact, the features Large Dependence High Gray 

Level Emphasis, previously explained, and Long Run High Gray Level Emphasis are highly correlated 
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with a correlation coefficient of 0.74. As previously explained, literature shows that mucinous tumours are 

associated with worse nCRT response [85] [86], which is consistent with the results. 

The localization of the tumour is another feature that shows high feature importance. In the plot, higher 

values, meaning tumours placed in the high rectum, have better responses. However, some studies found 

no differences between tumour location and response [93], while others found that tumours located in 

the low rectum present better treatment response [94], hence, the results of the plot are not supported 

by literature.  

Finally, EMVI was also found to be relevant in predictions. This feature is categorical and can take a 

value of 2 (absence of extramural vascular invasion) or 1 (presence of extramural vascular invasion). The 

SHAP plot indicates that higher values, absence of EMVI, show better treatment response, which is 

supported by studies affirming that absence of extramural vascular invasion is a predictor of positive 

response [86] [94]. 

- Clinical feature datasets (T and N subcategories): 

Surprisingly, the T and N features, which according to literature are very important markers of tumour 

response [3, 5, 9, 26], are ranked very low in the feature importance plot. This occurs in all the other 

feature importance plots of models with clinical features. The reason is that the values introduced are the 

general categories, which can only take values of 3 or 4 (in the case of T), instead of the subcategories, 

which are 3a, 3b, 3c, 3d, 4a and 4b (in the case of T). To see the full categories and subcategories and 

their description, refer to Annex 1. Only using the general categories results in low variance in these 

variables, providing little information, and the model does not take them into account. 

To see if it has a real effect on model performance, the models were optimized and retrained using a 

dataset that split these features into the different subcategories, according to TNM staging data. 

Subcategories were hypothesised to provide more information and thus improve differentiation and 

results. The results, found in Annex 4, showed no increase in the performance of any model but were 

able to match the previous results. The best model for the new variables, among all the datasets, was 

still Multilayer Perceptron for the dataset with all features. The results of this model compared with the 

original one are displayed below.  

Best Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

AUC Sensitivity Specificity Precision NPV F1-score 

Multilayer 
Perceptron 

(subcategories) 
0.90 ± 0.02 

0.64 ± 
0.11 

0.77 0.69 0.67 0.86 0.80 0.75 0.73 

Multilayer 
Perceptron 
(original) 

0.92 ± 0.01 
0.63 ± 
0.10 

0.77 0.70 0.83 0.71 0.71 0.83 0.77 

Table 12. Metrics for the best model (Multilayer Perceptron) for the clinical features + whole tumour + tumour border radiomics dataset. 
Top row: results with T and N subcategories. Bottom row: original results. 
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Figure 33. ROC curve and AUC of the best model (Multilayer 
Perceptron) for the clinical features (with T and N subcategories) + 

whole tumour + tumour border radiomics dataset 

The model only predicts three cases wrong and the ROC curve shows constant performance across all 

thresholds. This model presents better specificity and precision and worse sensitivity and NPV than the 

original because it classifies more samples as negative than its original counterpart. The feature 

importance plot was also calculated using the SHAP technique (Figure 34).  

 
Figure 34. Feature importance graph of the best model (Multilayer Perceptron) for the dataset with all features combined 

with T and N subcategories. The plot was obtained using the SHAP technique. 

T and N are higher in the ranking when including their subcategories in the data, showing that they 

probably provide information to the model now. This approach did not show better classification, but it 

highlights that small changes in the dataset have an impact on the model’s inner structure. 

The top five features are the same as before except for EMVI+ that has been replaced by T. The T feature 

shows that higher values, i.e., stagings of more advanced tumours, contribute to negative predictions, 

which is discussed in several papers [84] [85] [95]. 

Figure 32. Confusion Matrix of the best model (Multilayer 

Perceptron) for the clinical features (with T and N subcategories) 
+ whole tumour + tumour border radiomics dataset. 
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5. Execution schedule 
The project has taken place from February 1, 2025, to June 10, 2025, a total duration of 130 days. In this 

section the schedule of the project and its tasks will be discussed.  

5.1 Work Breakdown Structure (WBS) 

First and foremost, the workpackages and tasks for each package have to be defined. The project is 

broken down into six workpackages. The first one, project documentation, aims to capture all the literature 

research and written documents that have to be produced, specifically a report of the final degree project. 

Next, the preliminary training block is dedicated to the familiarization of the different software and images 

used. After, a data acquisition section breaks down all the tasks required to obtain the data from the 

hospital’s databases and the segmented MRI studies. The fourth block is Segmentations, where all the 

tasks carried out to complete and validate the tumour segmentations are detailed. Next, Feature Selection 

and Dataset Description breaks down the tasks needed to select the variables in the dataset and to 

understand the dataset. The final workpackage, Model Training, captures the steps taken to select, 

optimize, train, validate, and explain the Machine Learning models. Figure 35 shows a schematic of the 

structure of the project and Table 13 shows a brief description of the tasks and their estimated deadlines.  

 

Figure 35. Schematic structure of the WBS of the project.  

WBS ID Task Name Description Duration (days) 

1.1 Literature review 

Bibliographic research on studies predicting nCRT response in patients with 

LARC, on rectal anatomy, on the state of the art and on the LARC medical 

basis. Deliverables: sources of the background section (2). 

18 

1.2 

Definition of the 

objectives and 

pipeline 

Determine the goals and scope of the project, what is the hypothesis to solve, 

and the methodology carried out. Deliverables: introduction section (1). 
5 

1.3 
Writing of 

project’s report 

Writing of the written report of the project, from March 2025 to June 2025. 

Deliverables: written report 
100 

1.4 
Project’s oral 

defence 

Production of the materials (ppt or similar) and script for the oral defence. 

Deliverables: ppt file and script. 
7 

2.1 

Tumour 

Identification in 

MRI 

Training to learn to identify structures in the MRI studies, particularly the 

tumour and surrounding structures. Deliverables: none. 
5 

2.2 
3DSlicer software 

familiarisation 

Training to learn how to segment the tumours using the software 3DSlicer by 

watching tutorials and reading the software documentation. Deliverables: 

none. 

3 
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3.1 Fetch MRI ID 
Select the MRI citations ID and dates based on the provided patient IDs using 

the Enterprise Imaging Cloud application.  Deliverables: MRI ID and dates. 
2 

3.2 
Download MRI 

studies 

Use the MRI IDs to download the anonymized studies using the Enterprise 

Imaging Cloud application. Deliverables: MRI studies. 
4 

3.3 
Download clinical 

data 

Download the selected clinical features from the Enterprise Imaging Cloud and 

SAP applications. Deliverables: Clinical database and ground truth. 
4 

3.4 
Extract radiomics 

features 

Produce a code to calculate the border masks, normalize the images and 

extract the radiomic features from the segmentation and border masks using 

PyRadiomics. Deliverables: Code, radiomics database with ground truth. 

4 

4.1 
Select MRI 

sequence 

From the DICOM studies, select the sequence in which segmentations will be 

carried out and save it. Deliverables: MRI sequences. 
2 

4.2 
Segment the 

tumours 

Manually segment the 84 tumours using the software PyRadiomics. 

Deliverables: tumour segmentations. 
40 

4.3 
Correction of the 

segmentations 

Correct the segmentation masks with the help of a senior radiologist. 

Deliverables: corrected tumour segmentations. 
15 

5.1 
Select significant 

radiomic features 

Produce a code to select the most relevant radiomic features for tumour core 

and tumour borders. Deliverables: relevant radiomic features datasets. 
5 

5.2 
EDA of clinical 

features 

Carry out an Exploratory Data Analysis on the clinical features dataset to 

understand the nature of the data. Deliverables: clinical dataset description. 
3 

5.3 
EDA of radiomics 

features 

Carry out an Exploratory Data Analysis on the radiomics features datasets to 

understand the nature of the data. Deliverables: radiomics datasets 

description. 

3 

6.1 
ML Model 

Selection 

Select the models to train based on literature and produce code to train them. 

Deliverables: list of models to train and code. 
5 

6.2 
Hyperparameter 

optimization 

Optimize the performance of the models using hyperparameter optimization 

techniques implemented with Python code. Deliverables: optimal 

hyperparameters dictionary and code. 

7 

6.3 

Model validation 

and metric 

computation 

Train and validate the models using the best hyperparameter combinations, 

calculate the confusion matrixes, the metrics and the ROC curves. 

Deliverables: model metrics and code. 

7 

6.4 
Analysis of the 

results 

Produce the feature importance plots and analyse the most important features 

by performing a literature search. Deliverables: feature importance plots and 

analysis of results section (4.8) 

7 

Table 13. WBS dictionary with tasks descriptions, deliverables and task duration. 

5.2 PERT/CPM Diagram 

The Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM) are used to 

optimize the timing of the program and determine the critical path, which is the path defined by the tasks 

that add up to the minimum time to complete the project [96]. The written report will be developed in 

parallel with the other tasks for efficiency. Table 14 shows the task duration and precedencies. Figure 36 

shows the PERT diagram and the critical path highlighted in red. 

WBS ID PERT ID Task Name (Reduced) Precedent tasks Duration (days) 

1.1 A Literature review - 18 

1.2 B Definition of the objectives and pipeline A 5 

1.3 C Writing of project’s report B 100 

1.4 D Project’s oral defence C, T 7 

2.1 E Tumour Identification in MRI A 5 

2.2 F 3DSlicer software familiarisation - 3 

3.1 G Fetch MRI ID - 2 

3.2 H Download MRI studies G 4 

3.3 I Download clinical data B 4 

3.4 J Extract radiomics features M 4 

4.1 K Select MRI sequence H 2 
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4.2 L Segment the tumours E, F, K 40 

4.3 M Correction of the segmentations L 15 

5.1 N Select the significant radiomic features J 5 

5.2 O EDA of clinical features I 3 

5.3 P EDA of radiomics features N 3 

6.1 Q ML Model Selection O, P 5 

6.2 R Hyperparameter optimization Q 7 

6.3 S Model validation and metric computation R 7 

6.4 T Analysis of the results S 7 

Table 14. PERT diagram table and analysis of precedence. All WBS are assigned a PERT ID. 

 

Figure 36. PERT diagram of the project. 

5.3 GANTT Diagram 

Finally, a GANTT diagram was developed. It is a bar plot used that shows the planning of the project as 

a timeline of the different tasks [96]. Figure 37 shows the GANTT diagram of the project. Like in the PERT 

diagram, the red tasks represent the critical path. The other tasks are non-critical and have margin. 

 

Figure 37. GANTT diagram of the project. 
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6. Technical feasibility 
In this section, the Strengths, Weaknesses, Opportunities and Threats of the project will be discussed, 

what is known as a SWOT analysis. 

The strengths of this project are that the segmentations are manual and validated by a senior radiologist 

from the Image department of the hospital. This ensures that all segmentation ROIs are strictly on the 

tumour. Another important aspect of this project is the explainability of the models. Since relevant features 

are selected before training and most models used are explainable or XAI techniques can be applied, it 

can be known which features have more predictive value and what they predict. Moreover, the methods 

applied in this project are reproductible which can help in multicentre or validation studies. This is also 

important to identify markers of prognosis of the tumour that are clinically relevant. Furthermore, the 

pipeline is custom made throughout, allowing full control of each step. Moreover, all the data used in the 

models is routinely acquired in clinical practice thus there is no extra cost for the hospital.  

The weaknesses of this project are the small number of available cases to train and validation as machine 

learning models require, especially in datasets with high dimensionality, a large number of samples. 

Having few samples may lead to a dataset that is not representative of the studied population, especially 

in tumour classes. This can also lead to overfitting of the models as they are not able to adapt to new 

samples and classify them properly [82]. Another point to take into consideration is that to be able to 

apply this pipeline in a real clinical setting, segmentation should be automatic as manual delineations are 

highly time consuming and would increase the workload of the radiologists. However, since the goal is to 

identify features that give information about the prognosis of the tumour, there might not be a need to 

segment the whole tumour. With a partial representative segmentation such information could be 

obtained. Moreover, scaling the project to a larger dataset, without automatic segmentation tools, can 

also be challenging as a big number of studies should be segmented manually. Additionally, the ground 

truth labels used in this project are based on TRG which may not be the most reliable method. 

This project has many future opportunities to develop research further. The pipeline can be generalized 

to be used in other types of tumours with ease or to be used in other hospitals as it is simple and 

reproductible. Most of the workload of the project relies on the manual segmentation of the studies that, 

as mentioned, is a very time-consuming process. Manual segmentation is necessary in this project as 

there are not enough cases to train an automatic model and no automatic model has been developed 

and validated for this purpose. However, if this study can be transformed into a multi-centre study, more 

cases can be added, and developing an automatic segmentation system would be feasible. Other 

questions arise from this project: can ML help differentiate responders and non-responders using the 

information from the second MRI study? Moreover, a model like this can be integrated into clinical practice 

to help doctors choose a personalized treatment plan and to adapt it, if necessary, to increase the 

chances of positive treatment response. 

The threats that the project presents are improper image normalization, as the MRI scans in this work 

have been acquired from multiple machines by different technicians thus a good image normalization is 

key to ensure that the features are uniform and that the project can be reproduced in other centres. 

Moreover, it has been seen that there is some variability in sequence acquisition between studies and 

centres, especially regarding DWI, slice thickness and tumour axis sequences. Another threat is that the 
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adoption of an AI tool in routine clinical practice may be refused by some professionals due to the lack of 

trust in the technology. However, since the models are explainable, doctors may be more willing to adopt 

the technology as they can know how and why the decision was made. Finally, owing to the fact that AI 

is in rapid development, the pipeline and the technology used in this project may be obsolete in the near 

future, thus there is a need to constantly develop and improve the models to keep up with trends. 

The points explained above are summarized in the following table: 

STRENGHTS WEAKNESSESS 

• Senior Radiologist validated manual 
segmentations 

 

• Model explainability and pipeline reproducibility 
 

• Identification of clinically relevant imaging and 
clinical markers (non-invasive) 

 

• Custom made pipeline allows full control of the 
process. 
 

• Use of routinely acquired medical data to train the 
models 

 

• Small number of samples with high dimensionality 
(limited diversity in dataset population) 

 

• Potential overfitting due to the small number of 
samples 

 

• Difficulty to apply the pipeline in a clinical setting. 
 

• Manual segmentation process is time-consuming 
and non-scalable 
 

• Potentially unreliable ground truth 

OPPORTUNITIES THREATS 

• Generalizable pipeline: other tumour types and 
multi-centre studies 

 

• Possibility of developing an automatic 
segmentation model using the developed 
segmentations as ground truth 
 

• Differentiation between responders and non-
responders in the post-nCRT MRI 

 

• Potential pipeline integration to plan personalized 
treatment and adaptive treatment strategies 

 

• Improper image normalization 
 

• Variability in imaging protocols across studies and 
centres 

 

• Implementation resistance from clinicians due to 
lack of trust in AI tools 
 

• Rapid development of AI may make the model 
obsolete. 

 
 

Table 15. SWOT analysis of a radiomics-based AI project to predict tumour prognosis. 
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7. Economic feasibility 
The budget for this project encompasses costs related to the physical equipment required, the software 

used and costs of the workers involved. In particular, the costs of the MRI scans and the computers used 

to download the data, perform the segmentations, analyse the data and build the models will be regarded 

as physical equipment. There are two types of computers used: a hospital’s workstation used to download 

the medical data which consists of two monitors (600 € each), and a desk computer (800 €) and a laptop 

where the models will be trained on, after carrying out bibliography research and data extraction and 

analysis, with an approximate cost of 700 €. All the software used, 3DSlicer and the Python libraries, is 

open-source and thus it is free. The personnel involved in the project include an entry-level biomedical 

engineer and a senior radiologist.  

The following table includes the economic value of the different items mentioned and the total calculated 

budget for the project. 

ITEM COST 

Physical equipment:  

Hospital Workstations: 5% * 2000 € 

Laptop: 25 % * 700 € 

MRI scans: 150 € * 86 scans 

100 € 

175 € 

12900 € 

Software: 

3DSlicer 

Python libraries 

0 € 

0 € 

Personnel:  

Biomedical Engineer: 300 h * 18€/h 

Senior Radiologist: 50 h * 25€/h 

5400 € 

1250 € 

TOTAL 19825 € 
Table 16. Project budget divided in type of cost. 

The percentages of the physical equipment items indicate that they were not bought and exclusively used 

for this project and the percentage is an estimate of the amortization of the equipment during this project. 

That is, 5% of the total amortization of the hospital workstations was used to fetch and download the data 

and 25% of the total amortization of the laptop was used to segment, analyse the data and build the 

models, as these are more demanding tasks.  

The values of all the items in the budget were extracted from the hospital’s economic data. 

In total, the project has an estimated budget of approximately 20000 €. The most expensive item in the 

budget is the MRI scans. However, these scans are taken in routine clinical practice therefore they are 

primarily used to treat the patients and are reused for this project. Thus, the project’s budget, without 

taking into account the price of the MRI scans, is 8140 €. 

The budget broken down according to the tasks proposed in the GANTT diagram can be found below.  



 Biomedical Engineering Paula Sanahuja Rosich 

49 
 

WBS ID and Task Name Cost Breakdown Cost 

1.1 Literature review and state of 

the art 
Biomedical Engineer (18€/h * 15h) + Laptop (700€ * 1 %) 277 € 

1.2 Definition of the objectives 

and the pipeline of the project 

Biomedical Engineer (18€/h * 5h) + Laptop (700€ * 1 %) + Senior 

Radiologist (25€/h * 3h) 
172 € 

1.3 Writing of the project’s report Biomedical Engineer (18€/h * 70h) + Laptop (700€ * 4 %) 1288 € 

1.4 Project’s oral defence Biomedical Engineer (18€/h * 10h) + Laptop (700€ * 1 %) 187 € 

2.1 Training of Rectal Anatomy 

and Tumour Identification in MRI 

Biomedical Engineer (18€/h * 10h) + Senior Radiologist (25€/h * 

8h) + Hospital Workstation (2000 € * 1%) 
400 € 

2.2 3DSlicer software 

familiarisation 
Biomedical Engineer (18€/h * 10h) + Laptop (700€ * 1 %) 187 € 

3.1 Fetch MRI ID 
Biomedical Engineer (18€/h * 5h) + Senior Radiologist (25€/h * 3h) 

+ Hospital Workstation (2000 € * 0.5%) 
175 € 

3.2 Download MRI studies 

Biomedical Engineer (18€/h * 10h) + Senior Radiologist (25€/h * 

3h) + Hospital Workstation (2000 € * 1%) + MRI scans (150 € * 86 

scans) 

13175 € 

3.3 Fetch and download clinical 

data 

Biomedical Engineer (18€/h * 10h) + Senior Radiologist (25€/h * 

4h) + Hospital Workstation (2000 € * 1%) 
300 € 

3.4 Extract radiomics features Biomedical Engineer (18€/h * 5h) + Laptop (700€ * 1 %) 97 € 

4.1 Select MRI sequence 
Biomedical Engineer (18€/h * 5h) + Laptop (700€ * 0.5 %) + Senior 

Radiologist (25€/h * 3h) + Hospital Workstation (2000 € * 0.5%) 
178.5 € 

4.2 Segment the tumours Biomedical Engineer (18€/h * 50h) + Laptop (700€ * 5 %) 935 € 

4.3 Validation and correction of 

the segmentations 

Biomedical Engineer (18€/h * 20h) + Laptop (700€ * 2 %) + Senior 

Radiologist (25€/h * 16h) + Hospital Workstation (2000 € * 1%) 
794 € 

5.1 Select the significant features Biomedical Engineer (18€/h * 5h) + Laptop (700€ * 0.5 %) 93.5 € 

5.2 Exploratory Data Analysis of 

clinical features 
Biomedical Engineer (18€/h * 5h) + Laptop (700€ * 0.5 %) 93.5 € 

5.3 Exploratory Data Analysis of 

radiomics features 
Biomedical Engineer (18€/h * 5h) + Laptop (700€ * 0.5 %) 93.5 € 

6.1 Model Selection Biomedical Engineer (18€/h * 10h) + Laptop (700€ * 1 %) 187 € 

6.2 Hyperparameter optimization Biomedical Engineer (18€/h * 20h) + Laptop (700€ * 2 %) 374 € 

6.3 Final model test and metric 

computation 
Biomedical Engineer (18€/h * 10h) + Laptop (700€ * 2 %) 194 € 

6.4 Feature Importance and 

analysis of the results 

Biomedical Engineer (18€/h * 20h) + Laptop (700€ * 2 %) + Senior 

Radiologist (25€/h * 10h) 
624 € 

TOTAL 

Biomedical Engineer (18€/h * 250h) + Laptop (700€ * 25 %) + 

Senior Radiologist (25€/h * 50h) + Hospital Workstation (2000 

€ * 5%) + MRI scans (150 € * 86 scans) 

19825 € 

Table 17. Project budget broken down into GANTT diagram tasks. 

Again, the most expensive task is the download of MRI studies but it is not a real additional cost as these 

are acquired during clinical practice. 
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8. Regulation and legal aspects 
This project uses medical information to build the database the models will be trained on. There are laws 

regulating the data treatment, especially for medical data. The models used to predict are based on 

Artificial Intelligence, which is not highly regulated yet. In the recent years, the European Union has made 

an effort to regulate the use of AI, pioneers in the world. The different laws applicable to the project are 

summarised below. 

8.1 EU General Data Protection Regulation (GDPR) (EU Regulation 2016/679) 

and Spanish Organic Law on Data Protection and Digital Rights 3/2018 

The data used in this project contains personal and medical information of patients. There are laws that 

regulate the treatment of personal data that have to be followed. The Spanish Organic Law on Data 

Protection and Digital Rights (LOPDGDD) 3/2018 [97] is the adaptation of the EU General Data Protection 

Regulation (GDPR) (EU Regulation 2016/679) [98] to the Spanish legal system. The GDPR establishes 

the principles of data treatment and the rights of the patients. In this project, data is processed for scientific 

research and public interest purposes without explicit consent, as permitted under Articles 6 and 9. Article 

89 of the GDPR states the safeguards and derogations related to data processing for research purposes 

that must be applied to ensure data minimisation. Pseudonymisation is a highly recommended strategy. 

It is important to note that anonymous data falls outside the scope of GDPR. In medical imagining, total 

anonymization is difficult because it deals with images from the patient’s body, where certain 

characteristics can be identified, thus pseudonymisation strategies have been carried out. The law also 

states that some rights can be derogated if exercising them would impair the fulfilment of the research 

processes. These include the right of access by the data subject, the right to rectification, the right to 

restriction of processing and the right to object. Moreover, article 35 of the law states that a data protection 

impact assessment must be carried out by the data processer if the processing suposes a high risk to 

the rights and freedoms of the data subjects. 

The LOPDGDD confirms what has been previously stated and adds that in the case of use of medical 

data, even pseudonymised, in research for purposes for which explicit consent hasn’t been obtained, an 

ethical committee has to approve such use. This project is under evaluation of the Ethical Committee of 

the hospital.  

8.2 European Artificial Intelligence Act (Regulation (EU) 2024/1689) 

The European AI Act is the first ever legal framework on AI worldwide and its goal is to ensure trust in AI. 

It will be fully applicable by August 2026. This regulation lays down the rules for the use of AI systems in 

the European Union, the prohibitions of certain AI practices, the specific requirements for high-risk AI 

systems, the rules for transparency of certain AI systems and the rules to place AI systems on the market. 

This regulation is applicable to the present project as its goal is to develop an AI system to predict 

response to a treatment [99].  

This regulation classifies AI systems based on their risk. Unacceptable risk, the highest risk category, 

includes all the systems that are considered a clear threat to the safety, livelihoods and rights of people 

and are prohibited. This includes harmful practices such as social scoring, untargeted scraping of the 

internet or CCTV material to create or expand facial recognition databases, emotion recognition in 



 Biomedical Engineering Paula Sanahuja Rosich 

51 
 

workspaces or educational institutions or real-time remote biometric identification for law enforcement 

purposes in public spaces. High risk systems are defined as those that can pose serious risks to health, 

safety or fundamental rights to the people and are subjected to strict obligations before being deployed 

on the market. The category includes AI systems that can determine the access to education, to a 

workplace, to asylum or migration, AI-based safety systems or AI used in democratic processes. Risk 

mitigation strategies, cybersecurity or submission of detailed documentation of the system are some of 

the required obligations to ensure safety. Limited risk systems include the systems that need to be 

transparent about the use of AI such as informing the users that the chatbot they are talking to is an AI 

or informing that an image has been AI-generated. The final risk category, minimal or no risk, includes 

almost all AI systems such as AI videogames or spam email filters, for which the law does not introduce 

rules [100].  

Regarding the applicability of this law in the field of medical imaging, the European Society of Radiology 

(ESR) released a statement identifying the key policies of the AI Act on radiology. According to the 

statement, AI systems related to medical imaging, such as the one developed in the present project, are 

in the high-risk category as they have a potential impact on the health of the population. Additionally, the 

statement reviews the EU regulation and makes recommendations of educating radiology professionals 

about AI, of data handling, of the required human oversight, of model transparency and quality 

management in AI and of clinical studies [101]. 

Furthermore, the ESR demands the European Commission to release specific implementation guidelines 

of the AI Act for the medical community to facilitate implementation and fulfilment of the legal 

requirements [101]. 

8.3 European Union Medical Device Regulation (EU MDR) (EU Regulation 

2017/745)  

To market a medical device in the EU, manufacturers must obtain CE marking by adhering to the 

regulations of the European Union Medical Device Regulation (EU MDR). In this project, AI could qualify 

as a medical device as it is used to make or assist in clinical decisions [102]. However, since the goal of 

this project is to do a concept evaluation that developing such software is possible and not to market the 

resulting product, some of the rules are not applicable. 

The MDR lays down the main rules governing medical device development, manufacture, 

commercialization and surveillance. The regulation defines classes based on risk that the products have 

to be classified in. Software products are part of the higher risk categories, especially if their intended 

use is to support diagnosis or treatment decisions. Products belonging to high-risk classes, 

manufacturers are required to submit periodic safety update reports [102]. 

Moreover, the law increases the medical evidence needed to commercialize a product, when compared 

to its predecessor: the Medical Device Directive. It also describes the creation of a European Database 

on medical devices to integrate information on devices, manufacturers, clinical investigations, and market 

surveillance. It also defines Unique Identification system (UDI system) to improve traceability 

transparency of the products, enhancing post-market related safety activities and regulatory oversight 

[102].  



 Biomedical Engineering Paula Sanahuja Rosich 

52 
 

8.4 Spanish Law 14/2007 on Biomedical Research 

This project falls under the scope of the Biomedical Research law as it involves human medical data 

extracted from clinical records. The objective of the law is to regulate biomedical research to guarantee 

one’s dignity, respect to integrity, rights and freedoms. It also states that all investigation projects require 

the evaluation and approval of the Research Ethics Committee, regardless of whether data is anonymized 

[103]. As discussed, this project is under evaluation of the Ethical Committee of the hospital. 

The law also states that explicit informed consent is required for a person to be included in the research 

study. However, when data is collected from hospitals, the original patient consent must allow the reuse 

of data for secondary purposes such as research. Data treatment and processing must be protected and 

carried out in accordance with the rules of the pertinent regulation [103], in this case the GDPR [98] and 

the Spanish Organic on Data Protection and Digital Rights Law 3/2018 [97]. Moreover, the research’s 

benefits must outweigh the risks and states the special regulations for vulnerable populations, such as 

minors or the disabled [103]. 

Furthermore, the law also reviews the rules for biomedical research based on biological samples, which 

is not applicable in this project. It states that all patients have to sign an explicit consent to use these 

samples for research, that donation in exchange for money is prohibited, the transportation or storage of 

the samples (biobanks) and regulate the type of genetical tests that can be carried out. The law also 

regulates the research that involves invasive procedures and embryonic research, also not applicable in 

this project [103]. 

  



 Biomedical Engineering Paula Sanahuja Rosich 

53 
 

9. Conclusions 
The main goal of this project was to build an Artificial Intelligence model capable of predicting the 

response of LARC after neoadjuvant therapy. Other subobjectives arised from this goal: determining 

clinical and image markers that are key in predicting LARC evolution and verifying similar studies with 

data from Hospital de la Santa Creu i Sant Pau. Furthermore, it was hypothesized that response can be 

predicted with machine learning models and that a combination of clinical and radiomics features would 

yield the best performance. 

The findings showed that predicting the response to neoadjuvant chemotherapy of patients with LARC 

using machine learning models is possible. Using explainable algorithms, such as Decision Tree and 

Random Forest, and explainable AI techniques, such as SHAP, allowed the extraction of the features 

that are most relevant to compute the predictions. 

However, the combination of radiomics and clinical features did not yield better results than the radiomics 

model alone. It has been discussed that the reason is that the clinical features present underrepresented 

classes and thus the model cannot generalize well to new samples. The models also presented probable 

overfitting, which was slightly mitigated using hyperparameter tuning techniques. 

The best models have been obtained in the core tumour radiomics dataset, with Random Forest, and in 

the dataset with all features, with Multilayer Perceptron. The validation set consisted of 13 samples with 

7 non-responders and 6 responders. The validation accuracy in both cases was of 0.77 and the AUC of 

0.70. The model with the core tumour radiomics features showed better specificity, 0.86, whereas the 

model with all features showed better sensitivity, 0.83. These are positive results that fulfil the main goal 

of developing a ML model capable of predicting response. The results can also be considered positive 

taking the limitations of the study into account: the small number of samples and the underrepresentation 

of classes, which are frequent issues when with real patient data, especially in single centre studies.  

The most relevant features varied depending on the model. For the Random Forest the Large 

Dependence High Gray Level Emphasis (gldm), Surface Volume Ratio (shape), Short Run Low Gray 

Level Emphasis (glrlm), and Major Axis Length (shape) were the most relevant. For the Multilayer 

Perceptron model Dependence Variance (gldm) from the border radiomics dataset, Total Energy 

(firstorder) from the core tumour dataset, Long Run High Gray Level Emphasis (glrlm) from the core 

tumour dataset, tumour localization from the clinical dataset, and Extramural Vascular Invasion (EMVI+) 

from the clinical dataset were the most relevant. Most of the relationships of these variables with response 

were supported by literature, confirming that shape characteristics, texture features and clinical features 

are predictors of response. However, a specific imaging or clinical marker with high predictive capability 

across all models could not be identified. 

T and N staging were one of the least important clinical features due to the low variance in categories. 

To assess this, models were optimized and trained again with clinical features taking the staging 

subcategories into account. The overall performance did not improve but T and N staging went up in the 

feature importance rankings.  
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The predictive capability of the tumour borders was also assessed but it can be concluded that, for the 

methodology carried out, the tumour borders show poor predictive capability of response to neoadjuvant 

treatments in patients with LARC. 

One of the most time-consuming steps of the pipeline is manual segmentation. However, the main 

advantage of it is that it is very precise. To ease the workload, a future line of work could explore the 

development of an algorithm to automatically segment the tumours using the 84 segmentations produced 

in this study as ground truth. This would ease workload when adding new samples and in the application 

of the pipeline in clinical practice.  

Another future line of work is to assess the performance of the algorithms when changing the method to 

classify responders and non-responders. In this study, this has been carried out using Mandard’s TRG, 

which is consistent with similar studies. However, it is believed that classifying response based on the 

comparison between cTNM and ypTNM could change the results as, sometimes, there is discrepancy 

between the response indicated with TRG and the one seen in the ypTNM staging after surgery. However, 

there is no clear method to classify response based on the post-surgery staging yet.  

Furthermore, as discussed in the motivation section, there have been studies exploring another research 

branch to avoid unnecessary surgeries in cured patients. Their aim is to improve differentiation between 

pathological complete responders (pCR) and non-responders in the post-nCRT MRI before the surgery. 

To achieve this, the pipeline proposed in this project should be applied to the post-nCRT MRI studies, 

which could be interesting to assess its generalizability.  

To conclude, it is possible to predict, with good results, the response to neoadjuvant chemotherapy in 

patients with locally advanced rectal cancer using radiomics-based machine learning algorithms, despite 

the dataset limitations. Furthermore, the addition of clinical data does not improve the results and the 

tumour borders show poor predictive capability. However, radiomics features extracted from the tumour 

core are able to predict the response well. Feature importance analysis was also assessed but the 

identification of imaging and clinical biomarkers for tumour response remains unknown.  
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Annex 1. Tumour staging and restaging systems. 
TNM staging: 

Primary Tumour (T): 

Tx Cannot assess primary tumour  

T0 No evidence of primary tumour 

T1 Involves the mucosa without extending beyond it 

T2 Involves the muscularis propria without extending beyond it 

T3 Infiltrates the perirectal fat 

T3a Invasion < 1 mm  

T3b Invasion 1-5 mm  

T3c Invasion 6-15 mm  

T3d Invasion > 15 mm   

T4 Tumour invades directly into other organs or structures and/or perforates visceral peritoneum 

T4a Perforation of the visceral peritoneum 

T4b Invasion of adjacent organs 

Regional Lymph nodes (N): 

N0 No perirectal lymph node involvement  

N1 1–3 lymph nodes involved (>5 mm, heterogeneous signal, irregular borders) 

N1a 1 lymph node 

N1b 2-3 lymph nodes 

N1c Tumour deposits in the perirectal fat without nodal structures 

N2 4 or more lymph nodes involved (>5 mm, heterogeneous signal, irregular borders) 

N2a 4-6 lymph nodes 

N2b 7 or more lymph nodes 

Distant Metastases (M): 

M0 No distant metastases 

M1 Presence of distant metastases: 

M1a Metastases in a single distant organ or group of lymph nodes 

M1b Metastases in more than one organ or in the peritoneum 

 



 Biomedical Engineering Paula Sanahuja Rosich 

65 
 

Mandard’s Tumour Regression Grade (TRG): 

TRG 1 – Complete response (no visible tumour) 

TRG 2 – Good response (dense fibrosis, minimal residual tumour) 

TRG 3 – Moderate response (>50% fibrosis or minimal mucin with intermediate signal) 

TRG 4 – Minimal response (minimal fibrosis with mostly intermediate signal) 

TRG 5 – No response (intermediate signal, similar to the original tumour) 
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Annex 2. Normalization and radiomic feature extraction code 
Core Tumour radiomic features extraction code: 

# Extract radiomic features from normalized MRI images based on their segmentation 

masks 

 

# Import necessary libraries 

import os 

import SimpleITK as sitk 

import pandas as pd 

from radiomics import featureextractor 

from sklearn.preprocessing import StandardScaler 

 

# Define the paths for the mri folder and the segmentation folder and the output 

.csv file 

mri_folder = " C:\Users\Usuari\Desktop\TFG\Radiomics\MRI" 

seg_folder = " C:\Users\Usuari\Desktop\TFG\Radiomics\Segmentations" 

output_csv = "C:\Users\Usuari\Desktop\TFG\Radiomics\radiomics_features_all.csv" 

 

# Define a function to normalize images using StandardScaler 

def normalize_image(image): 

    array = sitk.GetArrayFromImage(image) # Convert image to NumPy array to be used 

to normalize 

 

    # Use StandardScaler to normalize 

    scaler = StandardScaler() # Create the scaler 

    array = scaler.fit_transform(array.reshape(-1, 1)).reshape(array.shape) # Fit 

it to the image and transform 

 

    # Create the normalized image and copy metadata 

    normalized_image = sitk.GetImageFromArray(array) 

    normalized_image.CopyInformation(image) 

    return normalized_image 

 

# Define a function to extract radiomic features from an image and its segmentation 

def extract_radiomics_features(image_path, mask_path, extractor): 

 

    # Read the image and the mask 

    image = sitk.ReadImage(image_path) 

    mask = sitk.ReadImage(mask_path) 

 

    # Normalize the image and extract the radiomic features 

    image = normalize_image(image) 

    features = extractor.execute(image, mask) 

 

    # Create a dictionary to store the features 

    feature_dict = {"ID": os.path.basename(image_path).replace('.nii.gz', '')} # 

First column is the patient's ID 

    feature_dict.update({k: v for k, v in features.items()}) # Add the rest of 

features to the dictionary 

    return feature_dict 

 

# List all MRI and segmentation files 

mri_files = [os.path.join(mri_folder, f) for f in os.listdir(mri_folder) if 

f.endswith(".nii.gz")] 
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seg_files =[os.path.join(seg_folder, f) for f in os.listdir(seg_folder) if 

f.endswith(".nrrd")] 

 

# Debug 

print("MRI Files:", mri_files) 

print("Segmentation Files:", seg_files) 

 

# Initialize the radiomics feature extractor 

extractor = featureextractor.RadiomicsFeatureExtractor() 

 

# Geometry tolerance to handle minor mismatches (Image/Mask mismatch error) 

extractor.settings['geometryTolerance'] = 1e-2 

 

# Debug 

print("Enabled features:", extractor.enabledFeatures) 

 

# List to store the results 

results = [] 

 

# Loop all through all the images 

for mri_file in mri_files: 

    base_id = os.path.basename(mri_file).replace('.nii.gz', '.nrrd') if 

mri_file.endswith('.nii.gz') else os.path.splitext(os.path.basename(mri_file))[0] # 

Get the patient ID 

    print("File name: ", base_id) # Debug 

    matching_seg_file = next((f for f in seg_files if base_id in f), None) # Check 

if there is a matching segmentation 

 

    if matching_seg_file: 

 

        # Create the mri and segmentation paths 

        mri_path = os.path.join(mri_folder, mri_file) 

        seg_path = os.path.join(seg_folder, matching_seg_file) 

        try: 

            print(f"Processing {mri_file} and {matching_seg_file}") 

            feature_dict = extract_radiomics_features(mri_path, seg_path, 

extractor) # Extract features 

            results.append(feature_dict) # Append features to results 

        except Exception as e: 

            print(f"Error processing {mri_file} and {matching_seg_file}: {e}")  

    else: 

        print(f"No matching segmentation found for {mri_file}") # Debug 

 

# Save the features to CSV 

if results: 

    df = pd.DataFrame(results) # Create a dataframe of results 

    df = df.sort_values(by='ID', ascending=True) # Sort results by the 'Id' column 

    df.to_csv(output_csv, index=False, float_format="%.6f") # Convert it to .csv 

and store it 

    print(f"Radiomic features saved to {output_csv}") 

else: 

    print("No features extracted.") 

Tumour Borders radiomic features extraction code: 

# Extract radiomic features from the border regions of segmentation masks 
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# Import the necessary libraries 

import os 

import SimpleITK as sitk 

import pandas as pd 

from radiomics import featureextractor 

from sklearn.preprocessing import StandardScaler 

 

# Define the paths for the mri folder, the segmentation folder and the output .csv  

mri_folder = " C:\Users\Usuari\Desktop\TFG\Radiomics\MRI" 
seg_folder = " C:\Users\Usuari\Desktop\TFG\Radiomics\Segmentations" 

output_csv = “C:\Users\Usuari\Desktop\TFG\Radiomics\radiomics_border_features.csv" 

 

# Define a function to normalize images using StandardScaler 

def normalize_image(image): 

    array = sitk.GetArrayFromImage(image) # Convert image to NumPy array to be used 

to normalize 

 

    # Use StandardScaler to normalize 

    scaler = StandardScaler() # Create the scaler 

    array = scaler.fit_transform(array.reshape(-1, 1)).reshape(array.shape) # Fit 

it to the image and transform 

 

    # Create the normalized image and copy metadata 

    normalized_image = sitk.GetImageFromArray(array) 

    normalized_image.CopyInformation(image) 

    return normalized_image 

 

# Define a function to compute a mask of the borders of the segmentation 

def get_border_mask(mask, radius_mm=2.0): 

 

    # Convert radius in mm to radius in voxels 

    spacing = mask.GetSpacing() # Get image spacing (voxel size in mm) 

    radius_voxels = [int(radius_mm / s + 0.5) for s in spacing] 

 

    # Perform a dilation and an erosion to obtain the borders 

    dilated = sitk.BinaryDilate(mask, radius_voxels) 

    eroded = sitk.BinaryErode(mask, radius_voxels) 

 

    # Subtract the previous operations to obtian the borders of the segmentation 

    border = sitk.Subtract(dilated, eroded) 

    return border 

 

# Define a function to extract radiomic features from an image and its segmentation 

def extract_radiomics_features(image_path, mask, extractor): 

 

    # Read the image 

    image = sitk.ReadImage(image_path) 

 

    # Normalize the image and extract the radiomic features 

    image = normalize_image(image) 

    features = extractor.execute(image, mask) 

 

    # Create a dictionary to store the features 

    feature_dict = {"ID": os.path.basename(image_path).replace('.nii.gz', '')} # 

First column is the patient's ID 

    feature_dict.update({k: v for k, v in features.items()}) # Add the rest of 

features to the dictionary 
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    return feature_dict 

 

# Initialize the radiomics extractor 

extractor = featureextractor.RadiomicsFeatureExtractor() 

extractor.settings['geometryTolerance'] = 1e-2 

 

# Debug 

print("Enabled features:", extractor.enabledFeatures) 

 

# List to store the results 

results = [] 

 

# List all MRI and segmentation files 

mri_files = [os.path.join(mri_folder, f) for f in os.listdir(mri_folder) if 

f.endswith(".nii.gz")] 

seg_files =[os.path.join(seg_folder, f) for f in os.listdir(seg_folder) if 

f.endswith(".nrrd")] 

 

# Loop all through all the images 

for mri_file in mri_files: 

    base_id = os.path.basename(mri_file).replace('.nii.gz', '.nrrd') if 

mri_file.endswith('.nii.gz') else os.path.splitext(os.path.basename(mri_file))[0] # 

Get the patient ID 

    print("File name: ", base_id) # Debug 

    matching_seg_file = next((f for f in seg_files if base_id in f), None)  # Check 

if there is a matching segmentation 

 

    if matching_seg_file: 

 

        # Create the mri and segmentation paths 

        mri_path = os.path.join(mri_folder, mri_file) 

        seg_path = os.path.join(seg_folder, matching_seg_file) 

        try: 

            print(f"Processing {mri_file} and {matching_seg_file}") 

 

            # Load segmentation mask and compute borders 

            mask = sitk.ReadImage(seg_path) 

            mask = sitk.Cast(mask > 0, sitk.sitkUInt8)  # Ensure mask is binary 

            border_mask = get_border_mask(mask) 

 

            feature_dict = extract_radiomics_features(mri_path, border_mask, 

extractor) # Extract radiomic features 

            results.append(feature_dict) # Store them in the results list 

        except Exception as e: 

            print(f"Error processing {mri_file} and {matching_seg_file}: {e}")  

    else: 

        print(f"No matching segmentation found for {mri_file}") # Debug 

 

# Save the features to CSV 

if results: 

    df = pd.DataFrame(results) # Create a dataframe of results 

    df = df.sort_values(by='ID', ascending=True) # Sort results by the 'Id' column 

    df.to_csv(output_csv, index=False, float_format="%.6f") # Convert it to .csv 

and store it 

    print(f"Radiomic features saved to {output_csv}") 

else: 

    print("No features extracted.") 
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Annex 3. Feature selection and model training code 
Feature selection code (for whole tumour radiomics, equivalent for tumour borders): 

# Eliminate non-significant features (p-value > 0.5) and highly correlated features 

(correlation > 0.8) (whole tumour) 

 

# Import the necessary libraries 

import pandas as pd 

import numpy as np 

from scipy.stats import spearmanr, kruskal 

from sklearn.preprocessing import MinMaxScaler 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Get data from a .csv file 

file_path = "C:\Users\Usuari\Desktop\TFG\Radiomics\MRI\radiomics_no_borders.csv" 

data = pd.read_csv(file_path, header='infer', sep=';') 

data_og_rad = data.copy() 

 

# Identify radiomic and non-radiomic columns 

radiomics_start_col = 'original_shape_Elongation' 

radiomics_columns = data.loc[:, radiomics_start_col:].columns 

non_radiomics_columns = ['response', 'ID'] 

 

# Normalize radiomic variables 

scaler = MinMaxScaler() 

data[radiomics_columns] = scaler.fit_transform(data[radiomics_columns]) 

 

# Kruskal-Wallis to select relevant features (response as output) 

output_col = 'response' 

kruskal_results = {} 

response_groups = [data[data[output_col] == group][radiomics_columns] for group in 

data[output_col].unique()] 

 

for col in radiomics_columns: 

    group_values = [group[col].dropna() for group in response_groups] 

    if all(len(values) > 0 for values in group_values): 

        stat, p_value = kruskal(*group_values) 

        kruskal_results[col] = p_value 

 

# Filter relevant features (p < 0.05) 

selected_features = [feature for feature, p_val in kruskal_results.items() if p_val 

< 0.05] 

print('Number of significant features: ', len(selected_features)) 

print('Significant features: ', selected_features) 

 

# Correlation matrix to remove colinearity 

correlation_matrix = data[selected_features].corr(method='spearman') 

variables_to_remove = set() 

 

for i in range(len(selected_features)): 

    for j in range(i + 1, len(selected_features)): 

        feature1, feature2 = selected_features[i], selected_features[j] 

        if abs(correlation_matrix.loc[feature1, feature2]) > 0.8: 

            p1, p2 = kruskal_results[feature1], kruskal_results[feature2] 
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            variables_to_remove.add(feature1 if p1 > p2 else feature2) 

 

# Final features 

final_features = [feature for feature in selected_features if feature not in 

variables_to_remove] 

print("Number of final selected features after removing collinearity: ", 

len(final_features)) 

print("Final selected features after removing collinearity: \n", final_features) 

 

# Save the selected radiomics variables and the non radiomics ones to a .csv file 

output_data = data_og_rad[non_radiomics_columns + final_features] 

output_file_path = 

"C:\Users\Usuari\Desktop\TFG\Radiomics\MRI\selected_radiomics_features_no_borders.c

sv" 

output_data.to_csv(output_file_path, index=False) 

 

print(f"File with the selected features saved in: {output_file_path}") 

Hyperparameter tuning code (for mixed clinical datasets, equivalent for the other feature sets): 

# Hyperparameter tuning 

 

# Import the necessary libraries 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split, StratifiedKFold, GridSearchCV 

from sklearn.preprocessing import MinMaxScaler, StandardScaler 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

from sklearn.pipeline import Pipeline 

from sklearn.feature_selection import SelectKBest, f_classif 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.linear_model import LogisticRegression 

from xgboost import XGBClassifier 

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier 

from sklearn.svm import SVC 

from sklearn.naive_bayes import GaussianNB 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neural_network import MLPClassifier 

from lightgbm import LGBMClassifier 

from sklearn.base import BaseEstimator, TransformerMixin 

 

# Define a function to plot the confusion matrix of the model 

def plot_confusion_matrix(y_true, y_pred, model_name, dataset_name): 

    cm = confusion_matrix(y_true, y_pred) 

    plt.figure(figsize=(5, 4)) 

    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

xticklabels=np.unique(y_true), yticklabels=np.unique(y_true)) 

    plt.xlabel('Predicted Label') 

    plt.ylabel('True Label') 

    plt.title(f'Confusion Matrix: {model_name} ({dataset_name})') 

    plt.show() 

 

# Define a class to perform intra fold scaling of only some columns 

class SelectiveStandardScaler(BaseEstimator, TransformerMixin): 

    def __init__(self, start_index=-3): 

        self.start_index = start_index 
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        self.scaler = StandardScaler() 

 

    def fit(self, X, y=None): 

        self.scaler.fit(X[:, self.start_index:]) 

        return self 

 

    def transform(self, X): 

        X = X.copy() 

        X[:, self.start_index:] = self.scaler.transform(X[:, self.start_index:]) 

        return X 

 

# Get the clinical data from the .csv file 

file_path_clinic_whole = 

"C:\Users\Usuari\Desktop\TFG\Radiomics\MRI\radiomics_clinical.csv" 

file_path_clinic_borders = 

"C:\Users\Usuari\Desktop\TFG\Radiomics\MRI\borders_clinical.csv" 

file_path_clinic_whole_borders = 

"C:\Users\Usuari\Desktop\TFG\Radiomics\MRI\radiomics_borders_clinical.csv" 

 

data_whole = pd.read_csv(file_path_clinic_whole) 

data_borders = pd.read_csv(file_path_clinic_borders) 

data_whole_borders = pd.read_csv(file_path_clinic_whole_borders) 

 

# Drop the ID column 

columns_to_remove = ['ID'] 

data_whole = data_whole.drop(columns=columns_to_remove, errors='ignore') 

data_borders = data_borders.drop(columns=columns_to_remove, errors='ignore') 

data_whole_borders = data_whole_borders.drop(columns=columns_to_remove, 

errors='ignore') 

 

# Separate output column and features 

X_whole = data_whole.drop(columns=['response']).values 

y_whole = data_whole['response'].values 

 

X_borders = data_borders.drop(columns=['response']).values 

y_borders = data_borders['response'].values 

 

X_whole_borders = data_whole_borders.drop(columns=['response']).values 

y_whole_borders = data_whole_borders['response'].values 

 

X_whole[:,-11:] = X_whole[:,-11:].astype(int) # Convert the last 11 columns to 

integers (debug) 

X_borders[:,-7:] = X_borders[:,-7:].astype(int) # Convert the last 7 columns to 

integers (debug) 

X_whole_borders[:,-15:] = X_whole_borders[:,-15:].astype(int) # Convert the last 15 

columns to integers (debug) 

 

# Reserve a fixed validation set (15%) 

X_train_whole, X_val_whole,  y_train_whole, y_val_whole = train_test_split(X_whole, 

y_whole, test_size=0.15, stratify=y_whole, random_state=42) 

X_train_borders, X_val_borders,  y_train_borders, y_val_borders = 

train_test_split(X_borders, y_borders, test_size=0.15, stratify=y_borders, 

random_state=42) 

X_train_whole_borders, X_val_whole_borders, y_train_whole_borders, 

y_val_whole_borders = train_test_split(X_whole_borders, y_whole_borders, 

test_size=0.15, stratify=y_whole_borders, random_state=42) 
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# Define the cross-validation strategy 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

 

# Define models and hyperparameter grids to test 

model_configs = { 

    "Random Forest": { 

        "model": RandomForestClassifier(class_weight='balanced', random_state=42), 

        "params": { 

            "model__n_estimators": [50, 100, 150, 200, 300], 

            "model__max_depth": [3, 5, 10, 15, 20, None], 

            "model__min_samples_split": [1, 2, 4, 5, 10] 

        } 

    }, 

    "Logistic Regression": { 

        "model": LogisticRegression(max_iter=1000, random_state=42), 

        "params": { 

            "model__C": [0.001, 0.01, 0.1, 1, 10], 

            "model__penalty": ["l2"], 

            "model__solver": ["lbfgs", "saga"] 

        } 

    }, 

    "Support Vector Machine": { 

        "model": SVC(class_weight='balanced', random_state=42), 

        "params": { 

            "model__kernel": ['linear','poly','rbf'], 

            "model__C": [0.1, 1, 10, 50, 100, 500], 

            "model__gamma": ['scale', 'auto'] 

        } 

    }, 

    "XGBoost": { 

        "model": XGBClassifier(use_label_encoder=False, eval_metric='logloss', 

random_state=42), 

        "params": { 

            "model__n_estimators": [50, 100, 200], 

            "model__max_depth": [3, 5, 7, 10, 20], 

            "model__learning_rate": [0.01, 0.05, 0.1, 0.5], 

            "model__subsample": [0.6, 0.8, 1.0], 

            "model__colsample_bytree": [0.6, 0.8, 1.0] 

        } 

    }, 

    "Multilayer Perceptron": { 

        "model": MLPClassifier(max_iter=1000, random_state=42), 

        "params": { 

            "model__hidden_layer_sizes": [(50,), (100,), (50, 50), (100, 50)], 

            "model__activation": ["relu", "tanh"], 

            "model__alpha": [0.0001, 0.001, 0.01], 

            "model__learning_rate": ["constant", "adaptive"] 

        } 

    }, 

    "Decision Tree": { 

        "model": DecisionTreeClassifier(class_weight='balanced', random_state=42), 

        "params": { 

            "model__max_depth": [3, 5, 10, None], 

            "model__min_samples_split": [2, 5, 10], 

            "model__min_samples_leaf": [1, 2, 4], 

            "model__criterion": ["gini", "entropy"] 

        } 
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    }, 

    "LightGBM": { 

        "model": LGBMClassifier(random_state=42), 

        "params": { 

            "model__n_estimators": [100, 200], 

            "model__num_leaves": [15, 31, 63], 

            "model__learning_rate": [0.01, 0.05, 0.1], 

            "model__boosting_type": ["gbdt", "dart"], 

            "model__min_child_samples": [10, 20] 

        } 

    } 

} 

 

# Store a summary of results 

summary = [] 

 

# Perform grid search for each model 

for name, config in model_configs.items(): 

    for dataset, X_train, X_val, y_train, y_val, scale_columns in [ 

        ('Whole tumour', X_train_whole, X_val_whole, y_train_whole, y_val_whole,-

11), 

        ('Tumour borders', X_train_borders, X_val_borders, y_train_borders, 

y_val_borders,-7), 

        ('Whole tumour + tumour borders', X_train_whole_borders, 

X_val_whole_borders, y_train_whole_borders, y_val_whole_borders,-15) 

    ]: 

      print(f"\n {name} (5-Fold CV) for {dataset} + clinical features dataset") 

 

      # Define a pipeline to scale and train 

      pipeline = Pipeline([ 

          ('scaler', SelectiveStandardScaler(start_index=scale_columns)),  # Only 

scale last x columns 

          ('model', config["model"]) 

      ]) 

 

      # Test 

      grid_search = GridSearchCV( 

          estimator=pipeline, 

          param_grid=config["params"], 

          cv=cv, 

          scoring='accuracy', 

          n_jobs=-1, 

          verbose=1 

      ) 

 

      grid_search.fit(X_train, y_train) 

 

      best_model = grid_search.best_estimator_ 

      print(f"Best Parameters for {name}: {grid_search.best_params_}") 

 

      # Evaluate on final validation set 

      y_val_pred = best_model.predict(X_val) 

      acc_val = accuracy_score(y_val, y_val_pred) 

 

      print(f"Validation Accuracy ({name}): {acc_val:.4f}") 

      print("Classification Report:\n", classification_report(y_val, y_val_pred)) 

      plot_confusion_matrix(y_val, y_val_pred, name, dataset) 
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      # Save to summary 

      summary.append({ 

          "Dataset": dataset, 

          "Model": name, 

          "Best Parameters": grid_search.best_params_, 

          "Validation Accuracy": acc_val 

      }) 

 

# Final Summary Table (results of hyperparameter tuning) 

print("\nModel Comparison Summary:") 

summary_df = pd.DataFrame(summary) 

print(summary_df.to_string(index=False)) 

Optimized model training and metric computation code (for mixed clinical datasets, equivalent for the 

other feature sets): 

# Train and test with the best hyperparameters 

 

# Import the necessary libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.pipeline import Pipeline 

from sklearn.model_selection import StratifiedKFold, train_test_split 

from sklearn.preprocessing import MinMaxScaler, StandardScaler 

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier 

from sklearn.svm import SVC 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import GaussianNB 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neural_network import MLPClassifier 

from xgboost import XGBClassifier 

from lightgbm import LGBMClassifier 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

 

# Define a function to plot the confusion matrix of the model 

def plot_confusion_matrix(y_true, y_pred, model_name, dataset_name): 

    cm = confusion_matrix(y_true, y_pred) 

    plt.figure(figsize=(5, 4)) 

    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

xticklabels=np.unique(y_true), yticklabels=np.unique(y_true)) 

    plt.xlabel('Predicted Label') 

    plt.ylabel('True Label') 

    plt.title(f'Confusion Matrix: {model_name} (Clinical features + 

{dataset_name})', fontsize=10) 

    plt.show() 

 

# Define a function to plot the feature importance of the model 

def plot_feature_importance(model, X_train, feature_names, model_name, 

dataset_name): 

    # Verify that the model has feature importance 

    if hasattr(model, 'feature_importances_'): 

        importance = model.feature_importances_ 

    elif hasattr(model, 'coef_'):  # For models Logistic Regression or SVM 
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        importance = np.abs(model.coef_[0]) 

    else: 

        importance = None 

 

    if importance is not None: 

        sorted_idx = np.argsort(importance)[::-1] 

        n_features = len(feature_names)  # Real number of features 

        plt.figure(figsize=(10, 6)) 

        plt.barh(range(min(n_features, len(importance))), 

importance[sorted_idx][:min(n_features, len(importance))]) 

        plt.yticks(range(min(n_features, len(importance))), 

np.array(feature_names)[sorted_idx][:min(n_features, len(importance))]) 

        plt.xlabel('Feature Importance') 

        plt.title(f'Feature Importance: {model_name} ({dataset_name})') 

        plt.show() 

 

# Define a function to plot the feature importance of the model using the SHAP 

tecnique 

def plot_shap_summary(model, X_train, feature_names, model_name, dataset_name): 

    try: 

        if model_name in ["Decision Tree", "Random Forest"]: 

            explainer = shap.TreeExplainer(model) 

            shap_values = explainer.shap_values(X_train) 

 

            # For binary classification  

            plt.figure(figsize=(10, 6)) 

            shap.summary_plot(shap_values[:, :, 1], X_train, 

feature_names=feature_names, show=False) 

             

            # Plot 

            plt.title(f'SHAP Feature Importance: {model_name} (Clinical features + 

{dataset_name})', fontsize=12) 

            plt.tight_layout() 

            plt.subplots_adjust(top=0.88)   

            plt.show() 

 

        elif model_name in ["Gradient Boosting", "XGBoost", "LightGBM"]: 

            explainer = shap.TreeExplainer(model) 

            shap_values = explainer.shap_values(X_train) 

 

            # For binary classification 

            if isinstance(shap_values, list): 

                shap_values_to_plot = shap_values[1] # Use class one 

            else: 

                shap_values_to_plot = shap_values 

 

            # Plot 

            plt.figure(figsize=(10, 6)) 

            shap.summary_plot(shap_values_to_plot, X_train, 

feature_names=feature_names, show=False) 

            plt.title(f'SHAP Feature Importance: {model_name} (Clinical features + 

{dataset_name})', fontsize=10) 

            plt.tight_layout() 

            plt.show() 

 

        elif model_name == "Logistic Regression": 

            explainer = shap.LinearExplainer(model, X_train) 
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            shap_values = explainer.shap_values(X_train) 

             

            # Plot            

            plt.figure(figsize=(10, 6)) 

            shap.summary_plot(shap_values, X_train, feature_names=feature_names, 

show=False) 

            plt.title(f'SHAP Feature Importance: {model_name} (Clinical features + 

{dataset_name})', fontsize=10) 

            plt.tight_layout() 

            plt.subplots_adjust(top=0.9)   

            plt.show() 

 

        else:  # For SVC, Naive Bayes, MLP 

            background = shap.sample(X_train, 70, random_state=42) 

            explainer = shap.KernelExplainer(model.predict_proba, background) 

            shap_values = explainer.shap_values(X_train[:70]) # Select a data 

subsample to explain 

             

            # Plot       

            plt.figure(figsize=(10, 6)) 

            shap.summary_plot(shap_values[:, :, 1], X_train[:70], 

feature_names=feature_names, show=False) 

            plt.title(f'SHAP Feature Importance: {model_name} (Clinical features + 

{dataset_name})', fontsize=10) 

            plt.tight_layout() 

            plt.subplots_adjust(top=0.9)   

 

            plt.show() 

 

    except Exception as e: 

        print(f"SHAP failed for {model_name}. Error: {e}") 

 

# Get the clinical data from the .csv file 

file_path_clinic_whole = 

"C:\Users\Usuari\Desktop\TFG\Radiomics\MRI\radiomics_clinical.csv" 

file_path_clinic_borders = 

"C:\Users\Usuari\Desktop\TFG\Radiomics\MRI\borders_clinical.csv" 

file_path_clinic_whole_borders = 

"C:\Users\Usuari\Desktop\TFG\Radiomics\MRI\radiomics_borders_clinical.csv" 

 

data_whole = pd.read_csv(file_path_clinic_whole) 

data_borders = pd.read_csv(file_path_clinic_borders) 

data_whole_borders = pd.read_csv(file_path_clinic_whole_borders) 

 

# Drop the ID column 

columns_to_remove = ['ID'] 

data_whole = data_whole.drop(columns=columns_to_remove, errors='ignore') 

data_borders = data_borders.drop(columns=columns_to_remove, errors='ignore') 

data_whole_borders = data_whole_borders.drop(columns=columns_to_remove, 

errors='ignore') 

 

# Separate output column and features 

X_whole = data_whole.drop(columns=['response']).values 

y_whole = data_whole['response'].values 

 

X_borders = data_borders.drop(columns=['response']).values 

y_borders = data_borders['response'].values 
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X_whole_borders = data_whole_borders.drop(columns=['response']).values 

y_whole_borders = data_whole_borders['response'].values 

 

X_whole[:,-11:] = X_whole[:,-11:].astype(int) # Convert the last 11 columns to 

integers (debug) 

X_borders[:,-7:] = X_borders[:,-7:].astype(int) # Convert the last 7 columns to 

integers (debug) 

X_whole_borders[:,-15:] = X_whole_borders[:,-15:].astype(int) # Convert the last 15 

columns to integers (debug) 

 

# Reserve a fixed validation set (15%) 

X_train_whole, X_val_whole,  y_train_whole, y_val_whole = train_test_split(X_whole, 

y_whole, test_size=0.15, stratify=y_whole, random_state=42) 

X_train_borders, X_val_borders,  y_train_borders, y_val_borders = 

train_test_split(X_borders, y_borders, test_size=0.15, stratify=y_borders, 

random_state=42) 

X_train_whole_borders, X_val_whole_borders, y_train_whole_borders, 

y_val_whole_borders = train_test_split(X_whole_borders, y_whole_borders, 

test_size=0.15, stratify=y_whole_borders, random_state=42) 

 

# Define the models with the best hyperparameters to train for the three datasets 

models_whole = { 

    'Random Forest': RandomForestClassifier(class_weight='balanced', 

random_state=42, max_depth = 3, min_samples_split = 10, n_estimators = 100), 

    'Support Vector Machine': SVC(class_weight='balanced', random_state=42, C = 1, 

gamma = 'scale', kernel = 'rbf'), 

    'Logistic Regression': LogisticRegression(random_state=42, C= 0.1, penalty= 

'l2', solver = 'lbfgs'), 

    'Gradient Boosting': GradientBoostingClassifier(random_state=42), 

    'Multilayer Perceptron': MLPClassifier(random_state=42, activation = 'relu', 

alpha = 0.0001, hidden_layer_sizes = (100,), learning_rate = 'constant'), 

    'Naïve Bayes': GaussianNB(), 

    'Decision Tree': DecisionTreeClassifier(class_weight='balanced', 

random_state=42, criterion = 'entropy', max_depth = 10, min_samples_leaf = 1, 

min_samples_split = 5), 

    'XGBoost': XGBClassifier(use_label_encoder=False, eval_metric='logloss', 

random_state=42, colsample_bytree = 0.8, learning_rate = 0.05, max_depth = 3, 

n_estimators = 100, subsample = 0.8), 

    'LightGBM': LGBMClassifier(random_state=42, boosting_type = 'gbdt', 

learning_rate = 0.01, min_child_samples = 10, n_estimators = 100, num_leaves = 15) 

} 

 

models_borders = { 

    'Random Forest': RandomForestClassifier(class_weight='balanced', 

random_state=42, max_depth = 5, min_samples_split= 4, n_estimators=300), 

    'Support Vector Machine': SVC(class_weight='balanced', random_state=42, C = 10, 

gamma = 'auto', kernel = 'rbf'), 

    'Logistic Regression': LogisticRegression(random_state=42, C= 0.1, penalty= 

'l2', solver = 'lbfgs'), 

    'Gradient Boosting': GradientBoostingClassifier(random_state=42), 

    'Multilayer Perceptron': MLPClassifier(random_state=42, activation = 'tanh', 

alpha = 0.01, hidden_layer_sizes = (50,), learning_rate = 'constant'), 

    'Naïve Bayes': GaussianNB(), 

    'Decision Tree': DecisionTreeClassifier(class_weight='balanced', 

random_state=42, criterion = 'entropy', max_depth = 3, min_samples_leaf = 1, 

min_samples_split = 2), 
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    'XGBoost': XGBClassifier(use_label_encoder=False, eval_metric='logloss', 

random_state=42, colsample_bytree = 1, learning_rate = 0.1, max_depth =5, 

n_estimators = 100, subsample = 1), 

    'LightGBM': LGBMClassifier(random_state=42, boosting_type = 'dart', 

learning_rate = 0.01, min_child_samples = 20, n_estimators = 100, num_leaves = 15) 

} 

 

models_whole_borders = { 

    'Random Forest': RandomForestClassifier(class_weight='balanced', 

random_state=42, max_depth = 3, min_samples_split= 2, n_estimators= 300), 

    'Support Vector Machine': SVC(class_weight='balanced', random_state=42, C = 1, 

gamma = 'scale', kernel = 'rbf'), 

    'Logistic Regression': LogisticRegression(random_state=42, C= 0.1, penalty= 

'l2', solver = 'saga'), 

    'Gradient Boosting': GradientBoostingClassifier(random_state=42), 

    'Multilayer Perceptron': MLPClassifier(random_state=42, activation = 'tanh', 

alpha = 0.0001, hidden_layer_sizes = (100,), learning_rate = 'constant'), 

    'Naïve Bayes': GaussianNB(), 

    'Decision Tree': DecisionTreeClassifier(class_weight='balanced', 

random_state=42, criterion = 'entropy', max_depth = 10, min_samples_leaf = 1, 

min_samples_split = 5), 

    'XGBoost': XGBClassifier(use_label_encoder=False, eval_metric='logloss', 

random_state=42, colsample_bytree = 0.8, learning_rate = 0.05, max_depth = 3, 

n_estimators = 50, subsample = 0.6), 

    'LightGBM': LGBMClassifier(random_state=42, boosting_type = 'gbdt', 

learning_rate = 0.01, min_child_samples = 20, n_estimators = 100, num_leaves = 15) 

} 

 

# Initialize the 5-Fold CV 

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

 

# Create a diccionary to store the results 

results = {} 

 

# CV in all three datasets 

for dataset, X_train_full, X_val, y_train_full, y_val, scale_columns in [ 

    ('Whole tumour', X_train_whole, X_val_whole, y_train_whole, y_val_whole,-11), 

    ('Tumour borders', X_train_borders, X_val_borders, y_train_borders, 

y_val_borders,-7), 

    ('Whole tumour + tumour borders', X_train_whole_borders, X_val_whole_borders, 

y_train_whole_borders, y_val_whole_borders,-15) 

]: 

    results[dataset]={} 

    if dataset == 'Whole tumour': 

      for model_name, model in models_whole.items(): 

        results[dataset][model_name] = {'Train': [], 'CV Test': [], 'Val': None} 

        print(f"\n{model_name} (5-Fold CV) for {dataset} dataset") 

        for fold, (train_idx, test_idx) in enumerate(skf.split(X_train_full, 

y_train_full), 1): 

            X_train, X_test = X_train_full[train_idx], X_train_full[test_idx] 

            y_train, y_test = y_train_full[train_idx], y_train_full[test_idx] 

 

            # Scale within fold 

            scaler = StandardScaler() 

            X_train[:,scale_columns:] = 

scaler.fit_transform(X_train[:,scale_columns:]) 

            X_test[:,scale_columns:]  = scaler.transform(X_test[:,scale_columns:]) 
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            model.fit(X_train, y_train) 

 

            y_train_pred = model.predict(X_train) 

            y_test_pred = model.predict(X_test) 

 

            acc_train = accuracy_score(y_train, y_train_pred) 

            acc_test = accuracy_score(y_test, y_test_pred) 

 

            results[dataset][model_name]['Train'].append(acc_train) 

            results[dataset][model_name]['CV Test'].append(acc_test) 

 

            print(f"Fold {fold} - Train Acc: {acc_train:.4f} | CV Test Acc: 

{acc_test:.4f}") 

 

        # Retrain on full training set and evaluate on final validation set 

        final_scaler = StandardScaler() 

        X_train_full[:,scale_columns:] = 

final_scaler.fit_transform(X_train_full[:,scale_columns:]) 

        X_val[:,scale_columns:] = final_scaler.transform(X_val[:,scale_columns:]) 

 

        model.fit(X_train_full, y_train_full) 

        y_val_pred = model.predict(X_val) 

 

        acc_val = accuracy_score(y_val, y_val_pred) 

        results[dataset][model_name]['Val'] = acc_val 

 

        print(f"Validation Accuracy: {acc_val:.4f}") 

        print("Classification Report (Validation Set):\n", 

classification_report(y_val, y_val_pred)) 

        plot_confusion_matrix(y_val, y_val_pred, model_name, dataset) 

 

        # Plot the Feature Importance 

        feature_names = data_whole.drop(columns=['response']).columns 

        plot_shap_summary(model, X_train_full, feature_names, model_name, dataset) 

        plot_feature_importance(model, X_train_full, feature_names, model_name, 

dataset) 

 

    elif dataset == 'Tumour borders': 

      for model_name, model in models_borders.items(): 

        results[dataset][model_name] = {'Train': [], 'CV Test': [], 'Val': None} 

        print(f"\n{model_name} (5-Fold CV) for {dataset} dataset") 

        for fold, (train_idx, test_idx) in enumerate(skf.split(X_train_full, 

y_train_full), 1): 

            X_train, X_test = X_train_full[train_idx], X_train_full[test_idx] 

            y_train, y_test = y_train_full[train_idx], y_train_full[test_idx] 

 

            # Scale within fold 

            scaler = StandardScaler() 

            X_train[:,scale_columns:] = 

scaler.fit_transform(X_train[:,scale_columns:]) 

            X_test[:,scale_columns:]  = scaler.transform(X_test[:,scale_columns:]) 

 

            model.fit(X_train, y_train) 

 

            y_train_pred = model.predict(X_train) 

            y_test_pred = model.predict(X_test) 
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            acc_train = accuracy_score(y_train, y_train_pred) 

            acc_test = accuracy_score(y_test, y_test_pred) 

 

            results[dataset][model_name]['Train'].append(acc_train) 

            results[dataset][model_name]['CV Test'].append(acc_test) 

 

            print(f"Fold {fold} - Train Acc: {acc_train:.4f} | CV Test Acc: 

{acc_test:.4f}") 

 

        # Retrain on full training set and evaluate on final validation set 

        final_scaler = StandardScaler() 

        X_train_full[:,scale_columns:] = 

final_scaler.fit_transform(X_train_full[:,scale_columns:]) 

        X_val[:,scale_columns:] = final_scaler.transform(X_val[:,scale_columns:]) 

 

        model.fit(X_train_full, y_train_full) 

        y_val_pred = model.predict(X_val) 

 

        acc_val = accuracy_score(y_val, y_val_pred) 

        results[dataset][model_name]['Val'] = acc_val 

 

        print(f"Validation Accuracy: {acc_val:.4f}") 

        print("Classification Report (Validation Set):\n", 

classification_report(y_val, y_val_pred)) 

        plot_confusion_matrix(y_val, y_val_pred, model_name, dataset) 

 

        # Plot the Feature Importance 

        feature_names = data_borders.drop(columns=['response']).columns 

        plot_shap_summary(model, X_train_full, feature_names, model_name, dataset) 

        plot_feature_importance(model, X_train_full, feature_names, model_name, 

dataset) 

 

    else: 

      for model_name, model in models_whole_borders.items(): 

        results[dataset][model_name] = {'Train': [], 'CV Test': [], 'Val': None} 

        print(f"\n{model_name} (5-Fold CV) for {dataset} dataset") 

        for fold, (train_idx, test_idx) in enumerate(skf.split(X_train_full, 

y_train_full), 1): 

            X_train, X_test = X_train_full[train_idx], X_train_full[test_idx] 

            y_train, y_test = y_train_full[train_idx], y_train_full[test_idx] 

 

            # Scale within fold 

            scaler = StandardScaler() 

            X_train[:,scale_columns:] = 

scaler.fit_transform(X_train[:,scale_columns:]) 

            X_test[:,scale_columns:]  = scaler.transform(X_test[:,scale_columns:]) 

 

            model.fit(X_train, y_train) 

 

            y_train_pred = model.predict(X_train) 

            y_test_pred = model.predict(X_test) 

 

            acc_train = accuracy_score(y_train, y_train_pred) 

            acc_test = accuracy_score(y_test, y_test_pred) 

 

            results[dataset][model_name]['Train'].append(acc_train) 
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            results[dataset][model_name]['CV Test'].append(acc_test) 

 

            print(f"Fold {fold} - Train Acc: {acc_train:.4f} | CV Test Acc: 

{acc_test:.4f}") 

 

        # Retrain on full training set and evaluate on final validation set 

        final_scaler = StandardScaler() 

        X_train_full[:,scale_columns:] = 

final_scaler.fit_transform(X_train_full[:,scale_columns:]) 

        X_val[:,scale_columns:] = final_scaler.transform(X_val[:,scale_columns:]) 

 

        model.fit(X_train_full, y_train_full) 

        y_val_pred = model.predict(X_val) 

 

        acc_val = accuracy_score(y_val, y_val_pred) 

        results[dataset][model_name]['Val'] = acc_val 

 

        print(f"Validation Accuracy: {acc_val:.4f}") 

        print("Classification Report (Validation Set):\n", 

classification_report(y_val, y_val_pred)) 

        plot_confusion_matrix(y_val, y_val_pred, model_name, dataset) 

 

        # Plot the Feature Importance 

        feature_names = data_whole_borders.drop(columns=['response']).columns 

        plot_shap_summary(model, X_train_full, feature_names, model_name, dataset) 

        plot_feature_importance(model, X_train_full, feature_names, model_name, 

dataset) 

 

# Final summary 

print("\nSummary:") 

for datasets, models in results.items(): 

    print(f"\n{datasets} dataset:") 

    for model, acc in models.items(): 

      print(f"{model}") 

      print(f"  Avg Train Acc: {np.mean(acc['Train']):.4f} ± 

{np.std(acc['Train']):.4f} | Avg CV Test Acc: {np.mean(acc['CV Test']):.4f} ± 

{np.std(acc['CV Test']):.4f} | Validation Acc: {acc['Val']:.4f}”) 
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Annex 4. Machine Learning model results  
Core Tumour Radiomics dataset results: 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 0.86 ± 0.01 0.64 ± 0.12 0.62 0.83 0.43 

Random 
Forest 

0.91 ± 0.02 0.71 ± 0.11 0.77 0.67 0.86 

Support 
Vector 

Machine 
0.71 ± 0.02 0.62 ± 0.19 0.69 0.67 0.71 

Logistic 
Regression 

0.63 ± 0.04 0.65 ± 0.10 0.62 0.33 0.86 

Naïve Bayes 0.63 ± 0.02 0.58 ± 0.07 0.62 1.00 0.29 

Multilayer 
Perceptron 

0.80 ± 0.02 0.62 ± 0.10 0.62 0.50 0.71 

Gradient 
Boosting 

1.00 ± 0.00 0.56 ± 0.11 0.77 0.67 0.86 

XGBoost 0.99 ± 0.01 0.58 ± 0.04 0.54 0.50 0.57 

LightGBM 0.75 ± 0.03 0.65 ± 0.13 0.54 0.50 0.57 

Table 18. Machine Learning model results for the Core Tumour Radiomics dataset. 

Tumour Border Radiomics dataset results: 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 0.99 ± 0.01 0.59 ± 0.08 0.46 0.33 0.57 

Random 
Forest 

0.80 ± 0.02 0.60 ± 0.12 0.54 0.33 0.71 

Support 
Vector 

Machine 
0.66 ± 0.05 0.63 ± 0.20 0.54 0.67 0.43 

Logistic 
Regression 

0.66 ± 0.03 0.66 ± 0.13 0.62 0.50 0.71 

Naïve Bayes 0.69 ± 0.05 0.60 ± 0.15 0.62 0.50 0.71 
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Multilayer 
Perceptron 

0.69 ± 0.03 0.65 ± 0.11 0.62 0.50 0.71 

Gradient 
Boosting 

1.00 ± 0.00 0.55 ± 0.03 0.46 0.17 0.71 

XGBoost 0.99 ± 0.01 0.66 ± 0.08 0.62 0.50 0.71 

LightGBM 0.76 ± 0.03 0.63 ± 0.11 0.54 0.33 0.71 

Table 19. Machine Learning model results for the Tumour Border Radiomics dataset. 

Core Tumour Radiomics + Tumour Border Radiomics dataset results: 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 0.87 ± 0.03 0.59 ± 0.14 0.69 0.67 0.71 

Random 
Forest 

1.00 ± 0.00 0.64 ± 0.12 0.62 0.50 0.71 

Support 
Vector 

Machine 
0.75 ± 0.02 0.62 ± 0.16 0.62 0.67 0.57 

Logistic 
Regression 

0.71 ± 0.03 0.65 ± 0.12 0.62 0.50 0.71 

Naïve Bayes 0.68 ± 0.03 0.62 ± 0.12 0.69 1.00 0.43 

Multilayer 
Perceptron 

0.71 ± 0.04 0.62 ± 0.15 0.69 0.67 0.71 

Gradient 
Boosting 

1.00 ± 0.00 0.55 ± 0.12 0.69 0.67 0.71 

XGBoost 1.00 ± 0.00 0.72 ± 0.08 0.62 0.50 0.71 

LightGBM 0.84 ± 0.04 0.65 ± 0.10 0.46 0.33 0.57 

Table 20. Machine Learning model results for the Core Tumour + Tumour Border Radiomics dataset. 

Clinical variables dataset results: 

- With T and N subcategories 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 0.80 ± 0.04 0.61 ± 0.06 0.69 0.83 0.57 
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Random 
Forest 

0.86 ± 0.03 0.65 ± 0.04 0.69 0.67 0.71 

Support 
Vector 

Machine 
0.55 ± 0.03 0.52 ± 0.05 0.46 1.00 0.00 

Logistic 
Regression 

0.66 ± 0.03 0.60 ± 0.06 0.62 0.17 1.00 

Naïve Bayes 0.63 ± 0.01 0.61 ± 0.08 0.62 0.50 0.71 

Multilayer 
Perceptron 

0.60 ± 0.03 0.62 ± 0.08 0.54 0.50 0.57 

Gradient 
Boosting 

1.00 ± 0.00 0.58 ± 0.14 0.62 0.50 0.71 

XGBoost 0.80 ± 0.03 0.65 ± 0.07 0.69 0.67 0.71 

LightGBM 0.76 ± 0.06 0.65 ± 0.11 0.69 0.67 0.71 

Table 21. Machine Learning model results for the Clinical variables dataset (T and N subcategories). 

- Without T and N subcategories 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 0.77 ± 0.02 0.57 ± 0.09 0.69 0.83 0.57 

Random 
Forest 

0.90 ± 0.01 0.63 ± 0.02 0.62 0.67 0.57 

Support 
Vector 

Machine 
0.63 ± 0.04 0.61 ± 0.15 0.62 0.67 0.57 

Logistic 
Regression 

0.61 ± 0.01 0.61 ± 0.03 0.54 0.17 0.86 

Naïve Bayes 0.59 ± 0.05 0.59 ± 0.15 0.62 0.67 0.57 

Multilayer 
Perceptron 

0.58 ± 0.02 0.58 ± 0.10 0.38 0.17 0.57 

Gradient 
Boosting 

0.99 ± 0.01 0.52 ± 0.14 0.54 0.50 0.57 

XGBoost 0.82 ± 0.02 0.59 ± 0.04 0.62 0.50 0.71 

LightGBM 0.85 ± 0.04 0.62 ± 0.09 0.46 0.50 0.43 
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Table 22. Machine Learning model results for the Clinical variables dataset. 

Clinical variables + Core Tumour Radiomics dataset results: 

- With T and N subcategories 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 
0.9859 ± 
0.0070 

0.6324 ± 
0.0875 

0.54 0.67 0.43 

Random 
Forest 

0.90 ± 0.03 0.75 ± 0.10 0.62 0.50 0.71 

Support 
Vector 

Machine 
0.54 ± 0.06 0.49 ± 0.10 0.46 1.00 0.00 

Logistic 
Regression 

0.70 ± 0.04 0.62 ± 0.06 0.62 0.50 0.71 

Naïve Bayes 0.67 ± 0.03 0.63 ± 0.05 0.62 0.67 0.57 

Multilayer 
Perceptron 

0.77 ± 0.01 0.65 ± 0.06 0.69 0.50 0.86 

Gradient 
Boosting 

1.00 ± 0.00 0.66 ± 0.09 0.46 0.33 0.57 

XGBoost 0.99 ± 0.01 0.68 ± 0.10 0.69 0.50 0.86 

LightGBM 0.86 ± 0.02 0.61 ± 0.10 0.54 0.17 0.86 

Table 23. Machine Learning model results for the Clinical variables (T and N subcategories) + core tumour radiomics dataset. 

- Without T and N subcategories 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 0.90 ± 0.03 0.62 ± 0.15 0.54 0.50 0.57 

Random 
Forest 

0.99 ± 0.01 0.73 ± 0.07 0.69 0.50 0.86 

Support 
Vector 

Machine 
0.54 ± 0.06 0.49 ± 0.10 0.46 1.00 0.00 

Logistic 
Regression 

0.69 ± 0.03 0.66 ± 0.05 0.62 0.50 0.71 

Naïve Bayes 0.62 ± 0.03 0.63 ± 0.09 0.69 0.83 0.57 
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Multilayer 
Perceptron 

0.79 ± 0.023 0.66 ± 0.12 0.69 0.50 0.86 

Gradient 
Boosting 

1.00 ± 0.00 0.56 ± 0.05 0.46 0.17 0.71 

XGBoost 0.91 ± 0.02 0.66 ± 0.08 0.62 0.33 0.86 

LightGBM 0.96 ± 0.02 0.63 ± 0.10 0.54 0.33 0.71 

Table 24. Machine Learning model results for the Clinical variables + core tumour radiomics dataset. 

Clinical variables + Border Tumour Radiomics dataset results: 

- With T and N subcategories 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 0.78 ± 0.03 0.69 ± 0.13 0.46 0.17 0.71 

Random 
Forest 

0.99 ± 0.01 0.72 ± 0.09 0.69 0.50 0.86 

Support 
Vector 

Machine 
1.00 ± 0.00 0.52 ± 0.09 0.62 0.50 0.71 

Logistic 
Regression 

0.74 ± 0.05 0.69 ± 0.11 0.46 0.17 0.71 

Naïve Bayes 0.67 ± 0.03 0.62 ± 0.12 0.62 0.67 0.57 

Multilayer 
Perceptron 

0.79 ± 0.02 0.66 ± 0.12 0.62 0.50 0.71 

Gradient 
Boosting 

1.00 ± 0.00 0.66 ± 0.05 0.62 0.33 0.86 

XGBoost 1.00 ± 0.00 0.69 ± 0.11 0.69 0.50 0.86 

LightGBM 0.68 ± 0.02 0.64 ± 0.09 0.46 0.17 0.71 

Table 25. Machine Learning model results for the Clinical variables (T and N subcategories) + tumour border radiomics dataset. 

- Without T and N subcategories 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 1.00 ± 0.00 0.64 ± 0.10 0.69 0.83 0.57 
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Random 
Forest 

0.94 ± 0.01 0.68 ± 0.09 0.69 0.50 0.86 

Support 
Vector 

Machine 
1.00 ± 0.00 0.48 ± 0.10 0.62 0.50 0.71 

Logistic 
Regression 

0.70 ± 0.03 0.65 ± 0.12 0.54 0.33 0.71 

Naïve Bayes 0.64 ± 0.06 0.59 ± 0.11 0.62 0.67 0.57 

Multilayer 
Perceptron 

0.76 ± 0.03 0.65 ± 0.07 0.69 0.67 0.71 

Gradient 
Boosting 

1.00 ± 0.00 0.58 ± 0.06 0.62 0.33 0.86 

XGBoost 0.87 ± 0.03 0.69 ± 0.10 0.62 0.33 0.86 

LightGBM 0.68 ± 0.03 0.62 ± 0.09 0.46 0.17 0.71 

Table 26. Machine Learning model results for the Clinical variables + tumour border radiomics dataset. 

Clinical variables + Core Tumour Radiomics + Border Tumour Radiomics dataset results: 

- With T and N subcategories 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 0.98 ± 0.02 0.61 ± 0.10 0.62 0.67 0.57 

Random 
Forest 

0.96 ± 0.02 0.69 ± 0.12 0.62 0.50 0.71 

Support 
Vector 

Machine 
0.54 ± 0.06 0.49 ± 0.10 0.46 1.00 0.00 

Logistic 
Regression 

0.72 ± 0.02 0.68 ± 0.11 0.54 0.33 0.71 

Naïve Bayes 0.68 ± 0.03 0.65 ± 0.08 0.62 0.67 0.57 

Multilayer 
Perceptron 

0.90 ± 0.02 0.64 ± 0.11 0.77 0.67 0.86 

Gradient 
Boosting 

1.00 ± 0.00 0.61 ± 0.08 0.54 0.17 0.86 

XGBoost 0.94 ± 0.02 0.66 ± 0.12 0.46 0.17 0.71 
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LightGBM 0.71 ± 0.01 0.61 ± 0.07 0.62 0.17 1.00 

Table 27. Machine Learning model results for the Clinical variables (T and N subcategories) + core tumour radiomics + tumour border 
radiomics dataset. 

- Without T and N subcategories 

Model 
Avg. Train 
Accuracy 

Avg. Test 
Accuracy 

Validation 
Accuracy 

Validation 
Sensitivity 

Validation 
Specificity 

Decision Tree 1.00 ± 0.00 0.61 ± 0.06 0.54 0.50 0.57 

Random 
Forest 

1.00 ± 0.00 0.71 ± 0.07 0.54 0.33 0.71 

Support 
Vector 

Machine 
0.54 ± 0.06 0.49 ± 0.10 0.46 1.00 0.00 

Logistic 
Regression 

0.77 ± 0.04 0.66 ± 0.11 0.62 0.50 0.71 

Naïve Bayes 0.66 ± 0.02 0.65 ± 0.08 0.69 0.83 0.57 

Multilayer 
Perceptron 

0.92 ± 0.01 0.63 ± 0.10 0.77 0.83 0.71 

Gradient 
Boosting 

1.00 ± 0.00 0.61 ± 0.11 0.62 0.33 0.86 

XGBoost 0.99 ± 0.01 0.66 ± 0.11 0.62 0.33 0.86 

LightGBM 0.71 ± 0.01 0.61 ± 0.07 0.62 0.17 1.00 

Table 28. Machine Learning model results for the Clinical variables + core tumour radiomics + tumour border radiomics dataset. 

 


