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Abstract: The analysis of blood metabolites may help identify individuals at risk of hav-
ing COPD and offer insights into its underlying pathophysiology. This study aimed to
identify COPD-related metabolic alterations and generate a biological signature potentially
useful for screening purposes. Plasma metabolomic profiles from 91 COPD patients and
91 controls were obtained using complementary semi-targeted and untargeted LC-MS
approaches. Univariate analysis identified metabolites with significant differences between
groups, and enrichment analysis highlighted the most affected metabolic pathways. Multi-
variate analysis, including ROC curve assessment and machine learning algorithms, was
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applied to assess the discriminatory capacity of selected metabolites. After adjustment for
major potential confounders, 56 metabolites showed significant differences between COPD
patients and controls. The enrichment analysis revealed that COPD-associated metabolic
alterations primarily involved lipid metabolism (especially fatty acids and acylcarnitines),
followed by amino acid pathways and xenobiotics. A panel of 10 metabolites, mostly
related to lipid metabolism, demonstrated high discriminatory performance for COPD
(ROC-AUC: 0.916; 90.1% sensitivity and 89% specificity). These findings may contribute
to improving screening strategies and a better understanding of COPD-related metabolic
changes. However, our findings remain exploratory and should be interpreted with caution,
needing further validation and mechanistic studies.

Keywords: COPD; metabolites; lipid homeostasis; amino acids; fatty acids; acylcarnitines

1. Introduction
Chronic obstructive pulmonary disease (COPD) is a very prevalent disorder, mainly

characterized by respiratory symptoms, chronic poorly reversible and often progressive
airflow obstruction [1] as well as heterogeneous clinical presentations. COPD is the result of
long-term exposure to harmful inhaled noxious agents, such as tobacco smoke or ambient
particulates, and is associated with an abnormal pulmonary and systemic inflammatory
response [2,3]. However, and despite its high prevalence, COPD also maintains a high
rate of underdiagnosis [4–12], which is probably due to a low clinical suspicion and the
need for a technically well-performed forced spirometry. The latter is a well-established
technique, but its correct use requires a minimal infrastructure, and skills and technical
requirements that are difficult to be extended to primary medicine and/or very large
populations. Therefore, any approach that facilitates the suspicion of COPD, focusing the
performance of spirometry on high-risk populations, could facilitate diagnosis.

Growing evidence suggests that local and systemic inflammation are key contribut-
ing factors to COPD progression and its comorbidities [1,3,13]. The local inflammatory
response to environmental cues, triggered to eliminate harmful stimuli and promote lung
tissue repair and remodeling, also contributes to altering the dynamic equilibrium of the
respiratory microbiome composition (dysbiosis). Microbiome dysbiosis further affects the
immune system balance enhancing lung and peripheral inflammatory responses [14–16].
In turn, the modulation of the immune system is underlined by metabolic adaptation
in local and systemic immune cells [17]. Thus, a deeper understanding of the metabolic
rearrangement occurring in COPD is being provided by recent research [17–21].

Metabolomics is a useful scientific tool that helps to identify metabolite profiles and
enables our understanding of the pathogenic mechanisms of complex diseases such as
COPD. Even though a growing body of evidence highlights the metabolic abnormalities
in this disorder [17–21], most of the previous studies are limited by the small sample size,
a preponderance of elderly patients or fail to consider potential confounding variables,
such as smoking, nutritional status and the multimorbidity frequently present in these
patients. Moreover, most of these studies have used hypothesis-driven approaches directed
at specific candidate metabolites. In the present study, we employed semi-targeted and
untargeted complementary approaches coupled with artificial intelligence methodology.
The aim was to compare the plasma metabolomes of a wide range of COPD patients
and matched controls (HC, asymptomatic smokers without airflow limitation) to identify
differential metabolite concentrations and their corresponding pathways, considering the
main potential confounding factors. Therefore, the main objectives of this study were
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to gain valuable insight into the pathophysiology of the disease and to obtain a COPD
metabolic risk signature, which may have a potential use for screening purposes.

2. Results
2.1. Main Characteristics of Participants

The general and clinical characteristics of the participants are summarized in Table 1.
Briefly, both COPD and HC were medium-aged individuals, with similar sex distribution
(minor male predominance), and mildly overweight. By study design, COPD patients
presented an abnormal respiratory function with airway obstruction and reduced carbon
monoxide diffusing capacity (DLco), with most of them classified as GOLD 2, followed by
GOLD 3 and GOLD 1.

Table 1. Baseline characteristics of subjects included in the analysis.

HC
(N = 91)

COPD
(N = 91)

Age, median (IQR), yr. 48 (44–61) 50 (46–66)
Male, N (%) 50 (55) 46 (51)

Body Mass Index (kg/m2), mean ± SD 26.5 ± 4.4 26.1 ± 5.5
Current or former smokers, N (%) 91 (100) 91 (100)

Pack Years, median (IQR) 23 (15–32) 39 (24–60) ***
Post-BD FEV1 (% pred.), median (IQR) 95 (85–104) 56 (43–76) ***

FEV1/FVC ratio, median (IQR) 82 (74–87) 56 (40–65) ***
DLco, median (IQR) 85 (79–96) 56 (43–76) ***
GOLD class, N (%)

GOLD 1 - 19 (21)
GOLD 2 - 37 (41)
GOLD 3 - 24 (26)
GOLD 4 - 11 (12)

Values are expressed as median (interquartile range, IQR) or mean ± SD for continuous variables, and as N
(percentage) for categorical variables. Significances: ***, p < 0.001 compared to HC. Abbreviations: HC, controls
(asymptomatic smokers without airflow limitation); COPD, Chronic Obstructive Pulmonary Disease; Post-BD
FEV1, post-bronchodilator Forced Expiratory Volume in one second; FVC, Forced Vital Capacity; DLco, Diffusion
capacity for carbon monoxide; GOLD, Global Initiative for Chronic Obstructive Lung Disease.

2.2. Metabolite Profile in COPD Patients

The liquid chromatography/mass spectrometry (LC-MS)/MS platform used in this
study measured a total of 461 compounds of already known identity but, and as discussed
in the Methods Section, only those metabolites identified in at least 80% of plasma samples
were included in the final analysis, which encompassed 360 metabolites (78%).

From these 360 metabolites, the univariate analysis identified 74 that differed significantly
(differentially abundant metabolites or DAMs) between HC and COPD patients, and of these
metabolites, 54 and 20 were found to be over and underrepresented, respectively, in COPD
patients (Figure 1). The highest proportion of DAMs was found in lipids and lipid-like
molecules (29, 39.2%), followed by xenobiotics (13, 17.6%), amino acids and their analogues
and derivatives (10, 13.5%) and carbohydrates and their conjugates (6, 8.1%). The detailed
information on these metabolites is summarized in the Supplementary Table S1.

After data adjustment for potential confounding factors [age, gender, body mass
index (BMI) and the intensity of recent smoke exposure], the concentration of 56 metabo-
lites remained significantly different between patients and HC, 51 of which (91%) co-
incided with those from the former non-adjusted analysis (Figure 2; Supplementary
Table S2). Based on the adjusted analysis, COPD patients were characterized by the
following: (1) increased abundance of nine short- and medium-chain fatty acids (SC-
FAs and MCFAs, respectively) and derivatives. SCFAs included butyric, valeric and
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β-hydroxyisovaleric acids, whereas MCFA were 2-hydroxyisocaproic (HICA, metabolite of
leucine), 3-methylglutaconic, caprylic, capric, caproleic and 5-dodecanoic acids; (2) higher
levels of five acylcarnitines: acetyl-L-Carnitine, octanoylcarnitine, decanoylcarnitine, lau-
roylcarnitine and palmitoylcarnitine; and, (3) decreased concentration of long- and very
long-chain fatty acids (LCFAs and VLCFAs, respectively): 2-hydroxymyristic, pentade-
canoic, palmitic and 14-methylhexadecanoic, nonadecanoic, arachidic, behenic and ligno-
ceric. By contrast, the DAMs more sensitive to the adjustment for potential confounding
factors were amino acids (as well their analogues and derivatives) and xenobiotics.
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Role of smoking status. Metabolite shifts were also compared between current and for-
mer smokers within each group. An elevated level of cotinine was the only marker discrimi-
nating smoking status in HC, whereas theophylline, didemethy-lisoproturon and 3-carboxy-
4-methyl-5-propyl-2-furanpropionate (CMPF) differentiate current and former smokers.

2.3. Pathway Enrichment Analysis of DAMs in COPD

In order to explore the metabolic pathway perturbations associated with the dis-
ease, the 56 DAMs that varied significantly between the two groups after adjustments
were mapped through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Human
Metabolome Database (HMDB) databases in 17 and 21 metabolic pathways, respectively.
We found that lipid and amino acid metabolism emerged as the most significantly altered
pathways in COPD (Supplementary Table S3).

2.4. Multivariate Analysis and AI Modeling

We again considered only the 56 metabolites that distinguished patients from HC after
adjustments to evaluate key metabolites influencing COPD discrimination as potential
biomarkers. A predictive model was established using the artificial intelligence (AI) Support
Vector Machine (SVM) algorithms and Receiver Operating Characteristic (ROC) curves
to explore which metabolite signature has the best sensitivity and specificity balance
(Figure 3a). Among those biomarkers most strongly associated with COPD, SVM selected
10 metabolites for the scoring system (Table 2), which achieved an area under the curve
(AUC) of 0.927 (Figure 3b). Notably, four of them (1-tetradecylamine, 2-naphthalenesulfonic,
4-dodecylbenzenesulfonic acids and pentapropylen glycol (PPG n5)) were considered as
not being produced naturally by human beings (xenobiotics), but derived mainly from
body care or cleaning products or potential products of microbiota.
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performance across MCCV runs; (c) Comprehensive evaluation metrics. (*) Accuracy was calculated
based on a COPD prevalence of 11.8% in the Spanish adult population [12].



Int. J. Mol. Sci. 2025, 26, 4526 6 of 22

Table 2. Panel of the best 10 metabolites discriminating COPD from controls.

Compound Name logFC HMDB Chemical Taxonomy
(Super Class)

Chemical Taxonomy
(Sub Class) KEGG Pathways

Hexadecanoic acid
(Palmitic acid) −0.057507 HMDB0000220 Lipids and

lipid-like molecules

Fatty acids and
conjugates

(LCFA)

Fatty acid
Metabolism

Glyceric acid −0.32747 HMDB0000139 Organic Oxygen
Compounds

Carbohydrates and
their conjugates

Pentose phosphate
pathway

Urocanate −0.45756 HMDB0000301 Organoheterocyclic
Compounds Imidazoles Histidine metabolism

2-aminonicotinic acid −0.32725 HMDB0061680 Organoheterocyclic
Compounds

Pyridinecarboxylic acids
and derivatives

2-Hydroxyisocaproic acid
(Leucic acid) 0.33133 HMDB0000665 Lipids and

Lipid-like Molecules

Fatty acids and
conjugates

(MC Hydroxy fatty acid)

Fatty acid
Metabolism

Diethanolamine 0.16912 HMDB0004437 Organic Nitrogen
Compounds Amines Glycerophospholipid

metabolism

1-Tetradecylamine 3.0246 HMDB0258887 Organic Nitrogen
Compounds Amines

Pentapropylene glycol
(PPG n5) 0.5634 Organic Oxygen

Compounds Alcohols and polyols

2-Naphthalenesulfonic acid −1.0249 HMDB0255446 Benzenoids Naphthalene sulfonic
acids and derivatives

4-Dodecylbenzenesulfonic acid −0.85833 HMDB0059915 Benzenoids Benzene sulfonic acids
and derivatives

Abbreviations: FC, Fold Change; HMDB, Human Metabolome Database; KEEG, Kyoto Encyclopedia of Genes
and Genomes; LCFA, long-chain fatty acid; MC, medium-chain (fatty acid).

2.5. Exclusion of Xenobiotics

Accordingly, after excluding these xenobiotics, we repeated the SVM analysis to
identify a truly endogenous metabolic signature contributing to COPD discrimination
but with clearer human biological origin. This new model identified 10 DAMs strongly
associated with COPD (Table 3, where four new metabolites have substituted the former
four xenobiotics), including palmitic, 14-methylhexadecanoic (derived from the previous
one, where a methyl group has entered in the molecule), 2-hydroxytetradecanoic, glyceric
and 2-aminonicotinic acids, as well as urocanate were significantly downregulated in
COPD patients, whereas the remaining differential metabolites, gluconic and HICA acids,
diethanolamine and N-methylglutamate) were upregulated (Table 3).

Table 3. Panel of the best 10 metabolites used for discrimination between COPD and controls
excluding xenobiotics.

Compound Name logFC HMDB Chemical Taxonomy
(Super Class)

Chemical Taxonomy
(Sub Class) KEGG Pathways

Hexadecanoic acid
(Palmitic acid) −0.057507 HMDB0000220 Lipids and Lipid-like

Molecules
Fatty acids and conjugates

(LCFA)
Fatty acid

Metabolism

Glyceric acid −0.32747 HMDB0000139 Organic Oxygen
Compounds

Carbohydrates and
Carbohydrate conjugates

Pentose phosphate
pathway

Urocanate −0.45756 HMDB0000301 Organoheterocyclic
Compounds Imidazoles Histidine metabolism

2-Aminonicotinic acid −0.32725 HMDB0061680 Organoheterocyclic
Compounds

Pyridinecarboxylic acids
and derivatives

2-Hydroxyisocaproic acid
(Leucic acid) 0.33133 HMDB0000665 Lipids and Lipid-like

Molecules
Fatty acids and conjugates
(MC Hydroxy fatty acid)

Fatty acid
Metabolism

Diethanolamine 0.16912 HMDB0004437 Organic Nitrogen
Compounds Amines Glycerophospholipid

Metabolism

Gluconic acid 0.24119 HMDB0000625 Organic Oxygen
Compounds

Carbohydrates and
their conjugates

Pentose phosphate
pathway
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Table 3. Cont.

Compound Name logFC HMDB Chemical Taxonomy
(Super Class)

Chemical Taxonomy
(Sub Class) KEGG Pathways

2-Hydroxytetradecanoic acid
(2-Hydroxymyristic acid) −0.20222 HMDB0002261 Lipids and Lipid-like

Molecules
Fatty acids and conjugates

(LC Hydroxy fatty acid)
Fatty acid

Metabolism

14-Methylhexadecanoic acid −0.12759 HMDB0031067 Lipids and Lipid-like
Molecules

Fatty acids and conjugates
(LC chain Methyl fatty acid)

Fatty acid
Metabolism

N-Methylglutamate 0.14171 HMDB0062660 Organic Acids and
Derivatives

Amino acids, peptides
and analogues

Derivative of
Glutamic acid

Abbreviations: FC, Fold Change; HMDB, Human Metabolome Database; KEEG, Kyoto Encyclopedia of Genes
and Genomes; LCFA, long-chain fatty acid; MC, medium-chain (fatty acid).

These biomarkers also showed a high discriminative value, with an AUC of 0.916
(Figure 4a,b).
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shaded area illustrates the variability in model performance across MCCV runs; (b) Comprehensive
evaluation metrics. (*) Accuracy was calculated based on a COPD prevalence of 11.8% in the Spanish
adult population [12].

3. Discussion
The main observations of the present study suggest the following: (1) metabolomics

can reliably help to differentiate COPD patients from controls; (2) DAMs were mostly
related to lipid metabolism, followed by that of proteins, and to a much lesser extent to
carbohydrates and their conjugates, and tricarboxylic or citric acid cycle (TCA) intermedi-
ates; and, finally, (3) a group of ten metabolites may conform a predictive model, which
is highly sensitive and specific for COPD. These findings will require further validation,
ideally in independent cohorts and through longitudinal or mechanistic studies.

3.1. Previous Studies

Some previous studies have reported metabolic abnormalities in COPD [17–22]. How-
ever, they generally included a small number of subjects, with a lack of full clinical details
and did not consider potential confounding factors that are frequently present in these
patients and can influence metabolism. Moreover, they used hypothesis-driven approaches
directed to specific candidate metabolites. Our study addresses these potential limitations
by studying a larger population of well characterized COPD patients and HC, considering
potential confounding factors in the analysis, and using a double and complementary
not-hypothesis-driven metabolomic approach (semi-targeted plus untargeted assessments)
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coupled with supervised machine learning (IA) analysis to characterize and model the
circulating metabolite changes more characteristic of COPD patients.

3.2. Interpretation of Novel Findings
3.2.1. Lipids and Lipid-like Molecules

Lipids have three main functions: membrane building, energy storage and produc-
tion, and signal transduction [23]. Moreover, they can be involved in either anabolic or
catabolic pathways, such as those involved in the synthesis of new and more complex
molecules and those derived from their oxidation (which in turn, can generate new metabo-
lites and/or produce more energy). In the present study, close to half the DAMs were
lipids, and more specifically fatty acids, their conjugates and esters. Fifteen were more
abundant in COPD than in controls [including products of the leucine degradation process
(HICA, β-hydroxyvaleric acid and 3-methylglutaconate), participants in the synthesis of
other fatty acids (butyric, octanoic and decanoic acids), possible products of gut micro-
biota (pentanoate) and fatty acid esters (different acylcarnitines)], whereas ten more had
lower levels in patients when compared to HC. While most of the under-represented fatty
acids (such as lignoceric, behenic and docosatetraenoic) are involved in the biosynthesis
of unsaturated fatty acids, others also participate in the synthesis of steroids, as is the
case of palmitic acid, or eicosanoids, as for the arachidic acid. Moreover, four of them
were integrated into the final COPD signature (palmitic, leucic/HICA, 2-hydroxymyristic
and 14-methylhexadecanoic acids). Taken together, these findings may suggest that lipid
metabolism is altered in COPD and could play a role in covering the increased ener-
getic demands of these patients, as well as in modulating proinflammatory pathways
through changes in eicosanoids (i.e., prostaglandins, thromboxanes and leukotrienes) pro-
duction [24,25]. These lipid mediators are potent biological signaling molecules that can
promote inflammation and hinder tissue repair [26]. The increased levels of diethanolamine
(DEA, present in the COPD signature), involved in the glycerophospholipid metabolism,
might be related to long-term effects of previous exacerbations [27]. Other authors have also
highlighted the relevance of lipids in COPD pathophysiology [28,29]. Overall, our results
are consistent with the hypothesis that lipid metabolic pathways are altered in COPD and
that such alterations could affect cellular physiology, including immune and inflammatory
responses, amongst others, thereby potentially contributing to disease development and
persistence [24]. Nonetheless, these hypotheses warrant confirmation in future mechanistic
and longitudinal studies.

3.2.2. Xenobiotics

Of particular interest is the presence in plasma of several metabolites that are not en-
dogenously produced by humans. Moreover, some of these xenobiotics were differentially
abundant in COPD patients and HC. The interpretation of these findings remains challeng-
ing due to the limited information available on the biological roles of many xenobiotics,
which often originate from diverse environmental, dietary or microbiota-associated sources.
While some of these compounds could potentially reflect environmental exposures or micro-
bial metabolism, their precise origin and role in COPD pathophysiology remains uncertain.
In our dataset, eight xenobiotics were found in higher concentrations in COPD patients.
These included compounds commonly used in personal care products or food additives
[e.g., PPG n5, tetrapropylene glycol (PPG n4), 1-tetradecylamine and methyl vanillate], as
well as industrial agents [e.g., bis(methylbenzylidene)sorbitol and tetraglyme], the latter of
which has been associated with oxidative and genotoxic effects in vitro [30]. Additionally,
we detected four xenobiotics considered to be environmental contaminants, primarily plasti-
cizers or detergent components [e.g., 4-dodecylbenzenesulfonic acid, 2-naphthalenesulfonic
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acid, diisopropylethylamine (DIPEA) and bis(2-ethylhexyl) phthalate (DEHP)]. Although
none of these compounds are known drug metabolites, the possibility of their presence
as excipients, contaminants from inhalation devices, or components of pharmaceutical
capsules used by patients cannot be fully excluded. Interestingly, three xenobiotics ele-
vated in COPD samples may be of microbial origin, consistent with growing evidence on
microbiota–host interactions in systemic inflammation [14,31]. For example, NP-013736, a
surfactant-like compound, may be produced by Stenotrophomonas rhizophila [32], a Gram-
negative bacterium found in food sources and potentially in the human gut. Similarly, 4-
hydroxybenzaldehyde (4HBA) is known to be synthesized by various bacterial species [33],
and 3-hydroxybenzaldehyde (3HBA), although produced by gut epithelial cells, may serve
as a substrate or signaling molecule for microbial metabolism [34,35].

Despite these intriguing findings, we have chosen to exclude xenobiotics from the core
mechanistic analysis of disease-related pathways, as our primary objective is to focus on
endogenously regulated metabolites, which are more directly linked to intrinsic physiolog-
ical and pathophysiological processes in COPD. Nevertheless, the altered abundance of
several xenobiotics in COPD patients warrants further investigation. Future studies should
aim to validate these associations and clarify their potential role, either as passive exposure
markers or active modulators in disease development and/or progression.

3.2.3. Amino Acids, Analogues and Derivates

The third most important metabolite class, although representing a much smaller
number of DAMs (just 10.7% of the total) than the two preceding groups, was that of
amino acids and associated molecules. Amino acids are the structural base of proteins,
but they also participate in many biological functions such as the synthesis of serotonin,
active amines, porphyrins, nitrogenous bases (and therefore, nucleic acids) and even
nitric oxide. Four of these amino acids and related molecules, including tyrosine and one
product of its metabolism (4-coumarate), as well as two metabolites of glutamine and
branched-chain amino acids (N-methylglutamate and 3-hydroxybutanoate, respectively)
were overrepresented in COPD patients. Only two others, associated with the metabolism of
leucine and histidine (N-acetylleucine and urocanate, respectively), were under-expressed
in patients. Moreover, two of these metabolites, N-methylglutamate and urocanate, were
also present in the final COPD signature.

Overall, these findings may reflect the well-known predominance of increased prote-
olysis in COPD patients [36–39]. This process, which is thought to exceed protein synthesis
in many cases, has been associated with systemic manifestations of the disease (such as
low body weight and muscle dysfunction) [40], and may be partially driven by the need to
generate energy to meet the increased metabolic requirements observed in COPD, both at
rest and during exercise [41]. This hypermetabolic state is particularly pronounced in mal-
nourished patients [42]. Additionally, lung and airway tissue remodeling during disease
progression may represent a complementary source of protein degradation metabolites
in COPD patients [38]. The ubiquitin–proteasome system appears to play a major role in
the increased protein turnover [36], although other mechanisms, such as autophagy and
oxidative stress, may also contribute to the presence of products of protein degradation
products in the blood of such patients [39].

Another noteworthy observation of the present study is the increase in several
carnitine-derived metabolites. Carnitines play a critical role in the transport of LCFA
into mitochondria to be used in β-oxidation. Most of the carnitine-derived metabolites that
were more abundant in the blood of our patients than in controls were linked to MCFAs or
LCFAs metabolism. However, as previously mentioned, LCFAs and VLFAs were decreased
in COPD patients. Taken together, these results may be consistent with the hypothesis



Int. J. Mol. Sci. 2025, 26, 4526 10 of 22

of reduced energy production in COPD. Nonetheless, further mechanistic studies will
be required to confirm these potential links and better understand their contribution to
disease pathophysiology. Finally, the present results are in line with our findings in three
recent studies, which showed that different combinations of proteins and their fractions,
particularly those related to immune and hemostasis pathways, could serve as useful
markers of either acute exacerbations, the frequent exacerbator phenotype and even poor
vital prognosis in COPD [43–45].

3.2.4. Carbohydrates

Sugars are very relevant molecules that can be catabolized to rapidly obtain energy
(glycolysis), but are also components of coenzymes [such as adenosine triphosphate (ATP)
and nicotinamide adenine dinucleotide (NAD)], nucleic acids, power storages (such as
glycogen), and also include mucopolysaccharides of the connective tissue. Moreover, car-
bohydrates can also be associated with proteins and lipids (glycoproteins and glycolipids,
respectively), with which they share their participation in the TCA and the mitochondrial
respiratory chain. In fact, carbohydrates play relevant roles not only in the production and
storage of energy, but also in the immune and inflammatory responses, blood clotting and
lubrification of joints, among other relevant biological processes. Even though abnormali-
ties in carbohydrate metabolism in COPD seem to be less prominent than those observed
in lipid and protein pathways, some abnormalities have been previously described. For
example, glycoprotein Glyc A, a marker of low-grade inflammation, is increased in COPD
patients [46], although some N-acetyl glycoproteins are decreased in their blood. Further-
more, certain sugars (such as fructose, ribose, fucose) or their associated metabolites (i.e.,
glucosaminic acid) seem to be increased in patients with poor vital prognosis or in those
with chronic bronchitis coexisting with lung cancer (turanose) [44,47–49]. Carbohydrate
metabolism also appears to be particularly altered in more severely affected patients [50,51],
and during exacerbations [52,53]. Moreover, increased levels of sialic acid in sputum have
been reported as markers of either acute exacerbations or the frequent exacerbator pheno-
type [54]. In a previous study, we demonstrated that the efficiency of the lectin pathway
of the complement system, which relies in carbohydrate recognition on bacterial surfaces,
appears to be impaired in COPD patients experiencing an acute exacerbation [45]. Finally,
some other carbohydrates (glucose, manose) have been shown to be decreased in the blood
of patients with the eosinophilic phenotype [51].

Two of the metabolites chosen for our COPD signature are associated with the pen-
tose phosphate pathway, which is closely linked to glycolysis and plays a key role in the
synthesis of nucleotides and nucleic acids, as well as in the anabolic actions of nicoti-
namide adenine dinucleotide phosphate (NADPH). This pathway may also contribute
to the synthesis of fatty acids, and hence to the formation of more complex lipids and to
energy storage/production. Therefore, the altered levels of gluconic and glyceric acids
observed in our study could point toward dysregulations in these interconnected biological
processes [51]. However, these interpretations should be considered as hypothesis, and
further studies are needed to confirm their functional implications in the context of COPD.

3.3. Potential Confounding Factors

We adjusted our results by some of the factors that are already known to intrinsically
influence metabolism; gender, age, nutritional status and tobacco exposure [47].

In an interesting report from Liu et al., nutritional status was the most impor-
tant of these cofactors in adult smokers, showing a close relationship with some infec-
tious/inflammatory markers such as white cell count, C-reactive protein (CRP) and fibrino-
gen [55]. Gender also appears to have a strong influence on COPD metabolism [56] with
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females showing a higher metabolic dysregulation than males, and specifically in those
metabolites that participate in the redox balance [57] and some cytokines [58]. Liu et al.
showed an association of the female gender with 11-dehydrothromboxane B2 (11-dehTxB2),
considered as an index of synthesis of thromboxane A2, which is involved in platelet
aggregation [55]. Moreover, other markers seem to be lower in both healthy women and
women with COPD, which is the case of the transcription factor peroxisome proliferator-
activated receptor gamma (PPAR-γ) that regulates the immune responses and may be
related to drop in estrogen levels in elderly women [59]. Interestingly, gender influences
the metabolic response to exercise in COPD, and more specifically in metabolites linked
to fatty acids (acetyl-CoA, oleic acid), proteins (glutamine, tryptophan, branched chain
amino acids) and the TCA cycle (succinate, creatinine and α-ketoglutarate or a-KG) [60].
Aging is another physiological circumstance that induces relevant and specific changes
in the body metabolism, with some of these changes appearing to differ between healthy
individuals and COPD patients. For instance, this is the case of some amino acids and
lipids that seem to be overproduced in elderly patients when compared with age-matched
controls. Moreover, some of the changes linked to aging seem to appear earlier in COPD
patients than in healthy individuals [22].

Finally, various studies have demonstrated that the smoking habit per se can modify
the metabolism, since it is associated with inflammation, oxidative stress, platelet activation
and increases in both lipid oxidation and mitochondrial respiration [61–66]. Many of the
metabolites involved in these processes become modified by tobacco smoking. This is the
case of increases in the von Willebrand factor (vWF, an endothelial factor that participates
in the initial steps of hemostasis and is also a marker of low-degree inflammation) [55],
diverse branched-chain and others amino acids [55,67,68], as well as eicosanoids [55,67,69],
fibrinogen [70] or even some ions [71] shown by active smokers. Other abnormalities
have also been related to passive smoking, or recent alternatives to classical tobacco smok-
ing. The former included alterations in phospholipid, amino acid/peptide and purine
metabolism [72,73], whereas methylation of various molecules have also been recently
reported in users of the latter [74]. For this reason, and in line with some previous studies
searching for COPD markers [52,69], we decided to choose asymptomatic smokers without
airflow limitation for the control group, normalizing our results by recent exposure to
tobacco (objectivated through the blood levels of cotinine, an unbeatable marker of the
presence and intensity of the smoking habit) [75]. We have to recognize, however, that
some of these factors considered as “confounding” in our study design may interact with
the respiratory disease, causing metabolic changes of mixed origin. A new study with a
different design would be required to elucidate on which changes this would occur. Our
results, therefore, leave that question open.

3.4. Final Metabolomic Signature for COPD (Excluding Xenobiotics)

The combination of only 10 differentially abundant metabolites between patients and
controls has allowed an approximation to a reasonable suspicion of having COPD. This
metabolomic signature may potentially be used in the near future to facilitate blood-based
screening of possible COPD cases in either the general or at-risk populations, especially
considering the high prevalence and underdiagnosis of this respiratory disease [4–12].
The use of a screening panel could help guide the application of spirometry in high-risk
populations, extending its use beyond traditional criteria such as heavy smoking history
or findings from questionnaires or computed tomography (CT) scans, as has occasionally
been proposed [76–79]. It should be noted that spirometry is a functional test requiring
specific equipment, a well-trained technician and full collaboration from the subject to
ensure technical quality and diagnostic reliability. These requirements make its large-scale
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implementation difficult and likely contribute to underdiagnosis. In contrast, a biological
risk signature, such as the one proposed in the present study, could eventually lead to a
simple and widely applicable test. However, further validation in independent cohorts is
necessary before clinical implementation can be considered.

The “COPD signature” included several fatty acids and their conjugates. Some LCFAs
showed reduced levels in patients, whereas one MCFAs were more abundant when com-
pared with HC. Although partly speculative, the low levels of the former might reflect a
reduced capacity for energy production via beta-oxidation [80,81], while the higher levels
of the latter, deriving from leucine metabolism, could be interpreted as a sign of enhanced
catabolic activity [82]. Similarly, the elevated levels of N-methylglutamate, a derivative of
glutamic acid, may point to changes in amino acid catabolism in COPD. Conversely, lower
levels of urocanate could reflect insufficient histidine availability in such a population,
which might influence allergic or vasodilatory responses [83]. These interpretations remain
hypothetical and require further investigation.

In addition to these findings, two metabolites in the signature were linked to carbo-
hydrate metabolism, and specifically to the pentose phosphate pathway: glyceric acid,
which was decreased in COPD patients, and gluconic acid, with was elevated compared
to controls. High levels of gluconic acid may suggest an up-regulation of initial glucose
catabolism [84], while lower levels of glyceric acid could indicate a possible bottleneck in
later glycolytic steps [85]. Again, this imbalance might result in decreased energy produc-
tion, along with impaired functions of glyceric acid, such as stimulation of protein synthesis
and facilitation of oxygen release by hemoglobin. In the context of impaired pulmonary gas
exchange and the frequent presence of anemia in COPD patients, this could hypothetically
contribute to altered aerobic metabolism.

As for DEA, which was found at relatively high levels in COPD patients, it competes
with ethanolamine in the formation of glycerophospholipids [86]. These lipids are critical
structural elements of cell membranes, involved in anchoring proteins, signaling and the
synthesis of eicosanoids, as well as being a part of the pulmonary surfactant. Elevated DEA
levels could potentially lead to the generation of abnormal glycerophospholipids, such
as phosphatidyl-DEA instead of phosphatidylethanolamine, which may display altered
metabolic behavior. Finally, reduced levels of 2-aminonicotinic acid, an amide of nicotinic
acid included in the vitamin B3 complex, were also observed in COPD patients [87]. This
reduction might be linked to decreased synthesis of steroid hormones, NAD and NADPH,
possibly contributing to redox imbalance, impaired formation of lipids and nucleic acids,
and once again, reduced energy generation.

3.5. Strengths and Potential Limitations

One of the greatest strengths of the present study is that it included a relatively large
series of patients and matched controls, whose biological samples were carefully obtained
and preserved in reference research centers and hospitals belonging to the Spanish Network
of Excellence for Research in Respiratory Diseases (CIBERES). In addition, controls and
patients shared a history of smoking, a relevant factor that has not always been considered
in previous studies. Moreover, the influence of active smoking was assessed and our
metabolic data normalized based on a very objective element: the blood concentration of
cotinine. The adjustment made for this and other potential confounding factors (sex, age,
nutritional status), which could potentially have affected our initial results, is another of
the strengths of the present study. Finally, the use of two complementary (semi-targeted
and untargeted) metabolomic approaches for the identification of metabolites present in
the blood, is an additional strength facilitating discovery of new potential biomarkers.
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One of the most obvious potential limitations of our study is the impossibility of
identifying the origin and potential metabolic functions of xenobiotics. However, this
is probably a minor issue since a robust and novel metabolomic signature could be ob-
tained after the exclusion of these markers. Another limitation is that the links between
our findings and their potential metabolic consequences are presented as interpretative
hypotheses, and therefore will require validation through future targeted mechanistic and
longitudinal studies.

4. Materials and Methods
4.1. Participants and Ethics

This is a case-control study that included 91 clinically stable COPD patients, and
91 controls (HC, asymptomatic smokers without airflow limitation) obtained from two mul-
ticenter cohorts recruited from 11 teaching hospitals and primary care centers in Spain from
January 2015 to May 2018 (the BIOMEPOC and the EARLY COPD projects) [88,89]. Both
studies were approved by the local ethics committees (refs. 2014/5695/l and 2014/5895/I,
respectively) and the investigation was conducted in accordance with the Declaration of
Helsinki and its recent updates. Patients were randomly chosen from both cohorts, and
HCs were subsequently selected to ensure a similar distribution of age, sex and nutritional
status. All participants were Caucasians and signed a written informed consent prior to any
clinical data or sample collection. The diagnosis of COPD was based on a history of tobacco
smoking and/or other harmful exposures as well as the presence of airflow obstruction
after bronchodilation (FEV1/FVC < 0.7) [90], whereas HCs were present or former smokers,
asymptomatic and with normal spirometry. All patients were clinically stable (absence of
exacerbations for at least 3 months prior to entering the study). Exclusion criteria included
treatments with systemic corticosteroids and the presence of other chronic lung diseases.
Further details on all clinical procedures performed on the two cohorts have been published
elsewhere [88,89]. The present manuscript has followed the STROBE guidelines.

4.2. Collection of Blood Samples

After fasting overnight, whole blood was collected by peripheral venipuncture in
ethylenediaminetetraacetic acid (EDTA) tubes and centrifuged at 1200× g for 15 min within
1 h after extraction to obtain plasma. Samples were then aliquoted and stored at −80 ◦C
until the metabolomic analysis.

4.3. Metabolomics Procedure
4.3.1. Metabolite Extraction

Plasma samples were initially thawed on ice and vortexed. A QC-pool was prepared
by aliquoting 10 µL together from each sample; and 10 µL more from each one were diluted
in 190 µL of a precooled (−20 ◦C) in methanol:acetonitrile 75:25 extraction solution. The
latter was prepared with isotope-labeled internal standards 5 µM glucose 13C6 (ref. CLM-
1396-5), 1 µM glutamine 13C5 (CLM-1822-H-PK), 0.5 µM pyruvate 13C3554 (CLM-2440-1),
2.5 µM glutamate 13C5 (CLM-3949-0.25), 2.5 µM alanine 13C1 (CLM-116-1) and 2.5 µM
lactate 13C3 (CLM-1579-0.5) [all from Cambridge Isotope Laboratories, Tewksbury, MA,
USA]. The samples were vortexed for 10 min at 4 ◦C to extract metabolites and centrifuged
for another 15 min at maximal speed to pellet proteins and any particulate matter. Then,
80 µL of the supernatant was transferred into high-performance liquid chromatography
(HPLC) glass vials with glass inserts and stored at −80 ◦C until the LC-MS analysis. The
extraction procedure was additionally controlled for contaminants by procedure blanks
of extraction buffer. The QC-pool samples were injected every 10 individual samples and
used to evaluate Intra Run variations.
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4.3.2. LC-MS Run Parameters

This analysis was conducted as previously described [91], with only minor adaptations.
Briefly, the Thermo Vanquish Flex ultra-high-performance liquid chromatography (UPLC)
system coupled to Orbitrap Exploris 240 Mass Spectrometer (both from Thermo Fisher
Scientific, Waltham, MA, USA) were used, having a resolution of 120,000 at 200 mass/charge
ratio (m/z), electrospray ionization and polarity switching mode to enable both positive
and negative ions across a mass range of 67–1000 m/z. The UPLC setup consisted in
ZIC-pHILIC column (SeQuant; 150 mm × 2.1 mm, 5 µm; Merck, Rahway, NJ, USA).
Then, 5 µL of plasma extracts were injected, and the compounds were separated on a
mobile phase gradient for 15 min, starting with a combination of 20% aqueous (20 mM
ammonium carbonate adjusted to 9.2 pH, with 0.1% of 25% ammonium hydroxide) and
80% organic (acetonitrile) compounds, and terminating with 20% acetonitrile. Flow rate
and column temperature were maintained at 0.2 mL/min and 45 ◦C, respectively, for a
total run time of 27 min. Thermo Xcalibur 4.4 (also from Thermo Fisher Scientific) was used
for data acquisition.

4.3.3. Metabolite Identification and Quantification
Semi-Targeted

The identification of different metabolites was first obtained using a semi-targeted
approach. Shortly, peak areas of each metabolite were determined using the Thermo
TraceFinderTM 5.1 software (also from Thermo Fisher Scientific). Metabolites were identi-
fied by the exact mass of the singly charged ion and by their known retention time, using
an in-house multi-scale (MS) library (around 600 metabolites) built by running commercial
standards of all detected metabolites.

Untargeted

To expand the metabolome coverage, an additional untargeted analysis was also
conducted using the Compound Discoverer software version 3.3 (also from Thermo Fisher
Scientific). In this case, the alignment of retention times across all data files was performed
via the ChromeAlign node, employing a pooled sample (consisting of an amalgamate
of aliquots from all biological specimens, subjected to repeated injections and occurring
every 10 samples) as a reference file for quality control and normalization of batch effects.
The detection of unknown compounds (with a minimum peak intensity threshold of
1 × 105 AUC), and the subsequent grouping of compounds was performed across all
samples with the following primary parameters (all other settings were maintained at
their default values): a mass tolerance of 5 ppm, a retention time tolerance of 0.2 min for
compound detection, focusing solely on M + H and M − H ions, and a peak rating filter
configured to 4. Missing values were addressed by using the software’s fill gap feature
(mass tolerance of 5 ppm and a signal-to-noise tolerance of 1.5). The “Search Mass Lists”
node was incorporated for identification, leveraging an in-house metabolite library that
encompasses retention times.

The annotation of metabolites was conducted in a hierarchical manner, reflecting di-
minishing confidence levels: (1) by correlating the mass and retention time of the observed
signal with those found in an in-house library that was constructed using commercial
standards (mass tolerance of 5 ppm and a retention time tolerance of 0.5 min); (2) by
matching fragmentation spectra against the advanced mass spectral database mzCloud
(www.mzcloud.org, accessed on 7–14 May 2024), with precursor and fragment mass toler-
ances set to 10 ppm and a match factor threshold of 80; and (3) for compounds devoid of
fragmentation spectra data; annotations were performed utilizing the Human Metabolome
DataBase (HMDB, www.hmdb.ca), BioCyc Genome Database Collection (www.biocyc.org)

www.mzcloud.org
www.hmdb.ca
www.biocyc.org
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and the Kyoto Encyclopedia of Genes and Genomes (KEGG, www.genome.jp/kegg) (all ac-
cessed on 7–14 May 2024), with the application of filtering criteria that required the mzlogic
score of the software to exceed 50 and to possess fewer than three potential candidates [92].
Finally, the identified candidates were subjected to a manual review to eliminate false
identification and enhance the quality of data.

With these two complementary approaches 461 metabolites were identified, but only
360 were present in at least 80% of plasma samples and were included in the final analysis.

4.4. Data Analysis
4.4.1. Statistical Analysis of Clinical Data

Data are presented as median (Interquartile range, IQR) or mean ± standard deviation
(SD) for continuous variables, with absolute and relative frequencies for categorical ones.
Quantitative variables were first tested for normality using the Kolmogorov–Smirnov test
before applying any other test. Comparison of general and clinical data between COPD
patients and HC were analyzed by either t-tests or, when appropriate, the non-parametric
Mann–Whitney U test. All these analyses were performed using the Statistical Package for
the Social Sciences (version 25.0) (SPSS, IBM. Chicago, IL, USA).

4.4.2. Metabolomic Analysis

To normalize and obtain total measurable ion peak intensities for each sample, raw
data files were processed with Compound Discoverer 3.3 (also from Thermo Fisher Sci-
entific). Each identified metabolite intensity was normalized to the total intensity of the
sample, and the raw data were then filtered to only include compounds with <20% miss-
ingness over samples. Filtered features were subsequently uploaded to MetaboAnalyst 6.0
(University of Alberta, AB, Canada) [93] and missing values were imputed using 1/5 of the
minimum positive value. All raw data were log2-transformed to approximate a normal
distribution and scaled using Pareto’s algorithm.

All metabolomic data were evaluated using both univariate and multivariate statistical
approaches using the above-mentioned MetaboAnalyst 6.0 software. Univariate analysis
was first carried out to obtain an overview of potentially altered metabolites in COPD
patients relative to HC, and establish those features included in a supervised multivari-
ate approach. Identification of DAMs between COPD patients and controls was carried
out using two-sided unpaired t-tests, and false discovery rate (FDR) correction by the
Benjamini–Hochberg method was performed on p values to account for multiple compar-
isons. Metabolites with FDR < 0.1 were considered as significantly different between the two
groups, and were used for subsequent steps. The volcano plot was used to visualize metabo-
lite differences between both groups. Next, considering COPD as the principal variable,
multiple linear regression was adopted to analyze DAMs between groups, also accounting
for factors previously known to potentially influence the metabolism [i.e., age, sex, nutrition
(represented by BMI) and recent smoking status (based on the blood levels of cotinine, a
metabolite of nicotine that quantifies recent cigarette smoke exposure)] [17,18,20,21,47,94].
The Small Molecule Pathway Database (SMPDB, www.smpdb.ca), KEGG and HMDB (all
accessed on 1–30 November 2024) were used to identify the most relevant biochemical
pathways, providing the initial framework for metabolomic data. Since one of the main
purposes of the study was to identify potentially human metabolites potentially useful
for screening, xenobiotics (chemical compounds considered as not naturally produced by
human beings) were excluded for the final analysis.

Furthermore, to investigate the most significant DAMs metabolites in plasma, a
supervised machine learning analysis was performed by SVM for the predictive model. The

www.genome.jp/kegg
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ROC curves were obtained to verify which metabolite signature had the highest sensitivity
and specificity for COPD.

5. Conclusions
In summary, the present study clearly demonstrates that there is a metabolic signature

characteristic of COPD patients. This metabolic signature is composed of fatty acids, amino
acid and carbohydrate metabolites, a pseudoglycerolipid and vitamin B3, suggesting that
COPD patients experience alterations in energy production, the redox balance systems and
synthesis of various key molecules belonging to relevant metabolic pathways. Therefore,
it suggests new and/or complementary pathophysiological mechanisms involved in the
disease, with potential implications for future therapies. Moreover, given the current
challenges related to the underdiagnosis of COPD, our results suggest that a panel of just
ten metabolites could be used for screening purposes, identifying population at risk. A
subsequent forced spirometry would confirm or exclude the presence of the disease.
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AUC Area under the curve
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CMPF 3-carboxy-4-methyl-5-propyl-2-furanpropionate
CO Carbon monoxide
COPD Chronic Obstructive Pulmonary Disease
CRP C-reactive protein
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DAMs Differentially abundant metabolites
DEA Diethanolamine
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DLco Diffusion capacity for carbon monoxide
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FDR False discovery rate
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PPG n4 Tetrapropylene glycol
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UPLC Ultra-high-performance liquid chromatography
VLCFA Very long-chain fatty acid
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