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ABSTRACT 

Abdominal Aortic Aneurysm (AAA) is a life-threatening vascular pathology whose diagnosis 

and follow-up rely primarily on maximum aortic diameter measurements from rudimentary 

CT scans. However, this metric presents important limitations, failing to capture the full 

morphological and pathological complexity of the aneurysm. This final degree thesis 

presents the design and validation of a fully automated pipeline for the extraction of 

morphological and radiomic features from contrast-enhanced CT scans of patients with 

AAA. The pipeline includes preprocessing, standardized segmentation, geometric and 

radiomic quantification, and report generation. Key features include tortuosity, curvature, 

cross-sectional areas, circularity, volume metrics, calcification analysis, thrombus-wall 

contact area and first and second order radiomic descriptors. The method was validated in 

a sample of ten patients from the Triple A Barcelona Study (TABS), allowing comparison 

between slow and fast growth aneurysms across two timepoints. Results showed strong 

correlation with manual diameter measurements (Pearson R = 0.98), and exploratory 

analyses revealed additional patterns potentially relevant for clinical assessment, such as 

internal thrombus remodeling or increased volumes in rapid-growth cases. Despite 

limitations related to sample size and manual segmentation, this work demonstrates the 

feasibility and robustness of a scalable, reproducible, and clinically oriented image analysis 

pipeline. It supports the integration of advanced imaging biomarkers into AAA evaluation, 

addressing current gaps in risk stratification and enabling future integration with omics data 

and AI-based tools. This approach contributes to a more comprehensive and personalized 

understanding of AAA progression beyond conventional diameter-based criteria. 

 

Keywords: Abdominal Aortic Aneurysm – Feature Extraction – Computed Tomography – 

Segmentation – Automated Morphological Analysis – Shape Descriptors – Radiomic 

Features – Medical Imaging. 
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ABSTRACTE 

L’aneurisma d’aorta abdominal (AAA) és una patologia vascular potencialment mortal, el 

diagnòstic i seguiment de la qual es basen principalment en la mesura manual del diàmetre 

màxim de l’aorta a partir de les imatges de TC. Tanmateix, aquest indicador presenta 

limitacions, ja que no capta la complexitat morfològica i patològica de l’aneurisma. Aquest 

treball presenta el disseny i la validació d’un pipeline automatitzat per a l’extracció de 

característiques morfològiques i radiòmiques a partir de tomografies computades de 

pacients amb AAA. El pipeline inclou preprocessament, segmentació estandarditzada, 

quantificació geomètrica i radiòmica, i generació d’informes. Entre les característiques clau 

s’hi troben la tortuositat, curvatura, àrees transversals, circularitat, volums, calcificacions, 

àrees de contacte, i descriptors radiòmics de primer i segon ordre. El mètode s’ha validat 

en una mostra de deu pacients de l’estudi Triple A Barcelona (TABS), permetent la 

comparació entre aneurismes de creixement lent i ràpid. Els resultats van mostrar una forta 

correlació amb les mesures manuals del diàmetre (Pearson R = 0.98), i les anàlisis 

exploratòries van revelar patrons potencialment rellevants per a l’avaluació clínica, com el 

remodelat intern del trombe o l'augment de volums en els casos de creixement ràpid. 

Malgrat les limitacions relacionades amb la mida de la mostra i la segmentació manual, 

aquest treball demostra la viabilitat i robustesa d’un pipeline d’anàlisi d’imatge escalable, 

reproduïble i orientat a l’àmbit clínic, capaç d’integrar biomarcadors d’imatge i contribuint a 

una comprensió més personalitzada de la progressió de l’AAA més enllà del diàmetre. 

Paraules clau: Aneurisma de l’Aorta Abdominal – Extracció de Característiques – 

Tomografia Computada – Segmentació – Anàlisi Morfològica Automatitzada – Descriptors 

de Forma – Característiques Radiòmiques – Imatge Mèdica. 
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1. INTRODUCTION 

Abdominal Aortic Aneurysm (AAA) is a life-threatening condition characterized by the pathological 

dilation of the abdominal aorta, most often diagnosed when the maximum diameter exceeds 30 

mm [1]. Though typically asymptomatic until rupture, AAA causes over 160,000 deaths annually 

worldwide, with extremely high post-rupture mortality rates exceeding 80% in many cases [1][2]. 

Current clinical practice highly relies on the measurement of the maximum aortic diameter as the 

primary indicator for diagnosis and treatment decisions. However, this metric has notable 

limitations, particularly in terms of predicting rupture risk and capturing the complex structural and 

pathological changes involved in aneurysm evolution. 

In recent years, increasing attention has been given to the development of imaging biomarkers as 

complementary tools for disease stratification and management. Radiological biomarkers derived 

from medical images offer non-invasive, spatially resolved information that may reflect the 

underlying biomechanical stress, wall composition, or thrombus dynamics, factors that remain 

invisible to diameter-based assessments [3][4]. Moreover, the integration of computational tools for 

morphological and radiomic feature extraction is opening new possibilities in both research and 

clinical environments, with the potential to increase objectivity, reproducibility, and predictive value 

[5]. 

This final degree thesis focuses on the development of an automated pipeline to extract quantitative 

morphological and radiomic features from contrast-enhanced CT scans of patients with AAA. The 

goal is to explore whether these image-derived features can complement traditional measurements 

in terms of their relevance to disease assessment, prognosis, and ultimately, patient-specific 

management. The work is framed within the broader effort to transition from conventional 

radiological approaches to precision medicine in vascular pathology and aligns with current 

research trends emphasizing the need for comprehensive, reproducible, and scalable image 

analysis solutions. 

1.1 Motivation and Origin of the Project 

This project originates from the observed clinical and research limitations in the current methods to 

evaluate abdominal aortic aneurysms (AAA), particularly within the ongoing efforts of our research 

group to correlate omics data with anatomical and pathological features of the aneurysm. In these 

studies, the only available ground truth was the maximum diameter, manually measured by 

radiologists, an indicator widely used in clinical practice but with limitations in terms of predictive 

value and reproducibility. 

Driven by the need to overcome these limitations and inspired by recent advances in medical image 

analysis, this project aims to provide a more complete AAA characterization through the automatic 

extraction of morphological and radiomic features from contrast-enhanced CT images. The idea 

arose from the observation that the aneurysm growing can occur in ways that do not always 

translate into diameter changes, such as longitudinal expansion or internal remodeling, which 

cannot be detected by traditional measurements. 
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This work aims to bridge the gap between classical radiological assessment and the demands of 

precision medicine, laying the groundwork for integrating image-based biomarkers into AAA 

research and management. 

1.2 Objectives 

The main goal of this thesis is to improve the characterization of the Abdominal Aortic Aneurysms 

integrating image processing techniques by extracting quantifiable properties from arterial phase 

CT scans through an automated algorithm. To achieve that, a detailed image processing pipeline 

will be developed and validated, aiming to provide significant insights about the disease’s state and 

to evaluate its potential in clinical and research applications. 

Based on this general objective, the following specific objectives are defined: 

▪ Review the state of the art: Analyze recent techniques in image segmentation and image 

processing applied to the AAA study, with a focus on clinical and research environments. 

▪ Definition of structures of interest: Determine which anatomical AAA regions and adjacent 

structures should be segmented for a significant disease evaluation. 

▪ Segmentation of the structures: Implement a standardized segmentation method to segment 

the relevant structures from the CT images, validating the results with experimented 

radiologists. 

▪ Feature extraction: Identify and extract quantifiable properties from the segmented images 

that reflect the physical and pathological state of the AAA. 

▪ Evaluation and comparison of results: Compare the properties automatically extracted with 

traditional methods used in clinical practice, assessing their consistency and potential added 

value in disease analysis. 

This project will serve as a proof of concept for the integration of image processing techniques in 

the AAA study, facilitating the development of automatized tools for its analysis and 

characterization. 

1.3 Methodology 

The methodology developed in this project is based in the creation of an automatic pipeline to 

extract morphological and radiomic features from contrast-enhanced CT scans of patients 

diagnosed with AAA. 

The workflow has been divided into five main stages (Figure 1): 

 

Figure 1: Main stages of the project workflow. 



 Biomedical Engineering Júlia Vila Delgado 

 3 

▪ Data acquisition: Collection of contrast-enhanced CT scans and selection of relevant patients. 

▪ Preprocessing and segmentation: Segmentation of key anatomical structures. 

▪ Feature extraction: Automatic computation of geometric and radiomic parameters. 

▪ Output generation: Creation of summary tables and medical reports for result interpretation. 

▪ Result validation: Comparison with manual measurements and analysis of result consistency. 

All steps in the pipeline have been implemented using open-source tools, ensuring reproducibility 

by enabling future adaptation in both clinical and research settings. In addition, useful annexes are 

provided, and all the code implemented can be found in a public GitHub repository1. 

1.4 Limitations 

Several limitations were found during the development of this project. First, the sample size was 

small, which limits statistical power and generalizability of the results. Second, the segmentation 

process was manual, introducing potential interobserver variability despite the use of standardized 

protocol. Third, image quality and acquisition parameters varied slightly between patients, which 

may have affected the consistency of certain measurements. Additionally, the pipeline was only 

validated technically and not clinically, so its integration into real clinical workflows requires further 

testing. Finally, time constraints limited the possibility of applying the method to a larger cohort or 

exploring advanced machine learning approaches. 

1.5 Location 

This project has been developed in collaboration with the Complex Disease Genomics Unit 

(UGMC) group at Institut de Recerca de l’Hospital de Sant Pau under the supervision of Josep 

Munuera (principal investigator) and Ager Uribezubia (PhD student). 

2. BACKGROUND 

To provide a comprehensive understanding of the clinical and technical context in which this project 

is framed, this section presents a detailed overview of the medical background of AAA and the 

imaging technologies used for their analysis. 

2.1 Medical Background 

2.1.1 The Aorta 

The aorta is one of the main arteries in the human body. It is also the longest one, with an extension 

of approximately 2,5 cm of diameter in healthy adults. It originates in the left ventricle of the heart, 

it has an ascending initial trajectory, but then it creates an arch (aortic arch) and descends through 

the thorax until the abdomen. At this point, at the level of L4 vertebrae, it bifurcates into the left and 

right iliac arteries. Its main function is to transport oxygenated blood, rich in nutrients, to the body 

via the systemic circulation. 

The aorta can be divided into four sections: the ascending aorta, the aortic arch, the thoracic 

(descending) aorta and the abdominal aorta [6]. 

 
1 GitHub repository link: https://github.com/juliaviladelgado/TFG_AAA_Analysis 

https://github.com/juliaviladelgado/TFG_AAA_Analysis
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2.1.2 Abdominal Aorta 

The abdominal aorta is a continuation of the thoracic aorta, and in adults, it usually has an extension 

of approximately 13 cm, ending at the level of the L4 vertebra, where it splits into the common iliac 

arteries.  

In Figure 2, a normal anatomy of the aorta can be observed. It can also be seen that many branches 

arise from it. The ones considered most important and relevant for this project are the celiac trunk, 

right and left renal arteries and superior mesenteric artery. 

These arteries are highlighted first, because they are the principal arteries supplying major 

abdominal organs, so changes in their permeability can directly influence aortic blood flow patterns. 

And secondly, their permeability status is also linked to the functional integrity of the organs they 

supply. For instance, renal artery occlusion can lead to kidney failure, and similarly, compromise in 

these vessels can have significant effects on the patient’s overall health and prognosis. 

 

Figure 2: Branches of the abdominal aorta [7]. 

2.1.3 Abdominal Aortic Aneurysm (AAA) 

Abdominal aortic aneurysms (AAA) are an enlargement of the abdominal section of the aorta 

caused by weakness in the artery walls under the pressure of blood flow (see Figure 3). In most 

cases, the disease is asymptomatic, as the aneurysm itself does not cause any pain and does not 

affect the patient’s functionality, making it difficult to diagnose. Despite initially being asymptomatic, 

AAA represents significant danger as it cannot shrink but may continue to increase in size until it 

ruptures, leading to fatal consequences for the patient as the mortality rate is about 80-85% once 

the rupture occurs [8]. Aneurysms rupture occurs when the wall stress due to blood pressure 

exceeds the aortic wall strength. At this point, the aorta can no longer withstand the forces applied 

to it and it breaks [8]. 
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Figure 3: Abdominal Aortic Aneurysm representation [9]. 

2.1.3.1 Risk Factors 

AAA causes approximately 170.000 deaths annually worldwide [1]. While usually it is an 

asymptomatic disease, there are some risk factors to be considered that influence its development. 

According to recent literature, the most relevant risk factors are [1] [10]: 

▪ Age: The prevalence of AAA increases significantly with age, particularly in individuals over 

the age of 65, caused by degenerative changes in the vascular wall, contributing to aneurysm 

formation. 

▪ Sex: AAA is substantially more common in males than females. Men have up to four times 

higher prevalence, though women tend to present with aneurysms at smaller diameters and 

experience higher risk of rupture when they occur. 

▪ Smoking: Smoking is the most important modifiable risk factor. It contributes to vascular wall 

degradation and inflammation, significantly increasing the likelihood of aneurysm formation and 

growth. 

▪ Family history: A genetic predisposition to AAA has been identified with individuals having a 

first-degree relative affected by the condition being at elevated risk. 

▪ Hypertension and other cardiovascular diseases: High blood pressure and atherosclerosis 

are common in patients with AAA. These conditions weaken the vessel wall and contribute to 

aneurysm development and progression. 

These risk factors are agreed within the clinical literature and play an important role in determining 

screening eligibility and monitoring protocols for patients. 

2.1.3.2 Treatment Options for AAA 

There exist several management options for AAA, depending on the aneurysm size, growth rate 

and presence of symptoms. Treatment strategies range from conservative surveillance to surgical 

intervention, aiming to prevent rupture, which carries a high mortality risk [11]. 

Conservative Management: Small, asymptomatic AAA (typically those with a diameter smaller 

than 5,5 cm in men or 5,0 cm in women) are generally managed with active surveillance rather than 

immediate surgery. This includes routine imaging follow-ups, lifestyle interventions and 

pharmacological control [10][11]. 
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Surgical Repair: When the aneurysm exceeds the threshold for intervention (usually ≥5.5 cm in 

men or ≥5.0 cm in women), or in the presence of symptoms or rapid growth, surgical repair is 

indicated [11]. 

There are two primary surgical options: 

▪ Open Surgical Repair (OSR) involves direct abdominal incision to remove the aneurysmal 

segment and replace it with a synthetic graft (Figure 4, left). Though invasive, OSR offers long-

term durability and may be preferred in younger and low-risk patients [11]. 

▪ Endovascular Aortic Repair (EVAR) uses minimally invasive approach in which a stent graft 

is inserted via femoral and positioned inside the aneurysm to exclude it from circulation (Figure 

4, right). EVAR is associated with reduced short-term morbidity, quicker recovery and lower 

perioperative mortality compared to OSR, although it may require more frequent imaging 

follow-up due to risks such as endoleaks or graft migration [11]. 

The choice between EVAR and OSR depends on patient anatomy, comorbidities, life expectancy, 

and institutional expertise. However, despite improvements in cardiovascular risk factor 

management, 5-year survival after successful aneurysm repair remains below 70% [11]. 

 
Figure 4: Open Surgical Repair (left) vs. Endovascular Aortic Repair (right) [12]. 

Emergency Treatment: In the event of ruptured AAA, emergency surgery (either OSR or EVAR) 

is essential. Despite advances in surgical techniques, the mortality rate remains high, emphasizing 

the importance of early detection and elective intervention [11]. Studies indicate that, in ruptured 

aneurysm patients, mortality in the postoperative days is around 35%. Moreover, in many cases, 

more than 50% of patients with rupture die before reaching the hospital [11]. 

2.2 Technical Background 

2.2.1 Medical Imaging in AAA Diagnosis 

Medical imaging plays a fundamental role in the diagnosis, monitoring, and treatment planning of 

many diseases in modern medicine, allowing to observe inside the body in a non-invasive way. 

There are different types of medical imaging, including X-rays, Computed Tomography (CT), 

Magnetic Resonance (MRI), Ultrasound (US) or Positron Emission Tomography (PET). These 

techniques provide detailed information about the organs, tissues, and blood vessels. 
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In the context of AAA, both CT and US are widely used in diagnostic imaging techniques. While CT 

is considered the gold standard due to its high resolution and 3D visualization capabilities, 

ultrasound is often the first choice for initial screening and follow-up of AAA because it is quick, 

inexpensive, and does not emit ionizing radiation. However, the effectiveness of ultrasound 

depends on the operator’s skill, and typically does not provide image records like CT, limiting its 

value in quantitative studies or longitudinal follow-up. 

The dataset used in this project consists of contrast-enhanced Computed Tomography (CT) images 

acquired from patients diagnosed with AAA. CT is a widely used medical imaging technique that 

provides cross-sectional images of the body and is considered one of the gold standards for 

assessing vascular pathologies, including aneurysms [13].  

CT imaging operates by measuring the attenuation of X-rays as they pass through different tissues 

in the body. X-rays are a form of ionizing radiation that can penetrate the body to varying degrees 

depending on the density and composition of the tissues. Regions with a low density, such as air 

or fat, allow X-rays to pass through with minimal attenuation, resulting in darker regions on the final 

image. Conversely, tissues with higher density such as bone or calcified structures absorb more X-

rays, producing brighter areas. This differential attenuation creates the contrast that enables the 

visualization of internal anatomical structures. 

In CT, multiple X-ray projections are taken from different angles around the patient. These 

projections are then reconstructed using mathematical algorithms, such as filtered back projection 

or iterative reconstruction, to generate a volumetric dataset composed of thin axial slices. When 

these slices are combined, they provide a 3D representation of the anatomical region of interest, 

allowing localization and measurement of pathological features [14] (Figure 5). 

 

Figure 5: Computed Tomography (CT) acquisition workflow [14]. 

In the context of AAA, contrast-enhanced CT scans acquired during the arterial phase are 

particularly valuable. Intravenous contrast agents highlight the vascular lumen, delineating the 

aortic wall, and facilitating the location of intraluminal thrombus (ILT). These images enable 

assessment of the aneurysm’s size, shape and relationship with surrounding branches, information 

that is essential for diagnosis, monitoring, and treatment planning. 

2.2.2 Applications of Medical Imaging 

CT scans are especially useful for looking at the shape and structure of the body. They create 3D 

images from many X-rays taken from different angles. These images help doctors and researchers 
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measure organs and identify problems. In research, CT images are also used for more advanced 

tasks like segmenting tissues, building 3D models, or simulating how blood flows through vessels. 

One of the most common applications in AAA imaging is tissue segmentation, where different 

anatomical regions are automatically or manually delineated. The most common segmented 

structures in AAA are the aortic lumen, the intraluminal thrombus, and the aortic wall, which helps 

accurately measure the size and shape of the aneurysm to better understand the disease [8] [15]. 

These segmented images can also be used to obtain quantitative biomarkers, giving measurable 

characteristics of the image. Some examples are the thrombus volume, contact area between 

thrombus and wall or even the curvature of the vessel. Various studies are analyzing whether these 

biomarkers can better predict the rupture risk of the aneurysm than the maximum diameter alone, 

which is still the main clinical criteria used at present [1] [16]. 

Another relevant application is hemodynamic simulation, which allows to model the blood flow 

through the aneurysm using 3D models generated with images. This contributes to identify high 

stress zones in the aortic wall and understand how the disease evolves or when it could end up in 

rupture [10]. 

In recent years, artificial intelligence and automatic learning have also been applied to image 

analysis. These techniques can automatize processes such as segmentation, feature extraction or 

risk prediction. Deep learning models, like neural networks, show promising results in the automatic 

analysis of a big volume of medical images [10]. 

To sum up, medical images are no longer only a diagnostic tool. It allows to extract important data 

from the body, supporting clinical decisions and making possible the development of prediction 

models that can help improve sanitary attention, especially in diseases like AAA. 

2.2.3 Quantitative Imaging 

Quantitative imaging involves converting qualitative medical image data into objective measurable 

features that can provide clinically relevant information. By applying advanced computational 

methods, such as segmentation and feature extraction, it allows the analysis of anatomical and 

functional structures in a reproducible way, which is essential for research, diagnosis and treatment 

monitoring in AAA and other pathologies. 

2.2.3.1 Image Format 

The most used formats in medical imaging are DICOM (Digital Imaging and Communications in 

Medicine) and NIfTI (Neuroimaging Informatic Technology Initiative). DICOM is the clinical standard 

for managing, storing, and transmitting patient data, combining both the image and metadata, such 

as patient ID, modality, acquisition parameters, and spatial details like voxel spacing and slice 

thickness, within each file. However, because each slice is stored separately, DICOM is less suited 

for large scale computational workflows. To address this, images are often converted to NIfTI 

format, which consolidates volumetric data into a single file and includes a simpler header with key 

spatial metadata like voxel size and affine transformations, enabling more efficient processing and 

integration with Python-based tools [17]. During this conversion, anonymization is essential to meet 
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privacy laws such as the GDPR in Europe [18] and HIPAA in the US [19]. Tools that automate 

DICOM-to-NIfTI conversion often include options to strip personal identifiers, ensuring the resulting 

data is de-identified and ready to be used for research. 

2.2.3.2 Image Processing Techniques 

Image processing is a fundamental step in medical image analysis, allowing to transform raw 

imaging data into well-structured information, measurable and useful from a clinical point of view. 

These techniques are applied in various medicine areas and over different image modalities, such 

as CT, MRI, or echography, to help in diagnosis, disease progression and personalized treatment. 

Some of the most common image operations include filtering (to reduce noise or improve contrast), 

registration (alignment of images taken at different moments in time or using different techniques) 

and resample (to ensure a good resolution and homogeneous orientations) [20]. These 

preprocessing steps are usually necessary before starting with more advanced steps. 

One of the key techniques in medical image analysis is segmentation, which consists of identifying 

and isolating specific structures within the image, such as organs, tumors, blood vessels or lesions. 

Segmentation can be manual, semiautomatic, or automatic, and can use methods like thresholding, 

edge detection, region growing or model-based approaches [21]. In recent years, methods based 

on deep learning, especially convolutional neural networks (CNN) such as U-Net architecture, have 

gained widespread use in medical segmentation, offering a high precision and speed [22]. 

After segmentation, feature extraction stage starts, to quantify relevant properties from the detected 

structures. These characteristics can be geometrical, textural, or spatial. In many diseases these 

features are used as image biomarkers helping diagnostic, patient classification and the prediction 

or prognosis or the selection of the most appropriate treatment [23]. 

In the specific case for AAA, image processing techniques allow obtaining detailed anatomical 

information from contrast-enhanced CT scans. Once the aortic lumen and thrombus are 

segmented, techniques as centerline extraction, allow to compute metrics that quantify the 

morphological changes (tortuosity, curvature, transversal areas, and diameter profiles) along the 

aorta [24]. Furthermore, it is also possible to estimate the contact area between the thrombus and 

wall, a parameter related with biomechanical stress [25].  

Moreover, the emerging field of radiomics allows to extract hundreds of quantitative characteristics 

from medical images, related to texture, shape and intensity statistics. These features can be used 

to develop predictive models that complement the current clinical criteria and help to create a more 

personalized medicine [23]. 

2.2.3.3 Structural Quantification 

Structural quantification in medical imaging consists of the extraction and analysis of morphological 

characteristics that allow us to understand anatomical and pathological changes in diseases as 

AAA. These quantitative metrics include dimension measures (volume, surface area, diameters) 

and shape descriptors, such as tortuosity or curvature, which are critical for assessing disease 

evolution and risk [24]. Centerline extraction, allows for a more precise diameter profile and 
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tortuosity analysis, showing curvature and vessel deformation associated with aneurysm growth 

[25]. These quantitative parameters offer an added value for clinical evaluations that are more 

objective and reproducible and can back-up computational models for risk prediction. 

2.2.3.4 Radiomic Quantification 

Radiomics is an emerging field that enables the extraction of quantitative information from medical 

images to characterize biological processes in tissues and organs. It is based on the hypothesis 

that medical images capture subtle patterns related with the physiopathology of diseases, 

becoming a non-invasive “digital biopsy” [26].  

Radiomic features are divided into different categories. First order features describe basic statistics 

based on pixel intensity. These metrics reflect a global distribution in intensity and provide a first 

approximation to homogeneity or heterogeneity of the lesion [27].  

Second order features, such as grey-level co-occurrence matrices (GLCM), analyze spatial 

relationships between neighboring pixels and quantify texture patterns. Parameters like entropy or 

GLCM uniformity inform about complexity and internal lesion structure [27]. 

Higher order features (GLRLM, NGLDM) capture more complex relationships, like size of 

heterogeneous zones or intensity dependency with respect to distance and direction and can be 

associated with biological phenomena like vascularization, fibrosis, or necrosis presence [27]. 

Biologically radiomics aims to link these image-derived patterns to biological processes. For 

example, recent studies have shown how certain texture features extracted from the image 

correlate with tissue hypoxia, gene expression or immunological infiltration [26]. However, these 

relationships are still indirect and complex, and require for external validation [26]. 

In summary, radiomics enables to extract biomarkers that may provide added value to the 

diagnostic and prognostic in diseases like AAA. Its potential lies in the combination of spatial 

information, texture, and clinical data along with the biology related to the disease [26][27]. 

2.2.4 Clinical Importance of Advanced Techniques 

The automation of medical image analysis, especially in the AAA study, can have a significative 

clinical impact. First, automatic methods allow to reduce diagnostic time. This is especially useful 

in clinical areas where a fast response is required [28]. 

Automation also contributes to create consistency and reproducibility among results, minimizing 

interobserver variability that usually appears in manual measurements. In the case of AAA, small 

differences in measurements can directly influence in important clinical decisions, such as the 

moment for surgical intervention [29]. 

In addition, advanced image processing techniques can provide support for clinicians by extracting 

biomarkers that go further the maximum diameter and will give more information. These include 

parietal stress, thrombus characteristics or geometrical descriptors, that allow for a more complete 

risk evaluation and a better patient stratification [15][23]. 
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The integration of this tools in clinical practice can also facilitate personalized follow-ups, allowing 

tailored surveillance and control strategies according to the risk factors extracted from the image, 

instead of depending only on fixed size thresholds. Moreover, these techniques can help support 

presurgical planification, generating 3D models and spatial precise measures that contribute to 

improve security and efficiency of the procedure [24]. 

In summary, the use of advanced and automated techniques in the AAA analysis does not only 

improve efficiency and reduces variability, but also opens the door to more precise and tailored 

clinical decisions. 

2.3 Research in AAA 

Research in AAA has experienced a notable growing in last decades, focusing on morphological, 

biomechanical, and molecular aspects to improve diagnosis, risk stratification and therapeutical 

planning. Traditionally, transversal maximum diameter has been the main criteria to guide clinical 

decisions, but its limited predictive capacity has pushed the development of methods that integrate 

other types of parameters for a more precise evaluation [30][31]. Among these, morphological 

studies have explored three-dimensional geometry and thrombus characteristics to identify 

indicators of instability and rupture risk [4][32]. In parallel, radiomic investigations have allowed to 

extract hundreds of quantitative features from images, expanding prediction and tailored treatment 

possibilities [33]. On the other hand, advances in biomechanics have incorporated computational 

models that consider wall stress and its resistance, offering another histopathological approach for 

risk stratification [31]. Finally, the integration of omic approaches, like genomic and transcriptomic 

studies, have provided new insights into the biology of AAA, although linking these molecular 

findings to structural and mechanical disease aspects remains a challenge [4][33].  

Together, these areas of research reinforce multidisciplinary perspective on AAA, highlighting the 

need to integrate morphological, biomechanical, and molecular information to find new biomarkers 

that allow to advance toward more personalized and precise patient care. 

3. STATE OF THE ART 

AAA, which is usually asymptomatic, affects primarily to men older than 60 years and it is one of 

the most common sudden death causes for the elderly [34]. The fact of generally being 

asymptomatic, causes that the detection is usually an incidental finding when performing an 

ultrasonography, CT, or MRI for other purposes [34]. The rupture risk increases exponentially with 

the diameter, expansion rate, uncontrolled hypertension, and active smoking [1]. 

Although surgical techniques have improved significantly in recent years, there is still no 

pharmacological therapy that has convincingly demonstrated efficacy in slowing AAA growth in 

randomized controlled trials. A wide range of drugs has been tested, including antibiotics, blood 

pressure lowering therapies like fenofibrate or PSCK9 inhibitors [1]. However, none of these 

approaches have shown consistent benefit. Some observational studies suggest that metformin 

and ACE inhibitors might be associated with slower aneurysm growth or reduced rupture risk, but 

this evidence remains preliminary and is currently under investigation in clinical trials [1]. 
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Traditionally, the clinical management of AAA has relied on the transversal maximum diameter as 

the main indicator to decide whether there should be a surgical intervention or not and which would 

be the most precise for the situation. Although transversal maximum diameter is a known risk factor 

for AAA growth and rupture risks, diverse studies have shown an interindividual variability, which 

limits the predictive capacity as a unique clinical indicator [30]. This is why, in the last decades, 

new trends based on morphological, biomechanical or radiomic characteristics have become more 

popular [33].  

In this context, the development of automatic algorithms that enable to extract in a precise and 

reproducible these properties from aorta segmentations have emerged as a promising area of 

research. These methods can contribute to improve clinical practice and progress in translational 

vascular research. 

3.1 Morphological Studies of Abdominal Aortic Aneurysm (AAA) 

3.1.1 Centerline Extraction and Tortuosity 

Centerline analysis is a fundamental tool in the morphological evaluation of AAA. It allows to obtain 

quick and reproducible measurements of diameters and lengths along the vessel, which provides 

essential information for diagnostics, monitoring, and preoperative planning. Compared with 

manual multiplanar reformation (MPR), centerline-based measurements offer higher precision in 

tortuous or complex vascular anatomies, provided that it follows the real aorta trajectory [35]. 

Zhang et al. [32] proposed a robust semiautomatic method to detect the centerline of the aortic 

lumen in AAA by using AdaBoost online classifiers, without needing previous segmentation (Figure 

6). The method proved a high precision when it was tested in 60 datasets (30 ruptured and 30 

unruptured AAAs). Their results revealed that tortuosity was significantly higher in ruptured 

aneurysms, suggesting that it may be useful as a geometrical biomarker to assess rupture risk [32]. 

On the other hand, other authors, like Fillinger et al., reported an opposite tendency (lower tortuosity 

in ruptured aneurysms), this discrepancy is probably due to the use of bidimensional methods that 

underestimate the real three-dimensional lumen geometry [32].  

 
Figure 6: Comparison of classical centerline extraction methods vs. AdaBoost online classifiers [32]. 

Other studies that compare the anatomy of ruptured and intact aneurysms have shown that the 

ruptured AAAs tend to have shorter necks and larger diameters [36]. These anatomical factors are 

relevant for rupture risk, but also for determining the feasibility and safety of EVAR procedures. 
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Additionally, Bodur et al. [37] proposed a semi-automatic method for extracting the aortic lumen 

centerline and segmenting the outer vessel wall, including intraluminal thrombus, using a modified 

isoperimetric segmentation algorithm, which enables full 3D reconstruction. This approach not only 

facilitates automatic diameter calculation from orthogonal cross-sections, but also other measures 

such as transversal areas, or shape descriptors. 

3.1.2 3D Morphological Indices and Rupture Risk Prediction 

In recent years, 3D segmentation methods have allowed to extract complex morphological 

descriptors from angio-CT images. Tang et al. [38] developed a wide case-control study comparing 

ruptured and asymptomatic aneurysms, and found that several 3D geometrical indices, such as 

sac height, wall surface area, thrombus volume, bulge location, and mean averaged area curvature, 

were significantly associated with the risk of rupture, even after adjusting for maximum diameter 

and gender. 

These insights are reinforced by cerebral aneurysms studies, where automatic feature extraction 

from radiological images has proved that shape irregularity is a better rupture predictor than size 

[39][40][41]. For example, parameters like flatness, superficial area, sphericity, or spherical 

disproportion, have been all identified as key features to distinguish stable from unstable 

aneurysms (Figure 7) [39]. Although the anatomical context is different, the conceptual parallels 

suggests that similar morphological irregularities may also be valuable for AAA risk evaluation. 

 

Figure 7: Shape descriptors of cerebral aneurysms [41]. 

Also, anatomical configurations like conical or barrel-shaped necks, high angulation, and thrombus-

laden walls have been associated with high increased risk of endoleaks and graft migration, 

according to interventional studies [42].  

In addition, Wadgonkar et al. [43] highlight the utility of multiplanar reconstruction (MPR) and 

semiautomatic tools to obtain precise measurements that are orthogonal to the centerline, which 

significantly reduces the interobserver variability. They also describe key indicators of instability, 

such as the crescent sign (hyperattenuating intramural hemorrhage), the draped aorta sign 

(deformation of the aneurysm sac over the vertebrae), mural thrombus lysis, and focal discontinuity 

of intimal calcifications [43]. These findings together with the observation of decreasing thrombus 

volume and rapid lumen expansion, reinforce the idea that rupture risk prediction should be based 

on a combined approach involving both morphological metrics and visual radiological patterns. 
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3.1.3 Calcification and AAA Risk 

Vascular calcification is a well-established cardiovascular risk factor, and its role in rupture risk and 

aortic aneurysm progression has been of interest in recent studies. 

A study performed by Bujis et al. [44] found that calcification was significantly higher in patients 

with symptomatic or ruptured AAA compared to those undergoing elective repair. Specifically, both 

larger diameters and higher calcification score were independently associated with rupture or 

symptoms, supporting the hypothesis that said that calcification can contribute to structural 

degradation of the aortic wall [44]. 

O’Leary et al. [45] provided mechanical insights by performing mechanical tests in AAA tissue 

samples, comparing fibrous regions to partially calcified areas. Their results showed that rupture 

frequently occurred at the interface between calcifications and the surrounding fibrous matrix [45]. 

In contrast, Klopf et al. [46] found an inverse relationship between calcification volume and 

aneurysm growth. Increased calcification volumes were associated with a slower aneurysm 

expansion, suggesting a possible stabilizing effect, as represented in Figure 8. This finding 

highlights the complex and potentially dual function of calcifications: while it can weaken locally the 

aortic wall, it could also limit the global aneurysm expansion [46]. 

 
Figure 8: Differences of calcification patterns in patients with AAA. CT showing an AAA with little vessel wall calcification and 

increased progression (A) compared with an AAA with a higher calcification but decreased AAA growth rate (B) [46]. 

In summary, calcification within AAA wall is increasingly recognized as a complex factor in the 

aneurysm physiopathology. Although it seems to contribute to local mechanical weakening of the 

wall, some data suggests that it could have a stabilizing effect limiting the aneurysm growth. 

Understanding these dual effects is key to improve risk stratification and decision making in AAA. 

3.1.4 Morphological Key Parameters in AAA 

In summary, morphological characterization of AAA has evolved thanks to 3D segmentation 

methods and advanced analysis, which has enabled to identify key parameters for risk stratification 

and treatment planning. As shown in the study performed by Rezaeitaleshmahalleh et al. [47], 

indexes derived from the centerline, like tortuosity, and 3D geometrical measures, such as 

aneurysm volume and total surface, stand out for their relevance (p < 0.05) and have shown 

significative differences between rapid-growth and slow-growth aneurysms. Particularly, variables 

like lumen tortuosity (p = 0.01), lumen and thrombus volume (p = 0.04), and the maximum/minimum 

radius ratio (p = 0.02), are especially relevant. These measurements offer a more complete and 
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complementary view of the classical criteria based on maximum diameter, helping to better 

understand the differences in morphology and improve rupture risk prediction and stratification. 

3.2 Radiomic Techniques on AAA Evaluation 

Radiomics is an emerging field that allows to extract a large number of quantitative features from 

medical images, converting the visual information into numerical data that can better describe 

morphology and texture with high precision. This technique offers new opportunities for 

personalized risk stratification and AAA evolution, complementing the classical anatomical 

measures based only on the diameter [26]. 

3.2.1 Biological Interpretation of Radiomic Features 

Although radiomics offers a high amount of quantitative data, its clinical acceptance requires to 

understand how these features are related with biology. Tomaszewski and Gillies [26] highlight that 

the radiomic features derived from matrices such as GLCM-derived entropy, run-length emphasis 

(GLRLM), size zone variability (GLSZM) and wavelet transforms usually reflect histopathological 

key aspects related to tissue microarchitecture, including fibrosis, necrosis, or inflammatory 

infiltration. High entropy and low run-length emphasis, for example, can indicate more complex and 

disordered tissue, potentially correlating with areas of active aneurysm remodeling and 

inflammation. 

3.2.2 Radiomics of Perivascular Adipose Tissue (PVAT) 

The perivascular adipose tissue (PVAT) surrounding the aorta is now recognized as an endocrine 

organ capable of secreting various adipokines, cytokines, and growth factors that influence 

vascular biology. In AAA, a raise in PVAT attenuation has been associated with aneurysm growth 

and the infiltration of inflammatory cells [48]. 

Lv et al. [48] studied the radiomic characteristics of PVAT in patients who underwent EVAR and 

found that growing aneurysms showed a higher surface area-to-volume ratio (0.70 vs 0.63, p=0.04) 

and greater textural heterogeneity compared to non-growing aneurysms. Texture features, 

including those derived from grey-level co-occurrence matrix (GLCM), grey-level dependence 

matrix (GLDM), and grey-level run-length matrix (GLRLM), also differed significantly (p<0.05). For 

example, the dependence variance and long run emphasis, were lower in growing AAAs, indicating 

a more uniform texture, while the run-length non-uniformity was higher reflecting greater 

heterogeneity in PVAT structures. These findings suggest that textural features of PVAT may reflect 

underlaying inflammatory or remodeling processes that promote AAA growth [48]. 
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Figure 9: Visualization of texture features in PVAT. The top row represents a non-growing AAA (A) while (B) represents a growing 
AAA. The 1st image of both shows the arterial phase enhanced CT slice. The 2nd represents the manual segmentation of PVAT. 

The 3rd depicts the extracted PVAT. The 4th and 5th images display the heatmaps of the GLCM and GLDM respectively [48]. 

3.2.3 Radiomic Analysis of Intraluminal Thrombus (ILT) 

The ILT has been a focus in recent studies due to its role in AAA rupture risk. Rezaeitaleshmahalleh 

et al. [47] applied an automatic ILT radiomic analysis, proving that the incorporation of texture 

characteristics of the ILT significantly improved the prediction of AAA growth. Among the most 

relevant features are included geometrical metrics and composition parameters of the thrombus 

[47]. Wang et al. also reported improvements in prediction when incorporating radiomic information 

of the ILT. Key radiomic features identified include wavelet-transformed energy metrics and texture 

features capturing ILT structural heterogeneity, which may reflect differences in thrombus stability 

and remodeling and identify more precisely the aneurysms with rapid growth [49]. 

3.2.4 Challenges and Future Directions 

These results consolidate the idea that radiomic analysis of specific regions like ILT or aortic wall, 

provide precise complementary information and highlights the need to keep progressing in the 

validation of these models. Despite all the advancements, radiomics faces several challenges: the 

reproducibility of features depends on image and segmentation quality, acquisition parameters and 

analysis standardization [29]. Moreover, the biological meaning of many radiomic features is still 

unclear in AAA, which highlights the need for wider prospective studies and multimodal integration 

(clinical, radiomics, biomechanics) to consolidate its use in clinical practice. 

3.3 Automatic Segmentation Algorithms 

Abdominal aortic aneurysm segmentation from medical images is essential for a precise evaluation 

and for interventional planning. Traditionally, this task has relied on manual delineation by 

radiologists, a long process and susceptible to variability. This is why, in the last years, multiple 

automatic and semi-automatic methods have been developed with the aim of reducing time and 

increase segmentation reproducibility, providing benefits in clinical practice and research. 

3.3.1 Approaches Using MRI and Traditional Image Processing Methods 

One of these methodologies is presented by Martínez-Muñoz et al. [50], who developed an 

automatic algorithm to segment AAA in RM images: first, the aortic lumen was segmented using a 

diffuse clustering algorithm (SFCM) and morphological operations; then, the aortic wall and 
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thrombus were segmented with graph cuts and using the lumen segmentation as an automatic 

initializer. This approach allowed to obtain satisfactory results in a mean time lower than 3 seconds, 

with a superposition of 79% with respect to the manual segmentation performed by an expert. 

 
Figure 10: Example of aortic segmentation with an automatic method compared with an expert-validated segmentation. (a) 

Segmentation obtained automatically using Martínez-Muñoz et al. method and (b) segmentation by the expert [50]. 

3.3.2 Automated Methods for CT Images and Border Propagation 

Lareyre et al. developed a completely automatic software that combines border propagation and 

morphological techniques to segment the aortic lumen and thrombus in angio-CT images. This 

system demonstrated precision to segment AAA and allowed to visualize 2D and 3D 

reconstructions, facilitating the detailed analysis of aneurismatic morphology [51]. 

3.3.3 Approaches Based on Deep Learning 

More recently, Abdolmanafi et al. proposed a fully automated segmentation model based on deep 

learning to segment the aorta and the associated structures (lumen, wall, thrombus, and 

calcifications) using convolutional deep neural networks (CNNs). Their model, which uses an 

encoder-decoder architecture based on ResNet, showed an excellent performance comparable to 

the one performed manually by experts [52]. 

On the other hand, Mu et al. presented the CACU-Net, a two-stage 3D deep learning architecture 

with dilated convolutions and anisotropic context module for fully automatic lumen and thrombus 

segmentation in CT angiography data. This model significantly outperformed other methods (such 

as 3D U-Net or Graph Cuts) [53]. 

Caradu et al. evaluated a fully automated segmentation software (PRAEVAorta) comparing it with 

manual segmentations corrected by experts (Figure 11). Their analysis showed excellent 

correlation, reducing the segmentation time from 5-80 minutes manually to 27seconds-4minutes 

automatically [54]. 

 
Figure 11: PRAEVAorta segmentation results. Representative images of the segmentation of the aortic lumen (red ) and the 
intraluminal thrombus (green ). A comparison of the results obtained with the fully automatic segmentation and the manually 

corrected segmentation by surgeons are also displayed, showing the mismatched regions in yellow [54]. 

Finally, Sieren et al. trained a model based on a 3D U-Net to completely segment the aorta (lumen, 

wall, thrombus, calcifications) in angiographic CTs. Their method accomplished a mean Dice of 
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0.95, validating the precision of an automated approach compared to manual expert segmentation 

[55]. 

These studies prove the importance and evolution of automatic segmentation methods in AAA. 

Most studies and implementations show evidence that automatic segmentation not only can be 

used as a tool to reduce time and workload for specialists, but also to standardize results and 

improve diagnostic precision and interventional planning.  

3.4 Biomechanical Assessments 

Biomechanical evaluation of AAA offers a promising alternative to improve prediction of rupture risk 

and intervention planning, complementing the diameter-based evaluation. These methods use 

computational models that consider physical and geometrical properties of the aneurysm to 

estimate parameters like peak wall stress (PWS), peak wall rupture index (PWRI) or the aneurysm 

biomechanical ratio (ABR).  

A study by Doyle et al. demonstrated that ABR, defined as the dimensionless ratio of local wall 

stress to wall strength, is an independent predictor of events related with the aneurysm (rupture or 

repair) [15]. The ABR calculation applies physiological pressures to 3D aneurysm reconstructions 

to simulate hemodynamic conditions. The study revealed that patients with a higher ABR presented 

a higher rupture probability of the aneurysm, highlighting the potential of this index for risk 

stratification and clinical planning. 

On the other hand, Singh et al. investigated the role of PWS and PWRI in predicting aneurysm-

related events in patients with small AAAs. Their finite element analysis (FEA) revealed that while 

both were related with a higher rupture risk, only PWRI significantly improved the risk classification 

beyond maximum diameter [31].  

As a notable example for biomechanical analysis, the BioPARR software has been specifically 

developed to estimate the Rupture Potential Index (RPI) from CT or MRI images. This software 

combines semi-automatic segmentation and FEA simulations in a fully automatized workflow, to 

estimate wall stress and rupture potential, removing the need for detailed knowledge of patient-

specific material properties and making biomechanical risk assessment more accessible for clinical 

practice [56]. 
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Figure 12: Example of stress computation results by BioPARR. The maximum principal stress [MPa] is computed at each node of 
the finite element mesh [56]. 

The incorporation of softwares like BioPARR in research and clinical practice that can calculate 

parameters like ABR or PWRI could allow for a more specified risk stratification and improve the 

results in patients with AAA. However, additional studies and validation in independent cohorts are 

still necessary to consolidate these tools as an integral part of clinical practice. 

Although this project initially considered the extraction of biomechanical features using tools like 

BioPARR, the final implementation focused exclusively on morphological and radiomic features 

due to time constraints and the need for manual segmentations. Nevertheless, biomechanical 

analysis is included in the state of the art as a promising complementary approach, potentially 

valuable in future extensions of the pipeline. 

4. STATE OF THE SITUATION 

4.1 Clinical Need and Current Limitations 

Currently, the main indicator to decide AAA management is the maximum transversal diameter, 

measured manually by radiologists using CT or US images. However, this classical measurement 

presents limitations: it is highly operator-dependent, subject to interobserver variability, and it also 

fails to capture the full complexity of the aneurysm morphology. Defining the size of the AAA only 

with the maximum diameter presents a high irreducible error, as other important features such as 

ILT or calcifications are not considered, even though they play a crucial role in aneurysm behavior. 

As a result, some aneurysms rupture before reaching the surgical threshold, while up to half of 

those undergoing repair would never have ruptured if left untreated [8]. 

Consequently, using diameter alone may not take into account relevant features that can influence 

in the aneurysm progression or instability, highlighting a medical need to incorporate 

complementary features into AAA evaluation. 

4.2 The Importance of Automatic Feature Extraction 

Considering these limitations, the need of developing robust and automatic methods to extract 

morphological and radiomic features directly from medical images appears. These algorithms have 

the potential to offer reproducibility, precision, and independence from operator bias, which are 
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essential for both research and clinical practice and research. Furthermore, they allow to process 

large volumes of data in a rapid and standardized way, facilitating the development of large-scale 

studies and translational applications. Such algorithms could also lay the foundation for future 

integration with omics data. 

4.3 Project Motivation and Clinical Impact 

Recent studies have highlighted features beyond diameter that could serve as clinically relevant 

biomarkers to assess AAA behavior. Importantly, these morphological and radiomic characteristics 

might better correlate with the biological processes revealed by omics studies, like transcriptomic 

or miRNA signatures, which often show little relationship with diameter alone. Incorporating such 

diverse parameters offers a more comprehensive and individualized characterization of 

aneurysms, capturing subtle changes that diameter-based evaluations may miss (for instance, 

growth in volume or complex remodeling that does not translate to diameter increases). This 

motivation arises from the observation that some genes or RNA molecules identified in omics 

studies may not correlate with maximum diameter but could relate to other morphological or 

radiomic features. The current approach of using only maximum diameter as a ground truth, 

measured visually and manually by radiologists, is insufficient for these broader goals. Developing 

an automatic, precise, and reproducible algorithm for extracting these complementary features is 

therefore a necessary step. 

Furthermore, since AAA growth can sometimes occur in ways that do not translate into diameter 

changes, such as longitudinal expansion or remodeling, diameter alone may miss important 

disease processes. Developing such an algorithm could not only enhance basic research in omics 

studies, but also lay a groundwork for clinical applications, enabling more personalized follow-up 

and treatment planning for AAA patients. 

5. MARKET ANALYSIS 

The development and implementation of automatic feature extraction algorithms in the field of AAA 

diagnosis and treatment planning represents a rapidly growing area with significant clinical and 

research interest. In this section, we present a market analysis focusing on the current landscape, 

main players, and trends shaping the adoption and evolution of these technologies. 

5.1 Market Overview: Automatic Feature Extraction Algorithms 

The extraction of morphological and radiomic features from medical images has acquired an 

increasing relevance in the field of vascular and cardiovascular imaging. Traditionally, 3D Slicer 

has been a key tool in research environments, allowing for the manual or semiautomatic extraction 

of basic geometrical descriptors such as centerline, diameters, or volumes [57]. However, since it 

does not have clinical approval, its application is limited to research. Additionally, it does not allow 

for the extraction of complex geometrical or radiomic features. 

In clinical practice, Mimics offers a software platform with CE marking, which enables the extraction 

of semiautomatic features [58], allowing to extract more complex features than 3D Slicer. However, 

it is still semiautomatic and therefore operator dependent, especially for complex features. 
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To overcome these limitations, the market is being oriented towards fully automatic methods that 

integrate segmentation with automatic feature extraction modules. Advances in deep learning 

approaches, with models like U-Net and 3D U-Net, allow to automatically extract morphological 

metrics [53][55]. At the same time, tools like PyRadiomics facilitate the extraction of radiomic 

characteristics [59], while platforms like BioPARR incorporate biomechanical analysis [56]. 

Patent literature also reflects this evolution. For example, US8781193B2 describes automatic 

systems for blood vessel quantitative analysis [60], CN104619244B proposes non-invasive 

methods with ultrasounds and radiofrequency [61], and WO2010121146A2 uses three-dimensional 

analysis based on vascular morphology [62]. Furthermore, open-source tools such as AneuPy 

allow to generate AAA geometries to be used for simulation and algorithm validation [63]. 

However, any patented product or scientific article has been found that, in the context of AAA, 

integrates in a fully automatic single flux the extraction of both simple and complex geometrical and 

radiomic features from the original image and segmentation. This places the algorithm proposed in 

this project as an innovative proposal and with a high potential in clinical and research applications. 

5.2 Target Market 

The development of completely automatic feature extraction algorithms applied to AAA images 

targets a specific and growing market within the medical imaging and cardiovascular disease 

management sectors. This market includes several key players: 

▪ Clinical research institutions and academic hospitals: Research groups focused on 

personalized medicine and integration of new biomarkers based in imaging to predict growing 

or rupture risk of AAA. 

▪ Healthcare providers and hospitals: Medical centers and vascular surgery services which 

require precise morphological analysis for diagnostic, evolution assessment and treatment 

planification of AAA. 

▪ Medical device manufacturers: Companies that develop or integrate imaging diagnostic 

tools, like Philips Healthcare or Siemens Healthineers, are increasingly interested in 

incorporating automated and advanced solutions. 

▪ Startups and software companies: Smaller companies, specialized in radiomic and imaging 

analysis using AI, such as QUIBIM or Persomic, that could be interested in licensing or 

integrating new algorithms into their platforms. 

▪ Pharmaceutical companies: Firms aiming to evaluate the effectiveness of their treatments 

through advanced imaging biomarkers may find value in automated morphological and 

radiomic analysis tools. 

▪ Regulatory bodies and insurance companies: As automatic algorithms become more 

clinically validated and integrated, these stakeholders may also be relevant for ensuring 

compliance with data protection and clinical safety standards. 

By offering a fully automated feature extraction algorithm, including morphological and 

biomechanical metrics, the algorithm developed in this project answers the clinical need of a more 

precise and reproducible AAA characterization.  
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5.3 Future Perspectives of the Market 

The market for feature extraction algorithms in the context of AAA presents a promising future, 

driven by several key trends. On the one hand, the advancement of personalized medicine and the 

need of precise and reproducible imaging biomarkers are increasing the demand for automated 

solutions that go beyond the limitations of manual measurements. 

In addition, the progressive integration of artificial intelligence into clinical workflows supports the 

adoption of these algorithms, especially if they are compatible with hospital platforms. In parallel, 

the regulatory landscape is evolving towards clinical certification of these tools and the access to 

multicentric databases will allow to validate its robustness in real populations. 

Overall, a sustained growth is expected in this market, and solutions like the one proposed in this 

project, which integrate morphology and radiomics, are well positioned to meet this demand. 

6. CONCEPT ENGINEERING 

This project aims to develop a computational pipeline to extract morphological and geometrical 

features from CT images of patients diagnosed with AAA. Even though maximum diameter is 

currently the main clinical indicator used to monitor the aneurysm progression and determine the 

need for surgical intervention, this metric by itself does not capture the full morphological complexity 

of the aneurysm. The objective of this project is to obtain complementary descriptors to improve 

characterization and evolution follow-up of the AAA. 

The study is based in a set of patients diagnosed with AAA. The database consists of contrast-

enhanced CT of these patients which then, during the project, will be segmented into key structures: 

abdominal aorta, renal arteries, superior mesenteric artery, and iliac bifurcations, all of them 

separated into lumen, intraluminal thrombus, wall, and calcifications. From these segmentations, a 

structured and automated computational pipeline has been developed which processes every 

image, identifies anatomical points of reference, and calculates different geometric and radiomic 

features of clinical interest. 

 

Figure 13: Main stages of the project workflow. 

As it can be seen in Figure 13, previously shown in the methodology section, the pipeline is 

organized in five main stages that illustrate the conceptual structure of the engineering design: 

1. Data acquisition, which includes CT image retrieval and patient selection. 

2. Preprocessing and segmentation, where anatomical structures are segmented, and binary 

masks are prepared for analysis. 
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3. Feature extraction, in which geometric descriptors are computed from the segmented 

volumes. 

4. Output generation, where numerical results are compiled into summary tables and visual plots 

are produced. 

5. Result validation, which includes comparison and consistency checks using available patient-

specific clinical information. 

6.1 Data Acquisition 

The data acquisition stage involves obtaining medical imaging data of patients diagnosed with AAA. 

CT scans may be acquired for various reasons, either incidentally while investigating other 

conditions, or as part of regular follow-up for known aneurysms, and are stored in the hospital’s 

clinical imaging system. Once the images are retrieved from clinical repositories, they are converted 

from their original DICOM format to a more manageable format (such as NIfTI) to facilitate storage, 

anonymization, and subsequent volumetric processing. For optimal data management and 

reproducibility, images are typically organized in a hierarchical folder structure by patient and 

acquisition date, ensuring a systematic and automated approach to data access in later pipeline 

stages. 

6.2 Preprocessing and Segmentation 

In this stage of the pipeline, the anatomical segmentation of the relevant structures from the CT 

images is performed. Since the original images come from an existing database, no normalization 

nor resampling is applied; these operations, in case they are needed, are applied in posterior 

feature extraction steps. A key aspect of this stage is to define a standardized and reproducible 

pipeline so that any user can segment the images in a consistent and uniform way, minimizing 

variability between operators. 

The main goal of the segmentation process is to isolate the different anatomical regions that 

constitute the abdominal aorta and its ramifications. Specifically, the following structures are 

segmented: abdominal aorta (including both supra and infra-renal sections), left and right renal 

arteries, superior mesenteric artery, celiac trunk and left and right iliac arteries up to their 

bifurcations. Moreover, each of these segments is then separated into its internal components: 

lumen, intraluminal thrombus (ILT), aortic wall and calcifications. It is important to note that both 

thrombus and calcifications are included also in the wall structure. 

Some tools available for segmentation are for example Mimics, which is a paid and closed-source 

software, or 3D Slicer, which is open-source. 

All segmentations correspond to a same patient and are stored in a single .nrrd file, which includes 

multiple labels organized through a system of labels and layers. Each label corresponds to a 

specific anatomical structure and follows a standardized nomenclature which is constant in all 

patients (for example, Lumen_IRA for the left renal artery lumen, or Wall_CT for the wall of the 

celiac trunk). 

Once this segmentation process is finished, the resulting files are integrated directly on the next 

pipeline stage, destined to automatic feature extraction of morphological, geometrical and radiomic 

features.  



 Biomedical Engineering Júlia Vila Delgado 

 24 

6.3 Feature Extraction 

Once all segmented masks are obtained, the next step of the pipeline consists of the automated 

extraction of geometric, morphologic and radiomic features for each individual study. This stage 

focuses on the main aorta, considering both its infra- and supra-renal section, and analyzing 

separately the four anatomical structures: lumen, ILT, aortic wall and calcifications.  

Below, Table 1 summarizes the main groups of features identified from the state-of-the-art 

literature, specifically those that have demonstrated significant associations in previous studies and 

will be used in this analysis. 

These feature groups include shape and spatial configuration, cross-sectional and volumetric 

parameters, and radiomic features that capture textural and intensity patterns. 

Feature Group Examples Meaning Potential Biological Relevance 

Shape & Spatial 
Configuration 

Centerline, 
tortuosity, curvature 

Reflect overall vessel path, focal 
deformation, and remodeling. 

Associated with aneurysmal 
remodeling, rupture risk and local wall 

stresses. 

Cross-Sectional 
Measurements 

Cross-sectional 
area, diameter, 

circularity 

Quantify size and shape of vessel 
cross-sections at various points 

Inform about local expansion and 
structural irregularities in 2D slices. 

Volume 

Lumen, ILT, 
Calcifications 

volume, volume 
ratios 

Provide 3D quantification of 
structures and their relative 

occupation 

Reflect aneurysm progression, 
remodeling dynamics, and 
hemodynamic changes. 

Radiomic 
features 

Entropy, skewness, 
kurtosis 

Capture intensity distribution and 
texture complexity 

Potentially related to inflammation, 
thrombus, composition, tissue 

remodeling 

Table 1: Main feature groups of interest to be extracted through the automated pipeline. 

All these calculations are performed individually for each study (per patient and date), without 

establishing any temporal comparation between acquisitions. The results generated in this stage 

are structured value tables, which will be compiled and visualized in the next stage of the pipeline. 

Several tools are available for feature extraction, many of which are open source and implemented 

in Python. Examples include PyRadiomics for radiomics analysis, PyVista for 3D mesh operations, 

scikit-image for image processing and SciPy for geometric computations. 

6.4 Visual Representation of the Features 

This stage of the pipeline consists of compiling and organizing the numerical results generated in 

the feature extraction process. To ensure that the information is accessible, clinically interpretable, 

and ready for further analysis, three main types of output tables are produced: 

▪ Detailed feature tables with all measured values for both acquisitions, to generate a large 

dataset for further research studies. 

▪ Key parameter changes tables highlighting percentage changes between both acquisitions. 

▪ Centerline evolution tables showing how features vary along the aorta. 

Additionally, a medical report for each subject, synthesizing the quantitative results and 

accompanied with visual plots, will be generated for clinical interpretation and expert validation. 

This report can be used for a single acquisition visualization, or to compare different acquisitions 

of the same patient. 



 Biomedical Engineering Júlia Vila Delgado 

 25 

6.5 Result Validation and Analysis 

The final stage of the pipeline focuses on the validation of the extracted data and the analysis of 

the generated results, with the aim of ensuring its clinical reliability and research relevance. Typical 

validation mechanisms usually include comparation of obtained measures with reference values, 

reproducibility evaluation and performing quality controls to verify data coherence. Moreover, 

descriptive, and exploratory analysis is carried out to identify patterns and tendencies in 

morphological and radiomic features between patients or between acquisitions, which allows to 

obtain information of the aneurysm’s structural evolution. This validation and analysis stage is 

essential to confirm that the automatic pipeline offers precise and significative results from a clinical 

point of view, laying the groundwork for future applications in both clinical practice and research. 

7. DETAILED ENGINEERING 

7.1 Data Acquisition 

The data used in this project is obtained from the Triple A Barcelona Study (TABS), a clinical cohort 

with 488 patients diagnosed with AAA and having multiple CT images obtained in different temporal 

moments. The original CT images were obtained through the Agfa Healthcare Enterprise Imaging 

system, the platform used to access and visualize DICOM data stored in the hospital servers.  

For this proof of concept, a sample of 10 subjects was selected. The selection of patients from the 

TABS cohort was carried out manually and based on the following inclusion criteria: 

▪ Availability of two CT scans separated by approximately 1 to 2 years. 

▪ Adequate image quality for segmentation purposes. 

▪ A sample distribution that included patients with both slow and fast aneurysm growth. 

All the patients selected were men between the ages of 58 and 83 years. The classification between 

patients with rapid or slow growth was performed by calculating the growth rate in mm/year using 

the maximum aortic diameter values reported in the medical reports. The ten patients with the most 

contrasting growth rates were selected: the five with the fastest growth and the five with the slowest 

growth. In Figure 14, a representation of this process can be seen. This was performed with the 

aim to explore differences in growing patterns, basing this information in the change observed in 

the maximum diameter in both studies, information that was observed by expert radiologists and 

stored in the medical report. 
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Figure 14: Plot representing patient’s aneurysm growth rate classification. Orange represents fast growth and green slow growth. 

The DICOM images were converted to NIfTI format using 3D slicer, and they were locally organized 

with a hierarchical folder structure by patient and acquisition date. A rout example would be: 

 

Figure 15: Folder structure to store segmentations. 

Each date folder will include both the image in NIfTI format and its corresponding segmentation in 

NRRD format when it is created in further steps. 

7.2 Preprocessing and Segmentation 

The segmentation process was performed manually using 3D slicer platform, with the support of 

semiautomatic tools available in the program. To guarantee consistency and reproducibility across 

all patients, a standardized segmentation process was defined, which was validated by the 

personnel of Dimension Lab at Hospital de Sant Pau. Although the lab did not verify each 

segmentation individually, the methodology was reviewed and approved to guarantee clinical 

coherence. 

Each patient’s segmentation was stored in a single .nrrd file, which contains all structures as labeled 

segments. These are distributed across different layers depending on whether there is overlap 

between them, and each segment is assigned both, a numeric label, and a custom name 

(Lumen_IRA or Wall_CT for example). The spatial metadata within the file is preserved in the 

header to enable accurate downstream geometric and radiomic calculations. 

Segmentation workflow overview: 

▪ Lumen: Segmented using the Fast-Marching algorithm (SegmentEditorExtraEffects 

extension). An initial seed was defined with the Paint tool, and volume thresholds were adjusted 

to avoid inclusion of other anatomical structures. Then it defines the region by moving faster in 

similar-intensity regions and slower at edges, defining the fastest path. Manual corrections 

were made when necessary (Figure 16A). On the other hand, the Fast-Marching algorithm did 

not work well for images with low intraarterial contrast, so in this case, Threshold tool was used 

and manually adjusted to segment the lumen. 
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▪ Thrombus (ILT): Segmented with the Grow from Seeds method, which expands labeled 

regions from seed points by assigning each voxel to the closest seed, using image intensity 

and spatial distance. Seeds for both thrombus and background were manually painted in 

multiple slices. Seed locality was maximized to reduce oversegmentation, and further seeds 

were added to correct misclassified areas (Figure 16B). 

▪ Wall: Derived by combining the lumen and thrombus masks. The Margin tool was used to grow 

the lumen segment by 2mm, and logical operations (copy, add, hollow) were applied to 

generate a medial-surface shell of 1.5mm representing aortic wall (Figure 16C). 

▪ Calcifications: Identified using the Threshold tool after contrast adjustment. A mask expansion 

was performed to isolate the calcifications from bone structures, and logical intersections were 

applied to constrain them within the vessel region (Figure 16D). 

▪ Structure refinement: Logical subtractions were applied to remove overlaps. The wall 

segment was redefined by adding both the thrombus and calcifications. 

▪ Region of interest delimitation: Markers were used to trim all vascular segments to a 

standardized length within 3 cm from each branch origin (Figure 17). 

▪ Vessel branch separation: The full aortic segmentation was divided into its constituent 

branches (suprarenal and infrarenal aorta, renal arteries, superior mesenteric artery, celiac 

trunk, and iliac arteries), using manual cuts and logical operations to maintain internal structure 

consistency. 

 
Figure 16: Segmentation workflow representation. Segmented following the order: lumen (A), ILT(B), aortic wall (C) and 

calcifications (D). 

 

Figure 17: Final segmented aorta with the ROI delimited within 3cm from each branch. 
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Each branch preserves the four main internal structures (lumen, thrombus, wall, calcifications), 

unless one or more are not present. This segmentation format ensures that all elements are 

structurally consistent and ready to be processed automatically in the next stage of the pipeline. 

7.3 Feature Extraction 

In this section, a comprehensive and structured description of the steps and methods used for 

extracting morphological, geometrical and radiomic features from the segmented masks of each 

patient is provided. This automated process is implemented in the process_patient.py script, which 

uses various functions defined in utils.py to perform precise calculations and generate clinical 

insights. The following blocks detail each step. 

All the code used in this project is available in a public GitHub repository2, specifically in the pipeline 

folder, which contains the file utils.py (defined functions), process_patient.py (feature extraction 

from a single image acquisition) and run_single_patient.py (full and automatic processing of two 

acquisitions for one patient and generation of visual outputs). 

7.3.1 Centerline and Global Geometry 

The first step in feature extraction involves obtaining a continuous and smooth centerline that 

represents the path of the aorta along its length. To achieve this, a combined mask of lumen and 

ILT (Lumen_Thrombus_A) is smoothed with a Gaussian filter (gaussian_filter) and skeletonized in 

3D (skeletonize_3d) obtaining the central voxels of the segment. The function get_centerline() then 

extracts the main path using a minimum spanning tree (minimum_spanning_tree) and smooths it 

through spline interpolation. Then, using the header spatial and origin information, the centerline 

coordinates are converted to world coordinates in millimeters, using the voxel_to_world_coords() 

function, which implements the following expression: 

𝑊𝑜𝑟𝑙𝑑 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 = 𝑉𝑜𝑥𝑒𝑙 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ∙ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑇 + 𝑂𝑟𝑖𝑔𝑖𝑛 

Equation 1: Conversion between voxel coordinates and world coordinates.  

The combination of lumen and ILT is used because, in clinical practice, radiologists typically 

consider the entire vessel when assessing cross-sectional diameters, including the thrombus. By 

incorporating the thrombus in this calculation, the method maintains consistency with clinical 

standards and ensures that all measurements reflect the full extent of the vascular lumen and its 

adjacent structures. 

Centerline validation: The centerline shape was validated by superposing it on the 3D segmented 

structure (Figure 18, left), ensuring that all the points of the centerline were located inside the aorta 

segment separating it symmetrically in the sagittal and coronal view. Additionally, its coordinates 

were checked by defining key points in the voxel space and confirming that the converted millimeter 

coordinates matched the 3D Slicer display, which uses millimeter units. 

From this centerline, shape features described in Table 1 are computed: 

▪ Tortuosity: the ratio of the actual centerline length to the Euclidean distance between 

endpoints (compute_tortuosity). 

 
2 GitHub repository link: https://github.com/juliaviladelgado/TFG_AAA_Analysis 

https://github.com/juliaviladelgado/TFG_AAA_Analysis
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▪ Curvature: local curvature at each point along the centerline, indicating regions of local 

remodeling (compute_curvature) (Figure 18), computed using the expression: 

𝜅(𝑡) =
∥ 𝑟′(𝑡) × 𝑟′′(𝑡) ∥

∥ 𝑟′(𝑡) ∥3
 

Equation 2: Local curvature expression, where r(t) represents the smoothed 3D centerline, r’(t) and r’’(t) are its first and second 
derivatives with respect to the curve parameter and ||  || denotes the Euclidean norm. 

However, the formula is implemented numerically using centered finite differences via np.gradient() 

on the smooth coordinates. 

 
Figure 18: 3D representations of smooth centerline superposed with Lumen + Thrombus segmentation (left) and local curvature 

along the centerline (right). 

The outputs of this block are the tortuosity and the statistical distribution (mean, standard deviation, 

and maximum) of the curvature along the aortic path. 

7.3.2 Cross-sectional Analysis 

With the centerline established, it is discretized into equally spaced points every 5mm using the 

function discretize_centerline(). At each sampled point, cross-sectional areas, diameter, and 

circularity for the lumen, ILT, wall, and calcifications are computed. However, due to the complex 

geometry of the aorta, especially in specific patients with regions of high curvature, unconstrained 

area extraction could mistakenly include parts of the vessel that belong to adjacent slices. To 

address this, constrained area extraction is performed: a vessel-wide region of interest (ROI) is first 

created by using morphological erosion and dilation on the vessel mask (get_main_island_mask()). 

This ensures that only structures physically associated with that centerline point are considered 

(Figure 19).  A more detailed explanation of this process is provided in Annex 2. 

 

Figure 19: Representation of the process to obtain main component of a binary mask. 
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Once this main vessel ROI is defined, it acts as a constraint mask for calculating the cross-sectional 

areas of other segments (lumen, ILT, wall, and calcifications) using the get_constrained_area() 

function.   

 

Figure 20: Python code representing the obtention of cross-sectional areas constrained using the defined ROI. 

To compute the cross-sectional area, the tangent vector at each sampled point is used to define a 

normal vector of the cutting plane (Figure 21). Specifically, this tangent vector determines the plane 

orientation, and a 2D grid in the plane is generated. The intersecting voxels are sampled using 

nearest neighbor interpolation.  

 

Figure 21: 3D representation of the transversal planes that will be used to compute cross-sectional measures. 

Cross-sectional Area Validation: To validate the obtained measurements, 3D Slicer platform was 

used, which allows for manual cross-sectional area calculation by applying different inclinations. 

Consistency was demonstrated through multiple verifications. 

Additional cross-sectional metrics include: 

▪ Circularity: calculated using the standard formula (Equation 3) through 

compute_circularity_from_mask(), which performs a previous edge smoothing due to 

interpolation irregularities (Figure 22). Circularity quantifies how closely the shape of the cross-

section resembles a circle and is related to the stability of the geometrical shape. In this case, 

the area was recalculated using the Shoelace theorem, a method for calculating the area of 

polygons from their vertex coordinates (Equation 4), to ensure consistency between the area 

and the smoothed edges and avoiding values greater than 1. 
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▪ Maximum diameter: the largest distance between points on the cross-sectional contour, as 

represented in Figure 22 (compute_max_diameter_from_mask()). 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4𝜋 ∙ 𝐴

𝑃2  

Equation 3: Circularity formula, where A is the area of the 2D shape and P is the perimeter of its contour.  

𝐴 =
1

2
|∑ 𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1

𝑛

𝑖=1

|  ,       𝑤𝑖𝑡ℎ (𝑥𝑛+1,  𝑦𝑛+1) = (𝑥1,  𝑦1) 

Equation 4: Shoelace theorem. This formula computes the area of a simple polygon defined by ordered points. 

Circularity Validation: For circularity validation, a comparative approach was used by comparing 

slices with more irregular shapes to those with more regular shapes, showing consistently lower or 

higher circularity values. Additionally, all values were verified to fall within the 0 to 1 range. 

Diameter Validation: For diameter measurements validation during the process, the same 

procedure as for the cross-sectional areas was followed. By manually defining the normal vector 

(used in the algorithm) in 3D slicer and applying the inclined plane, manually measured diameters 

showed consistency with those calculated automatically. 

 

Figure 22: Circularity and maximum diameter representation. Left image: raw and smooth contour of an interpolated cross-
sectional slice. Central image: Circularity computation using Shoelace theorem. Right image: Maximum diameter representation.  

This block generates longitudinal profiles of these metrics along the centerline, storing them in a 

dataframe (df_transversal_profiles) and generating evolution plots comparing both acquisitions (an 

example can be seen in Figure 23). 

 

Figure 23: Plot showing the diameter evolution along the centerline between acquisitions. 
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7.3.3 Volumetric Analysis 

This stage involves calculating the volumes of different anatomical regions (lumen, ILT, wall, and 

calcifications, globally and in IRA/SRA subregions) using the function compute_segment_volume(). 

This method considers the voxel spacing defined in the header to ensure accurate volume 

estimates. It counts all the voxels contained in the segmentation and multiplies by the size of a 

voxel, storing all volumes in a dictionary. 

 
Figure 24: 3D representation of the different segment volumes (lumen, ILT, calcifications, respectively).  

It also calculates important volumetric ratios, such as the thrombus-to-lumen ratio in the infrarenal 

region (IRA), which can have implications for hemodynamic risk and remodeling. 

Volume Validation: Volumes can also be calculated automatically with 3D Slicer, yielding the 

same results as the algorithm-based calculations. 

7.3.4 Calcification Analysis 

A dedicated analysis of calcifications includes: 

▪ Counting the total number of calcifications (count_calcifications()), considering each islet as 

an isolated calcification. 

▪ Measuring the volume of each calcification (compute_all_calcification_volumes()). 

Additionally, the average and total volume of all calcifications are reported. These features offer 

insights into the degree of calcific burden in the aneurysmal wall. In particular, the average volume 

of calcifications not only indicates the overall extent of calcification but also provides information 

on whether these calcifications are concentrated in specific areas or more diffusely spread through 

the wall. 

Calcification Validation: Since these measurements are also based on volume analysis, the 

same tools from 3D Slicer were used to validate. 

7.3.5 Contact Area between Thrombus and Wall 

An important structural feature is the surface area of contact between the ILT and the aortic wall, 

which can relate to processes like hypoxia or wall weakening. This is calculated by generating 3D 

meshes from binary masks (generate_mesh_from_mask()) and identifying the areas in close 

proximity using compute_contact_area_from_meshes() A distance threshold is defined and the 

areas of all triangles within that distance are summed to obtain the total contact area (Figure 25). 

A more detailed explanation of this process is provided in Annex 3. 



 Biomedical Engineering Júlia Vila Delgado 

 33 

 
Figure 25: Contact area between thrombus and wall. Left image shows tho segments together (ILT in red and wall in green). Right 

image represents the ILT with the regions in contact with the wall in green.  

Contact Area Validation: Direct validation of the computed contact area was not possible because 

no external tool was available. However, two indirect checks were performed: 

▪ Contact area visualization in 3D interactive plots confirmed that the contact region was well 

defined and consistent with the expected anatomy (Figure 25). 

▪ The order of magnitude of the computed contact area matched other similar-sized structures, 

suggesting that the values were realistic. 

7.3.6 Radiomic Features 

Radiomic descriptors are extracted for two regions of interest: 

▪ ILT: Intra Luminal Thrombus 

▪ PVAT: Periaortic Adipose Tissue, generated by 1.5mm of isotropic dilation of the vessel 

mask using generate_periaortic_mask(). 

The feature extraction uses the PyRadiomics library. Extracted features include first-order statistics 

(mean, skewness, kurtosis, energy) and texture-based features (GLCM, GLRLM, GLDM), reflecting 

tissue heterogeneity and possible biological processes such as inflammation or thrombus 

organization. 

7.4 Visual Representation of the Features 

The output generation step is entirely implemented within the run_single_patient.py script. This 

script runs the extraction pipeline two times (one for each acquisition) by calling the 

process_patient() function and then organizes all the extracted data and measurements in a clear 

and structured way. Essentially, it is responsible for gathering all the numerical results and creating 

files and visual reports that can be easily interpreted. 

At the start of the script, it is necessary to define the patient identifier (patient_id) and the output 

directory path (base_dir) as shown in Figure 26. These two parameters make sure that the analysis 

is applied to the right patient data and that the results are saved in an organized folder structure, 

in which a folder named with the patient ID will be created. 
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Figure 26: Configuration to be set before running the run_single_patient_.py script. 

▪ Research-Oriented Analysis: The script creates complete tables containing all the 

morphological and radiomic data extracted in the previous stage. These tables can be used in 

future research studies, for example, to compare patient groups, identify trends, or even train 

predictive models. 

▪ Clinical Application: The script also produces medical report and figures easy to understand 

that highlight important changes between the two scans (T1 and T2). Key measurements such 

as maximum diameters, thrombus changes, and calcification data are summarized and 

visualized so that they can be reviewed directly by clinicians. 

7.4.1 Data Organization: Master and Evolution Tables 

The structured data outputs generated by the pipeline are systematically organized into three 

primary tables stored in .csv format: 

▪ Master Table is a comprehensive repository that gathers all the extracted features from both 

acquisitions (T1 and T2). Each record within this table includes the feature name (e.g., 

maximum diameter, mean circularity), the patient ID, the acquisition phase (T1 or T2), the 

corresponding analysis type (such as morphological, radiomic, or volumetric), and the 

numerical value of the feature. This table is particularly valuable for research purposes, as it 

provides a standardized and centralized dataset that facilitates large-scale analyses and 

comparisons across patients. 

 

Figure 27: Fragment example of a master table generated by the algorithm.  

▪ Centerline Profile Tables are generated separately for each acquisition. These tables capture 

detailed point-wise metrics along the discretized centerline, such as the cross-sectional areas 

of the lumen, thrombus, wall, and calcifications and the diameter and circularity at each 

sampled location. These granular profiles enable a precise spatial characterization of the 

vascular morphology and can be used to calculate more complex characteristics implementing 

additional techniques, such as signal frequency or shape maximum gradient. 



 Biomedical Engineering Júlia Vila Delgado 

 35 

 

Figure 28: Fragment example of a centerline profile table generated by the algorithm. 

▪ Evolution Table is specifically tailored for clinical assessment. It compares a selection of key 

parameters between the two acquisitions, calculating the percentage changes. This table 

focuses on features with significant clinical relevance, including maximum diameters and 

areas, volume ratios (e.g., thrombus-to-lumen), tortuosity evolution, and the number and 

volume of calcification progression. 

 

Figure 29: Fragment example of an evolution table generated by the algorithm. 

7.4.2 Automated Generation of Medical Reports 

The final step of the pipeline consists of automatically generating a detailed PDF report and several 

visual plots that can help clinicians and researchers understand the results in a clear way. 

The entire process is handled within the run_single_patient.py script, which runs a specific block of 

code at the end to generate the PDF report. In this block, the subprocess module is used to run the 

Quarto rendering command. The report is built using a template file (report_template.qmd) that 

combines Python code with LaTeX for a consistent and professional layout. The script also passes 

in the patient-specific data and output folders as environment variables to ensure that the report is 

tailored to the particular patient. 

Annex 4 provides an example of a complete report; each patient report includes: 

▪ A table that summarizes how key features change between the two scans (evolution_table). 

▪ 3D images of the segmentations and centerline, showing the transversal planes at each point 

along the vessel. 

▪ Plots that show the maximum diameter changes and transversal areas of the different 

segments along the vessel centerline. 

▪ 3D mesh visualizations of each segment (lumen, thrombus, and calcifications), shown 

separately and together. 
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▪ Tables with the most clinically relevant numerical results, including volume changes and 

diameter metrics. 

Besides the PDF report, the pipeline saves all the plots it creates in their corresponding folder for 

T1 and T2. 

7.5 Result Validation and Analysis 

7.5.1 Accuracy and Consistency in Diameter Measurements 

Since the maximum diameter is the only metric directly comparable with the clinical reports, an 

assessment was conducted to determine the reliability of the automatically extracted values. 

Several error and correlation metrics were calculated, yielding the following results in Table 2. 

Metric Value Metric Value 

Mean Absolute Error (MAE) 1.9 mm Median Absolute Error 1.55 mm 

Root Mean Square Error (RMSE) 2.2 mm Standard Deviation 1.26 mm 

Mean Absolute Percentage Error (MAPE) 3.9% Pearson Correlation Coefficient 0.975 

Table 2: Summary of regression metrics for model performance evaluation.  

These findings indicate a high level of agreement between the automatically and manually 

measured diameters. Most absolute errors are below 2 mm, and the percentage error remains 

under 4%. The near-perfect Pearson correlation further supports a strong linear relationship 

between manual and automatic measurements. This suggests that the automated pipeline reliably 

reproduces the key diameter metric used in clinical practice. 

On the other hand, in the initial phase of the analysis, patients were classified into two growth 

categories (“slow” and “rapid”) based on the manually measured diameter reported by clinicians in 

the medical records. To assess the robustness of the automated diameter extraction pipeline, the 

same classification criteria were applied using the automatically calculated diameter velocities, 

ensuring that both classification processes shared identical thresholds for categorizing growth 

speed. In this case, patients that showed a growth rate < 2 mm/year were considered slow growth 

and patients with a growth rate of >4 mm/year were in the “rapid” group. 

The classification between manual and automatic classifications is summarized in the confusion 

matrix shown in Figure 30. This matrix reveals perfect agreement between the two approaches, 

with all patients consistently classified into the same category by both the manual and automated 

methods. Specifically, 5 patients were classified as “slow growth” and 5 as “rapid growth”. 

 

Figure 30: Confusion matrix showing patient classification according to manual vs. automatic growth rate computation.  
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One minor discrepancy was observed: one patient had an automatically calculated growth rate of 

2.1 mm/year, just above the 2 mm/year threshold. As this value was very close to the slow growth 

limit and far from the rapid growth threshold of 4 mm/year, it was pragmatically assigned to the 

slow growth. This decision is further justified by the fact that these thresholds were arbitrarily 

defined within this exploratory study, serving more as practical cutoffs rather than statistically 

validated boundaries. 

7.5.2 Relationship Between Diameter and Volume  

To further investigate the relationship between the change in diameter and the corresponding 

change in volumes in the evolution of aneurysms, a scatter plot was generated (Figure 31). In this 

plot, each point represents a measurement (T1 or T2) for each patient, showing the maximum 

diameter and the volume of the lumen plus thrombus in the infrarenal aorta segment. 

 
Figure 31: Plot showing maximum diameter in the Lumen + ILT segment vs. the volume in the infra-renal region. Each point 

represents a patient and an acquisition. 

Initially, a clear linear relationship is observed between diameter and volume values, the higher the 

diameter, the higher volume. But also, this plot highlights an important observation: while the 

maximum diameter is the clinically used parameter to classify and monitor aneurysm evolution, 

patients with similar diameters can have significant differences in the volume of the aneurysmal 

segment. For example, patients SP5006, SP5106, and SP5087 all have similar diameters, yet their 

corresponding volumes highly differ, some showing nearly double the volume of others. 

A similar pattern can be observed in the case of patients SP0006 and SP5039. While both exhibit 

a similar increase in diameter, the patient SP5039 shows a much larger increase in the volume of 

the lumen plus thrombus compared to SP0006. 

7.5.3 Lumen and Thrombus Volume Changes in Slow Growth Subjects 

The aim was to investigate if in the slow growth group, although diameter is not changing, there 

could be other parameters that were increasing or decreasing, changing aneurysm’s geometry and 

composition. Most of the parameters stayed stable, but slight changes were observed, for example, 

as observed in Figure 32, in the case of the volume of lumen and thrombus for a specific patient. It 

was analyzed using scatter plots of T1 versus T2 volumes. The total volume of the lumen + 

thrombus remains unchanged over time for all the patients, consistent with the observation that the 

maximum diameter also shows minimal variation in this group. However, in the case of SP5106 

individual components of this total volume (lumen and thrombus separately), show opposite trends: 

while the lumen tends to decrease slightly, the thrombus volume correspondingly increases.  
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Figure 32: Plot representing Lumen + ILT, Lumen and ILT volume changes between T1 and T2 for the slow growth group. 

7.5.4 Exploratory Analysis of Feature Evolution 

To further explore morphological changes across growth rates, boxplots were generated showing 

the distribution of the percentage of change in each feature, separated by growth group.The plots 

suggests that the “rapid” group generally exhibits larger median changes in other key features 

rather than just diameter measurements, including transversal areas, which are directly related to 

the diameter, but also in circularity, calcification metrics and volume measures. This indicates that, 

besides diameter, there are also other parameters that are changing. Although these trends are 

interesting and seem to align with morphological evolution in rapidly growing aneurysms, it is 

important to note that this analysis is purely exploratory due to the small patient sample size.  

Figure 33: Boxplots representing % of change of different measures (Max diameter, Transversal Area Standard Deviation and 
Volume Ratio between Lumen and Lumen + ILT), separated by slow (green) and rapid (orange) growth groups. 

However, some inconsistencies were also observed in the data. For example, in certain patients, 

some volumetric measurements, specifically in calcifications, appear to decrease over time (as 

seen in Figure 34), which is not accepted in the literature as a natural progression of the AAA, 

indicating a certain bias in some part of the pipeline. 

 
Figure 34: Boxplots representing a decreasing % of change of total calcification volume, separated by slow (green) and rapid 

(orange) growth groups. 
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7.5.5 Baseline Feature Differences by Growth Group 

To better understand how aneurysm characteristics might differ between the slow and rapid growth 

groups, we generated boxplots for each parameter using data from the baseline acquisition (T1), 

represented in Figure 35. As explained earlier, even though the number of patients in this study is 

small and this analysis is only exploratory, some trends were noticeable. 

For example, the median circularity of the lumen seems to be a bit lower in the rapid growth group, 

which might suggest a more irregular shape. Tortuosity, while not drastically different, tends to be 

higher in the rapid growth group, which could mean a more winding or twisted shape of the vessel. 

The thrombus-wall contact area also tends to be higher in this group, suggesting a possibly larger 

area of thrombus attached to the vessel wall, causing it hypoxia, and weakening it. 

Other features, like thrombus-to-lumen volume ratios and the total calcification volume, also appear 

higher in the rapid group, but there is a lot of variability, especially for the calcifications. Radiomic 

features of the thrombus, such as skewness, kurtosis, and run-length non-uniformity, also show 

higher values in the rapid growth group, which could indicate differences in texture. 

To assess whether these differences were statistically significant, a Mann-Whitney U test for each 

feature was performed. However, none of the p-values were below the 0.05 threshold.  

It’s important to note that these observations are just descriptive. Because of the small number of 

patients and lack of statistical testing, we cannot draw any solid conclusions. 

The following figures show the most representative boxplots, illustrating these trends visually. 

Figure 35: Boxplots for different parameters using data from the baseline acquisition (T1), separating between rapid (blue) and 
slow (red) growth rates. 
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8. DISCUSSION 

8.1 Property Extraction Pipeline Consistency 

The methodology developed in this project has proven its capability to automate the extraction of 

morphological and radiomic features from CT images with AAA. The modular structure of the 

pipeline, which includes from the data acquisition, preprocessing and segmentation, to feature 

extraction and result generation, has allowed for a systematic analysis of the complex vascular 

geometry and associated texture patterns. 

One of the key strengths of this pipeline is its completely automated structure, which ensures 

reproducibility and consistency across patients. Thanks to the open-source software tools 

implemented (such as 3D Slicer, PyRadiomics and custom Python scripts), the workflow is 

transparent and can easily be adapted to different clinical or research environments. Moreover, the 

validation of intermediate steps (like centerline geometry, transversal areas, or volumes) through 

comparations with manual measurements in 3D Slicer has reinforced confidence in the reliability 

of the automated calculations. 

The decision to segment the four key vascular components (lumen, ILT, wall, and calcifications) 

and analyze their spatial and radiomic properties separately provides a more nuanced view of AAA 

morphology than using diameter alone. The segmentation process was standardized and reviewed 

by clinical staff to guarantee methodological consistency, even though segmentations were 

generated manually. This highlights both a strength and a limitation: while manual segmentation 

enables detailed anatomical accuracy, it also introduces potential operator-dependent variability. 

Future integration of semi-automatic or AI-based segmentation methods could reduce this 

variability, streamline the workflow, and increase scalability. 

The success of the methodology in this proof-of-concept study is notable. Among the 10 selected 

patients, the pipeline produced consistent and coherent results, with all stages functioning reliably 

and the output metrics showing agreement with manual validations. However, it is important to note 

that this sample may not fully represent the broader spectrum of AAA presentations. When applied 

to a larger and more diverse patient population, it is likely that more complex geometries and edge 

cases will emerge that could challenge specific components of the pipeline. For this reason, 

additional validation on a larger cohort is essential, which could reveal specific limitations and 

inform necessary adaptations to improve generalizability and robustness. 

In addition, while the extracted features provide rich morphological and radiomic information, their 

clinical interpretability and predictive value have not been fully explored yet. The exploratory 

analyses suggest potential associations between features and aneurysm growth patterns, but 

further statistical modeling and validation studies are needed to confirm their relevance. 

8.2 Clinical Implementation 

The results obtained in this project, based on an automated pipeline for the extraction of 

morphological and radiomic features to characterize aneurysms from CT images, provide a first 

indication of the feasibility and coherence of the proposed methodology.  

Firstly, the comparation between maximum diameter automatic measurements and the manual 

ones reported in the clinical reports show a very high level of agreement, with a mean absolute 
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error lower than 2mm and a Pearson correlation coefficient higher than 0.97. These data support 

reliability of automatic diameter extraction, and can be a robust alternative to manual 

measurements, optimizing time and reducing inter-observer variability. However, there is still some 

discrepancy, no matter how small, between manual and automatic measurements. It is not possible 

to determine whether this difference is due to the inherent subjectivity of manual measurements or 

to limitations in the algorithm itself. 

Regarding growth classification, the perfect consistency between manual and automatic methods 

in assigning patients to slow and rapid growth groups further support the robustness of the pipeline 

in identifying general growth patterns.  

8.2.1 Exploration of Future Biomarkers 

The exploratory analysis of the evolution of various features showed that the patients in the “rapid” 

growth group tend to show higher changes in other metrics beyond maximum diameter. Notably, 

these included cross-sectional areas, circularity and metrics related to calcifications. These findings 

suggest that, in patients with fast evolution of the aneurysm, there exists a geometrical and 

structural remodeling more complex that could not be captured with the maximum diameter alone.  

Furthermore, the analysis of baseline differences (T1) between the two growth groups revealed 

that some metrics, such as lumen circularity, tortuosity, contact area between thrombus and wall 

and volumetric proportions, tend to be higher in the rapid growth group. Other differences in 

radiomic features were identified as well, related with the thrombus (skewness, kurtosis, run-length 

non-uniformity), which could suggest textural differences among different groups. Nonetheless, the 

p-values observed were above the threshold, indicating a lack of statistical significance. However, 

these early findings do suggest that there could be morphological and radiomic markers related to 

growth speed, which would be interesting to explore in larger studies. 

At the same time, the relationship between diameter and volume showed that, although these 

patients would be classified equally due to similar diameter measures, the actual volume of the 

aneurysm can be very different. Knowing these differences could help to develop more 

personalized risk assessments, make predictions on how it will evolve, and decide on treatments. 

These observations could highlight the importance of using three-dimensional metrics like volume 

to better capture the complex geometry of aneurysm evolution, rather than relying only on diameter 

measures. 

In the slow growth group, although global variations were small, cases were identified where there 

was an internal volumetric redistribution between lumen and thrombus, suggesting a possible 

internal redistribution of the aneurysmatic sac without a significative change in maximum diameter. 

This finding is coherent with the literature, which highlights that the structural and biological 

heterogeneity if the ILT as an aneurysm evolution modulator. These patterns, although derived 

from a small exploratory cohort, suggest the possibility of an evolving internal redistribution space 

within the aneurysm sac that is not captured in clinical reports focusing only on maximum diameter. 

This internal remodeling, if confirmed in larger studies, could serve as an early indicator of future 

aneurysm instability or growth. 

Additionally, these automated features and morphological insights could be valuable for enhancing 

clinical decision making in the future. For example, in cases where the maximum diameter is not 
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beyond surgery limits or it does not show significant changes over time, yet other parameters such 

as cross-sectional areas, circularity, thrombus-wall contact area or radiomic parameters 

demonstrate notable alterations, these metrics could act as early biomarkers of accelerated growth 

or remodeling. Such findings might indicate the need for closer follow-up or proactive interventions, 

even if the maximum diameter remains stable. Moreover, the combination of geometric and 

radiomic markers could support more personalized risk assessment and treatment planning, 

tailoring clinical decisions to the individual patient’s vascular morphology and remodeling patterns. 

Overall, the results suggest that the automated pipeline reliably reproduces key morphological 

metrics and offers potential for detecting differential patterns of vascular remodeling. However, due 

to the small sample size and the absence of formal statistical analysis, these tendencies must be 

interpreted only as preliminary observations. 

8.2.2 Future Lines 

Nonetheless, limitations of the study need to be considered. The small sample size and the 

exploratory nature of the analysis restrict the possibility of establishing solid and generalizable 

conclusions. Additionally, some contradictory results, like decreases in volumes observed in 

specific cases, especially in calcification were identified. Since calculating volumes is a very 

straightforward process, simply counting the voxels and multiplying them by their physical volume, 

and the results have been checked with other automated software platforms, it seems likely that 

these discrepancies are due to the segmentation methodology itself. In the case of calcifications, 

for example, a threshold was manually set to include all visible calcifications, which could lead to 

variability. This highlights the need of automatic segmentation methods and less user-dependent, 

possibly based on artificial intelligence, to improve consistency and reproducibility of the derived 

metrics.  

Besides these limitations, the results offer preliminary evidence which supports the hypothesis that 

morphological and radiomic metrics, beyond maximum diameter, can capture relevant aspects of 

the aneurysm evolution. These findings suggest future lines of research, such as expanding the 

cohort to statistically validate these trends and exploring the utility of radiomic and geometric 

metrics as potential risk predictors. 

9. TECHNICAL VIABILITY 

This section presents a SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis to 

evaluate the feasibility and potential impact of the developed pipeline. It provides a comprehensive 

overview of the technical, clinical, and organizational factors that could influence the adoption and 

future development of the methodology. This analysis helps to identify key aspects that support the 

project’s viability as well as changes and external factors that must be considered for successful 

clinical translation. 
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Strengths Weaknesses 

 
▪ Use of advanced image processing techniques to extract 

quantifiable features.  
▪ Innovative perspective that could improve AAA 

evaluation. 
▪ Result validation with expert radiologists, ensuring 

clinical reliability. 
▪ Development of an automated pipeline that is able to 

optimize the diagnostic time. 
▪ Use of real patient data, increasing clinical applicability. 

 

 
▪ Need of a high computational power for medical image 

processing. 
▪ Possible difficulty in precise segmentation due to 

anatomic variability between patients. 
▪ Dependance on the availability of high-quality images for 

the analysis. 
▪ Limited validation due to the availability and accessibility 

of radiologists to verify results. 
▪ Limited time available for analysis and further 

applications of this methodology need to be explored in 
future studies, as this work only focused on technical 
validation and feasibility. 
 

Opportunities Threats 

 
▪ Growing interest in image processing techniques in 

medicine. 
▪ Possibility of integration with computer assisted 

diagnostic tools in hospitals. 
▪ Pipeline expansion to other pathologies related to the 

aorta. 
▪ Collaboration opportunity with other medical centers and 

universities to expand the project’s scope. 
 

 
▪ Strict regulations about the use of medical data and 

patient’s privacy. 
▪ Possible rejection of the medical community if the results 

don’t show enough reliability. 
▪ Fast technology evolution, which could make the pipeline 

obsolete in a few years. 
▪ Difficulty on the clinical implementation due to the 

resistance to change in hospitals. 

Table 3: SWOT analysis representing the project’s strengths, weaknesses, opportunities, and threats. 

10. EXECUTION SCHEDULE 

10.1 Work Breakdown Structure (WBS) 

Work Breakdown Structure is a tool that breaks the work into smaller tasks to make the work more 

manageable and approachable. It is basically a hierarchical decomposition of a project into smaller 

components. It allows to sort and classify the different tasks under a hierarchical order in which 

they need to be fulfilled so the objectives and scope of the project is reached. The WBS of this 

project is represented in Figure 36.  

 

Figure 36: Work Breakdown Structure (WBS) of the project. 

This project is composed of 6 work packages with each corresponding task description and duration 

(in days) represented in the WBS dictionary in Table 4. 
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WBS ID Task name Task Description Duration  

WP1. Project Planning 

1.1 Literature review 
Literature review of AAA disease and current segmentation 
techniques 

4 

1.2 State of the art 
Research on the state of the art of current feature extraction 
pipelines 

5 

1.3 Project definition Definition of the objectives and scope of the project 2 

WP2. Segmentation 

2.1 Platform familiarization Familiarization with the platform used for segmentation 5 

2.2 Dataset selection Selection of patient images to be used as dataset 2 

2.3  Segmentation Segmentation of the structures of interest of AAA 30 

2.4 Validation Validation of the results with radiology experts  2 

WP3. Feature Extraction Pipeline 

3.1 Platform selection 
Definition and familiarization of the most optimal platform for feature 
extraction 

2 

3.2 Features to extract Define the interesting and valuable properties to be extracted 2 

3.3  Extraction methods 
Development of extraction methods to extract quantifiable 
properties 

30 

3.4 Final pipeline Final pipeline definition and development for feature extraction 10 

WP4. Evaluation and Validation 

4.1 
Comparison with 
traditional methods 

Comparison of characteristics with traditional clinical methods  8 

4.2 Consistency evaluation Consistency evaluation of the extracted data 5 

WP5. End of the Project 

5.1 TFG writing Writing the final degree thesis report 5 

5.2 
 Oral presentation 
preparation 

Preparation of the oral presentation of the project 5 

5.3 Project defense Defense of the project in front of the tribunal 1 

Table 4: Task descriptions and deliverables for the completion of the project.  

10.2 PERT Diagram 

PERT (Program Evaluation and Review Technique) is a tool used to meticulously program, 

organize and plan the tasks of a project. It consists of a visual representation of the project 

chronogram and the dependencies that exist between different tasks as well as identifying the 

critical path, which any delay of a critical activity would cause a delay on the project. PERT diagram 

will help to optimize the project’s timings. 

PERT (Program Evaluation and Review Technique) is a project management tool that allows to 

efficiently plan and coordinate the different tasks needed to complete the project before the 

stablished deadline. Its utility focuses on the ability to graphically represent the sequence of 

activities, identifying dependencies and determining the critical path, composed by those tasks that 

cannot be delayed without affecting on the total duration of the project. 

Before the PERT diagram is developed, a table summarizing project durations and dependencies 

is made (Table 5). 

WBS ID PERT ID Previous Task Duration (days) 

1.1 A - 4 

1.2 B A 5 

1.3 C B 2 

2.1 D C 5 
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2.2 E C 2 

2.3 F D, E 30 

2.4 G F 2 

3.1 H C 2 

3.2 I H 2 

3.3 J G, I 30 

3.4 K J 10 

4.1 L K 8 

4.2 M K 5 

5.1 N L, M 5 

5.2 O N 5 

5.3 P O 1 

Table 5: Identification, dependencies, and timing of tasks. 

From the information summarized in Table 5, the PERT diagram is created, represented in Figure 

37. In this diagram, each arrow represents a specific task of the project, and each node shows the 

dependencies between them. Furthermore, early, and late time were computed for each task. Early 

time indicates the minimum time needed to complete a task, while late time is the maximum time 

in which the activity needs to be fulfilled without causing any delay on the global project duration. 

The PERT diagram analysis shows that the critical path, represented by red arrows, is composed 

by activities A, B, C, D, F, G, J, K, L, N, O and P. This means that a delay in any of these activities 

would directly impact in the project’s end date. On the other hand, activities E, H, I and M provide 

a certain flexible margin, allowing for a 3-, 33-, 33- and 3-day delay, respectively, without 

compromising the project timing. The total estimated duration of the project is of 107 days, and any 

deviation from the original plan of the critical activities would cause a delay in the final duration. 

 

Figure 37: PERT diagram of the project. 

This planning reflects the logical structure of the project. Before starting the project’s development, 

a bibliographic review and definition of the project’s objectives are mandatory. Once these aspects 

are completed, familiarization with the tools and platforms needed for segmentation and image 

processing is carried out. Segmentation and validation phases require a significative dedication, 

which involves the interaction with experts to guarantee result precision. Next, feature extraction 

and pipeline construction are developed. Finally, thesis redaction and oral presentation preparation 

compose the final step of the project. 
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10.3 GANTT Diagram 

GANTT diagram is a tool that allows to visualize in a clear and structured way the temporal planning 

of the different tasks. It is a graphical representation in which each activity is displayed as a bar, 

showing its duration, margin, and relation with the other tasks of the project. 

This diagram facilitates the dependencies identification between activities and helps manage the 

execution time of each work phase. Furthermore, it allows for a tracking project process, ensuring 

al deadlines are fulfilled. 

In Figure 38, the GANTT diagram for this project is shown, developed using the information 

obtained with the PERT diagram. A chronical organization of the different tasks can be observed 

as well as the precedence relationships between them. 

 
Figure 38: GANTT diagram of the project. 

11. ECONOMIC VIABILITY 

The economic viability analysis estimates the resources and costs needed to develop the project, 

integrating both the computational and experimental tasks carried out at home and at the research 

institute of the Hospital de Sant Pau. Although the images and most of the software infrastructure 

were already available, this section identifies the main components contributing to the final budget. 

11.1 Material, Software and Licenses Resources 

The project used open-source or free tools, including Python, 3D Slicer, BOA software and 

PyRadiomics. Additionally, the Visual Studio Code (VS Code) environment was used. For 

advanced image processing, a high-performance workstation (approx. 3500€) was employed at 

the Institut de Recerca at Hospital de Sant Pau. Since this workstation was already available as a 

shared resource, its cost is included as an indicative reference of the infrastructure used. 

Item Units Price/Unit (€) Total Price (€) 

VS Code 1 0 0 

3D Slicer 1 0 0 

Python 1 0 0 

PyRadiomics 1 0 0 

BOA software 1 0 0 
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High-performance workstation (IR) 1 3500 3500 

Total   3500 € 

Table 6: Costs derived from material, software, and licenses resources.  

11.2 Subject Related Resources 

The project used CT images from patients in the hospital’s existing database. Since this data had 

already been acquired for clinical purposes and was provided to the project by the hospital, no new 

patient-related costs have been considered. Therefore, the total cost of subject related resources 

is zero. 

Item Units Price/Unit (€) Total Price (€) 

CT images (hospital DB) 20 0 0 

Total   0 € 

Table 7: Costs derived from subject related resources. 

11.3 Human Resources 

Human resources are one of the main costs of the project, including time spent by the student, the 

thesis tutor (PhD student) and the thesis director. The student is not paid, but a nominal hourly rate 

of 11€/hour (typical of an undergraduate engineer’s salary) is considered for reference. The tutor 

and director are estimated based on typical hourly rates in Spain considering 15€/h for the PhD 

student and 20€/h for the thesis director.  

The total hours for each role have been calculated as follows: The project spanned 107 working 

days. The student dedicated 6 hours per day, resulting in 642 hours in total. The PhD student 

dedicated to the project an average of 10 hours per week, equivalent to 2 hours per day, yielding 

214 hours overall. The thesis director contributed approximately 4 hours per week, which 

corresponds to 0.8 hours per day, adding up to 86 hours over the course of the project. 

Staff Total Hours Cost/Hour (€) Total Cost (€) 

Student 642 11 7062 

PhD Student 214 15 3210 

Thesis Director 86 20 1720 

Total   11992 € 

Table 8: Costs derived from human resources. 

11.4 Total Costs 

Finally, all the costs are summarized to estimate the overall budget for the project. 

Sector Cost (€) 

Material, Software & Licenses 3500 

Subject Related 0 

Human Resources 11992 

Total Estimated Cost 15492 € 

Table 9: Total costs of the project. 
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12. REGULATIONS AND LEGAL ASPECTS 

The project was mainly conducted in Barcelona (Spain), using preexisting CT images of patients 

at Hospital de Sant Pau. Although no new patient experiment or clinical trials were performed, 

various regulations and ethical considerations have been taken into account to ensure legal and 

ethical compliance throughout the project. 

12.1 Protection of Patient Data 

The processing of patient data in the European Union (EU) is regulated by the General Data 

Protection Regulation, Regulation (EU) 2016/679 [18], which establishes strict rules guidelines for 

the collection, use and storage of personal data. This regulation requires that personal data is 

handled lawfully, transparently, and safely, ensuring confidentiality and integrity of patient data. 

Moreover, in Spain, the Organic Law 3/2018 on the Protection of Personal Data and Guarantee of 

Digital Rights (LOPDGDD) complements the GDPR by adding further guidelines to protect data in 

the healthcare sector [64]. 

In this project, the data used comes from a previously existing database and it has been 

anonymized for the proper use in the study. The access to this data has been limited to authorized 

researchers, ensuring compliance with current regulations and data security. 

12.2 Ethical Considerations in Medical Research 

Although this project does not include direct intervention with patients, fundamental ethical 

principles are still applied in the use of clinical data. The Declaration of Helsinki (World Medical 

Association, 2013) sets key ethical principles for research using patient data, even when there is 

no direct contact [65]. These principles include the respect for privacy, data confidentiality, and 

transparency in result communication. 

12.3 Regulations on Software and Medical Devices 

Although this project focuses on the development of an algorithm for image analysis in research, it 

is relevant to mention the Regulation (EU) 2017/745 on Medical Devices (MDR), which establishes 

the requirements for CE marking and approval of medical software when used for clinical or 

diagnostic purposes [66]. In this case, the algorithm developed has been used only for research 

and proof-of-concept purposes, so it does not require certification as a medical device. However, if 

the algorithm were to be integrated into clinical practice in the future, it would be necessary to 

comply with MDR and quality management standards such as ISO 13485:2016 [67]. 

12.4 Quality Standards and Data Management 

This project follows practical recommendations for quality management of data and integrity, in line 

with ISO 27001:2013, which establishes requirements for the safe management of information, 

especially relevant in contexts where sensitive data like medical images is involved [68]. 

Additionally, basic data quality and traceability principles have been followed according to ISO 

9001:2015, although without a formal certification [69].  

12.5 Future Considerations and Transparency 

Given that this project represents an initial step to validate a feature extraction algorithm, it is 

essential to guarantee transparency and replicability in results. Any future application in clinical 
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environments should additionally consider external validation studies and conformity with data 

protection legislation and medical software regulation before its implantation in healthcare practice. 

13. CONCLUSIONS 

This study demonstrates the feasibility and coherence of an automated pipeline for the extraction 

of morphological and radiomic features from CT images of abdominal aortic aneurysms (AAA). The 

methodology, which used open-source tools and custom Python scripts, has proven to be a 

promising approach for detailed AAA characterization, showing equilibrium between automation 

and flexibility and achieving high agreement with manual evaluations performed by experts. 

By combining the segmentation of key vascular structures with a wide range of quantitative 

analyses, the pipeline enables a multidimensional assessment of aneurysm anatomy and 

evolution. The consistency of results across the selected patient sample supports its robustness 

and the validity of its intermediate calculations. 

Despite the success in the current proof-of-concept, the small sample size presents a major 

limitation. The absence of statistically significant differences between patient groups may result 

from insufficient statistical power, or it may suggest that the observed trends are not strong enough 

in this dataset. For this reason, the findings should be interpreted with caution, as they may be 

influenced by individual variability or operator-dependent segmentation. Nevertheless, the 

exploratory observations suggest potentially relevant biomarkers, such as circularity, thrombus-

wall contact area and radiomic descriptors, that could be associated with aneurysm growth 

dynamics. 

Importantly, the analysis revealed that volume and morphological features can differ even between 

patients with similar diameters, and that internal remodeling processes can occur without diameter 

progression. These findings support the idea that relying exclusively on maximum diameter may 

not be enough to capture the full complexity of AAA evolution. 

Further research is necessary to validate these results in larger cohorts, improve the segmentation 

process through AI-based automation, and evaluate the predictive value of the extracted features. 

These steps would not only improve the reliability and scalability of the pipeline, but also move it 

closer to translational clinical applications, enabling more personalized and accurate risk 

stratification in vascular medicine.  

In summary, this work opens new perspectives for a more comprehensive and robust 

characterization of AAA and contributes to the ongoing efforts to improve early detection, 

monitoring, risk prediction, and treatment decision making in patients with abdominal aortic 

aneurysms. 
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15. ANNEXES 

ANNEX 1: GitHub repository 

All the code implemented in this project can be found in a public GitHub repository. Specifically in 

the pipeline folder, which contains four main scripts: 

▪ utils.py: contains all the functions defined, which are imported and used by the other two 

scripts. 

▪ process_patient.py: contains a function that extracts all the features, both morphological and 

radiomic, for a single acquisition of a single patient. It uses as inputs the segmentation (.nrrd) 

and the image (.nii) files. 

▪ run_single_patient.py: executes the process_patient script two times for each patient (both 

acquisitions) and generates all the result tables and medical report. 

▪ report_template.qmd: quarto template that is executed by run_single_patient.py and 

automatically generates a pdf medical report stored in the base directory. 

GitHub reference: 

Juliaviladelgado. GitHub – juliaviladelgado/TFG_AAA_Analysis. 

https://github.com/juliaviladelgado/TFG_AAA_Analysis 

 

Figure 39: Screenshot of the public GitHub repository containing the full code of the project. 

 

Figure 40: Screenshot of the main files inside the "pipeline" folder.  

https://github.com/juliaviladelgado/TFG_AAA_Analysis
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ANNEX 2: Cross-sectional area computation 

In this annex, a detailed explanation of the code segment responsible for extracting transversal 

areas is provided, given its length and multiple components, which could not be fully addressed in 

the main text. 

In some sections of the abdominal aorta, especially where the vessels are highly curved, a simple 

cross-sectional slice can intersect multiple disconnected or partially connected structures. This 

occurs because the slicing plane may cross two nearby parts of the vessel wall or adjacent 

branches in the same 2D frame. As a result, the raw intersection can contain several unconnected 

or ambiguous components, compromising the accuracy of transversal area measurements. To 

address this, the function get_main_island_mask() was implemented. It performs 2D slicing 

operation over a 3D binary mask and automatically isolates the main structure of interest in the 

resulting slice, based on its proximity to the centerline and morphological processing. Then, since 

this mask is deformed due to all the process, it is only used as mask to constrain the real cross-

sectional areas of the different segments (lumen, thrombus, wall, calcifications). 

 

Figure 41: Representation of the process to obtain main component of a binary mask. 

Below is a step-by-step explanation of the function logic. 

Step 1: The function starts by extracting the voxel spacing and physical origin from the image 

header. This is necessary to convert between physical space (mm) and voxel coordinates. 

 

 

Step 2: A square 2D grid is created, centered at the input point, and lying on the plane orthogonal 

to the normal vector. This grid will be used to resample the 3D image. 

 

Step 3: To define the slicing plane, two orthonormal vectors (v1, v2) perpendicular to the normal 

are computed, which define the axes of the 2D plane on which the cross-section is generated. 
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Step 4 & 5: Using the grid and the vectors defined above, the 3D physical coordinates of each 

pixel in the slicing plane are calculated and converted into voxel indices. 

 

Step 6 & 7: The binary 3D mask is sampled over the 2D plane using nearest-neighbor interpolation. 

This results in a binary 2D image representing the intersection of the 3D structure with the plane. 

If the resulting slice is empty (no intersecting structure is present), the function returns an empty 

mask immediately. 

 

Step 8: To separate touching or slightly connected components, iterative binary erosion is applied. 

This continues until at least two disconnected components appear, or a maximum number of 

iterations is reached. This helps resolving ambiguities where two vessel segments are artificially 

joined. 

 

Step 9: If erosion completely removes the mask (especially in small slices), the function falls back 

to using the original slice. 
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Step 10: The mask is labeled to identify all non-background connected components (also known 

as “islands”). 

 

Step 11: For each connected component (or "island") detected in the slice, its centroid is computed. 

Since the slicing plane is defined to pass through a specific point on the centerline, the relevant 

anatomical structure is expected to lie near the center of the image. Therefore, the component 

whose centroid is closest to the center of the 2D slice is selected as the main structure, since it is 

the one that will be intersecting with the centerline. 

 

Step 12: The selected component is dilated using the same number of erosion iterations previously 

performed. This approximates the original size of the structure but now with improved separation 

from unwanted segments. 

 

Then, this mask is used as constrain to determine the cross-sections of the individual segments, 

excluding the pixels that belong to unwanted regions. 
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ANNEX 3: Contact area computation function 

In order to quantify the contact surface between the ILT and the aortic wall, a surface-based 

geometric approach is applied. This method identifies the areas of the thrombus surface that lie in 

close proximity to the wall surface, based on the assumption that such proximity indicates 

anatomical contact.  

Step 0: To perform surface-based analysis, the binary masks of both the thrombus and the wall 

are first converted into 3D triangular meshes. This is done using the function 

generate_mask_from_mesh( ), which follows these steps: 

▪ Applies gaussian smoothing to the binary mask to reduce noise in jagged edges.  

▪ Uses the Marching Cubes algorithm (from the skimage.measure module) to extract an 

isosurface corresponding to the anatomical boundary. 

▪ Converts the vertices from voxel coordinates to physical space using image metadata. 

▪ Applies laplacian smoothing to improve surface regularity using PyVista’s .smooth( ) method. 

This results in two smooth pv.PolyData meshes: one for the thrombus and one for the wall.  

 

Step 1: To efficiently compute the distances between surfaces, a KDTree is built using the 

coordinates of all points on the wall mesh. This structure allows fast nearest-neighbor queries for 

each triangle of the thrombus mesh. 
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Step 2: The function loops over each triangle in the thrombus mesh: 

▪ For each triangle, it retrieves the three vertices and calculates the centroid (geometric center). 

▪ Then, it queries the KDTree to find the minimum distance from this centroid to any point on the 

wall mesh. 

If the centroid of a triangle is within a predefined distance threshold to the wall, the triangle is 

considered to be in contact. The area of such a triangle is computed using the vector cross product 

formula: 

𝐴𝑟𝑒𝑎 =
1

2
∙ ‖(𝑝1 − 𝑝0) × (𝑝2 − 𝑝0)‖ 

Equation 5: :Area of a triangle computed using the vector cross product formula.  

The area is then added to the running total of contact area and the function returns two ouptuts: 

▪ The total estimated contact area (in mm2). 

▪ The indices of triangles in contact, which have been used for visual validation. 

 

 

Figure 42: Visual validation of the contact area between the thrombus and wall. 
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ANNEX 4: Example of a medical report automatically generated 

In this annex, some screenshots of some part of the medical report automatically generated can 

be visualized. A complete medical report example can be found on the public GitHub repository 

(Annex 1). 

 



 Biomedical Engineering Júlia Vila Delgado 

 62 

 

 



 Biomedical Engineering Júlia Vila Delgado 

 63 

 

 



 Biomedical Engineering Júlia Vila Delgado 

 64 

 

 

 



 Biomedical Engineering Júlia Vila Delgado 

 65 

 



 Biomedical Engineering Júlia Vila Delgado 

 66 

 


	ACKNOWLEDGMENTS
	ABSTRACT
	ABSTRACTE
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF EQUATIONS
	GLOSSARY OF ABBREVIATIONS
	1. INTRODUCTION
	1.1 Motivation and Origin of the Project
	1.2 Objectives
	1.3 Methodology
	1.4 Limitations
	1.5 Location

	2. BACKGROUND
	2.1 Medical Background
	2.1.1 The Aorta
	2.1.2 Abdominal Aorta
	2.1.3 Abdominal Aortic Aneurysm (AAA)
	2.1.3.1 Risk Factors
	2.1.3.2 Treatment Options for AAA


	2.2 Technical Background
	2.2.1 Medical Imaging in AAA Diagnosis
	2.2.2 Applications of Medical Imaging
	2.2.3 Quantitative Imaging
	2.2.3.1 Image Format
	2.2.3.2 Image Processing Techniques
	2.2.3.3 Structural Quantification
	2.2.3.4 Radiomic Quantification

	2.2.4 Clinical Importance of Advanced Techniques

	2.3 Research in AAA

	3. STATE OF THE ART
	3.1 Morphological Studies of Abdominal Aortic Aneurysm (AAA)
	3.1.1 Centerline Extraction and Tortuosity
	3.1.2 3D Morphological Indices and Rupture Risk Prediction
	3.1.3 Calcification and AAA Risk
	3.1.4 Morphological Key Parameters in AAA

	3.2 Radiomic Techniques on AAA Evaluation
	3.2.1 Biological Interpretation of Radiomic Features
	3.2.2 Radiomics of Perivascular Adipose Tissue (PVAT)
	3.2.3 Radiomic Analysis of Intraluminal Thrombus (ILT)
	3.2.4 Challenges and Future Directions

	3.3 Automatic Segmentation Algorithms
	3.3.1 Approaches Using MRI and Traditional Image Processing Methods
	3.3.2 Automated Methods for CT Images and Border Propagation
	3.3.3 Approaches Based on Deep Learning

	3.4 Biomechanical Assessments

	4. STATE OF THE SITUATION
	4.1 Clinical Need and Current Limitations
	4.2 The Importance of Automatic Feature Extraction
	4.3 Project Motivation and Clinical Impact

	5. MARKET ANALYSIS
	5.1 Market Overview: Automatic Feature Extraction Algorithms
	5.2 Target Market
	5.3 Future Perspectives of the Market

	6. CONCEPT ENGINEERING
	6.1 Data Acquisition
	6.2 Preprocessing and Segmentation
	6.3 Feature Extraction
	6.4 Visual Representation of the Features
	6.5 Result Validation and Analysis

	7. DETAILED ENGINEERING
	7.1 Data Acquisition
	7.2 Preprocessing and Segmentation
	7.3 Feature Extraction
	7.3.1 Centerline and Global Geometry
	7.3.2 Cross-sectional Analysis
	7.3.3 Volumetric Analysis
	7.3.4 Calcification Analysis
	7.3.5 Contact Area between Thrombus and Wall
	7.3.6 Radiomic Features

	7.4 Visual Representation of the Features
	7.4.1 Data Organization: Master and Evolution Tables
	7.4.2 Automated Generation of Medical Reports

	7.5 Result Validation and Analysis
	7.5.1 Accuracy and Consistency in Diameter Measurements
	7.5.2 Relationship Between Diameter and Volume
	7.5.3 Lumen and Thrombus Volume Changes in Slow Growth Subjects
	7.5.4 Exploratory Analysis of Feature Evolution
	7.5.5 Baseline Feature Differences by Growth Group


	8. DISCUSSION
	8.1 Property Extraction Pipeline Consistency
	8.2 Clinical Implementation
	8.2.1 Exploration of Future Biomarkers
	8.2.2 Future Lines


	9. TECHNICAL VIABILITY
	10. EXECUTION SCHEDULE
	10.1 Work Breakdown Structure (WBS)
	10.2 PERT Diagram
	10.3 GANTT Diagram

	11. ECONOMIC VIABILITY
	11.1 Material, Software and Licenses Resources
	11.2 Subject Related Resources
	11.3 Human Resources
	11.4 Total Costs

	12. REGULATIONS AND LEGAL ASPECTS
	12.1 Protection of Patient Data
	12.2 Ethical Considerations in Medical Research
	12.3 Regulations on Software and Medical Devices
	12.4 Quality Standards and Data Management
	12.5 Future Considerations and Transparency

	13. CONCLUSIONS
	14. REFERENCES
	15. ANNEXES

