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Abstract

Solar Energetic Particle (SEP) events are interesting from a scientific perspective as they are the product of a broad set of physical
processes from the corona out through the extent of the heliosphere, and provide insight into processes of particle acceleration and trans-
port that are widely applicable in astrophysics. From the operations perspective, SEP events pose a radiation hazard for aviation, elec-
tronics in space, and human space exploration, in particular for missions outside of the Earth’s protective magnetosphere including to the
Moon and Mars. Thus, it is critical to improve the scientific understanding of SEP events and use this understanding to develop and
improve SEP forecasting capabilities to support operations. Many SEP models exist or are in development using a wide variety of
approaches and with differing goals. These include computationally intensive physics-based models, fast and light empirical models,
machine learning-based models, and mixed-model approaches. The aim of this paper is to summarize all of the SEP models currently
developed in the scientific community, including a description of model approach, inputs and outputs, free parameters, and any pub-
lished validations or comparisons with data.
© 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http:/creativecommons.org/licenses/by/4.0/).

Keywords: Space radiation; Solar energetic particles; Space weather models; Space weather forecasting; SEP models

1. Introduction cation of correlations and other relationships in observa-
tional data that may be related to the underlying physical
Solar Energetic Particle (SEP) events are transient injec-  processes. They typically give rapid forecasts and are easily

tions into the heliosphere of protons, electrons, and higher  incorporated into forecasting and operations. Such models
mass charged particles with a wide range of energies (tens  might give a binary “all clear” or “not all clear” prediction,
of keVs to GeVs), spectra, composition, and intensities. representing the confidence that an event of a given magni-
They follow energetic solar eruptions that are generally tude will not or will occur during a given forecast window,
associated with flares and Coronal Mass Ejection (CME) the probability that an event of a certain intensity will
s. They are apparently accelerated by processes associated occur, or deterministic quantities (e.g., onset time, the peak

with flares, such as wave-particle interactions and recon-  flux at a certain energy). Physics-based models use our cur-
nection, as well as by acceleration at CME-driven shocks  rent understanding of the processes of particle acceleration
(for reviews, see e.g., Shea and Smart, 1990; Reames, and transport at the Sun and in interplanetary space to

2004; Reames, 2017; Desai and Giacalone, 2016; Klein model these processes and predict the properties of the
and Dalla, 2017). As has long been recognized since at least ~ associated SEP event. Most of these models are computa-
the Apollo era (Hilberg, 1969), SEP events are hazardous  tionally intensive, and the ability to produce a prediction
to electronics (e.g., lucci et al., 2005) and humans in space. “in real time” may be limited by the resources available,
As humans pursue space exploration outside of low Earth  so they may not be readily incorporated into a forecasting
orbit, the understanding, monitoring, and forecasting of = workflow. In addition, fundamental parameters required
SEP events becomes increasingly important (e.g., Kim by the model may be poorly characterized. However, these
et al., 2011). SEPs are also hazardous to aircraft crews,  complex models hold the promise of modeling the complete
in particular on polar routes (Jones et al., 2005), and to  distribution of SEP events with time in 2- or 3-dimensional

modern technological systems (Eastwood et al., 2017). space. Machine Learning (ML) approaches are now being
Thus, in the last two decades, government agencies around investigated in the hope that they will yield a new class of
the world have developed policies related to space weather, SEP models that will produce fast forecasts with improved

including the need for improved forecasting of SEP events  accuracy. Lastly, multi-module forecasting systems link
(Guarnieri et al., 2005; Opgenoorth et al., 2019; National  existing models of multiple types to create a chain that
Science & Technology Council, 2019). Plans for the feeds forecasts from one module to the next that can be
National Aeronautics and Space Administration (NASA) updated as real time measurements become available, e.g.
Artemis missions to send astronauts back to the Moon in a flare forecast module passes information to a CME fore-
the mid-2020s are providing further motivation to improve  cast module which then passes parameters to produce a
SEP forecasting. final SEP forecast. All of the models described here focus

Efforts to predict SEP events have a long history (e.g., on the prediction of SEP protons, as these are the most
Smart et al., 1979). At present, three dozen SEP models  abundant particles and the largest contributors to space
have been or are being developed in the scientific research ~ radiation. Many of the physics-based models have the
community, as listed in Table 1. These models use a variety =~ added capability to investigate the behavior of SEP ions
of approaches: Empirical models are based on the identifi-  and electrons, which allows them to probe the details of
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Table 1
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Solar energetic particle models. For any models without an entry in the Access column, we encourage interested readers to contact the model developer.
RoR stands for Runs on Request available through CCMC. *Deployment to CCMC in progress, **Will be available on SEP Scoreboard and RoR.

Model Model Type Access to Model Reference

ADEPT Empirical - Kahler and Ling (2017)

AFRL PPS Empirical - Smart et al. (1979, 1989, 1992)
Aminalragia-Giamini ML - Aminalragia-Giamini et al. (2021)

model

AMPS Physics-based CCMC RoR
Boubrahimi model ML -
COMESEP Empirical & Physics- Web
SEPForecast based
EPREM Physics-based -
ESPERTA Empirical & ML -
FORSPEF Empirical Web
Georgia State ML Web
University
iPATH Physics-based CCMC RoR**
Lavasa Model ML -
MAG4 Empirical Web, CCMC RoR, SEP
Scoreboard
MagPy Empirical B
MEMPSEP ML -
M-FLAMPA Physics-based CCMC RoR*
PARADISE Physics-based Web
PCA (Papaioannou) Empirical -
model
PHSVM ML -
PROTONS Empirical -
REIcASE Empirical Web, SEP Scoreboard
Sadykov et al. (2021) ML -
model
SAWS-ASPECS Empirical Web, SEP Scoreboard

SEPCaster Physics-based -
SEPMOD Physics-based CCMC RoR, SEP Scoreboard
SEPSTER Empirical SEP Scoreboard
SEPSTER2D Empirical SEP Scoreboard
SMARP Model ML -
SOLPENCO(2) Physics-based -

South African model Physics-based Web

SPARX Physics-based Web
SPREAdJFAST Physics-based Web
SPRINTS ML SEP Scoreboard
STAT Physics-based CCMC RoR
UMASEP Empirical & ML Web, SEP Scoreboard

Zhang model

Physics-based

Tenishev et al. (2021)
Boubrahimi et al. (2017)
Dierckxsens et al. (2015), Marsh et al. (2015)

Schwadron et al. (2010)

Laurenza et al. (2009, 2018), Stumpo et al. (2021)
Anastasiadis et al. (2017)

Ji et al. (2020,)

Hu et al. (2017)
Lavasa et al. (2021)
Falconer et al. (2011, 2014)

Tadesse, T., Fernandes, 1., Kadadi, Y., Lee, K. T., and Falconer,
D.

Moreland et al. 2022, Chatterjee et al. 2022, Dayeh et al. 2022 (all
in preparation)

Sokolov et al. (2004), Borovikov et al. (2015)

Wijsen (2020, 2022)

Papaioannou et al. (2018)

Pouya Hosseinzadeh, Soukaina Filali Boubrahimi
Balch (1999, 2008)

Posner, 2007; Malandraki et al., 2020

Sadykov et al. (2021)

Anastasiadis et al. (2017), Georgoulis et al. (2021), Papaioannou
et al. (2022)

Li et al. (2021)

Luhmann et al. (2007)

Richardson et al. (2018)

Bruno and Richardson (2021)

Kasapis et al. (2022)

Aran et al. (2006), Aran et al. (2011), Aran et al. (2017)

Strauss and Fichtner (2015)

Marsh et al. (2015)

Kozarev et al. (2017), Kozarev et al. (2022)

Engell et al. (2017)

Linker et al. (2019)

Nunez (2011, 2015), Nunez et al. (2017), Malandraki et al. (2020)
Zhang and Zhao (2017)

particle acceleration and transport. The aim of this paper is
to bring together brief summaries of these models in order
to provide a comprehensive survey of the current state of
SEP event prediction.

In general terms, SEP models have been motivated
either by research aimed at understanding the physical pro-
cesses related to SEPs or by operational forecasting needs.
Science-oriented models typically use all historical mea-
surements available to fine-tune their model parameters
with the goal of reproducing all aspects of a specific event
as accurately as possible. The tuned model parameters then
provide insight into the underlying physics.
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Models built with a forecasting focus attempt to pro-
duce a rapid forecast with high levels of skill and reliability
in a statistical sense. The model inputs are restricted to data
streams that are available in real time, and typically, fore-
casts are made using only information that is accessible
before or at the start of an SEP event. For this reason, it
is critical that operationally supported, high-cadence, reliable
and accurate space weather data streams for all phenomena
relevant to SEP production are publicly available for opera-
tions and the deployment and development of forecasting
models. The measurements used by the models discussed
in this paper include: solar magnetograms, optical imaging,


https://swe.ssa.esa.int/bira-comesep-federated
http://tromos.space.noa.gr/forspef/main/
https://dmlab.cs.gsu.edu/sep-prediction/
https://www.uah.edu/cspar/research/mag4-page
https://sep.ccmc.gsfc.nasa.gov/probability/
https://sep.ccmc.gsfc.nasa.gov/probability/
https://esa-vswmc.eu
https://www.hesperia.astro.noa.gr/index.php/results/real-time-prediction-tools/release
https://sep.ccmc.gsfc.nasa.gov/intensity/
http://phobos-srv.space.noa.gr
https://sep.ccmc.gsfc.nasa.gov/intensity/
https://sep.ccmc.gsfc.nasa.gov/intensity/
https://sep.ccmc.gsfc.nasa.gov/intensity/
https://sep.ccmc.gsfc.nasa.gov/intensity/
https://github.com/RDStrauss/SEP_propagator
https://swe.ssa.esa.int/bira-comesep-federated
https://spreadfast.astro.bas.bg
https://sep.ccmc.gsfc.nasa.gov/probability/
http://spaceweather.uma.es/forecastpanel.htm
https://sep.ccmc.gsfc.nasa.gov/intensity/
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extreme ultraviolet (EUV) imaging, Soft X-ray (SXR) mea-
surements, coronagraph imaging of CMEs from single or
multiple vantage points, ground and space-based radio
observations in the wavelengths that measure Type II,
II1, and 1V radio bursts, in situ energetic proton and elec-
tron observations, and in situ measurements of solar wind
density, temperature, velocity, and magnetic field. See
Vourlidas et al. (2021) for a description of the current state
of space weather measurements and anticipated gaps in the
future.

Table 1 lists all of the SEP models that the authors are
aware of at the time of writing. An overview of different
model types will be described in the Overview (Section 2).
The models will be described in further detail in Model
Descriptions (Section 3). The paper concludes with a com-
prehensive summary and outlook for future model devel-
opment (Section 4). Appendix A defines the acronyms
used throughout this paper.

2. Overview of current SEP prediction models and their
approaches

2.1. Typical model inputs

SEP events originate with eruptions within the solar
corona that are typically associated with filament erup-
tions, flares, and CMEs. As noted above, particle acceler-
ation appears to occur both via processes associated with
flares low in the corona and by diffusive shock accelera-
tion at the shock fronts of CMEs as they propagate out-
ward into the heliosphere; acceleration at CME-driven
shocks appears to dominate in the large SEP events that
are of most space weather concern (e.g., Desai and
Giacalone, 2016). The most prompt and most intense
SEP events measured at Earth, and hence the most impor-
tant to forecast, are usually associated with strong flares
and fast CMEs at western longitudes that are well-
connected to Earth by the spiral interplanetary magnetic
field (Parker, 1965). Magnetic connectivity to the particle
source (flare/CME shock) also strongly influences the
development and intensity of an SEP event (e.g., Cane
et al., 1988; Cane and Lario, 2006; Richardson et al.,
2014; Bain et al., 2016). The intensity of an SEP event
is also generally correlated with parameters (e.g, intensity,
duration) of the associated SXR flare and speed of the
CME (e.g. Kahler et al., 1984; Cane et al., 2010, etc).
Hence, flare or CME parameters are frequently used as
inputs into SEP prediction models. Flare parameters are
particularly widely used as solar X-rays are continually
monitored and available in near-real time, for example
from the Geosynchronous Orbit Earth observing Satellite
(GOES) spacecraft, and the onset of a flare is well-defined
and may be closely associated with the eruption of a
CME and onset of particle acceleration. The flare location
may be identified for example in EUV observations. How-
ever, SEP events detected at Earth occasionally originate
on the far side of the Sun, in particular behind the west
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limb [e.g., ~25% of the SEP events discussed by
Richardson et al. (2014)] and therefore the flare will not
be observed in these cases. While the CMEs from such
events may be detected by spacecraft coronagraphs, cur-
rently, images from coronagraphs on scientific spacecraft
such as Solar and Heliospheric Observatory (SOHO)/
Large Angle and Spectrometric Coronagraph Experiment
(LASCO) and Solar TERrestrial RElations Observatory
(STEREO)/Sun Earth Connection Coronal and Helio-
spheric Investigation (SECCHI) are not available suffi-
ciently rapidly for real-time forecasting; delays in
receiving and analyzing these images to obtain CME
parameters may range from hours to even days. Even
though models using CME parameters as input may not
be suitable for predicting the onsets of prompt SEP
events, they are valuable for assessing the use of future
near-real time white light coronagraph observations, such
as the Compact Coronagraph (CCOR) on the National
Oceanic and Atmospheric Administration (NOAA) Space
Weather Follow On - Lagrange 1 (SWFO-L1) spacecraft
scheduled to launch in 2025, for SEP prediction.

Solar radio observations result from nonthermal elec-
trons and provide another indication of particle accelera-
tion. Bursts at frequencies below a few hundred MHz
generally result from plasma emission, which occurs at a
frequency related to the plasma density (e.g., Wild et al.,
1963; Nelson and Melrose, 1985). In particular, Type II
radio emission that slowly drifts downward in frequency
with time is believed to indicate particle acceleration at a
shock moving away from the Sun towards lower densities
(e.g., Nelson and Melrose, 1985). Type III radio bursts
with much faster drift rates are signatures of energetic elec-
tron beams traveling out from the Sun, having been accel-
erated at a flare site lower in the corona. Both type II and
type III emissions are found to be strongly correlated with
the occurrence of SEP events (e.g., Cane et al., 2002; Cliver
et al., 2004; Laurenza et al., 2009; Richardson et al., 2014;
Papaioannou et al., 2016; Richardson et al., 2018). Solar
radio emissions at frequencies above the ionospheric cutoff
at about 10 MHz are monitored in real time from the
ground by a world-wide network of observatories. How-
ever, observations below ~ 20 MHz are difficult due to
the ionospheric cut-off, terrestrial interference, and emis-
sion from lightning (e.g., Erickson, 1997). Observations
from space-based satellite radio science instruments such
as those on WIND, STEREO, Parker Solar Probe (PSP)
and Solar Orbiter (SO) can extend to lower frequencies.
Unfortunately, data from these scientific spacecraft are
not generally available in real time since they were not
designed to be operational instruments, and often have
very limited telemetry. Because the emission frequency of
radio bursts tends to decrease with distance from the
Sun, ground-based radio observations provide information
on particle acceleration close to the Sun, while spacecraft
instruments cover emissions produced in the high corona
and solar wind out to the distance of the observing
spacecraft.
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Models may also use near-real time energetic particle
observations as an input. For example, near-relativistic/
relativistic SEP electrons may arrive at Earth tens of min-
utes earlier than, and provide a warning of the impending
arrival of, protons with energies of tens of MeV that are
of space weather interest (Posner, 2007; Malandraki
et al., 2020). The initial rise of the SEP proton intensity
may also be used as an early predictor that the intensity
may cross a specific threshold of concern (Nunez, 2011).

As will be evident from the model descriptions in Sec-
tion 3, many SEP forecasting models use one or a combina-
tion of these phenomena as inputs into the model.
Predicting the largest events of most concern also benefits
from what has historically been called the “big flare syn-
drome”, originally stated by (Kahler, 1982) as “statisti-
cally, energetic flare phenomena are more intense in
larger flares, regardless of the detailed physics”. In other
words (and with less emphasis specifically on flares), the
most energetic eruptions are associated with the most
intense signatures in a range of related phenomena which
may be predictive of a large SEP event even if they have
no direct physical connection with the particle acceleration
process.

2.2. Empirical models

Empirical models are based on approaches that use sam-
ples of existing data (e.g., for many historical SEP events)
such as those discussed above to discover and characterize
(e.g., as mathematical expressions) patterns or relation-
ships between the properties of SEP events and other
observable parameters. These models implement correla-
tive relationships that are often guided by the known phys-
ical processes behind SEP generation (e.g., Posner, 2007,
Richardson et al., 2018). Empirical models may produce:

e probabilistic forecasts, e.g., indicating the probability
that an SEP event of a certain intensity will occur in a
particular time frame (e.g., Falconer et al., 2011;
Papaioannou et al., 2018),

categorical forecasts, such as the NOAA S-scale” with
defined thresholds for peak >10 MeV proton flux inten-
sity (e.g., Laurenza et al., 2009),

binary (yes/no) “all clear” forecasts that an event
exceeding a specified threshold will or will not occur
(e.g., Boubrahimi et al., 2017; Sadykov et al., 2021), or
deterministic quantities, e.g., time of event onset or peak
in a certain energy range, SEP peak intensity/flux, or the
event-integrated intensity (fluence) (e.g., Balch, 1999;
Bruno and Richardson, 2021).

Because the relationships established from previous data

are generally mathematical functions that can be computed
quickly, predictions can be made rapidly by applying them

2 https://www.swpc.noaa.gov/noaa-scales-explanation.
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to current observations. Validation statistics and skill
scores for many empirical models have been reported in
the literature. As is evident from Table 1, a large fraction
of current SEP prediction models are based on empirical
methods.

2.3. Physics-based models

Physics-based SEP models have typically been devel-
oped with the primarily scientific motivation to understand
the physical processes that produce SEP events, rather than
to generate a fast forecast. Some physics-based model
developers have begun research to operations efforts to
modify their models for real time forecasting purposes,
but this work is still in the early stages. In general, these
models aim to numerically reproduce the relevant physics
related to particle acceleration: the magnetic structure of
the low corona, eruption mechanisms for flares and CMEs,
particle acceleration associated with flares and at CME-
driven shocks, magnetic field connections in the inner
heliosphere to the solar event and shock, the properties
of the evolving CME shock, and the transport of particles
near the Sun and in the heliosphere. Each of these pro-
cesses may in itself be the subject of intense study, and
not fully understood, so combining them into a full model
of SEP prediction is extremely challenging, and modelers
may choose to simplify certain aspects of the problem or
incorporate an empirical component. In addition, funda-
mental parameters for these processes may be unknown,
for example, because they are difficult to observe (in partic-
ular when close to the Sun), are difficult to estimate (e.g.,
from theory), or apparently vary in time and space (e.g.,
from event to event) in a way that cannot be predicted
before an event occurs.

A physics-based SEP modeling method might (1) define
the magnetic field connectivity from the corona through
the heliosphere to the observer, (2) simulate the source
region responsible for particle acceleration, (3) inject test
particles or a particle distribution function into the system,
and (4) transport the particles from the source to the obser-
ver. The magnetic connectivity modeling system may con-
sist of two main parts: An inner coronal module
including a semi-empirical near-Sun model, such as
Wang-Sheeley-Arge (WSA) (Arge and Pizzo, 2000) or
Magneto-hydrodynamic Algorithm outside a Sphere
(MAS) (Linker et al., 2019), that approximates the outflow
at the base of the solar wind; and a heliospheric module
including a sophisticated three-dimensional magneto-
hydrodynamic numerical model, like ENLIL (Odstrcil,
2003), Alfvén-wave-turbulence-based solar atmosphere
Model (AWSoM) (Sokolov et al., 2021) or EUropean
Heliospheric FORecasting Information Asset
(EUHFORIA) (Pomoell and Poedts, 2018), that simulates
the resulting solar wind flow evolution out to some outer
boundary. The inner coronal module may be driven by
observations of the solar surface magnetic field accumu-
lated over a solar rotation and composited into a synoptic
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map. CMEs can be included in time-dependent helio-
spheric models, such as ENLIL + Cone (Odstrcil et al.,
2004) or AWSoM + Eruptive Event Generator using
Gibson-Low configuration (EEGGL) (Jin et al., 2017),
with the parameters of the injected CMEs derived from
coronagraph images. Such models may be used to simulate
the shock driven by a CME, including how the shock
parameters vary along the shock as it moves out through
the corona and solar wind, and to infer the connectivity
between the shock and the observer.

Understanding particle acceleration at shocks is still an
area of active research and, because of the complexity of
the problem, SEP prediction models often make certain
assumptions. Some physics-based models, like Solar Ener-
getic Particle MODel (SEPMOD) (Luhmann et al., 2007),
assume that the compression regions and shocks that form
ahead of CMEs are the only acceleration regions for SEPs.
Models such as Multiple Field Line Advection Model for
Particle Acceleration (M-FLAMPA) (Sokolov et al.,
2004) may require the injection of a suprathermal seed par-
ticle population into the shock that is then accelerated
according to diffusive shock acceleration theory. However,
the seed particle population, especially near the Sun, is
poorly characterized (see Tylka and Lee, 2006; Neergaard
Parker and Zank, 2012), though observations of suprather-
mal ion populations observed at 1 AU prior to an SEP
event might be used (with suitable scaling) as a proxy for
those closer to the Sun. The shock-accelerated particles
may then be transported along magnetic field lines, for
example by solving the focused-transport equation
(Zhang, 2006; Schwadron et al., 2010) or by using a numer-
ical simulation of particle transport that might include par-
allel and cross-field diffusion, advection with the solar
wind, adiabatic cooling, and drifts (e.g., Zhang and
Zhao, 2017; Hu et al., 2017). Alternately, a model may
assume that particles are detected by an observer only
when directly magnetically connected to the shock, as seen
in SEPMOD (Luhmann et al., 2007). Physics-based models
also face challenges in reproducing SEP intensity profiles
both in time and 2- or 3-dimensional space. Some models
attempt to reproduce the Energetic Storm Particle (ESP)
component of the event that occurs when a CME shock
front passes the observer tens of hours after the solar erup-
tion (e.g., SEPMOD), while others may focus on the early
stages of the SEP event when particle acceleration occurs
close to the Sun and the onset of the SEP event might be
modeled by a simple particle injection at the Sun (e.g.,
Linker et al., 2019).

An issue with all physics-based SEP models is that they
have many poorly constrained free parameters such as the
choice of particle diffusion coefficients, the seed population
spectral shape and normalization, how to “tune” the solar
wind model solution to match measurements (e.g., at
Earth), and which specific magnetic field line to select to
produce a prediction of the particle spectrum at the obser-
ver’s location. New observations may help to constrain
some of these parameters. For example, an improved
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knowledge of the suprathermal seed population in the
inner heliosphere and in particular close to the Sun prior
to an SEP event would benefit all physics-based models.
Measurements close to the sun by PSP (Desai et al.,
2020) and at high latitudes by SO should help to character-
ize the suprathermal ion population and its variability in
these regions, at least in a statistical sense, since these
observations will not be available in real time to contribute
to SEP predictions.

The placement of the inner boundary of the coronal/so-
lar wind model is also a limitation in some physics-based
models. Particle acceleration at the beginning of an SEP
event is known to happen deep down in the solar corona,
below 2 R, (Mikeld et al., 2015) whereas many model
inner boundaries are located further from the Sun, e.g.,
at 10 R, for ZEUS or 21.5 R, for ENLIL. Hence, it is
not feasible for such models to predict the onset phase of
an SEP event. Coronal and solar wind models that are
computationally tractable lower in the solar corona would
benefit all physics-based SEP models.

Because of their complexity, physics-based models may
face significant computational challenges in terms of the
resources needed to store the large amount of data gener-
ated during the simulation and the time needed to complete
a model run. Hence, reported simulations are generally
aimed at reproducing a limited number of past events, with
a focus on understanding the physics involved and the rea-
sons for event-to-event variations. There are rather few
cases where physics-based models have been used without
“tuning” to make predictions of future events, i.e., without
prior information on the properties of the SEP that results.
Also, comparisons with measurements reported in the liter-
ature have generally been qualitative rather than
quantitative.

2.4. Machine learning models

ML approaches to SEP prediction use a variety of ML/
Artificial Intelligence (Al) techniques to identify specific
combinations of observed parameters, such as those in Sec-
tion 2.1, that are associated with/precede an SEP event. As
such, they are similar to empirical models in that they are
based on existing data, but rely on ML/AI to identify rela-
tionships between SEP events and other parameters in (ide-
ally) large data sets without any a priori knowledge of the
physics involved. The aim is to discover relationships that
might not otherwise be evident from a simple analysis of
these data. Typically, the data are divided into a “training
set”, used to develop the ML/AI model, and a “validation
set” which is used to assess, for example, whether the
model reliably reproduces the observed properties of SEPs
in this set. As for empirical models, the outputs may be
probabilistic, categorical, binary or deterministic. Exam-
ples of ML models for binary predictions of whether an
SEP event will exceed certain energy and particle flux
thresholds (e.g., >100 MeV, >1 pfu) utilize the X-ray
and proton channels, and proton channel cross-correlations
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from GOES (Boubrahimi et al., 2017), solar radio flux
measurements using statistical analysis, neural networks,
and genetic algorithms (Kim et al., 2018), and the proper-
ties of SXR flares and CMEs employing an ensemble of
forecasts (Huang et al., 2012). Many current research
efforts are focused on validating ML algorithms to perform
reliable SEP nowcasts and forecasts. The cross-comparison
of operational forecasts of SEP events also can provide
additional validation of ML-driven models. This capability
has become available recently through the Community
Coordinated Modeling Center (CCMC) SEP Scoreboard’,
which aims to bring together forecasts from a range of pre-
diction models for current and historical events (although
ML models have yet to be onboarded). Studies comparing
ML-driven model predictions with the NOAA Space
Weather Prediction Center (SWPC) daily operational fore-
casts and warnings for SEP events may identify weak
points in the models and point to potential improvements
(e.g., Jeong et al., 2014; Sadykov et al., 2021).

ML/Al-based models face unique challenges related to
the preparation of reliable, uniform observational data-
bases for model development and validation, and the effi-
cient validation and verification of new models. Such
considerations have motivated the development of
publicly-available frameworks and ML-ready data sets
(Engell et al., 2017; Martens et al., 2018). Other problems
are related to the statistics and physics of SEP events.
While ML/AI can harness the predictive power of massive
multidimensional data analysis, a major challenge is the
rarity of SEP events, leading to a significant imbalance of
days with enhanced SEP proton fluxes and ‘quiet’ days.
For example, during Solar Cycle (SC) 24, the number of
days when the >10 MeV proton flux was above a threshold
of 10 pfu (101 days) was about 34 times less than the num-
ber of days with a non-enhanced proton flux (3400 days)
(Sadykov et al., 2021). This class imbalance ratio eliminates
the possibility of using data-hungry ML algorithms directly
and requires additional strategies for model training
(Ahmadzadeh et al., 2021). Other challenges may include
the widespread time delay (from minutes to hours) between
the first detection of the SEP event and the onset of the pre-
ceding associated solar flare, which may lead to incorrect
SEP-flare associations resulting in inaccurate model train-
ing or validation, missing information about host active
regions in models using active region parameters, and the
lack of observations of the sources of SEP events originat-
ing on the far side of the Sun.

2.5. Multi-module forecasting systems

Some models take an approach that chains multiple
forecast modules together, with the prediction from each
module feeding into the next. For example, the first module
might use magnetograms or EUV imagery of an active

3 https://ceme.gsfe.nasa.gov/challenges/sep. php.
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region to generate a prediction of the likelihood that a flare
of a certain class will occur in that region. This prediction,
together with the flare information, is passed to a module
that predicts the likely parameters of the CME that might
accompany the flare. The CME information is then input
into a final module that predicts parameters of the poten-
tial SEP event. When an eruptive event does occur, each
module ingests the required flare, CME, or proton flux
observations as they become available and updates the pre-
diction that is passed to the downstream module.

Multi-module systems tend to take advantage of mature
models that are already developed and can be linked
together so that the output from one model can trigger
another. They may also combine models of different types,
e.g., empirical, machine learning, and physics-based,
exploiting the strengths of each type of model and provid-
ing a broader-based prediction of an event.

2.6. Model validation

In the “Validation” subsection for each model described
in Section 3, published validation results are summarized.
Some models have performed extensive quantitative valida-
tion studies, while others may have simply performed qual-
itative comparisons with observations for a few test cases.
Some models have not yet published any validation. In
the Conclusions (Section 4), we will describe our vision
for steps that can facilitate more consistent validation
across the SEP modeling field.

Throughout the validation sections, there are mentions
of many types of metrics and plots typically used for vali-
dation. We refer the reader to papers by Liemohn et al.
(2021) and Bain et al. (2021) for descriptions and explana-
tions of the commonly used metrics and skill scores and
their application and interpretation.

3. Model descriptions

This section summarizes the 36 SEP prediction models
in Table 1 presented in alphabetical order. For each model,
we specify the model developers, an overall description of
the model, inputs, outputs, any free parameters, limitations
and caveats related to the model, how data or predictions
from the model may be accessed, and a summary of any
validation efforts. The descriptions and results given here
are intentionally brief and contain a limited number of fig-
ures or data tables. Interested readers should refer to the
cited references for more details.

The terms “forecasting” and “‘nowcasting” are regularly
used throughout the model descriptions. “Forecasting”
typically indicates a model prediction that is made prior
to any eruptive event on the Sun, e.g. a flare or CME,
although it may mean a prediction issued prior to an
increase in particle flux. “Nowcasting” is typically applied
when predictions have been made directly following a flare,
CME, or observed increase in particle flux at 1 AU. “Pre-
diction” is used as a general term that is equivalent to a
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model producing output. “Prediction” may indicate model
output for a historical event or in the context of forecasting
or nowcasting.

3.1. ADEPT - Air Force Dynamic Energetic Particle Tool

Model developers: Stephen M. White and Stephen W.
Kahler (Air Force Research Laboratory), Alan G. Ling
(Atmospheric Environmental Research).

Model description: The Air Force Dynamic Energetic
Particle Tool (ADEPT) predicts the peak flux from solar
particle events by fitting functional forms to the rise phase
once energetic protons start arriving at Earth (or any other
location). Either Weibull or log-normal functions can be
used, as discussed by Kahler and Ling (2017). The current
version uses Weibull functions. The fits consistently tend to
under-predict the peak during the early rise phase, but an
empirical analysis has determined factors as a function of
time that can correct for the under-prediction in real time.

Inputs: Current inputs are the GOES 5-min measure-
ments of energetic protons: the initial version focuses on
>10 MeV protons, and fits for >30, >50 and >100 MeV
protons are being implemented. The longitude of the asso-
ciated solar event is also used, if available, to determine the
parameters of the functional form during the rise phase.
Fitting starts once the proton flux exceeds a threshold
(0.6 pfu for >10 MeV) and is 5¢ above the background
trend.

Outputs: On receipt of a new data point every 5 min, a
new functional fit is carried out, providing an estimate of
the peak flux and fluence together with an estimate of the
uncertainty in the prediction. Once the peak of the event
has been reached, the overall timescale for the event is also
predicted.

Free parameters: The functional forms both have 4 free
parameters: 2 shape parameters, a “zero” time (since the
functions are distribution functions that are only valid
for non-negative arguments), and an amplitude. The shape
parameters of the functions need to be fixed in the rise
phase in order to achieve successful fits, so for the first
2 h the only free parameter is the amplitude of the event.
Thereafter the zero time is also fitted, which allows
improved fits for irregular light curves. Once the event
has peaked, a shape parameter that reflects the timescale
of the event can also be fitted.

Limitations and caveats: The intent of ADEPT is to pro-
vide a prediction as soon as possible after a solar proton
event starts, and to improve that prediction as more data
is acquired. This drives the fitting choices described above.
Thus, ADEPT provides a prediction of the peak flux of an
event that continuously evolves with time during the rise
phase.

Access to model output or forecasts: This model is under
development an is not available to the public.

Model validation: A sample of 82 SEP events chosen
from the 1986-2017 period was used to determine the
empirical correction factor as a function of time. The cur-
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rent metric for validation is the uncertainty in the predicted
peak, determined from the spread of the predictions for the
event sample. This metric also evolves with time, ranging
from a factor of 5 at the 1-h point after event onset, down
to a factor of less than 2 at the 6-h point. Validation is
being carried out on new-cycle SEP events as they occur.

3.2. AFRL PPS - Air Force Research Laboratory Proton
Prediction System

Model developers: Don F. Smart and Margaret A. Shea
(developed at the Air Force Geophysics Laboratory).

Model description: The Air Force Research Laboratory
(AFRL) Proton Prediction System (PPS) model is a post-
eruption model that uses the flare fluence, peak time, peak
intensity, and location in order to predict the SEP onset
time, peak time, peak intensity, and end time (Smart
et al., 1979, 1989, 1992). The predictions are made for 1
AU and for proton energies of >5 MeV, >10 MeV, and
>50 MeV. From these quantities, a simplistic time profile
prediction can be created. The goal in developing this
model was to provide a forecast of the expected solar pro-
ton flux within 10 min after the data became available to
the operator in the forecast center.

The basis of the PPS model are correlations between
SEP events from Interplanetary Monitoring Platform
(IMP) satellites and associated flares Smart et al. (1979,
1989, 1992). SEPs are assumed to be accelerated at the flare
location 0.25 h after the flare onset. The time between the
flare onset and SEP onset is predicted based on the results
from Barouch et al. (1971) which found a relation to flare
longitude. The time to peak intensity is also based on a
relationship with flare longitude which was reported in
Van Hollebeke et al. (1975). For protons of £ > 10 MeV,
this relationship is given in Kahler et al. (2007) as:

Tar(h) = 4 x @ 4+ 2.7. (1)

where ® is the longitudinal angular displacement in radi-
ans of the flare site from the Earth’s magnetic footpoint
and A4 is an asymmetric factor dependent upon flare longi-
tude. The end time is based on Roelof. (1969) which dis-
cussed the transport of particles in interplanetary space.
A few simplifying assumptions are made here.

e The particles travel along the Interplanctary Magnetic
Field (IMF) with a velocity which is a function of parti-
cle energy.

e Perpendicular diffusion is ignored.

e The minimum distance to travel from the Sun to Earth is
along the Parker spiral.

From these assumptions and results, the model uses a 1/
e decay function to predict the end time.

PPS calculates the peak intensity of the proton flux, at
the optimum connection at W57.3° (Kahler et al., 2007), as

J(E > 10MeV) = 30.67 x (Fyy x AT)"* (2)
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where Fyy is the GOES peak 1-8 A X-ray flare flux in ergs
and AT is the X-ray flare rise time from onset to peak in
min. The same value can be found using the flare half-
power fluence, F,, as

J(E > 10MeV) = 347 x (F,)***. (3)

Inputs: The inputs for the PPS model are flare fluence or

peak flux, flare location, flare onset time, and flare peak
time.

e Radio burst flux from US Air Force Radio Solar Tele-
scope Network (RSTN) for the original PPS76 model

e GOES Soft X-ray flux for the current version (flare flu-
ence, peak flux)

e Optical H-alpha imagery from the Solar Observing
Optical Network (SOON) for flare location

e Solar wind speed, if available (default of 404 km/s if not
available)

Outputs: The PPS model predicts the SEP onset time,
peak time, peak intensity, end time, and fluence. From
these outputs, a simplistic time profile can also be derived.
All output is for >5 MeV, >10 MeV, and >50 MeV inte-
gral intensities. The model has non-SEP output as well
(i.e., polar riometer absorption at Thule, Greenland, dose
rate at polar altitudes), but they will not be discussed here.

Free parameters: None.

Limitations and caveats: The onset time prediction is
defined as the time between the flare peak and when
>10 MeV proton flux reaches 10 pfu as observed by
GOES. Similarly, the peak time prediction is defined as
the time between the flare peak and the SEP peak intensity.
The flare peak should be identified as the peak in radio
(original version) and X-rays (later versions).

The intensity time profile, if constructed from the timing
quantities, tends to be simplistic (i.e., straight lines connect-
ing the onset time, peak time, and end time).

PPS was developed with the capability to update the
prediction as additional flare data are received. If a second
event occurs while a previous event is in progress, the pro-
gram has the capability to predict a “summation” event
(Margaret Shea, personal communication).

Access to model output or forecasts: The PPS model was
specifically made for use by the 557th Weather Wing of the
US Air Force.

Model validation: Kahler et al. (2007) considers 78
GOES X-ray flares between 1997 and 2001. Only flares
with known locations and peaks greater than M5 were
chosen. A comparison was made between PPS predic-
tions and all SEP events during this time period where
GOES >10 MeV proton intensity reaches 10 pfu. Cor-
relation coefficients were calculated between the PPS
log peak intensity and GOES log peak intensity
(r =0.55), PPS log rise time and GOES log rise time
(r=0.36), and PPS log rise time and GOES log rise
time (r not given). The study also calculates the Percent
Correct as 73%.
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Table 2
Ratios and skill scores for four cases of >50 MeV predictions and one case
of >10 MeV predictions for the AFRL PPS model.

Solar variable POD FAR TSS HSS

>M5 flares 0.49 0.66 0.40 0.33

8800-MHz bursts with >MS5 flares 0.66 0.82 0.34 0.16
All 8800 MHz bursts >500 sfu 0.66 0.83 0.29 0.13
All 8800 MHz bursts >5000 sfu 0.40 0.49 —0.15 —0.14
>10 MeV with >MS5 flares 0.40 0.50 0.08 0.09

Kahler et al. (2017) did a similar validation of PPS but
for >50 MeV predictions. The study considered SEP events
between 1986 and 2016 where GOES >50 MeV intensity
reaches 1 pfu. The PPS model is run for four different cases:
all flares greater than M5, all >200 sfu 8800-MHz bursts
with associated >MS5 flares, all >500 sfu 8800-MHz bursts,
and all >5000 sfu 8800-MHz bursts. The results are in the
table below and also include results for the >10 MeV pre-
dictions. The Probability of Detection (POD), Alarm Ratio
(FAR), True Skill Score (TSS), and Heidke Skill Score
(HSS) are reported (see Table 2).

3.3. Aminalragia-Giamini Model

Model developers: Sigiava Aminalragia-Giamini (Space
Applications and Research Consultancy (SPARC),
National and Kapodistrian University of Athens
(NKUA)).

Model description: The Aminalragia-Giamini model
(Aminalragia-Giamini et al., 2021) was designed with a
focus on operability that will be as uninterruptible as pos-
sible, the use of minimal and consistently available inputs,
and the minimization of post-eruptive prediction time. The
model uses X-ray GOES measurements for the prediction
of SEP occurrence during and immediately after the erup-
tion of a solar flare. During the evolution of the flare a
probability P € [0,1] that an SEP will occur is provided,
and this value is continuously updated by taking into
account the real-time X-ray measurement updates of the
on-going flare. The probability estimation is finalized after
the end of the solar flare eruption. The predictor used is an
ensemble of deep feedforward Neural Network (NN)
where the final output is the mean of the individual NN
predictions. The number of members (N) in the ensemble
is set prior to training but the modular implementation
used also allows the addition of more NNs; we have used
and tested successfully N = 3 and N = 10. The NNs are
trained on 25 years of data, from 1988-2013, which cover
the largest part of SC22, the whole SC23, and the rising
phase of SC24. This includes several thousands of solar
flares (NOAA GOES solar flare catalogue) and more than
200 identified and catalogued SEPs taken and processed
from the Solar Energetic Particle Environment Modeling
(SEPEM) Reference Event List*. The approach employed
has a few noteworthy points:

4 http://sepem.cu/help/event_ref. html.
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e The use of solely X-ray measurements makes for a
robust and future-proof model. GOES X-ray Sensor
(XRS) measurements have been continuously available
in near-real-time for decades and the GOES missions
are not envisioned to be discontinued in the foreseeable
future. Additionally, the data from different GOES
satellites over the years are curated and harmonized
from NOAA providing coherent inputs.

The use of solely X-ray measurements does not require
the detection/characterization of CMEs which can
potentially delay the output of an occurrence prediction
by several hours.

Regarding the classic dichotomy, the model performs
well for both impulsive events, typically associated with
solar flares, as well as gradual events, typically associ-
ated with solar flares and CMEs.

Different ensembles of nets have been trained to con-
sider solar flares of certain magnitudes and above, e.g.,
>Cl1 and >M2, to emphasize the large range of solar
flare intensities, which is of prime Space Weather
interest.

Inputs: X-ray measurements from the XRS instrument
on-board GOES satellites. The X-ray time-series of a solar
flare are used to calculate 24 features that are fed as input
in the NN ensemble. These features are primarily derived
from the peak flux and fluence (time-integrated flux) val-
ues of the long and short wavelength GOES X-ray chan-
nels. Additionally, when available, the heliolongitude of
the solar flare associated active region is also used as an
input.

Outputs: Probability of an SEP occurring during and
after a solar flare, regardless of CME occurrence. This
can be also collapsed to a categorical yes/no prediction
with a thresholding value (typically 0.5).

Free parameters: Operationally none. The internal
(weights and biases) parameters of the NNs as well as their
hyperparameters can be considered as free, however these
are set after training and not user-defined.

Limitations and caveats: The GOES XRS measurements
cannot distinguish different solar flares if they occur con-
currently and the measured X-rays are aggregated. This
could potentially affect the NN performance, however as
of yet we have not found evidence of this.

Access to model output or forecasts: The model will be
made operational at the start of 2023. After a pilot opera-
tional period, its outputs will be available through a dedi-
cated section in the SPARC webpage (www.sparc.gr).
The model outputs will be also accessible to users by con-
necting to the SPARC Application Programming Interface
(API) through a publicly available Python module (https://
pypi.org/project/sapiadapter).

Model validation: The model has been validated using a
25-year dataset of X-ray measurements and SEPs. Multiple
random train/test divisions were used for an overall evalu-
ation. The validation was performed using very strict crite-
ria on a leave-one-out process using all the historical flares

5171

Advances in Space Research 72 (2023) 5161-5242

Table 3

Aminalragia-Giamini model True Positive rates, False Positive rates, and
TSS from the validation of the model on the full 25 years of available
historical data.

True Positive False Positive True Skill Score

Rate (%) Rate (%)
Flares >Cl 86.81 7.77 0.790
Flares >M2 78.36 19.60 0.587

and SEPs. Table 3 and Fig. 1 present the validation
outcomes.

3.4. AMPS - Adaptive Mesh Particle Simulator

Model developers: Valeriy Tenishev (University of
Michigan).

Model description: Adaptive Mesh Particle Simulator
(AMPS) is a 3-dimensional physics-based kinetic Monte
Carlo particle model for simulating the dynamics of neutral
and charged particles. The energy range of ions and elec-
trons simulated with AMPS varies starting from fractions
of eV and up to multiple GeVs. In previous applications,
the model was successfully applied to study the planetary,
magnetospheric, and heliospheric environments (Tenishev
et al., 2021).

AMPS is a fully integrated component of the Space
Weather Modeling Framework (SWMF). AMPS incorpo-
rates two approaches for modeling transport of SEPs in
the heliosphere: (1) simulating SEPs transport when they
move along a set of evolving magnetic field lines, and (2)
simulating SEPs transported in full 3D. The evolving mag-
netic field lines are derived from the concurrently con-
ducted magnetohydrodynamic (MHD) modeling of solar
wind in the inner heliosphere. AMPS also can be used as
a stand-alone SEPs transport model. An analytical repre-
sentation of the magnetic field line (e.g., Parker spiral) is
used in the latter case.

AMPS solves the Parker and Focused transport equa-
tions in full 3D and along a set of magnetic field lines
(e.g., Tenishev et al., 2005). Model particles are injected
at the front of a moving shock. Simulated effects include
pitch-angle diffusion (Focused transport equation), spatial
diffusion in the direction of the magnetic field line (Parker
equation), stochastic accelerations, adiabatic cooling and
focusing, and particle drift. The latter is included when
modeling is conducted in full 3D. The parameters of the
Alfvén turbulence, solar wind, and IMF are derived from
concurrently performed MHD modeling of plasma in the
inner heliosphere.

Inputs: AMPS derives solar wind, IMF, and turbulence
parameters from MHD modeling of the inner heliosphere
via the coupling infrastructure of the SWMF.

Outputs: When simulating SEP transport moving along
a set of magnetic field lines, AMPS calculates the flux,
density, and energy spectrum of SEPs for a set of the
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Fig. 1. Aminalragia-Giamini model ROC curves derived from the probabilistic outputs of the model showing the relation of true positive rates and false-
positive rates for all thresholds values € [0,1]. Two curves are shown for both the SF>C1 and SF>M2 cases. The dashed line denotes the random
classifier behavior. (b) Evolution of the TSS score for the same range of applied thresholds. Red circles mark the points for threshold equal to 0.5.

user-defined heliocentric distances for each simulated field
line. When modeling SEPs transport in 3D, AMPS calcu-
lates (1) the integrated density and flux of SEPs at the cor-
ners of the grid covering the simulated domain and (2) the
energy spectrum of SEPs in a set of user-defined locations.

Free parameters: Free parameters include an energy
spectrum and a distribution of the source of SEPs. When
transporting SEPs along magnetic field lines, AMPS can
track the location of the shock that determines where
new particles are injected in the model. In the latter case,
the solar wind plasma parameters are derived from a con-
currently conducted MHD model of the solar wind in the
inner heliosphere. In that case, the injection efficiency is
an additional free parameter. The choice of the pitch-
angle diffusion coefficient is also a free model parameter.

Limitations and caveats: AMPS needs to be executed as a
component of the SWMF to use evolving magnetic field
lines and the solar wind and turbulence parameters.

Access to model output or forecasts: AMPS is available in
the CCMC at https://ccme.gsfc.nasa.gov/requests/PP/
user_registration.php?model=AMPS. It is also available
in source code as a component of the SWMF developed
at the University of Michigan.

Model validation: Modeling SEP populations is one of
the multiple prior applications of AMPS. The core of
AMPS is a Monte Carlo solver of kinetic equations. AMPS
was extensively validated by comparing with observations
when solving the Boltzmann equation in planetary environ-
ments and against analytical solutions of plasma wave
propagation when solving Vlasov + Maxwell equations.
There was no significant validation of the SEP population
model when solving Parker or Focused Transport equa-
tions conducted so far.

5172

3.5. Boubrahimi Model

Model developers: Soukaina Filali Boubrahimi, Berkay
Aydin, Petrus Martens, Rafal Angryk (developed at Geor-
gia State University).

Model description: This model, described in Boubrahimi
et al. (2017), predicts the occurrence of SEP events of
>100 MeV based on time series correlations among GOES
X-ray flux and several proton flux channels using an inter-
pretable decision tree model. A classification decision tree
model maps observation attributes as branches to class
labels at the leaves. In this model, two class labels are con-
sidered: the positive class is composed of X-ray and proton
channel time series that led to a >100 MeV SEP event, and
the negative class are those data which did not lead to such
an event. The SEP event list used for training the model is
from Nufez (2011) and consists of 47 impulsive events
from the period between 1997 and 2013. Another 47 X-
ray events which did not produce any associated SEP event
were selected for the negative class, producing a balanced
dataset. The observations used to train the model are the
GOES XRS, Energetic Particle Sensor (EPS) and High
Energy Proton and Alpha Detector (HEPAD) channels —
eight in total. As a distinction from previous work (e.g.,
Nunez, 2011), this model considers not only the correla-
tions between X-ray and energetic proton flux time series,
but also correlations across different proton channels. Cor-
relations are expressed using the Vector Autoregression
Model (VAR), a stochastic process model used to capture
the linear interdependencies among multiple time series.
The model considers time windows (called ““spans”) before
the start of the X-ray event, and each time point within a
span is expressed as a linear function of / previous time
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Table 4
GOES X-ray and Proton Instruments and Channels used in Boubrahimi Model.
Instrument Channel Description
SX1. XS Short wavelength channel irradiance (0.5-0.3 nm)
SX1 x1 Long wavelength channel irradiance (0.1-0.8 nm)
EPS p6_flux Proton Channel 80.0-165.0 MeV
EPS p7_flux Proton Channel 165.0-500.0 MeV
HEPAD p8 flux Proton Channel 350.0-420.0 MeV
HEPAD p9_flux Proton Channel 420.0-510.0 MeV
HEPAD pl0_flux Proton Channel 510.0-700.0 Me